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1 Introduction

Mean Curvature Flow This thesis deals with regularity of the mean cur-
vature flow, which is the gradient flow of the area-functional. The solutions
have many features in common with the heat flow and in particular there
is a smoothing effect, which is the central idea behind the results presented
here. Applications of the mean curvature flow are numerous and wide spread
among different areas of research including physics, material science, image
processing and mathematical finance. Specifically it is used to find minimal
surfaces, remove noise inaccuracy from images or for the description of grain
growth in metals.

The mean curvature flow was introduced in K.A. Brakke’s work ‘The
motion of a surface by its mean curvature’ in 1978 [B]. He described the
flow in a very general setting using families of varifolds and prescribing their
behaviour on test-functions. Besides proving existence of non-trivial solutions
and perpendicularity of the generalised mean curvature vector, Brakke’s book
also contains a comprehensive regularity theory. His main regularity theorem
says that a weak mean curvature flow is smooth in some neighbourhood of
almost every point in space-time. Since then, there have been many new
developments. Starting with Huisken’s work in 1984 (see [H1]) many results
were proven especially for the smooth flow. One important achievement is the
monotonicity formula, first formulated by Huisken in [H2], later localized by
Ecker (see [E1]) and generalised to varifolds by Tom Ilmanen in [I2]. Another
such formula will be derived here in order to establish a distance estimate.
A further interesting result is White’s theorem from [W4], where he showed
local regularity in case the Gaussian density ratios are close to one.

Later the weak mean curvature flow was reformulated as a level set prob-
lem by Chen, Giga and Goto [CGG] as well as by Evans and Spruck [ES].
Another weak characterization was given by Ilmanen [I] in form of weak
set-theoretic sub-solutions. These new approaches led to further regularity
results using stronger assumptions, in particular for convex flows.

Although there has been a lot of progress describing the mean curvature
flow in special situations, Brakke’s conclusions are still the best one can get
in the general case. There are two other main sources dealing with these re-
sults. In 2004, Ecker published a book [E4] about Brakke’s regularity theory
focussing on the special case where smooth solutions of mean curvature flow
develop singularities for the first time. In 2012, Kasai and Tonegawa proved
Brakke’s main regularity theorem for a more general flow [KT]. Although
Ecker’s book included a lot of Brakke’s original ideas, especially in the ap-
pendix, and [KT] makes full use of the popping soap film lemma [B, 6.6], one
of Brakke’s central techniques, the main idea to obtain local regularity in the
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original work, is not presented in either at all. Brakke uses a cylindrical heat
kernel to explicitly construct families of graphs and under certain flatness
assumptions these move almost by mean curvature flow. Somehow it seems
very natural to simulate mean curvature flow of almost flat surfaces by heat
diffusion, but this approach does not appear to have been used for mean
curvature flow anywhere else.

Summary The main purpose of this thesis is to give a simpler proof of
Brakke’s regularity theorems [B, 6.10, 6.12]. We use the original approach
fixing the numerous, often non trivial, gaps in Brakke’s arguments, and try
to improve some of his calculations and estimates. Among other things we
make use of techniques and results developed in more recent years specifi-
cally Huisken’s monotonicity formula from [H2]. In doing this, we maintain
Brakke’s central idea of approximating mean curvature flow by linear heat
diffusion. Moreover, we elaborate on this approach to make it more adaptive
for potential further applications.

We consider n-surfaces in Rn+k for integers n ≥ 2, k ≥ 1. The mean
curvature flow in the smooth case is given by

∂F

∂t
(t, p) = ~H (F (t, p)) , (1.1)

where Ft = F (t, ·) : N → Rn+k is a family of immersions, N is an n-

dimensional smooth manifold and ~H is the mean curvature vector. Using
the evolution of the area element due to Huisken [H1], equality (1.1) yields

d

dt

∫
Rn+k

φ dµt ≤ −
∫
Rn+k

| ~H|2φ dµt +

∫
Rn+k

~H ·Dφ dµt (1.2)

for all φ ∈ C1
c

(
Rn+k,R+

)
, and where µt is the induced measure from Mt =

Ft(N), i.e. µt = H n Mt. Following Brakke [B], inequality (1.2) can
be generalised to families of integral varifolds, which is the motivation for
Definition 3.4. A solution of this more general flow will be called a Brakke
flow. In particular solutions of smooth mean curvature flow always induce
Brakke flows. However the converse is not true. One aim of this thesis is
to give criteria for Brakke flows to actually be induced by smooth mean
curvature flows. Note that in the smooth case, (1.2) actually holds with
equality and for all φ ∈ C1

c

(
Rn+k,R

)
, but for the generalisation one only

demands inequality to obtain compactness and existence results.
Below we give a list of our main results using intuitive geometric formu-

lations. For the precise statements see the corresponding theorems.
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1. A comparison theorem relating mean curvature flow and heat flow (see
Theorem 4.15). This is a much stronger version of [B, 6.8]. In particular
we are able to get rid of the slab condition and the mean curvature term
that appear in Brakke’s version. Moreover our result does not assume
a sign on the test function.

2. If a Brakke flow in some region is contained in a narrow enough slab and
also the area ratio in suitable balls is controlled by certain bounds, then
in a smaller region it is actually smooth and graphical (see Theorem
8.4, originally [B, 6.10]). Note that in contrast to Brakke we don’t
assume unit density. Moreover Brakke’s proof contains a major gap in
the usage of the clearing out lemma, which he needs to obtain height
bounds. We correct his argument and also give an alternative proof
with a height estimate derived from Huisken’s monotonicity formula.

3. The general regularity theorem 9.7 (originally [B, 6.12]), says that at a
time, where no sudden loss of area occurs, the singular set of a Brakke
flow has top-dimensional measure zero. We provide a new streamlined
version of his proof incorporating ideas from [E2], which make it much
shorter and more transparent.

For items 2 and 3 there are alternative versions due to Kasai and Tonegawa
(see [KT] and [T]) which precede our work. They consider a more general
flow, using techniques, which are different to both Brakke’s and ours. In par-
ticular the explicit constructions via the heat kernel are replaced by indirect
blow up arguments.

Besides proving these results we apply Theorem 8.4 to Brakke flows, which
start from a “very plane-like ”varifold. A varifold µ is considered very plane-
like in a cylinder CR(y), if sptµ ∩ CR(y) can be written as a graph over Rn

except for a set which has small µ-measure compared to Rn. Moreover on
the graphical part of sptµ the graph function has to satisfy a certain height
and gradient bound. (see Definition 11.1). Note that the measure and the
height bound are seen in relation to R, so in a larger cylinder the varifold
may be more plane-like. Within this framework of varifolds we can show the
following new results:

1. Consider a Brakke flow starting from a varifold which is very plane-like
in CR(y). Then there are two possibilities:
(1) After some time there exists a period of time where the flow is
smooth and graphical inside a smaller cylinder.
(2) At some later time there exists a smaller cylinder with µ-measure
zero.
(See Theorem 11.7).

4



2. As a special case, we consider a Brakke flow in any slab, starting from a
varifold which can be written as a graph over the whole Rn, except for a
compact set and which satisfies a certain gradient bound on the graphi-
cal part. Such a Brakke flow is very plane-like for large enough cylinders
around every y, so by the previous result it will become smooth and
graphical or there will be a cylinder which does not intersect the flow
and will eventually grow infinitely large, see Theorem 11.17.

