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1 Introduction

Mean Curvature Flow This thesis deals with regularity of the mean cur-
vature flow, which is the gradient flow of the area-functional. The solutions
have many features in common with the heat flow and in particular there
is a smoothing effect, which is the central idea behind the results presented
here. Applications of the mean curvature flow are numerous and wide spread
among different areas of research including physics, material science, image
processing and mathematical finance. Specifically it is used to find minimal
surfaces, remove noise inaccuracy from images or for the description of grain
growth in metals.

The mean curvature flow was introduced in K.A. Brakke’s work ‘The
motion of a surface by its mean curvature’ in 1978 [B]. He described the
flow in a very general setting using families of varifolds and prescribing their
behaviour on test-functions. Besides proving existence of non-trivial solutions
and perpendicularity of the generalised mean curvature vector, Brakke’s book
also contains a comprehensive regularity theory. His main regularity theorem
says that a weak mean curvature flow is smooth in some neighbourhood of
almost every point in space-time. Since then, there have been many new
developments. Starting with Huisken’s work in 1984 (see [HI]) many results
were proven especially for the smooth flow. One important achievement is the
monotonicity formula, first formulated by Huisken in [H2], later localized by
Ecker (see [E1]) and generalised to varifolds by Tom Ilmanen in [I2]. Another
such formula will be derived here in order to establish a distance estimate.
A further interesting result is White’s theorem from [W4], where he showed
local regularity in case the Gaussian density ratios are close to one.

Later the weak mean curvature flow was reformulated as a level set prob-
lem by Chen, Giga and Goto [CGG] as well as by Evans and Spruck [ES].
Another weak characterization was given by Ilmanen [I] in form of weak
set-theoretic sub-solutions. These new approaches led to further regularity
results using stronger assumptions, in particular for convex flows.

Although there has been a lot of progress describing the mean curvature
flow in special situations, Brakke’s conclusions are still the best one can get
in the general case. There are two other main sources dealing with these re-
sults. In 2004, Ecker published a book [E4] about Brakke’s regularity theory
focussing on the special case where smooth solutions of mean curvature flow
develop singularities for the first time. In 2012, Kasai and Tonegawa proved
Brakke’s main regularity theorem for a more general flow [KT]. Although
Ecker’s book included a lot of Brakke’s original ideas, especially in the ap-
pendix, and [KT] makes full use of the popping soap film lemma [B, 6.6], one
of Brakke’s central techniques, the main idea to obtain local regularity in the



original work, is not presented in either at all. Brakke uses a cylindrical heat
kernel to explicitly construct families of graphs and under certain flatness
assumptions these move almost by mean curvature flow. Somehow it seems
very natural to simulate mean curvature flow of almost flat surfaces by heat
diffusion, but this approach does not appear to have been used for mean
curvature flow anywhere else.

Summary The main purpose of this thesis is to give a simpler proof of
Brakke’s regularity theorems [Bl, 6.10, 6.12]. We use the original approach
fixing the numerous, often non trivial, gaps in Brakke’s arguments, and try
to improve some of his calculations and estimates. Among other things we
make use of techniques and results developed in more recent years specifi-
cally Huisken’s monotonicity formula from [H2]. In doing this, we maintain
Brakke’s central idea of approximating mean curvature flow by linear heat
diffusion. Moreover, we elaborate on this approach to make it more adaptive
for potential further applications.

We consider n-surfaces in R™** for integers n > 2,k > 1. The mean
curvature flow in the smooth case is given by

oF .,
where F; = F(t,-) : N — R"™ is a family of immersions, N is an n-

dimensional smooth manifold and H is the mean curvature vector. Using
the evolution of the area element due to Huisken [HI], equality ([1.1]) yields

d — —
G| edws- [ (APodu+ [ H-Dodu (2
RnJrk: RnJrk

dt Rtk

for all ¢ € C! (R"*k , R*), and where p; is the induced measure from M; =
F,(N), ie. pu = "L M,. Following Brakke [B], inequality can
be generalised to families of integral varifolds, which is the motivation for
Definition [3.4] A solution of this more general flow will be called a Brakke
flow. In particular solutions of smooth mean curvature flow always induce
Brakke flows. However the converse is not true. One aim of this thesis is
to give criteria for Brakke flows to actually be induced by smooth mean
curvature flows. Note that in the smooth case, actually holds with
equality and for all ¢ € C! (R’”k,R), but for the generalisation one only
demands inequality to obtain compactness and existence results.

Below we give a list of our main results using intuitive geometric formu-
lations. For the precise statements see the corresponding theorems.



1. A comparison theorem relating mean curvature flow and heat flow (see
Theorem[4.15). This is a much stronger version of [B], 6.8]. In particular
we are able to get rid of the slab condition and the mean curvature term
that appear in Brakke’s version. Moreover our result does not assume
a sign on the test function.

2. If a Brakke flow in some region is contained in a narrow enough slab and
also the area ratio in suitable balls is controlled by certain bounds, then
in a smaller region it is actually smooth and graphical (see Theorem
originally [Bl, 6.10]). Note that in contrast to Brakke we don’t
assume unit density. Moreover Brakke’s proof contains a major gap in
the usage of the clearing out lemma, which he needs to obtain height
bounds. We correct his argument and also give an alternative proof
with a height estimate derived from Huisken’s monotonicity formula.

3. The general regularity theorem (9.7 (originally [B, 6.12]), says that at a
time, where no sudden loss of area occurs, the singular set of a Brakke
flow has top-dimensional measure zero. We provide a new streamlined
version of his proof incorporating ideas from [E2], which make it much
shorter and more transparent.

For items [2] and [3] there are alternative versions due to Kasai and Tonegawa
(see [KT] and [T]) which precede our work. They consider a more general
flow, using techniques, which are different to both Brakke’s and ours. In par-
ticular the explicit constructions via the heat kernel are replaced by indirect
blow up arguments.

Besides proving these results we apply Theorem [8.4]to Brakke flows, which
start from a “very plane-like ”varifold. A varifold u is considered very plane-
like in a cylinder Cgr(y), if sptu N Cr(y) can be written as a graph over R”
except for a set which has small u-measure compared to R". Moreover on
the graphical part of sptu the graph function has to satisfy a certain height
and gradient bound. (see Definition [I1.1)). Note that the measure and the
height bound are seen in relation to R, so in a larger cylinder the varifold
may be more plane-like. Within this framework of varifolds we can show the
following new results:

1. Consider a Brakke flow starting from a varifold which is very plane-like
in Cg(y). Then there are two possibilities:
(1) After some time there exists a period of time where the flow is
smooth and graphical inside a smaller cylinder.
(2) At some later time there exists a smaller cylinder with p-measure
Z€ero.

(See Theorem [11.7)).



2. As a special case, we consider a Brakke flow in any slab, starting from a
varifold which can be written as a graph over the whole R", except for a
compact set and which satisfies a certain gradient bound on the graphi-
cal part. Such a Brakke flow is very plane-like for large enough cylinders
around every ¥y, so by the previous result it will become smooth and
graphical or there will be a cylinder which does not intersect the flow
and will eventually grow infinitely large, see Theorem [11.17]

3. In the smooth case we prove a similar result where we assume the flow
is very plane-like for a period of time, but in the plane-like condition
we allow for arbitrary gradient on the graphical part. See Propositions

1213 and 12.176

4. Independently of the “plane-like ”-setting we consider a smooth mean
curvature flow, which is graphical in some cylinder Cx(0) for a period of
time [—R?, 0]. Suppose that the gradient of the graphical representation
is bounded by some L. Theorem[I2.11]then says that we can extend the
graphical representation on the smaller cylinder Csz(0) onto the short
period of time [0, 62 R?], where § is bounded from below depending on
L.

Methods Here we present our specific approach and explain how the indi-
vidual results are related. Also the main calculations are shown in simplified
form omitting most of the specific form of the error terms and writing ev-
erything in the co-dimension-1 case. Equations in which we leave out error
terms feature the symbol ~ instead of an equality sign. Usually these left
out terms will be controlled by tilt-, height- and mean curvature-excess.

Sections [2] and [3] give an introduction to our setting. In particular we
state an exact definition of a Brakke flow, see and Afterwards we
derive the basic continuity properties and the behaviour of time dependent
test functions, see Proposition [3.8

In sections {4 - [§] we prove local regularity for Brakke flows based on the
following calculation: Consider the cylindrical heat kernel

U(t,z) = (2n) 5eir

(actually we use a truncated version to make things localized, see Definitions
and . The main trick is to carry out a convolution with this kernel,
then use that a Brakke flow almost evolves by heat diffusion and approximate
the result via Taylor expansion. Consider a Brakke flow (), such that
sptu; can be approximated by Lipschitz functions in some weak sense. Let



f:[=T,T] x R" = R be a family of such approximations, r,T" € (0, 00) and
p,q € (0,T). By the properties of the heat kernel, we obtain

[osoadix [ [ -pde@a 03)
Br(0) 7(0)
and a Taylor expansion yields
/ ) [ o+ a8 w)d
7(0
~ [ i [ e iDu o i (1.4)
(0
v ] e o didi
7.0

We remark that ([1.3)) becomes more precise the smaller p is chosen, whereas
(1.4) becomes more precise the larger p + ¢ is chosen. The main observation
is that for a Brakke flow we have

/ / o U(p, & — §)dpo()d
~ / ) / s U(p + ¢, )y (2)di,
(0

which becomes less precise for larger ¢. Then combining (|1.3))-(1.4) yields

/ f(o’??)d@*/ ?)-/f(—q7:%)D\If(p+q,§:)dj:dg

B (0) n(0) (16)

+/ ()/f(—q7f7)‘l’(p+q,i)didg).
n(0

This basically says that we can use f(—q,-) to define an affine function which
is a good approximation to f(0,0) in some integral sense.

The basic estimates for — will be done in section . It turns
out that — can be controlled by the maximal height, the tilt-excess
and the mean curvature-excess of u. In section [7] we show that a flow in a
narrow slab which satisfies certain area ratio bounds has small tilt- and mean
curvature-excess such that we can use the results from section . To use (|1.6|)
effectively we need a mean curvature version of standard L — L2-estimate
to obtain a point-wise bound from the integral one. This is done in sections
and [0l Then, in section [§] we finally combine the results from sections [4] -
to derive and use it to obtain C't*regularity.
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In section |4 we start with transferring some basic properties of the usual
heat kernel to the truncated heat kernel we use. Then we deal with relation
(1.5)), which is based on the main idea of estimating the difference between
Brakke flow and heat flow. The major calculation is done in Proposition
4.11} This yields an estimate for the evolution equation of the heat kernel for
a Brakke flow in terms of tilt- and mean curvature-excess (plus good terms).
Furthermore, since [ Ay ¥du = 0 we obtain

/en+1 H Wdu = /:L‘n+1AM\I/du.

Combining this with the Brakke flow equation [3.4and the evolution equation
4.17], already yields the heat diffusion result [£.15] This can now be used to
specify the relation in . A similar approach is used by Brakke in [Bl
6.8, 6.9] but with different calculations, as he is not using the A, at all and
therefore relies on Lipschitz approximations to bring in Agn.

Next we want to obtain an L™ — L?-estimate. In section [5| we follow
Brakke’s approach, using a clearing out lemma inside large balls. There we
verify the argumentation that Brakke uses in [Bl, 6.9. pages 195-196], which
is incomplete there, resulting in Lemma [5.14. To do this, we use Lemma
which is a new version of a clearing out lemma that considers the intersection
of a ball and a cylinder.

A second method is based on the more up-to-date L> — L*-estimate
found in chapter 4 of [E4]. This chapter deals with some consequences of
Huisken’s monotonicity formula. The results in [E4] are proven for smooth
mean curvature flow, but those we need carry over to Brakke flow without
great effort, see section @

In the slab setting we have small height, if we choose the slab narrow
enough. Besides that it is essential to have small tilt- and mean curvature-
excess, for Theorem to be useful, for Lipschitz approximations to be
close and for many other details not mentioned here, to work out. Also,
we require bounds on the area ratio of the solution to get any Lipschitz
approximations at all. These will all be provided by Theorem [7.7, which is
the final result of section [7l We observe that for a varifold lying in a narrow
slab, the area in a cylinder £ = R™"u;(Cg(0)) is decreasing as long as E is
in (h,w, —h)U (w, + h, 2w, — h). Here w, = Z"(B7(0)) and h is the height
of the slab, which is assumed to be small. Moreover the rate of decrease is
determined by a certain differential inequality,
3B, 1} , (1.7)

n

DE(t) < —~Q 'R *min {yE(t)

where () is a large constant. Solving ((1.7)) yields the following: If the initial
area is smaller then 2w, — h, and if much later there is area greater than h
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left, then in the time in between the area was very close to w,. Moreover, if
the area stays almost constant for some time there cannot be a lot of mean
curvature. This establishes a bound on mean curvature-excess, and by the
fact that we assume that the flow stays in a slab, we also get bounds on
tilt-excess. This has been done by Brakke in [Bl 6.6] and at the beginning of
the proof of [B, 6.9]. It was rewritten in [K'T] in a more detailed way.

With Theorem and the L> — L?-estimate established, we can
attack local regularity in section[§] Consider a Brakke flow inside a slab with
plane-like mass in [=7', 7] x C1(0). By the local flatness theorem there
exists a smaller period of time, where we have good Lipschitz approximations
and small tilt-excess. Actually, we only have those in an integral sense in
time. The slab condition yields |z,,1| < h. Suppose h and § are very small.
Theorem .15 can be used to obtain

/1552/25

< 8%,

/ Tnir ¥ (p, & — §)dp, — / T U(p—t+ .3 — §)dp_| dj dt

for p < 6% < ¢ < 6. Furthermore, the error term for the Taylor expansion
in (1.5)) can be estimated by

Zyuyv/ /f —q,#)D2U(p —t + q,& — 05)di dO

u,v,w

< §%q'h,

for y € B(0) and t € (—1562,6%). Also (1.3) is stated more precisely as

£(0,9)d3 - / / i U(p, & — §)dpo () < 6°h
45

n
B46

for p small enough depending on §. For ¢ = §¢, calculation (|1.6]) then yields
an affine subspace A; = {x,41 = a; + b; - } such that

/ / F(0, ) — ay — by - yldy dt < 5> (1.8)
1562 "

Here a; = [ f(— (p—t+gq,2)de and by = [ f(— DV(p—t+q,z)di.
By the propertles of the heat kernel, we can estimate |at +y by—ag—y-bo| <
62¢~h, so that (1.8)) holds with fixed ag,by. Actually, we even have

/ / ‘xn+1 — ag — bo : i‘dﬂt dt S (5276h.
1562 J Cys



Note that d(x, Ag) < |zp41 — ag — bo - Z|, thus we can use Corollary to
obtain d(x, Ag) < 6%~k for all x € Cas5(0) N sptuy, t € [—6%,62]. This leads
to Lemma [8.1, which says that in the above situation, one can find new
coordinates, such that in a d-smaller region the height is bounded by §2~¢h.
So for every space-time point (%o, zo), which is far enough inside the interior
of (=T,T) x Cgr(0), we obtain a sequence of contracting slabs containing
shrinking neighbourhoods of (tg, zg), which finally converge to the tangent
space Ty t,- As a result, Brakke’s local regularity theorem (originally
[B, 6.10]) states that every Brakke flow, which locally lies in a slab and with
plane-like mass for a given time interval, is actually a smooth graphical mean
curvature flow for some time in a specific subinterval. This is an elaboration
of Brakke’s [Bl, 6.9 and 6.10]. Note that in this thesis we only prove local C'*°-
regularity, for the smoothness and the fact that solutions move by smooth
mean curvature flow we refer to [B] and [T

In section [9, we apply the local regularity result in the general case. The
main tool is Lemma [9.5] which can be used to state the following: Provided
that there is no jump decrease in area at time ¢t = 0, for almost all of the
density one points & where the tangent space T, 1y exists, we can find a small
neighbourhood where we can apply Brakke’s local regularity theorem [8.4] In
addition, for almost all of the density zero points of jy, we can find a small
neighbourhood where we can apply our clearing out lemma So at time
t = 0 almost all points are regular, which is the statement of Brakke’s general
regularity theorem [9.7| (originally [Bl 6.12]). Though most of the calculations
appear in [B, 6.12], this is almost a completely new proof incorporating the
approach in [E2].

Another interesting observation is the expansion of holes under the Brakke
flow which is observed in section[I0] We show that for a Brakke flow satisfying
an a-priori height-excess bound, the area increase inside a growing cylinder
is restricted by that bound, which is a replication of Brakke’s [Bl 6.5]. In the
slab setting this actually says that holes are growing arbitrarily fast if the
slab is narrow enough, see Proposition [I0.6] A similar result can be found in
White’s [W3], based on a different approach.

In section [I1] we apply Brakke’s local regularity theorem to Brakke
flows starting from a very plane-like varifold. A varifold p is considered very
plane-like in a cylinder Cr(y), if uNCg(y) can be written as a graph over R”
except for a bad set S having small g-measure. Moreover the graphical part
has to satisfy certain height and gradient bounds. (see Definition [11.1]). Use
of the clearing out lemma, yields that after a short time the flow is contained
in a small slab, which will be arbitrarily narrow if the height bound on the
graphical part and the bound on the measure of S are small enough. By the
flatness of the graphical part, we obtain area ratio bounds close to w, there,
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and if the measure of S is small enough the area ratio of o in Cg(y) has to be
close to w,. This also yields a bound on the overall measure of u; in smaller
cylinders for later times. Then at a certain later time sg, either there exists
a cylinder Cysz(0) which contains no p,,-measure, or using the clearing out
lemma we have a lower area ratio bound for ps,_(Csg(0)). In the second
case, by Theorem the flow has to be graphical in a small neighbourhood
for a small time period in between 0 and sy — €. This yields the statement
of Theorem 1.7

In the smooth case with co-dimension-1, these results can be improved,
which is something that we do in section [I2] It turns out that the gradient
bound can be replaced by assuming that the flow is plane-like for a cer-
tain time interval. The key result here is Theorem [12.11, which says that
a graphical representation can be extended to later times and additionally
yields, that the Lipschitz constant of the extended graphical representation
is small, if the flow lies in a narrow enough slab.

This thesis was supported by the SFB 647 Raum-Zeit-Materie. I would like
to thank my supervisor Klaus Ecker for his advice and patience. Moreover
I would like to thank Ahmad Afuni, Ann Bjorner, Theodora Bourni, Apos-
tolos Damialis, Hanne Hardering, Felix Jachan, Mathew Langford, Tobias
Marxen, Ulrich Menne, Kashif Rashul, Oliver Schniirer and Felix Schulze.
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Notation We denote the canonical basis of R"** by ey, ..., e,,. For an n-
dimensional subspace T of R"** we denote by 7y : R"** — T the projection
onto T. Set T+ ={x e R"™*: z.-v=0Vv € T} and 713 := 7p..
Sometimes we make the following identifications: R® = R" x {0}* and
R* = {0}" x R*, also we may identify § € R™ with (§,0) € R™ x {0}*, this
should be clear from the context. For z € R""* set & = (#,0) = mgn(x) =
WRnX{O}k(I‘).
For R € (0,00) and xy € R"™ set
Cr(zo) == {z e R"* : |2 — &| < R},
Bg(zg) == {z € R"": |z — 2| < R}.
For m € N, R € (0,00) and yp € R™ set

By (o) :={y € R™ : [y — wo| < R},

S Hxo) = {y € R™: [y —yo| = R}.
We denote the n-dimensional volume of the unit ball by w,, := Z"(B}(0)).
For m € N consider v = (vq,...,v,) € R™ and A = (a;j)1<ij<; € R™™.

The matrix A operates on R™ in the usual way A(v) := Av = " a;v;e;.
The norm is defined by

m m

lv]? = va, |A]? = Za?j.

i=1 ij=1
The operator norm is defined by

[Allop == sup  [A(v)| = sup [A(v)|[v] "
veST(0) veR™\{0}

For a time dependent function f : I x R™ — R and a family (p;)¢e; of
Radon measures in R™ we often abbreviate

/ = [ @) (o)

For a relation ~€ {=,<,>, <, >} we define the Kronecker § by

(SZ‘N]' Z:{ He ], 51']' = 5@':]' ::{ ne J

0 else 0 else

for i,5 € N.

Quantities that only depend on n and/or k are considered constant. Such
a constant may be denoted by C,,, in particular the value of C,, may change
in each line. Note that C),, may depend on k. We will not always mention
dependence on n and/or k.
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2

Varifolds

In the first part of this section we recall the definition of an integral varifold
and some of its basic properties. For an excellent introduction to varifolds
we refer to [S] or [Schl. Afterwards we present the cylindrical growth lemma
from [B], see Lemma . One important feature of varifolds, is that they
can be approximated by Lipschitz functions, if they satisfy certain area and
height-excess bounds, see Theorem Appropriate theorems can be found
in [KT], [B] or [Sch].

2.1 Definition. Let i be a Radon measure on R"**.

1.

For A C R™™* and ¢ € C? (R"™* R) define the measures uL A and
pl ¢ by

for every B C R™*. Then pl_ A and pl_ ¢ are also Radon measures.
Also set p(¢) = pu|d(R™F).

Define the support of u by

sptp = {z € R"™* :Vr >0 p(B,(z)) >0} .

CIf p (R™F\ U) = 0 for some U C R™*, we say p is a Radon measure

in U. In particular if 4 is a Radon measure in U we have spty C U.

Define the n-dimensional density of p in x € R*™* by

n 1 -1 _.—n
0" (u,2) :=limw, "r="p1 (B, (x)),

if this limit exists.

. If for an # € R™** there exists an n-dimensional subspace T C R"**

and a 6, € (0,00) such that for all ¢ € C? (R™)

e [ ( . ) n(z) = 0. [ o0 ().

we call T,u := T the approximate tangent space of p in x with multi-
plicity 6,. Note that if T, u exists it has to be unique.

12



2.2 Definition. Let U c R*t*,

1. A Radon measure p in U is called a rectifiable n-varifold, if for p-almost
every x € R"* the approximate tangent space exists.

2. A rectifiable n-varifold p in U is called an integral n-varifold, if for
p-almost every x € R"* we have O (u, ) € Z+ U {0}.

3. An integral n-varifold p in U is called a unit density n-varifold, if for
p-almost every x € R"™ we have O™ (u, z) € {0,1}.

2.3 Remark. Let U C R™™ and u be a rectifiable n-varifold in U, i.e. for
p-almost every x € R™* the approximate tangent space T, exists with
multiplicity 6, € (0, 00).
1. Then 6, = O" (u,z) for p-almost every x € R"** in particular the
limit in Definition 2. 1M exists. Moreover

lim A" An+k¢(zgx)du<z>=@"<u,w> o)A (), (21)

ANO Top

for all ¢ € C? (R™™*)for p-almost every z € R

2. If p is a unit density n-varifold, then for J#"-almost every x € R"+*
we either have ©" (i, z) = 1 and the approximate tangent space exists
with multiplicity 1 or ©™ (u,z) = 0

2.4 Definition. For a subset U C R"** a rectifiable n-varifold p in U and
x € int(U) such that the approximate tangent space T, exists (which is the
case for .#"-almost every x) we define

o Vig(x) :=mr,, (Dé(x)) for every ¢ € C* (U, R).
o div, X (z) := Y7 F Vi (X (2)) - e; for every X € C' (U, R™F).
This can now be used to define the mean curvature vector on

2.5 Definition. Consider an open subset U C R™™*, a rectifiable n-varifold
pin U and M = {©" (u,z) > 0}. Suppose there exists a locally p-integrable
function H : M — R"** such that for every X € C} (U, R™™)

/ div, Xdy = — / H- Xdy, (2.2)
U U

then H is called the (generalized) mean curvature vector of p (in U). Suppose
H exists, let ¢ € C?(U,R) and x € U such that the approximate tangent
space T, 1 exists, then we define the Laplace Beltrami operator in x by

Aué(z) = div,(Dé(x)) + H(z) - Do(x). (2.3)

13



2.6 Remark. Let U C R"”“_’be open and p be a rectifiable n-varifold in U
with mean curvature vector H and let ¢ € C? (U, R), X € C! (U, ]R”*k)

1. If u = " N for an n-dimensional C'-manifold N, then V*¢(x) =
V¥¢(z) and div,é(z) = divyg(z) for all z € N, where V¥ and divy
are defined in the usual way for manifolds. If N is a C?-manifold with
ONNU = ) and p is a unit density n-varifold, then H equals the usual
mean curvature vector defined on V.

2. For an open subset V' C U the measure LV is a rectifiable n-varifold
in V with mean curvature vector H L V'

3. As in the smooth case for v € C? (U,R) and f € C? (R,R) at points x
where the approximate tangent space T, exists we can calculate

div,(¢X) = V¥ - X + ¢ div, X,
A (1) = A0 + VA LG + 2VF - Vi,
Au(f(9) = F(9)Aud + f"(9)[VF|*.

4. For x € U such that the approximate tangent space T, exists we can
calculate

n

div, (X (x)) = Z (DX (2)73) - 75,

=1

where (7;)1<;<n is an orthonormal basis of T,u. In particular for the
identity map we have

div,(z) = n.

5. For x € U such that the approximate tangent space T, exists we can
calculate

k n+k oo X
div,(D¢(z)) = Agnrep(x) — Z Z gxzbﬁ(xj

=1 i,j=1

(v - ei) (v - ej),

where (1),,,, is an orthonormal basis of Tyu™.
6. For X € C* (U, R™™*) with sptp NsptX CC U equality (2.2) holds.
7. If sptp Nsptgp CC U equalities (2.2]) and (2.3) yield

/ Ao dp = 0.
U
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In the smooth case the mean curvature vector is always normal to the
surface. This fact carries over to integral n-varfolds as proven by Brakke in
B} 5.8]. We will frequently use this fact.

2.7 Theorem (Perpendicularity Of Mean Curvature, [Bl 5.8]). Let U C
R™* open and p an integral n-varifold in U with mean curvature vector H,
then

H1Tu (2.4)
for u almost every x € U.

Now we can estimate how changing the radius of a cylinder varies its
measure. This lemma is taken from [Bl 6.4]. We filled in some details for the
proof.

2.8 Lemma (Cylindrical Growth Rates, [B, 6.4]). Let Ra, ag, Bo € (0,00),
Ry € (0,Ry), U C R™* open and u be an integral n-varifold in U with
L?-integrable mean curvature vector H and

sptu N Cr,(0) CC U. (2.5)
For ¢ € C2 ([-1,1],RT) and p € [r, Ry set

o [ AP = ao) (2.6)
Cy(0)
o / s — T2 8, () dp() = Bas(p) (2.7)
Cy(0)

where ®,(x) := ¢ (p~'|&]). Then the following holds:
1. Suppose ay(p) < ag and By(p) < Po for all p € [Ry, Rs], then

RQ_n/ (I)Rz dlu - Rl_n/ <I>R1 d:u
Cr,(0) Cr4 (0)

< nfilog (Ry'Rs) + cofo(Re — Ry) + 255

2. Assume ¢ is monotonically non-increasing on [0, 1]. Suppose éy(R2) <
Ry'ag and By(Ry) < By, then

R2_n/ q)RQ dlu’ - Rl_n/ ®R1 dp“
Cr, Cr,

< R7"RY (nBilog (Ry'Rs) + aofoRRy ' (Re — Ry) + 253) -
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Proof. Set U = Cg,(0), at x € spty where T,y exists set
T 1= TRn, Tg = Tpe, Ty =TT, Ty i=Tp,L.

For x € sptu for which the approximate tangent space T, exists calculate

n+k

div, (®,(x)z) = Z €; - (VM ((I)p@)ii))

= Zei : (Ii”z VM‘I)p(fB) + (I)p(f’c)”x(ei))
i=1 . (2.8)
=3 -VY®,(z) + ®,(z) Zei -7z(e;)

= 7,(2) - D®,(z) + @, () (n — .Z |7rx(ej)|2> .
n+k |2 _

In the last step we used ) " |m,(e;)|* = n as Tyu is an n-dimensional
subspace. With the tilt-excess characterization from Remark equality

becomes
div, (®,(2)2) = mp(2) - DP,(2) + P,(2) (n - % |70 — 7rx|2) (2.9)

for all p € (0, Ry] and all x € sptu where T, i exists.
By definition of the mean curvature vector ([2.2)) we have

/ div,, (®,(x)) du = — / ®,(z)@ - H(x)dp(x) (2.10)
U U

for all p € (0, Rs]. Here we used that spt¢ CC [—1,1] and sptun Cg,(0) CC
U, so sptpNspt®, CC U. By Theorem 2.7 we can use Remark [A.7][I] for the
term on the right of (2.10]) to estimate

/U div,, (®,(2)2) du‘ - / D, (2) (ma(2) — 7o(2)) - F(@)dpu(a)

< / @, ()]l 70 — | | ()] dia(a)

<p / D, () [ — | [ () dp(z)
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for all p € (0, Ry]. Now Combine this with (2.9) and use Hélders inequality
to obtain

o [ (m) Do)+ 00 (0= (o) = ) ) i)

< / B,(2) [y — | | () dpa()

< ([ 2o im - mldute) [ o 0P dn(o))

for all p € (0, Ry]. Then by definitions (2.6) and (2.7) and the assumed
bounds on dy(p) and B4(p)

o [ () P 0,00 (0 g ) ol ) )
< (Go(p)*p"Be(p)*p")* < 0 fBop”
for all p € [Ry, Ry
As @,(x) = ¢ (p~tz|) we have
oaany Ly B e O pi

for all p € (0, Ry] and all x € R"™*. Then we can calculate

0 (1 |72 () ]2

35 (i 20 -
0 |72 (2)[? n/ |72 (2) 2 ‘
— (P, (x - du(z) — — | ¢,(x - du(z

@) i) = [ 0,0 T dute)
. 7 (2)]?
= p”l/ (ﬂx(x) - DO, (z) + n<I>p(x)| ( 2)| > du
U

and combining this with (2.11]) establishes

< apfo + P_n_I/ P, (z)
U

o )P (2.12)

P

dp

n—=|m, —
2
for all p € [Ry, Rs]. By Remark we obtain

1 +(2)]?
e [ (- i Ex)| < n|m, — ) (2.13)
2 &[>
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for all € spty where T,u exists. Here we used |a — b| < max{a,b} for
a,b > 0. Then by (2.7) and S,(p) < Bo

p_n_l/ P, ()
U
—n—1 2 _ 2 -1 2 —1
<np ! [ 0,00 o)  pale) due) = nBalp)p ™t < o
U
for all p € [Ry, Rs]. Inserting this into (2.12)) produces

0 (1 |72 (2) Ly
E (E/U@p(w) ‘i‘|2 du(a:))‘ SaOﬁO—i_;@O

for all p € [Ry, Ry and integrating with respect to p then yields

& o]

Using again Remark we can estimate |1 — |2|72|m, (&) 2] < |7 — ma|”
Combined with (2.7) and 5,(p) < By we obtain

n ‘Wx(f%)P
p /q) T ‘1— ~
U p( ) |$|2
for all p € [Ry, R2). Combining (2.14]) and (2.15)) finally establishes
B [ ot [ e an
U U
7 (2)]? Y 7 (2)]?
<|r [ o) uw) - r [ o 0P o)
U 2] U |2
- 12
. 7 (&
+2 max p /U(I)p(a:)‘l—| ()l

d
pE{R1,R2} |j\7|2 ,U(f)

S Oéoﬂo(Rg - Rl) + nﬁg 1og (Rl_lRQ) + 268

1 (22
1= 3 o) = o) -

dp

dp(x) < fg (2.15)

For statement [2| note that as ¢ is monotonically non-increasing on [0, 1]
we have ®,(z) < ®p,(z) for all z € R™™ for all p € (0, Ry]. This lets us
estimate

(Gg(p))® < p "Ry (Gg(R2))? < R"Ry(ag(R2))* < Ry"Ry(Ry ' ay)?
(Bs(p)? < p "R3(Bs(Ra))? < RI™RY(Bs(Ra))* < R Ry 52

for all P E [R1, Ry]. Thus we can use statement I with aq replaced by
R, z R,? ag and Sy replaced by R, z R, 2 50 which yields statement [
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For the local regularity iteration lemma [8.1| we need a Lipschitz approxi-
mation for integral varifolds like in [Bl, 5.4]. Note that we only need the “one
sheet”-case.

2.9 Theorem (Lipschitz Approximation, [Bl, 5.4]). For all I, X € (0,1) there
exist C € (1,00),7 € (0,1) such that for all R,a,5 € (0,00) and v €
[0,70] the following holds: Let p be an integral n-varifold in Brg(0) with
L?-integrable mean curvature vector H and suppose | satisfies:

(3R) "1 (Banl0)) < (2 — Moy (2.16)
R™"1(Br(0)) > Aw, 2.17)

R | M@ Pt < o (2.18)
R f e P ute) < (2.19)
R [ () ) <7 (2.20)

Then there exists a Lipschitz map f: B%(0) — R¥ with

lip(f) <1, sup|f(y)| < Cyi=R (2.21)

such that for

we can estimate
1 (BR(0) x BE(0)\ X) +.2" (BR(0)\Y) < CR'E,  (2.24)
where B := <Oé%5n23 + 8%+ ’y2>. Here §,>3 :==1, ifn > 3 and 0 otherwise.
2.10 Remark. In the above statement we actually can choose
Y = {4 €Y : Tpypand Treg)ji exist with Trgyp = Trgi}, — (2.25)

where F'(2) = (2, f(2)) and fi = "L graph(f). Then LMY \Y) =0, such
that ([2.24]) still holds for Y replaced by Y.
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2.11 Remark. Theorem can be used to estimate the integral over the
varifold by the integral over the graph of f. Set F(Z) = (&, f(z)), and
consider an L!-integrable function

¢ : Bj(0) x Bi(0) N [sptu U graph(f)] — R

then we have

/ o) dp() — / B(F(#))TF(2)d.2"(8)| < CR"sup|d| E.
B7(0)x Bk (0) B%(0)

If I <1 we even have

/ o) () — / O(F(8))d2"(2)
B} (0)x Bk (0) %(0)

Here in both estimates sup |¢| is the essential supremum of |¢| over the set
B(0) x BA(0) M [sptp U graph( ).

Proof. For a proof of Theorem [2.9|see [Bl 5.4] or [Schl, 18.1]. Remark is
from [Sch 18.2]. Remark we will prove below. By (2.22) and (2.23)) we

have
[ otaduta) = [ s(F@)IFGIAZL ).

So we can estimate

/ o) du(x) — / O(F(2))JF(2)dL" ()
(0)x Bk (0) %(0)

R

/ o) dp(x) — / O(F(2))JF(2)dL" ()
Bg(o)ng(o)\X BR(0)\Y

< sup 9] 1 (BR(0) x BE(0)\ X) + sup |6] 2" (BE(0)\ Y).

Then the first inequality follows with ([2.24]).
For the second inequality use Remark to estimate

|]_ - JF(ZIA’})| S C”|7TTF(5¢)11 — 7T]Rn|2 (226)

< C,R"sup|¢| E.

for almost every & € B(0), where i = 2" L graph(f). In particular this is
bounded by a constant, so with (2.24) we have

[, [0 = IF@)] a2
(2.27)
/|¢ DL = JF(&))|d2"(@) + Cu " sup|o] E.
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Using ([2.26)) we can also estimate
/ |1 - JF(i’)| dfn(li') S Cn/ |7TTF(£)[L — WRn|2d$n(i’)
% Y
Then with Remark and assumption (2.19) we obtain

[ - F@ae @ <Co [ rny - me (o) < G PR
Y Brr(0)

where we also used graphf C Br(0) x BE(0) C Byr(0) and JF > 1. Then
with (2.24) and 3?2 < F

/Y [0(F(2))(1 = JF ()] dL"(2) < CuR"sup |¢] E.

Now combine this with the first statement of Remark 2.11| and (2.27)) to
establish the second statement. O
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3 Brakke Flow

In this section we define the Brakke flow via the Brakke variation. Afterwards
we derive the almost continuity property of this flow. Then we deal with the
behaviour of time dependent test functions integrated over a Brakke flow.
In the end we use barrier functions, to see how area and height bounds at
a starting time transfer to later times. Most of this is from [B] chapter 2-3,
though we had to change the order slightly.

A Brakke flow will be a family of Radon measures which satisfies inequal-
ity in a generalized interpretation. This shall be made precise below. In
the previous section we introduced the mean curvature vector on varifolds,
this suggests the following definition for the right hand side of (1.2)):

3.1 Definition. For an open subset U C R"** a Radon measure p in U
and ¢ € C%! (U,R"), we define the Brakke varitation %B(u, ¢) as follows.

e If 14 is a rectifiable n-varifold with mean curvature vector H and H is
L2-integrabel on p we set

#0.0)i= — [ olfPdu+ [ it (Do) Han
U U
this is called the non-singular case.

e clse we set A (u, ¢) := —oo, this is called the singular case.

3.2 Remark. 1. For an integral n-varifold  we can write for the Brakke
variation in the non-singular case

#(.0) = [ olfiPdu+ [ Do- iy

Here we used H(z) L Ty for p-almost every  in U, by Theorem .

2. For ¢ € C?(U,RT) we can estimate ¢~!|Dg¢|? < 2|D?¢| on {¢ > 0}
and setting ¢~ (x)|D¢(z)|* = 0 outside {¢ > 0} yields a continuous
function, see Proposition [A.6] Then with Young’s inequality we can
estimate for the Brakke variation in the non-singular case

/wmmw/mMQ By

¢ 2
| L ; §|D2¢|dl~b-
|Dg|?

Note that in the singular case we trivially have —oo < [, Wd““
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Next we consider the left hand side of (1.2]). Usually the integral of a
test function over varying varifolds will not be differentiable, but the upper
derivative will exist, that is:

3.3 Definition. For a function f : (a,b) — R and a point ¢y € (a,b), the
upper derivative from the right is defined by

D, f(to) := limsup ™' (f(to+h) — f(to))

h—0

We allow this to be +00, so it always exists.
Now we can define the Brakke flow by:

3.4 Definition. For t; € R,t, € (t;,00) and an open subset U C R"™* let
(Ht)iepsy 1o Pe @ family of Radon measures in U. We call (put),cyy, 4, @ Brakke
flow in U, if the following holds

1. For every test function ¢ € C*! (U, RT) we have for all ¢ € [t, 5]

Et,ut (625) <% (/Lty 925) ) (3~1)
where £ is the Brakke variation from Definition [3.1]

2. For almost every t € (t1,t2) the Radon measure p; is an integral n-
varifold.

3.5 Remark. 1. Note that by definition a Brakke flow (Mt)te[tl,tg} in U
satisfies y; (R™™*\ U) = 0 for all ¢ € [t;,t5]. For an open subset
V' C U the restriction (p I_V)te[thtﬂ is a Brakke flow in V', although
(1¢) itself may be not. Of course you could define a Brakke flow in U
for measures with support outside U, but all expressions we use only
consider the restriction to U, which we do not want to write all the
time.

2. Let ¢ € C! (R"*k,RJF) with K := Ute[tlm] sptu: N spt¢ CC U, then
inequality holds for all ¢ € [ty,ts]. To see this multiply ¢ with a
cut-off function ¢ € C2° (U, [0,1]), which satisfies K C {¢ = 1}. Then
holds for ¢¢ € C} (U,R") and as ¢ = 1 in the terms of (3.1)), we

can ignore the (.

3. A Brakke flow ()¢, 4, can always be extended to the time interval
[t1,to + T for arbitrary T' € (0,00) by setting p; = 0 for all ¢t €
(ta,to + T). By [B, 4.29] there actually exist non-trivial Brakke flows
for any initial integral n-varifold g, .

23



4. Usually condition [2| is not included in the definition, so we basically
look at integral Brakke flows but omit to write integral. Some of the
results still hold without assuming condition

3.6 Lemma. For all open subsets U C R™* and all t; € Rty € (t1,00)
the following holds: Let (:ut)te[tl,tg} be a Brakke flow in U and V CC U, then
there exists an M € (1,00) with (V') < M for all t € [ty,ts]. Note that M
depends on V' and ()

te[tl,tQ} ‘

Proof. Fix a 0 € (0,1) and extend the flow to the time interval [t1, t2 + d] by
setting p; = 0 for all ¢ € (tg, o+ J]. The extended flow than still is a Brakke
flow.

As V is compactly contained in U there exists a ¢ € C2(U, [0,1]) with
¢(xr) = 1 for all x € V. Now let t € [t;,ts] be arbitrary. By the def-
inition of upper derivative from the right we find h; € (0,d) such that
R (pegn(0) — pe(9)) < Dyuy(@) + 1 for all h € (0,hy]. Using Definition
3.4l and Remark B.212] we can estimate

Mt+h(¢) < Mt(¢) +h (%(,ut, </5) + 1)

< u(6) +2h ( [ 1026l + 1) <o) +hv, PP

for all h € (0,h¢] and M, := 2 ([, |D*¢|dpu, +1) € [0,00). This yields a
covering [t1 + hyy,to] C Uy, 4o (82 + fe), so by compactness there exist
Sy .., sy with [ty + hy,, te] C UfVZQ(Si,si + h;), for an N € N and h; = hs,.
Set s1 := t; to obtain (¢,ts] C Uf\il(si, si + hy).

W.lo.g. assume s; < s;41 fori =1,..., N — 1. By iteration of we
can estimate for every i =1,... N

Mt(¢) < Mty (¢> + Z MSj

for all t € (s;,s; + h;). Here we used h; < 1 for all i = 1,..., N. By the
covering feature this yields

pe(@) < puy, (@) + M

for all t € (t1,t,], where M := p, (V) + S0, M,,. Then the result follows
by V C spte. O]

We can use Lemma to derive some of the continuity properties in [Bl
3.10]. Note that we do not need barrier functions here.
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3.7 Proposition (Continuity Properties, [B, 3.10]). Consider an open subset
UCR" andt, € Rty € (t1,00). Let () | be a Brakke flow in U and
¢ € C*(U,RT) then the following holds:

1. Doy (¢) = limsupy_o h™" (pen () — p (9)) < L < oo for all t €
[t1,t2], where L € R may depend on ¢ as well as the whole flow ().

2. Timg o pers (9) < e (@) < limgno pir—5 () for all t € [ty to]
3. There exists a countable set S C [t1,ts] such that for all t € [t1,ts] \ S

tG[tl,tQ

lim s (9) = e (9) V9 € CO(U).
h—0

Proof. Consider ¢ € C? (U, R"). By regularity of ¢ there exists L; € (1, 00)
such that sup |D?*¢| < L;. Set V := spt¢, then Lemma yields an Ly €
(1,00) such that (V) < Ly for all t € [t;,ts]. Using Definition and
Remark 3.2 we can estimate

Dipui(9) < B, ) < /U |D?¢|duy < Ly Ly =: L

for all ¢ € [t1,ts]. Then by Proposition we have i, (0) — pg, (¢) <
(s — s1)L for all t; < s; < s < to. This establishes statement .

Now consider g : [t1,t2] — R given by ¢(¢) := u; (¢) — Lt. Then g is
monotonically non-increasing and lims\ o g(t + 9) as well as limg\ g(t — 0)
always exist, so limgs\ o g(t40) < g(t) < limg\ o g(t—3), which gives statement

For the continuity let ¢ € C? (U, R") and consider again g(t) := py (¢) —
Lt. Denote by S C [ty,ts] the set of times ¢t where g is not continuous. As
g is monotonically non-increasing it ”jumps down” at all discontinuities in
t, so we can decompose S = J,~, S1, where S, is the set of times where g
abruptly decreases by at least € !

Se = {t € [t,ta] : (lsi{%/ttw +e< (lsi{%/ﬁtfa (¢)} .

By the monotonicity of g each of these S, consists of discrete points, so S has
to be countable. Thus we proved that there exists a countable set Sy, C [t1, t2]
such that t — u; (¢) is a continuous function for all t € [t1, 3] \ S

Now take a countable A C C?(U,R") such that A is dense in C? (U, R").
Then for almost every ¢ € [tq,ts] we know that limy,_,o 1 n(P) = (@) Vo €
A. For ¥ € C%(U,(—o00,0)) we can write ¥ = 9 — 9~ where 9 (z) :=
max{0,9(z)}, 97 (x) := max{0,—3J(x)}. Then approximating 9,9~ by
functions from A yields the result. O
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Now we can consider the behaviour of time varying test functions. This
is basically [Bl 3.5].

3.8 Proposition (Time Varying Test Functions, [Bl, 3.5]). For all open
subsets V,U C R"™* every t; € R,ty € (t;,00) the following holds: Let
(Kt)1cpiy 1) b€ @ Brakke flow in U and ¢ € C' ([t1,ta] x V,RY), ¢ := ¢(t, )
with ¢p € CL (V,RT) for allt € [ty,t5] and

U sptu, NV CcC U. (3.3)

te(tr,ta]

Then we have for almost every s € (t1,ts)

Et#t (1)

d
<o)+ (G o). (3.

t=

In particular for every ty < a <b <ty

o) =@ < [ (Beor+ [ Penm)a @

3.9 Remark. 1. By (3.5)) the Brakke flow has to be non-singular for al-

most every time t € [ty,ts]. In particular the mean curvature vector H
is defined and L*-integrable on U for almost every time ¢ € [ty, t5].

2. The rather technical condition ({3.3)) is necessary because our test func-
tions are not assumed to have compact support in U. In particular we
later want to use V = C,(a), a € R"* p € (0, 00).

3. Inequality (3.5)) can be used as a definition of Brakke flow which is done
in [KT]. Their definition also includes an extra term.

4. Brakke’s original proof contains a major gap. He tries to estimate
Lsih (%gb(s, )) using (i3.1]), which is in general not possible as %qf)(s, )
may have negative values.

Proof. Note that inequality (3.5)) follows from inequality (3.4]) by Proposition
A.19, For s € (t1,t5) set Ey := Dy (¢(t,)) ) and calculate
t=s

E, = lir]? S(l)lp W [psrn (Dsin) — ps (¢5)]

= lir}rllj(l)lp W ptsn (Gstn) — pssn (D) + psgn (Ds) — 1 (¢5)]

+ Hsin <%(8, ')) — Hs+h (%(s, ')) :
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so we arrive at the inequality

E, <limsup h™* [tstn (@s) — s (0s)]

h—0
0
+ lir}rlljélp h_l/U |:¢s+h(fl7) — ¢s(x) — ha—(f(s,x)} dpsin() (3.6)
9¢
+ llr}?jélpus+h <8t( -))

By Definition [3.4] we can estimate

lim sup h_l [,us—i-h (¢8) — Ms (¢s)] = ﬁt;ut(gbs)

h—0

< B (ps,ds). (3.7

Here we needed to be allowed to use (3.3)) to use (3.1]), see Remark . Set

K = U sptus NV cc U.

te(t1,t2]

By Lemma [3.6] there exists an M € (0, 00) such that supse, 4, te(K) < M.
This lets us estimate

Basn(@) — 0u(x) — W22 (5,2) | dernz)
[ 5

//{ (s+r,x)— %(s,x)ldrduﬁh(g;)

¢ 5—1—7’,1:)—%(3@) :

= Mh sup sup E<

re(~|hl,|n]) 2K

Then by the continuity of the derivative

me%MMwmmw% me<1 (35)

h—0

Inserting (3.7)) and ( into . we arrive at

s%%¢<»ﬂmmwM@¢ )

Dugu (01, _ nsup i (51

for every s € [t1,t2). At times where pu, is continuous the last term is
[hs (g—‘f(s, )) and according to Lemma this is the case for almost every

S € (tl,t2>. ]
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Next we derive a certain estimate of the Brakke variation for a cylindrical
cut-off function in terms of mean curvature- and height-excess. It particularly
shows that, if the mean curvature-excess is large compared to the height-
excess one gets a negative bound from above on the Brakke variation and
thus for a Brakke flow the measure of the cut-off function is decreasing. This
is taken from Bl 6.5].