3. In the smooth case we prove a similar result where we assume the flow
is very plane-like for a period of time, but in the plane-like condition
we allow for arbitrary gradient on the graphical part. See Propositions
12.13 and 12.16.

4. Independently of the “plane-like ”-setting we consider a smooth mean
curvature flow, which is graphical in some cylinder CR(0) for a period of
time [−R2, 0]. Suppose that the gradient of the graphical representation
is bounded by some L. Theorem 12.11 then says that we can extend the
graphical representation on the smaller cylinder CδR(0) onto the short
period of time [0, δ2R2], where δ is bounded from below depending on
L.

Methods Here we present our specific approach and explain how the indi-
vidual results are related. Also the main calculations are shown in simplified
form omitting most of the specific form of the error terms and writing ev-
erything in the co-dimension-1 case. Equations in which we leave out error
terms feature the symbol ≈ instead of an equality sign. Usually these left
out terms will be controlled by tilt-, height- and mean curvature-excess.

Sections 2 and 3 give an introduction to our setting. In particular we
state an exact definition of a Brakke flow, see 3.1 and 3.4. Afterwards we
derive the basic continuity properties and the behaviour of time dependent
test functions, see Proposition 3.8.

In sections 4 - 8 we prove local regularity for Brakke flows based on the
following calculation: Consider the cylindrical heat kernel

Ψ(t, x) := (2n)−
n
2 e
|x̂|2
4t

(actually we use a truncated version to make things localized, see Definitions
4.1 and 4.2). The main trick is to carry out a convolution with this kernel,
then use that a Brakke flow almost evolves by heat diffusion and approximate
the result via Taylor expansion. Consider a Brakke flow (µt), such that
sptµt can be approximated by Lipschitz functions in some weak sense. Let
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f : [−T, T ]×Rn → R be a family of such approximations, r, T ∈ (0,∞) and
p, q ∈ (0, T ). By the properties of the heat kernel, we obtain∫

Bnr (0)

f(0, ŷ)dŷ ≈
∫
Bnr (0)

∫
xn+1Ψ(p, x̂− ŷ)dµ0(x)dŷ (1.3)

and a Taylor expansion yields∫
Bnr (0)

∫
xn+1Ψ(p+ q, x̂)dµ−q(x)dŷ

≈
∫
Bnr (0)

ŷ ·
∫
f(−q, x̂)DΨ(p+ q, x̂)dx̂dŷ

+

∫
Bnr (0)

∫
f(−q, x̂)Ψ(p+ q, x̂)dx̂dŷ.

(1.4)

We remark that (1.3) becomes more precise the smaller p is chosen, whereas
(1.4) becomes more precise the larger p+ q is chosen. The main observation
is that for a Brakke flow we have∫

Bnr (0)

∫
xn+1Ψ(p, x̂− ŷ)dµ0(x)dŷ

≈
∫
Bnr (0)

∫
xn+1Ψ(p+ q, x̂)dµ−q(x)dŷ,

(1.5)

which becomes less precise for larger q. Then combining (1.3)-(1.4) yields∫
Bnr (0)

f(0, ŷ)dŷ ≈
∫
Bnr (0)

ŷ ·
∫
f(−q, x̂)DΨ(p+ q, x̂)dx̂dŷ

+

∫
Bnr (0)

∫
f(−q, x̂)Ψ(p+ q, x̂)dx̂dŷ.

(1.6)

This basically says that we can use f(−q, ·) to define an affine function which
is a good approximation to f(0, 0) in some integral sense.

The basic estimates for (1.3)-(1.4) will be done in section 4. It turns
out that (1.3)-(1.4) can be controlled by the maximal height, the tilt-excess
and the mean curvature-excess of µ. In section 7 we show that a flow in a
narrow slab which satisfies certain area ratio bounds has small tilt- and mean
curvature-excess such that we can use the results from section 4. To use (1.6)
effectively we need a mean curvature version of standard L∞ − L2-estimate
to obtain a point-wise bound from the integral one. This is done in sections
5 and 6. Then, in section 8, we finally combine the results from sections 4 -
7 to derive (1.6) and use it to obtain C1,α-regularity.
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In section 4 we start with transferring some basic properties of the usual
heat kernel to the truncated heat kernel we use. Then we deal with relation
(1.5), which is based on the main idea of estimating the difference between
Brakke flow and heat flow. The major calculation is done in Proposition
4.11. This yields an estimate for the evolution equation of the heat kernel for
a Brakke flow in terms of tilt- and mean curvature-excess (plus good terms).
Furthermore, since

∫
∆MΨdµ = 0 we obtain∫
en+1 · ~H Ψdµ =

∫
xn+1∆MΨdµ.

Combining this with the Brakke flow equation 3.4 and the evolution equation
4.11, already yields the heat diffusion result 4.15. This can now be used to
specify the relation in (1.5). A similar approach is used by Brakke in [B,
6.8, 6.9] but with different calculations, as he is not using the ∆M at all and
therefore relies on Lipschitz approximations to bring in ∆Rn .

Next we want to obtain an L∞ − L2-estimate. In section 5 we follow
Brakke’s approach, using a clearing out lemma inside large balls. There we
verify the argumentation that Brakke uses in [B, 6.9. pages 195-196], which
is incomplete there, resulting in Lemma 5.14. To do this, we use Lemma 5.7,
which is a new version of a clearing out lemma that considers the intersection
of a ball and a cylinder.

A second method is based on the more up-to-date L∞−L2-estimate 6.8,
found in chapter 4 of [E4]. This chapter deals with some consequences of
Huisken’s monotonicity formula. The results in [E4] are proven for smooth
mean curvature flow, but those we need carry over to Brakke flow without
great effort, see section 6.

In the slab setting we have small height, if we choose the slab narrow
enough. Besides that it is essential to have small tilt- and mean curvature-
excess, for Theorem 4.15 to be useful, for Lipschitz approximations to be
close and for many other details not mentioned here, to work out. Also,
we require bounds on the area ratio of the solution to get any Lipschitz
approximations at all. These will all be provided by Theorem 7.7, which is
the final result of section 7. We observe that for a varifold lying in a narrow
slab, the area in a cylinder E = R−nµt(CR(0)) is decreasing as long as E is
in (h, ωn− h)∪ (ωn + h, 2ωn− h). Here ωn = L n(Bn

1 (0)) and h is the height
of the slab, which is assumed to be small. Moreover the rate of decrease is
determined by a certain differential inequality,

DE(t) ≤ −Q−1R−2 min
{
|E(t)|

n−1
n , h−

2
3 |E(t)|

4
3 , 1
}
, (1.7)

where Q is a large constant. Solving (1.7) yields the following: If the initial
area is smaller then 2ωn − h, and if much later there is area greater than h
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left, then in the time in between the area was very close to ωn. Moreover, if
the area stays almost constant for some time there cannot be a lot of mean
curvature. This establishes a bound on mean curvature-excess, and by the
fact that we assume that the flow stays in a slab, we also get bounds on
tilt-excess. This has been done by Brakke in [B, 6.6] and at the beginning of
the proof of [B, 6.9]. It was rewritten in [KT] in a more detailed way.

With Theorem 7.7 and the L∞ − L2-estimate 6.8 established, we can
attack local regularity in section 8. Consider a Brakke flow inside a slab with
plane-like mass in [−T, T ] × C1(0). By the local flatness theorem 7.7, there
exists a smaller period of time, where we have good Lipschitz approximations
and small tilt-excess. Actually, we only have those in an integral sense in
time. The slab condition yields |xn+1| ≤ h. Suppose h and δ are very small.
Theorem 4.15 can be used to obtain∫ δ2

−15δ2

∫
Bn4δ

∣∣∣∣∫ xn+1Ψ(p, x̂− ŷ)dµt −
∫
xn+1Ψ(p− t+ q, x̂− ŷ)dµ−q

∣∣∣∣ dŷ dt
≤ δ6h,

for p < δ2 < q ≤ δε. Furthermore, the error term for the Taylor expansion
in (1.5) can be estimated by∣∣∣∣∣∑

u,v,w

ŷuŷv

∫ 1

0

∫
f(−q, x̂)D2

uvΨ(p− t+ q, x̂− θŷ)dx̂ dθ

∣∣∣∣∣ ≤ δ2q−1h,

for y ∈ Bn
4δ(0) and t ∈ (−15δ2, δ2). Also (1.3) is stated more precisely as∫

Bn4δ

f(0, ŷ)dŷ −
∫
Bn4δ

∫
xn+1Ψ(p, x̂− ŷ)dµ0(x)dŷ ≤ δ3h

for p small enough depending on δ. For q = δε, calculation (1.6) then yields
an affine subspace At = {xn+1 = at + bt · x̂} such that∫ δ2

−15δ2

∫
Bn4δ

|f(0, y)− at − bt · y|dy dt ≤ δ2−εh. (1.8)

Here at =
∫
f(−q, x̂)Ψ(p− t+ q, x̂)dx̂ and bt =

∫
f(−q, x̂)DΨ(p− t+ q, x̂)dx̂.

By the properties of the heat kernel, we can estimate |at+y ·bt−a0−y ·b0| ≤
δ2q−1h, so that (1.8) holds with fixed a0, b0. Actually, we even have∫ δ2

−15δ2

∫
C4δ

|xn+1 − a0 − b0 · x̂|dµt dt ≤ δ2−εh.
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Note that d(x,A0) ≤ |xn+1 − a0 − b0 · x̂|, thus we can use Corollary 6.8 to
obtain d(x,A0) ≤ δ2−εh for all x ∈ C2δ(0) ∩ sptµt, t ∈ [−δ2, δ2]. This leads
to Lemma 8.1, which says that in the above situation, one can find new
coordinates, such that in a δ-smaller region the height is bounded by δ2−εh.
So for every space-time point (t0, x0), which is far enough inside the interior
of (−T, T ) × CR(0), we obtain a sequence of contracting slabs containing
shrinking neighbourhoods of (t0, x0), which finally converge to the tangent
space Tx0µt0 . As a result, Brakke’s local regularity theorem 8.4 (originally
[B, 6.10]) states that every Brakke flow, which locally lies in a slab and with
plane-like mass for a given time interval, is actually a smooth graphical mean
curvature flow for some time in a specific subinterval. This is an elaboration
of Brakke’s [B, 6.9 and 6.10]. Note that in this thesis we only prove local C1,α-
regularity, for the smoothness and the fact that solutions move by smooth
mean curvature flow we refer to [B] and [T]

In section 9, we apply the local regularity result in the general case. The
main tool is Lemma 9.5, which can be used to state the following: Provided
that there is no jump decrease in area at time t = 0, for almost all of the
density one points x where the tangent space Txµ0 exists, we can find a small
neighbourhood where we can apply Brakke’s local regularity theorem 8.4. In
addition, for almost all of the density zero points of µ0, we can find a small
neighbourhood where we can apply our clearing out lemma 5.7. So at time
t = 0 almost all points are regular, which is the statement of Brakke’s general
regularity theorem 9.7 (originally [B, 6.12]). Though most of the calculations
appear in [B, 6.12], this is almost a completely new proof incorporating the
approach in [E2].

Another interesting observation is the expansion of holes under the Brakke
flow which is observed in section 10. We show that for a Brakke flow satisfying
an a-priori height-excess bound, the area increase inside a growing cylinder
is restricted by that bound, which is a replication of Brakke’s [B, 6.5]. In the
slab setting this actually says that holes are growing arbitrarily fast if the
slab is narrow enough, see Proposition 10.6. A similar result can be found in
White’s [W3], based on a different approach.

In section 11, we apply Brakke’s local regularity theorem 8.4 to Brakke
flows starting from a very plane-like varifold. A varifold µ is considered very
plane-like in a cylinder CR(y), if µ∩CR(y) can be written as a graph over Rn

except for a bad set S having small µ-measure. Moreover the graphical part
has to satisfy certain height and gradient bounds. (see Definition 11.1). Use
of the clearing out lemma, yields that after a short time the flow is contained
in a small slab, which will be arbitrarily narrow if the height bound on the
graphical part and the bound on the measure of S are small enough. By the
flatness of the graphical part, we obtain area ratio bounds close to ωn there,
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and if the measure of S is small enough the area ratio of µ0 in CR(y) has to be
close to ωn. This also yields a bound on the overall measure of µt in smaller
cylinders for later times. Then at a certain later time s0, either there exists
a cylinder C2δR(0) which contains no µs0-measure, or using the clearing out
lemma we have a lower area ratio bound for µs0−ε(CδR(0)). In the second
case, by Theorem 8.4, the flow has to be graphical in a small neighbourhood
for a small time period in between 0 and s0 − ε. This yields the statement
of Theorem 11.7.

In the smooth case with co-dimension-1, these results can be improved,
which is something that we do in section 12. It turns out that the gradient
bound can be replaced by assuming that the flow is plane-like for a cer-
tain time interval. The key result here is Theorem 12.11, which says that
a graphical representation can be extended to later times and additionally
yields, that the Lipschitz constant of the extended graphical representation
is small, if the flow lies in a narrow enough slab.

This thesis was supported by the SFB 647 Raum-Zeit-Materie. I would like
to thank my supervisor Klaus Ecker for his advice and patience. Moreover
I would like to thank Ahmad Afuni, Ann Björner, Theodora Bourni, Apos-
tolos Damialis, Hanne Hardering, Felix Jachan, Mathew Langford, Tobias
Marxen, Ulrich Menne, Kashif Rashul, Oliver Schnürer and Felix Schulze.

10



Notation We denote the canonical basis of Rn+k by e1, . . . , en+k. For an n-
dimensional subspace T of Rn+k we denote by πT : Rn+k → T the projection
onto T . Set T⊥ = {x ∈ Rn+k : x · v = 0 ∀v ∈ T} and π⊥T := πT⊥ .

Sometimes we make the following identifications: Rn = Rn × {0}k and
Rk = {0}n × Rk, also we may identify ŷ ∈ Rn with (ŷ, 0) ∈ Rn × {0}k, this
should be clear from the context. For x ∈ Rn+k set x̂ = (x̂, 0) = πRn(x) =
πRn×{0}k(x).

For R ∈ (0,∞) and x0 ∈ Rn+k set

CR(x0) :=
{
x ∈ Rn+k : |x̂− x̂0| < R

}
,

BR(x0) :=
{
x ∈ Rn+k : |x− x0| < R

}
.

For m ∈ N, R ∈ (0,∞) and y0 ∈ Rm set

Bm
R (x0) := {y ∈ Rm : |y − y0| < R} ,

Sm−1
R (x0) := {y ∈ Rm : |y − y0| = R} .

We denote the n-dimensional volume of the unit ball by ωn := L n(Bn
1 (0)).