3.10 Lemma (Variation Bound, [Bl 6.5]). There ezists a constant C' €
(1,00) such that for R,y € (0,00) the following holds: Let pu be an integral
n-varifold in U with L*-integrable mean curvature vector H. Suppose

R [ (e (o) < o2 (3.9)
Cr(0)

Then the estimate

—n 1 —n 7
R A (n, 0%) < —§R +2/ |H|?¢7, du + CM?>~? (3.10)
U

holds for all ¢ € C2([—1,1],R") with ¢/ = 0 on [—3, 3], where ¢p(z) =
¢ (R72]) and M := max{sup |¢],sup |¢', sup |¢"|, 1}

Proof. Set ® := ¢p, then max{sup |®|, Rsup |D®|, R*sup |D*®|} < M. Set
a? = R_”+2/ |H|*®%dp.
By definition of the Brakke variation ar(fd Remark we have
R2B (u, %) = R 2 / H-D () du— o?
U
< 2R‘"+2/ & |DD| |7y, — mn | |H|dp — o2,
U

where we used D® € R" x {0}* and H L T,p by Theorem . With Young’s
inequality it then follows that

3
R (u, %) < 2R”+2/ 700, — T |? | D®| dp — Zoﬁ, (3.11)
U

By Lemma [A.T3] we can estimate

| 15 = meol? IDB
U

< Cn</U!WRk(fC)IQ!D!D@(x)\|2du(x)

7 () [202(z)dp(x ﬂkaM x
+\//U|H<x>|<1>< V(o) | e )l S >>.
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Here we used Lemma with f = ®, g = |D®| and h = &' Dg|>.
By Proposition h is actually well defined if we sustain with 0 outside
{® > 0}. Proposition also yields |D|D®|]> < |D*®?> < R™*M? and
¢ Y D®|> < 2sup|D*®| < 2R2M. Combined with Young’s inequality this
lets us estimate

[ 1 = a1 DO
U

g@mw/ g () Pda(z /ufﬁw Jdu(x)
Cr(0)

(0 M>y? + 8)}2” ?

Inserting this into (3.11)) establishes the result. O

A very important tool are barrier functions, introduced in the next Lemma,
which is from [B] 3.6]

3.11 Lemma (Barrier Function Lemma, Brakke [Bl 3.6]). Let o be an inte-
gral n-varifold in Bag(zo), 1o € R"* R € (0,00) and f € C? (R,R") with
/" >0 and f(t) =0 fort > R% For (t,z) € [tg,00) x R"™* t; € R set
r(t,x) = |z — xo|* + 2n(t — ty). Then

PSS [ i)

f07’all$€(0—32i 00)

Proof. For s € (to—%, o0) set rs(z) = |z —z0|?+2n(s—1y). We may assume
11 has L2-integrable mean curvature vector H, or else B (u, f(r(s,-))) = —oo0,
which directly implies the result. By the definition of mean curvature and

divergence (see Definitions and calculate

MﬂM@»ﬁw:—/ div, (D(f (r(x))))dp

Rn+k

—— [ v () o — ) (o)
=2 /Rmk VE [ (rs(z)) - (x — xo)dp(z) — 2 f'(rs(z))div,z du(x)

Rn+k

Rn+k

= —4 ' (rs(@))mr,u(@ — zo) *du(x) — 2n f'(ro(x))dp(x)

Rn-Hc Rn+k
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thus we can estimate

D(f(ry(x))) - Hdu(w) < —2n f'(rs(x))dp(z)

Rn«l»k Rn+k

[ S duta)

Then the result follows by Definition , as the \ﬁ |*-integral is always neg-
ative. Note that for s € (ty — 2 00), r4(x) < R? implies |z — o[> < 4R?,
so spt(f ory) C Bag(xg) for all s € (to — %, 00). O

This can now be used to establish local area and height bounds

3.12 Lemma. For an open subset U C R"* ¢, € R, t, € (t;,00), a
Brakke flow (1) s, 1, 0 U, To € R R € (0,00) with Br(xg) CC U and
r(t,z) := |v — zo|* + 2n(t — t1) the following holds:

1. Let f € C?([0,00),RT) with f” >0 and f(t) =0 fort > R? then

[ s < [ F0(s10)diy (0)
U U
holds for all t; < s1 < s9 < to.
2. For fr(r):= ({1 — R2r},)* and x € (0,1) this implies
tiey (Br(wo)) > (K — “2)3%& (B(lfn)R(l‘OD
for all t € [t1,t1 + (2n) "k R2| N [t1, t2]

3. For ¢ € (0,00) and K C U compact with d(K,0U) > 20 there exists
N = N(K,0) € N such that

N, (Ks) = e (K)
for all t € [ty,t1 + (4n)7162| N [ty, ta], where K5 := {x € R"™*d(x, K) <
d}.
4. Consider 6 € (0,67'] and v € R"* with |v| = 1. If we have

spti, N Br(zg) C{z e U : (x —x)-v <0}, (3.12)
then

sptu N Bg(zo) C{reU:(x—u1x) -v<JIR} (3.13)
for all t € [ty,t1 + (6n)"OR? N [ty to].
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5. Suppose U = R™™ and v € R™™* with |v| = 1. If we have
sptuy, C {z € R™ : (z — ) - v < 0}, (3.14)
then
sptpy C {x € R ¢ (2 — 20) -0 < 0} (3.15)
for allt € [ty,ts).

Proof. 1. Combine Lemma and inequality (3.5]) from Proposition [3.8]

2. Note that for the derivatives of f we have fj = —2R~2 ({1 — R~2r},)?
and fp = —4R™* ({1 — R7?r},). By Result|l] with s; =¢; and sy =t
this yields

/f(r(t,x))dut(w) S/f(r(tw))dun(x) < pu, (Br(0)) ,
U U

where we used sptf(r(ti,-)) C Br(xg). For t € [ti,t; + (2n) 'k R* N
[t1,t2] and © € Bu_r(zo) calculate

3 3
fr(te) > ({1= (1= r)* +r)})" = (v — )",
which verifies the result.
3. Consider the covering K C |J, Bg (x). By compactness of K there

exists an Ny € N and 1, ..., 2y such that K = J*, Bs (). Then we

can use result . with g = x;, Kk = % and R = 0 to estimate

pe (K) < iﬂt (Bg(xz)> < SZO,Utl (Bs(xi)) < 8Nops, (K5)

for all t € [ty,t1 + (4n)7'6%] N [t1,t2]. Here we used 8 (3 — i)g =
Then the result follows for N = 8Nj.

o=

4. Set T :={x €e R""* : z . v =0}. Let s € [t1,t; + (6n) L62R?| N [ty, t]
and y € sptus N Bg(ﬂfo) be arbitrary. Set

a:=y—((y— o) v)v
aop = a+ 3 'Ro.

Note that a is the projection of y onto T+ xy. The idea is to define
a ball above a in v-direction, which does not intersect sptyuy,, then by
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statement [2| a slightly smaller ball will not intersect sptu, at later times,
which then implies a height bound for y. We can calculate (a—x¢)-v =0
and (ag — xo) - v = 371 R which yields

(x—20) - v=3"R+ (v —ag) v (3.16)
for all z € R"t*. Also we see
la — x| = |y — 20 — ((y — x0) - v)v| = |7r(y — x0)| < 27'R

and

ap — xo| = \/\WT(CLO — x0)|* + [(ao — x0) - v[?

2
< \/|CL - l’o|2 +372R? < gR

Then Bs-1g(ag) C Br(zg) CC U. By (3.16]) we see that
(x —20)-v>3"'R— |z — ag

for all x € R"**. Combined with assumption (3.12) this yields sptyu,, N
Bs-1g(ag) = 0. Then use statement [2] with zp = ag, K = 30 and R
replaced by 37! R to obtain

spty N Bg-1_s)r(ag) = 0
for all ¢ € [ty,t; + (6n) ' 0R? N [t1, t2]. In particular
ly —aol > (37" —0)R. (3.17)
By definition of ag we see
y—ao— ((y—ap) - v)v=y—as— ((y—a)-v—3"R)v=0.
In particular this means
[y — aol = (a0 —y) -v, or [y —aol = (y—ao)-v.

Combined with and with z = y we can conclude

(y —m0) v <OR, or (y—mx0)-v> (31431 -8R

The second case contradicts y € Bg(xo), as |y — xo| > (y — xp) - v and

§ < 671, Thus we obtain the height bound and as s, y where arbitrary
this establishes the result.
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5. Let s € [t1,ta], y € sptus and € € (0,1) be arbitrary. Set R :=
max{e~2, (6n(s — t1))%, 4|y — x|, 4}, then use statement i with ¢
Rz < % to obtain

sptutﬂBg(xg) C {x eU:(r—mx) v< R_%}

for all t € [t1,t1 + (6n)"'V/R] N [t1,t5]. By the choice of R we have
s € [t,t1+(6n)'"VR], y € Bz (zo) and Rz <e Thus (y—x0)-v <e¢
and as s, y, € where arbitrary, this establishes the result.

H

In the smooth case a Brakke flow can be characterized by the mean cur-
vature flow equation.

3.13 Definition. Let (M;),c(, ,, be an immersed family of n-manifolds in

R™"* that is M; = Fy(N) for an n-dimensional manifold N and a smooth
family of immersions F; = F(t,-) : N — R, (M) ety 4o 18 called a
(smooth) mean curvature flow, if for every t € (t1,t5) and p € N

(Grn) =), (3.19

If F; is actually an proper embedding for all ¢ € [ty, 5], we call (M;)
an embedded mean curvature flow

tE[tl,tz}

3.14 Remark. For an open subset U C R"™* every properly embedded

manifold M defines a Radon measure piy; in U via py, = "L (M N U). This

associated measure is an integral n-varifold and satisfies 1 (R"™ \ U) = 0.
For an embedded mean curvature flow (M;) | as above we can calcu-

te(tr,ta
late

L ot Y = /R (Pt ) + - Dot.)) dp, (3.19)

dt Rn+k
for every ¢ € C} (U, R). Here p; = ppy, and we used the evolution of the area
element under mean curvature flow, which was first calculated in [H1]. This
formula is found in [E4].
tun <U[t1,t2] aMt> = (), the smooth mean curvature vector restricted to

U defines a generalised mean curvature vector for y;. Then (3.19) implies the
Brakke flow equation (3.1]), such that the associated measure forms a Brakke
flow in U.
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The reverse is in general false. However, a Brakke flow (1) teftrts) 10 U,
for which the p, are generated by a family of embedded C'*-graphs with
certainly small C®-norm actually creates a smooth mean curvature flow via
M,; = sptu, N U. This has been done by Brakke as part of [B} 6.10], but the
proof contains many gaps and small errors. There exists a new proof in [T},

see in particular [T, 6.3].
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4 Heat Diffusion

Consider a Brakke flow (1), 1) In an open subset U C R"*% The aim
of this section is to show that evolution by Brakke flow is somehow close to
linear heat diffusion. A convolution of some function g € C* (R”*k) with
the cylindrical heat kernel W on p; would evolve for time 7 by the Brakke flow
by just changing the measure. However, we could also evolve by changing the
parameter in the heat kernel, which is like moving by linear heat diffusion.

[ 9(x)W(s, z)dpzsr ()
Brakke flow

J 9(@)¥(s, z)dp(x) ]2

heam
[ 9(2)(s + 7, 2)dp(x)

Figure 1: evolution for time 7

The main result of this section is Theorem [4.15] which estimates the
difference of these two outcomes. Later we will use this for g(z) = z,4;
and Brakke flows in a certainly narrow slab. In this case the two evolutions
almost behave identically.

This section is based on [Bl, 6.8 and 6.9]. In particular Theorem [4.15]is like
an integrated version of [Bl 6.8], but it is much more general and the proof
is very different. We will calculate the mean curvature evolution equation
for our heat kernel, which yields Proposition [4.11} Combining this with the
Brakke flow equation and the definition of the mean curvature vector, in the
form of Lemma [4.13] already produces Theorem Note that the results
from this section are not covered in [KT]. In [KT] a completely different
approach is taken as far as [Bl, 6.8 and 6.9] is concerned. Here we decided to
adhere to Brakke’s original method which is interesting in its own right.

We start with the definition and some basic properties of the heat kernel.
As we are looking at the flow only locally we have to modify the heat kernel
with a cut-off function (.

4.1 Definition. Fix ¢ € C* ([0, 00), [0, 1]) with

1 for0<r<1-—271"9

0 for 1<r

and such that max {sup |{’|,sup |¢"|} < oy, for some constant o € (0, 00).
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4.2 Definition. For t,p € (0,00) and & € R"™ we define the cylindrical heat
kernel ¥ by

where o3 ' = [o, e_%dx, SO [an W,(t,2)dZL™(2) < 1 for every t > 0.

4.3 Remark. Note that oy and oy are considered absolute constants and
dependence on oy, 09 will not be denoted explicitly in the sequel.

4.4 Remark. For the truncated heat kernel we calculate the following deriva-

tives:
ov, . lZ[> n .
0= (5 e
ov . T . T T .
G (1) =~ Ut ) + (7 ) U 2)
0% . T Oy . T 1. .
g t0) = (5 = ) W) + S v6.2)
10
Sii BA BA
v (o - 2 ) o ue.a)
(o= st i) <t e
12
Agns U, (t,7) = <ﬂ _ ﬁ) U, (t, ) + p 2" (ot 2) U (t, 2)
PR 42 2t ) "7 ’
n—1 |‘%|) 1 —1 2 A
+ — — — | C'(p 7 |2|))V(t, 2).
(%o - ) ¢l tauce.a)

Here 1 <i4,5 <n.
4.5 Remark. 1. U(t,2) < oyt~ 2 forall t € (0,00) and all # € R™.

2. For every P € [0,00) exists k£ € (0,1) such that the following holds:
Let t,r € (0,00), o € R" and & € R"™ \ B,(z9), then we can estimate

U(t, &) < oot 2e 4.

Suppose 72t < k for k small enough depending on P and n, then we
can estimate further

n T‘2
U(t,7) < oo "t ) 2e % < agr "(r2t)F.
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3. Statement [2] will be used to estimate all the extra-terms arising from
the cut-off function in the derivatives above. Note that the derivatives
of ((p~(x)) are 0 for x € B (0), so statement [2{says that, if p is large
compared to t, cutting-off only produces small extra-terms.

4.6 Lemma. For every P € [0,00) there exists a A € (1,00) such that for
all t € (0,00) and all 9 € R™

P
2 .

/ |2 — 2o|PW(t, & — 30)d L™ (%) < At

Proof. By the transformation of variables § = t’%(:ﬁ — Zp) we obtain

n _l—ig|? n _t9l® n
& — ot B i de(@) = | VT et d ()
R R

P ap e
=tz [ |g|"e +dZL"(y).

~12
Then for A := 03 [, \Q]Pe*%d.iﬂ”(g)) + 1 the result follows. O
4.7 Lemma. There exists a C € (1,00) such that for all gy € (0,00), q €
(qo, 00) and all &y € R™

W (q, % — 20) — ¥(qo, T — 3o)| dL"(2) < Clog (1 + qgl(q - %)) .

Rn

Proof. Use the fundamental theorem of calculus and Fubini’s theorem to
obtain

|W(q, 2 — o) — ¥(qo, T — o) dL" ()

Rn”

/IRTL

q—4q0
|/
0 n

With Lemma [4.6] we can estimate

J.

| — @ |? n ) o A »
< + U(go+ 5,2 — 20)dZL"(2) < Cr(qo+s) .
B /n (4(% +5)* 2(qo+ s) (% 0)dZL" (%) (g0 + 5)

42" (1) (4.1)

q—4q0 8
/0 a\lf(qojLs,:%—ﬁ:o)ds

4.2 (i)ds.

0
aqj(qO + S, i’ — IIA’)())

0
E\IJ(% + 5,2 — Zp)

4.2 (7)
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Inserting this into (4.1)) yields

a—q0
[ 1wlad— i)~ Wl i - )| 2@ < Co [ (a0t o) s
n 0
= C, log (q5'q)
This establishes the result. O

4.8 Lemma. For every By € (0,00) there exists a ko € (0,1) such that for
all r,t € (0,00), 2o € R with r=2t < kg the following holds:

1. We have

/ U(t, & — 2)dL"(2) < (r2t)™.
R"\Br(ﬁto)

2. For every R € (r,00) and every Radon measure p with p(Cr(xq)) < 0o
we have

/ W(t, & — do)dp(z) < (r~2t)r " u(Cr(wo))
Cr(z0)\Cr(z0)
Proof. Writing the integral in spherical coordinates we obtain
& 2
/ U(t, & — d0)dL™(E) = oawn / S ety
R™\Br(20) i

then transforming s = t’%p yields

oo 32
/ U(t, & — 29)dL"(z) = O'an/ ) " lem T ds.
R\ B, (i) " Ir

For the last integral we estimate

e’} L 2 e’} 87213071 tpo
) s"TreTads < ) ds < 55 ,
%, %, 2Ryoow, T2 009wy,

where we used that s" e~ 7T < ms*%_l for s > t~2r large enough,
which can be achieved for small enough x¢ depending on Fy. This establishes
result [1

For statement 2l we can directly estimate

n 7"2
/ Ut — do)dp(z) < oy / % e~ du(z)
Cr(20)\Cr(z0) Cr(20)\Cr (o)

< oot~ 2e 7 p(Cr(xo)).

»
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For r—2t < kg small enough depending on Py, we have

_n _ﬁ — — -2 _ﬁ — — P()
oot 2€ % = gyr "(T 2t) 2eTwm <7 "(r 2t)

which establishes result 2l O

4.9 Lemma. For every P, € (0,00) there exists a k1 € (0,1) such that for
all p,t € (0,00) with p=2t < k1 and every xo € R the following holds: Let
p be a Radon measure with j(C),(zg)) < oo then

[ Dw(E — a0)¢ (7 = dal) — D0, — ) o)
Cp(wo)

< (p )" p " u(Cyla0))

(4.2)

and
/ |D*U(t, & — &0)C (p~ ' |2 — Zo|) — D>V, (¢, & — &o)|dp(x)
Cp(wo)

< (p2 ) p P u(Cy(w0))

Proof. We may assume o = 0. Use Remark [4.4] to estimate

(4.3)

Dyi= [ DU (p73]) - DY, (t,3)ldu(x)
Cp(0)

<nmax [ I (i) wie,2)dnco)
v Jo,0) Pl

P

as well as

Dyi= [ DPW(ta)C (p7'al) — D, (0,0)ldu(o)
Cy(0)

S || | L )

+/ ( o L N (p ) Wt 2)du(x) |
ey \alel *alap  olal )€

By definition of ¢ we have ('(p~'|2]) = ("(p~'|2[) = 0 for all z € C(0) and

all z € R"™*\ C,(0). Also we have max{sup |(|,sup|¢”|} < o1 so we can

estimate for D; and D

2
/D, < C, (1 n p—) / W(t, )dp()
t) Jesneg o
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for i € {1,2}. Note that we estimated o7 < C,. Now we can use Lemma
with Py = Py +2 and R = 2r = p to find a kg € (0,1) depending on P
such that

2
pD < e (14 2 ) (0P G, 0) )

for 7 € {1,2}. Here we chose k; < 4kg, 50 p~2t < k1 < 4kg. Also for k; small
enough depending on P, the inequality p~2t < k; leads to

2
C, 2%+ (1 + %) (p~21)% < 0,221 70, < 1.

Thus (4.4) becomes
pD; < (p7*t)" p7" u(C(0))
for i € {1,2}, which establish the result. O

If the time parameter goes to zero, the truncated heat kernel converges
to the Dirac delta distribution. This is shown in the following proposition.

4.10 Proposition. For every P € (0,00) there exists a k € (0,1) such that
for all p,s, M € (0,00) and every &y € R"™ the following holds:

1. For f: Bi(ig) — [—~M,M] and r € (0,5] with r=2s < x we have

- [ 1@ - dazne)
< s |f(#0) = f(2)] + M (r72s)

2. For a continuous function f € C°(B}(Zo)) we obtain

flao) =lim | J(@)Y, (1,7~ 20)d2"(2).

3. If p=%s < k we can estimate

/ U(s, & — d0) — U, (5,2 — do)dL™(2) < (p~%s)" .
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Proof. Use [o, ¥(s,&)dL™(Z) =1 and ¥,(2) = U(2)¢ (p~'|#]) to calculate

o) [ 1@,05.8 - 20020

[ Ja0)W(s = 20)d @) = | @)Wl 7 — 20)dL"(2)

/n (f(@0) = F(@)C(p™ & — o)) W(s, & — &0)dL™(3)] -

Here we set f = 0 outside BJ(%p). Partitioning R" into B,(xo) and R™ \
B, (xo) we can estimate

o) [ 10058 - 20020

< . | f@o) = F(@)C(p~ 2 — @ol)| (s, & — 20)d L™ (%)

< sup |f(fo) - f(f)C(P_lm - iom (s, & — 20)dZL" ()
Z€Br(&0) By (Z0)
+ sup | f(&0) — f()C(p~ |2 — o) U(s, & — 29)dL" ().
ZeR™ R™\Br(20)

As ( =1 on B}(z9) D Bl'(xp) and |f| < M we obtain
2

ICORY IFCLYCERENTEAE

(4.5)
< sup |f(d0) — F(2)] +2Muw, / U(s,3 — 20)d 2" (2)

&€ B, (£0) R\ By (Z0)
By Lemma [4.8|[I] with Py = P + 1 we find a ko € (0,1) depending on P such
that
/ U(s, & — 2o)dL™(3) < (r2s)" "
R™\B;(Z0)
for 7725 < k. Inserting this into (4.5)) yields

0 [ 1@ 05,8 - 20020

< sup |f(Zo) — f(@)|+2M (r_zs)PH

Z€By(20)
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for r=2s < Ky. For s small enough depending on k¢ which in turn depends
on P, this establishes statement [1}

To prove statement [2| let € € (0,1) be arbitrary. By continuity of f there
exists 7 € (0, £] such that

72
sup | f(Zo) — f(2)] <
fEBr(io)

N

Using statement . with P =1, s =t and M := supgns, |f| yields a
k € (0, 1) such that

flio) = [ F@W,(1, ~ d0)dL"(2)

< §+ Mr—2t

for all t € (0, xr?]. Set § = min{x, M~'5$}r?. Then for all t € (0, d]

f(zo) — . F(@)V,(t, & — 20)dL"(2)

<e€

and as € was arbitrary this establishes statement [2]
In Order to show statement . we apply (4.6) with f =1 and r = £ to
obtain

‘1 — / U, (8,8 — d0)dL" ()] < 22043 (,0’23)}”rl

for p=2s < 4ky. For k small enough 22F3 (p=25)"*" < (p=25)". Then
Jon (s, & — 9)dZL™ = 1 verifies the wanted estimate. Here the choice of
depends on P and k¢ which in turn also depends on P. O]

We know that W satisfies the heat equation in R"**. For a sufficiently
flat varifold mean curvature flow almost coincides with heat diffusion. Con-
sequently the evolution equation of the heat kernel is controlled by curvature
and tilt-excess.

4.11 Proposition. For every P € (0,00) there exists a k € (0,1) such that
for all p,s, K € (0,00) with p~2s < k and every open subset U C R"* the
following holds: Let ju be an integral n-varifold in U with L?-integrable mean
curvature vector H. Suppose p(Cy(xg)) < o0o. Then for every g : U —
[_K7 K]

[ o) (5 - 80) wits

<5 [ 10@IA@RY,(5.2)dn(w) + (725)" K™ (C,(0)

dp(x)

i*+s R
+/ |g($)|‘ |s2 T — e |* W, (s, @) dp ().
U
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4.12 Remark. This formula is also valid for the non-truncated heat kernel.
In this case we can leave out the (p=2s)"p~""2p (C,(0))-term, but have to
replace U by R"** and we have to assume that the integrals on the right
hand side exist.

Proof. For = € sptu such that T,p exists let {v;}, <j<i be an orthonormal
basis of T,ut. By Remark [2.6]}5| we have

[(-s)os
_/ <(§t ARM)\I/ DV, H—i—Zm D2 <ul)> dp.

To calculate the first term on the right hand side of (4.7)) use Remark
This yields

0 X
(at ARn+k> U, (s, )

(4.7)

1l (4.8)
2410 —1|2 A n— T 1 =14 A
= W) - (S = ) ¢ o
plzl  sp
for all € R"**. Also by Remark we can calculate
. 1 - 1 ,
DV ,(s,2) - H(z) = —%:z; -HU,(s,2) + pmi CHC (p Y 2) (s, 2)  (4.9)
for all x € sptu. For x € sptu such that T, exists calculate
k n k )
SN didi(u-e => = |mzv (3)] - (4.10)
=1 i,j=1 =1

Proposition implies

k
1
Z Z 8ij (v -€) (v - €5) = Z (v -e) = 5 | TR — WTZ#IQ. (4.11)

=1 i,5=1 =1 =1
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Using Remark in combination with (4.10) and (4.11)) we can calculate

(vi-e) (v - e)

89018%
=1 =1 7,5=1
|77, (@) e — 7,
= ( o’ P U, (s, )
) (4.12)
}T‘-Tz (:L‘)‘ e =14
o "o 2 (s, )

A

AN |2
+ ‘WRn B TrTzﬂ|2 _ ’ﬂ-%xli (Jf)l _ |7T%_9cﬂ (.T)
2p|z| plE]? sp|i|

) ¢'(p ) (s, 2)

for all x € sptyu such that T, exists.

Inserting (4.8)), (4.9) and (4.12) into (4.7)) yields

/U (% _ AH> (s, &)dp(z)

N\ |2 2 ~
_ / <|7T%zﬂ (:C>‘ - |,/TT1N - WR”' _|_ ﬁ(l‘) . £> \I} (S x)
= p\9)
U

452 4s

— 2 ~N |2
’WR” T ,U«‘ 2<‘2xp’|j| + s |7TTz,U« (ZL') C( _1|=’i'|)\11(8 {L’)
& n—1\,, _y.

By definition of ¢ we have ¢'(p~!|2]) = " (p~!|2|) = 0 for all x € Cgi(O) and
all z € U\ C,(0). Also we have max{sup |(’|,sup |[("|} < o1, supy |g] < K
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and |mgn — 77> < 2n (by Proposition [A.11)), so we can estimate

<>(a 8,) ,(5.2)

‘ﬂ—TzH 2 Iﬂ-Tle TRn |2 N

dp(x)

) (4.13)
o) (o 00(o0) = 0 o), ) ) o)
+C(p P+ s K (s, 2)du(r)
CH(07\Cy ()

Note that oy is controlled by C,,. By with Py = P+ 2, p = 0 and
R =2r = p we find a k¢ € (0,1) such that

/ W(s,8)dp(@) < Cu2F (2P 2 (C,(0) . (414)
(0\Cp(0)

Here we chose k < 4k, so p~2s < k < 4kg. Inserting (4.14)) into ( - yields

0
o) (5~ 2 ) Wl
2 2
|7TTz;U' ( )‘ |7TTZM - T‘-Rn’ A~
v d

/ 9( ( 2 g (5, 2)du(x) )

+ [ lote |'H (s \Pp<s,x>—f a5, )) | duto)
+ C22P (p 571 (p7%s) P K (C,(0)).

As p72s <k <1 wehave (p~2 + s7!) (p725)? < 2kp 2. Also we can estimate
2

‘ﬂiu ()|" = |2 — 71, (2)]? < |71y — Tme|” |22 Then (&15) becomes
0 .
o) (2= 8,) W5, da)
U
%[> + s 2 .
< [l s = e 0,5, 2t o

A

+/U|g(a:) H(z) - (2%\1/,,(3,:10) + pi

+ Co 225 (p725) T p T 2K 11 (C)(0))

~— —
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By Theorem 2.7 we can use Remark[A.7]to calculate for almost every x € sptu
that H -2 = H - (mga(2) — 77,,(2)) . Then with Young’s inequality we can
estimate

= z 1 5 ) ‘@2
A() 0| < 71 @)P + I — 7ol o
Hence
. T A
[t i@) - 5-,05.8) dute)
U s
1 .
—_ H Z\Ij 7A d
SYNCILECE AT .
2
/|9 |‘ il T — WRn|2\I/p(s,i)dM(x).
Using again Young’s inequality we also have
7 T g 1) 1= Ly (D)
H(x) —C(p 2| < < [H@)PCp Y 2]) + S —mi
() oD | < AR + 5

Note that by Proposition |A.6 m 1| the function ¢~1(¢")? is well defined and can
be controlled by sup [¢”| < ;. Also use again that spt(¢’(p~!mre(-)])) C
Cp(0) \ C(0) and supy |g| < K. Thus we obtain

f s
st i) Ecoa)

<3 @AW, 2)inte) + 2057 [ IR e

0)\C'g (0)

U(s, &)dp(r)

With (4.14)) this yields

[ st \ﬁm

<3 / 9()||H (@) 2T, (5, &)dpa(x)
+ C. 2P (p728) P p P K (C,(0)),

where we used again p~2s < k < 1. Then inserting (4.17) and (4.18)) into
(4.16)) establishes the result for x small enough depending on P. ]

‘(07 2])

U(s, Z)du(z)

(4.18)
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From the definition of the mean curvature vector on varifolds (see Defi-
nition [2.5)) we obtain the following lemma:

4.13 Lemma. For every p,s € (0,00) and every open subset U C R™% the
following holds: Let p be an integral n-varifold in U with mean curvature
vector H and

sptu N C,(0) CcC U. (4.19)
Then for every g € C* (U)

/ 9(2)ALT, (s, ) du(x)
U
= / (Dg(a:) CH(z) + diqug(x)> U, (s, 2)du(x).
U
Proof. First we can calculate using equality (2.3)) and Remark .

/g(a:)AM\pr(s,i")du(:c)—/Au (g(z)¥,(s,2)) dp(x)
U

U

(4.20)

= [ 05,8900 + 29(2) - U 5,)) i)
_ /U (divDg(z) + Dg(a) - H(x)) W, (s, )dp(x)

9 /U D) - VU (s, &)dp(x).

By assumption (4.19) we can use equality (2.2)) and combine this with Remark
2,63 to obtain

/UDg(fv) VI (s, &) dp(z)
— /U div,, (¥,(s,#)Dg(z)) — div,Dg(z)V (s, z)du(z)

__ /U (div,Dy(x) + Dy(a) - H(2)) W, (5, 2)duz).

Combining these two calculations already establishes

/U 9(2) 0,0, (5, &)dpu(x) — / Ay (920, (s,2)) dpu(x)

= /U <diqug(x) + Dg(x) - ﬁ(x)) U, (s, Z)dp(x).

By assumption (4.19)) we can use Remark to see that the Laplace term
vanishes, which establishes the result. O
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4.14 Lemma. For every P, € (0,00) there exists a k1 € (0,1) such that,
for every s,p, K € (0,00) with p~2s < k1 and every open subset U C R"*
the following holds: Let u be an integral n-varifold in U with L*-integrable

mean curvature vector H. Suppose (Cy(g)) < 00, then for every g : U —
[_Kv K]

| 9fi(@)- DY (s, 2)duta)

g/|‘%||ﬁ|2\11,,(s,:%)du(a:)+K(p_2$)P1 P (C(0))
U

%@p(s,@)du(x).

Proof. Set (s, z) := U,(s, &) for z € R"**. By Theorem and Young’s
inequality we can estimate

H-Di = |FI - (77, (DY) — 7Re (DY) |
!DW
29

Note that by Proposition [A.6][1] the term 1| Dy|? is well defined. Thus we
have

—|H| ¥+ |7y, — mRe |

/gﬁ-Dw du
v 4l (4.21)
< [ NP dut K [ (- msol o7 |Du P

U U

where we estimated supy; |g| by K. Using Remark yields

252
< .00+ 2 (D) () )

for all # € R™. By definition ovave have spt(¢'(p~! e (-)])) C Cp(0)\C's(0).
Combine this with Proposition [A.6|/1] and with the relation [¢"(p~!|%])] < o1
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to obtain

/ R
U

512
< — Tgn 2 |2 d
< /U (710 — Tre " 5 5 () (4.22)
2
+ = (7 — | W (s, 2)dpa(x).

P* Josoncy

Now by Lemma with Py = P, +1, R =2r = p and ¢t = s there exists a
Ko € (0,1) depending on P; such that

/ W(s, 2)du(z) < 2P2(p25) Py (O )
Co(0\C5 (0)

: 2 i
if p=2s < 4kg, so choose k1 < 4kg. As |mr,,, — Tre|” < 4n® (by Proposition

A.11]) we can insert this into (4.22)) to conclude
[ = sl 07D
U

-2

T _ e

< [ = P S duta) + €222, 0)
U

Now use p~2s < k1, so for k; small enough depending on P;, we can estimate
C,22P1%2(p=25) < 1. Then with ([4.21]) the result follows. O

By Proposition Lemma and Lemma we can control the
right hand side of ([3.5)) for functions of the form ¢ = gV, for g € C* (U, [0, K]),

K € (1,00). This lets us estimate the difference between evolution by Brakke
flow and evolution by increasing the heat kernel parameter. The following
result is an improvement of [Bl 6.8].

4.15 Theorem (Heat Diffusion, [B| 6.8]). For every Py € (0,00) there ezists
a ko € (0,1) such that, for all ty € R, p,p,q, € (0,00) with p~2(p + q) < ko
and every open subset U C R"* the following holds: Let (Ht)ic0q De @
Brakke flow in U with

| sptu N C,(0) cc U (4.23)

t€[0,q]
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Then for every h € C* (U, [—M, M])

e, 0. ) ) = / W)W, (p + g, )dpiolx)

" +p+qg—1 .
[ / / e — PRIty o Syt

(p+q—1)?

+

/ W, (p+ g, 8)dpo() — / 0, (p. #)dpy ()
U U

+(p2(p+q)op 2 /0 i (C,(0)) dt]

q
+/ /|divuch(a:)|\I/p(p+q—t,:i)dut(:v)dt.
o Ju

4.16 Remark. e If 1 > 0 we leave out the second term ([ Wr(s2)duo —
J ¥r(so)dp-), but in exchange only obtain the estimate without abso-
lute value. This is more like the version Brakke has in [Bl 6.8, 6.9].

e For result [Bl 6.8] Brakke needs certain area ratio bounds as well as
small tilt- and height-excess, as he uses Lipschitz approximations in
the proof. Our theorem can be applied to any Brakke flow. However
for the right hand side to be optimal, one needs small tilt-excess.

e For affine h the divergence term vanishes. Actually here the theorem
will only be used with h(z) == z,4; +afor j=1,....k aeR

Proof. For x € R"™* and t € (—o0, p + q) set

¢(t ) \I[<p+q_t7;%)
(z) = h(z) +
(x) := —h(x) + M.

Note that both supy [g] and sup; |g| are bounded by 2M. For g = g or

g =g, as g is positive and by (4.23) ‘we can use Proposition with ¢ = g1
to estimate

P(g) = / 9(2) VR (p, ) dpg(z) — / 9(@)Wr(p + ¢, &) dpo ()

<[ ﬁ-D(gw)—!ﬁIZQerg(gw) dpy dt. e
o Ju ot
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Here we used that at almost every time the Brakke variation is not singular.
Fix a time ¢t € [0, q] where y; has L*integrable mean curvature H in U. In
view of Lemma with s = p+ ¢ — t we can estimate

. 0 0
HD —_— d t+ > A d t
QA( ww+g&w)ﬁb<1;( + >¢ 1t
—|—/gﬁ-D7,Dd,ut (4.25)
U
+/ |diVHth|77Z)d,ut-
U

Using the bound on the evolution equation of the heat kernel derived in
Proposition 4.11| with P = Py, p = p; and s = p+ ¢ —t we can estimate

oo )on

9.7 —n—
< [ QAP duct 2 (720 0)" 0P (C0) (426)
U
ZP+p+qg—t
+2M — mgn|” dpie(z).
| Vot = P E L (o)

Here we used p+q—t < p+q < Ky < K, where & is from Proposition
Note that 2v(t,z) = —2V,(s,#). By Lemma with P = Py, g = eyt
and s = p+ g — t we can estimate

/ gFf - Disdp
< [ QP22 (04 0)™ 0 (C0) )
S S L
M [ = o () ().

Here we used p+q—t < p+q < kg < k1, where k; is from Lemma
Inserting (4.26)) and (4.27)) into (4.25]) yields

- 0
lA(H'D@w+y&¢)mu

< / Gl F P dpe +4M (52 (0 + )™ o724 (C(0))

2P +p+q—t
(p+q—1)?

‘|‘3M/ ”ﬂ'Tzu —ﬂ'Rn‘2 ZZJd,Ut(Z')
U
+:/]&vahhﬁ¢u

U

o1



for all t € [0, q] where p; has L*-integrable mean curvature H in U. Here we
also used that Dg = Dh. We substitude this into (4.24]) to conclude

TP+p+g—t
g) <4M[/ /\mm— -y ‘(p+1;_z)2 Un(p+ g — t,2)dp () dt

+ (02 +q) " p /O ! 1 (C,(0)) dt]
" / q / div,, Dyg(a)| W(p + g — 1, 2)dpa(a)dt

for g =g or g. To turn this into an estimate for h instead of g note that

/ B() T, (p, 2)dpy () — / W)W, (p + g, 2)dpaol)
U U

<2+ M | [ W+ 0.0t~ [ 9,002 fo)
and
[ 1@+ 0.2l ~ [ B0 )
<2()+ M | [ Do+ 0. 0)uota) = [ (0. 2)(a)
which establishes the result. O

We will use Theorem only in integrated form. Note that in the form
above we need point-wise small tilt to control the right hand side. Doing
one more integration in space can be used to bring in the tilt-excess, as the
following lemma shows (when considered with ¢ = |77, ,,, — 7gn|).

4.17 Lemma. Let p,r,t € (0,00), yo € R""* and u be a rectifiable n-varifold
in R". Suppose ¢ € L (sptp, R™) and 9 € CZ([—p, p],RY). Then we can
estimate

/Bn /R - — )Y (t, & — g)du(z)d L ()
<[ owute) / DNV 5)AL" ().
Crtp(y0) n
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Proof. Calculate using Fubini and spt(J(| - |)) C B}(0)

/"(A ) J Rtk o(2)9(|2 = 9) ¥ (t, & — §)du(z)dL" ()

-/ -, (¢<x> / PRSI TES @)dﬁ”(@)) du(x).

As ¢,19,¥ > 0 we then can estimate
/ S = D5 — ()AL (1)
7 (Jo) J ROFR
<

< [ (o [ oz ityws - pazni) ) )

Now the inner integral is actually independent of x which yields the result.

[]

With Lemma we obtain the following version of Theorem [4.15] This
will be made use of in Lemma 8.1l

4.18 Lemma. There exists a C' € (1,00) such that for every Py € (0,00)
there exists a ko € (0,1) such that for all ty € R, p,r,p,q,v € (0,00) with
p~2(p+q) < ko and every open subset V. C R"* the following holds: Let
() ieftotorq be @ Brakke flow in'V, and j € {1,... k} with

U sptu 0 Crif(0) € {z € Cri(0), |angyl S yp} CC V. (4.28)

t€lto,to+q]

Then

/B:f(m

/ xn+j‘ljp(p7 T — y>d:uto+¢I(x)
v

_ / sy U+ ¢, & — §)dp (2)|d.L7(9)
1%

to+q 9
p_l/ / |77, — Tre|” dpe(x)dt
to Crt(0)

P to+q
+(p2(p+q) "2 / 1 (Cp4r(0)) dt

to

< Cyp

+ max sup 1"
a€{0.a} geBr(0)

/ U,(p+q—3q,% — g)dp,44(z) — 1‘] :
.
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Proof. First we consider the case ty = 0. For given V C R™""* set
U= {z €V, [ny] < 270}, (4.29)

then by we have p; = py L U. In particular (,ut)te[to,to +q 15 a Brakke
flow in U as well. Note that also holds with V' replaced by U. The set
U is introduced, because we want a small bound for h(x) = z,4;, which we
do not have in V.

For t € [0, q] define ¢, € L} (sptu) by

Ge(2) = |10 — Tren |’

for x € spty, such that T,u; exists, which is the case for almost every z €
sptus. For t € [0,q] and a € [0, p] define ¥, € C°([0, p], RT) by

a+p+q—t
(p+q—1)?
where ( is the cut-off function from Definition [4.1]

For § € B(0) set y = (9,0). We can use Theorem with h(z) = 2,45
and translated in space by y to obtain

Ui(a) = ¢(p~"a),

/ xn—i—j\llp(p)i" - g)dﬂq(fp) - / xn—i—j\pp(p +q,7— g)dﬂo(ﬂf)
U U

< Cuyp

/oq /U Ou(@)9n(d — GV (p+ g — 1.3 — §)dp(x)ds
‘ (4.30)
+ (0 2+ ) p? /0 Hiors (Co(y)) ds

+

[ 0o+ 0.5 = o) = [ W05~ Do
U U

|

Here we used that by (4.28) and (4.29) we have supync, () [T+ < 27p. Also
(4.28) holds with V' replaced by U, which guarantees (4.23)) with 0 replaced

by y. Note that D?z,,; = 0 so the divergence-term vanishes. By Lemma
with yo = 0 we can estimate for ¢ € [0, ¢

/ . [ e =i+ o 1.3 - a2

9P +p+a—t A X
< x)dp(x / V,(p+q—t9)dL"(y),
/CH_,)(O) gbt( ) lut( ) ., (p+q—t)2 P( y) (y)
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where we inserted our definition of ¥,. As ¥, < ¥ we can use Lemma {4.6| to
estimate the second integral which yields

/ / ()95 — D)W+ g — 1, — §)dpe(2)dL™(5)

B (0) JU (4.31)

<Cp [ fng el dua(a)
Cr4p(0)

for all ¢ € [0,q], where we inserted our definition of ¢; and we roughly
estimated (p 4+ ¢ —t)~' < p~!. We can directly estimate for ¢ € [0, ¢]

/B o (Co(y) dL™ () < war™ pie (Cpir (0)) (4.32)

and also by the triangle inequality

/U U,(p+q,2 — §)dpo(x) — /U U, (p, & — §)dpg(x)

(4.33)

< 2 max
Ge{0,q}

for all y € C7*(0).
Then in view of uy = pu, LV = p, L U we can integrate (4.30) in 3 and
then switch the order of integration to use estimates (4.31)), (4.32)) and (4.33)),

which establishes the result for t5 = 0.

[ watot a8 - gyt - 1'

Now for arbitrary ¢ty € R consider fi; = pg—y,. As (,ut)te[to?tﬁq} is a
Brakke flow in V| ([‘t)te[O, g is a Brakke flow in V' as well. Applying the
already established statement to (fi;) implies the statement for (1). O

We want to use that for small parameter the heat kernel converges to
the Dirac delta function, as we showed in Proposition [£.10[2] The difference
between f(g) and [ f(2)¥,(p, & — §)di can be bounded in terms of | f|, |Df]
and p, which we prove in the next lemma. This result is based on a calculation
from [Bl 6.9].

4.19 Lemma ([Bl, 6.9]). There exists a C' € (1,00) such that for every
P € (0,00) there ezists a k € (0,1) such that for all p,r,p € (0,00) with
p2p < kK the following holds: Consider g € C%! (Bfﬂ)(())) then we can
estimate

/B:f(m

< Oph / Dg()|dL™(@) + (p2p)F sup |glr™

2 (0) Bz, ,(0)

9(§) - / 9(2)T,(p. & — §)d.L" ()| dL"(9)
5@ (4.34)
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Proof. For g € B,(0) set

¢(y) = (4.35)

o0 = [ @0~ )2 @)

By Proposition and the fundamental theorem of calculus we can cal-
culate

[ 9 = )02~ 000

- /B (D), (p.3 — )AL (@) —lm | (@), (q. 7 — §)dL ()

n () 0 J g ()
P d
— [ [ s@ s - azn@as
o Jaug  ds

Here we used that the last integral exists by Remark and Lemma [4.6
Thus for ¢ from (4.35]) we have

1 ’ T A U T — 4 "z
o0 < [ asnned 2@

P

ya

o |/B

for all y € B,(0). Note that the second integral would vanish for the usual

(non-truncated) heat kernel. But we already showed how to estimate the

extra terms from the cut-off function. Using Lemma with y = £",

zg = (9,0) and P, = P we find a x; depending on P such that we can
estimate

ds

(4.36)
B

o(2) (— - Aw) W, (5,3 — §)dL ()| ds
@) ot

n
p

/BH(A) 9(2) (ApeT,(s,2 — §) — ApnU(s, 2 — §)C (p |2 — 9])) dL"(2)

< Co(p?p)Fp? sup |9
By, ,(0)

for all § € B,(0) and all s € (0, p|, where we used p~2s < p~2p < k < Ky, for
k < k1. Thus we can calculate

I,

< Co(p~?p) p? sup |y
B7,,(0)

e, .. .
g(2) (— — ARn) U,(s,& —9)dL" ()
® ot

(4.37)
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for all §y € B,(0) and all s € (0,p]. Here we used that

0 0

S Wals,2) = £ W05, 2)C (o7 2]) = Ao W5, 2)C (07 2]

for all s € (0,00) and all 2 € R™. Inserting (4.37) into (4.36) yields

o= [ ] n@g@mwp(s,@ — )AL (@) ds

+ Co(p7?p)"" sup g

B p(0)

(4.38)

for all g € B,(0) and all s € (0,p]. Now integration by parts yields
/ () Apn (5, & — §)d2(3)
5 (@)
= —/ Dg(z) - DV ,(s,& — 9)dL"(z).
5 (9)
By Rernarkwe know | DU, (s, 2)| = ('Z'g( “12)) + p~ 10( ‘1\z|)) U(s, 2)

for all 2 € R™. Then we can estimate using Lemma with p = 2",
= |Dgl, 9(a) = 5:¢(p~"a) + p~'('(p~"a) and go = §

/B"(O)

/n /n |Dg(2)|| DY, (s, % — §)|dL"(2)dL"(9) (4.39)

42" (9)

/ 9(2)Apn T (5, & — §)d.L" ()

<[ 1Da@Nazn@) [ 1w plazn

r+p

for all s € (0,00). Using Lemma 1.9 with pp = Z", 20 = 0 and P, = 1 we
find a k1 such that we can estimate

DU, (s,9)|dL"(5) < [ [DU(s,9)|dL" () + Cop~°p
Rn Rn

for all s € (0, p], where we used p~2s < p~2p < k < Ky for k < k. Here we
also estimated ¢ < 1. As DW(s,q) = (25)"'§¥ (s, ) we can then use Lemma
to estimate

1

DU, (s, 9)|dL™ () < Cps™2 + Cppp < Cps™2
Rn

o7



for all s € (0,p], where we used p~?p < x < 1. Inserting this into (4.39)

yields
/Bﬂ (0)

< Cpsh / Dg(#)|d.L"(2)

T'+P(0)

d2"(9)

/ () AW, (5, — §)d.L" ()
B (9)

for all s € (0,p]. Then with (4.38) we conclude

P . o
/ H(5)dL"(9) < C, / s Hds / Dg(#)|d.L"(2)
B (0) 0 r (0

r+p

+ Cp(p?p)"t! sup |g|r".