For m ∈ N consider v = (v1, . . . , vm) ∈ Rm and A = (aij)1≤i,j≤j ∈ Rm×m.
The matrix A operates on Rm in the usual way A(v) := Av =

∑m
ij=1 aijvjei.

The norm is defined by

|v|2 :=
m∑
i=1

v2
i , |A|2 :=

m∑
ij=1

a2
ij.

The operator norm is defined by

‖A‖op := sup
v∈Sm−1

1 (0)

|A(v)| = sup
v∈Rm\{0}

|A(v)||v|−1.

For a time dependent function f : I × Rm → R and a family (µt)t∈I of
Radon measures in Rm we often abbreviate∫

fdµt :=

∫
Rm

f(t, x)dµt(x).

For a relation ∼∈ {=,≤,≥, <,>} we define the Kronecker δ by

δi∼j :=

{
1 if i ∼ j

0 else
, δij := δi=j :=

{
1 if i = j

0 else

for i, j ∈ N.
Quantities that only depend on n and/or k are considered constant. Such

a constant may be denoted by Cn, in particular the value of Cn may change
in each line. Note that Cn may depend on k. We will not always mention
dependence on n and/or k.
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2 Varifolds

In the first part of this section we recall the definition of an integral varifold
and some of its basic properties. For an excellent introduction to varifolds
we refer to [S] or [Sch]. Afterwards we present the cylindrical growth lemma
from [B], see Lemma 2.8 . One important feature of varifolds, is that they
can be approximated by Lipschitz functions, if they satisfy certain area and
height-excess bounds, see Theorem 2.9. Appropriate theorems can be found
in [KT], [B] or [Sch].

2.1 Definition. Let µ be a Radon measure on Rn+k.

1. For A ⊂ Rn+k and φ ∈ C0
c

(
Rn+k,R

)
define the measures µ A and

µ φ by

µ A(B) := µ (A ∩B) ,

µbφ(B) :=

∫
B

φ(x)dµ(x)

for every B ⊂ Rn+k. Then µ A and µ φ are also Radon measures.
Also set µ(φ) := µbφ(Rn+k).

2. Define the support of µ by

sptµ :=
{
x ∈ Rn+k : ∀r > 0 µ (Br(x)) > 0

}
.

3. If µ
(
Rn+k \ U

)
= 0 for some U ⊂ Rn+k, we say µ is a Radon measure

in U . In particular if µ is a Radon measure in U we have sptµ ⊂ U .

4. Define the n-dimensional density of µ in x ∈ Rn+k by

Θn (µ, x) := lim
r↘0

ω−1
n r−nµ (Br(x)) ,

if this limit exists.

5. If for an x ∈ Rn+k there exists an n-dimensional subspace T ⊂ Rn+k

and a θx ∈ (0,∞) such that for all φ ∈ C0
c

(
Rn+k

)
lim
λ↘0

λ−n
∫
Rn+k

φ

(
z − x
λ

)
dµ(z) = θx

∫
T

φ(y)dH n(y),

we call Txµ := T the approximate tangent space of µ in x with multi-
plicity θx. Note that if Txµ exists it has to be unique.
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2.2 Definition. Let U ⊂ Rn+k.

1. A Radon measure µ in U is called a rectifiable n-varifold, if for µ-almost
every x ∈ Rn+k the approximate tangent space exists.

2. A rectifiable n-varifold µ in U is called an integral n-varifold, if for
µ-almost every x ∈ Rn+k we have Θn (µ, x) ∈ Z+ ∪ {0}.

3. An integral n-varifold µ in U is called a unit density n-varifold, if for
µ-almost every x ∈ Rn+k we have Θn (µ, x) ∈ {0, 1}.

2.3 Remark. Let U ⊂ Rn+k and µ be a rectifiable n-varifold in U , i.e. for
µ-almost every x ∈ Rn+k the approximate tangent space Txµ exists with
multiplicity θx ∈ (0,∞).

1. Then θx = Θn (µ, x) for µ-almost every x ∈ Rn+k, in particular the
limit in Definition 2.14 exists. Moreover

lim
λ↘0

λ−n
∫
Rn+k

φ

(
z − x
λ

)
dµ(z) = Θn (µ, x)

∫
Txµ

φ(y)dH n(y), (2.1)

for all φ ∈ C0
c

(
Rn+k

)
for µ-almost every x ∈ Rn+k.

2. If µ is a unit density n-varifold, then for H n-almost every x ∈ Rn+k

we either have Θn (µ, x) = 1 and the approximate tangent space exists
with multiplicity 1 or Θn (µ, x) = 0

2.4 Definition. For a subset U ⊂ Rn+k a rectifiable n-varifold µ in U and
x ∈ int(U) such that the approximate tangent space Txµ exists (which is the
case for H n-almost every x) we define

• ∇µφ(x) := πTxµ (Dφ(x)) for every φ ∈ C1 (U,R).

• divµX(x) :=
∑n+k

i=1 ∇µ (Xi(x)) · ei for every X ∈ C1
(
U,Rn+k

)
.

This can now be used to define the mean curvature vector on µ

2.5 Definition. Consider an open subset U ⊂ Rn+k, a rectifiable n-varifold
µ in U and M = {Θn (µ, x) > 0}. Suppose there exists a locally µ-integrable

function ~H : M → Rn+k such that for every X ∈ C1
c

(
U,Rn+k

)∫
U

divµXdµ = −
∫
U

~H ·Xdµ, (2.2)

then ~H is called the (generalized) mean curvature vector of µ (in U). Suppose
~H exists, let φ ∈ C2 (U,R) and x ∈ U such that the approximate tangent
space Txµ exists, then we define the Laplace Beltrami operator in x by

∆µφ(x) := divµ(Dφ(x)) + ~H(x) ·Dφ(x). (2.3)
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2.6 Remark. Let U ⊂ Rn+k be open and µ be a rectifiable n-varifold in U
with mean curvature vector ~H and let φ ∈ C2 (U,R), X ∈ C1

(
U,Rn+k

)
1. If µ = H n N for an n-dimensional C1-manifold N , then ∇µφ(x) =
∇Nφ(x) and divµφ(x) = divNφ(x) for all x ∈ N , where ∇N and divN
are defined in the usual way for manifolds. If N is a C2-manifold with
∂N ∩U = ∅ and µ is a unit density n-varifold, then ~H equals the usual
mean curvature vector defined on N .

2. For an open subset V ⊂ U the measure µ V is a rectifiable n-varifold
in V with mean curvature vector ~H V

3. As in the smooth case for υ ∈ C2 (U,R) and f ∈ C2 (R,R) at points x
where the approximate tangent space Txµ exists we can calculate

divµ(φX) = ∇µφ ·X + φ divµX,

∆µ(φυ) = φ∆µυ + υ∆µφ+ 2∇µφ · ∇µυ,

∆µ(f(φ)) = f ′(φ)∆µφ+ f ′′(φ)|∇µφ|2.

4. For x ∈ U such that the approximate tangent space Txµ exists we can
calculate

divµ(X(x)) =
n∑
i=1

(DX(x)τi) · τi,

where (τi)1≤i≤n is an orthonormal basis of Txµ. In particular for the
identity map we have

divµ(x) = n.

5. For x ∈ U such that the approximate tangent space Txµ exists we can
calculate

divµ(Dφ(x)) = ∆Rn+kφ(x)−
k∑
l=1

n+k∑
i,j=1

∂2φ(x)

∂xi∂xj
(νl · ei) (νl · ej) ,

where (νl)1≤l≤k is an orthonormal basis of Txµ
⊥.