B, (0)

Now estimate C,(p~2p) < Cprx < 1 for x small depending on P. Also
calculate [ s~2ds = 2p2. In view of (1.35) this establishes the result. O
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5 Clearing Out

A very important local result for mean curvature flow is the clearing out
lemma, which essentially states that regions in which the flow has small
mass will develop parts which do not contain the flowing surfaces at all. The
clearing out lemma first appeared in Brakke’s original work [Bl 6.3]. Here
we derive an improved version, see Lemma based on Brakke’s original
calculations in [Bl 6.3]. This will be used to verify an L>-estimate in form of
Proposition [5.10, which can in turn be used in the proof of Theorem as an
alternative to Corollary In the proof of [Bl 6.9] Brakke uses a statement
similar to Proposition but his argumentation contains a major gap. In
particular it is unclear why the conditions he states there allow the usage of
his clearing out lemma [B, 6.3].

We will need the following two results which can be found in [All, 5.1.3]
and [EG| 1.5.2] respectively.

5.1 Lemma ([All, 5.1.3]). Let R € (0,00), X € [0,00) and let p be an integral
n-varifold in R"* with

I8l (B(0)) < e (B(0)) (5.1)
for all v € (0,R). Then exp(Ar)r—"u (B,(O)) is non-decreasing on (0, R).
Recall that the first variation of v is defined by

lop|| (A) := {/ div, Xdpu, X € C) (AR |X(2)] <1 Vo e A}
A

5.2 Theorem (Besicovitch Covering Theorem). For every N € N there
exists a constant K € N such that the following holds: For U C RN consider
a family of balls (By),c, where B, == B, (u) with r, € (0,R), R € (0,00).
Then there exist K subsets Vi C U such that U C |, UueVlB_U and the

closures of balls in the same V; are disjoint, that means B, N B, = 0 for all
u,v € Viu#v foralll=1,... K.

The following lemma is a generalization of a part of the proof of [B] 6.3].
In particular Brakke uses a fixed test-function ¢ and only considers ¢ = 1.
Note that the possibility to choose ¢ = % will be crucial in proving Lemma

Wil

5.3 Lemma ([B| 6.3)). For every m € (2,00) there exists a § € (0,1] such
that, for all p € (0,00), q € (0,1] and every open subset U C R the
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following holds: Let xo € U, p be a rectifiable n-varifold in U with L2-
integrable mean curvature vector H and ©™(u,xo) > 1. Then for every ¢ €
CYY (U, R") there exists a radius r € (0,00) such that

/ |H [*¢™dp + / IVEGPp™ 2 dp + p / " dp
r(l'()) Br(-'EO) Br(xO) (52)

>dp2 | gmdp
B'r (IO)

for &= p™" [, ¢™du, where @ = —2L—

nqg+2m*

5.4 Remark. Note that although the proof is done by contradiction, we
obtain an explicit lower bound for 4, see (5.5). Also note that r may depend
on p. For Lemma 5.7 B,(z) will be the support of ¢.

Proof. Set B, = B,.(zxg). We want to prove the lemma by contradiction.
Assume the statement is false, then there exists an m € (2,00) such that,
for every § > 0 there exist p € (0,00), ¢ € (0,1], an open subset U C R"*,
a rectifiable n-varifold p in U with L%-integrable mean curvature vector H
and a point zo € U with ©"(u,z9) > 1. Also there exists a test function
¢ € C21 (U, R™) such that for every r € (0, 00)

| |HP¢mdp+ | VP 2+ p7? [ ¢ dp
Br Br Br (5.3)
<dp7% | gmdp.

By

In particular as all terms are positive each term on the left hand side is
smaller than the one on the right hand side. Multiply (5.3) with »—", then
letting r N\, 0 we obtain with the third term on the left hand side of ([5.3)
that

P2 D (w0) " TIO" (ko) wn < Op7E D (o) O™ (1, o) Wi,

where we used the definition of density and continuity of ¢. As ©"(u, z) > 0
we can conclude

Q=
QR

d)(l’o) >0 5 .

We want to use Allard’s monotonicity lemma on the varifold pl¢™. For some
X € C! (B,,R™™) with |X(z)] <1 Vz € B, Remark ‘, property ([2.2))

(5.4)
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and Holder’s inequality can be used to obtain

/ (div,X) ¢"dp
B

/ div, (X¢™) dp— | X - V' ¢™dp
- |

By

IA
S

" d+m [ [90l6™ dy
™ BT

(ftea) (o)) (o)

Thus using (5.3) yields

N|=

[\
N

/B (div,X) ¢™dp < (L+m)\/6¢—p™" | ¢™dp = Au|¢™(B,),

B,

for A := (1 +m)/6§2p~! and for every r € (0,00). Then Lemma [5.1] tells
us that exp(Ar)r—" fBT ¢™dp is non-decreasing in r. Letting r \, 0 we obtain

exp(\r)r™" / ¢ dp > w©" (1, o) P(0)™,

r

again by definition of density and continuity of ¢. For » = A~! we then
obtain with estimate (/5.4])

m am

exp(UN" [ 67 > @, 20)5 ¢,
U

where we also used p (B, \ U) = 0. By definition of £, A and as ©"(p, z) > 1
this yields

m am

exp(1)(1+m)"626 2 > w67 a¢ v,

which implies

am an

6210 > wpexp(1) M1 4+m) " T T = w,exp(1) T 1 +m) T, (5.5)

where we used the definition of a for the last equality. In view of ([5.5)) we
obtain a contradiction for ¢ small enough. ]

Combining this lemma with the Besicovitch covering theorem yields

the following Sobolev-type inequality. This is also a generalization of part of
the proof of [B, 6.3].
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5.5 Lemma ([Bl 6.3]). For every m € (2,00) there exists a Ay € (1,00)
such that for all ¢ € (0,1], p € (0,00) and every open subset U C R"* the
following holds: Let p be a rectifiable n-varifold in U with L*-integrable mean
curvature vector H and let ¢ € CO1 (U, R*) then we have

11—«
o ( / ¢mdu) <o [ (FOMIEP + gm 9 + 70 di
U U

where o := < 1.

q+2m

Proof. Set £ := p™" fU ¢"™dp. By Lemma we obtain a § depending only
on m,n such that for every z € R™"* with ©"(u, 2) > 1 there exists a radius
r(x) € (0,00) such that for B, = B,(;)(z)

[ A Pem £ V0P 4 gtz 52 [ o (50
By

By

As we assumed that ¢ has compact support there exists an Ry € (0, 00)
such that spt¢ C Bpg,(0). For x € Bog,(0) with ©™(u,z) > 1 set 7(x) :=
min{r(z), 3Ry}, then also holds for B, = Bj(y)(x). For x ¢ By, (0) set
7(z) := Ry, then for B, = Bj(y)(x) trivially becomes 0 > 0. So we may
assume r(z) € (0,3Ry) for all x € R™™* with ©"(u, z) > 1.

Now set A := {:c e R O(p,z) > 1} and consider the family (B ) reA"
By Theorem there exists a constant K € N depending only on n+ k& and
subsets A; C A, i =1,..., K such that B_Iﬂgy: 0 for all x # 5y, z,y € A;

and A C (Ufil Usea, B_m> Then we can estimate using (5.6)

IR Sy [ o

i=1 z€A;

< 51pee ZZ/ (H26™ + VP62 + p2gm=1dy

i=1 x€A;
<K [ RIS+ V0P 4 o
U
Now divide by £% to verify the result for Ag = K. O

For a Brakke flow and a test function ¢ satisfying inequality stated
below, Lemmal5.5| can be used to obtain a differential inequality (see (5.13))
for the integral of the function. Solving this inequality yields that spt¢ will
become empty after some time. This is again a generalization of a part of
Brakke’s proof for [Bl 6.3].
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5.6 Proposition ([Bl, 6.3]). For every m G (2,00) and q € (0,1] there
erists a A € (1,00) such that for a := nq+2m’ for all p € (0,00), 1 €
[0,00), ,A € [0,1] tg € R, T € (AN"'n%p? 00) and every open subset U C
R™% the following holds: Let (ut)te[t07t0+T] be a Brakke flow in U and ¢ €

COY ([to, to + T] x U,RY). For ¢y = ¢(t,-) suppose

lJ spterccU (5.7)

te [to ,t0+T]

Also assume

/U (% (o(t,2)™) — dimD(aﬁ(t,x)m)) dpue()

<-A /U (IV*o(t, ) ot )" + p2(t, 2)™ ™) dpus () Y
for almost every t € [to, to + T and
/ P(to, )" dpy () < 1. (5.9)
Then
sptu N sptg; = 0. (5.10)

for every t € [to + AN"Inp% to + T.

Proof. Set £(t) := p™™ [, ¢}'dp. Let t € (to,to + T') be a non-singular time,

ie. B(u, ¢)') < oco. In particular the mean curvature vector H is defined
and L2-integrable on U. At such a time we can use Definition and (2.2))

to estimate

0 — 0
Ao+ [ 5 @) du < [ <\ + 5 (61) = div, DTV

With (5.8) and as A < 1 we can then estimate further

0
B 7)+ [ 5 67 di
u (5.11)
<o [ (1R + 19 0P + 72
U
By Lemma [5.5] there exists a Ay depending on m, ¢ such that

P () < A / BRG + VR, Pop 2+ p 2y, (5.12)
U
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Combining ([5.11]) and ((5.12)) with Proposition we conclude
DE(t) < =M 'p 2 (€()' 7 <0 (5.13)

for almost every t € [to,to + T]. Here we used that at almost every time
t € (to,to + T) the Brakke variation is non-singular. Also we needed
to apply Proposition Note that £(t) > 0 for all t € [tg,to + T]. Let
s € [to,to+T] be such that £(¢) > 0 for all ¢t € [tg, s]. Then with Proposition

and Proposition we can estimate
()~ €()” < [ D)) dp=a [ < Dicoa
so by (5.13)) we have

E(s)" = &(to)* < —adAg ' p~3(s — to).
Hence with ([5.9) we obtain
s <to+a TANTHE(t)™ — £(5)Y)p* < to + AN PP,

where we set A := a~!'Ag. So there has to exist an sq € [to, tg + AN"1%p?]
such that £(sp) = 0. Then Proposition |A.19[and (5.13) imply £(¢) = 0 for all
t € [so,to + T, which establishes the result. O

Now we shall insert a specific test-function into Proposition to obtain
a clearing out result. Due to our generalizations we can chose a different ®
to the one Brakke chooses in [Bl 6.3].

5.7 Lemma (Clearing Out Lemma, [B, 6.3]). There exists a constant C' €
(1,00) such that for o = n+12 for all m,R € (0,00),n € [0,00), 79 € R™™*
to € R, T € [Cn** Rr,00) and every open subset U C R™™ with C,(xq) N
Br(zo) CC U the following holds: Let (), 107y b€ o Brakke flow in U
and suppose

(Rr)g/ P3dpy, <, (5.14)
U
where
z) = {1 =Rz — a0}, {1 —r 2@ — &|*}, . (5.15)
Then for all t € [ty + Cn* Rr,to + T
,ut(Cr(t)(xo) N BR(t)<l’0)) =0, (5.16)
where r(t) = \/{r2 —4n(t —to)};+ and R(t) := /{R?*—4n(t — to)}+. In

the speczal case where R = r we obtain the same result with o = n+6
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5.8 Remark. Note that this is a new result. Only the special case where
R = ris from B, 6.3]. In particular for the proof of Proposition it is
crucial to choose R >> r.

Proof. Consider the functions f,g: R x R"** — R+

f(t,x) = % {R(t)2 — |z — :100|2}Jr ,
ot z) = 712 {r(®)? — & — 20},

We want to use the previous lemma with ¢(t,x) = f(t,2)g(t,z). Set again
o = o(t,-), fr = f(t,"),9: = g(t,-). Let m > 3, such that ¢™ is C? in both
space and time. Calculate

0 (0lt,2)") = mop= 2 (7(t, )t )

ot
PR —2n ) +r2(2r —2n x

= ot (1 (2RO 5 ) atta) 42 (2075 ) 50).
oGl = —dm (R () + ) 67 @) (51)

for every (t,z) € R x R™™. Consider ¢ € (0,T) where the measure ju; is
a rectifiable n-varifold with L2-integrable mean curvature vector H , which
is the case for almost every ¢t € (0,T). For u;-almost every point in U the
approximate tangent space exists. Then we can calculate at such a point

div,, D(¢f") = m(m — 1)[V* ¢, *¢]" 2 + m (div,, Doy) ¢* 1. (5.18)
For div,, D¢, we can calculate using Remark

diVMtD¢t = diV,U«t (ftht —|— gtht)
= fidiv,, Dg; + gidiv,, D fy + 2V f - Vi g,
= —2r%f,div,, (&) — 2R *gidiv,, (z) + 2VH f, - Vg,

which yields the estimate
div,, Doy > —2n (R g + 172 f,) +2VH f, - Vi g,. (5.19)
Also estimate

2 (met : Vutgt) ¢ =2V"f- f;iVlg < |gtvmft + ftvmgt|2 )
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SO
2(VHfi- Vg d < [V (5.20)
Inserting (5.19)) and (5.20) into ([5.18)]) yields
div,, D(¢") = m(m — 1)[ V"G, * ] ~% — m| V" [ "~
—2nm (R*th + r’zft)

for almost every t € [tg,to + T, for pu- almost every x € U and for all
m € [3,00). Now set m = 3. By combining (/5.21)) with ( - we obtain

d
5 (o(t,2)%) = div,, (¢(z)?) < ( —12n (Rg, + 172 f;) ¢ — 6|V" o)y

+ 6n (Rizgt + 7"72ft) (bf + 3|V“t¢t]2¢t> .

= (= 6n (B2 +172) 0F =3IV 0nf0.) |

(5.21)

thus as ¢ is positive
0 5
= (0(t.2)%) = div,, (au(2)") < = ((Br) 707 + [Varfor) | (5:22)

for almost every t € [tg,to + T and for p,-almost every z € U. Here we used
that

1
R72g+717%fi > /R 2gr=2f, = (Rr) "' ¢} .
Then the result follows from Proposition with m = 3,9 = % A =1 and

p = V/Rr. Note that spté, = Cray(zo) N BR(t) (x0) and ¢(to, ) = P.

In the special case R = r the same calculation with ¢ (¢, x) = f(¢, ) yields
a slightly better estimate. In this case we can use Proposition |5.6| with ¢ = 1
which yields the better o. O]

For a Brakke flow starting with an integral height bound the clearing out
lemma yields a point-wise height bound.

5.9 Lemma. There exists a C € (1,00) such that for o = n+r6 for all
R € (0,00), I,T',n € [0,00) and § € (0,(4n)~1), ty € R the following holds:
Let (1¢)eeto to+or2) be a Brakke flow in Car(0) satisfying

bty (Ca0) \ (B3(0) x BE(0)) < " (5.23)

Then
sptiy N Cr(0) C {z € Cr(0) : |mgr(z)| < 4ndR +T'} (5.24)
for allt € [ty + Cn*° R?,to + 6 R?]. Note that this interval is empty unless n

1s sufficiently small.
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Proof. Let s € [to + Cn* R?,to + 6R?] and y € sptus N Cr(0) be arbitrary.
First suppose

[mee(y)] > R+ T

Then yields
fir, (Br(y)) < nR".
Thus we can use Lemma with r = R and zy = y to obtain
1e(Bray(y)) =0

for all t € [ty + Cun®®,to + SR?], where R(t) := \/R2 —4n(t —t;). As d <
(4n)~! and by assumption s € [to + C,n*?, ty + 0 R?] we can estimate R(s) >
VR? — 4ndR? > 0. In particular y ¢ sptus, which is a contradiction.

Now suppose

0 < |mre(y)| < R+T, (5.25)

then set

vi=ly =917y —9)
ap =79+ (I' + R)wv.

We want to use the clearing out lemma around ay with » = R. To do so
we have to show that Bg(ag) has small p,-measure. First note that as
v € {0}" x R¥ and § € B%(0) we have

|Tre(a0)] =T + R and |ao| < R.
In particular we see
Br(ap) C Cor(0) \ (Byr(0) x Br(0)).
Then yields
fity (Br(ao)) < nR™.

Thus we can use Lemma with r = R, xg = ap to obtain

11t(Br(ao)) = 0
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for all t € [to + Cun?®,to + OR?], where R(t) := \/R* —4n(t —ty). As§ <
(4n)~! we can estimate

R(t) > VR2 — 4néR%2 = V1 — 4néR > (1 — 4nd)R = R — 4ndR

for all ¢ € [t + C,,n*7, to + 0 R?]. In particular
phs(Br-ansr(ao)) = 0.

Thus by choice of s and y we have
ly — ap| > R — 4ndR. (5.26)
By definition of ay and v we can calculate
ly — ao| = |mre(y — ao)| = |mge(y) — (' + R)o| = [[mzs (y)] — (I' + R)].

Thus implies

||mre(y)| — (' + R)| > R — 4ndR. (5.27)
A case distinction in then yields

|mre (y)| < 4ndR+ T, or |mge(y)| > 2R+T —4ndR > R+T,

where we used & < (4n)~!. The second case contradicts our assumption

(5.25). Thus we obtain the height bound and as s, y where arbitrary this
establishes the result. O

A similar approach is now used to prove Brakke’s height estimate, which
is a different version of Lemma [5.9. Here we already assume a hight bound
which then will be improved. Note that Brakke does not state a result like
Proposition , but the proof here mostly follows a calculation from [Bl,
6.9]. However, the argumentation in [Bl 6.9] contains a major gap, as Brakke
indirectly uses Lemma in our generalized form, though he only proved
the usual spherical clearing out lemma (Lemma [5.7| with R=r).

5.10 Proposition (Height Estimate, [B, 6.9]). There exists a ¢ € (0,1)
such that for all \,§ € (0,1], p € (0,00), h € (0,A71], s € R, yo € R*™,
A = X"'p and every open subset U C R™™ with Cy sm,(yo) N Baa(yo) CC U
the following holds: Let (,ut)te[SO_%pQ,sﬁpz} be a Brakke flow in U and j €
{1,...k} and suppose there exists an s € [sg — 20p%, 5o — dp?] such that

U sptenCuymplyo) C{z €U, (x = o) - €0y < hp},  (5.28)
t€[s,s0+p?]

n+12

/ (A — |2 — g0 — Aeny |}, dus(x) < NS0 2000 (5.20)
Cymnr(yo)
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Then for all t € [sq, so + p°]
sptiy N B,y(yo) C {z € U, (x — o) - €ntj < (24n+ 1)Ap}. (5.30)

5.11 Remark. Basically A denotes the new height bound, whereas h is the
height bound we already have. The time one has to wait until the new height
bound comes into effect is related to 6. In particular for fixed § and A the
point-wise height estimate becomes smaller the smaller the integral in
is. Note that is similar to an integral height bound.

Proof. We may assume (24n + 1)\ < h and as h < A~! this yields (24n +
1)A? < 1. First note that by (5.28) and hp < A7'p = A we know that
(x —yo — Aeyyj) - €, is negative, so

(x —yo) - eny; = (x —yo — Aepyj) - ey + A

(5.31)
=A—|(z —yo — Aepyj) - enyy

for all € spty, N Cyymy(yo), t € [s,50 + p*]. Then using (5.31)) we can
calculate

(T — yo) - €ntj
1

:A_(|(x—y0—Aen+j\2— > !(x—yo)-e#)Q (5.32)

1<i<n+k, i#n+j

<A = /1@ = 30— Aens|? — |z — yol?

for all x € spty; N Cymy(Yo), t € [s,50 + p°]. We want to show that for all
t € [so, S0 + p*]

sptie N C,(yo) N Bay (Yo + Aepyy) =0 (5.33)

for Ag := A — 12nAp > 0. Suppose (5.33)) would be true, then in view of
(5-32) we can estimate for all ¢ € [sg, s + p*] and for all = € spty, N B,(yo)

(2 0) - eney < A— /7 — (o + Aeu )2 — |z — gof2 < A — /A3 — p2.

By definition of Ay and by A = A™!p we can estimate further

(@ — 40) - ens; < A (1 — 1= 12007 - )\2> <A (1 ~J/1— @in+ 1))\2>
< (24n + 1)AN? < (24n + 1)Ap.
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which establishes (5.30). Here we used (24n + 1)A\* < 1. So it remains to
show (5.33]).

To verify (5.33]) we will use Lemma with R = A, r = 4y/np, to = s
and z¢ = yo + Ae,4;, so we have to consider the test function

(I)([L’) = {1 - A_2|[L' — Y — Aen+j|2}+ {1 - (4\/ﬁp)_2|i‘ - g0|2}+ :

Set
v (vianet [ e, (5.34)
then Lemma [5.7] yields
sptie N Cry(Yo) N Bry (Yo + Aenyy) =0 (5.35)

for all t € [s + C’nnﬁAp, so + p*], where r(t) := /16np® — 4n(t — s) and
R(t) := /A2 —4n(t —s). But for t € [s + C’nnﬁ/\p, so + p*] we have
t—s <50+ p*— (s — 20p?) < 3p?, so we can estimate

R(t) > /A2 — 12np2 = V1 — 120027 > (1 — 12nX\%) A = A
r(t) > \/16np2 — 12np? > p

for all t € [s + C’nnﬁAp, so + p*. Thus if s + C’nnﬁ/\p < 89 then (j5.35))
implies (5.33)), which establishes the result. By assumption s < sy — dp?, so
it suffices to show C’nnﬁ Ap < 8p%. In view of (5.34)) it remains to prove

Ch, ((Ap)g/ <I)3d,us> " < A top. (5.36)
U

To establish inequality ([5.36) we calculate for 2 € sptusNCy,/m,(y0) N Ba(yo+
Aens,) using (531) and (5:25)
®(2)* < {1 — A2z — yo — Aeq P}
= {A°(A+ |z — yo — Neyy )P (A = |z — yo — Aeyyj])?}
SATA+ A (2 = 90) - el {A — |2 — yo — Aenyjl},
< AR {A — |z —yo — Aenyjl}, -

+

Then with assumption ([5.29) we obtain

C’n/ P3dp, < CnA_gthz/ {A =]z —yo — Aenyjl}, dus()
U c

4\/ER(?JO)
n+12

n
P

< Crer®s
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where we used A = A\™'p and spt® C Cy zr(yo) N Ba(yo + Ae,i;). This can
now be used to estimate

(o [ @) < 000575 = Centon
U

Now as A = A~!p this implies (5.36)) for ¢ small enough. As before (/5.36])
then establishes the result. O

5.12 Lemma. For every A € (0,00) and every j € {1,...k} we have
A= fo—Aewsl}, < {o-eny— @AY, (537)
for all z € R*F,

For the proof we will use the following fact

5.13 Remark. For a,b,c € R* with a2 > b? + ¢? we can estimate
a— VR +cE<Va -1 —c (5.38)
To verify this compute
a2 < B2(a? — b2 — ) + a? = (B + 2)(a? — BP),

which implies

(a+c)? =a’>+2ac+c? <a* +2Vh2 + Va2 — b2+ 2+ 0> - b?
2
= (\/bQ+c2+\/a2—bQ>

and this verifies the result.

Proof. To illustrate this statement note that # — (2A)~* |#|? is a paraboloid
and By (Ae,;) the best fitting ball through 0. Consider the functions f, g €
C> (B3(0),RT)

f(#) = (20) 7" 2]

(5.39)
g(@) == A — /A2 — |z

For the derivatives we can calculate

ai,- f@)=A"i-e
0




for 1 <i<nandz € B}(0). Note that f(0) = g(0) = 0. Also for v € B}(0)
and 6 € [0, 1] we can estimate

D(g— £)(00) - & = (A — 62[0]) 2 0]o] — A20]6[2 > 0.

Then by Taylor’s formula

(=10 =l =0+ [ Dlg=HED) 08>0
so we conclude

g(&) > f(&) (5.40)
for all £ € B}(0).
Next we want to show

A—lz—Aeyyj| <z-eny;—g(2) (5.41)

for all x € By(Ae,y ;). Inequality basically says that for a point inside
a ball the shortest distance to the boundary is smaller than the distance to
the lower boundary point on the same vertical line. For z € R we can
estimate

n k
A=z —Aeny| = A — <Z - el” + ) |(x — Aens) - en+z’|2>
1 =1

i=

2

< A= 22 + (2 — Aenss) - enysf?
NN e e

If x € By(Aepyj) we have (A — z - e,45)* + |22 < |z — Aenyi? < A2 so we

can use (5.38) to obtain
A=z —Aenyj| < VA= |22 = (A -z enyy) =2 enyy — g(2)

for all z € By(Ae,;), where we used definition (5.39) in the last step. Thus
we proved ((5.41)) which in view of (5.40) yields
{A—|z— Aen+j|}+ <z-en; — f(2)

for all x € By(Ae,;) and by definition ([5.39) this verifies (5.37). Here we
used that for points outside By (Ae,;) the left hand side of (5.37) is zero
and the right hand side is positive. O
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The form in which Proposition [5.10] will be used is the following:

5.14 Lemma. There exist ¢ € (0,1) and C' € (1,00) such that for all T €
(0,1], R € (0,00), h € (0,1], ty € R, yo € R"™ and every open subset
V C R"™ with By,-1x(yo) CC V the following holds: Let (Ht)setto—282 10+ 2]
be a Brakke flow in U and T be an n-dimensional subspace in R"* with

U spty N Cf\/ﬁR(yo) c{z eV, |mz(z—w)| <hR}. (5.42)

te [t072R2,t0+R2}

Suppose there erists a t; € [tg — 2R?, ty — R?] and an orthonormal basis
(vi)1<j<k of the co-space T+ such that

e |7 (z — o)|” T
R /T {|(f — o) vl — TlR) dp, (z) < €3 (5.43)
04\/HR(yO) +

for every j € {1,...k}. Then for allt € [ty,to + R?|

sptu N Br(yo) C {z €V,

T (xr — yo)| <CTR}. (5.44)
Here CT(zq) :== {x € R"* . |np(x — x0)| < 71}
Proof. Fix an arbitrary j € {1,...k} and a sign x € {+, —}. Fix an associ-

ated rotation S € SO(n+ k) with S(R") = T, S(R*) = T and in particular
S(en+j) = ;. Consider the Brakke flow (fit),c(;, 32 44 r2) defined by

fir(A) = p(S(A)),

for all A € R"** where S(A) := {S(a),a € A}. Assumptions (5.42)) and
(5.43)) imply for the rotated flow

U sptit N Coaymr(Yo) C {x € U, |mre(x — yo)| < RR},  (5.45)
telto—2R2,to+R?]
~ N |2

e &= s
04\/53(?40) +

where U := S7'(V). By Lemma with A = 77! R estimate (5.46)) implies

Rt /C o Bl = A} diin () S erh 7% (547
4/nR\Y0
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Here we used (z—yo)-€,4; < [(x— o) -€n1;|. Now we can apply Proposition
withd =1, A\=17, p= R, so =ty and s = t;. Note that (5.45)) implies
(5.28), as (r — yo) - €ntj < |mrr(z — yo)|. Proposition then yields

sptfit N Br(yo) C{z € U,(x —y) - e,4; < CTR}.

for all ¢ € [tg,to + R?] for some C' € (1,00). Thus by definition of (ji;) we
obtain

sptue N Br(yo) C {x € V.x(z —y) - v; < CTR}.

As je{l,...k} and x € {+, —} were arbitrary this establishes ([5.44]) O
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6 Monotonicity Formula

We want to prove Huisken’s monotonicity formula[6.2] taken from [H2] for the
spherical heat kernel on Brakke flows, which has been established by Ilmanen
in [[2]. This will lead to the L* — L2-estimate Corollary [6.8] an important
tool for proving local regularity later. Here we follow [E4l chapter 4], where
smooth flows are considered, but the results carry over to our case.

To prove the monotonicity formula we need the spherical heat kernel ®.
Later we will use the spherically shrinking cut-off function ¢ defined below,
to obtain local estimates.

6.1 Definition. Let 2o € R"** t; € R, p € (0,00) be fixed. For x € R***
and t € (—oo,ty) set

Qmw@w%=uﬂm—wr3wpcii%5)'

Sp(to,xo),p(t7 $> = {1 - p_2 (|:B - $0|2 + 2n(t - tO)) }:_3,_ .

6.2 Theorem (Monotonicity Formula, [H2]). Consider an open subset U C
Rk (to,z0) € R x U and sy € (—o0,tg). Let (Ht)ieiso o) b€ @ Brakke flow
in U and let f € C* ([so, o] x R™™ RT) with

U sptf(t,-) cC U. (6.1)

tG[So,to]

Then for sg < s1 < s9 < ty
[ Fo2 002,21 () = [ T 000 51,2} 0)
U U

g/ /((Q—Am+ﬁ-D>f—)F[—z9(tm)
. o e :

ﬂ%z " (z—2z0)
2(t—to)

2
f) (D(to,wo)dﬂt dt?

where 0 20)(t, x) =

Applying this theorem with f = ¢ yields a local monotonicity formula
for the heat kernel. This was discovered by Ecker, see [E4].

6.3 Remark ([E4] 4.8]). Under the above assumptions for p € (0, 00) with
B,(z0) CC U and f = ¢(1,4),0 We can use Definition [2.5and Remark [2.6] to

estimate

0 _
<§ — Allt + H . D) Sp(to,xo),P(t?x) S O
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for almost every ¢ € [sg, to] and almost every = € spty,. Then by Theorem

/U(I)(to,ico)(p(to,ﬂﬁo),p d:“’Sz < /U(D(to,fo)(p(to,fco),p dlu'Sl (62)

for all Sp < 81 < 89 < tp.

Proof of Theorem[06.4 We fix (to, zo) throughout the proof and just write ®,
omitting the index. Consider times ¢ € (s, s2) where p; is integral and has
L?-integrable mean curvature vector H. Let V,div and A be with respect
to py. Then we can calculate for the heat kernel by Definition

(ﬁD+A> & = divD®d + 2H - D®

vl
= divDd + ——1 —

(6.3)

H —

. Lp|? .
VT ®+|H[*®

at points x € sptu; where H L T,py, which are p;-almost all x due to
Theorem Using Definition and definition of Jy, ,, one can directly

calculate
0P hax:lh
— +divDd + -——
o TVEY T TG
1

Lt ) — T, (x — x9)
V() = T

Combining this with ( . 6.3]) yields

=0,

D(t, x) = Vgm0 (t, ) P(t, ).

(a +H- D+A) — |H>®
(6.4)

2

i
- o
v )

—|H —

‘H - 7Sl(toywo)

for almost every time t € (s, $2) at -almost every point x € spt .
Now we integrate in time over (si, s3) and use inequality - ) to obtain

/fSQ, D)0 (59, ) djta, (1 /fsl, B(sy, 2)dpis: ()

- / ( U (6% +H-D >(f‘1>)— \H\2f®dut) dt
o
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and together with equality (/6.4]) this establishes the result. O

6.4 Definition (Gaussian Density, [H2]). Consider ¢;,t, € R with ¢; < ¢
and an open subset U C R""*. Let (Ht) ety 1, Pe @ Brakke flow in U. For all

to € (t1,t2], p € (0,00) and xg € R"™* with B,(z¢) CC U set
O(u, to, xo) == tlim D (t0,20) (t, T) Pto,20),p(ts T) dpte(). (6.5)
o Ju

This is called the Gaussian density of (u:) at (to, o). Actually this limit
always exists and is independent of p. Note that the Gaussian density is
different from the density ©" in Definition [2.1][4]

Proof. By Remark we have that t — [o. i Pto,m0)Pltoso),e Ak IS MoONO-
tonically decreasing for ¢ < t;. Also it is bounded from below by 0, so the
limit for ¢  to has to exist.

Now let 0 < p1 < p2 < 0o with B,, () CC U. In particular there exists
R € (pq,00) such that Br(zg) CC U. For arbitrarily small € € (0,1) consider
t € (to — €p?,ty). We may assume ¢ is small enough such that

SPEP(tg,30).0: (5 ) C Br(xo) CC U (6.6)
for i € {1,2}. For x € B ., (1) we can estimate
|90(t0,x0),pi(t’ ZE) o 1| =1- (1 - pi_Q(lx o xo‘z + 2n(t o tO)))g < Cpe (6'7)

for i € {1,2}, where we used that p;?p? < 1 and that ¢ small enough. The
Gaussian density difference between p = p; and p = ps can be estimated by

D = /U(I)(to,mo) |90(t0,960),p2 - (p(to,ro),pll dpu
= /UCI)(tvaCO) (|§0(towo)7pz - 1‘ + |90(tovwo)vpl - 1‘) iy

Thus with (6.7) and

D < Cne/ q)(to,xo)d,ut + 2/ q)(to,xo)d/it- (68)
Br(zo) Br(z0)\B, /p, (o)

Note that by Lemma and there exists an M € (1,00) such that
pt(Br(xg)) < M for all t € [t1,ts]. Then as ® is bounded, the first integral
in is bounded by a constant times €. The second integral in can
be estimated by

_n Ep%
q)(to,xo)d,ut < Cn<t0 - t) 2exp| —————< M

/BR(:L‘U)\B\/EPI (0) 4(to — 1)
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and this expression tends to 0 for ¢  ¢y. Thus we can find a § € (0,1) such
that for all t € (top — d,%) the estimate D < Cye holds. As € is arbitrarily
small, this establishes the independence of p. O

Next we prove a lower bound on the Gaussian density like [E4, 4.20]. This
time it actually is more difficult than in the smooth case, see also [W2].

6.5 Proposition. For every T € (0,00) and every open subset U C R™*
the following holds: Let (:ut)te[fT,O] be a Brakke flow in U. Suppose pu, is
an integral n-varifold for some ty € (=T,0], then for F"-almost every xq €

sptitt,
®(lu7 to, IO) > 1.

Proof. As pu, is an integral n-varifold we have O™ (uy,, x) > 1, Ty, exists
and holds for .7"-almost every = € sptu,. Let o € U be such a point
and let € € (0,1) be given. By Remark [2.3| for every ball B,.(z), r € (0,00)
we can calculate

(lsl\(rr(l) Br(ﬂfo) ¢(t0+57x0)(t07 aj)dljlto (:B)
= (4m) F1im (V) / e 167
N0 B(

165

2
dﬂto (l‘)
Z0)

= (4m) 30" (g, 70) / e ALy) = 07 (g, ) > 1.,

TIO Mg

where we identified Ty, with R™. So there exists §; € (0, (2n) 'ep?) such
that

/ (I)(to-i-é,l‘o)d:uto >1—e (6'9)
B /ep(@0)

for all § € (0,01). There exists p € (0,/T + to) such that B,(x¢) CC U. By
Definition [6.4| we can find a ¢ € (g — p?,ty) such that

@(/La lo, 1‘0) > / q)(toﬂco)(tv x)gp(to,xo),p@? x)dﬂt(gj) — € (610)

Rn+k

By the continuity of our test functions we can choose § € (0, d;) such that

/ X q)(to+6,xo)(ta $)80(to+6,wo),p(t7 x)dﬂt(l’)
R (6.11)

< /IR . (I)(to,xo)(ta x)gp(to,mo%p(t’ x)d,ut(x) + €.
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Now combine estimates (6.10]) and (6.11)) to obtain

O, to, 70) > / B 4o (12 2) @ 00001 (s )i () —

Rn+k

2/ +k D1+5.20) (E: ) Pto+0.20).p(t; ) s () — 2€.
R"

Then with the monotonicity (6.2)) we can conclude

@<:u7 to, l’o) > / ®(t0+5’m0) (t07 x)@(to-i-&xo),ﬁ(t(]? m)dﬂto (:L‘) — 2e. (6'12)

Rn+k
Now use that 0 < d; < (2n) 'ep, so for & € B 4,(2) we can estimate
Pt ssonplto ) = (1= g2z — 2ol + 2n8))° = (1 2¢)°.

Inserting this into (6.12)) we can use to finally estimate

O toan) = (1 =20 [ Digus(tos )y ) = 26 > (1= 26)" = 26,
B /ep(w0)
and for € \, 0 this establishes the result. O]

The monotonicity formula can now be used to prove a mean value in-
equality. The proof we will give follows [E4l 4.25] and [E5| 2.1]. In [KT), 6.5]
a similar result can be found for a more general flow but with fixed function

f.

6.6 Proposition (Mean Value Inequality, [E4, 4.25], [E5, 2.1], [K'T, 6.5]).
There exists a constant C' € (1,00) such that for all T € (0,00), ty €
R and every open subset U C R"™* the following holds: Let (Ht) s o7 10]
be a Brakke flow in U such that py, is an integral n-varifold. Let [ €
C? ([to — T, to] x U,R) be such that for almost every to — T < t < to for
we-almost every x € U

(%_Am+ﬁiﬁfmmgo. (6.13)

Then for all p € (0,27*V/T) and a € R*** with By,(a) C U the inequality
sl <o [ i@ o
to—4p? Ba,
holds, for all s € [ty — p*,to] and all y € sptus N B,(a).
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6.7 Remark. Here only the L2-version of (6.14) will be proven. Then we
refer to [E5] 2.1], where an advanced calculus trick due to Schoen and Bartnik
is used to derive the L!-version from its corresponding L?-estimate.

Proof. Fix a € R™** and p € (0,27'V/T) with By,(a) C U. First we will
assume f(t,z) > 0 for all (t,x) € [ty — T, to] x U. We want to show

f(s,y)* < Cp™ 2/ . /B f(t, 2)*dp, () dt (6.15)
to—4p

for all s € [t — p?,to] and all y € sptus N B,(a). Fix so € [to — 2p?, to] and
Yo € sptus, N By(a) with O(, so, yo) > 1. We want to show (6.15) holds for

(87 y) = (807 yO)

Consider a time ¢ such that ju, is integral and has L?-integrable mean
curvature vector H. Let V and A be with respect to p, then by Remark
we can calculate at almost every point

<%_A+H D)f _2f<——A+H D)f—2|Vf|2. (6.16)

Furthermore for a ¢ € C* ([—T,0] x R™™ R) we can estimate using Young’s
inequality

V2V =4foVf- Vo < ¢ V> +4f Vo] (6.17)
Combining (6.16]) and - we obtain

(9 7 2,2
(a—A%—H-D)fgb
< ¢’ (——A+H D>f2+f2 (%—A+ﬁ-D>¢2—2Vf2-V¢2

< 2f b (——A+H D)f+f2 [(%—AJrH D) ¢2+8\V¢|2].

at almost every point in spty,. Integrating in space and time we can drop the
first term, as it is negative by assumption (6.13]) and as we assumed f > 0,
such that by Theorem (6.2)) we have

/Uf2¢2q)(50,yo)dlus _/Uf2¢2q)(50»yo)dlu$0—02

< / / f2q)(507y0)0¢ dpy dt =: 1
so—p2 JU
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for all s € (so— p?, s0), where Cy := <% - A, + H- D) ¢*+8|VHol’. Now
choose ¢(x) = ¢o(x — yo) where

Po(t,x) = {1’ (t,2) € (s — £, 0) x Bg-l—k(())

2
0, t<sy—% or|z[>p

and smooth in between such that C;, < p~2C,. Then the pu,_,2-integral
in (6.18) vanishes, so (6.18) becomes [;; f2¢*® (s, y0)dpts < I. Furthermore

Cy =0 on (s — %, 0) X Bs () and outside B,(xp). Then we can estimate
the integral I from (6.18)) by

C’n 507§ 9 S0 9
I < — / f q)(SO:yO) dp dt +/ / f ®(801y0) dpy dt
P so—p2 Bg 50— p>2 Bp\Bg
s _e s
Cn 07 8n 9 0 9
<= J7®s0.90) dpie dt + 2 S P (s0,90) dpe di
Y so—p2 B, so—g—n Bp\Bg

where all the balls are centred in yy. Now with Definition 6.1 and as r —
r~*~P""" is monotonously increasing on (0, Ba™!] we can estimate for ¢t €

[80 — g, so> and x ¢ B: (o)

2
_n P
C(so0) (1, 7) < Culso —1)7 exp <_m>

o () L) <c
< L —— ) <C,p"
- " (877,) P ( Qn) = b

Also Definition [6.1| implies @y, o) (t,2) < Cpp™ for all t € [30 — p%, 50 — g].
Then we obtain for I

R

p
In view of (6.18) and by definition of ¢ this lets us conclude

/ F2® (o ) dpts = / F20* P (s.0) dits
Bg(yo) Bg(yo

)
50
/ / f 2 dp dt
so—p? J Bp(yo)

(6.19)

Ch
pn+2

<
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for all s € (so — %2, so). By continuity of f we find r € (0,47!p) such that

inf ft,x)* >

[s0—72,50] % B2r(y0)

f(507y0)2-

N

Furthermore for s € (59— %, So) by Deﬁnitionwe have spty sy yo),r (5, 2) C
By (y0) € Bg(yo), as well as ¢(q, o). (5, ) < 2 for all 2 € R™*. Thus with
(6.19) we conclude

f(SOa y0)2 / (I)(Smyo)(p(so,yo),?”(sv x)d,us(x)
Bar(yo)

C, [
S 4/ f2¢)(507y0)d/*1/8 S n-+2 / / f2 d/l/t dt
By (y0) P to—4p2 J Ba,(a)

2
for s € (sg — %,so) C (S0 — &, 50), where we used 4r < p. Also we used

B,(y) C Bayy(a) and [sy — p?, s0] C [to — 4p*,to]. Then by Definition [6.4] for
s 7 sg, as we assumed O(pu, So,yo) > 1 this establishes estimate (6.15]) for
(s,4) = (s0,%0)-

As (so,yo) was arbitrary this shows holds for all s € [ty — 2p?, t]
and all y € sptus N By(a) with ©(u, s,y) > 1. Due to continuity of f and
Proposition [6.5| we can extend this to all y € sptus N B,(a), s € [ty — p?, to].

To see this let s € [tg — p?,to] and let y € sptus N B,y(a) with O(u, s,y)
arbitrary. For € € (0,1) choose r € (0, p) such that

(f(s,9))* < inf (f(s0,%0))* + ¢, (6.20)

[s—r2,5+72] x B, (y)

which is always possible by continuity of f. As y € sptu, N B,(a) we have

ps(Bs(y)) > 0 for all § € (0,00), see Remark 2.1} Then use Lemma [3.12|]2]
WithI{Z%, xg =y and R = 24 to see

fiso (Bas(y)) > 0

for all sp € (s — n™'d,s| for all § € (0,00). Then choose § small enough
such that 26 < r < p and Bas(y) C B,(a). There exists sop € (s — n~'d, s]
where p,, is integral and using Proposition we find yo € sptus, N Bas(y)

with ©(u, so,y0) > 1, in particular (6.15)) holds for (s,y) = (so,v0). Also, by
choice of § we have (sg, yo) € [s — 1%, s+72] x B.(y). Then we can use ([6.20)

and (6.15)) to estimate
C, [™
— / / 2 du, dt + €
P to—4p2 Ba,(a)
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and for € \, 0 we obtain for all s € [to—p?, to] and all y € sptusNB,(a).

So we showed the L?-version of for positive functions f. To obtain
the L'-estimate we refer to [E5] 2.1]. Note that the trick used there is just a
calculus iteration argument. In particular smoothness of the surfaces or the
flow equation are not needed. This yields

f(s,9) < Cp? / 4 / ey (6.21)
to—4p2 J Bay(a

holds, for all s € [ty — p?, to] and all y € sptus N B,(a) in the case f > 0.
Now consider f € C? ([ty — T, to] x U, R) without sign conditiorﬂjut sat-

isfying (6.13))). For € € (0,1) consider v/ f? + €2, then by Remark .
a —
(a_ANt_‘_HD) \/f2+€2

f 0 - €
T VPie (5 ~Ow i D) = prrapVirs?

for almost every time t € [ty — T, to] and pi-almost every point in U, where

we used that f satisfies (6.13). Thus y/ f? + €2 is positive and satisfies (6.13)),
so by (6.21) we obtain

to
ViGwrrasor [ VT Sy
to—4p> Ba,(a

for all s € [to — p?,to] and all y € sptus N B,(a). Then for e — 0 follows the
result, as \/ f2 + €2 — |f]. O

As a corollary we obtain a distance estimate like in [E4, 4.26]. There
already exists a similar result for weak mean curvature flow, see [KT) 6.5].

6.8 Corollary (Distance Estimate, [E4, 4.26], [KT| 6.5]). There ezists a
constant C' € (1,00) such that for all r € (0,00), to € R, g, yo,v € R"HK
and every open subset U C R™* with By, (xz¢) C U the following holds: Let
(Ht)iepto—r2zo) b @ Brakke flow in U then

to
-woi<cr? [ e ddau@a 622
t0—4r2 BQT\(Z'O)

for all s € [to — 12, to] and all y € sptus N By(xo).
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Proof. Consider the function f(x) = (x — o) - v then f is C* and satisfies

0 L
<§—A,ut+H-D) (x —x9) - v =—div,,((zr —yo) -v) =0

where we used Definition 2.4] and Definition 2.5l Thus the result follows
directly from Proposition [6.6] with p = r and a = z O
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7 Bounds On Area Ratio

In order to approximate Brakke flow by heat diffusion and for many other
purposes as well, we prefer our surface to be flat, in a sense which will be
made precise later. Here we consider Brakke flows which are contained in a
slab, or with bounded height-excess. We show that in this setting mild area
ratio bounds can imply almost flatness. We follow [B, 6.6 and 6.9], which is
also covered in [KT, chapter 6]. First we inspect the evolution of the area
ratio in a cylinder, in order to find that it is decreasing if it is not already
close to the area ratio of a plane, see Proposition [7.5] Assuming an upper
bound on the area ratio at the beginning and a lower bound later, we obtain
for some time in between that the surface almost has area ratio like a plane,
which directly implies bounds on mean curvature- and tilt-excess. This leads
to Theorem [7.7] The only small difference to [KT] and [B] is the usage of
variable test functions, which approximate the characteristic function of the
cylinder arbitrarily well. Using these we can state Theorem for cylinders
directly, while the analogous statements in [KT] and [B] use fixed cylindrical
cut-off functions instead.