6. For X ∈ C1
(
U,Rn+k

)
with sptµ ∩ sptX ⊂⊂ U equality (2.2) holds.

7. If sptµ ∩ sptφ ⊂⊂ U equalities (2.2) and (2.3) yield∫
U

∆µφ dµ = 0.
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In the smooth case the mean curvature vector is always normal to the
surface. This fact carries over to integral n-varfolds as proven by Brakke in
[B, 5.8]. We will frequently use this fact.

2.7 Theorem (Perpendicularity Of Mean Curvature, [B, 5.8]). Let U ⊂
Rn+k open and µ an integral n-varifold in U with mean curvature vector ~H,
then

~H ⊥ Txµ (2.4)

for µ almost every x ∈ U .

Now we can estimate how changing the radius of a cylinder varies its
measure. This lemma is taken from [B, 6.4]. We filled in some details for the
proof.

2.8 Lemma (Cylindrical Growth Rates, [B, 6.4]). Let R2, α0, β0 ∈ (0,∞),
R1 ∈ (0, R2), U ⊂ Rn+k open and µ be an integral n-varifold in U with

L2-integrable mean curvature vector ~H and

sptµ ∩ CR2(0) ⊂⊂ U. (2.5)

For φ ∈ C3
c ([−1, 1],R+) and ρ ∈ [r, R2] set

ρ−n
∫
Cρ(0)

| ~H(x)|2Φρ(x)dµ(x) =: α̃φ(ρ)2, (2.6)

ρ−n
∫
Cρ(0)

|πTxM − πRn|
2 Φρ (x) dµ(x) =: βφ(ρ)2, (2.7)

where Φρ(x) := φ (ρ−1|x̂|). Then the following holds:

1. Suppose α̃φ(ρ) ≤ α0 and βφ(ρ) ≤ β0 for all ρ ∈ [R1, R2], then∣∣∣∣∣R−n2

∫
CR2

(0)

ΦR2 dµ−R−n1

∫
CR1

(0)

ΦR1 dµ

∣∣∣∣∣
≤ nβ2

0 log
(
R−1

1 R2

)
+ α0β0(R2 −R1) + 2β2

0 .

2. Assume φ is monotonically non-increasing on [0, 1]. Suppose α̃φ(R2) ≤
R−1

2 α0 and βφ(R2) ≤ β0, then∣∣∣∣∣R−n2

∫
CR2

ΦR2 dµ−R−n1

∫
CR1

ΦR1 dµ

∣∣∣∣∣
≤ R−n1 Rn

2

(
nβ2

0 log
(
R−1

1 R2

)
+ α0β0R

−1
2 (R2 −R1) + 2β2

0

)
.
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Proof. Set U = CR2(0), at x ∈ sptµ where Txµ exists set

πn := πRn , πk := πRk , πx := πTxµ, π⊥x := πTxµ⊥ .

For x ∈ sptµ for which the approximate tangent space Txµ exists calculate

divµ (Φρ(x)x̂) =
n+k∑
i=1

ei ·
(
∇M (Φρ(x)x̂i)

)
=

n∑
i=1

ei ·
(
x̂i ∇MΦρ(x) + Φρ(x)πx(ei)

)
= x̂ · ∇MΦρ(x) + Φρ(x)

n∑
i=1

ei · πx(ei)

= πx(x̂) ·DΦρ(x) + Φρ(x)

(
n−

n+k∑
j=n+1

|πx(ej)|2
)
.

(2.8)

In the last step we used
∑n+k

i=1 |πx(ei)|2 = n as Txµ is an n-dimensional
subspace. With the tilt-excess characterization from Remark A.11 equality
(2.8) becomes

divµ (Φρ(x)x̂) = πx(x̂) ·DΦρ(x) + Φρ(x)

(
n− 1

2
|πn − πx|2

)
(2.9)

for all ρ ∈ (0, R2] and all x ∈ sptµ where Txµ exists.
By definition of the mean curvature vector (2.2) we have∫

U

divµ (Φρ(x)x̂) dµ = −
∫
U

Φρ(x)x̂ · ~H(x)dµ(x) (2.10)

for all ρ ∈ (0, R2]. Here we used that sptφ ⊂⊂ [−1, 1] and sptµ∩CR2(0) ⊂⊂
U , so sptµ∩ sptΦρ ⊂⊂ U . By Theorem 2.7 we can use Remark A.7.1 for the
term on the right of (2.10) to estimate∣∣∣∣∫

U

divµ (Φρ(x)x̂) dµ

∣∣∣∣ =

∣∣∣∣∫
U

Φρ(x) (πn(x)− πx(x)) · ~H(x)dµ(x)

∣∣∣∣
≤
∫
U

Φρ(x)|x̂| |πn − πx| | ~H(x)|dµ(x)

≤ ρ

∫
U

Φρ(x) |πn − πx| | ~H(x)|dµ(x)
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for all ρ ∈ (0, R2]. Now Combine this with (2.9) and use Hölders inequality
to obtain

ρ−1

∫
U

(
πx(x̂) ·DΦρ(x) + Φρ(x)

(
n− 1

2
|πn(x)− πx(x)|2

))
dµ(x)

≤
∫
U

Φρ(x) |πn − πx| | ~Ht(x)|dµ(x)

≤
(∫

U

Φρ(x) |πn − πx|2 dµ(x)

∫
U

Φρ(x)| ~H(x)|2dµ(x)

) 1
2

for all ρ ∈ (0, R2]. Then by definitions (2.6) and (2.7) and the assumed
bounds on α̃φ(ρ) and βφ(ρ)

ρ−1

∫
U

(
πx(x̂) ·DΦρ(x) + Φρ(x)

(
n− 1

2
|πn(x)− πx(x)|2

))
dµ(x)

≤
(
α̃φ(ρ)2ρnβφ(ρ)2ρn

) 1
2 ≤ α0β0ρ

n

(2.11)

for all ρ ∈ [R1, R2].
As Φρ(x) = φ (ρ−1|x̂|) we have

DΦρ(x) = φ′
(
ρ−1|x̂|

) x̂

ρ|x̂|
= φ′

(
ρ−1|x̂|

) |x̂|
ρ2

ρx̂

|x̂|2
= − ∂

∂ρ
(Φρ(x))

ρx̂

|x̂|2

for all ρ ∈ (0, R2] and all x ∈ Rn+k. Then we can calculate∣∣∣∣ ∂∂ρ
(

1

ρn

∫
U

Φρ(x)
|πx(x̂)|2

|x̂|2
dµ(x)

)∣∣∣∣
= ρ−n

∣∣∣∣∫
U

∂

∂ρ
(Φr(x))

|πx(x̂)|2

|x̂|2
dµ(x)− n

ρ

∫
U

Φρ(x)
|πx(x̂)|2

|x̂|2
dµ(x)

∣∣∣∣
= ρ−n−1

∫
U

(
πx(x̂) ·DΦρ(x) + nΦρ(x)

|πx(x̂)|2

|x̂|2

)
dµ

and combining this with (2.11) establishes∣∣∣∣ ∂∂ρ
(

1

ρn

∫
U

Φρ(x)
|πx(x̂)|2

|x̂|2
dµ(x)

)∣∣∣∣
≤ α0β0 + ρ−n−1

∫
U

Φρ(x)