7.1 Definition. Consider ¢ € C* ([0,00),[0,1]) from Definition 4.1} For
R € (0,00) and p € [1,00) we define

Crp(r) == C ((R]2])")

for all z = (#,%) € R™ x R*. Note that (g, is defined on R"™* although it
only depends on the R™-components. Moreover set

Wy = / GG A"
B (0)x{0}*

For a rectifiable n-varifold p in U C R""* we are interested in the difference
E = E(u,R,p) = R”/ Crp Ay — wp.
U

7.2 Lemma. There ezists a C' € (1,00) such that for all R € (0,00) and
p € [1,00) the following holds:

1. for all z € R™**

1 for 0<|z|<(1—=p 127" ®R
Crpl) = =t )
0 for R<|z]|.
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2. max {Rp~*sup |D(g,|, R?p~?sup |D?*(r,|} < C.
3. R™ fBﬁ(O)X 1oyt Chrpd A = .
4. 1=p127%w, < w, < w,.
Proof. 1. Let |2| < (1 —p~'27""®)R. By the binomial theorem we have
(R—l |§:|)p S (1 _p—12—n—8)p

e e ()

Now by (5) > ( P

. +1) p~! we see that the last sum is negative which yields

( -1 |x|) <l-927n 8y <129>p2<2n8)2 <1-2"9

By Definition [4.1] we have ((r) = 1 for r € [0,1 — 27"79], so we proved
statement [I1

2. Calculate for 4,5 € {1,...,n}

0
Crp(z) = ¢ (R |2])P) pR7P|2 "1,

(9(13i
and
82 1 2 2 2p—4 -,
WCRM??) =" (R™M2]) p* R |2~ 2
i0T;

+ ¢ ((RTENP) pR™ ((p = 2)[2 P~ 2 + |27 26y5) -
Statement [2] then follows by the properties of ¢ (see Definition [4.1]). In
particular we only have to consider the case £ < |2] < R.

3. Property follows from the transformation of variables § = R~ inside
the integral.

4. To prove property 4| estimate for r =1 — p=127"8

"Wy, :/ 1d.L" :/ Cipdcf” §/ Cipd(,?”
7(0) 7(0) BT (0)
=w, < / 1dL" = w,,
1(0)

where we used r < 1 and Statement [Il Also note that

n Z (1 _p—12—n—8)n Z 1— 2np—12—n—8 -1 _p—12—8.
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The aim of this section is to find criteria that imply a bound on FE.
Though E = 0 does not mean that we have a plane, a small E indicates a flat
shape and allows for Lipschitz approximations. Furthermore a Brakke flow
with bounded F for some time, can only have limited curvature integral in
that period, which leads to our excess bounds in this section’s main Theorem
1

Applying Lemma with ¢r = (g, yields the following statement:

7.3 Lemma. There exists a constant C' € (1,00) such that for all R,y €
(0,00), p € [1,00) and every open subset U C R™* the following holds: Let
i be an integral n-varifold in U with L?-integrable mean curvature vector H.
Suppose

R [ (e (o) < o2 (7.1)
Cr(0)
Then
-n 1 -n 7
R"% (U, p, Cpp) < —5 R +2/ |H|CG, dp + Cp'y°. (7.2)
U

Note that 4 E(u, R, p) = $R™72% (U, 1, (%) so if we can bound the
right hand side of by E, this will lead to a differential equation for F.
The biggest step in this direction is the next Lemma, which is based on the
first half of Brakke’s proof of the popping soap film lemma [B| 6.6].

7.4 Lemma (Area Ratio Derivative, [Bl 6.6]). For every q € [1,00) there
exists a Q € (1,00) such that for every R € (0,00), every v € (0,Q71]
and every open subset U C R"* the following holds: Let ju be an integral
n-varifold in U with L*-integrable mean curvature vector H. Suppose

sptu N Cr(0) cC U (7.3)
B [ (o) < (7.4
Cr(0)
\Rn [ Gt =) = Il € (@2, - o] . (75)
Then
min 7—§|E|§,1} ifn <2,

R™"B (U, (h,) < —Q7F (7.6)

min { [E|"% 43| E]3, 1} ifn>2.
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Proof. We consider the mean curvature-excess
o? = R"2 / |H[*CE du. (7.7)
U
We want to show that there exists a 6 = d(q) € (0,1) such that

min 7_%|E|%,1} if n <2,
min |E]nT_2,7‘%\E|§,1} it n > 2.

(7.8)

Showing is the main step of the proof. By definition of the right hand
side of it suffices to consider small a? and then show that | E| is bounded
from above in terms of a?. In order to show this we first use Lemma 2.8 to
transfer the area ratio bounds from to smaller balls with radii %, %.
This leads to a Lipschitz approximation in B,,(0),79 = g, which then lets
us get better estimates on the area ratio, in this smaller ball. Using again
Lemma yields the upper bound on |E| in terms of a?. Once is
verified Lemma [7.3] can be used to establish the result.

To prove we assume o < § and lead this assumption to the conclu-

sion

V73 |E|3 if n <2,
2
a” > . n=2 2, .4 .
m1n{|E] nLy 3|E\3} if n > 2,
where we will choose § small depending on g. Also we may assume 72 < §,

which we can always achieve as v < @' and we can choose Q > 53,
Moreover the tilt-excess

5. R / s — 2 G2 (7.9)
U

can be estimated by the height- and curvature-excess due to Lemma
with f = g = h = (g4. This yields

B =R <C, (a’y e <x>\21v~cR,q\du<x>) ,

where we used spt(r, C Cr(0) to estimate afc < R" 202 and 42 < R"242,
Using |D¢gr,| < ¢*R ™20y and (7.4)) we obtain

pr <, (ory + qQ’yQ) < Chq*s (7.10)
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where we used our bounds on a and « for the second estimate. Thus all the
three excesses are bounded by a? + 3% + 42 for which

o+ 4+ < Crg?d (7.11)

holds.
We want to approximate p in B,,(0) by a Lipschitz function, for some
ro € (0, R). In order to use Theorem we have to show

1(Byy(0)) = Aoy (7.12)
11 (B, (0)) < (2 = Ao (3r0)” (7.13)

for some A € (0,1).
Define

R
T = 57 ry = (1 — q—12—n—8),’,07 To = 3(]. + q_12_n_4)7"0-

By Lemma 2.8 with Ry, = R, Ry = 73, P = (rq, @0 = @, o = [ we obtain

’RTL/ Cz,qdﬂ_rzn/ sz,qd:u‘
U U

<r;"R" ((n log (TE) + 2) B+ R MR- ri)aﬂ)

for i € {1,2}. Here we had to use that (7.3) equals (2.5). Then we can
estimate

“n n R\"
'R /UCJQ;:,qu —7; /Uthqdu‘ <G, (T—Z) (B> + ap) (7.14)

for i € {1,2}, where we used log(Rr; ') < log(18) < 3. As the height-excess
is small due to , we can estimate the measure of a ball from below by the
measure of a cylinder with slightly smaller radius. In particular for B, (0)
and C,, (0) we obtain for the set A := {x € C,,(0) : |mpe(z)]* > 72 — r?} that

1 (Cry (0)\ By (0)) < e (A). (7.15)
Here we used that for x € C,,(0) with |mge(x)|> < 72 — r? we can estimate
|z|? = |mge (2) ]2 + |2] < 7 so x & C (0)\ B, (0). Using (7.4) the measure of

A implies a lower bound on 7 by

R
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so we can estimate with (|7.15))
1 (Cri(0)\ By (0) < (1§ — 1) '*R™* < CogyR"™. (7.16)
Here we estimated 72 — 7% > (1 — (1 — ¢ 127" 8)*)r2 > (C,q)"'r3 and we

also used R? = 8173 by definition of 75. Now we can use estimate (7.14) and
(7.16]) to bound u (B,,(0)) from below

p(Br0) 2 [ = 1(C(0)\ 5,(0)
>R [ Gdi= O ( + 8) = Cu* R
Here the first step holds because spt(,, , C C,,(0). The bounds (7.5) and

(7-11) yield R~ [;; (i ,dp > @y — (1= (2¢) " )wy and 5%+ af +1? < C,g?9,

SO we can estimate
1 (Bry (0)) > 7 (g — (1 = (29) " )wn) — CuR" ¢ w,d.

Using 71 := (1 — ¢~ 127" ®)rg and R := 9ry we obtain

1 (B, (0)) > 1y [(1 - q_12 " 8) (wq —wp + (2(])_1(«%) - qugwn(ﬂ
> [(1—¢ 2% (¢ 2%+ (261)_1) — Cng*8) warg
> [ 3 -1 nq35] wpry > 24 q lwnro,

where we had to choose ¢ small enough depending on g. Here we also used
w, > (1= ¢ 1278 w,. So we verified (7.12)) for A < 27%¢~'. For the upper
bound we can analogously estimate with ((7.14)

u Ban(O) < [ G < 5B [ Ghdu+ Qo (5 +a5).
U U

Here the first step holds because (1 — ¢ ~'27"7%)ry > 3rg, s0 spt(2 , D Cayy.

Then the bounds and (7.11) yield R™" [, Cf dp < wq + (1 — (2¢) "V wn
and 32 + af8 + 2 § C’nqzé, SO we can estimate

p (Bsry (0) < 7% (@ + (1= (29) wn) + CuR"q*w,d.
Using ry := 3(1 + ¢ 27" *)rg and R := 9ry we obtain

p (Bsr(0)) < (3ro)" [(1+q 27" ) (@ + wn — (20)'wn) + Crgdwn]

<
< (3ro)"w [(1 +q 272 - (29)7Y) + Cug®)
<(2-2727" + CgPd)wn(3ro)" < (2 = 273¢ Hwn (3r)™,
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where we had to choose § small enough depending on g. Here we also needed

@, < wy. So (712) and (7.13)) hold for A = 274p~!. To apply Theorem
with «, 8 and v we see that in view of sptu N By, (0) C U equations (7.4)),

(1) [9) imply @18), @19) and @20). For Q large enough also < 7o
is verified, such that we can use Theorem in the ball B, (0). This yields

the existence of a Lipschitz function f : B (0) — R* with lip(f) < 1 and
1 (BL(0) x BEO)\ X) +27 (BL(0)\ V) < Curfy (a™20,55 + 52+ 7)
where X = {z € C,,(0) : 35 € B2 (0), (9, f(9)) = 2,0 (p,z) =1} and ¥ =

mre (X). Now we can approximate each integral on the varifold by the inte-
gral on the graph of f. In particular for thq we can estimate

/ ¢ du— / ¢ (5.0)d.L" ()
By, (0) (0

By, (

<, (g)n (070,25 + 82 +17)

see Remark . By definition of w, we have r"w, = [ CE AL for all
r € (0,R), so

7’1_”/ o Cfl’qd,u —w,| < C, (04%57123 + 5%+ ’y2> , (7.17)
By (0

0

where we used 1 < ry. We want such an estimate for U instead of B,,(0).
Use B,(0) C {G.g = 1} Csptl,q € Cr (0) to see

[ Guins [ Guns [ @ dntu(Cn©)\By0).
Bry (0) U B

7o (0)

Then with (7.17)), (7.16) and r; := (1 — ¢~ '27"78)97! R we obtain
i [ G-
U

We want ([7.18) for R instead of r1. By (7.14) with r; we can estimate

< Chq <a%5n23 + 8%+ 72) . (7.18)

‘R_" /U Céqdu —r" /U (fwdu‘ <Adnri"R" (aB+ %) < C, (aB+ B?),
where we used r; := (1 — ¢~ '27"7%)9"!' R. Combining this with (7.18)) yields

< Cug (028,25 + aB + B + 7).

|E| = 'R‘”/Ugéqd,u—wq

91



By the first inequality of (7.10) we have § < C,q(\/ay + 7), so we can
estimate a8 + 82 < Cpg?(ay + 72 + a2~2) and arrive at

|E| < Ch¢® max{a%%zz,@%”yéﬁz} :

Assumption (7.5) yields the lower bound |E| > Q+?. So for Q large enough
depending on ¢ we can rule out that the maximum is attained for v2. Thus
we have

|E| < qug max {a%(;nzg, agvé}

and this inequality establishes the desired lower curvature bound for o
small depending on ¢, n, k.

Now we can use to obtain a bound on the Brakke variation of Cé’p.
Use that by Lemma [7.3

2
a
RT3 (U, p, Cfm) < Y + Cog*y? (7.19)

for a constant 2)C’O € (1,00). We want to show that the2 last term in ([7.19) is
smaller than %- to bound the Brakke variation by —<- from above.

By (7.5) we can estimate |E| > Q+?2, so (7.8) yields
. 2 . <
s min {Q~y ,1};72 if n <2,
- min{(@vQ)T,Qyz,l} if n > 2.
By assumption we know Q7% < Q! < 1, so the 1 cannot be the minimum.
n—2
Also for n > 3 we have 2=2 < 1, thus (Q7%) = > Q~?, so for Q large enough

a? > 0Qv* > 4Coq"y,
where Cj is the constant from ([7.19)). Thus ([7.19)) combined with (7.8)) implies

I ) a2 5 | min 7_§]E|§,1} if n <2,
R m ‘%(Unu?CRq) S - S - n_o2 3 "
, 4~ 4 min ]E]T,7’§]E|§,1} ifn > 2,

which establishes the result, if ) > 46~!. Note that § only depends on
q,n, k. O

Now we can use this to derive a differential inequality for £. Solving this
inequality establishes bounds on (%) in a certain time interval. This is
done in the next proposition, which is a reformulation of Brakke’s popping
soap film lemma [B, 6.6].
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7.5 Proposition (Decreasing Area Ratio, Bl 6.6]). For every p € [1,00)
there exist P € (1,00) and vy € (0,1) such that for all R € (0,00),v € (0, 7],
allty,ty € R withty—t; > PR? and every open subset U C R"** the following
holds: Let (pu) be a Brakke flow in U with

te(t1,to]

U sptue N Cr(0) CC U (7.20)

te(t1,ta]

sup R”Q/ |k ()2 dpy <2 (7.21)
té[tl,tg] UNCRr(0)
Then
R_”/ Cépdptl <2-pHu, = R_"/ Cépdpsl <w,+ Py* (7.22)
U U
R™" / Chpdii, > p'wy, = R" / Chpdits, > w, — Py* (7.23)
U U
holds for all s, € [t; + PR?,ty] and all s5 € [t1,t, — PR?].
Proof. For t € [t,t5] set

E(t):=R™" /U Gy — @, (7.24)

By Lemma [7.4] applied with ¢ = p there exists a () depending on p such that

—n+2 2 _, Jmin 77%|E(t)|%>1} if n <2,
R (U, 14, () < —Q o

min { |[E()]" ,7‘§|E(t)|%,1} itn > 2,

for all t € [t1,ts] with Q2 < |E(t)] < (1 — (2p)"")w,. Note that we need
to choose 79 < @' in order to apply Lemma . With the Brakke flow
inequality (3.1) we then have for all n > 1

DEW) = RD (/U Gyl t) (7.25)
<-Q 'R 2min {|E(®)|" 1 E@)]F, 1}

for all ¢ € [ti, 1] with Qv* < |E(#)] < (1 — (2p)~')w,. Here we used that
E@)|" < |E@®)|" for |E(t)] < 1 and when |E(t)] > 1 the expression

|E(t)| cannot be the minimum. For the n < 2 case we used that taking
a minimum over a larger set, only makes it smaller. Note that assumption
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(7.20]) is necessary in order to apply (3.1]). Inequality ([7.25]) implies that E(t)
is monotonically decreasing for certain ¢. Consider the set

Vo= [=(1 = (2p) wn, =@ T U [@7%, (1 = (2p) 7w
If E(t) is once smaller than v € V' it will stay below this value, i.e.

Hdl € [tl,tg] : E(dl) <v— E(t) <wv Vte [dl,tg], (726)

dd, € [tl,tg] : E(dg) >V = E(t) >v VYVt e [tl,dg] (727)

for all v € V. To see (7.26]) let v € V| d; € [t1,ts] and consider the set
= {dy € [di,t2] : E(t) < v Vt € [di,do]}. By Proposition 3.72 E(t
cannot "jump up” at any time ¢. Hence J is closed. Consider a dy € J. If
E(dy) < v we can use again Proposition [3.72] to find a § € (0, 1) such that

[do, do + 0] N [dy,ta] C J. If E(dy) = v use j7.25) to find such a 6. Thus J
is closed and open inside [dy,ts]. As [d1,ts] is connected this proves ([7.26)).

Then ((7.26) implies ([7.27]) via a contra position argument.

For an interval I = [a,b] C [t1,ts] consider the properties:

Qv* < E(t) < (1 (2p) wn Yt € [a,b], (7.28)
—Q¥ 2 E(t) > —(1— (2p) wn ¥t € [a,]. (7.29)

The proof is based on the following observation: There ex1sts a P E (1, 00)
such that for every I = [a,b] C [t1, ] for which either (7.28) or (7.29) holds,

we can estimate
b—a< PR (7.30)

To prove this let I = [a,b] C [t1, t2] be such that either or holds.
Then inequality holds for all ¢ € I. In particular E is monotonically
decreasing and does not change sign on I. Let I, 5, I35 C I be the parts,
where the min of is 1, |[E(t)|" or v 3|E(t)|3 respectively.

Li={sel :1<|E(s)| < (1—(2p) wn}
I = {s €1 :qmit < |E(s)| < 1}

I3 := {s €l : Qv <|E(s)| < 73721711}

By monotonicity of E the sets Ii, Is, I3 are each intervals themselves with
I U, UlI3 = 1. We can solve the ODE inequality on each of this intervals
separately which will give an upper bound for b—a. For I} = [aq, by] estimate

by ([7.25) and with Proposition

E(h) — E(ay) < [ DE®t < Q' (b — a))R>.

al
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Either (7.31)) or (7.32) imply a bound of |E(b;) — E(a1)| by (1 — (2p)')wn,

so we obtain
by —a; < w,QR% (7.31)

For Iy = [ag, by] we will distinguish the cases where I satisfies ([7.28) hence
E > 0 and where [ satisfies (7.29)) hence E < 0. By ([7.25)) with Propositions
A.19 and [A.2()] estimate for £ > 0

by

E(by)* — Ba)* g/a D (E(t)%) dt

2

[

ba
<! / E(t) " DE{)dt < —(nQ) " (by — as) B>,

Here we used that for f(r) = r=, r > 0 the derivative satisfies D f(r) > 0.
Analogously we can estimate for £ < 0

(B}~ (@)t = [ D (Bt a

az

bo i —
2—71_1/ (—E(t))™» DE(t)dt > (nQ) "(by — az) R

a2

Here we used that for f(r) = (—r)w, r < 0 the derivative satisfies D f(r) < 0.
In both cases we can estimate

by — as < nQR2 ||E(by)|# — |E(az)|" | < /wmQR2, (7.32)

where we used |E(t)] < (1 — (2p) Yw, for all t € I.
For I3 = [as, b3] we will again distinguish the cases where [ satisfies

(7.28) hence E > 0 and where [ satisfies ([7.29)) hence £ < 0. By ([7.25|) with
Propositions |A.19| and [A.20] estimate for £ > 0

E(bs)"5 — E(ag)~3 > /bBQ (E(t)—%) dt

as
1 [

z——/ E(t)”
3 Ja,

Here we used that for f(r) = 7~3, r > 0 the derivative satisfies Df(r) < 0.
Analogously we can estimate for £ < 0

(B - B < [ (B0 ) a

1% 3
g-/ Bt)
3.,

=

ol

DE(t)dt > (3Q) (bs — as)y R 2.

Wl

DE(t)dt < —(3Q) ' (bs — as)y iR
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Here we used that for f(r) = (—=r)~3, 7 < 0 the derivative satisfies Df(r) >
0. In both cases we can estimate

by — as < 3QR>Y: ||E(bs)| "5 — |E(as)| 3| < 3nQ3 R?, (7.33)

where we used |E(t)| > Qv for all t € I. Combining (7.31)), (7.32) and (7.33))
we see b — a < C,QR?, thus we established ((7.30) for some P depending on

() which depended on p. Note that for larger P estimate ((7.30)) remains true.

Now we can use ([7.30]) to verify the statements ([7.22)) and ([7.23)). Suppose
R [, Capdite, < (2—p~")wy, then with e, > (1—p~'27%)w, we can estimate

E(t)) = R_"/ C]Zipdutl —w, < (2-— pt—1 +p_12_8)wn <(1- (Qp)_l)wn.
U

By this yields E(t) < (1 — (2p) Hw, for all ¢ € [t1,ts]. Thus by
in view of there has to exist d; € [t1, 1) + PR?] such that E(d;) < Qv?,
so by we obtain E(t) < Q+? for all [dy,ts]. As d; < t; + PR? and
by definition of £ this verifies for P> Q. Suppose R™™ [, (& dps, >

p'w,, then with w, < w, we can estimate
E(ty) = R_"/ Q%,pdub —wp, > P, —wp > —(1— (2p)_1)wn.
U

By (7.27)) this yields E(t) > —(1 — (2p) ')w, for all t € [t;,t5]. Thus by
(7.30) in view of (7.29) there has to exist dy € [to — PR? t5] such that

E(dy) > —Qv?, so by (7.27) we obtain E(t) > —Q~? for all [t;,dy]. As
dy >ty — PR? and by definition of E this verifies (7.23)) for P > Q. O

In the slab setting this can be used to obtain a time interval, where the
flow is almost flat. This is the way in which Brakke uses the popping soap
film lemma in the proof of [Bl 6.9].

7.6 Lemma. For every q € [1,00) there exists a QQ € (1,00) such that, for all
K € (1,00) there exists a ny € (0,1) such that for all p € (0,00), n € (0,10] ,
51,89 € R with sy —s1 > 2QR? and every open subset U C R™ ¥ the following
holds: Let (pt)es, 5, be a Brakke flow in U with

sptuy N Cy(0) C {z € C,(0), |mre(x)| < np} CC U (7.34)
p " (Cp(0)) < K (7.35)

for all t € [sy, s3]. Suppose

p" / ¢ s, <2 —q Nwn, p" / ¢ yditsy > q wy (7.36)
U U
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Then for all s € [s1 + QR?, sy — QR?]

o [ Gudne - <@EP. (@0
U
8+02 712 2 2
o [ VARG e < Qi (7.39)
s—p U
s+p2 9
p "2 / / 7, — e |” i dt < QK. (7.39)
5—p2 U
Proof. For t € [s1, sa] set
al = p"+2/ \ﬁ|2§p27qdut (7.40)
U
8= 07" [ = meol? G (7.41)

where « is only defined for almost every t. We want to use Proposition
The slab condition ((7.34)) and the cylindrical area ratio bound ((7.35)) directly
yield a bound for the height-excess, namely

o / e (2) Pdae() < Ko (7.42)
Unc,(0)

for all ¢ € [s1, s9]. Proposition [7.5| with p = ¢, v = Kn?, t, = s1, ta = s and
R = p yields P and vy depending on ¢ such that

- 2
‘p nLCp,quS_wp

for all s € [s;+ Pp?, so— Pp*]. Here we used that (7.36)) implies the validity of
the assumptions in the statements ([7.22)) and (7.23)). Hence the conclusions

in (7.22) and (7.23) imply (7.43). Note that in order to use Proposition

we choose Q > P = P(q) and Kn? < Kn2 < ~2 for 1y small depending on K

and 79 = 7(q). Inequality (7.43]) then directly implies ((7.37)).
To prove ([7.38) we first note that by (7.43) we have

—2PKn* < (p_n/ CpQ,qd/‘erp? - p_n/ Cp%qdus—/ﬁ) :
U U
Then by (3.1)) and Proposition we obtain

< PKn? (7.43)

s—l—p2
PR <p" [ AU (7.44)
s—p2
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for all s € [s; + Pp? + p?, 85 — p?> — Pp?]. Now by Lemma [7.3| with R = p,
7v? = Kn? and p = q combined with estimate (7.42)) and in view of definition
(7.40) we have

2

—n «
P +2‘@(Ua Ht, Ciq) S _?t + an4Kn2

for almost every t € [s1, so]. Combining this with (7.44]) yields

5+p2

1
—2PKn* < —5,0_2/ aZdt + C,q* Mn?
5—p2
for all s € [s; + (P + 1)p?, 83 — (P + 1)p*. Thus we obtain
s+p2
p2 / a2dt < Co(P + VKo (7.45)
5—p2
for all s € [s; + (P +1)p% s2 — (P + 1)p?. In view of (7.40) this implies
(7.38) for @ large enough depending on g. Note that P only depends on ¢
and constants.

Now as usual, bounds on mean curvature-excess and on height imply a
bound on tilt-excess. Using Lemma with f =g =h=(,, yields

By =p "B < C, (at\/f n+p " / | TR (x)IZIV”th,qIQdut(x))
U

for almost every t € [sq, s3], where we used (7.42)) to estimate v, < p" ™2 Kn?
and we used o = p"?a7. Then again by (7.42)) and using |D(, .| < gp~'oy
as well as Young’s inequality we obtain

B} < Cy (of + K¢*n?)

for almost every t € [s1, s3]. Thus integrating over time we can use ((7.45)) to
obtain
s+p2
p‘Q/ Bidt < C, (P +q") Kn®
s—p?
for all s € [s; + (P + 1)p?, 85 — (P + 1)p?]. In view of this verifies
for () large enough depending on ¢. Note again that P only depends

on ¢q and constants. O]

Now combine this with the cylindrical growth lemma [2.8] to obtain nice
density ratio estimates for smaller radii as well. This is the form in which
Brakke’s popping soap film lemma enters the calculations in [Bl, 6.9], although
it is never formulated as an own statement.
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7.7 Proposition (Local Flatness, [Bl, 6.9], [KT, 5.7]). For every A € (0,1]
there ezists a A € (1,00) such that, for every T € (0,1] and every M € [1,00)
there exists a hg € (0,1) such that for all h € (0, ho] ,R € (0,00), yo € R***
t1, 1ty € R with ty —t; > 2AR? and every open subset U C R™™* the following

holds: Let (pt)ye(s, 1) b€ @ Brakke flow in U with
sptue N Capar(¥o) C {m € Catnro), |mre(x — yo)| < hR} cc U, (7.46)
Ry (Casnr(yo)) < M. (7.47)

for allt € [t1,t5]. Suppose
R™" 11z, (Casnyr(yo)) < (2= Nwn , R, (Cr(Yo)) > Ay (7.48)
Then for all s € [t; + AR% to — AR?] and every r € [TR, R]

‘r_nﬂ’t (Or(yO)) - wnl S )\wna (749)
s+R?
R / / |H|*dp, dt < AMM?, (7.50)
s—R? JCRr(yo)
s+R?
Rn2/ - /C ) ’ﬂ-Tz/L - WRH|2 d/Lt dt S AMh2 (751)
S— RrR\Y0

Proof. We may assume yo = 0. For given A € (0,1] and R € (0,00) set
q:=2"\"!'and Ry := (1+ A\)R and for ¢ € [t;, 5] set

ot = Ry [ PG, i (7.5

B i= By | [mrp = ool Gyt (7.53)
U

where « is only defined for almost every ¢. The idea is to use Lemmal[7.6) with
p = Ry to obtain plane-like area ratio for the flow inside Cg,. By Lemma
these area ratios can be transferred to the smaller cylinder C,. but they may
become worse. Using Lemma [7.6] again but this time with p = r we obtain
plane-like area ratios for C,. By choice of ¢ and Lemma we have

{Caran—12yr0.0 = 1} D Clag12-n-8)(142-n-12)r (0) D Cr (0) (7.54)
for all 7y € (0, 00), where we calculated
(1—qg 27" )1 +27" N =1 -2\ (1 +27" 1) > 1,
as ¢ := 2"\ ". In particular for ry = R we obtain

CRO(O) D) SptCR[),q D) {CRO#J = 1} D) OR(O), (755)
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where we used Ry = (1+ AR > (1+ 2" '\)R

We want to apply Lemma With 31 =t, S = t2, K = M p = Ry
and n = h. We 1mmed1ately see that 7.46|) implies (7.34)) and ([7.47)) implies
. By (7.48 - qg:=2"\"!and \ § 1 we can estlmate

Ry" / Choqhn, < By (Cpo(0)) < (2 = Nwy = (2= 27"¢ 7 Jwn,
U
Ro_n/ C;%qu,ub > (1+X) "R ™", (Cr(0)) > 27" Mw, = ¢~ 'wy
U
which verifies (7.36)). Here we had to use (7.55]) for the first estimate in the
second line. To apply Lemma as above we also have to choose hy < 19

and A > (1 + A\)?Q, where Q € (1,00) depends on ¢ and 7 depends on M
and ¢. Note that ¢ is determined by A. Lemma [7.6] then yields

‘RE ! / Choqits — q| < o (7.56)
g o 2
and
s+R3 s+R2
Ry*? / alt)’dt < QMh?, Ry? / B(t)*dt < QMh? (7.57)
s—R3 s—R3

for all s € [t + QR2, t, — QR2]. Note that by t, —t; > 2A > 2Q the time
interval is non-empty. To obtain we estimated QM h2 < w‘z ,as h < hg
for hg small depending on A and M In view of deﬁmtlons and -

as R < Ry < 2R and by ([7.55) - the inequalities in already verify ([7.50) -
and (7.51]) for A > 2"2(QQ.

Next we want to use Lemma 2.8 at times where mean curvature- and
tilt-excess are small. By (7.57) we have

s Rg
/; (a(t)® + B(t)?) dt < QMK R}

for all s € [t; + QR2,ty — QR?2]. In particular for A > (Q + 1)(1 + \)? this
holds for s = ¢; + (Q + 1)R2 and s =ty — (Q + 1) R, so we can find

a S (tl + QR(%7t1 + (Q + Q)Rg) )

7.58
i € (t2— (Q + 2)RL 1, — QI (758)

with

ala;)? + B(a;)? <4QMR?, i€ {1,2}. (7.59)
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Now for the varifolds p,,, i € {1,2} use Lemma with Ry = Ry, R1 =19
and ®, = (,, to obtain

Ran/;CéO,pduai _T()_n/ €r207pdﬂai

<ry"Rl ((nlog (RD) + 2> Bla;)? + ROR_O TOa(m)B(m))

for all ro € (0,Ry), t € [t1,t2], i € {1,2}. Here we had to use that as
Ry = Ry = (1 + AR we see that (7.46]) implies (2.5)). Thus we can estimate

with (7.59)

‘Ran/ CI%”Ude:““i N To_n/ Cfo,pduai
U U

for all rg € (0, Ro), t € [t1,t2] 7 € {1,2}. Here we used Ry < 2R, a(a;)5(a;) <
a(a;)? + B(a;)?, and we estimated log <R°> < 15" Ry. Now use (7.60) with

ro =71 € [TR,R] and rg = ry := (1 + 27" !\)r at times a1, ay and combine
this with ([7.56]) to obtain

< Cory " 'RIQMA? (7.60)

r " /U 2 i, < gwq + Cpr QMR < g (7.61)
P /U 2 Abtay > %wq—C IQMR? > % (7.62)
r2"/UC327qdual < ;qurO 1+ 27N QMR Sg wn, (7.63)
r;”/UCfMd,an > %wq Co(1 4277\ 1 QM”? 2% Wy, (7.64)

where we used r > 7R and we had to choose hy small depending on Q, M, 7.
Note that ) depends on ¢ which is determined by A. Here we also used that
by @ a; and ay are contained in [t; + QR3, to — QR2], which is necessary
for @ Moreover we used %wn < wy < wy.

Next we want to apply Lemma in the smaller scale ry € {r,rs}. Our

assumptions (|7.46)) and ( 1mply

sptpy N Cry (0) C {z € U, |mpe(a)| < 77 g} CC U, (7.65)
7" (Co(0) < 77°M,  (7.66)

for all ¢ € [ay, ag] for ro € {r,r2}, where we used r > 7R and 1 < 1+2"""1\.
We want to apply Lemma with sy = ay, sy =ay, K =7"M,n=1"1h
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one time we will choose p = 7 and the second time p = r,. Statements ([7.65)
and @ imply and respectively. Estimates and ([7.62
yield (7.36) for p = r, as ¢! < % Similarly estimates and ([7.64
yield (7.36)) for p = ro. We have to choose hyg < 71 to use n = 7 'h as
height bound, where 7y depends on 7, M and g. Note that 7y is different
from the one above because of the larger choice of K. By we have
ag—a; >ty —1; —2(Q+2)R2 > (A —2(Q +2))R32, so for A > 2(Q + 3) the
time interval is large enough. Then by Lemma we obtain

< 7" 2QMA? (7.67)

T_n/ Cf,qdl’bs — Wy
U

7“2_”/ 632,qu5 —w,| < TT"TPQMM. (7.68)
U

for all s € [a;+QR3, aa—QR2]. Actually we would get different time intervals
but we coarsely estimated r and ry by Ry. Note that we applied Lemma
with the same ¢ as above, so @ is the same as before. By (7.67) we can now

estimate for r

r"us (Cr(0)) > r_”/ Qﬁqdus > w, — 17 " 2QMh?
U
>(1—q 27w, — 7" 2QMR* > (1 — Nw,

(7.69)

for all s € [a; + QR2,as — QRZ), where we used ¢ = 2"\~!, Lemma [7.2}4]
and h < hq for hg small depending on A\, 7,Q, M. Using (7.54) with ro = r
we have {(.,, = 1} D C,(0), as ro = (1 + 27" 'A\)r. Then by (7.68) we can

estimate

0 < (k2 [
U
< (14271 (wq + T*”*QQle) <1+ Nw,

(7.70)

for all s € [a; + QR3, az — QR], where we used w, < w, and h < hg for hg
small depending on A\, 7,Q), M.

Inequalities and then imply for all s € [a; + QR2, as —
QR2]. By we see that [a; + QR2,a — QR%] D [t; +2(Q + 1)R2, ¢, —
2(Q + 1)R2], so as Ry = (1 + AR, we can choose A > 2(Q + 1)(1 + \)? to
establish the result. Note that ) depends on ¢ which is determined by A. [J

In the above setting the bounds in ((7.48) remain valid for points y €
B A (yo) in slightly weaker form, which is shown in the next lemma.
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7.8 Lemma. For every A\ € (0, 1] there exists a Ay € (1,00) such that, for
every M € [1,00) there exists a m1 € (0,1) such that for all Ry € (0, 00),
n € [0,m], ti,ta € R with ty —t; > 2AR% the following holds: Let
(Ht)icpiy 1o be a Brakke flow in B(iiax,)r,(0) with

sptinn © { € Brivanma (0); o (@) < nRo } (7.71)
Ry" 1 (Basaar, (0)) < M (7.72)
for allt € [ty,ts] and
Ry i, (Batornre(0)) < (2= M)wn ,  Ry"ptr, (Bro(0)) > M. (7.73)
Set po :=27?Ry, then for all y € By, (0) x {0}" the estimates

. 3 . 1
po "t (Brasan=2xm(¥)) < 5wn s p0" 1 (Bpo(y)) 2 5en (7.74)

hold for allt € [t; + Ay R3, ty — A R2].

Proof. We want to apply Proposition with R = (1 + %) Ry. For given
A1 € (0,1] fix an arbitrary y € By, 5(0) x {0}*. As n <y for ny < 271Xy we

see by (7.71)
(spthe N C 2y, () C (5Pt 1 iy )R, (0)) CC Brusan o (0)

for all ¢ € [t1,t5]. Now estimate

A A A
(1+27"%)) (1 + Zl) <1+ Zl +27 N <14 31

Then for R := (1 + %) Ry we have
spt,ut N C(1+27n74>\1)R(y) CcC B(1+2/\1)R0 (O) (775)
for all t € [t1,t5]. In view of (7.75)) we can use ([7.73)) to estimate

-n A\ -n
Ry, (Caya-n-aa)r(y)) < (1 + Zl) Ry "1ty (Bi42a)Ro (0))

< (2= M)w, < (2-27"""2\))w,.

Also by ([7.73]) we have

)\ —n
B "y, (Cr(y)) > (1 ; j) By (Bia(0)) > 2" Ay > 2" Ao
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where we used R > Ry and \; < 1. This allows us to apply Proposition |7.7]
with U = B(isaa)r,(0), A :=27""%\;, h=n, R:= (1+2) Ry, 7 =  and
Yo = y. As R > Ry we have nR > nRy, so in view of ([7.75) assumption
implies ([7.46)). Proposition then yields a A depending on A; and a
ho depending on M and A; such that, if n; < hy we have

7" 11y (Br(y)) — wn| < 27" * A wn (7.76)

for all r € (273R,R) and all t € [t; + A;R?* ty — A;R?|. Here we chose
A1 > 4A. Note that then, as 2Ry > R

[t + AR* t, — AR?] D [ty + MRy, ta — A R3]

Now consider py = 272Ry. As R = (14 21)Ry and A € (0,1] we see
po € (273R, R). Using (7.76)) with r = py we obtain

—n —n— 1
Po "t (Bpo (y) 2 (1= 27" M)wn > Swn
for all t € [t; + AR? ty — AR?], where we used \; < 1. Also we have
<(A+27" 2 A)po < (1+27°M)Ry =R

as A\ <1, pp =2 2Ry and R = (1 + %)RO. Thus we can use (7.76)) with
r=(1+2"""2\)py to obtain

pan,ut (B(H-?*"*Q)\l)po (y))
= (14+27"20)" (L +27"2A)po) " b (Baasa-n—23)p0 (%))

3
<(T+2720)0+27" " Mw, < (14+27H)(1+ 2w, < SWn

for all t € [t; + AR?, ¢, — AR?], where we used \; < 1. This establishes the
result. O]
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8 Local Regularity

In this section we establish Theorem [8.4] which is our version of Brakke’s
local regularity theorem [Bl 6.10]. This result states that, if a Brakke flow
in a suitable region is contained in a narrow enough slab and its area ratios
are controlled by certain bounds, then in a smaller region it is actually a
smooth graphical mean curvature flow. All our later results like Theorem
or Theorem will use this fact in some way. The proof of Theorem
is based on an iteration argument stated in Lemma which is based on
[B, 6.9]. Note that the original proof in [Bl, 6.9] contains a serious gap in the
usage of the clearing out lemma in order to obtain a supremum bound on the
height. This gap we have fixed in section[5] We also give an alternative proof
replacing the height estimate from section [5] by Corollary [6.8] from section [6]
Besides this the overall strategy is very similar as in [B]. There also exists a
new proof of local regularity, using very different techniques, see [KT].

The key to proofing local regularity is the following iteration lemma. It
states that under certain conditions, if a Brakke flow in some region for a
large enough time is contained in a narrow slab with respect to R™ then we
can find a subspace T such that in a smaller region for a smaller time interval
the flow is in a more narrow slab with respect to 7.

8.1 Lemma (Iteration Lemma, [B, 6.9]). For every Ao € (0,27"7°] there
exists a Ny € (1,00) such that, for every e € (0,1] there exists a &y € (0,1)
such that, for every § € (0,6 there exists a ny € (0,1) such that, for all
Ry € (0,00) and 1 € [0,10] the following holds: Let (ti),e_n,r2 2,52 V€ @
Brakke flow in Bsg,(0) with

sptyi, C {x € Bong(0), |mar(2)] < 7730}, (8.1)
<

. I
RO Mt (B(1+)\0)Ro (0)) Wn RO He (BRO (0)) > 5(,«}” (82)

l\DIOJ

for all t € [=AgR%, AgR2]. Then there exist an n-dimensional subspace T C
R with |mp — mge| < 070, and a point z € {0} x R* with |z| < VEnR,
such that

sptie N Bigsr, (2) C {2 € R"™ |ng(z — 2)| < 68* “nRo} (8.3)
)

(0R0) ™" 1t (Barare)omo (2)) < Tvn (8.4)
3

(0Ro) " e (B1—2x0)m0(2)) = 7 (8.5)

for all t € [—Agd*R3, Agd* R3]
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Proof. For given Ry € (0,00) and Ag set

p=2""Ry,
To ‘= 2A05R()

For given t € [—AgR3, AgR?] set
2 ._ p-nt2 7 (0 (2
o= R [ (o) Pdu(e), (56)
CRry(0)

Bt = Ry" |7 — man| dpy (). (8.7)
CRy(0)

Note that «; is only defined for almost every ¢ € [—AgR2, AgR3].
By (8.1) and n < 19 we can choose 79 small enough depending on ¢ such
that

spt,ut N C(1+2_1)\0)T(0) C Spt,dt N B(1+)\0)r(0) (88)

for all r € [2710Ry, Ry] and all t € [-AgR2, AgR2]. Using (8.8) with r = Ry
combined with (8.1)) and (8.2) implies

e 3
Rov? [ o) dpa(z) < S (5.9
CR() (0)

for all t € [-AgR%, AgR2]. First we use the Proposition [7.7 to obtain bounds
on mean cruvature- and tilt-excess, as well as area ratios close to w,. In
particular this yields good Lipschitz approximations.

For r € (0, R) we want to use Proposition [7.7]with U = Bsp,(0), R = Ry,
1o =0, A=2" 1)\0, h = n,t = —A()R ty = A0R2 M = 3wn and 7 = 2_15R0.
In view of ({8.8] ., we see that ( and (| . verify (]E and .
Theorem [7.7] then yields a A dependmg on Ay and a hg depending on Ay and
0 such that

77" s (C1(0)) — wy | < 27 Agwn, (8.10)
S+R(2) 3
Ry? / (af 4+ B7) dt < §wn/\0n2 (8.11)
sz(QJ

for all r € (2719 Ry, Ro) and s € [—27 AgR%, 271 Ay R%]. Here we chose ng < hg
and Ag > 2A. Note that then h = n < hy and

[~AoR2 + AR, AgR: — AR3] D [-27'AgR3, 27 Ao RY).
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Now for some z € {0} x R* N B /g, (0) we can use (8.10) to obtain
density ratios like in (8.4) and (8.5)). As 0 < dy we have

[—AoS RS, Agd R3] C [—27 Ao RS, 27 Ao R} (8.12)

for dp < 272 Set 71 := (14 2Xg)0Ro and 7o := (1 — 3\)(1+ X\g) 'dRy. Using
(8.10) with r = r; we can estimate

(0Ro) ™" s (Basaroaro () < (14 2X0)"r1 s (Cr, ()

<
< (14 2X0)"(1 + Ao)wn,

for all z € {0}" x R¥ and all s € [-271AgR2, 271 AgR2]. Now as \g < 2772,
we can calculate (1 4 2Xg)"(1 + Ag) < 1+ 273X < 1+ 272, to see

5
(0Ro) ™" s (B(1+2,\0)5R0(33)) < haid (8.13)

for all z € {0}" x R* and all s € [-271AgR2,271AgR2]. Using (8.10]) with
r =79 and (8.8) with r = r, we can estimate

(0R0) ™" 1ts (B1-3x0)5r0(0)) = (1 = 3X0) ™™ (1 + Ao)"r5 " tts (B(1420)r2(0))

3
> 1y " s (Cm (0)) > (1= Xo)wn > an

for all s € [-27'AgR2,271AgR3], where we also used \g < 27'. Now as
n < ny we have VknRy < MgdRp for n small depending on \g and 6. Then

—n 1 3

(6R0) ™ ps (B(i—2x0)sre (7)) = (6R0) " tts (Bi—3r0)5R,(0)) > 7 (8.14)
for all x € B/, (0) and all s € [-27'AgRg, 27" Ao Ry

Consider p, for s € [-271AgR2, 27 AgR3]. We want to use Theorem
with R = 2p = £ and | = 1. Inequality (8.10) implies (2.16) and (2.17)
for R = 2p. In view of By4,(0) C Cg,(0) and definitions (8.6, (8.7) and
estimate (8.9), the estimates (2.18)), (2.19) and (2.20) hold for a = C,as,
8 = CpBs and v = Cy,n. Using n < ng we can also achieve C,n < vy for
no small enough. Then for every s € [-271AgR2, 27 Ay R2] Theorem [2.9| and

Remark yield the existence of a Lipschitz function f, : BY,(0) — R" and
Fy(g) = (9, fu())) such that

lip(fs) <1, sup|fs| <Ry (8.15)

and such that we can estimate

1 (Cop(0)\ Xo) + 27 (BL, (0)\ Y;) < Co"E,, (8.16)
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where for M; := graph(f;)

Y, :={§ € B3,(0): y:=F(§) € C2p(0) N U, O" (s, ) = 1,
T, M, and Ty, exist with T, M, = Tyus},  (8.17)
X, = {z € Coyl0) : 3G €Y & = (3 f(t.5))}

Here the error term E is given by

2n
Es = (a:*énzg + 62+ 772) : (8.18)

2n

Note that for oy < 1, we have a2 On>3 < ag. In order to obtain the height
bound in (8.15)), we had to cut-off the function f one would normally obtain
from Theorem 2.9 by setting

nRke if f(9) > nho
@)= f@) it [f(@)] <nho
—nRy if f(9) <nRy

for all § € B3,(0). This does not increase the Lipschitz constant and in view
of it does not change the sets Xg, Y;, so remains valid. To obtain
(8.16), we also used (8.1), in order to see that B, (0)x Bj,(0)Nsptyes C Co,(0).
The Lipschitz approximation will be used to write an integral over p4 as an
integral over R™. For s € [-271AgR2, 271 Ag R3], r < 2p and an L'-integrable
function
¢ : C.(0) N [sptus U graph(fs)] = R

we can use Remark [2.11] to estimate

| bladita) = [ olR(e)d2 @) < CuRfsuplol By (319)
Cr(0) B (0)

where sup |¢| is the essential supremum of |¢| over the set

C,(0) N [sptyes U graph(f;)] -

Here we used Remark [2.11| with ¢|C © and that by (8.1) we have B'(0) x

Bj,(0) Nsptyss = C(0) Nsptps. Also we used 16p = Ry.
For given € € (0,1], § € (0,00 and N € (1,00) consider the parameters

p:=o"R2,
qo ‘= 55R(2),
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where N will be chosen large depending on n, k. To define suitable T" and z,
we need to find a time so near —7Ad? R2 —qo, where the Lipschitz approxima-
tion is actually good. As d < 1 and for Ay > 8 we have gy = §°R2 < 273A\¢R2.
Let 8p < 273 then 7TA¢0?R2 < 273AgR2, so

—TA0’R2 — qo € [-272AgR2, 272 Ao RY). (8.20)
Then by inequality and 0 < 1 there exists
so € (—(TAo + 1)6R§ — qo, —TA0*Rg — qo) (8.21)
with
ol + B2 < Crhod 0. (8.22)
Statements (8.20), and § < 6y <273, Ay > 1 imply
[s0, A0’ R3] C [-27 Ao R3, 27 Ao RY), (8.23)

in particular a Lipschitz approximation exists for all ¢ € [sy, Agd>?R3]. By
(8.22) and n < 1y we have a,, < 1, for 1y small enough depending on § and
Ao, then

E,, <67, (8.24)

where we also used § < §y and chose §p small depending on Ay. Here Ej is
the error term defined in (8.18]). This lets us define 7" and z as follows: For
ie{l,....,n},7€{1,...,k} and g € R" set

e ov,
tj(9) = Zyﬂfij, tij = —/B fso ~eja—;(qo,x)d$ (2), (8.25)
i=1 i

7 (0)

ZnJrj = / fSO . ej\I/p(qo, i’)dgn(i') (826)
By (0)

Then set T := {Z + Z?Zl ti(z)entj, £ € R"}and 2z := (0, 2p41, - . -, Znyk). In
view of ([8.23) there exists a Lipschitz function f, : By (0) — R* satisfying

0

and . By choice of sy the error term E;, is small, which will let
us estimate [t;;] and |2,4].