∣∣∣∣n− 1

2
|πn − πx|2 − n

|πx(x̂)|2

|x̂|2

∣∣∣∣ dµ (2.12)

for all ρ ∈ [R1, R2]. By Remark A.14 we obtain∣∣∣∣12 |πn − πx|2 − n
(

1− |πx(x̂)|2

|x̂|2

)∣∣∣∣ ≤ n |πn − πx|2 (2.13)
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for all x ∈ sptµ where Txµ exists. Here we used |a − b| ≤ max{a, b} for
a, b > 0. Then by (2.7) and βφ(ρ) ≤ β0

ρ−n−1

∫
U

Φρ(x)

∣∣∣∣n− 1

2
|πn(x)− πx(x)|2 − n |πx(x̂)|2

|x̂|2

∣∣∣∣ dµ
≤ nρ−n−1

∫
U

Φρ(x) |p(x)− px(x)|2 dµ(x) = nβφ(ρ)2ρ−1 ≤ nβ2
0ρ
−1

for all ρ ∈ [R1, R2]. Inserting this into (2.12) produces∣∣∣∣ ∂∂r
(

1

ρn

∫
U

Φρ(x)
|πx(x̂)|2

|x̂|2
dµ(x)

)∣∣∣∣ ≤ α0β0 +
n

ρ
β2

0

for all ρ ∈ [R1, R2] and integrating with respect to ρ then yields∣∣∣∣∣
[

1

ρn

∫
U

Φρ(x)
|πx(x̂)|2

|x̂|2
dµ(x)

]R2

R1

∣∣∣∣∣ ≤ α0β0(R2 −R1) + nβ2
0 log

(
R2

R1

)
. (2.14)

Using again Remark A.14 we can estimate |1− |x̂|−2|πx(x̂)|2| ≤ |πn − πx|2.
Combined with (2.7) and βφ(ρ) ≤ β0 we obtain

ρ−n
∫
U

Φρ(x)

∣∣∣∣1− |πx(x̂)|2

|x̂|2

∣∣∣∣ dµ(x) ≤ β2
0 (2.15)

for all ρ ∈ [R1, R2]. Combining (2.14) and (2.15) finally establishes∣∣∣∣R−n2

∫
U

ΦR2 dµ−R−n1

∫
U

ΦR1 dµ

∣∣∣∣
≤
∣∣∣∣R−n2

∫
U

ΦR2(x)
|πx(x̂)|2

|x̂|2
dµ(x)−R−n1

∫
U

ΦR1(x)
|πx(x̂)|2

|x̂|2
dµ(x)

∣∣∣∣
+ 2 max

ρ∈{R1,R2}
ρ−n

∫
U

Φρ(x)

∣∣∣∣1− |πx(x̂)|2

|x̂|2

∣∣∣∣ dµ(x)

≤ α0β0(R2 −R1) + nβ2
0 log

(
R−1

1 R2

)
+ 2β2

0 .

For statement 2. note that as φ is monotonically non-increasing on [0, 1]
we have Φρ(x) ≤ ΦR2(x) for all x ∈ Rn+k for all ρ ∈ (0, R2]. This lets us
estimate

(α̃φ(ρ))2 ≤ ρ−nRn
2 (α̃φ(R2))2 ≤ R−n1 Rn

2 (α̃φ(R2))2 ≤ R−n1 Rn
2 (R−1

2 α0)2

(βφ(ρ))2 ≤ ρ−nRn
2 (βφ(R2))2 ≤ R−n1 Rn

2 (βφ(R2))2 ≤ R−n1 Rn
2β

2
0

for all ρ ∈ [R1, R2]. Thus we can use statement 1. with α0 replaced by

R
−n

2
1 R

−n
2
−1

2 α0 and β0 replaced by R
−n

2
1 R

−n
2

2 β0 which yields statement 2.
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For the local regularity iteration lemma 8.1 we need a Lipschitz approxi-
mation for integral varifolds like in [B, 5.4]. Note that we only need the “one
sheet”-case.

2.9 Theorem (Lipschitz Approximation, [B, 5.4]). For all l, λ ∈ (0, 1) there
exist C ∈ (1,∞), γ0 ∈ (0, 1) such that for all R,α, β ∈ (0,∞) and γ ∈
[0, γ0] the following holds: Let µ be an integral n-varifold in B7R(0) with

L2-integrable mean curvature vector ~H and suppose µ satisfies:

(3R)−nµ (B3R(0)) ≤ (2− λ)ωn (2.16)

R−nµ (BR(0)) ≥ λωn (2.17)

R−n+2

∫
B7R(0)

| ~H(x)|2dµ(x) ≤ α2 (2.18)

R−n
∫
B7R(0)

|πTxµ − πRn|
2 dµ(x) ≤ β2 (2.19)

R−n−2

∫
B7R(0)

|πRk(x)|2 dµ(x) ≤ γ2. (2.20)

Then there exists a Lipschitz map f : Bn
R(0)→ Rk with

lip(f) ≤ l, sup |f(y)| ≤ Cγ
2

n+2R (2.21)

such that for

Y :=
{
ŷ ∈ Bn

R(0) : f(ŷ) ∈ Bk
R(0), Θn (µ, (ŷ, f(ŷ))) = 1

}
(2.22)

X :=
{
x ∈ Bn

R(0)×Bk
R(0) : ∃ŷ ∈ Y x = (ŷ, f(ŷ))

}
(2.23)

we can estimate

µ
(
Bn
R(0)×Bk

R(0) \X
)

+ L n (Bn
R(0) \ Y ) ≤ CRnE, (2.24)

where E :=
(
α

2n
n−2 δn≥3 + β2 + γ2

)
. Here δn≥3 := 1, if n ≥ 3 and 0 otherwise.

2.10 Remark. In the above statement we actually can choose

Ỹ :=
{
ŷ ∈ Y : TF (ŷ)µ and TF (ŷ)µ̃ exist with TF (ŷ)µ = TF (ŷ)µ̃

}
, (2.25)

where F (x̂) = (x̂, f(x̂)) and µ̃ = H n graph(f). Then L n(Y \ Ỹ ) = 0, such
that (2.24) still holds for Y replaced by Ỹ .
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2.11 Remark. Theorem 2.9 can be used to estimate the integral over the
varifold by the integral over the graph of f . Set F (x̂) = (x̂, f(x̂)), and
consider an L1-integrable function

φ : Bn
R(0)×Bk

R(0) ∩ [sptµ ∪ graph(f)]→ R

then we have∣∣∣∣∣
∫
BnR(0)×BkR(0)

φ(x)dµ(x)−
∫
BnR(0)

φ(F (x̂))JF (x̂)dL n(x̂)

∣∣∣∣∣ ≤ CnR
n sup |φ|E.

If l ≤ 1 we even have∣∣∣∣∣
∫
BnR(0)×BkR(0)

φ(x)dµ(x)−
∫
BnR(0)

φ(F (x̂))dL n(x̂)

∣∣∣∣∣ ≤ CnR
n sup |φ|E.

Here in both estimates sup |φ| is the essential supremum of |φ| over the set
Bn
R(0)×Bk

R(0) ∩ [sptµ ∪ graph(f)].

Proof. For a proof of Theorem 2.9 see [B, 5.4] or [Sch, 18.1]. Remark 2.10 is
from [Sch, 18.2]. Remark 2.11 we will prove below. By (2.22) and (2.23) we
have ∫

X

φ(x)dµ(x) =

∫
Y

φ(F (ŷ))JF (ŷ)dL n(ŷ).