To estimate the tilt of T'let i € {1,...,n},j € {1,...,k}. By Lemmal[d.9)
with measure £ and P, = 1, we can estimate using also

it < nRo / DV, (¢0,9)| -27(3)
B7(0)

<Cun (Ro/ o |DW(qo,9)| L () + 352610)
B1(0
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where we used 16p = Ry and p—2qy = C,,0¢ < C,,05 < k1 for § small enough
depending on €. Also we estimated ¢ < 1. As D% (qo,9) = (2¢0) 9% (g0, 9),
we can use Lemma [£.6] to estimate

_1 .
|ti;] < Cnn (QO *Ro + R52qo) < Cpo 2 (8.27)

for all i € {1,...,n},57 € {1,...,k}, where we used gy = §°R2 and J < 1.
To estimate the excess of T', we define a; = e; + Zle tijent; for 1 <i <n.
Then we have T = span(a;)i<;<, and our bound for the |t;;| yields |a; —e;| <
C,6~21n. Thus by Lemma . with B = R"” we obtain

|t — TRe| < 077, (8.28)

where we used ¢ < dy, so C,,6"2 < 6~ for §y small enough depending on .
To estimate |z| let j € {1,...,k}. As( < 1and [;, V(q,9)ZL"(y) =1,
we can estimate using ({8.15))

|2n4i] < nRo/ ( )‘I’(ng)gn@) < nRy
B2 (0

for all j € {1,...,k} and in view of Z = 0 this yields

2] < VEnR,. (8.29)

Thus (8.25]) and (8.26)) define T" and z that are close to R and 0 as supposed.
In particular we have z € {0}" x R¥ N B 4, » (0), so in view of the
estimates (8.13)) and (8.14) imply and .
The main part is now to show that 7" and z actually provide a smaller slab
containing the Brakke flow. We can either use the distance estimate from the
monotonicity section Corollary or the improving height estimate from the
clearing out section Lemma [5.12] which will both require to estimate pretty
similar integrals.
1. With Corollary [6.8}
Fix an arbitrary 7 € {1,...,k}. We want to use Corollary with v =
€ntj — Y ony tij€; and xg = yo = z. Thus

(@ = 2) -] = D(@) = |ens; — (&) — 2] (8.30)

for all z € R"** where we used 2 = 0. Note that by (8.27)), (8.29) and § < 1
we obtain that ® satisfies the height bound

|©(z)] < Cd~2nRy
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for all x € R" with |z, ,] < §73nRy, so by (8.1)) and (8.15)
| (x)] < Cub™2nRy (8.31)

for all x € sptu; U graph(f;) for all ¢t € [-27'AgR2,271AgR2]. In view of
(8.30), Corollary 6.8 with ¢ty = Agd?R2 and r = 19 = /2A¢0 Ry yields

S = sup sup P
[~ A062R2,A082R2] sptutNBigs gy (2)
Ao62R2

< Cprg™? / Oy, dt.
~TAo62R2 J By, (2)

(8.32)

where we used Ag > 27, so g > 160 R,.

Our aim is to show that S is smaller then '~ “nry. To estimate the right
hand side of , we want to bring in our Lipschitz approximations. This
is only useful for times s where the error term FE; can be estimated. We
obtain an L!-bound on E,, but only integrating over times where o < 1. In

view of (8.20)) we have
[—7A0*R3, Agd* R3] C [—27'AgR2, 27 Ao R2], (8.33)

as 0 <1 and ¢y > 0. Then we can use (8.11]) to obtain

Ao62R2
/ (a2 + 82) dt < CohorR2. (8.34)
—TA6%R2

Here we also used that 8AgdR2 < 2R2 as § < dy, for § small depending on
Ao. Set

I, = {t € [~TAe0*R2, Ag0*R2] : a; < 1}, (8.35)

2n

so for all ¢t € I, we can estimate a;' > < a?. This will allow us to bound FE;
for ¢t € I,. The Lipschitz approximations above live in the cylinder C5,(0),
so we want the balls By,,(2) to be contained in this cylinder. As p = 271Ry,
and § < §y, for &y small depending on Ay we have 8/nAydRy < 27 'p. Also
as |z| < VEnRg and n < ng, for 1y small depending on k, we have |z| < 27p.
Thus we conclude

Bury(2) C By ymigsr, (2) C Bo(0) C By (0), (8.36)

where we used that ro = v/2Aq0Ry. Here including the second ball looks a
bit out of place, but will be of use later. In view of (8.33) for all ¢t € I, a
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Lipschitz approximation f, : By,(0) — R” satisfying (8.15) and (8.16) exists.
By (8.36 - we can use these Llpschltz functions to descrlbe the integral on

the right hand side of . Also by (8.35] - we have at" " < a?fort e l,,
so the error term deﬁned in (8.18), can be estimate with inequality (8.34)),
which leads to

/ E; dt < C,Aon*R3. (8.37)
Ia

Note that by (8.35) and ro = v/2A¢d Ry we have
|I,| < 4rf = 8A&°R2 < RY, (8.38)

as 0 < 0g for 0y small depending on Ay. By (8.34) and definition of I, we
can estimate

=T B2, AP R\ L] < / o2dt < C it R2.
[—7A052R8,A052R3]\1—a

Combined with (8.31)) this yields

A052R2
7A052R Buy, (2) Io B47"o (839)

< CpAd 2R3 sup Lt (B4r0( )) < Cohogd 2P RIH3,
te[—TAo62RZ,A06% R2]

where we used (8.2) and (8.36)), to estimate the measure of the ball. In view
of (8.31), ® is bounded on both spty,; and graphf;. Then by (8.19) and
z =0, we obtain

// @dutdt—// §)dL(9) di
I J Cury Io J By, (0)

/ Cod inRIMIE, dt < CAgd~ 27> RT3

Io

(8.40)

where we used (8.37)) to estimate E;. Here we also used 4rq = 4v/2A00 Ry <
23Ry = 2p, as 0 < &y, for §y small depending on Ag. Inserting (8.39) and
(8.40)) into (8.32]), we conclude

S < Cprg™ 2/ / §)dL"(G) dt + > “nRy, (8.41)
Io
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where we used ® > 0, 1o = V2A¢dRy, € > 0, Ay > 1, n < ng and 7y small
depending on ¢ and Ag. For § € BJ}(0) set

(@) = 1) - ;.
Then by definition we have
S(F(9)) = [ (G) = 1;(7) — 2n]
and by the triangle inequality we can estimate for ¢ € I, and § € B}(0)
(Fy(5)) < O1(2,9) + Pa(t,7) + L3t ) + Pu(d), (8.42)

where the ®; are defined by

®i(t.3) = |£) - [ U =) (E) (8.43)
oY
Balt)i=| [ R0 - )AL (@)
Bo0) (8.44)
- RO = s i = L))
p\Y
@s(t.9) i ‘ [ R+t s0.i - a2 @)
Bo0) (8.45)
-/ a0 d )L
®i(3) = | [ a0 = L@ )~ (840

In view of , in order to establish S < §°7“nRy, we can estimate the
space-time integrals over these ®;.

In order to estimate @1, we want to use that for small parameter the heat
kernel converges to the Dirac delta function, as we showed in Proposition

. In view of , we can use Lemma with g = ftj, r = p and

P = 3 to obtain

/ By (t, §)dL"(7)

B0 | (8.47)

< Cpt / | [DE@IL" @)+ (70 i
B, (0
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for all t € I,,, where we used that by p = 6N R% = 286N p? we can estimate
pip < 2860, so for ¢y small we have p~ 2p < k. Also we used - ) to
estimate sup | ft | <nRy. By (8.15) - we also have lipf; < 1, so by Proposition
[A.T2/[1l we can estimate

|Dfi‘7(:i')| < Cn|7TTFt(i)Mt - 7TR”|

for all € B3,(0), where M; = graphf;. So with (8.16) we can estimate

| Ipfi@ee <, 7y s — T [ d27(&) + CuEL RS,
5,(0)

B3, (0)NY:

Then by the definition of Y; in (8.17) and as JF > 1, we have
| Ipsi@lazi@ <c, / 712 = Tioldpe(z) + G By,
gp(o) ﬂXt
Thus Holder’s inequality and the definition of g, in ({8.7)) yield

/ DF(#)dL" () < CoBiRY + CoELRY,
5,(0)
where we used 16p = Ry. Inserting this into (8.47) we obtain
[ ®0.0a270) < CpbGo+ BORG+CopnBs ™ (349
»(0)

for all t € I,,. Then integrating in time yields

/ / By (t, )AL (§)dt < Coph | (B + EAERE + Copn| L RL,
Io J B2 (0

Io

where we used 16p = Ry. Use again Holder’s inequality combined with (8.34)),

(8.37) and ({8.38]) to estimate

// 9L (3)dt
I J B

<(an%( |1, ﬂfdt+/ Etdt> R”+(an Nl Ry~ 5
I Ia

1

P2 77+77 Rn+2_+_cvnann 3<6v/Xon-|-2p77
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where we used p = 6V R2 < R2 as § < 1. Now use that p: = 5% Ry < 6"OR,
for N > 2n + 12. Then we conclude
or) ™ [ [ apdzn @i < R (349)
Ia /B (0)

where we choose 0 small depending on Ay.
For ®, we can use the relation between Brakke flow and convolution of
the height function of our family of varifolds with the heat kernel. In view

of (8.21)), p= "R, qo = 0°R2, § < 0y and 16p = Ry, we can estimate

p+t—so<p+got+ (8Ag+ 1)02R; < Cn(6™ + Ad*) RS + qo (8.50)
< 2qy = 20°R; = 2°55p° '

for all t € (—o0, Agd*>R2], for § small enough depending on € and Ag. Note

that by (8.21]) and (8.35]), estimate (8.50)) holds for t = sy and all t € I,,. By

definition of the heat kernel (see Definition we can estimate
W,(p+ s —s0,2)| < Cop™2 (8.51)
for all 2 € R™ and all s € [sg,00). Then by (8.19) we can estimate

[ sl + s = 0.8~ o)
Co(y)

- / U2V, (p+ 5 — 50,8 — §)dL™(2) (8.52)
Bp(4)

S Cnnp_%Rg—’—lEs S Onn(s_%NROES S ESRO

for all s € [sp,00) and all y € C7(0), where we used (8.1)), and
to estimate the sup in . Also we used p = 6V RZ and n < 1 for 1y small
depending on 0. By and (8.35), we have ¢ € [sg,00) for all ¢ € I,. In
view of we then can estimate using for s =t and s = s

(I)Q(tv @) <

/ Ty ()0, (0,3 — §)dpun()
Bsp, (0)

. . ) 8.53
- / Tppi (T)W,(p + 1 — S0, T — §)dpis, () (8.53)
BSRQ(O)

+ (B + Eq) Ry

for all t € I, and § € B}(0). Here we used that by (8.1), 16p = Ry and n < 1
we have

C,o(y) NsptW,(p, - — 9) Nsptuy = Bsg,(0) NsptW,(p,- — §) Nsptuy  (8.54)
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for all y € R"* and all t € [~AgR2, A\gR3]. Integrating over ¢, the
difference on the right hand side can be estimated using Lemma [4.18| with
V := B3g,(0),y=16n Py = ¢ (n+5), r = p, to = sp and ¢ = t — s9. Doing
so we obtain

[, w0 w

t
< Conp| v 'R / Bads 4 (072t = 50) "9 [ e (Can(0) ds
S0
8.55
+ sup K ‘/ o0, =7 )dut(ﬂf)—l‘ (8:55)
yeBR(0 B3 g, (0
+ sup p" / U,(p+1t—s0,2—9)dps,(x )—1‘
veBp(©0) | JByg,(0)
+ Cn(Ey + Eq )Ry H!

for all t € I,, where we used the definition of 3, in (8.7) and 2p < Ry to
estimate the tilt term. Also we used that by (8.50) we have p +¢ — sy <
Cn6¢ < kop? for §y small depending on € and k. Note that by 16p = Ry

and by choosing v = 16n assumption (8.1]) implies (4.28 By - we have
so € [-27'AgR2, 27 AgR%]. For t € I, we see by (8.21] - and gy = 0°R3
that t € [so, so + R2] for § small depending on Ag. Thus we can use (8.11) to
estimate

t
leS/ B2ds < C,Aop 'n* R0 < "R, (8.56)
S0

for all t € I,,, where we used p = 6V R3 and n < 1y and we chose 7y small
depending on §, Ag and N. In view of (8.8)), (8.2) and 16p = R, we can
estimate yi5 (C2,(0)) < C,Rj. Combining this with (8.50) we obtain

t
) nts _o9
+t—s c / s (Ca,(0)) ds
(p(p 0)) < p X (C4,(0)) (857)
< Colp2(p+t—s0)) T LRI < Co6™RY

for all t € I,, where we used 16p = Ry and d,¢ < 1. By (8.19) we can
estimate

/ U,(p+t—s,2—7)dus(z) —1
Co(y)

<\ Wptt-si-)d2n@) -1+ Co R,
B1(9)

P
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for all s € [-27'AgR%,27'AgR2], t € [s,00) and y € C7(0), where we used

(8.51) to estimate the sup in (8.19). By Proposition with P = e H(n+
5) and Zo = ¢ this can be estimated by

/ Wp(p+t_57£_g)dﬂs_1‘
Cpy)

s —5 PN n+5 -1
<(pHp+t—s)) ° +Cuwp 2REE, < Cpd™ + 7' E,

for all t € [so, AodR3], s € {t,s0} and all y € C7(0). Here we used that
p+t—s < 009 < kp? for §y small enough depending on e and x,
which follows by for s = sp and by p = 6V RZ for s = t. Also we
used p = 6V R% and n < 1y for 1y small depending on ¢ and N to estimate
C,p~2 R} < n~'. In particular for all t € I, we have

‘ / oD+t — 50,2 —Y)dps, — 1‘ < C"PP T By, (8.58)
B3R0

‘ / (0, & — 9)dp; — 1‘ < Cu6"P TR, (8.59)
B3R0

for all § € B}(0), where we used that by (8.21) and (8.35) we have I, C
[s0, Aod? RZ] and that by (8.54) integrating thls functlon over Bsg,(0) is the
same as integrating over C (( ,0)). Inserting (8.56)), (8.57)), (8.58]) and (8.59)

into (8.55)) we obtain

/ Oy(t,y)dL"(y) < Cound" PRy + Co(Ey + Eq ) RYT (8.60)
B7(0)

for all t € I,, where we used 16p = Ry. The error term Ej, is small due to
(8.24) and integrating in time we can use (8.37)) to estimate E;, thus we have

/ / o(t, 9)dL" (y)dt < C, RO (n5"+5R§ + / E,dt + E50R3>
I ” 1o
< CuRE (0™ + Aon® +07°n%)

where we used |I,] < R2 by (8.38)). Then as n < 1y for 7y small depending
on 0 and Ay, we can conclude

(6Re) "2 / / )42 (y)dt < Cd*nRo. (8.61)

For ®3 we want to use Lemma [£.7] To do so, we have to get rid of the
cut-off part of our heat kernel. First, in view of (8.45)), we can use (8.15)) to
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estimate
Ds(t, ) < nRo/ (Wp(p+t— 50,2 —9) — Vplqo, & — §)[dL" (&) (8.62)
7(0)

for all t € I, and all §y € B7(0). Proposition 4.10] “I 3| with P = 3¢~ and &y = 3
yields

/ o Wad =) = Uyfa.d = )AL @) < (7)< O
B7(0

for all ¢ € (0,2¢o] and all § € B}(0), where we used o = 6°Rg < C,,0°p?, s0
as 0 < & we have p~2¢ < k for § small enough depending on x and e. By
(8.50) we have p +t — sp < 2qo, thus (8.62)) becomes

Balt,) < nfo [ W(pt = s d ) - Vand - )| L7
B(0)
+ Cn(5377R0
forallt € I, and all y € B}(0). Now we can use Lemmawith q = p+t—so.
Note that by (8.21) and - we can estimate p +t — so > qo for every
t e 1l,. Then Wlth Lemma we obtain
D3(t,79) < (log (1 +q Yp+t—s9— qo)) + Cn53) nRo
< (a0 '(p+1t—s50—qo) + Cud®) nRy

for all t € I, and all § € B}(0). Now use (8.21) and (8.35)), to estimate
p+t—s0—qo < C,Agd*R3 for all t € I,. Then as gy = 6°R3, we arrive at

(I)g(t, ;Q) S CnA052_ET]R0
for all t € I, and all § € B}(0). By (8.38) we have |I,| < 4§, thus we
conclude

o™ 2/ / §)dL™ () dt < Cphod*“nRy. (8.63)
IC’ 47‘0

Here we also used (8.36)) to see that By, (0) C B}(0).

For &, we can use that s, becomes flat by convolution with the heat
kernel with high parameter. By definition of ¢; and z,.; (see and
(8.26))) we have

K (8.64)
= / o 2 (Vy(qo, 2 —9) — V(g0 2) + 7 - DV ,(qo,2)) dL" ()
w9

p
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for all § € B}(0). Due to Taylor’s expansion theorem the last integrand can
be estimated in terms of the second derivative

|\pr(q0,:% —9) — \I/p(qo,:i“) +y- D\I’p(qo,zf:)|
1 n A\
< 1 - 1, -
<| [a-0 X aiggms—om) | a

2,7=1

1
<1il? [ D"yl 03)]| 0.
0
Then in view of (8.46) we can use (8.64]) and (8.15) to estimate
1
Bulang) <nBali [ [P (a0 - 00) d802"@) (5.9
7(9) J0

for all § € B}(0). In order to estimate the second derivatives, we first get
rid of the cut-off part of our heat kernel. Use Lemma with = £"™ and
P, = 1 to obtain

/ D2, (qo, & — )| L")

]Rn

S/ | D*W(qo, & — )| dL" (&) 4+ Crgop™*
By (20)

for all £; € R®. Here we used that by ¢y = 285p% and § < §y we can
estimate p~2qy < k1, for & small enough depending on € and ;. Also we
used sptW,(qo, - — %o) C B}(%p). Then we can differentiate the heat kernel
and use Lemma [4.6] to estimate

/ |D*W,(qo, & — &o)| dL"(2)

R?’L

< / ((4g0)21 — 3o + @3") (o, & — 50)d.L™(2) + Cogop™
B"(io)

< Cugy' + Cugop™ < Cud Ry

for all 25 € R", where we used gy = 0°R3 and § < 1. Inserting this into (8.65))
with 2y = 0y we obtain

C4(q0,9) < ConRy G170 (8.66)

for all y € B}(0). For g € B, (0) we have [g]* < C,Ao6*RG, as o =
V2AgdRy. Then we can conclude

" 2/ / (40, )AL () dt < Crhod> Ry, (8.67)
Ia 4r0
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Here we used (8.36)) to see that Bj, (0) C B}(0) and also we used that by
(8-38) we have |I,,| < 4rZ.

In view of (8.42)) we can insert ({8.49),(8.61)), (8.63))and (8.67)) into (8.41])

to obtain

S S CnA052_677R0 )

where we used Ag > 1 and B}, (0) C B}(0), by (8.36). By (8.30) and (8.32)

this yields

S 2—e
sup sup |Tnt; — t5(2) — 2nts] < Crhod™ “NRo
[—A062RZ,A062 RE] x€sptitNBissr, (2)

for every 1 < j < k. Note that by definition of T' (see (8.25])), we have

k
x — (u? + Z tj(zf))en+j> |
j=1

for all z € R™™. Thus we can can estimate for all € spty; N Bigsg,(2) and
all t € [—AoézR(Q), A0(52R(2)]

(e —2)| < o -z - <£+th(j)en+j>

=D (@t — (&) = 2ntj) €ns

j=1

L . .
T = inf = inf
Iz ()] veT [z =l HeRn

< CnAod®*“nRy,

where we used Z = 0. As 0 < §g and 9y small depending on € and Ay we
conclude

[n7(z — 2)| < 68*7*nRy,

for all & € spty; N Bigsr,(2) and all t € [—Agd*RZ, Agd?R3]. This establishes
with € replaced by 2¢, which completes the result. Next we give an
alternative method how to establish , which is closer to Brakke’s original
work.

2. With Lemma [5.14
In this case we need the extra assumption that u, is a Brakke flow in
Bsep-11,(0). Also has to be changed to

sptu: N Csp, (0) C {z € Cs3r,(0), |mrr(x)] < nRo} (8.68)

120



for all t € [—AgR2, AgR?]. Note that these assumptions are only stronger and
all the previous statements remain true. It turns out that we have to choose
T and z a bit different, depending on a time t; defined below:

Let dp < 272, then 462 R3 < 272Ry, so —4A¢0%R2 € [—272AgR3, 272 A R3].
Then by inequality and § < 1 there exists t; € [-5Agd*R3, =36 R3]
with

of + B < Culod 0. (8.69)

For § < 8y <272 wehavet; € [-271AgR3, 27 AgR?], in particular a Lipschitz
approximation exists at time t1. By (8.69) we have oy, <1, as n < nq for n
small depending on 6 and Ag. Thus

E,, <63 (8.70)

where we also used § < §y and chose dy small depending on Ay. Here Ej is
the error term defined in (8.18)).
This lets us define T" and z as follows: Set

(j::p—i—tl—So.

For j € {1,...,k} and g € R" set

_ o ov

tg = Qlt’L) tl:—/ fs - €5 p(j,i’ dgn.ff, 8.71

D=Ll == [ h e @ae @, )

vy i= [ feUy(q 00 L7(@), (5.72)
B7(0)

Then set T = {% + Z?Zl tj(z)enrj, T € R} and 2z := (0, Zps1, - - -, Zntk)-
Note that by (8.21]), p = 0V R2, qo = 6°R2 and 6 < §y for § small depending
on Ay we have

g < (6™ + (400 + 1)0*)R3 + g0 < 2q0

G > (6" +2M0) RS + 0 > qo,
so basically all estimates above hold with gy replaced by ¢, except some used
to estimate ®3. In particular (8.27)), (8.28]), (8.29) and (8.36]) still hold for T°

and z replaced by T and Z.
To use Lemmal5.14] we need to verify a height bound in the tilted cylinder

c@mmo(z) = {z e R |mp(z — 2)| < V/32nAodRo}. (8.73)
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For z € R"t* we can estimate

2| = |z — mge(2)| = |2 — 2 — TR (z — 2))
= |rp(x — 2) +7T%(x —z) — mpe(T — 2)|

< |77 — mre| |z — 2] + |7p(z — 2)|
thus in view of Remark we can use and to obtain
2| < 6 nlz| + CodN*Ro + |mp(z — 2)|.
In particular this yields
Cl sy (2) N Biey-17,(0) C Cagy (2),

where we estimated 1 + C,0n? + v/32n/Ayd < 2, by § < &, n < 1 and for
0o small depending on Ay, as well as 7, small depending on § and e. Then

(8:68) yields
sPbite N Oy exosig (2) € {2 € Cspy(0), |mpe(x — 2)| < nRo} (8.74)
for all t € [~AgR2, AgR2]. By Remark [A.7]3 we have
77 ()] < 2|me (17 (y))]
for all y € R™* where we used |3 — mge| = |7p — mpa| < 6 < 271, due
to (8.28]) and as n < 7 for 7y small depending on ¢ and e. Then estimate for

y € RnJrk

177 ()| < 2|mge (77 (y))| = 2|7ge (y) — Tge (75(y))]
= 2|mge (y) — 77(y) + mre (77 (y))|
< 2 (|mpe(y)] + |77 — | |77 (y)]) -

In particular for x € C\T/mé RO(Z) and in view of (8.28)) this yields

77 (z — 2)| < 2)mpe(z — 2)| + 267 n\/32nAg6 Ry < 2|mge (2 — 2)| + nRy,

where we used § < ¢y and Jy small depending on € and Ay. Thus (8.74)

implies
sptie N Clagisn (2) € {z € O3y (0), | (z — 2)| < 3nRe}  (8.75)
for all t € [-AgR2, Ao R2].
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To use Lemma we need a suitable orthonormal basis (v;)1<j<x of
T+, Set

Nj =€n4y — Z fijei, (876)
i=1

j €{1,...,k}, these N; form a basis of T+ and will be later used to calculate.
By we have |N; —e,q;| < d “npforall j € {1,...,k}, as § < g for dy
small depending on e. Then by Lemma with B = R™ there exists an
orthonormal basis (v;)1<j<x of T+ such that

max{|N; — eni;l, [Vj — ensjl, [v; — Nj|} < Cud ™ (8.77)
for all j € {1,...,k}. We want to use Lemma, with 7 = 6172y, h = 3n,

to = —Agd%*R2 and R = ry = /2A0Ry. Fix a j € {1,...,k}. In order to
verify (5.43)), we have to show that

S = (6Ry)™" —M} e, (8.78)
-

_ ‘Vj ’ (.Z' - §)| %€
Cammo(z){ 20% Ry

is smaller than cod*~%n Ry for some ¢y € (0, 1), where we used Ag > 1.
In view of (8.75)) and ({8.36]), we see that

spti N Clagesn (2) C 5Pty N By jixssny (0) € Co(0). (8.79)

For the first inclusion of (8.79) we estimated for = € spty; N C\T;mé (%)

12| < |2 — 2| + CunRo < |mp(z — 2)| + |77 (x — 2)| + CunRyo
</ 32”A0(SRO + Cn?]RO < 8\/ nAo(SRo,

where we used (8.75)) and |z| < C,nRy by (8.29). Also we used Ay > 1 and
n < no for ny small depending on §. The second inclusion of (8.79)) then
follows from (8.36]).

For = € spty, ﬂC\T/méR (2) and j € {1,...,k} in view of the definition

of N; in (8.76)), we can use (8.77)) and (8.75)), to estimate
v (& = 2) = (@ngs — 5(2) = Zogg)| = v - (2 — 2) = N - (2 — 2)|
S |Vj — NJ‘ ‘7’(’%(% — 2)‘ S Cn5767]2R0.
Also by (8.28)),(8.79) and mg~(z) = 0, we have
|7z (= 2)[* = 2]
= (|7 (z = 2)| + |7gn (z = 2)|) (I7p (2 — 2)| — |7Rn (2 — 2)])]
< 2|mp — el |z — 2|* < CuAo6* NRE,
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thus we have
{lv;- (= 2)| =6 nlmp(z — 2)|" Ry},

_ . . (8.80)
< {’xn-H' — (%) — Zpyy| =0~ ? n|z| Rol}Jr + Crd 77230,

32nAo0
for ¢ small depending on ¢ and Ap.

Similar to (8.30)) set this time
O(x) = |Tnss — (%) — Znsgl -

As and (| - hold for ¢;; and Zntj replaced by ¢;; and Z,4;, we have
that 1) holds for ® replaced by ®. By (8.80) and (8.79), the S from

(8.78]) can be estimated by

_ _ 212
S < (6Ro)™ / {@(m) - } dp ()
Bsm(mo(o) 0J + (881)

+ On5_6772R0.

or all x € sptus, N z)and all j € {1,...,k}, where we used 0 < 0y,
for all L C’\/i d all k h d o <9

As we have a Lipschitz approximation at time t;, we can use (8.19)), to write
this as an integral over R™. To do so, we have to bound the integrand. By
(18.31) we obtain

12
B(z) — ngLz < C, (657 + Mod>>n) Ry < CodnRy

for all x € sptuy, N By, /mxgs RO(O) where we used § < 0y for dp small depending
on Ay and e. Then combining (8.19) with - 3.81)) yields

~12

Q -n T ~ ny n (-

5 < (R B(E0) - gt b 270
B sy © o),

+C, (5677(530)_”,0”&1 + A05_€772) Ry,
where we estimated 8v/nAgdRy < 274 Ry = p, as 6 < &y for &y small depending
on Ag. Now by (8.70)), (8.79), n < 1o and 1y small depending on ¢ we obtain

~12

5<om) | {¢<Ft1<:a>>— ulll } L)+ Cuhod 1R, (8.82)
n(0) 20 RO n

Like in (8.42)) we can use the triangle inequality to estimate

(1, (9) - il < By (t, §) + Polty, §) + 4 Bali)) — n|gl”
: 2% Ry [, = : , 5 F )
(8.83)
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for all § € BJ(0). Here ®y(t,9), Pa(t1,9) are defined as in (8.43), (8.44),
where now we only look at the fixed time #4, i.e.

O(t1,9) = | f(9) - ()ffl‘l’p(p,i—ﬁ)df”(:f:) (8.84)
By(y
Dy(t1,9) := F @)Y, (p, & — §)dL" (&)
By (
? (8.85)
/ @) (p -t — 50,3 — §)AL™(@)(x)].
B,(
The quantity ®, is defined by
Bi5) = || R E AL B 65
By(y

To see (8.83]) we used § = p+t;—so. Note that as t; € [-5Ag6? RZ, —3A6* RZ]
and by (8.69)) we have ¢, € I, defined in (8.35). Thus by (8.48])

/ By (t1, )AL (G)dt < Cop? (B + Eny)RE + CopPy BRI,
7(0)

Then we can use - and - to estimate
/ Oy (t,9)dL" (y)dt < C’np%(Aod_ln + (5_3172)1%3 + Cnp377R8+5
7(0)

< Cop? Ao PRI < Chod > PnRIH,

where we used p = §V R?) and 0 < 1. Then as § < g for g small depending
on Ag and for N > 2n + 18, we conclude

/ By (b, §)d.L™ () dt < 6™ nRIH. (8.87)
B (0)

Also we have by (§8.60))

/ By(t1,y)dL" (y) < Cons™ R 1 Co(Byy + o) BRI
B7(0)

so with (8.70) and (8.24)) we obtain

/ Do(t1,y)d L™ (y) < Cn (6" +67n) nRYT < C"PnRy™, (8.88)
n(0)

p

125



where we used 1 < 79 for 79 small depending on 9.

By definitions (8.71)) and ({8.72)), we have

Ba(j) = /B P =)~ 14(0) ~ 2sd 2
(U
= / » 2 (UG, & =) = V,(q,2) + G- DV,(q, 7)) dL" ().
B1(j

Similar calculations as those which led to (8.66) will yield
®4(9) < CnRg |96~

for all § € BJ(0). Here we used q € [qo, 20, S0 = C,0°R3. Thus we see

12
= . my
{@4<y>—25'2€'R} =0 (8.89)
+

for all § € B}(0), where we used § < §y for dp small depending on e. In view

of (8.83]), we can insert (8.87)),(8.88) and (8.89)) into (8.82)), to obtain
S < C,8°nRy. (8.90)

Now we can use Lemma with 7= §'72n, h = 3n, to = —Ng0*R%, yo = 2

and R = v/2A¢0Ry. By (8.29) we have |Z| < C,nRy, 50 Bgee(sy)-1r,(2) CC
Bgzey-15,(0), as 6 < 1, n < no and 7y small. Inclusion (8.75) directly es-

tablishes (5.42)). In view of (8.78), inequality (8.90)) implies (5.43)). Then
Lemma yields

sptie N B axssr, (2) C {z € R™™ |1 (z — 2)| < Con/Aod” > nRo}.

For Ag > 27, we see B jaro5r,(2) D Biesr,(2). Also as § < dy for d small
depending on Ay, we can estimate C,,v/Agd?> 2nRy < 6 3nry. So we estab-
lished the result with € replaced by 3e.

Note that because of the different assumption (8.68)) we actually have

spti N ClT_S(;RO (2) = sptuy N Biesr, (2) (8.91)

thus we can exchange the set Bigsr,(Z) in (8.3) by CﬂaRO(E). This is very
important, if one wants to iterate this version of the Lemma, because this
now implies the different condition (8.68) for the next step. To see inclusion

([8.93)) consider = € sptuy N Clisp, (2). As v/nAg > 1, we can use (8.75)), to
calculate

lv — 2| = |mp(x — 2) + 75 (z — 2)| < 156Ry + 3nRy < 160 Ry,

where we used n < 1, for 7y < 3716. O
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8.2 Remark. Brakke claims the unit density hypothesis is needed to obtain
the above result. He says it is crucial to estimate the difference between f;
and the convolution f; *¢. In our proof this is done in the calculation for
®4(t,y). However, we do not appear to need the unit density hypothesis for
our proof.

To iterate Lemma 8.1 properly one wants the centre points to have a fixed
projection onto R"™. The form in which Lemma [8.1]is used is the following:

8.3 Lemma. For every \g € (0,27"7°] there exists a Ay € (1,00) such
that, for every a € (0,1) there exists a By € (0,1) such that, for every
B € (0, o] there exists a vy € (0,1) such that, for all p € (0,00), ty € R,
o € R", v € [0,7)] and every open subset U C R™* the following holds:
Let (1) ety nop2 o4 agp2) V€ @ Brakke flow in U. Let A be an n-dimensional
subspace of R™™ with |1y — mra| < 5. Let a € {go} x RF with Bs,(a) C U.
Suppose

D 1 Copla) © { € Byyla), Ikl —a)l <o}, (892)
. 3 . 1
P e (Bannp(@) < Gwn s p7 "t (By(a)) = Swn (8.93)

for all t € [ty — Aop?, to + Aop?]. Then there exist an n-dimensional subspace
A* of RMF with |mg — max| < 0“1y and a point a* € {go} x R¥ with |a*—a| <
3vVEyRy such that

sptpe 1 Cigy(a”) C { € Bysy(a”), [mhe(x — a?)| <7870}, (8.94)

-n * 3 -n * 1
(B) "1 (Bnoso(a®)) < s (80) " (Boyla*)) 2 g (895)
for all t € [to — NoB2p?, to + Mo %%

Note that the cylinders in (8.92)) and (8.94])are ordinary cylinders with re-
spect to R™, whereas the height bounds are with respect to the n-dimensional
subspaces A and A*.

Proof. Fix arotation S € SO(n+k) with S(R") = A, S(R*) = A*+. Consider
the Brakke flow (fit),c(_,2.a0p2 1 Bsp(0) defined by

[it(B) = pir+1,(S(B) + a) L Bs,(0),

for all B c R"** where S(B) +a = {S(b) + a,b € B}. Here we used
Bs,(a) C U, to see that S(U + a) D Bs,(0). This is necessary for (fi;) to be
a Brakke flow in Bs,(0). Then (fi;) satisfies

sptily N By(0) C {x € Bs,(0), [mae ()] < o}, (8.96)
o 3 L 1
" (Baiage(0)) < Swn s p7 i (B,(0)) = Sen (8.97)
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for all t € [—Agp?, Aop?]. Note that we used B;,(0) C C3,(0). Thus we can
use Lemma B.I]with e =1 —«, 6 = 8, 79 = 7, 7 = 7 and Ry = p. Lemma
- 1| then yields an n-dimensional subspace T' with |7g. — 77| < 4y and a
point z € {0}" with |z| < Vkvp such that

Dt 1 Buagy(2) C {2 € Buagy (=), (e — 2) < 345}, (8.98)
) 3
(Bp) ™" fir (Bararp)sp(2)) < 29 (Bp) " fir (B1—2x0)5p(2)) = 1%n (8.99)

for all t € [—AoB%p?, AoB%p?]. Now set A* := S(T), then by Remark [A.8|

‘7‘[‘A — Ta*| = ‘71'571(14) - stl(A*)‘ = |7T]Rn —7TT| S 5(1_1’)/.

Set b = S(2)+a, then |b—a| = |S(2)| < VEkvyp. Statements (8.98) and (8.99)
imply for (p)

sptie N Bigsp(b) C {& € Bigg,p(), |my(z —b)] <6 yp}, (8.100)

5 T 3
(Bp) " 11t (Basarosp(b)) < —wn ,  (Bp) " (Ba—2ag)sp(b)) = =wn (8.101)
for all t € [to - 2/\062,02, to + 2A062p2].

4 4
Note that b may not be in {§} x R¥, but shifting b a bit yields a suitable
a* as we will see below. We can estimate

[T — x| < |Tmn — Ta| + g —7pae| <2724 % 1y <271 (8.102)

as v < 7 for 7p small depending on « and 5. Thus using Proposition [A.9
there exists a unique intersection point in {§} x R¥ N A* + b, so we can define
a* by

{a*} = {§} x R* N A" +b.

Combining |a — b| < Vkyp and 7mgn(a) = 7 (a*) = ¢ with a* € A* + b and
(8.102)), we can estimate

|a* — b] = |mgr (@* — b) + 7Rn (a* — 1)
< |(mrr = m4-) (@ = )| + |mRn (@ — b))
*—b
< % + \/E”YP-
So we have |a* — b| < 2v/kvp, which yields |a* —a| < |b—a| + 2Vkvyp <
3vEyp. Also we see |a* —b] < XofBp, as v < 7 for vy small depending on \g

and £, thus (8.101)) implies (8.95)).
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Now it remains to show that the height bound (8.100]) actually holds for
the cylinder. Let = € sptu, N Csp,(a*), by |a* —al < 3V Ekvyp we can estimate

|z —a*| < |z —al + |a—a*| < |7alz — )| + |7y (z — a) + 3VEkvp.
Use and Remark to obtain
o — 0] < 5 s (mar — )| + 0+ 3V
Using a = y and again yields
o 0] < 5 Imen (@ — )] + 5 [man k(@ — @) + (14 3vE)yp
< %IA — 9+ 29p+ (14 3Vk)yp,
so as x € Csp,(a*) we can conclude
|z — a*| < 48p + 3+ 3Vk)vp < 58p
where we used v < 7, for 7y small depending on 5. Thus we showed

sptite M 03,6’,0(@*) C BSﬁp(a*) C Blﬁﬁp(a*)v

so (8.100)) implies (8.94)), which completes the statement. Actually we never
make full use of the factor 16 in (8.100]) and could change it to a factor 5 in
Lemma O

For a point § € R” Lemma [8.3| can now be used to obtain a sequence of
points in {§} x R* and subspaces of R"** which converge to a point in sptyu;
and its tangent space. This will define a function f with graph(f) = sptuy,
and by the type of convergence we obtain C''®-regularity for f.

8.4 Theorem (Local Regularity Theorem,[B, 6.10]). For every A € (0,1]
and o € (0,1) there ezists a A € (1,00) such that for every K € [1,00) there
exists a hy € (0,1) such that for all R € (0,00), h € [0, hg], t1,ts € R"*
with ty — t; > 2AR? the following holds: Let (Nt)te[tl,m] be a Brakke flow in
B(1+2)\)R(O) with

Sptis C {x € Barayr(0), |mae(z)] < hR} , (8.103)
R_”,ut (B(H_g)\)R(O)) S K (8104)
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for allt € [ty,ts] and
R, (Basoyr(0) < (2= Nw, R pe, (Br(0)) = Aw,,. (8.105)

Then there exists a smooth function f: [ty + AR? t; — AR?] x BY,(0) — R*
such that for My = graph(f(t,-)) we have

(spte N Crgr(0)) = M,. (8.106)

Furthermore the estimates
F(t2) = fs.9) < A (R0l = |5 + 15— g1) (8.107)
|mran, — 71,00, | < ARR™® <|t —s|F +)i- g|a) (8.108)

hold for all t,s € [t; + AR?* ty — AR?| and all 2,9 € B}x(0), where x =
(@, f(t,2), y = (@, f(t.9).

8.5 Remark. Here we will only prove the C'®- regularity. For the higher
regularity we refer to [T] and [LSU]J.

Proof. We want to apply Lemma (8.3 By assumption we have a height bound
and by Lemmal7.§ we obtain area ratio bounds as well. For given R € (0, c0)
set py := 272R. Using Lemma [7.§ withn =h, \y =\, M = K and Ry = R
yields

. 3 . 1
Po" e (Brrsan=2x)0 (y)) < 50 90" e (Bpo(y)) = S (8.109)

for all y € By, (0) x {0}* for all ¢ € [t; + 27'AR? t, — 27'AR?]. Here we
had to chose hg < n; and A > 2A;. Note that then

[ty + ARty — AyR?) D [ty + 27 AR 1y — 27 AR?).

Now temporarily fix yo € Byz(0) x {0} and ¢y € [t; + AR? t, — AR?).
For given Ag € (1,00) we can choose A > 2A, and obtain from ({8.109)

. 3 » 1
Po " 11t (Basa-n-sx)p0(0)) < oWn s P He (Byy (40)) = Swn (8.110)

for all ¢ € [to — AopZ, to + Aopi]. Here we calculated as py < R
to + Aopg S tQ — AR2 + A0R2 S tg — 2_1AR2
t() - Aopg Z tl + AR2 — A0R2 Z tl + 2_1AR2.
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Consider « € (0,1) and Ag € (1,00), where Ag may depend on A and «. Let
d € (0,1) be a variable we will choose later depending on « and Aj. Note
that our choice of A will depend on §. Let m € Ny = NU {0} then set

Pm ‘= (5m/)07 N = 45amh7 Tm = A052mpg7

i i v 8.111
20(to, Yo) == vo, To(to,Yo) :==R". ( )

Iterating Lemma with \g = 27"7°X\ and 8 = 4 then yields Ay =
A()(CY, )‘> S (17OO>7 60 - 60(0(, /\) € (Oa ]-) and Yo = ’70(5,04, )‘) € (07 ]-) such
that for A > 2Ag, 6 < [y and hg < = the following holds: For every

m € Ny = NU {0} there exist an n-dimensional subspace T,,, = T}, (¢, 9o) of
R™** with

|77, — e | <86 Th <270 (8.112)
and a point z,, = 2, (to, 9o) in {fo} x RF with
B, (zm) C Bgr(0) (8.113)
such that

(sptpe N Csp,, (2m)) € {2 € Bsy, (2m), |77, (& = 2m)| < pm ), (8.114)

. 3 n 1
P Kt (B(1+)\O)Pm (Zm)) < §wm P bt (Bp,, (2m)) = éwn (8.115)

for all t € [to — Ty, to + 7], and such that the following recursions hold
|7TTm+l - WTm‘ < 570‘77m ) ’Zm—i-l - Zm‘ < 3\/E77mpm (8116)

To prove this use induction. For m = 0 by definitions in (8.111]) statement
(8.115)) directly follows from (8.110f). For (8.114]) use (8.103)) and

spti N 0390 (yO) C B4po (yO)a

as 4pp = R and h < hq for hy < 272,

Now assume for all [ € {0,...,m} we can find 7T}, z such that —
hold. Then use Lemma with \g = 27"\, a = 2, A = T},
8 =296,7=nn,and p = p, to obtain z,.1 := a* and T,,,; := A* such that
(8.114), (8.115) and (8.116)) hold for m + 1. By we have

m+1 m—+1

Tt — e | Y |y, — ] S 467RY 0% <86TTh <278, (8.117)
=0 =0
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where we used 6% < 271, for § small depending on o and h < hg for hg small

depending on §. This implies (8.112)) for m + 1. By (8.116) we also have
|Zm+1 - Zm| < 3\/E77mpm = 12\/Eéamhpm < 2_1pma

as 0 < 1 and h < hg for hy small. For § < 27! we see ppe1 < 271,
so Bs,. . (2m+1) C Bsp,, (2m), which implies Thus we established
®112)- (B-116) for all m € N.

As o € BY5(0) and tg € [t; + AR?, ty — AR?] where arbitrary, we can now
define f : [t; + AR? t, — AR? x B},(0) — R* by

f(t,9) = lUm mge(z,(,7))
m—co (8.118)

F(t,9) = (4, f(t,9))

for all (¢,9) € [t1 + AR* ty — AR?] x B%,(0) which is well defined, as by
(8.116)) the z,, form a Cauchy sequence, thus the limes exists. In particular
we can estimate

() = me (2 (8,9)] < 3VEY mipr < Cud T by Y~ 6

l=m =0

and as 6% < 271, for ¢ small depending on «, this yields

£, 5) — e (2 (t, §))| < 50F™ R (8.119)

for all § € Byz(0) and all t € [t; + AR? t, — AR?.

We want to show that for every t € [t; + AR? t, — AR?] the graph
of f(t,-) is indeed equal to the varifold p,; inside Cyg(0). First suppose
y € sptuyNCrg(0), then for every m € N it is obviously true that y € Cs,,, (9).
By this implies y € Bs,,, (zm(t,7)) for all m € N. In view of defi-
nition (8.118)) letting m — oo then yields y = (y, f(t,9)). Here we used
lim,, 00 P = 0™ po = 0.

Second suppose y € BY;(0) and let € > 0 be arbitrary. By using again
that lim,, .o p, = 0 combined with definition there exists m € N
such that p, < § and |f(t,9) — e (2m(t,9))| < 5. Then we can use the

density ratio bound (8.115)) at z,,(t,7), to estimate
. . X Wn
ue (Be((9, F(t,9)) 2 1u( By, (2t 9)) 2 =P > 0

and as € was arbitrary, we conclude (y, f(t,7)) € sptu;. Thus we established

(B-108).
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Now that we have established that sptu; is a graph, we can attack con-
tinuity. First we want to show that f is C% 5 in the ¢ Variable It suf-
fices to prove this locally. Fix ¢ € [t; + AR* ty — AR?, § € B}3(0) and
consider the iteration T, = T,,(t,9), zm = zm(t,y) for m € No. For any
s € (t—p3,t+p2) N[ty + AR? ty — AR?], there exists an m € N such that

O pS <t — 5| < 67 = T
In view of (8.112)) we can use Remark to estimate

|f(tag) - f(S,@)| = |7TR’“ (F(t,ﬂ) - F(Svg>)| <2 ‘ﬂ-%m (F(tag) - F(Sag))‘
<2(|mz,, (F(9) = 2m)| + |77, (F(5,9) = 2m)])
By choice of m and (8.114)), we see that both F'(¢,9) and F(s,y) are contained

in {z € R"* : |74 (z — 2n)| < mpm }- Note that we can use (8.114) here,
because ([8.106) is already established. Thus we obtain

£(6,9) = F(5,9)] < Anmpm < Cod®™ ™hpy < Cob = hpy®ft — 5| 5

For A > C,6*! and as 4py = R this establishes one part of .

Next we want to show that f is differentiable. Fix t € [t; +AR? to— AR?],
gy € BYx(0) and consider the iteration T,, = T,(¢,79), 2m = 2zm(t,y) for
m € Nyg. For ¢ € {1,...,n} let p/* be the unique intersection point in
{e;} x R¥NT,,, such a unique point exists by Proposition m as by (8.112 m
we have |77, — mgn ||, < 1. We claim

ay,f(t, 9) = gi(t,9) := Tim mge (pf"). (8.120)

To show (8.120]) we first have to verify that the limit on the right hand side
exists. We know p* € T, and 7g=(p!") = €;. In view of (8.112), we can use
Remark [A.73] to bound [p}"| by

pi"| = |77, (Pi")] < 2|men (7, (P])) | = 2|7 (P")] = 2. (8.121)
Using mgn (pl") = €; and again Remark 3l we then obtain

" — | = |7, (7)) — 7., (0]2)]
< |mr,, 0 = 9| + |77, — 7, | 97
mo—1
= |(7z,., = 7en) (" = D7) + > |7n,, — 7| Ip)™
l=mq

mo—1

<§| 2|+22 ’7rTz+1 7TTZ|

l=m

—_
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Thus with (8.116)) we conclude

mo—1 00
P = 2 < Cus D>y < CRat™m TRy Tt < ¢t hen (8.122)
l=my =0

for all my,my € Ny with m; < mo, where we used 6 < 27!, for § small
depending on a. Thus p!"* is a Cauchy sequence, so g; is well defined. Fur-
thermore we can estimate the rate of convergence by

l9i(t,y) — mar ()] < Cpd™ D%, (8.123)

To show that g; actually is the derivative in e;-direction take some arbitrary
small § € (0,p0 — |y|). For any & € (=&, +&o) \ {0} there exists m € Ny
such that

0" po < [E] < 6™ po = pi-
We want to show that the difference quotient of f converges to g. Note that
e (Zm + EPTY) = g+ e; = mre (F(t, 5 + E€;)).
Using and we obtain

&N (f (0 + o) — f(t,9)) — git, )]
< JEITHf (0 + €ei) — Tre (2m) — Eme ()] + Co™ DR
= |§|71 |7TRk (F(t7 g + £el) — Zm — ép;n” + Cné(mil)aha

where we used §* < 1 and 0™ py < |€]. In view of (8.112) we can use
Remark [A 73] to estimate further

&7 (89 + Eei) = f(t,9) — it 9)|
< 20 |, (F(L, 9+ €er) — 2 — E7)] + Cod™ Do,

By choice of m we have [£| < p,,,, so in view of (8.114])
F(t,g+¢&e;) € {m e R*tF . |7r%m (x — zm)| < nmpm} .
Also we know p" € T,,,. Thus we can conclude

< 21 N + Co8 R < C2hIE " pp*,
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where we used §,a« < 1, 8™ py < |€| and 1, = 46™T*™hpy. For & — 0 the
last expression becomes arbitrary small, which shows that g;(t,9) is indeed
the derivative of f(¢,9) in i-direction, which establishes (8.120).