So we can estimate∣∣∣∣∣
∫
BnR(0)×BkR(0)

φ(x)dµ(x)−
∫
BnR(0)

φ(F (x̂))JF (x̂)dL n(x̂)

∣∣∣∣∣
=

∣∣∣∣∣
∫
BnR(0)×BkR(0)\X

φ(x)dµ(x)−
∫
BnR(0)\Y

φ(F (x̂))JF (x̂)dL n(x̂)

∣∣∣∣∣
≤ sup |φ|µ

(
Bn
R(0)×Bk

R(0) \X
)

+ sup |φ|L n (Bn
R(0) \ Y ) .

Then the first inequality follows with (2.24).
For the second inequality use Remark A.12 to estimate

|1− JF (x̂)| ≤ Cn|πTF (x̂)µ̃ − πRn|
2 (2.26)

for almost every x̂ ∈ Bn
R(0), where µ̃ = H n graph(f). In particular this is

bounded by a constant, so with (2.24) we have∫
BnR(0)

|φ(F (x̂))(1− JF (x̂))| dL n(x̂)

≤
∫
Y

|φ(F (x̂))(1− JF (x̂))| dL n(x̂) + CnR
n sup |φ|E.

(2.27)
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Using (2.26) we can also estimate∫
Y

|1− JF (x̂)| dL n(x̂) ≤ Cn

∫
Y

|πTF (x̂)µ̃ − πRn|
2dL n(x̂).

Then with Remark 2.10 and assumption (2.19) we obtain∫
Y

|1− JF (x̂)| dL n(x̂) ≤ Cn

∫
B7R(0)

|πTxµ − πRn|
2 dµ(x) ≤ Cnβ

2Rn,

where we also used graphf ⊂ Bn
R(0) × Bk

R(0) ⊂ B7R(0) and JF ≥ 1. Then
with (2.24) and β2 ≤ E∫

Y

|φ(F (x̂))(1− JF (x̂))| dL n(x̂) ≤ CnR
n sup |φ|E.

Now combine this with the first statement of Remark 2.11 and (2.27) to
establish the second statement.
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3 Brakke Flow

In this section we define the Brakke flow via the Brakke variation. Afterwards
we derive the almost continuity property of this flow. Then we deal with the
behaviour of time dependent test functions integrated over a Brakke flow.
In the end we use barrier functions, to see how area and height bounds at
a starting time transfer to later times. Most of this is from [B] chapter 2-3,
though we had to change the order slightly.

A Brakke flow will be a family of Radon measures which satisfies inequal-
ity (1.2) in a generalized interpretation. This shall be made precise below. In
the previous section we introduced the mean curvature vector on varifolds,
this suggests the following definition for the right hand side of (1.2):

3.1 Definition. For an open subset U ⊂ Rn+k, a Radon measure µ in U
and φ ∈ C0,1 (U,R+), we define the Brakke varitation B(µ, φ) as follows.

• If µ is a rectifiable n-varifold with mean curvature vector ~H and ~H is
L2-integrabel on µ we set

B (µ, φ) := −
∫
U

φ| ~H|2dµ+

∫
U

π⊥Txµ (Dφ) · ~Hdµ,

this is called the non-singular case.

• else we set B (µ, φ) := −∞, this is called the singular case.

3.2 Remark. 1. For an integral n-varifold µ we can write for the Brakke
variation in the non-singular case

B (µ, φ) = −
∫
U

φ| ~H|2dµ+

∫
U

Dφ · ~Hdµ.

Here we used ~H(x) ⊥ Txµ for µ-almost every x in U , by Theorem 2.7.

2. For φ ∈ C2
c (U,R+) we can estimate φ−1|Dφ|2 ≤ 2|D2φ| on {φ > 0}

and setting φ−1(x)|Dφ(x)|2 = 0 outside {φ > 0} yields a continuous
function, see Proposition A.6. Then with Young’s inequality we can
estimate for the Brakke variation in the non-singular case

B (µ, φ) ≤ −
∫
U

φ| ~H|2dµ+

∫
U

φ| ~H|2 +
|Dφ|2

4φ
dµ

≤
∫
U

|Dφ|2

4φ
dµ ≤

∫
U

1

2
|D2φ|dµ.

Note that in the singular case we trivially have −∞ ≤
∫
U
|Dφ|2

4φ
dµ.
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Next we consider the left hand side of (1.2). Usually the integral of a
test function over varying varifolds will not be differentiable, but the upper
derivative will exist, that is:

3.3 Definition. For a function f : (a, b) → R and a point t0 ∈ (a, b), the
upper derivative from the right is defined by

Dtf(t0) := lim sup
h→0

h−1 (f(t0 + h)− f(t0))

We allow this to be ±∞, so it always exists.

Now we can define the Brakke flow by:

3.4 Definition. For t1 ∈ R, t2 ∈ (t1,∞) and an open subset U ⊂ Rn+k let
(µt)t∈[t1,t2] be a family of Radon measures in U . We call (µt)t∈[t1,t2] a Brakke
flow in U , if the following holds

1. For every test function φ ∈ C0,1
c (U,R+) we have for all t ∈ [t1, t2]

Dtµt (φ) ≤ B (µt, φ) , (3.1)

where B is the Brakke variation from Definition 3.1.

2. For almost every t ∈ (t1, t2) the Radon measure µt is an integral n-
varifold.

3.5 Remark. 1. Note that by definition a Brakke flow (µt)t∈[t1,t2] in U

satisfies µt
(
Rn+k \ U

)
= 0 for all t ∈ [t1, t2]. For an open subset

V ⊂ U the restriction (µt V )t∈[t1,t2] is a Brakke flow in V , although
(µt) itself may be not. Of course you could define a Brakke flow in U
for measures with support outside U , but all expressions we use only
consider the restriction to U , which we do not want to write all the
time.

2. Let φ ∈ C1
(
Rn+k,R+

)
with K :=

⋃
t∈[t1,t2] sptµt ∩ sptφ ⊂⊂ U , then

inequality (3.1) holds for all t ∈ [t1, t2]. To see this multiply φ with a
cut-off function ζ ∈ C∞c (U, [0, 1]), which satisfies K ⊂ {ζ = 1}. Then
(3.1) holds for φζ ∈ C1

c (U,R+) and as ζ ≡ 1 in the terms of (3.1), we
can ignore the ζ.

3. A Brakke flow (µt)t∈[t1,t2] can always be extended to the time interval
[t1, t2 + T ] for arbitrary T ∈ (0,∞) by setting µt ≡ 0 for all t ∈
(t2, t2 + T ]. By [B, 4.29] there actually exist non-trivial Brakke flows
for any initial integral n-varifold µt1 .
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4. Usually condition 2 is not included in the definition, so we basically
look at integral Brakke flows but omit to write integral. Some of the
results still hold without assuming condition 2.

3.6 Lemma. For all open subsets U ⊂ Rn+k and all t1 ∈ R, t2 ∈ (t1,∞)
the following holds: Let (µt)t∈[t1,t2] be a Brakke flow in U and V ⊂⊂ U , then
there exists an M ∈ (1,∞) with µt(V ) ≤ M for all t ∈ [t1, t2]. Note that M
depends on V and (µt)t∈[t1,t2].

Proof. Fix a δ ∈ (0, 1) and extend the flow to the time interval [t1, t2 + δ] by
setting µt ≡ 0 for all t ∈ (t2, t2 + δ]. The extended flow than still is a Brakke
flow.