To get a Lipschitz bound for f note that, as Ty = R™, we have p? = e;.

Then by (8.122)), we see
" —eil < Cud™h (8.124)
for all i € {1,...,n} and all m € Ny. Hence (8.120]) implies

0
0y

f(t,9) < Cnd™h

for all t € [t; + AR* ¢, — AR? and § € B}z(0). Thus for A > 67 this
establishes the second part of (8.107).

Fix again arbitrary ¢ € [t; + AR? to — AR?| and § € B}5(0). We want to
conclude that T,,(t,7) converges to Tpq,gM;. Note that by differentiability
of f the tangent space T 5 M, exists. In view of equality we have

0 . ) m
ay@,F(t, g) = lim p;".
In particular by (8.122)
)
‘aylF(t,g) —pt| < CpotmYep < 1 (8.125)

for all m € Ny and all i € {1,...,n}, where we chose h small. By definition
of the p", we have p!* € T,,(t,y) for all i € {1,...,n} and all m € Ny. Then

with inequality (8.124) we can estimate
i - P} = 0l = (P — i) - P+ e (] — )| < Cnd™*h < G

for alli,j € {1,...,n} and all m € Ny, where we used [p7'| <2 and we chose
h small depending on 6 and Gggg. Here (zgg denotes the constant from
Lemma [A.10, As the %F(t, Y)1<i<n form a basis of T 4 M;, we can now

use Lemma[A.10][1] and estimate (8.125) to obtain

< C,8m=Dep, (8.126)

‘WTF(t,g)Mt = T (t,9)

for all m € Ny, all ¢ € [t; + AR? ty — AR?] and all § € BY4(0). In particular
we can conclude that Trq 5 My = limy, 00 Tin(t, 7).
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To obtain C1%-regularity, fix arbitrary ¢,s € [t; + AR? t, — AR?] and
&,y € BYx(0). We want to show

< Cb 2 hpy (Jt—s|+ 12— 9% . (8.127)

TTr,ayme — (s g)ts

If [t —s|+ |2 — 9> > p3, inequality (8.127)) directly follows from (8.126)) with
m = (0 vie the triangle inequality. So we may assume there exists m € Ny
such that

G2t py < |t — s + |2 — gI* < 8*"pp.

Consider the tangent spaces Ay = T,,(t,2) and Ay = T,,(s,7). Let A; =
span(7;)i1<i<n with 7; - 7; = ¢;;. Changing the 7; a bit will give a basis for
Ay such that we can use Lemma to estimate |ma, — ma,|. For any
ie{l,...,n} set 7, := ma,(7;) then calculate by the triangle inequality

|pm7—i - pm7~—1| - ’T‘-,JA_Q (mez)|
< |zm(t,z) + pmri — F (t, T + p7re (73))]
+|F(t,2) — 2(t, 2)| (8.128)

+ |7, (F (1,2 + pr7n (73)) — 2m (s, 9))|
+ |75, (F (£,2) = 2n(s,9))] -

By (8.119) we have
IF(4,2) = 2n(t, )] = |F(68) — o (i (L,2)] < 8 hp, (3129

where we used 7mgrn (2, (t,2)) = & and p,, = 0™po. By choice of m we have
|z — g] < pp, and |t — s| < 7, thus

‘TFR" ( ( QA:) Zm(S,:l})N = ’gl - g?‘ S Pm
|TRn (F (£, & + pnTren (70)) = 2m(8,9))] = |2 + pmn (73) — 9] < 2pm
|TRn (' (2, & + pmmn(ﬂ')) = 2m(t, 2))| = |pm e (T3)] < pin-

So we can use (8.114])) to see

‘sz (F(
|7, (F (£, + pmTn (7

/'\H

‘le (F(t, 2+ pmﬂR”(”)) - Zm(t7f))| < N Prm-
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Note that we can use (8.114]) here, because (8.106) is already established. In
view of ([8.112), we can use Remark . to estimate

|2 (t, Z) + pmTi — F (£, T + pmrn (7))

= |mrr (2m (L, T) + pTi — F (8,2 + ppmre (73)))|
< 2|mh, (2m(t, 2) + pmTi — F (£, & + pmra(7y)))]
= 2|7, (F (1@ + puan (7)) = 2m(t,8)))

where we used 7; € A;. Hence by (8.130))
lzm(t, ) + pmTi — F (£, & + prn7re (7)) ] < 200 Pm.- (8.131)
Inserting (8.129)), (8.130) and (8.131)) into (8.128) yields

omTi — il < Coalm + 0™ ) pry = C6™ iy

for all i € {1,...,n}, thus we can use Proposition to conclude
|7TA1 — 7TA2| S Cnéo‘mh.

Recall that Ay = T,,,(t,91) and Ay = T,,,(, 92), so with (8.126]) we obtain

< )TTF(t,:?:)/Jt —TA

< On(sa(m_l)h,

MTp eyt — TWTp(s,gybs

+ |7TA1 - 7TA2| + ‘ﬂ-/b = g (s gyms

where we used 0~* > 1. By choice of m, we have
52 < 572 (|t — |+ |2 - §)

so we verified (8.127). Note that (a + b)? < 2P(a? + b?) for a,b,p € [0, 00),
thus for A > C,0™ (8.127)) establishes (8.108|). n
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9 General Regularity

Here we want to give a new, shorter proof of Brakke’s general regularity
theorem [Bl 6.12]. The basic idea remains, that for almost every point in a
unit density varifold we either have density one and the existence of a tangent
space or density zero. Then looking close enough the conditions for either
the local regularity theorem or the clearing out lemma should be satisfied,
which establishes the required regularity.

We recall the definition of our usual cut-off function, which we shall use
here to cut-off spherically rather than cylindrically.

9.1 Definition. Recall ¢ € C* ([0, 00), [0, 1]) from Definition 1.1 We will

use

1 for 0<r<1—2""n9
((r) =
0 for 1<r

and max {sup |¢'|,sup |("|} < 01.

First we need another version of Theorem [8.4] where the absolute height
bound (8.103)) is replaced by an integral one. This follows easily with Corol-
lary [6.8]

9.2 Theorem (Local Regularity Theorem (2nd Version), [B, 6.11]). For
every Ao € (0,272 there exist a Ay € (1,00) and a v € (0,1) such that
for all ty € R, yo € R and every R € (0,00) the following holds: Let
(Mt>te[t0—AoR2,to+AoR2] be Brakke flow in B(a1230)r(0) and T an n-dimensional
subspace of R™* with

R / b (@ — yo)| de(e) <70 (9.1)
Bay2x9)R(¥0)

Ry (B(1+2/\0)R(yo)) < (2= MNwn, R " (Br(yo)) > Awy, (9.2)
for all t € [ty — AgR?, to + AgR?]. Then there exists a smooth function f :
[to — R% to + R?) x BYn(2o) — R¥ with

(sptue N Car(yo)) = S(graph(f(t.-))), (9.3)
for all t € [to — R? to + R?] and some S € SO(n + k)

Proof. We may assume yo = 0 and 7' = R™. Consider ¢ € [ty — AgR? +
R?,ty + AoR?] and zo € spti N Bitax,)r(0), by Corollary with yo = 0,
v =e,; and 7 = 27' R combined with ([9.1]) we obtain

to
|0 - en+j| < CnR_n_Q/

to—

/ |2 - enyjldue(z) < CryoR?
R? J Bgr(xo)
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for all j € {1,...,k}, where we used y = 2. Thus we obtain
3Pt ) Brsaaga(0) € {o € R : [mgu(2)] < CuroR)

for all t € [ty — AgR? + R?,ty + AgR?. Then we can apply Theorem
with ¢, = tog — AgR%2 + R?, ty = tg + AgR?, A = )Xy, o = 27! and Brakke
flow (¢ L Bi1oxg)r(0))eefty 1), Which yields a A = A(Xg) € (1,00) and an
ho = ho(Ag, Ao) € (0, 1) such that, if C,,y9 < hg, we obtain for the time
interval [t + (A + 1 — Ag)R?, to — (A — Ag) R?]. So choosing vy < C, 'hy and
Ao > A + 2 establishes the result. ]

The Brakke flow allows the solution to ”jump” in the sense of a sudden
local loss of area. In such a case we cannot expect to obtain regularity, so in
the following we will rule out these ”jump-decreases” by an extra assumption.

9.3 Definition. For t1,t, € R with ¢; < t, an open subset U € R"** and a
time to € (t1,12), a Brakke flow (1), 1) in U is called continuous at time
to, if for every ¢ € C* (U,R™)

(151_{% fio+5 (0) = puo (D) (9.4)

9.4 Lemma. For all R, € (0,00), 79 € R"* and every open subset U €
R™* with Br(zo) CC U the following holds: Let (1) + be a Brakke flow
wn U, which is continuous at time 0. Then

é
lim/ / H|*dp, dt = 0. (9.5)
INOJ s BR($0)| | '

Proof. First suppose Bsg(z9) CC U. Consider a § € (0, 7). Look at the test
function ¢ : (=4, +0) x R*™* — R*

te[—

|z — x0]? + 2nt
) =41~ .
o(t, ) { Ve X

Note that for ¢ > —2n"'R? the support of ¢ lies in Bsg(zg). For almost
every t € (—0,+0) there exists an L*integrable mean curvature vector H on
U. For these t we can calculate with Remark 2.6l

0 ) 3n .
o (9°) = divy, D () = — 55" = 3pV"(¢%) - Dy — 3¢div,, (D)
377, 2 . 2 2 4.
= —om¥ 6 [VH | — DYk div,, (z)
= —6p | Vo> <0
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at almost every x € Bsg(xg), which yields

. 0
/ D (¢*) - Hdp, = _/ div,, D (¢°) dus < _/ ot (o) d
—_— Rn+k Rn+k

Thus
B (s, o, /a (1, 2)°) dpu() < — /(tx) | () Pdpa(2)

for almost every ¢t € (—d,+6). Then with Proposition we obtain

ps (26.)?) — s (- / [ et ofl @ Py (9
For § < (2n)"'R? and t € [—4, §] we can estimate

ot ) — 9(0,2)] < (p(0,2) + (2R?) " nd)” — (0, z)?
< 2°(2R*)"'nd < C,R72%.

Here we used p(0,7) < 1. Also for x € Bg(zo) and 6 < (2n) ' R? we can
estimate for ¢ € [—0, J]

2 —2ng\°
Y =l T

Thus implies
5
?//‘ |H | dpy dt < (p—s (¢(0,-)%) — ps (0(0,-)))
—6 J Br(=o)

+ CoR726 (pu_s (Bsr(w0)) + p1s (Bsr(20))) ,

for all 0 < § < min{r, (2n)"'R?}. Here we used spty(t,-) C Bsg(zo) for all
t > —2n"'R%. For 6 \, 0 the first difference on the right hand side of (9.7)
goes to 0, due to the continuity at time 0. Furthermore by Lemma there
exists M € (0,00) such that,

(9.7)

e (Bsr(xo)) < M

for all t € [—7, 7], so for 6 N\ 0 the second difference on the right hand side
of (9.7)) goes to 0 as well. So we obtain

0
limsup/ / |H|?dp,; dt < 0.
N0 J—§ J Bp(wo)
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But for almost every ¢ € (=0, d) the integral [, ., | H |2dy, is well defined and
positive, which implies that the limit exists and equals 0.

If now Bg(zy) CC U there exists r < 37'd(0U, Br(xo)). Then we can
cover Bg(zg) by a finite collection of B, (z;), x; € Bg(x;),i=1,...,N. For
each i we have Bs,(x;) CC U, so we can use the previous conclusions inside
these balls and estimate

p) N
[ ey [ P a0
-4 J Bgr(0) i=1 Y0 r(T4)

for 6 — 0. O]

The main ingredient for the general regularity theorem will be the next
technical lemma. It basically says that if one considers the set of points x
where g, ”jumps” in a § small parabolic ball around (¢, z), then the measure
of this set should vanish for § 0. This lemma does not appear in [B], but
the main calculation, the one that leads to below, is taken from [Bl
6.12].

9.5 Lemma. For all R,L,7 € (0,00) the following holds: Let (pt),e(- gz ge)
be a Brakke flow in Bog(0) which is continuous at time 0. Consider the set

D(t,0) :={x € Bg(0), Z(x,0) > 7}, with
D(x,6) = sup sup 67" (¢) — 6 "o (9)]

peCP* (Bs(2),[0,1]),lip(¢)<6—1L  tE€(—6%,62)

for & € (0,R). Then 2" (Myeon) D(7.6)) = 0.
Now in addition assume there exists a subset A C Br(0) and a collection

of functions {Vs, € CO* (Bs(x),[0,1]),z € A, € (0, R)} with

lip(¥5.) <6 'L and (lsi{r(l) 0 "o (Vs) =t 0(z) € R

forall x € A and all § € (0, R). Consider the set

E(r,0) := {JJ €A, sup ‘frnlit (Vs2) — Q(x)’ > T}
te(—62,62)
for 6 € (0,R). Then ™ ((Mseio.m B(7,8)) = 0.

For the proof we need Vitali’s covering theorem found in [EG] 1.5.1] which
says:
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9.6 Theorem (Vitali Covering Theorem). Let Ry € (0,00) and (B, (;))icr
be a family of balls r; € (0, Ry),x; € R™ for an arbitrary set of indices I.
Then there exists a countable subset J C I such that B, (x;) N B, (z;) = 0

foralli,j € J and
UB..(z:) € | Bsr(w1).
iel ieJ

Proof of[9.5. Let R, L,7 € (0,00) be given. Consider 6 < 27'R, then

J Bs(z) > D(r.9). (9.8)

z€D(1,6)

Thus by Theorem [9.6] we obtain a finite covering

N

| Bss(b:) > D(7,0)

i=1
such that, the Bs(b;) are disjoint and b, € D(7,d) for all i € {1,..., N},
where N € N depends on §. Here Vitali’s theorem first yields a countable
covering, but as D(7,d) is compact, we can choose finitely many balls, which
already cover D(T, ).

By definition of D(7,d) for every i € {1,..., N} there exist a ¢; €

Co' (Bs(bi), 0, 1]) with lip(¢;) < 67'L and a t; € (—62,6°) such that Z6" <
|\, (¢3) — po (6:)] - Then by and Proposition we can estimate

50" <l (90) = o (60)
S o2 (05) = pa2 (i) +2 0 sup ps, (hi) — s, (01)]

—62<51<52<62

52
<pp (@) -pm@)+2 [ [ Do Hldp di
—62 J Bs(b;)

for every i € {1,..., N}, where we used spt¢; C Bs(b;) and that D¢ exists
almost everywhere. Combined with this lets us estimate the J7{(;-
measure of D(7,d) by

N N
A5 (D(7,0)) < A (U B56(bi)> < 5w, » 0"
i=1 =1

N 52 .
<0 (Z NI B L dt) .

=1

142



Then using |Dg;(z)| < 671 L for almost every x € Bs(b;) and the disjointness
of the Bs(b;) yields

H o5 (D(T, 5))
(9.9)
< Cpr ZM 52 (¢i) — gz (¢i) + Lo~ / /B (0)\Hldutdt

Now use the radial cut-off function (y(z) = ¢ (m) for x € R"** where ( is

from Definition By definition of {; and § < 27'R we have
B2R(0) oD SptCo D) {C(] = 1} D) B%R<O) D) Bg(bz) D) Spt(bz

for all i € {1,..., N}. So the disjointness of the Bs(b;) yields

- Z@(@ >0

for all € Byg. In particular this can be used as the test function in (3.1)).
Then by (3.1)) and Proposition we obtain
N

D (ps (60) — ps2 (1)

=1

= 5> (Co) — s> (Co) + fs52 (Co - Z @) — fs2 <§0 - Z ¢z>

< s (Go) = e (G) / / » (@—Z@)

As |D¢;| < §7'L and for § < (o1L)"'R also |D¢| < 01(2R)™ < §7'L we
can estimate ’D <C0 — Zf\il (bl)‘ < 2L6 ', Thus becomes

186 (D<7—7 5))
< C,r ! ((M—gz (Co) — ps2 (Co)) + L6~ / / ‘H‘d,ut dt) (9.10)

for all § € (0,(oyL + 1)7'R), where V := spt(;. Now let € be given, then
there exists a d; € (0, 1) depending on € such that

| H |y, dt.

A" () D(r.o) | <o | () D(r.0) | +e (9.11)

0€(0,R) 0€(0,R)
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for all 6y € (0,0;]. Also as the flow is continuous at time 0 there exists
d2 € (0,1) depending on € such that

p-s2 (Co) — pg2 (Co) < € (9.12)

for all 6 € (0,02]. As V = spt{y CC Bag, by Lemma there exists an
M € (1,00) such that u; (V) < M for all ¢ € [—R? R?]. Then use Holder’s
estimate and Lemma to obtain a d3 € (0, 1) depending on € such that

52 62 %
—1/ /\ﬁuut dt < CovV/M (/ /|F1|2dm dt) < CpVMe (9.13)
_s2.JB —-62JB

for all § € (0,d3). Then combining (9.10)-(9.13) we conclude for §, =
min{&l, 52, 53, (O'1L + 1)71R}

T ﬂ D(7,0) | <H5s, (D(7,600)) +€ < Cp(1+7 ") Me
5€(0,R)

for all € € (0,1) and letting € go to 0 establishes the first result.
For the second part consider the set

A(r,0) == {x € A, ’(5—"u0 (V52) — Q(:L‘)‘ > r}
for r € (0,00). Then for given 7 € (0, 00) we have
E(r,0) C (D(27°1,8) U A(27%7,9)) . (9.14)

To see this consider z € E(7,d) \ A(27?7,8). As x € E(r,0) there has
to exist a t € (—0% 6%) such that [0 (Js.) — o(x)| > 27'7. Then, as
r ¢ A(2721,6), we can estimate

67 (D) — 610 (5.0)| > |5 (95.) — ()| — |ea) — 6" (95.)
>27lr — 2727 =227

and as U5, € C%!(Bs(z), [0, 1]) with lipds, < d~'L we see that z € D(2727, ).
As we assumed limgs\ 0" o (Js.) = o(x) we see that (s g g) A(27%1,0) =

(). Thus yields
ﬂET(S mDQ 27, 0).

5¢(0,R) 5¢(0,R)

We have already seen that [ 5€(0,R) D(27%7,§) has Hausdorff measure 0, which
establishes the result. O
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Now we have all the ingredients to prove Brakke’s general regularity the-
orem

9.7 Theorem (General Regularity Theorem, [B, 6.12]). Let p € (0,00)
and (fie) e[ 2 be a Brakke flow in Bs,(0) which is continuous at time 0
and suppose g is a unit density n-varifold. Then there exists a set S with
J"(S) = 0 such that the following holds: For every x € B,(0)\S there exists
anr € (0, p) such that either spty, N B.(x) = 0 or sptu, N B,(x) = F,(B*0))
for a smooth family of embeddings Fy : (—r?,r%) x B*(0) — R"**,

Proof. Let S be the set of all x € B,(0) for which there exists no such r. We
want to show #"(S) = 0. Consider the sets

V ={z € B,(0), ©"(no,x) =0, =1 NI Tpuo}

W = {z € B,(0), " (u0,) = 0}.
As p is a unit density varifold we have 2" (B,(0) \ (VUW)) = 0 by Re-
mark . So it suffices to consider S NV and S NW and prove they
both have measure 0. We will do this by using the local regularity theo-
rem and the clearing out lemma respectively. Use the radial cut-off function
Crw(y) = C(r7 Yy — 2|) for z,y € R where  is from Definition 0.1 Set
w = fRnx{o}k C%,O(y)d%n(y)v then (1 - 278)‘*}71 <w < wy,.

First we want to show " (SNV) =0. For A € (1,00), v € (0,1) and

r € (0,A™1p) consider

Vi(r)=<{x €V, sup r_”_1/ ‘W%xuo(y — x)’ Cra dpty >y
tel ] By (x)

7A27’2,A27’2
_ Wn
Valr) =Sz eV, sup  |r " (Go) —@| > 5.
te[—A2r2 A2r2] 4

By Theorem [9.2| we can fix A € (1,00) and v € (0,1) such that
Snvc (] (V6r)ula((1+27""%)r) uVa(r)). (9.15)

re(0,(6A)~1p2)

To see this take an x € V which is not in the larger set on the right. So there
exists 7 € (0, (6A) ™' R?) such that z is not in V1 (3r)UVa((1+27"73)r)UVs(r)
which yields

[ =Dl dics [ [t = 0| Goalddie < (60,
B3, (z) Ber(z)

Sy, C—3\m.n . OWn

He (B(1+2>\0)r($)) < pe (C(1+2*"*3)r,$) < T(l +2 3) rt < 77’ )

i (By (@) 2 e (Gra) = (= = 51 1 = 2"
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for all t € [—=A%r2, A%r?] and 2Xg := (1 — 27" 8)(14+27"73) — 1 € (0,27"73).
Here we used

B(;(ZU) D) Sptc(g’aj D) {C&,x = 1} D) B(l,anfs)(g(x) D 32715(1,’).

Then by Theorem with yo = x, T = T, o and R = r there exist Ay and
7o such that, if A2 > Ag and v < 6714, we obtain that # ¢ S. This implies
(19.15)).

By Remark and as we have density 1 in z we obtain

lim =" 1o (|77, (- = 2)| Gr)

™\ 0
. —n y— y—=T n
Chg e () (52 e

- / Ik )| € (y]) d™ () = 0,

for all z € V. Then using Lemmal[9.5|with R = p, 7 = A™"yr, L = A(1+0),
§ = Ar, o(x) = 0 and Vs,.(y) = Ad* ‘7‘(’%1“0 (y — @)| Ca-152(y) yields that
Mre.a-1,) Va(r) has Hausdorff measure 0. Similarly by Remark and as
we have density 1 in x we obtain

— - ly — |
lim " () = lim 7" d
lim ™" pio (¢re) = limmr /WC( . o

N0

— [ ety = / Cro dA™ =,

Tx 1o R™x {O}k

Then using Lemmawith R=r,7=272A"w,, L=Aoy,,d=Ar, ox)=
w and Vs, = (p-15, yields that ﬂre(()’A_lp) Vs(r) has Hausdorff measure 0.
Thus in view of we conclude " (SNV) = 0.

In the same way we can show J"(SNW) = 0. For g € (0,1) and
r € (0, p) consider

W(r) = {az eW, sup " (Go) > ﬁ} )
te[—r2,r?]
By Lemma 5.7 we can fix 5 € (0, 1) such that
Snwec (] wen. (9.16)

re(0,2—1p)

To see this take an © € W which is not in the set on the right. Then there
exists r € (0,00) such that x ¢ W (2r) which yields

e (Br(2)) < pe (Core) < Br"
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for all ¢ € [—2r?,2r?]. Then by Lemma [5.7 with R = r, n = 3, zy = = and
to = —(8n)~'r?, we obtain that for all t € [—(8n)~1r?+C,,3%7r?, 2r?] we have

Mt(Br(t) (z)) =0,

where 7(t) = \/r? —4n(t — ty) and 0 = . In particular if we choose 8

small enough such that C,,3* < (8n)~!, we obtain that po(B)(z)) = 0 and

as r(0) = v/r2 —2-1r2 > 27!y we see x ¢ S. This implies (9.16]).
By definition of density (see Definition and as we have density 0 in
x we obtain

< limr™ < limr™ =
0_7111{(%7” MO(CT,J&>_71}{(%T /’LO(BT('I)) O,

for all x € W. Then using Lemma [9.5| with R =p, 7 =~, L =0y,0 =1, ,
o(z) = 0 and s, = (s, yields that [, ) W(r) has Hausdorff measure 0.
Thus in view of (9.16) we conclude J#"(S N W) = 0 which establishes the
result. O
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10 Opening Holes

In this section we study how the area ratio of a Brakke flow inside a growing
cylinder behaves. Brakke observed that the increase can be controlled by a
bound on the height integral, see [Bl, 6.5]. We will reproduce his calculations
in a slightly different form, where we specify the exact dependence on the
growth rate of the cylinder. This leads to Proposition which will be
used to show that for Brakke flows in narrow slabs, holes can open arbitrarily
fast, see Proposition [10.6

10.1 Definition. Recall ( € C* ([0,0),[0,1]) from Definition [1.1] For
R € (0,00) we define

Cr(x) = ¢ ((R7']2]))
for all z € R*™*. Also set w := fo(O)x{o}k GdAA".

This is as in Definition [7.1] with p = 1. Then as in Lemma [7.2] we have
again

10.2 Lemma. There exists a C € (1,00) such that for all R € (0,00) the
following holds:

1. for all z € R™*k
1 for 0< |2 <(1—-2""%R
o= (1 o<t s0-2y
0 for R<|z|.
2. max { Rsup | D(g|, R*sup |D*Cg|} < C.
8. R [ oyio A" = .

4. (1-2"%w, < < w,.

First we derive a bound for the time derivative of a growing test function
on a varifold. This is based on the first part of [Bl 6.5].

10.3 Lemma. There exists a constant C' € (1,00) such that for all Ry, \,7* €
(0,00), t; € R and every open subset U C R"* the following holds: Let j1 be

an integral n-varifold in U with L*-integrable mean curvature vector H. Set
R(t) :== /R2 + X\t — t1) and let ty € (t; — AR}, 00) be such that

sptp N Cri)(0) CC U (10.1)

/ g ()2 < ~2R(to)™*2. (10.2)
CR(tg)(0)
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Then we can estimate

J

1 712 -2 An 9 5 o L
= 5/[]‘}[' CR(to) @ + W/UCR@O)dN+C>\()\+ 1)°v*R(to)

o
- (10.3)

Proof. Fix a ty € (t; — A"'R}, 00) such that ((10.1)), (10.2)) hold and setR =
R(to). By definition and R(t) we can calculate

0

0
., Cho @) = 4l >c (R7al) Jol 5|, RO
= —2(g(2)¢' (R7'|2]) |2|R 3>\_ RADCR(x) - &

for all x € R™*. At a point x where the approximate tangent space exists
we can use Remark 2.6/ to obtain

div,,(Cit) = Crdivy (&) + V- & < i + V¢ &

So we can estimate

0

A
En Chn () = o (VHCE - &+ (D¢ — T1,(DCR)) - 2)

(n¢k — divi(Caa) — (DCg — 71,,(DCR)) - (& — 7,,,(2)))

t=to
A
- 2R2

for almost every z € U, where we used DC% — 77, ,(D(3) € T;-pu. Then by

Definition [2.5 and (10.1)) we have
|5 G|t < 55 ( [ )@ 2 dutw) +n [ G
U 875 R(t) t=to - 2R2 U R U R

[ e = 7, P DG @) el ).
U

(10.4)

where we used D(% = mrn(D(%). Note that by (10.1)) we can treat (x like
a function in C°(U) here. By Theorem we can use Remark and
combine this with Young’s inequality to obtain

/CR ]'-7 ) - & dp(x /CR (Tn — 77,) 2 dpa()
2 2 >\ 2 2
< / G Py + 2 / g — 77,2 Chdp,
2X Jy 2 Jy
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where we estimated |Z| < R as spt(g C Cg(0). Note that < CR and by

Proposition A.6also |DC3||2| < 2¢+/|D%*Cr|CR < 2\/_§R for all z € spt(g.
Thus ((10.4) becomes

0 1 .,
| 5 G| = 7 [ GaPan+ 35 [ Ghan

A4 + )
D [ e = e

3 3
Using Lemma |A.13| with f = (g, g = (5 and h = (3, we have

(10.5)

3
/ TR — 77, CRdp
U

N 2 3
<c, ( [ vaircan [ IWRk(w)FC%du) +Co [ e (PIVChP
U U U

3 1
By Proposition A.6. we can estimate |[V#(A| < (~1,/[D?CR|C < NGV Gy
Then with 2v/ab < a + b we obtain

3
/ g —mf@du

e V_H [ 1A Gau 0, R 1) [ Imelo)P i

1
where we used (3, < (3 and oy is constant. Inserting into (10.5]) yields

9 2 1 2| 7712
il < Z
| 5 G| =5 [ GPan+ 55 [ Ghan

+ CoRNI+ M)A+ A) +1) / | e ()2 dpt,
CR(tg)(0)

(10.6)

where we used spt(r C Cg(0). Finally we can estimate
Co, RN+ XN)M1+A)+1) < C A1+ AR

Then with assumption ((10.2]) and as R = R(ty) inequality (10.6)) establishes
the result. O

Now we can prove a bound for the measures inside expanding cylinders.
This is from [B, 6.5]. Here we give some more details and explicitly state
how the cylinder growth effects the measure bound.
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10.4 Proposition ([B, 6.5]). There exists a constant C' € (1,00) such that
for all Ry, \,7? € (0,00), t; € R, ty € (t1,00) and every open subset U C
R the following holds: Let (uu) be a Brakke flow in U with

tefts,tz]
U sptue N Cry)(0) CC U, (10.7)
tE[tl,tQ]
sup R(t)"2 / g () 2ty < A2, (10.8)
teft1,ta] CR(t)(D)

where R(t) := \/R? + \(t —t1). Then

R(t) ™" (Chey) < B0 (Cr,) + O+ X))y log (R'R(1))  (10.9)
for allt € [t1,ts).
Proof. For t € [t,t5] set

B = RO [ G

We want to derive a differential inequality for E(¢). By Lemma with
to = s, and Lemma [3.10| with ¢ = ( we can estimate

0 An _ e
P (ﬂ'sa C}%(s)) S - /U EC}%{(S)d/LS + TR(S) 2E<S) + Cn(]. + >\)472R(8) 2

for almost every s € [t1,%s]. Thus by Proposition |3.8| we obtain

Dps(Ciey) < %R(S)_QE(S) + Cn(14 M)y R(s)"?

for almost every s € [t1, t5]. Then with R'(s) = $R(s)~! we conclude
DE(s) = —nR(s) ™" R(8)1s(Cis)) + R(3) " Dpas(Cres))
< Cull+ N'PR(3) = CuA ! + W) 2R (9)R(s) !
for almost every s € [t1, t5]. Now this differential inequality can be integrated

using Proposition [A.19] to see

E(t) — E(t) < / "DE(s)ds

< Cp( A1 A3)y? /t R'(s)R(s) ds

t1

t
=C, (A + )\3)72/ 9 log(R(s))ds
¢ 0s
=C,(A\ + X%y log (RTTR(t))

for all ¢ € [t1,t5] and by definition of E(t) this establishes the result. O
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Now this can be combined with the clearing out lemma to show that
small holes become larger.

10.5 Lemma. There exist constants C € (1,00) and v; € (0,1)such that,
for all 6 € (0,1], p € (0,00),7 € (0,71], 0 = ﬁ, for all s1,s9 € R with
sy — 51 € (Cy*p?, p] and every open subset U C R™* the following holds:
Let (p1t)c(s, 5,) b€ @ Brakke flow in U with

sptue N Cs,(0) C By,(0) CC U, (10.10)
/ g () [Pty < 26+ 2, (10.11)

039(0)
s (Ciy(0)) = 0 (10.12)

for allt € [sy1, s2]. Then
sptue N Bs,(0) N CL(0) = 0 (10.13)
for all t € [s1 + Cy* p?, s9].

Proof. Consider an arbitrary sg € [s1 +727p?, s2]. Set A := (9p? — 6%p*)(s0 —

s1)" and p(t) := \/62p? + At — s1]. Then we see p(sg) = 3p and by ([10.11])

p(t)™"? / | () [Pdpy < 67" 2p7 2 / | () Pdpy < 673
Cp(t)(o) C3p(0)

for all t € [s1,s0]. Thus we can use Proposition with ¢, = s1, ts = S,
7?2 = 072 and R; = dp to obtain

(30) "t (G3,) < (0p) "ty (C3,) + Cu( AT + A%)d75 log(671).
As Cy. C {(3 = 1} C spt(s, C Cs, and with (10.12)) we obtain
p_n,uso (CZp(O)) S Cn(>‘_l + )‘3)78

_1
By choice of s and A we have 1 < A < C,v5%7 < Cpy, © 50 we can estimate

P s (C20(0)) < Coyg * < Co (10.14)

Now we can use Lemma with R = 4p, r = 2p, xg = 0 and n = Cp, .

Note that spt® C C5,(0), so ((10.14)) implies ([5.14]). Then by Lemma we

obtain a constant Cj such that

sptiy N Bryy N Crpy = 0 (10.15)
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for all t € [sg + Coya?p?, s2], where R(t) = /16p% — 4n(t — sp) and r(t) =
V/4p% — 4n(t — so). Note that the time mterval may be empty. As 79 < 7
we can estimate

200,ygap2 < (4n)—1p2
for ~; small depending on constants. Thus we obtain

R(s0 + 2Con27p*) > 3p
(S() + 200’720 2) P

So if sg + 2Co127p? < s2, equality (10.17)) yields
sptue N Bs, NC, =10

for t = s9+2C727 p*. Then as so was arbitrary in [s1+737 p2, s], we conclude

that (10.13)) holds for all ¢ € [s; + (2Cy + 1)727p?, s9] and for C' > (2Cy + 1)
this establishes the result. O

To get rid of the bound for all time, we can use Remark
which lets us replace this assumption by a mass bound and a slab condition
at the starting time. In this form the statement is very similar to White’s
expending hole theorem, see [W3, 4.1].

10.6 Proposition (Opening Holes). There exists a constant C € (1,00)
such that, for every f € (0,1] there exists a hy € (0,1) such that, for all

€ (0,00),M € [1,00),h € (0,hg], so € R and A = Mh™? the following
holds: Let (put) ¢ be a Brakke flow in Bsa,(0) and suppose

s0,50+n~1r2]

sptits, C {x € Bsp,(0) : |mge(z)| < M’%h'r’}, (10.16)
sy (Bsr(0)) < Mr"™, (10.17)
o (Cor(0) =0 (10.18)
Then
sptue N Cr(0) N By, (0) =0 (10.19)

for allt € [so + Chor?, s +n'r?], o = n-:lQ'

Proof. First we want to establish a height bound for later times. Fix an
arbitrary v € {0} x R¥ with |v| = 1 and set 2o = M~zhrv. Then (10.10)
yields

sptpu, C {x € Boa(0) : (x —xp) - v < O} . (10.20)
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By Lemma with U = Bsp,.(0), t1 = so, t2 = so + 72, R = 2Ar and
§ = M~3h3 we obtain

sptu: N Bar(0) C {x € Bopr(0) s - v < M~ 2hr + 2M_%h3Ar} (10.21)
for all ¢ € [so, 5o 4+ 4(6n) LM ~2h3A2%2] N [so, 5o + n~'r2]. Here we estimated

M=3h3 <671 as M > 1and h < hy, for ho small enough. Now as A = Mh=2
we have

M2 h3Ar = 2M hr
4(6n)’1M’%h3A27’2 > (6n)’1M%h’1r2 >nlr?

where we used M > 1 and h < hg, for hg small enough. Then as v was

arbitrary ((10.21)) yields
sptu: N Bar(0) C {:v € Bar(0) : |mge(x)] < SM_%hr} (10.22)

for all ¢ € [sg, 50 +n~'1?]. As 3M~2h < 1 for hy < 3 this implies
sptp N C3,.(0) N Bar(0) C By, (0) CC By, (0) (10.23)

for all t € [sg, so +n'r?.

Now we want to establish a measure bound for later times. By Lemma
with U = Bsp,.(0), t; = sg, to = s+ 7%, 20 =0 R =57 and k = %, we
can estimate using

110 (Buy(0)) < Chupto (Bs, (0)) < CouMr™ (10.24)

for all t € [sg, so+n~1r?]. Combined with ((10.22)) and ((10.23)) this establishes
the integral height bound

/ ‘,NRk (33)|2th < Onh2rn+2 < ﬁn+3h7”n+2,
037(0)

for all ¢ € [sg, 5o + n~'r?], where we used h < hq for hg small depending on
B. Then we can apply Lemma to the restricted flow (u; L Ba,-(0)) with
p=r,8 =S5 S5 =5+n 1% § = and 12 = h. Note that due to the
restriction (10.23) verifies ([10.10).

By Lemma we obtain constants Cy and 7, such that, for vVh < /g <
v1 and C' > Cy we have

sptuy N Cr(0) N By, (0) =0 (10.25)
for all t € [sg + Chor?, s+ n~'r?]. Then the result follows from (10.22) and
3M~3h < 1as h < hg for hy small enough. O
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11 Plane-Like Varifolds

A further application of Brakke’s local regularity theorem is to show that
Brakke flows become graphical, provided the starting varifold is somehow
“plane-like”. First we introduce certain parameters that measure how “plane-
like ”a varifold is, see Definition [I1.1} If the starting varifold is “plane-like
enough 7, that is if the parameters are chosen appropriately, this yields a
height bound and the necessary upper area ratio bounds required for Brakke’s
local regularity theorem 8.4, Now their are two possibilities. Either the lower
measure bound holds as well such that the theorem yields regularity, or there
exists a cylinder inside of which the flow has very small measure. In this case
this cylinder becomes empty after short time, that is void of the flow. This
is the main result of this section stated in theorem [I1.7

11.1 Definition. Let p € (0,00),,h,& € [0,00), yo € R"** and S C B} (1))
An integral n-varifold p in R™** is called locally (p, S, 1, , £)-plane-like around
Yo, if there exists a function f € C%! (B2(j) \ S, R*) with

(sptpe N Cy(yo)) \ (S x R*) = graph(f), (11.1)

such that the following assumptions are satisfied:
lip(f) <1, sup|f — me(yo)| < v, (11.2)
u(S x RY) < €97 (11.3)

A manifold M is called locally (p, S, 1,7, &)-plane-like around yo, if the asso-
ciated measure p = "L M is locally (p, S, [, v, &)-plane-like around .

11.2 Remark. 1. The varifold is more plane-like the smaller [,y and &
are. A small £ means the varifold is more graph-like, while small [ and
~ induce flatness.

2. Note that for R, yo and p fixed one can choose different S to obtain
plane-likeness with different [, y,£. Choosing S larger might increase £
but maybe allows smaller [ and ~.

3. Let r, M,T" € (0,00) and p be an integer n-varifold in the slab R™ x
BE(0) with u (Cr(0)) < Mr"™. Suppose there exist R € (r,00), | €
(0,00) and a function f € C%' (B%(0)\ B2(0), BE(0)) with lip(f) <1
and

sptu N Cr(0) \ C,(0) = graph(f).

Then p is (R, B*(0),l,TR™', Mr" R~")-plane-like around 0. In partic-
ular the last two parameters become arbitrary small for large R.
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4. Suppose 1 is (p, S, 1,7, &)-plane-like around yy. Then p is also (dp, SN
B3, (90), 1,0~ 1, 67"E)-plane-like around yq for every ¢ € (0, 1].

In case p has bounded mean curvature the measure u(S x R¥) in (11.3)
can be bounded by .£"(S) which is often nicer to estimate. This is a direct
consequence of the monotonicity formula in [Sl, 4.3.2].

11.3 Proposition. For every p € (n,00) there exists a P € (1, 00) such that,
for all p, M € (0,00), l,y,a € [0,00), § € [0 ,2] and every open subset U €
R"™** the following holds: Let i be an integral n-varifold in U with generalised
mean curvature vector H. Suppose p (U) < Mp", Jo |H|Pdp < ap™™ and

(sptu N C,(0)) C {z € C,(0), |mre(z)| < vp} CC U. (11.4)

Also suppose there exists a function f € C%' (Bp(0)\ By, (0), BY,(0)) with
lip(f) <1 and

sptu N Cp(0) \ Cs,(0) = graph(f). (11.5)
Then p is (p, By, (0),1,7,§)-plane-like around 0 for & = P(M+a)(y+9)*0" ",

11.4 Remark. In case n > k the measure bound £ becomes arbitrary small
for small ¢ and fixed M, a, .

Let us recall the monotonicity formula:

11.5 Theorem (Monotonicity Formula, [S, 4.3.2]). For every R € (0,00),

€ [0,00), p € (n,00) and every open subset U C R"* with BR(0) cC U
the following holds: Let p be an integral n-varifold in U with mean curvature
vector H and suppose fB |H| dp < TP, then

F p—n p—n
< h (%)
p—n

3=

(r="p (B.(0))? — (R 1. (Br(0)))

for allr € (0, R).

Proof of Proposition [T1.3, First we need to cover the set By, (0) x B (0) by
balls. There exists an N € N with N — 1 < v6~! < N. Define points
Ty = Zle a;jdpenyj for a = (ay,...,a;) € A= {=N,...,N}*. Then for
r:=+/14 kdp we have

By, (0) x BE,(0) C | Br(a). (11.6)

acA
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To see this let y € Bj,(0) x BY (0). For j € {1,...,k} choose any a; €
[5 1p_1yn+j L, 5_1p_1yn+j + 1] N {—N, s 7N}7 then

k

[y = zal = \[192 + D [Ynss — a;00]?
j=1

k
<Opy |1+ 107 p sy — a2 < V1+ kdp.
=1

For each ball B,(z,) we can use Theorem with R = p and [P = ap" 7P,
to estimate

1 n—p

Oépp p p—n

SO

< Cp(M + a)s"p"

for all @ € A and some C), € (1,00) depending on n and p, where we used

r:=+/1+ kdp. Then with (11.6) and (11.4) we obtain
1 (Cs,(0)) <) p(Bi(a)) < ClA|(M + a)d"R"

a€A

< C,NF(M 4 )§"R™ < C,(M + a)(y6~ ' + 1)* 6" R",

where we used N < 1+ ~0~1. For P large depending on n,k and p, this
establishes the result. O

As we showed in section [} the clearing out lemma can be used to obtain
a height bound, if the starting varifold has small measure above a certain
height. This can easily be applied to Brakke flows starting from a locally
plane-like varifold with small .

11.6 Lemma. There exists a C € (1,00) such that for o = 5 for all
p € (0,00), 1 €[0,00), v,&£ € (0,1) 7 € (0,(16n)71), sp € R, yo € R*™* and
every S C BJ(fo) the following holds: Let (fit)ic(s,so+7p2 b€ a Brakke flow in
C\o(yo). Suppose pu, is locally (p, S,1,,§)-graph-like around yo then

(st 1 Cylu0)) © { € By(yo) : ms(x — wo)| < (1607 +7)p}  (11.7)

for all t € [so + C&*7p*,7p?]. Note that this interval is empty unless & is
sufficiently small.
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Proof. We may assume yo = 0. As pu, is locally (p,S,1,~,§)-graph-like
around 0 we can use sup |f| < vp and (11.1) to see

tso (Co(0) \ (B} (0) x B7,(0))) < ps (Cp(0) N (S x RY))
thus by we have
pso (Co(0) \ (B} (0) x BY,(0))) < &p"

then using Lemma [5.9 with 7 =, 6 = 47, R = §, ty = 59 and I = yp yields
the result. O]

11.7 Theorem (Local Graph Or Hole Alternative). There exist constants
C e (1,00), 1,00 € (0,1) such that for all 6 € (0,0), p € (0,00), v € (0,5%),
£ € (0,(000)"%°), so € R, yo € R™™ and every S C Bp(go) the following
holds:

Let (1) tefso,s0+362p2 be a Brakke flow in C,(yo) and suppose iy, is locally
(p, S, 1,7, &)-plane-like around yo. Then (at least) one of the following two
statements holds:

1. For I := [so+0%p?, s9+26%p%] and an f € C (I x Bg‘oap(gjo),Rk), with
lip(f) < CV/3, sup|f| < C62p and

sptyts N Csysp(v0) = graph(f(t,-))
forallt e .

2. psor3s22 (Coosp(Y0)) = 0.

11.8 Remark. 1. Let C be the constant from[A.4] then the only condi-
tions on [ are I < 2 and /1 + (kC)I? < §. With slight modifications
in the proof, already /1 + (kC)I? < 2 would be enough. In particular
in the case k = 1, we can choose [ close to V3. Note that for higher [
we may need smaller §.

2. Even for Brakke flows starting from a smooth locally graphical mani-
fold this is an interesting result, as it is not clear that such flows stay
graphical at all.

3. Both alternatives can be true for the same flow, for example if the flow
first becomes graphical and then vanishes abruptly. Actually this is the
only example we can think of.
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Proof. We may assume yg = 0. Set 20 := R%G = (% +3)_1. Let 0 € (0, do),

p € (0,00), v € (0,87), £ € (0,(6p0)"*®), so € R and S C B(0) be given.
First we want to establish a height bound. As ug, is locally (p,S,1,7,§)-
plane-like we can use Lemma with yo =0 and 7 =9 3 to obtain

<spt,ut N 05(0)) c {z € Cu(0) : |mge(w)] < (16067 + ’y)p} (11.8)

for all t € [s9-+CE27 p?, 59+3052p?], where we used 62 < (16n)~! and 62 > 302,
as 0 < &g for &y small enough. Here we had to extend the Brakke flow by
setting pu; = 0 for all t € (to+36%p?, 5%p2], to use Lemma with our choice
of 7. Consider some constant Ag € (1, 00), which we will fix later depending
only on n and k. Set

RO = (2A0)_%(5p

and use £% < §p02, v < 82 to obtain

(Sptut N 05(0)) c {x € By (0) : ()] < 02\/A_05R0} (11.9)

for all ¢ € [sg + C100AgR2, s + 6AgR2] for constants Cy,Cy € (1,00)
Next we want to establish a measure bound. As pug, is locally (p, S, 1,7, £)-
plane-like around 0, there exists a function g € C%' (B7(0)\ S,R*) with

lip(g) < 1 and sup|g| < vp. Set G(y) := (y,9(9)), by Proposition the
Jacobian of G is bounded by

JG(7) < 1+ Cul?
for all § € B7(0). Then with (I1.1), (I1.3) and by & < 6"*° we obtain

fiso (Br(0)) < s, (Crm) \ (S X Rk)) + s (S X Rk)

11.10
< wpr™\/1 4+ C,l2 4 515" ( )

for all 7 € (0,p]. Note that v24nAgRy = (12n)"28p < p, as 6 < &, for d,
small depending on Ag. Then applying (11.10) with r = 1/24nAg Ry yields

ttso (Byamnngr, (0)) < wn(v/24nMg) " Ri\/1 + Cpl? + 66"
< Co(1+69AZ R, < CuAZ R

where we used Ry = C’nA_%cSp and [,0 < 1. Thus by Remark with
R = +/24nAyRy and k = % we can conclude

Ryt (Bary (0)) < Ry™ e (B ygangr, (0))

- (11.11)
< CoRy "ty (B mmagr, (0)) < CsA

SINE
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for all ¢ € [sg, so+6AgR2] and a constant Cs € (1, 00), where we used Ag > 1.
Consider

tl =89 + ClévoRg,
)\0 = 277174.
We want to show ju, B(112x0)r, (0) < % By choice of Ay we see (1+4X\g) Ry <
_1
20N, 20p < p, as 6 < 9y for 0y small depending on Ag. Then applying (11.10)
with 7 = (1 4+ 4X\) Ry yields
Lhso (B(HMO)RO(O)) < wn(144X0)"RiA/1 4+ Cpl2 4 66"

(14 272)\/T+ Col2RY + 6SAZ R,

where we used Ry > A, %5p and 6 < 9g. Thus for §y small depending on Ay
and [ small depending on n and k, we obtain

n 3
o™ sy (Baaro o (0)) < 5en (11.12)
There exists a cut-off function ¢ € C° (B(144x)r, (0), [0, 1]) with
B(1+4/\0)Ro (0) D) Spt¢ D) {gb = 1} D) B(1+2)\0)R0<0) (11.13)

and sup |D?¢| < C,Ry?. By (3.1)) in view of Proposition and Remark
in view of sup |D?¢| < C,,Ry? we can estimate

o B0 < 0) < )+ [ 8010

S ,uso (Qb) + Cn50AO sup Mt(spt¢)

tE[SO,tl}

< sy (B(i4aro)ro (0)) + CrdoAo sup  pu(Bi+aro) ko (0)),

tG[SQ,tl]

where we used t; — so = C16AgR2 and (11.13)). By choice of Ay we have
(14 4X)Ro < 2Ry and for §; small enough we have ¢; < 6AgR2. Then with

(11.11)) and (11.12)) we obtain

_n 3 7
Ry :utl(B(lJrQ)\o)Ro(O)) < an +C, (50A1+2 <

“wn < (2= No)wn,  (11.14)

|

where we used Ay = 27"* and we chose J;, small depending on A,

160



If we would have a lower bound on py, 55,52 (Bro(0)), then we could
apply the local regularity theorem. Let gz be the constant from Lemma
We set

A= min{)\o,wgl(8nqm)—%}7
t2 = So + 6AOR3 — (87?,)71R3

Case 1: Suppose

Ry" e, (Br,(0)) > Awy,. (11.15)

Then we can apply Theorem [8.4] for our flow restricted to Bag, with R = Ry,
a =1t =50+ Ci10g\oR3, t» = so + 6AR; — (8n) 'R, M = C3A¢ and

h = Cyv/Agd. To see this let A depending on n and k and hg depending
on Ay be from Theorem [8.4] corresponding to our choice of A and M. Note

that as A < )y, estimate implies by choice of M and @
combined with imply . Moreover our height estimate @
implies (8.103)), which also uses £ > (1 + 20)(2A0)"20p = (1 + 2\ Ry, as
0 < dg for §p small depending on Ag. Furthermore if Ag > A we can estimate

t1 + ARS = t() + (015§A0 + A)RS S So + 2A0R§ = So + 52p

tg — AR% = Sg + (6A0 —A— (Sn)*l)Rg > So + 4A0R8 = S9 + 252p,
where we used Ry = (2A0)’%5p, Ag > 1 and ¢y small depending on n and
k. Thus we choose Ay > A and §p < C5 Qh%Aa ! then Theorem yields a

smooth function f € C* (I x Cyg,(0),R¥), with lip(f) < Crnv/Aod, sup | f| <
Cn\/ A05R0 and

sptus N Crr,(0) N Bag, (0) = graph(f(t,-))

for all ¢ € I. Here the intersection with Bag,(0) is because we had to restrict
our flow. Actually this intersection is obsolete as in view of (11.9) we see
that

spt: N C)\RQ (0) C BQRO (0),

where we used Ry = (QA)’%ép < 2%, A < 1and § < ¢ for §y small
depending on Ag. As Ry = (2A0)_%(5p we can choose dp small and C' large
enough depending on Ag and X to establish the result in this case.

Case 2: Suppose

R()_n:utz (BRO (0)) < )‘WN'
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Then we can use Lemma with R = r = Ry, tg = o = 8o + 6AgR2 —
(8n)"'R2, zo = 0 and n = A\w, to obtain

et (BR(t)<O)) =0 (11.16)
for all t € [ty + Cn(Aw,)? B2, 5o + 6AgRZ], where R(t) = /R — 4n(t — ty).

By choice of A and t5, we have
ty + G Awn)* RS <ty — (8n)~! = s + 6A RS
Thus ((11.16) holds for ¢ = sg + 6AqR3 and

R(so + 6AgRy) =/ RZ —27'R2 > 27'R,.
As Ry = (2A)_%5p > 2000p for oy small depending on A, this establishes
Hagsas2y (Basysp(0)) = 0. (11.17)
In view of we see that
SPtLtso+352p2 N Ciysp(0) C Basysp(0),

where we used Ry = (2A)’%5p and § < §, for dy small depending on Ag. So
(11.17)) establishes the second alternative of our statement. O]

The main drawback of Theorem [11.7] is that one only gets regularity, if
one can exclude the appearance of empty cylinders, that is cylinders which
do not contain the flow. A theorem in [WI] can help overcome this problem
under certain conditions. There White describes the topological changes that
may appear for a level set flow.

11.9 Definition. Consider t; € R, ty € (t;,00). For a Brakke flow B =
(11¢)tefr to) In R™HT set

M(B) = {(t,x) € [t1,to) x R"™ 12 € sptut} .
For an integral n-varifold u set
B(11) == {(tte)refer o), Brakke flow in R"™! with p,, = p} .

A closed subset M C [t1,ts] x R is called a level set flow in R if there
exists an integral n-varifold p such that
M= ] M(B).
BeB(u)

A Brakke flow B = ()seft, 1) iIn R"*! corresponds to a level set flow if M(B)
is a level set flow.
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11.10 Theorem (Topological Change For Level Set Flow,[W1l 5.2]). Con-
sider t1 € R and ty € (t1,00). Let M be a closed subset of space-time
[t1,t2] x R™™ and let W be its complement. For s, sy, sy € [t1, 1] set

Wis] :={(t,z) e W:t=s},
Wis1, so] :={(t,z) e W:s1 <t <sa}.

Suppose M is a level set flow, then the following holds: If X and Y are in
different connected components of Wlt|, then they are in different connected
components of W{ty, to].

11.11 Remark. 1. Note that the level set flow is only defined in the case
of co-dimension one.

2. For conditions implying that a Brakke flow corresponds to a level set
flow, see [I, 11.4].

11.12 Definition. Consider a subset U C R™ for some m € N. We say two
points a,b € U are path connected in U, if there exists a continuous function
v :[0,1] = U with v(0) = a and (1) = b.

Consider an integral n-varifold p in R*™! and a,b € R"™ \ sptu. We say
an integral n-varifold p separates a and b, if a and b are not path connected
in R™™\ sptu

11.13 Corollary. There exist constants C' € (1,00), [,0¢ € (0,1) such that
for all 6 € (0,8), p,T € (0,00), v € (0,62), £ € (0,8,6"6), sy € R,
yo € R" and every S C B}(fo) the following holds:

Let (f1¢)te[so,s0+352p2 be a Brakke flow in R™ x [-I",T'] that corresponds to
a level set flow. Suppose ps, is locally (p, S, 1,7, &)-plane-like around yo and
separates (Yo, —2I") and (yo, 2I").

Then for I = [sq + 0%p?, 5o + 20%p?] and r := 8y0p there exists a smooth
function f € C* (I x B™M{o), R¥), with lip(f) < CVG, sup |f] < C62p and

sptiue N C(yo) = graph(f(z,-))
forallt e 1.

Proof. By Theorem applied to u; L Cr(yo) we immediately obtain the
result or

Msq+352p2 (Cﬁoép(yO)) = 07 (1118)

which we will lead to a contradiction.
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Let a := (g9, —2I") and b := (go,2I"), by we see, that a and b
are path connected in R™*! \ sptyiei352,2. In particular (s + 30%p% a) and
(so + 36%p?,b) belong to the same connected component of W(sy + 362p?].
As the whole flow is contained in R™ x [-T',T'] we have (so + 36%p?, a) is
connected to (sg,a) and (so + 36%p?,b) is connected to (sg,b) in W{sg, so +
36%p%, thus (sg,a) and (sg,b) belong to the same connected component of
W (so, o + 36%p*]. As the Brakke flow corresponds to a level set flow we can
use Theorem to obtain that a and b are path connected in R™ ™\ sptys,
as well. This contradicts the fact that p,, separates a and b. O

Now we want to transfer our local results to Brakke flows that are defined
in all of R,

11.14 Definition. Let [,I',= € [0,00) and S C R™. An integral n-varifold
p in R"** is called globally (S,1,T,Z)-plane-like, if there exists a function
f € CO1 (R S, RV) with

sptu\ (S x R¥) = graph(f), (11.19)
such that the following assumptions are satisfied:

lip(f) <1, sup|f| <T, (11.20)
sup p ((Bp(9) N S) x R¥) <ZR™! VR € [E,00). (11.21)

gER

A manifold M, is called globally (5,1, T, Z)-plane-like, if the associated mea-
sure p; = "L M, is globally (5,1, T, 2)-plane-like.

11.15 Remark. 1. Let [,T',Z € [0,00) and S C R™. Suppose u is glob-
ally (S,1,T',Z)-plane-like. For p € [Z,00) and § € R" estimate

p((Bp(5) N S) x RF) <=Zp"t < p~'=p",

where we used p > Z and (11.21)). This implies that u is locally
(p, Bi(y) N S, 1, p~'T, p~'E)-plane-like around every y € R™ x {0}*.

2. For an integral n-varifold g an S C R™ with p(S x R¥) € [0, 00), we
can set M := u(S x R¥) and estimate

sup p ((Ba(5) NS) x R¥) < (S x R*) = M#» < V/MR"

yeR™

forall R € [V/M,00) and all § € R™. So ([11.21)) is verified for = > /M.
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3. Property ({11.21]) basically says that .S is n — 1-dimensional and p does
not concentrate in S x R¥. In particular (11.21)) can hold although
u(S x R¥) = oo.

11.16 Lemma. There exists a C' € (1,00) such that for all I,T',= € [0, 00),
T € [CZ?,00) and S C R™ the following holds: Let ()i be a Brakke
flow in R" k. Suppose g is globally (S,1,T, Z)-plane-like, then

sptpy C {o € R" ¢ |mpi(2)| < CE+ T} (11.22)

for allt € [C=2,T]

Proof. We want to apply Lemma [11.6, Set 0 = —%, let p € [Z,00) and

y € R" x {0}*. By Remark 11.15. we have yo is (p, B ()N S, 1, p~'T, p~'Z)-
plane-like around y. Thus we can use Lemma with sg = 0, yo = v,
v=p T, £ =p'Z and 7 = (32n)"! to obtain a C; € (1,00) such that

(spuenC4) < {2 € G40 et < (54078 o}

for all t € [C1Z%p~2772 (32n)71p?], if T > (32n)~'p%. Now choose p :=
(32nC} )27 2 = (32nC )2 H12E € [, 00), this yields

(Sptutl N, (y)) c {x € Culy) : |mes ()] < (320Cy) ™22 + r}

for t; := (32n)7'p? = (32n)71(32nCy )" TH=2 if T > (32n)71(32nC) ) n 2422,
Thus for C' := (32nC})*2* and as y was arbitrary, we obtain a global slab
bound at time t;

sptuy, C {z € R |mpe(z)] < CE+ T},

where we used v/C < C. Now we can use that a global slab bound is
maintained forever. Namely use Lemma . with to =T, g = £(C=E +
INe,t; and v = te,y; for all j € {1,...,k}. This establishes the result as
t < C=2 O

11.17 Proposition. For every € € (0,1) there exist A € (1,00), [ € (0,1)
such that, for all R € (0,00), I';Z € (0, R], so € R and S C R™ the following
holds: Let (f1t)ie[so,s0+3ar2] be a Brakke flow in in R"* with pg, is globally
(S,1,T',2)-plane-like. Then (at least) one of the following two statements
holds:
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1. ForI = [so+AR?, so+2AR?) there exists an f € C* (I x R",R*) with
lipf <€ and

sptu, = graph(f(t,-))
forallt e 1.
2. There exists a y € R™* with tso+sarz (Cr(y)) =0

Proof. We may assume sy = 0. Take &,/ € (0,1) from Theorem [11.7} For
d € (0, 0] set
p = 672n712R

and let y € R x {0}*, then as Z < R < p and 0 < 1 we can use Re-
mark to see that pg is locally (p, B} (7) N S, 1, §2n 12 §2n12) _plane-
like around y. Thus for every y € R" x {0}* we can use Theorem , which
leads to one of the following two alternatives

Alternative 1:
For Iy = [§2p?%,26%p?], for every y € R™ x {0}F there exists a smooth function
fy € O (I x Csys,(y), RF) with lip(f,) < C,,V/8 and p,NCj2,(y) for all t € 1.
Then all these functions have to be parts of just one function f defined on
all R™ with graph(f(¢,-)) = sptu; for all t € I.

Alternative 2:
There exists a y € R™ x {0}* such that pssz,2 (Csys,(y)) = 0.

Now fix § small enough depending on € such that lip(f,) < e. Then we
can choose A = §~4""22 to establish the result. dyép > R as § < &y and by
definition of p. 0
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12 Graphical Hypersurfaces

Here we want to apply the results from the previous section to smooth mean
curvature flow of hypersurfaces in R**1.

It turns out that for smooth mean curvature flow in a sufficiently narrow
slab the gradient decreases. This will be used in the proof of Proposition
12.13] which is similar to Theorem [I1.7, but without the small bound on the
Lipschitz constant of the starting surface. To compensate for this we have
to assume that the flow stays plane-like for a certain time. The key result
here is Theorem [12.11] which says that a graphical representation can be
extended to later times and additionally yields, that the Lipschitz constant
of the extended graphical representation is small, if the flow lies in a narrow
enough slab. This is a consequence of White’s smooth regularity theorem
12.8] where the idea to use this was suggested to the author by Felix Schulze.

Recall the following definitions:

12.1 Definition. For an open subset {2 C R" consider an embedding F' €
C? (Q,R") and M = F(Q). Let v € C? (M,R"™) be a normal field on M.
For p € Q and = = F(p) we define:

1. The first fundamental form g(p) € R™*" by

95(0) = 5 F(0) - 5 F(p)

9"(0) = (97" (),

forallpe Qand all 1 <1i,5 <n.

2. The second fundamental form A(z) : R™*" by

Asla) = 5 () (o),

Al(z) = Z 9" (p) A (),
=1

IA()[* := ) Aj(2) Al (2)

ij=1
forallz € M and all 1 <1,j <n.

3. At points © € M where v(z) - e,11 # 0 we set
v(w) = (@) - enir)
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12.2 Remark. In the above setting with F(9) = (g,
C?(Q,R), we have for all w € R", § € Q and y = F(§

v(y) = V1+[Df(@)P
D2 (@) < (1+ DF@)P)* 1AW)]-

For a proof see for example [CM| 4.1]

g)] f(g)) for some f €

The following elementary results show that small curvature of M yields
bounds on the first two derivatives of parametrisations of M over its tangent
space. The next statement can be found in [CM| 2.4], which we formulate
slightly differently, as we do not use intrinsic balls.

12.3 Proposition ([CM] 2.4]). There exist C € (1,00) and €y € (0,1) such
that, for every e € (0, €] and every R € (0,00) the following holds: Let M be
an embedded C*-hypersurface in R" with 0 € M and TyM = R™. Suppose
M satisfies OM N Bar(0) = 0 and

sup ||A|| <eR7! (12.1)
MnNBzr(0)

Then there exists a g € C* (B%(0),R) with graph(g) C M and

9(0) =0, Dg(0) =0, (12.2)
max{R ™" sup |g|,sup|Dg|, Rsup |D?*g|} < Ce. (12.3)

Proof. Consider radii » € (0, R), such an r is called proper, if there exists
a g- € C*(B;(0),R) with g,(0) = 0, Dg,(0) = 0, graph(g,) C M and
E(g.) < be, where
E(g) := max{R™"sup|g|,sup|Dg|, Rsup|D*g|}.
Consider the set
I:={r € (0,R]:ris proper}

By Proposition and Remark there exist ro and g,, € C* (B%(0),R)
with ¢,,(0) = 0, Dg,,(0) = 0 and graph(g,,) C M. Then by Remark
and by (12.1)) we can estimate

| D%, (0)] < eR™

and by continuity we can choose 79 a bit smaller, such that E(g,,) < 2e.
Thus there exists an rg € 1.
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Let (7m)men be a sequence in I with r,,, — r € (0, R], we want to show r €
I. Let g, be the corresponding functions. As g,,(0) = 0 and graph(g,,) C M
for all m € N, we have

Ima (@) = Gma (ﬁ)

for all gy € B2(0), 7 = min{ry,,,rm,} for all my,ms € N. Then for every
y € BJ'(0) there exists m € N with g € B} (0). Set g, := gm(y), which
is well defined by above considerations. As E(g,,) < b5e for all m we have
E(gr) < 5e. By ¢»(0) = 0 and Dg,,(0) = 0 for all m also ¢,.(0) = 0 and
Dg,(0) = 0. Furthermore as graph(g,,) C M for all m and as M is closed,
we have graph(f,) C M. Thus r is proper.

Now we want to show [ is also open (relative in (0, R]). As (0, R] is
connected, this would establish the result.

Fix r € I. There exists a function g, € C?(B"(0),R) with g.(0) = 0,
Dg,(0) =0, graph(g,) C M and E(g,) < be. Let x € 0 (graph(g,)) N M. As
e < €, we can estimate |g.(z)] < E(g,)r < 5er < r, for ¢g < 57'. Then we
have x € Byg(0) and as M contains no boundary points in Bsg(0), we know
x is an inner point of M. Also as z is close to graph(g,) the normal cannot
be perpendicular, so

||7TR" - 7T-ch]W”op <1

Thus we can use Proposition and Remark [A.T72] to obtain a small
0, such that, M N Bs, (z) can be written as a graph over R™. Then as
x € 0 (graph(g,)) N M was arbitrary and by compactness of J (graph(g,))
there exists a small § € (0, 1), such that g, can be extended to some g, €
C? (B!,5(0),R) with

graph(g,.s) C M.

It remains to show that E(g,+5) < be. To do this we will show that E(g,)
is actually bounded by 4e R~ which then yields E(g,,s) < 5e for small 6.
By Remark we have

3
[D?g: (4] < (1 +[Dg()1*)* [[Aw)|
for all g € B*(0). Then E(g,) < 5e and ([12.1]) yield
’DQgT'(Zﬂ S 4€R717

for all § € B"(0), where we used |Dg(3)| < 5e < 1, as € < ¢y for ¢g < 571
Using ¢,(0) =0, Dg,(0) = 0 and the mean value formula we obtain

|Dgr(?j| S 4€a |gr(?)| S 4eR
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for all y € BJ*(0). Thus E(g,) < 4e, which yields E(g,1s) < Be, for ¢ small
enough.

So [ is open (relative in (0, R]) and as (0, R] is connected this establishes
the result. O

In the case where M = grap(f) Proposition can be used to show
that the tilt of the tangent space yields a lower bound on the radius of the
cylinder in which one can parametrize over the tangent space.

12.4 Corollary. There exist C € (1,00) and €y € (0,1) such that, for all
€ € (0,6), R,L € (0,00) and every xy € R™ the following holds: Let
[ € C*(Bys(z),R) with (o, f(i0)) = zo and |Df(%)| < L. Suppose M =
graph(f) satisfies

sup [|[A|| < eR71.
M

Let (b;)1<i<n be an orthonormal basis of T,,M. Then there exists a local
parametrisation g € C* (B%(0),R) with g(0) =0 and

r = 7, m(2) + g (73) v(20) + T0 (12.4)
Z@ibi +9(@)v(zo) +xo € M (12.5)

for all x € M N C,(z) and all § € BE(0), where xp, ==Y, ((x — x0) - b;) €
and r = (2(1 + L2))"2R. Furthermore g satisfies

9(0) =0, Dg(0) =0, (12.6)

max { R~"sup |g| + sup | Dg| + Rsup |D?*g|} < Ce. (12.7)

Proof. Define S € SO(n + 1) by
S(z) = Z xib; + Tpv (o).
i=1

Then S(R™) = TyM and S(e,t1) = v(xo).
Let ¢y be from Proposition As e < ¢y we can apply Proposition [12.3
to the manifold S~ (M — x¢) to obtain a function g € C? (B%(0),R), which

satisfies (12.6)), (12.7) and graph(g) C S™'(M — x¢). In particular

S(9:9(9) + w0 =Y Gibs + g(§)v(wo) + w0 € M (12.8)
=1
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for all g € B(0). This already verifies (12.5]).
Set N := S(graph(g)) + x¢, we know N C M and want to show M N
C.(0) C N for r* = (2(1 + L*))"'R% Consider the set

Y = {j € B&0): (3.£() € N}.

As g(0) =0 we see g € N, so o € Y. Consider y € Y, as y = (9, f(y)) we
have

||7TRn — ﬂ-TyM”op < 1.

Thus we can use Proposition and Remark [A.17)2] to obtain a ¢ such
that Bf(y) N B!'(zo) C Y. This shows that Y is relatively open in BJ*(0),
and as B'(0) is connected it suffices to show Y is relatively closed to obtain
Y = B?(0) and thus the result.

Consider a sequence (¥, )men in Y with im, o 9m = o, o € Bl(Z).
For m € N set y, := (Um, f(Jm)), we want to exclude the case that (y,,)
converges to a point in dN. For m € N we know ¢, € Y, so there exists
Wy, € BE(0) such that

Ym = S(wnag(wm)) + Zg.
For w,, we can estimate
[ |* < (W, g (10 = 1S (Wi, (0 )) [P = Yo — 0|
= [Gm — Zol* + [f (Gm) — 20 - €nia[* <72 4+ |f(Gm) — f(&0)[”

for all m € N, where we used f(Zg) = x¢ - €,.1 and g, € N C B'(Z9). Then

we can use the mean value formula and |Df(Zo)| < L, to obtain
R2
[t * < 7%+ D f(30) [ — Fol* < (14 L?)r* = =

for all m € N, where we used 2 = (2(1 + L?))"'R?. Thus a subsequence of
the 1, converges to some wy € B%(%g). In particular g(wy) is defined. By

continuity of f and g we can conclude
(9o, f(@0)) = Tim g = lim S(in, g(m)) + z0 = S(to, (i) + o,
so (9o, f(Y0)) € N, which shows that Y is closed in B'(Zy). As we already

showed Y is open, non-empty and BJ'(0) is connected this establishes the
result. O
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Also for manifolds in a narrow slab Proposition [12.3|can be used to obtain
a tilt bound from small curvature.

12.5 Corollary. There exist C € (1,00) and ¢, € (0,1) such that, for all
€ € (0,¢1], R € (0,00) and every xy € R™ the following holds: Let M be an
embedded C?-hypersurface in R with xo € M and

M CR" X [xg- €41 — €R, xg - €,11 + €R)]. (12.9)
Suppose M also satisfies OM N Cag(xo) =0 and
sup || A(2)]| < eR7. (12.10)
MNCar(x0)

Then ‘ﬂ'TIOM — WRn‘ < Ce.

Proof. Let (b;)1<i<n be an orthonormal basis of T,, M. Define S € SO(n+1)
by

S(x) = Z xib; + xp v (o).
i=1

Then S(R™) = T,,M and S(e,+1) = v(xo).

Let €y be from Proposition [12.3] Let €; < €, then we can apply Proposi-
tion[12.3]to the manifold S~ (M —x), to obtain a function g € C? (By(0), R)
with g(0) = 0, sup |g| < C,eR and graph(g) C S~'(M — ). In particular

S, 9(0) +xo =Y _ ibi + g(§)v(we) + 30 € M (12.11)
=1

for all y € B%(0).
Fori e {1,...,n} and r = £ define w; € R" x {0}* by

w; = re (S (re;, g(re;))) = mrn (rb; + g(re;)v(zo)) .
Then we can estimate

rb; — wi| < |g(re;)v(xo)| + |rbi + g(rei)v(zo) — wil

= |g(re;)| + [S (re;, g(re;)) - ental.
By (12.11)) we have S (re;, g(re;)) + xo € M, so by the slap condition ((12.9)
and with sup |g| < CeR, we obtain
|rb; — w;| < Crer

for all i € {1,...,n}, where we used r = %. Now set w; := r~'w; for
i =1,...,n. Then |b; — w;| < Cpe. In particular as € < € for ¢ small
enough the w; form a basis of R”. Then Lemma [A.T0]2] with 7" = R" and

B =T,,M establishes the result. [
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We want to show: If (M) is a smooth mean curvature flow (see Definition
which is graphical inside a cylinder for a long period of time, then it
stays graphical in a much smaller cylinder for a little longer. To do so we
need local gradient and curvature estimates established in [EH2|, see also
[E4].

12.6 Proposition ([EH2, 2.1)). Let R, T € (0,00), to € R, zy € R""!
and (My)iejtoto+1) be a smooth mean curvature flow in R, Suppose for
t € [to, to+ (2n) "' R?] we have that v is well-defined inside B\/i(:vo)

R2—-2n(s—to)
for all s € [to,t]. Then the estimate

— o+ 2n(t — ¢
v(x) <1 _ o=l +2 n( 0)) < sup w
R MtoﬂBR(Io)

holds for all x € My N B R2_2n(t_t0)(a:0).

12.7 Proposition ([EH2, 3.1]). There exists C' € (1,00) such that for all
R € (0,00), the following holds: Let (M;)ic[-ar2,0) be a smooth mean curva-
ture flow in R" such that

Mt N CQR(O) N BgR(O) = graph(ft)
for some f; : Byn(0) = R for all t € [-4R?,0]. Then the estimate
| 4@, Fi@)° < C (¢ +4R) ™ + R7?) sup vs(#, fo(#))"

(5,2)€[—4R2 1] x BJy (0)
holds for all & € B%(0) and all t € (—4R?,0].

The main ingredient to sustain the graphical representability of (M) is
the regularity result by White from [W4]. The version presented here is taken
from [E4, 5.6]

12.8 Theorem ([W4]). There exist constants ¢ € (0,1) and C € (1,00)
such that for all R € (0,00), ty € R and xo € R™™* the following holds: Let
(My)ieito—sr2,1) be a smooth mean curvature flow in R"*1. Suppose xy € M,
and for some p € (2R, 00)

/M Plsa)Plsyp S 1+ (12.12)

for all (s,x) € [to — 4R? to] X Bogr(wg) and t € [s — 4R?,s). Then

|Ai(z)]| < CR™ (12.13)
forallt € [to—R? to] and x € MyNBg(xg). Here ® and ¢ are from Definition
i

173



Using these results we can prove, that graphical representation for a long
time on a large region implies curvature bounds on a smaller region for a
shorter time period. This new time period where the curvature is bounded
exceeds the time where we assumed a graphical representation.

12.9 Lemma. There exists a C € (1,00) such that, for all L € [1,00),
r € (0,00), t1 € R the following holds: Let (M;)ic, —c216r2,4,442) be an em-
bedded mean curvature flow in R"*. Suppose there exists an f € C*([t; —
C?L%2, 1] x Bp;5,(0),R) with sup |Df| < L and

graph(f(t,-)) = My N Ceps,(0) V€ [t — CPLO? 1] (12.14)
Then
sup || A(2)|| <7t VE€E [t =Pt + 7. (12.15)
z€M:NB;(0)

Proof. We may assume t; = 0. As |Du| < L we have v < 2L, thus Proposi-
tion with R = 27 1CL3r yields

||At(ii‘, ft(f))||2 < Cn ((t + CZLGTQ)_l + C_QL_GT_2> L4
for all # € B} ,;5,(0) and all t € (—C2L52,0]. Tn particular this implics
14:(2, fo(2))|| < C,C7 'L~}

for all & € By i.;5,(0) and all ¢ € (—27'C%L%2,0]. Consider a v € (0,1)
which we will choose small depending only on n. Set

Ry=~"'r and p=~""r
We can choose C' large enough depending on v such that

1A, fe(@)I < y(Lp) ™" (12.16)

for all & € B, (0) and all t € (=8Rg, 0], where we estimated L? > L > 1.

We want to use Theorem with tg = 7%, 29 = 0, R = Ry = v r
and p = v72r, so consider arbitrary (s,z) € (r* — 4R% r?] x Bg,(0) and
t € (s—4R?%, s). We want to verify (12.12). Set 7 = ¢ —r? then 7 € (—8R3, 0]
and by the monotonicity formula (]6_—2[) we can estimate

/ (I)(s,a:)ﬁp(s,x),p < / (I)(S,x)(p(s,x),p- (1217)
My M~
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By choice of s, 7, r = YRy = v%p and by definition of ¢ (see Definition
we can estimate

2n(s — 1) < 2n(4R2 +r?) < 10nyp < p,
thus spty(sq),»(t,-) C Boy(x) C Byy(0) and
SUP [9(s,0),p(7, )| < (14 10n7)* <1+ Cy,
where we chose v small depending on n. Then yields
/ Qs 0)P(sa)p < (14 CM)/ D (,2)dftr- (12.18)
M By (0)

As 7 € (—8R?,0] and as we have small curvature at this time, one would
expect the heat kernel integral on the right hand side of to be lower
than 1+ ¢ as in (12.12)), this will be shown next.

In view of for v small enough we can use Corollary for the
manifold M L Ci61,(0) and with R = 8Lp, € = 8y, xp = 0 to obtain a
parametrisation g, € C? (Bg;,(0),R) with

g-(0) =0, Dg,(0)=0, sup|D?*g.|<C,yL 'p* (12.19)
and
Z x - b;)b; + g- (), (0) (12.20)
i=1
for all x € M, N Cy,(0), where (b;);=1,.., is an orthonormal basis of Ty M,
zy =y o (x-b;)e; and VT( ) is the normal pointing upwards. Here we

estimated 7 = (2(1 + L?)~2R > (4L%)~28Lp = 4p, where we used L > 1. In
view of (12.19) the mean value formula yields

sup /1+|Dg,|> < 1+ C,L242. (12.21)
Bi,(0)

Using (|12.20]), we can calculate

/ P (s,2)dpir :/ D, (warg- (@) (75 (U, 9-(9))) T g+ (9)dL" (9).
Bu,(0) B™ (0)

In view of the definition of the Jacobian in co-dimension one we obtain with

(12.21)) and by definition of ® (see Definition
/ ( )(I) sx)dMT > Sup V I+ |D9T|2/ (s,(zq 0) ()))dj”(g)
Bap(0

< \/1 +OnL_2’72 <14 Cyy°,
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where we used L > 1 and C,7? < 1 for  small enough. Then (12.18)) yields

/M D (50)P(s0)p < (14 Coy)(1+ Coy?)
t

and for v small enough this implies (12.12). Then Theorem m yields
| A¢(2)]| < CuRyg"

for all t € [r? — R2,7?] and x € M; N Bg,(0). Now as r = yR, we can choose
~ small to establish the result. O

We want to use this to show that we actually can expand the graphical
representation to later times. We will need the following smoothness estimate
from [E4, 3.22]:

12.10 Proposition. Fore every Cy € (1,00) there exists a Cy € (1,00) such
that for all R € (0,00), to € R the following holds: Let (M)scit,—ar ) be a
smooth mean curvature flow in R**. If

|Au@)]* < CoR™2
for all v € M; N Byp(0) and t € [tg — 4R?, ty], then
VM At 2)||* < CLR™
holds for all x € M, N Br(0) and t € [ty — R?, ).

12.11 Theorem (Staying Graphical). There exists a C' € (1,00) such that
for all L € [1,00), p,T € (0,00), s € R and a = (a,a,.1) € R" the follow-
ing holds: Let (My)ielsg—c218p2,50+p2 be an embedded mean curvature flow in

R, Suppose there exists an f € C™ ([30 — C?L8p?%, 5] % BgL4p(d)> with
sup |Df| < L, sup |f — any1| < T and

graph(f(t,-)) = My N Cepapla) VE € [so — C*L¥p?, 0] - (12.22)

Then there exists a g € C™ ([so — p?, 50 + p?] X By(a)) with sup |g — aniq] <
I'+p and

graph(g(t,-)) = M; N C,(a) Vt € [so— p*, 50+ p’] . (12.23)

Also g satisfies

v 1+4sup|Dgl? < 24/1+sup|Df|% (12.24)

If in addition T < L™1p, then sup|Dg| < CL%.
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Proof. We may assume a = 0 and sp = 0. Let M; = ¢;(N) for an n-
dimensional manifold N and a smooth family of embeddings ¢, = ¢(¢,-) :
N — R"**_ For given p € (0,00) set

Ro = (2v/n +4)p.
Let € Cg,(0). For C large enough we see that
Bianrap(x) C Copay(0).

As My N Cepa,(0) C R™ x [-T',T'] we can use Lemma with ty = —p?,
zo = (2,0) £ Te, 1, v=te, 1, R=12nL% and § = (12n) 'L~ to obtain
M, N Bgppa,(x) CR" x [-T'— L™, T + L™p]

for all t € [—p?, p?] and all z € Cg,(0). Thus
M; N Cpry(0) CR" x [-T' — L™*p,T + L™ *p] (12.25)

for all t € [—p?, p?].
Let C; be from Proposition [12.10| for Cy = 27!. By Lemma with
r =8C?LR, and t; = p*> — r* we obtain

-1

| A ()|] < (8CTLRy)

for all ¢ € [p* — 2(8CTLRy)? p?] and x € M; N Cyczpp,(0). Here we had to
choose C' big depending on C; and the constant from Lemma [12.9. Then
Proposition [12.10| with R = 4C?LRy and ty = p? yields

[ )| < (L)

for all t € [p* — 4C{LRg, p*] and x € M; N Cyc215,(0). This implies bounds
on the mean curvature as well, so we have

-1

|A(t, z)|| < (LRy) (12.26)
|V A(t, z)|| < (LRo)™ (12.27)
|H(z)| < (LRo)™ (12.28)
VM H (z)| < (LRy)™> (12.29)

for all ¢ € [—p?, p?] and = € M; N Cyp,(0). Here we estimated C; > 1 and
R > 2p%.

Temporarily fix z € M, N Cg,(0), s € [—p?, p?] then there exists p € N
with ¢(s,p) = z. We want to show

o(t,p) € C3r,(0) (12.30)
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for all t € [—p?, s]. Set

[:{TEP&JL¢@M€C@NDVtGhﬂ}

By definition of p and by continuity of ¢, we have that I is non-empty and
closed. Consider 7 € I then by integrating (3.18]) and using (12.28)), we can

estimate
wvmw¢@mns/ﬂHw@mWﬁs@—ﬂuﬂw1SRm

where we used s — 7 < 2p> < R2 and L > 1. As ¢(s,p) € Cg,(0) we see
o(T,p) € Car,(0), so continuity of ¢ implies that I is relative open. Thus,
as [—p?, s] is connected we have I = [—p?, s|. This establishes (12.30). The
bound on Df yields v(¢(—p?,p)) < 2L, so

v (S p)) - enss = (0(6(—p%p)) " = (2L) 7. (12.31)

From Huisken [HI] we know ZLuv(¢(t,p)) = VM H(¢(t,p)), so in view of
(12.30), we can use ((12.29)), to estimate

S

rle) =gl = [ V()| di

,p2

< (s+p) (LRo)* < (4L)7,

where we used s + p? < 2p* < 47'RZ and L > 1. So in view of (12.31)) we
showed |vy(z) - €,41] > (4L71) and by Proposition this yields

|77, a1, — TR [lop < 1 (12.32)

for all z € M, N Cg,(0), s € [—p?, p?.

Temporary fix s € [—p?, p?]. As the normal always has a non-zero e,, -
component everywhere in Cg,(0), we obtain that the number of sheets has
to be constant there, so

N(g) = t{x € M, {§} x [-T = p,T + pl} = mg (12.33)

for every § € Bj, (0) for a fixed my € NU {0}. This we want to prove now.
First note that the height bound I' + R in is no restriction, as by
and L > 1, we have M, N Cg,(0) C B (0) x [-I'—p, " + p].

We observe that N () has to be finite. To see this note that {g} x [-I" —
p, T+ p| is bounded. Also in view of (12.32)), we can use Proposition to
see that the x in N(7) have to be discrete, so N(y) has to be finite for every
y € Bg,(0).
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For m € NU {0} consider the set
Y (m) = {g§ € BE,(0): N(§) =m}.

We want to show that Y'(m) is open and closed for every m thus N(g) would
have to be constant.

To show that Y (m) is open let § € Y(m). Then there exist different
T1,. . T € {G} X [T — p, T + p] with z; € M,. In view of (12.32), we can
use Proposition to obtain an r; > 0 and a function g; € C™ (B, (2;))
with g(&;) = x;, such that

z = (&,9:(%)) (12.34)
(0,9:(0)) € M (12.35)

for all z € Bo,,(2;) and for all o € By, (). To see this use Proposition
with S = Id, xy = z; and ¢;(0) = g(0 — ;) + 2.
Now consider the set

W= {9} x ([_F —p, I +p]\ U(ﬂfz “€pq1 — 21, Ty €pqr + 27"i)> .

i=1

This describes all the points on the {g}-axis, which are certainly away from
the z;. By choice of the z; we see that W N M, = (0, so as M, is closed for
every € W there exists a radius 7, such that B; (z) N M, = 0. As W is
compact we find an 7 € (0, 1) such that Bs(xz) N M, = 0 for all z € W. Then
by definition of W we have

M, 0 C5((9,0)) \ U By, (1) = 0. (12.36)

Set r = min{7,r1,..., 7y}, by (12.34), (12.35) and ((12.36]) we see
N(z)=m

for all & € B(y), this implies Y (m) is open for every m € N U {0}.

Now let § ¢ Y (m), then § € Y (m) for some m # m. But as we just
showed there exists an r € (0,1) such that N(z) = m for all £ € B'(y) thus
Y'(m) has to be closed and as Bj, (0) is connected this implies ([12.33).

Equality holds for every s € [—p? p?]. In view of assumption
(12.22) we see mg = 1 for all times s € [—p?,0]. However, the number of
sheets cannot jump, so we have my = 1 for all the times. Then M; N Ck,(0)
is a graph for all ¢t € [—p?, p?], such that we can find g as stated. Note that
g is actually defined on Bj (0) and satisfies the height bound from (12.33).
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To obtain the gradient bound (12.24]) consider x € My N C,(0), s €
[0, p*].sup By definition of Ry we have B g (z) C Cg,(0), in particular v
is well defined in M; N B /z; () for all ¢ € [0, s]. By Proposition with

to =0, x = x9 and R = v4np we can estimate

1 2
§v(m) < ou(z) (1 e ) < sup v <y/l+sup|Df|%

- 2
dnp MsyC,y, 2(0)

Then /1 + sup|Dg|? < 24/1 + sup |D f|?, where the sup of g is over the set

BJ(0). This completes the first result.
For the second part we assume

I <L 'p
Note that

sup |Dg| < 24/1+sup |Df]? < 4L. (12.37)

Let €, be from Corollary If L < 4e;!, we can estimate sup |g| < 4L <
16€; L1, thus the second result follows for C' > Ce;>.
Now suppose L > 4e;'. Consider z € M, N C3,(0), then (12.25]) and

(12.26) imply (12.9) and (12.10) with e = L™' and R = p. Here we use
Ry > pand L > 1. Then Corollary yields

|7z, — Re| < Cp L7 (12.38)

for all z € M; N C3,(0) and all ¢ € [—p?, p?]. By Proposition [A.12)[1] we can

estimate
sup |Dg(t, x)| < Cy |mr, 01, — mre| (1 +sup |Dg(t, z)])?.

Combining this with ((12.38]) we arrive at

sup |Dg(t, z)| < C,L™'(1 +sup|Dg(t, z)|). (12.39)
Now by (12.37) and (12.39) we obtain sup |Dg(t,z)| < C,. Then using
(12.39) again yields sup|Dg(t,z)| < C, L™ . O

Now recursively using Theorem [12.11] we see that the time interval for
which we obtain graphical representation can be arbitrarily large, if we start
with graphical representation in a large enough cylinder.
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12.12 Proposition. There exists a C € (1,00) such that for all Ly € [1,00),
po,To € (0,00), 7 € (0,1], tg € R, b = (b,b,11) € R*™ the following holds:
Let (Mt)te[to—Tng,to—i-pg] be an embedded mean curvature flow in R". Suppose

there exists an f € C®([ty — T2p, to] X Bg,LST,lpO(ZA)) with sup |Df| < Ly,
0
sup |f — bpt1| < Ty and

graph(f(Z,-)) = My N Cops,—1,,(b) VE € [to — 72p5, to] - (12.40)
Then exists a g € C™ ([to,to + p3] % Bgo(l;)> with sup |g — bpy1| < To + po
and
graph(g(t,-)) = M; N Cpy(b) Vt € [to, to+ pj] - (12.41)
Also g satisfies
v/1+sup|Dgf? < 2/1+sup D] (12.42)
If in addition Ty < C~7Ly°po, then sup|Dg| < Ly*.

Proof. We may assume ¢ty = 0 and b = 0. Let Gz be the constant from
Theorem [2.T1] Set

L := 4Czglo-
Choose N € N such that
Gl < N < 2Gegl®7 72, (12.43)
then set
p*i=N""pj.

The idea is to iterate the previous theorem with radius p. With each iteration
step we can continue g by a time interval of length p?, but inside a cylinder
with radius decreased by Cgrpl*p. For i € {0,..., N} set

i =27 2C L3 po — i(GrzmmL*p + V4npy). (12.44)

This will be the radius of the cylinder in which we have graphical rep-
resentation after the i-th step. By Definition of p and (|12.43) we have
Np =+V'Npo < 2Czmnl*t ' po. Then we can estimate

ri >y > 2 2CLyT py — CDQ:E]]LST_lpO —Vdnpy > po (12.45)
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for all i« € {0,..., N}, where we used L = C, Ly, Ly > 1 and we chose C
large enough.

We claim that for every i € {0,..., N} the following holds: There exists
a function g; € C™ ([(i — 2)p?,ip*] x Br(0)) with sup |g;| < T+ ip,

graph(g;(t,-)) = M; N C,,(0) Vt € [—7%p5, ip°] (12.46)

and

V14 sup|Dg;|? < 24/1+sup|Df]2. (12.47)

We will prove this by induction. For ¢« = 0 we can use gy = f L C,,, which
satisfies ([12.46)) and (|12.47)).

Now suppose our claim holds for some i € {0,..., N — 1}. In particular
by and sup | D f| < Ly we have sup |Dg;| < 4L < L. Fix an arbitrary

y € BZ+1+\/Rpo(O) x {0}. By (12.44)) we have

CQImL3P(y) C C,(0).
Also by p* = Np? and ([12.43)) we see that

ip* = Gl " 2 —77p5.
Theorem [12.11| with f = g;, I' = [y + ip, so = ip* and a = y then yields a
function g, € ([(i — 1)p% (i + 1)p?] x B2(3)) with
graph(g,(t,-)) = My N C,(y) Yt e [(i —1)p? (i +1)p?]

and as y € B"

Tit1+

~ P 2 (s 2 m
assemble them to one g € ([(z 1)p?, (i + 1)p?] x Cn+1+\/ﬂpo

\/Rpo(()) x {0} was arbitrary and the g, overlap we can
(0)) with

graph(g(t,-)) = My N C,. 4 /iy, (0) V2 € [(i = 1)p? (i + 1)p°] .

As by induction hypothesis g; is defined for all times [—7%r2, (i + 1)p?] we

obtain a g;41 € <[_7_2jo (i +1)p?] x Blg-+1+\/4RR(O)> that satisfies ((12.46))
actually on the larger cylinder Cp. /5, (0).

To verify (12.47) consider z € M, N C,,,,(0), s € [0,(¢ + 1)p*]. By

definition of r;;1 we have B g, (2) C C,, || /i, (0), in particular v is well

defined in M; N B/ (x) for all t € [0, (i + 1)p?]. By Proposition with
xr = xg, to = 0 and R = v/4np, we can estimate

1 2
§v(x) < v(z) (1 e ) < sup v <y/l+sup|Df|?

_ 5 <
4np0 MSO 0047”% (z)
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where we used s < Np? = p3. Then /1 + sup |Dg;1]> < 24/1 +sup |[Df[?,
where the sup of g;11 is over the set By (0). This completes the induction
argument and thus yields the first result.

Now suppose I'y < C~'7L;°po. By assumption (12.40) we have

Mt 2 N CCLgrflpo (0) C R" x [—Fo, Fo]

0—T2p,

Then we can use Lemma . with tg = —72p3, 1o = 0,11, v = Fe, 1,
R = CL§m 'py and § = 12nC~2L;'%7? to obtain

Mt ﬂ 327101187'71;70 (0)

o L (12.48)
CR" x [Ty — 12nC~ "Ly 7po, Lo + 12nC~" Ly "7 po)

for all t € [—72p2, —72p% + 2p3] N [—7%p%, p?]. Here we used that as Ly > 1,
7 < 1 and that for C large enough § = 12nC~2L; 72 < 67!. Then with
[y < C7'7Ly°py we can estimate

Lo+ 12nC ' Ly®7py < C,C ' LyP1py < C,C 'L p < L7 1p,

where we used Np? = pg, L = 4Ly, C, Ly > 1, and estimate (12.43). Also we
chose C large enough. Then ([12.48) yields

M;n OQ*QCLnglpo(x) C R" x [_L_lp’ L_lp]

for all t € [—7%pZ, p2], where we also used 7 < 1. Note that for r; from
(12.44)), we have r; < 272C'Lgr'p, for all i € {0,..., N}. So all the g; in the
above induction argument satisfy the bound sup|g;| < L™!p. Then in each
induction step we can additionally use the second statement of Theorem
to obtain sup |Dg;| < Grgpl ™ < Ly' for all i € {1,...,N}. This
establish the result. O

Now we can use these statements to prove new versions of Theorem [11.7

and Proposition|11.17, We start with the local result (recall Definition [11.1)).

12.13 Proposition. For every € € (0,1) there exist A\,x € (0,1) such that
for all R € (0,00), Ly € [1,00), B € (0,1], 70 € (0,8AL;°], & € (0, )],
r € (0, ALy R] ty € R, x¢, a0 € R the following holds:

Let (My)icpro—p2R2 10+3xr2) be an embedded mean curvature flow in R+
with Ute[t0752R2,t0+3/~cR2} OM; N Cop(xg) = 0. Suppose for all t € [to— B*R?, to)
we have: My is locally (R, Sy, Lo, Yo, &0)-plane-like around xqy for some S; C
B%(0) N B (ag). Then one of the following two statements holds:

183



1. For I := [ty + kR? to + 2k R?] there exists an g € C™ (I x Bix(i0)),
with lip(g) <€, sup |g| < eR and
sptie N Car(wo) = graph(g(t, -))
foralltel.

2. pgranp? (Crr(wo)) = 0.

12.14 Remark. We believe that an argumentation like in Corollary [11.13
can be used to exclude the appearance of empty cylinders as in alternative
(2). In particular a result like Theorem |[11.10|should hold for smooth mean

curvature flows as well.

Proof. We may assume to = 0 and zy = 0.

Let [ be the constant from Theorem|[11.7|we want to show that M, actually
is locally (R, S, 1,70, §)-plane-like around 0 for some small S C B}(0) and
small £. So we have to show that the Lipschitz constant is actually smaller
at least on the major part of B}(0). To see this we will use Theorem
There the statement for the smaller gradient is obtained by a small height
bound, which we have on the graphical part.

As for all t € [—R?,0] we have M, is locally (R, S;, Lo, Y0, &o)-plane-like
around 0 for some subset S; C BR(0) N B'(ag) there exists a function f €
€ ([—R2,0] x By(0) \ By (o)) with lip(f) < Lo, sup || < 7R and

My N Cr(0) \ Cy(a) = graph f(t,-) N Cr(0) \ C(ao). (12.49)
Let Cgz1q be the constant from Theorem Consider the radius
r = Gmmlo SVABR
By choice of variables the sup bound of f implies
sup | f| € YoR = ~oCmmmLiA 287 'y < CrvALy 'r1 < VAL; 'y, (12.50)

where we used 7y < SAL;°® and we chose ) small depending on Gy Con-
sider

y e B% (0) \ B',T?l_i_\/XLalR(dO) X {0}

By choice of r; we have Crglir; = \/XLglﬁR. Then by 8 <1, Ly > 1 and
for v\ < 27 we see

Cligmrin (¥) € Cr(0) \ Cr(ao).
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By choice of ri we also have —Cpliri = —B*ALy°R* > —B°R?, as
ALyt < 1. In view of (12.49) and (12.50), we can use Theorem
with a =y, s =0, L = A™35 Lo and p = 7| to obtain |Df(0,7)| < C,V/ALy".
Then as y was arbitrary we have

|IDf(0,9)] <1 (12.51)

for all g € B”( )\ Br+fL 1 (@), where we used Ly > 1 and we chose A

small depending on C, and [. This establishes the desired Lipschitz bound
but only outside B” VALl R(ao) Next we want to establish a bound for the

o measure of this set
As My is locally (R, Sy, Lo, 7, &o)-plane-like around 0 for some Sy C B (0)N
B"(ap) we obtain an f € C* (B%(0) \ Sp) with lip(f) < Ly and

My N Cr(0)\ Sy x R = graphf (12.52)

and also
fo (So x R) < &R™. (12.53)
Consider the set
S = B%(O) N B" VAL 15 (Go).
With and ((12.53) we can estimate
(8 X B) < po (S x B)+ [ /T DFGIFAL"()
0
< &R™ + O Ly (r + \/XL(;IR)”

Thus by & < A, 7 = ALy 'R and Ly > 1

po (S x R) < &R™+ C, Ly (r + \/XLglR)n

(12.54)
< C,VAR" = C,V/ A2 "R,

In view of (12.49)), (12.51)) and (12.54)), we see that for S = Bn+fL 1,(0) and

€ = Cpv/\, we have M_2pe is locally (27'R, S, 1, 29, €)-plane-like around 0.
For X\ small enough depending on ¢ we have

270 < 2AL,° < 5% and £ = C VN < 212,
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As Userso—r2 sor2rr2) OMe N Cor(0) = 0 and (M,) moves by smooth mean
curvature flow, we have that u, = "L M, N Cyx(0) is a Brakke flow. Then
we can use Theoremwith 1o =0, 80 = 0,7 =27 and p = 27 'R. Choose
0 < 6o and small enough depending on €, to obtain the desired gradient and
height bound for g. Then set xk := §yd and choose A < Jpy/k27L. This
establishes the result. O]

Like for Brakke flows the local result yields a result for globally graph-like

flows (recall Definition [11.14]).

12.15 Lemma. For every ¢ € (0,1) there exists a Ag € (1,0) such that for
all Ry € (0,00), Ly € [1,00), By € (0,1], Ty € (R%,00), Ty € (0, BoLy Ry,
Zo € (0, Rol, to € R, ag € R™! the following holds: Let (M;)ery—p2a2 R2 t0+10]
be an embedded mean curvature flow in R™1 without boundary. Suppose for
all t € [ty — BEAZR2, to] we have: My is globally (Sy, Lo, Lo, Zo)-graph-like for
some S; C By (ag). Then one of the following two statements holds:

1. For I = [ty + R2,to + Ty] there exists an f € C (I X R”,]Rk) with
lipf <€ and
sty = graph(f(t, -))
forallt e l.
2. There exists a (t,y) € [to, to + R3] x R"™ with p, (Cry(y)) =0
Proof. For given € € (0,1) let A, & be from Proposition [12.13] Set
R = AyRy

and consider arbitrary y € R" x {0}, t € [to — B5AIRZ, to]. As Zy <
Ry < R we can use Remark [IL15[1} to see that 4 is locally (R, Bj() N
Sy, Lo, BoLg ®Agt, Ay t)-plane-like around y. Here we used I'y € (0, By Lg ® Ry
and = € (0, Ry]. Note that

Bi(g) NS, € Bi(y) N BxglR(dO).
If we choose
AO 2 )\_17

all the conditions for Proposition used with v = oLy OAyt, € = Agh)
and r = Aj' are satisfied. Then using Proposition for every y €
R™ x {0}*, leads to one of the following two cases

Alternative 1:
For Iy = [ty + kR%, 1o + 2kR?] and for every y € R" there exists a smooth
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function f, € C* (I x C\xg(y),R*) with lip(f,) < € and graph(f,(t,-)) =
sptuy for all t € I. Then all these functions have to be restrictions of a singel
function f defined on all R™ with graph(f(¢,-)) = sptu; for all t € I.
Moreover we can extend f to later times such that graph(f(¢,-)) moves
by smooth mean curvature flow for all ¢ € [to + kR?, ty + T}, see [EHI] 4.4].
As also (M;) is a smooth mean curvature flow and M, g2 coincides with
graph(f(to + xR?,-)) they have to be the same for all later times as well.
Alternative 2:
There exists a y € R™ such that py,13.z2 (Car(y)) = 0.
As Ag > A1 we have AR > R,. Also choose Ag > v/3k. Then we have
3kR? < R? which establishes the result. O

In Lemma [12.15| we assume that the flow is globally plane-like for a long
time. Actually this condition can be weakened.

12.16 Proposition. There exists a P € (1,00) such that for every e € (0, 1)
there exists a A € (1,0) such that for allr € (0,00), L € [1,00), 8 € (0,1],
T € (A’872LFr? ), T € (0,7], Z € (0,7], to € R, a € R" the following
holds: Let (Mt)te[,ﬂzrzﬂ be an embedded mean curvature flow in Rt without
boundary. Suppose for allt € [—B%r% 0] we have: My is globally (S, L,T',=)-
plane-like for some Sy C Bl'(a). Then one of the following two statements
holds:

1. For I =[A*LY 3722 T) there exists an f € C> (I x R") with lipf <€
and

sptue = graph(f(t,-))
forallt e I.
2. There exists a (t,y) € [0, A2LY 372r?] x R™™ with p; (Car(y)) =0

Proof. Let € € (0,1) be given and let Ag be the quantity from Lemma |12.15
corresponding to this e. As My is globally (S;, L, T', Z)-plane-like we can use
Lemma [I1.16] to obtain

sptpy C {z € R ¢ |z, 4| < C,E+T}

for all t € [C,,=2,T]. In particular as ' < r and Z < r, there exists a constant
C1 € (1,00) such that

|Tpy1] < C147 57 (12.55)
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for all z € M, for all t € [C1r?, T]. Here we chose A? > C}, so this time
interval is non-empty. We want to use Proposition [12.12| with

Po ‘= 201A0L6T
7= (201A0 L) 7B,

First calculate
2 = Bt (12.56)

As for all t € [—3?r%,0] we have M; is globally (S;, L,T", =)-plane-like for
some S; C B"(a) there exists an f € C™ ([—8*r%,0] x R\ B"(a)) with
lip(f) < L,sup|f| <T and

M; NR™™\ C,(a) = graphf(t,-) NR"\ C,(a). (12.57)
for all t € [-3%R?0]. Let Crzry be the constant from Proposition [12.12

Considering the radius
p1 = Ol po = 4C2 G L*° B r = CL AL 571 (12.58)
and y € R"™\ C,4,, (a), we have
C,, (y) CR™N\ Cp(a). (12.59)

Then by (12.56)), (12.57)), (12.58) and ([12.59)), we can use Proposition [12.12
to obtain a g, € C* ([0, p§] x Bz (¢)) with lip(g,) < 4L and

M, N Cpo (y> = graphgy(t, ) N Cpo (y)

for all t € [0, p§]. As y was arbitrary in R""\ C,,, (a) and by (12.57)) we

obtain a function g € C* ([0, p§] x R™\ By, , (a)) with lip(g) < 4L and

M; NR"™\ G,y (a) = graphf(t,-) "R\ C,p,, (). (12.60)

for all t € [—5%r?, p?].
Next we want to bound the measure inside the set C,.,, (a) for all times
t € [0, p?]. By Remark with R = 4y/np; and k = 1 we obtain

e (B2ﬁp1(a)> < 8o (B4\/ﬁpl(a))

for all t € [O,pg], where we used py < p;. Then using (12.55) and 2Cr <
po < pip this yields

it (Cripy (@) < g (Bz\/ﬁpl(a» < 8o (B4\/77p1<a>) (12.61)
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for all t € 27102, p2].
As My is globally (Sp, L, I', Z)-bounded for some Sy C BJ*(a) there exists
an fo € C® (R"\ Bl*(a)) with lip(fy) < L and

My MR\ C,(a) = graphfy NR™™\ C,(a) (12.62)

and as = < r we also have

to (S0 X R) = pig (S N B (@)) x R) < 1™ (12.63)
With (12.62) and (12.63)) we can estimate
0 (o (@) < o (S0 x B) + [ VT DIGIFdL"(3)

By g, (@)\S0
<r"+C,Lp}.

By p1 = C,AgL?*°5~1r we obtain
Ho (04\/5,)1(@)) <, (AoLmﬁflr)n,
where we used L > 1. Thus by we have
i (Cripy () < (CahoL* 71r)"

for all t € [271p2, p2], for some constant Cy € (1,00). In particular we see

sup 1 ((By () N By, (@) X R¥) < CoAoL*' B~ rp" ! (12.64)
geRrRn
for all p € [CoAgL?' 37 r, 00) and all ¢ € [0, p2].
Now we have all the ingredients to finally use Lemma [12.15, By ((12.55)),

(12.60)) and (12.64)) we can conclude that for all ¢ € [271p2, p2] the manifold
M, is globally (S,4L, Ty, Zg)-bounded with

S:= B, (a)
[y :=C4 5
EO = CgAQLQlﬁ_lT.

Now set

Ro = CQA()LQlﬂ_lT
Bo = 6(02A0)_101L_15.
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Then we can estimate
ﬁgAgRg = C’ngLur2 = 2*2(2C1A0L6r)2 < Z*Ip?)

so the time interval [271p2, p2] where the flow is globally plane-like is long
enough. To obtain the height bound we calculate

[y =C14 % = C1d L7 AL B BA; P L™ %r = (41) By Ry.

So we can use Lemma [12.15] with ¢, = p3. This establishes the result for
A Z CQA() and P = 42. ]
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A Appendix

A.1 Lipschitz Functions

A.1 Definition. A function f : Q@ — R™ for Q C R" is called Lipschitz
(continuous), if there exists an L € RT such that:

[f(@) = f)| < Llz —y| Va,y € (A.1)
Then lip(f) denotes the smallest such L.

A.2 Remark. Let Q C R" and f : Q — R* a Lipschitz function. Then there
exists F: R" — R¥ with F(z) = f(z) Vo € Q and lip(F) < VE lip(f).

A.3 Theorem (Rademacher). Every Lipschitz function f : R* — R is
differentiable £"-almost everywhere, that means there exists a set 0 C R"
with Z™ (R™\ Q) = 0 and for every x € Q there exists D f, : R — R with

lim b~ (f(hv + ) — f(z) — hDf, -v) =0 (A.2)

h—0
for every v € S"!

A.4 Proposition. There exists a constant C € (1,00) such that, for ev-
ery © C R" the following holds: Let f € C%! (Q,Rk) and define F €
Co (Q,R™%) by F(y) := (z, f(y)). Then for almost every x € Q0 the Jaco-
bian JF = /det(DFTDF) is well defined and satisfies the inequality

k
1< JF(x)’ <1+ CL™ Y " |Dfi(x)P, (A.3)

j=1
where L := max{lip(f), 1}

Proof. By Theorem DF and hence JF are well defined almost every-
where. Thinking of DFT as a matrix with columns a; we obtain

DFT:(al"'an”'an-‘rk‘): (61"'6an?"'ng)7

so the columns of DFT are the n basis vectors of R" and the gradients of f;.
To calculate the Jacobian we use a formula for the product of matrices

det(DFTDF) — Z (det (All"'ln))27

1< <..<lp<n+k
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where Ahln = (q;, - -+ ay,), which means A4 is the matrix containing the
columns [; of DFT. The summand [; = j gives A" = E,,, which leads to

det(DFTDF) =1+ Y (det (A"""))". (A.4)

1<l <...<lp<n+k
n+1§ln

This verifies the lower bound. So it remains to consider matrices A" » with
n + 1 < [,, which are those containing at least one gradient vector as a
column. Let [,, = n + j, such that Alvin = (azl Cr A, DfJT) and calculate
the determinant through developing by the last column

det All-uln — Z (_1)1—‘,—]% det (All"‘ln),‘"

, T K
1<i<n

where (All'“l")zj is constructed by erasing the jth column and the ith line

from Al The determinant of this matrix can now be estimated directly
. . . . /

by using the Leibniz formula. As all entries of (All"'l")l.j are bounded by L

we obtain

det (A1) = > " (=1)Wsign(0) - ayon,) -+ @, o0, ) < (0= I

oESy

This establishes an estimate for the determinant of dF*dF. Inserting this

into ([A.4)) yields

j=1 1<) <...<lp<nt+k \1<i<n
n+j:ln

k
<14 (n+ k()L DS,

j=1
which establishes the result. O

A.5 Proposition. There exists a constant C' € (1,00) such that for every
open subset @ C R™ the following holds: Let f € C%' (Q,R*) and the n-
rectifiable set M = graph(f). Then

|Dfn(2))? < 2nL2|VM 204 m|? (A.5)

for every 1 < m <k, for almost all x € M, where L := max{lip(f), 1}
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Proof. Let 1 < m < k and 1 < i < n be fixed. Consider F(z) = (z, f(x)),

then O, F := iF is tangential. So for every x € M we have an orthonormal
basis 7,..., 7, of T, M with 7 = |a 2 - This lets us calculate

V40 = [TV (@) 2 D (@) rymf” = Pl

Then by summing over i and by |0;F|?> <1+ L? we obtain the result. [

A.6 Proposition (Zheng, [I, 6.6]). There exists a constant C' € (1,00) such
that for every open subset Q@ C R™ the following holds: Let f € C? (2, RT)
Then the following estimates hold

1. For & € {f > 0} the estimate
[Df(&)]?
/(@)

holds. In particular g defined by g(z) = |Df; for z € {f > 0} and
g(z) =0 forz € Q\ {f >0} isin Cf(QJR*)

< 2sup |D?*f|

2. For every T € §) we can estimate
IDIDf(@)]]* < |D*f(2)*
Proof. 1. See [I, 6.6]
2. Calculate

PIPI@IF =Y (5 |D(f(i‘))|) =3 (iprhapr@)

<Z’— :

which establishes the result.

= |D*f(2)]%,

A.2 Projections And Tilt

Let T, B be n-dimensional subspaces of R"** then |7y — 7p| is called the tilt
between two subspaces T and B. Let u be a rectifiable n-varifold in R+,
For U C R"** the term

| 1= el duo)
U

is called the tilt-excess of p in U.
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A.7 Remark. Consider two n-dimensional subspaces T}, T, of R"tF

1.

If 2 € Ty and y € T3 we can estimate the scalar product in the following
way

vy =(r—mp(2) y+ @)y = (7, (2) =71, (2)) -y + 0

< |7TT1 - 7TT2’ |$Hy’

. For the tilt the following identity holds:

_ 1 1 1 1
’ﬂ—Tl - 7TT2| - }_ﬂ-Tl + 7TT2 + 7TT1 + 7T-Tl - 7TT2 - ﬂ-TQ‘

- }_Wi + W%z + Btk — E"""“l - |7T%1 o W%z}
Suppose |, — 7r,| < € € (0,1). Then we can calculate

|7z (2)| = |7z, 0 7oy ()] < [y (2) = 7, 0 70y ()] < ey (),

s0 [y ()] < (1 =€)~ g, o 7y ()]

A.8 Remark. For an isometry S € SO(n + k) the following holds:

1.

Let T be an n-dimensional subspace of R"™*. Let (t:)1<i<n be an or-
thonormal basis of T', then (S(¢;))1<i<n is an orthonormal basis of S(7'),
thus we can calculate

Ts(r) (@) = Z(S(tz) -x)S(t) =S (Z(tz : ST(@)E) =S (mr(S8Tx)).

i=1 =1
Let A, B € Rtk Ag S(0B;(0)) = 9B;(0) we can calculate
HA_BHop: ”SOA_SOBHop: HAOS_BOSHOp'
In particular if A, B € SO(n + k), we have

1A= Bll,, =[BT 0 A= Eniil,, = | BT = AT,

Let Ty, T, be n-dimensional subspaces of R"**. Combining statements
[ and 2 we can calculate

HWTl - 7TT2Hop = HS © (T‘-Tl - 7TT2) © ST”op

= |[Somp 085" = Somp, 0 S|, = |[msa) = w5z,
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A.9 Proposition. Let T}, T, be m-dimensional subspaces of R"*¥

1.

If there exists a v € Ty NT3 with v # 0, then there also exists a
w e T NTy with w # 0,

We always have ||7r, — r,|lop < 1 and |7, — 71, ||op = 1, if and only
if there exists a v € T{- 0Ty with v # 0.

Let (b;)1<i<m be an orthonormal basis of T\ and suppose ||7p, —mp,||op <
1, then the vectors (7, (bi)),<;<,, form a basis of T.

Consider x € Ty and suppose ||, — 71, ||op < 1, then there exists exactly
one point in Ty N {x +v,v € TQL}

In particular for f € C%! (Q,Rk), Q c R M := graph(f) and
T €Q, x= (2, f(T)) such that Df(Z) and T, M exist, we have |7, p —
T‘-R”HOp < 1.

Proof. 1. Suppose there exists a v € Ty NTy, v # 0. As Ty is m-

2.

dimensional and T3" is n+k —m-dimensional and both subspaces share
one direction we have that 7} U 73" is at most n + k — 1-dimensional.

Thus there exists a w € (T3 U TQL)L with w # 0. Then w € T N T.

Let v € R™* with |v| = 1, then we can find an orthonormal basis
(bi)1<i<nir of R™™ with b = v. Calculate

n+k

S (0= (0) 7, (0) 1)

i=1

_ <5u _ (WT% (v) + 7, (v)) : bi>2

3
T
ol

—1-92 <7TT1L(U> +7rT2(v)> -U+ Z ((WT%(U) +7TT2(?J)> -bi>2

= 1= 2 (g (0)2 + [ (0)1?) + [z (0) + 72, (0)

and combining this with the parallelogram law, we obtain

n+k

Y (71, (v) = 71,(0) - 0:)* < 1= |mge (0) — 73, (0) 2,

=1
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As the | - |-norm is independent of the choice of basis this yields

77, (v) = 71, (0) ] = \/1 = |y (v) = 7, (0)? (A.6)

for all v € R™™ with |v| = 1. This directly implies |77, — 77, [|op < 1.
Now let v € T{- NTy, v # 0, then

|77, (v) = 73, (0)| = ol

so ||[mr, — || > 1 and as we already know < 1, we have equality.

If on the other side |77, — 7p,|| = 1, then there exists a v € R"* with
|v| = 1 such that |7, (v) — 77, (v)| = 1. This requires equality in (A.6)),
so we have

7 (0) = 75, (v)  and  wp (v) = 7, (0)

thus 7.1 (v) € TN Ty and 7py (v) € Tsh N'Ty. Here we used that Tj
and T, are exchangeable in (A.6]). As either w1 (v) # 0 or mp (v) # 0
and by statement |1} this establishes statement

. Let (b;)1<i<m be an orthonormal basis of T} and suppose (7r;p2(bi))1§iS
do not form a basis of Tp. Then there exists a v in Ty with v-77,(b;) =
for all i € {1,...,m}. As v € T; this yields

o3

U'bi = WTQ(U) : bl =0 '7TT2(bi) =0

for all i € {1,...,m}, so v € T{- N Ty, thus by statement , we have
||7TT1 - 7TT2|| =L

. Let x € Ty, |7, — 71,|| < 1 and let (b;)1<;<m be an orthonormal basis
of T. By statement [3| the vectors (mp, (b)), <;,, form a basis of 15, so

there exists an o = (o, ..., ay,) € R™ such that > 7" aymp, (b;) = .

Then the vector w := >7" a;b; is in 77 and 7, (w) = z, thus w €

i N {x +v,v € Tj}, so this set is not empty.

Now let x € Ty and suppose there exist a,b € T N {ZE +v,0 € Tji

with a # b. Then b —a € Ty N T3 and b — a # 0, thus by statement
||7TT1 - 7TT2|| =1

. Recall that (e;, 6%1_ f(z)) span T, M. As each of this vectors has com-

ponents in R™ we have T,M NR* = {0}, so by statement [2] we can
conclude ||7r,ar — e || < 1.
[
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A.10 Lemma. There exists C € (1,00) such that for every ¢ € [0,1]
the following holds: Let T = span(t;)i<i<m and B = span(b;)i<i<m, be m-
dimensional subspaces of R™k with |b; — t;| < e for alli € {1,...,m}, then
the following holds:

1. If the (b;)1<i<m are orthonormal, then there exists an orthonormal basis
(Ti)1<i<n of T with |b; — 7;| < Ce for alli € {1,...,m}.

2. If |b; - b — ;5] < % foralli,j € {1,...,m}, we have |1y — | < Ce.

Proof. First we consider the case that the (b;)1<i<, are orthonormal. We
may assume b; = e; for i € {1,...,m} and B = R™. We are going to prove
the statement by induction. In case m = 0, we have T = R™ = {0} and
everything trivially holds. Suppose both statements hold for m — 1 with
constant C. Define T = span(t;)1<i<m—1 and

By induction hypothesis there exists an orthonormal basis (7;)1<i<m-1 of T
with |e; — 7;| < Ce for all i € {1,...,m — 1}. By definition of v we directly
seev-1; =0 foralli € {1,...,m—1}. Also by induction hypothesis we have
|7 — mgm—1| < Ce. This lets us calculate

[0 = | < Jtm — em| + 77 (tn)] < €+ |mp — Trma| [tn] + [Trm—1 ()]
< e+ Ce(1+€) + |mpm-1(tm — em)| < 2(1 + C)e,

where we used € < 1 and |e,, — t,| < €. In particular |1 — |v|| < 2(1 + C)e
so for 7,,, := |v|7'v we can estimate

lem — Tin| = lem — [v] 0] < Jem — v + v =[] o] < 4(1+ C)e,

thus (7;)1<i;<m provides the desired orthonormal basis. To estimate the tilt
calculate for z € R™* with |z| =1

|77 (z) — e ()| < g (2) — TRm—1(2)| + [(T - )T — (€1 )41
< Ce + |(Tm : z)(Tm - em)' + |((Tm : x) - (em : z))em|
< Ce+8(1+C)e
which establishes the estimate for m. Thus we showed result and result

for some constant C € (1, 00) in the special case where the (b;)1<i<m are
orthonormal.
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Now suppose the (b;)1<i<m satisfy |b; - b; — d;;] < % forallie {1,...,m}.
We can orthogonalize the (¢;) and (b;) using the Gram-Schmidt process

i—1

=0T, T=t — Z(t’ )T, T = Tl
j=1

vii= 87, D= b= Y (b )y, v = 5]
j=1

m

for i = 2,...,m. Then (77")i1<i<, forms an orthonormal basis of 7" and

(V™)1<i<n forms an orthonormal basis of B. We want to show by induction

lv; — b < (16(n + k))'C™! (A.8)
for all i € {1,...,m}. For i = 1 we can estimate

|71 — 11| < Hbl’_l (t1 — 51)‘ + |(’t1’71 — ’b1|71) tl‘ < 4e,

where we used |by| > 1—%2 % for C' > %. Also we have
162 — 1] o
by — <yl =1l =—— < C™".

b1 — 1] < []bi] | e

Now suppose (A.7)) holds for all j € {1,...,i—1}. Set T} := span(7;)1<j<i—1
and B, := span(v;)i<j<i—1. By induction hypothesis (A.7) and by result
for orthonormal vectors, we have

|77, — 7B, < C1(16C,)" e

Then we can estimate

7o — | = [t — 71, (t;) — bi + 7, (bi))|
< ti = bi| + |7 (8:) — 7o, (b3)| + |7, (bi) — 7, (bi)]
< 26+ 204(160C,)" e,

where we used |b;| < v/1+ C~1 < 2. So we have

17— 7| < 471160, ||F| — |ml]] < 47H16C)) . (A.9)
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By induction hypothesis (A.7)) we can calculate

M—Efbb+b — b))y,
<@_ 1) (C7'+2(16(n+ k)" 'C7),

where we used |b;| < V1+C71 < 2. Asi <m < n+ k this yields

. 1
|7 = bi] <471 (16(n + k))'C, 17 =1 < 5, (A.10)

where we chose C' large depending on n and k for the second estimate. Com-

bining and we can estimate
7 — vl < |57 = )|+ (7 = 137 7] < (160,
where we used to estimate || > 3. By we can also estimate
= b < (197 (b= 52)] + | (L= [57) b < (1600 + RO

where we used |b;| < /14 C~1 < 2. This completes our induction argument,
which establishes the result. O

A.11 Proposition. In case T = R" (which we identify with R™ x {0}*) and
if x € sptu admits an approzimate tangent space Ty, the following identity
holds

|7TTzu - 7r]R"| - 22 |V xn+]| - 22 |7TT o en+] | - 222 |7-l en+]|
=1 j=1
where (T;)1<i<n is an orthonormal basis of Typu. Another identity for |mr,,, — Trn|
18
n ) k n
Tr — e =2 |rg ()| =2) ) u-el,
i=1 I=1 i=1
where (vj)1<j<k is an orthonormal basis of Tpu™.

Proof. The first equality is obtained by the following calculation where p =
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mr and py = 7,

|7TTI;L - WR”P =tr ((p:p - p>*(px _p))
n+k

= Ze ((pe = p)* (P — p)ei)

n+k

= (p—plei - (pz — pes
=1
n+k

=3 (Ine(edl? ~ 2na(en) e + Ip(e) )

= Z |pz(en+j)|2 + Z (|px(ei)|2 —2p,(e;) - ei) + Z |p(ei)|2

= > Ipens) = D Ineled+ D Ipalen)

k k k
= QZ |px<en+j)|2 = 22 |px (D<xn+3))|2 =2 Z |Vu$n+j|2 .
j=1 j=1

=1

This establishes the first identity. For the second identity we calculate

n k n k
\Ti'en+'|2— |V"ei|2
J J

=1 j=1 =1 j=1
n n+k n n n k
S5 RT3 W » 7R,
=1 j5=1 =1 j=1 =1 j=1
n n k
=n=> <Z|Ti'el’2+2|’/j‘el\2> :
=1 \i=1 j=1

Now use that (7;)1<i<, and (v;)1< <k, together span all of R"™* so ST ez|2+
k 2 2
Z]’:1 lvj - €]” = |e]*. Then

n

n k n k
) DIERIES 95 SITRTENED ST ETEN)
=1 j=1 i=1 j=1 =1

This establishes the second identity. O]
Now combine this and [A.11] with [A.4] and [A.5] to obtain:
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A.12 Proposition. There ezists a constant C' € (1,00) such that, for every
Q C R" the following holds: For f € C%' (Q,R*) set F(y) = (y, f(y)),
p =" L graph(f) and L := max{lip(f),1}. Then at points § € 2 where
[ is differentiable and hence the tangent space Tpg)p exists the following is
true:

1. We can estimate the tilt by | D f| and vice versa, i.e.

LT CHDF@)| < |7y — Tre] < CIDF(9))]

2. The Jacobian JF = \/det(DFTDF) satisfies the inequality

2

1 < JF(§)? <1+ CL*+? ‘WTFW _ Tgn (A.11)

Proof. For the first inequality of statement [T combine and[A.T1] To show
the second inequality note that Ty = span(e;, D; f(y))1<i<n and we can

estimate |(e;, 0) — (e, D;f(y))| < |Df(y)|, so Proposition [A.10]2] yields the

estimate.

Statement [2] follows from the first inequality of statement (1| combined
with [A.4l O
A.13 Lemma (Tilt Bound Lemma, [Bl 5.5]). There exists a constant C' €
(0,00) such that for every open subset U C R the following holds: Let
i be an integer n-varifold in U with L*-integrable mean curvature vector H.

Consider g € C (U,R), f,h € C°(U,R) with g*> < fh. Then the estimate
By < C (aym + &)

holds, where

&= [ mas(o) 19" g() P (o).
U
Proof. Consider X (x) := g(x)?mgs(z), then use Remarks and to

estimate
n+k

2div, X (z) = 4g(2)V*g(2) - 7,5 (me (7)) + 20(2)* D €5 (nr,(ey))

j=n+1

> —4g()|V*9(@)| Iz, — T | [T ()] + 9(2)? |71, — T |”
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for all x € sptu N U where T, exists. By integrating we obtain
B <2 / div, X dp + 45,&,.
U

If now 62 < 884&, then 52 < 64§2 which ylelds the result for C' > 64. Else
we have 52 <2 [, div, X du + 3 62 Then by (2.2) and Holder’s inequality

5 <4 [ A, X du <4 [ g0 mes(a)|[H(2)ldu(o) < 40,
U U

which establishes the result for C' > 4. ]

A.14 Remark. Let p be a rectifiable n-varifold in R"** and x € sptu such
that T, exists, then we can estimate

@ _ -
1 PR = (3 ~ (@) o
= (1 = T (@) + 20 7, (&) — 2 (B)]) Jol
A ~\ (2
— T T
S YL -

A.3 Local Parametrization

A.15 Definition. For an C'-regular n-manifold M in R"** and 2 € M set
SO(M,z):={S € SO(n+k): S(R") =T,M and S(R*) = T,M~*}
where we identified R” with R™ x {0}* and R* with {0}" x R*.

A.16 Proposition. Let m € N U {0}, M an embedded C'™-regular n-
manifold in R and xg € M. Let S € SO(n + k) with

||7TRn — WS?I(TZOM)”op < 1. (A12)
Then there ezists an r € (0,00) such that the following holds:

1. For all z1,09 € M N B.(xg) we have that v, — x5 € S(R*) implies
Tr1 = T2

2. There exists a g € C*T™ (B*(0), R*) with g(0) = 0 and
S(0,9(0)+x0€ M (A.13)
z =5 (p(x), g (p(x))) + 2o, (A.14)
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for all ® € B™(0) and all x € M N B,(zo), where p(z) := mgn 0 S~ (z —

xo). In particular My := graph(g) is a C**™-reqular n-manifold in
R™* with
S(TpMo) = Tyots(2)M (A.16)

for all x € M,.

3. g is unique in the sense that for every g € C1t™ (B]}(O),Rk) which
satisfies (A.13)) actually g = g

A.17 Remark. In the above setting:

1. There always exists S,, € SO(n + k) such that S, (R") = T,,M and
S, (R*) = T, , M+. For S = S,, assumption is always satisfied
and the resulting g can be seen as a parametrization over the tangent
space. In that case implies Dg(0) =0

2. In case Hﬂ‘Rn - WTEOMHop < 1 we can use S = Id and obtain a parametri-
sation over BJ'(Zo).

Proof. First we need a local parametrization around xy. As M is embedded
there exists an open subset U C R"** with xy € U and a diffeomorphism
U e ¢ (B1(0),U) with ¥(0) = g, ¥(B1(0)) = U and

MNU =Y (B(0)).
As D¥(0) has rank = n + k we have

di = inf DW¥(0) v e (0,00). (A.17)

vedB1 (0)
By assumption there exists a dy € (0,1) with
|7n — Ts-1man ||, < 1 - 2da. (A.18)
As W is continuous we can choose p € (0, 1) such that
| DU (v) — DU(0)| < dyids (A.19)

for all v € B,(0). Set Uy := ¥(B,(0)) then U, is open and contains zg, so
there exists an r; € (0,00) such that B, (o) C U.

Suppose there exist x1,29 € M N B, (xo) with 27 # x5 and x9 — x; €
S(RF). This will lead to a contradiction. Let 01,7, € BJ(0) with (i) =

203



and W(fy) = x5, hence 0; # 9y and W(dy) — ¥ (01) € S(R¥). To get 0y, 0y we
actually need that M is embedded. By the mean value theorem there exists
at € (0,1) such that

Set w = @1 +(’lA)2 —?A]l)t and a := ‘@2—@1’_1({]2 —TA)l) Then D‘P(ﬁ)) -a € S(Rk)

and DW(0) - a € T, M. Here we used the fact that the (%W(O)) span
i 17

T.M. As |a] =1 we obtain with (A.19)

didy > | DU(i) — DW(O)|a] = |DW (i) - a — DW(0) -

Now set a; = S™H(D¥(0)-a) and ay = S‘l(D\IJ(vi))-&). Then a, € ST, M),
s € RF and |a; — dy| < dids. Also by (A.17) we have d; < |a;|. With (A.18))
we can then conclude

1| = |Ts—1(r,00)(@1)] = |Ts-1(1,00)(@1) — TRn (G1) + TRe (@1)|
< |(Ts-1(z,nn) — Trn )| + a1 — ag
< ||ms-rerany — WRnHOp 1| + dids

< (1 — 2d2)‘&1| +d2|&1| = (1 — dg)‘&ll

This yields a contradiction, as dy > 0 by assumption and |a;| > 0. Thus we
established the first statement for r € (0,7;)
For the second part set v = \IJ‘ By and consider the function ¢ €

(0)
Cm (B(0) x R¥, R"™*) defined by
(¥

(5, 9) == S (¥ (9) — w0) + 4. (A.20)

) = 0. We want to use the inverse function theorem,
0) is invertible, hence calculate

As (0) = o, we see (0
(

so we need to show DV

o . S u(g) ifl1<i<n,
<I>(y,y):{ 2w V0]

ox; €; fn+l1<i<n+k
for all § € By(0). Set b; := S~ ((% (O)) for ¢ = 1,...,n. The ma-

trix D®(0) is invertible if by, ..., by, €ni1,- - -, €ntr are linearly independent.
Suppose this is not the case, then there exists an a € R"**\ {0} such that

n k
E aibi = E Ap4i€pyj = 2
i=1 j=1
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For the vector z we know z € R* and as the e, ; are linearly independent

z # 0. As the (8%7,0(0))

i 1<i<n
a basis of S™HT,M), so z € S~Y(T,M) NR*. Then by Proposition we
have HT('Rn — T§-1(T, M)Hop = 1 which is a contradiction, so such a z cannot

exist. Hence D®(0) is invertible.

By the inverse function theorem there exist a 6 € (0,1) and a function
o~ € C1™ (U, Bs(0)), where Uy := ®(Bs(0)), such that ®~(®(y)) = y for
all y € Bs(0) and ®(®~1(v)) = v for all v € U,y. Also Uy C R™™* is open
and 0 € Us, so there exists ro € (0,00) such that B,,(0) C Uy. Then define
G € ¢ (Br(0),R"™*) and g € C*™™ (B (0), R¥) by

G(§) =S (¢ (mer (®7(5,0))) — 0) , (A.21)
9(#) = T (G(3)). (A.22)

As ¥(0) = x¢ and ®(0) = 0 we see G(0) = 0. We would like to have

form a basis of T, M, the vectors (b;), ,,, form

(9,9(9)) = G(9) for all § € By (0). To get this, consider § € B} (0) and set
(0,0) = ®71(g,0). Then calculate using the definition of ® ([A.20)

G(y) =S (¢ () — 2) = ©(0,0)
and

e (G(3)) = Tre (B(0,0)) = T (2(0,0)) = 7R (9,0) = 7.
So indeed (7, g(9)) = G () for all y € B} (0). Definition (A.21]) then yields
S, 9(9)) + zo = S(G(§) + o = ¢ (mrn (917(3,0))) € M

for all § € By (0), which verifies (A.13|) for » € (0,72). To prove (A.14) recall

r1 € (0,00) from the first statement. By setting 3 = min{ry, 72} we obtain
p(Bry(20)) = B (0) C B,(0) so g(p(x)) is defined for x € B,,(zo). For
1 € M N By, (xg) set x9 := S(p(x1), 9(p(x1))) + o, we need to show that 24
and zo actually are equal. By we know zo € M, then with definition

of x5 and p follows

S7Hay = w2) = ST (21 — 20 — S(p(x1), 9(p(1)))
= 57" (21 — 20) — (p(21), g(p(21))
= (e (57" (21 — @0)) — pa1), Te (S7" (21 — 20)) — g(p(21)))
= (077TR’V (571 (21 — 130)) - g(p(xl))) € {0}" x R".

Thus statement [l]yields x; = w5, which verifies (A.14)) for r € (0, min{ry, r2}].
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To see (A.1F)), note that S(B,(0)) + z9) = B,(xo). Consider an z €
S (Mo N B(0)) + xg, then there exists v € B(0) with x = S(v, g(v)) + 0, so
by x e M. If v € M N B,(xy) then by and p(B,(xg)) = BJ(0)
we have x = S(p(as),g(p(x))) + x9 € S(My N B.(0)) + xo.

For take T G Mo and consider a curve ¢; : (—1,1) — M, with

=z By ca(t) := S(c1(t)) + xo defines a curve in M and ¢3(0) =

S( ) + 9. We can calculate (0) = S(c1(0)), so S(TpMy) C Tyyt+s(x)M and
as both are n-dimensional subspaces we actually have equality.

For the uniqueness suppose there exists a g € C'*™ (BZ?(O),R’“) that
satisfies (A.13). Consider v € B*(0), then by r1 = S(v,g(v)) + o
and zo = S(v, g(v)) + x¢ are both in M. We can calculate

7T]Rn<571<x1 - l’g)) =v—v=0

so by statement [I| we have z; = zo, hence S™'(z; — zg) = S™'(zy — 70) and
so g(v) = g(v). As this holds for all v € B'(0) we actually have § = g. This
also shows that ¢ is independent of the choice of ¥ above. O

A.4 Differential Inequalities

To rigorously deal with the differential equations in the Propositions [5.6]
and [10.4], we need the following propositions. First recall the upper and lower
derivative, which are just bounds on the differential quotient.

A.18 Definition. For a function f : (a,b) — R and a point ¢, € (a,b), the
upper and lower derivative are given by

Df(to) := limsup f(to+h) = f(t)
h—0 h

Df(to) —hmmf <t0+h) St )

We allow this to be +00, so it always exists.

For these derivatives the following version of the fundamental theorem of
integration holds:

A.19 Proposition. Let f: (a,b) — R measurable

1. If Df(t) € [~o00, M] for some M € R and all t € (a,b). Then for all
a <t <ty <b we have

o -t < | " Df(s)ds
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2. If Df(t) € [M,+o0] for some M € R and all t € (a,b). Then for all
a <ty <ty <b we have

f(t2) = f(t) = /tt2 Df(s)ds.

1

Proof. For the first statement suppose the assumption holds for some nega-
tive M. For n € N define

gn(t) = (f(t+n"") = f(1)).

Then the g, are negative measurable functions and by Fatou’s Lemma we

obtain
to—e to—e
lim sup/ gn(s)ds < / (hm sup gn(s)> ds

n—o0 t t1 n—00

for every ¢ > 0. By defintion of g, we clearly have limsup,_, . g.(s) <
D f(s). Furthermore by negativity of the upper derivative, f is monotonically
decreasing and we can estimate

[ asyis=n [ T pepds —n / " psyas

t1 to—e t1

> flta—e+n~") = f(tr) > f(t2) — f(t1)

for n > e~!. So for every € > 0 we have

fts) - f(11) < / T Dfs)ds,

1

Now we can use the monotone convergence theorem with g, :== D f Xit1,t2—n—1]5
where here x is the cut-off function on the interval. The g, converge point-
wise to Df on (t1,t3), so the theorem then states convergence of the integral
for € N\, 0, which yields the result.

If M is positive we can just look at h(t) := f(t)—Mt. Then h has negative
upper derivative and applying the proposition to A implies the result on f.
For the second statement just look at —f and use the first statement, then
the result follows from D(—f) = —Df. O

Furthermore we will need the following chain rule:

A.20 Proposition. For intervals (ai,by), (az,b2) C R and functions g :
(a1,b1) — (ag,b2), f : (az,b2) — R consider h : (a;,b1) — R given by
h(t) :== f(g(t)). Let ty € (a1,b1) be such that g is continuous in ty and
f s differentiable in g(to)
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1. [f Df(g(to)) > 0, we have Dh(ty) = Df(g(to))Dg(ty) and Dh(ty) =
Df(g(to))Dy(to)

[f Df(g(t(ﬁ) 0, we have Dh(ty) = Df(g(to))Dg(to) and Dh(ty) =
Df(g(to)) Dy(to)

(Note that the upper and lower derivatives are allowed to be +00)

Proof. Set s := g(t). As f is differentiable in s we have for all § € (—dy, dp)
f(s+6) = f(s)+dDf(s)+ or(0)
for some r : (—dg, do) — R with lims_,q7(d) = 0. Then we can calculate

h(to +0) — h(to) _ g(to +6) — g(to)
n )

(Df(g(to) +r(g(to +6) — g(to))) -

If Df(s) > 0, we have that the term in brackets is positive for small §. Taking
the lim sup;_,, yields

Dh(ts) = Dylto) (D f(g(to) + lim r(g(to +8) — g(to))

and by the continuaty of g in ¢y the error term vanishes in the limit. The
same calcultaion works with liminfs_,5. To get the D f < 0 statemnts just
use the previous on —f and combine this with D(—h) = —Dh. O
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A.6 Abstract

English:
This work is about the regularity of the Brakke flow. A Brakke flow is a
family of Radon measures (fi)scjt, 1,) i R™* such that the inequality

Dipir (¢) < B (11, 0)

holds for all ¢ € C%! (U,RT). Here % (s, ¢) denotes the Brakke variation
defined by

B (i, 6) = - /U ol H[Pdp + /U Do Hip,

if this expression exists and Z (4, ¢) := —oo else. Moreover we assume, that
the u; are integral at almost every time.

The central Result is Brakke’s local regularity theorem, which considers
Brakke flows that lie in a slab sptu; N By (0) C R™ x BF(0). If this slab is
narrow enough, i.e. h small and the values p, (B1(0)), pt,(B1(0)) are not too
far from Z"(B;(0)), then there exists a small ball such that spty; N Bs(0) is
smooth and graphical for all times ¢ € [t; + C(n, k),ts — C(n, k)].

Now consider an arbitrary Brakke flow in U C R"**  then for almost
every time g, we have that for all ¢ € C%! (U, R™) the function t — () is
continuous in ¢y Let ¢y be such a time and suppose p;, has density one almost
everywhere. Brakke’s general regularity theorem states, that at time ¢, the
singular set has J#"-measure zero, this means, for almost every point x € U
there exists a space-time-neighbourhood where the Brakke flow is smooth.
This result is primarily based on the fact, that for almost every point with a
tangent space, we can find a small neighbourhood, where the local regularity
theorem can be applied.

In the last part we consider Brakke flows, for which the starting varifold
pe, restricted to C1(0) \ S is graphical. If S has small enough s, -measure
and if the graphical part satisfies certain gradient- and height-bounds, then
one can use the local regularity theorem to show, that (i)sef+ct+20] 18
completely graphical, or there exists a cylinder Cy(0) with p,,-measure zero,
where sqg = t; + 3C.
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Deutsch:

Diese Arbeit befasst sich mit der Regularitat des Brakke Flusses. Bei einem
Brakke Fluss handelt es sich um eine Familie von Radon maflen (1)t 1)
im R"**_die der Ungleichung

Dy (¢) < B (1, 9)

fir alle ¢ € C%! (U,R") geniigen. Hierbei bezeichnet 2 (1, ¢) die Brakke
Variation gegeben durch

B (111, ) ZZ—/Uqblﬁlzdqu/Uch-ﬁdu,

falls dieser Ausdruck definiert ist und % (p, ¢) = —oo sonst. Dariiber
hinaus nehmen wir an, dass p, fiir fast alle Zeiten eine integrale Varifaltigkeit
ist.

Zentrales Ergebnis ist Brakkes lokales Regularitatstheorem, dabei werden
Brakke Fliisse betrachtet die lokal in einer horizontalen Rohre liegen sptu; N
B1(0) € R™ x BF(0). Ist nun die Rohre schmal genug, also h klein, und
sind die Werte i, (B1(0)), pu,(B1(0)) nicht zu weit weg von Z"(B;(0)), so
gibt es eine kleine Kugel in der sptyu; N Bs(0) graphisch ist fiir alle Zeiten
t€ft1+C(n,k),ta — C(n, k).

Hat man nun einen beliebigen Brakke Fluss in U C R"*, so gilt fiir fast
alle Zeiten ty, dass fur alle ¢ € C%! (U,R") die Abbildung ¢ — (@) stetig
ist in ¢y. Sei ¢ ein solcher Zeitpunkt und nehmen wir weiter an j,, habe fast
iiberall Dichte Eins. Brakkes allgemeines Regularitatstheorem besagt, dass
zum Zeitpunkt to die singulare Menge #"-mafl Null hat, das heisst, dass
fiir fast alle Punkte x € U eine kleine Raum-Zeit-Umgebung existiert in der
der Fluss glatt ist. Dieses Ergebnis beruht im wesentlichen darauf, dass sich
fiir fast alle Punkte mit Tangentialraum eine kleine Umgebung finden lasst,
in der das lokale Regulartatstheorem angewandt werden kann.

Im letzten Teil betrachten wir Brakke Fliisse, deren Anfangsvarifaltigkeit
ft, eingeschriinkt auf C1(0) \ S graphisch ist. Ist dass u,-mafl von S klein
genug und geniigt der graphische Teil von p;, bestimmten Gradienten- und
Hohen-schranken, so lasst sich mit Hilfe des lokalen Regulartatstheorems
zeigen, dass der Fluss (ts)scft,+0,t,+2¢] komplett graphisch ist, oder ein Zylin-
der C5(0) existiert der ug,-maff Null besitzt, wobei sg = t; + 3C.
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