As V is compactly contained in U there exists a φ ∈ C2
c (U, [0, 1]) with

φ(x) = 1 for all x ∈ V . Now let t ∈ [t1, t2] be arbitrary. By the def-
inition of upper derivative from the right we find ht ∈ (0, δ) such that
h−1 (µt+h(φ)− µt(φ)) ≤ Dtµt(φ) + 1 for all h ∈ (0, ht]. Using Definition
3.4 and Remark 3.2.2 we can estimate

µt+h(φ) ≤ µt(φ) + h (B(µt, φ) + 1)

≤ µt(φ) + 2h

(∫
U

|D2φ|dµt + 1

)
≤ µt(φ) + hMt

(3.2)

for all h ∈ (0, ht] and Mt := 2
(∫

U
|D2φ|dµt + 1

)
∈ [0,∞). This yields a

covering [t1 + ht1 , t2] ⊂
⋃
t∈[t1,t2](t, t + ht), so by compactness there exist

s2, . . . , sN with [t1 + ht1 , t2] ⊂
⋃N
i=2(si, si + hi), for an N ∈ N and hi = hsi .

Set s1 := t1 to obtain (t1, t2] ⊂
⋃N
i=1(si, si + hi).

W.l.o.g. assume si < si+1 for i = 1, . . . , N − 1. By iteration of (3.2) we
can estimate for every i = 1, . . . , N

µt(φ) ≤ µt1(φ) +
i∑

j=1

Msj

for all t ∈ (si, si + hi). Here we used hi ≤ 1 for all i = 1, . . . , N . By the
covering feature this yields

µt(φ) ≤ µt1(φ) +M

for all t ∈ (t1, t2], where M := µt1(V ) +
∑N

i=1 Msi . Then the result follows
by V ⊂ sptφ.

We can use Lemma 3.6 to derive some of the continuity properties in [B,
3.10]. Note that we do not need barrier functions here.
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3.7 Proposition (Continuity Properties, [B, 3.10]). Consider an open subset
U ⊂ Rn+k and t1 ∈ R, t2 ∈ (t1,∞). Let (µt)t∈[t1,t2] be a Brakke flow in U and

φ ∈ C2
c (U,R+) then the following holds:

1. Dtµt (φ) := lim suph→0 h
−1 (µt+h (φ)− µt (φ)) ≤ L < ∞ for all t ∈

[t1, t2], where L ∈ R may depend on φ as well as the whole flow (µt).

2. limδ↘0 µt+δ (φ) ≤ µt (φ) ≤ limδ↘0 µt−δ (φ) for all t ∈ [t1, t2]

3. There exists a countable set S ⊂ [t1, t2] such that for all t ∈ [t1, t2] \ S

lim
h→0

µt+h(ϑ) = µt(ϑ) ∀ϑ ∈ C0
c (U).

Proof. Consider φ ∈ C2
c (U,R+). By regularity of φ there exists L1 ∈ (1,∞)

such that sup |D2φ| ≤ L1. Set V := sptφ, then Lemma 3.6 yields an L2 ∈
(1,∞) such that µt(V ) ≤ L2 for all t ∈ [t1, t2]. Using Definition 3.4 and
Remark 3.2 we can estimate

Dtµt(φ) ≤ B(µt, φ) ≤
∫
U

|D2φ|dµt ≤ L1L2 =: L

for all t ∈ [t1, t2]. Then by Proposition A.19 we have µs2(φ) − µs1(φ) ≤
(s2 − s1)L for all t1 ≤ s1 < s2 ≤ t2. This establishes statement 1.

Now consider g : [t1, t2] → R given by g(t) := µt (φ) − Lt. Then g is
monotonically non-increasing and limδ↘0 g(t + δ) as well as limδ↘0 g(t − δ)
always exist, so limδ↘0 g(t+δ) ≤ g(t) ≤ limδ↘0 g(t−δ), which gives statement
2.

For the continuity let φ ∈ C2
c (U,R+) and consider again g(t) := µt (φ)−

Lt. Denote by S ⊂ [t1, t2] the set of times t where g is not continuous. As
g is monotonically non-increasing it ”jumps down” at all discontinuities in
t, so we can decompose S =

⋃∞
n=1 S 1

n
, where Sε is the set of times where g

abruptly decreases by at least ε

Sε :=

{
t ∈ [t1, t2] : lim

δ↘0
µt+δ + ε < lim

δ↘0
µt−δ (φ)

}
.

By the monotonicity of g each of these Sε consists of discrete points, so S has
to be countable. Thus we proved that there exists a countable set Sφ ⊂ [t1, t2]
such that t→ µt (φ) is a continuous function for all t ∈ [t1, t2] \ S

Now take a countable A ⊂ C2
c (U,R+) such that A is dense in C0

c (U,R+).
Then for almost every t ∈ [t1, t2] we know that limh→0 µt+h(φ) = µt(φ) ∀φ ∈
A. For ϑ ∈ C0

c (U, (−∞,∞)) we can write ϑ = ϑ+ − ϑ− where ϑ+(x) :=
max{0, ϑ(x)}, ϑ−(x) := max{0,−ϑ(x)}. Then approximating ϑ+, ϑ− by
functions from A yields the result.

25



Now we can consider the behaviour of time varying test functions. This
is basically [B, 3.5].

3.8 Proposition (Time Varying Test Functions, [B, 3.5]). For all open
subsets V, U ⊂ Rn+k, every t1 ∈ R, t2 ∈ (t1,∞) the following holds: Let
(µt)t∈[t1,t2] be a Brakke flow in U and φ ∈ C1 ([t1, t2]× V,R+), φt := φ(t, ·)
with φt ∈ C1

c (V,R+) for all t ∈ [t1, t2] and⋃
t∈[t1,t2]

sptµt ∩ V ⊂⊂ U. (3.3)

Then we have for almost every s ∈ (t1, t2)

Dtµt (φt)
∣∣∣
t=s
≤ B (µs, φs) + µs

(
d

dt

∣∣∣
t=s
φt

)
. (3.4)

In particular for every t1 ≤ a < b ≤ t2

µb (φb)− µa (φa) ≤
∫ b

a

(
B (µt, φt) +

∫
U

∂φ

∂t
(t, x)dµt(x)

)
dt. (3.5)

3.9 Remark. 1. By (3.5) the Brakke flow has to be non-singular for al-

most every time t ∈ [t1, t2]. In particular the mean curvature vector ~H
is defined and L2-integrable on U for almost every time t ∈ [t1, t2].

2. The rather technical condition (3.3) is necessary because our test func-
tions are not assumed to have compact support in U . In particular we
later want to use V = Cρ(a), a ∈ Rn+k, ρ ∈ (0,∞).

3. Inequality (3.5) can be used as a definition of Brakke flow which is done
in [KT]. Their definition also includes an extra term.

4. Brakke’s original proof contains a major gap. He tries to estimate
µs+h

(
∂
∂t
φ(s, ·)

)
using (3.1), which is in general not possible as ∂

∂t
φ(s, ·)

may have negative values.

Proof. Note that inequality (3.5) follows from inequality (3.4) by Proposition

A.19. For s ∈ (t1, t2) set Es := Dtµt (φ(t, ·))
∣∣∣
t=s

and calculate

Es = lim sup
h→0

h−1 [µs+h (φs+h)− µs (φs)]

= lim sup
h→0

h−1 [µs+h (φs+h)− µs+h (φs) + µs+h (φs)− µs (φs)]

+ µs+h

(
∂φ

∂t
(s, ·)

)
− µs+h

(
∂φ

∂t
(s, ·)

)
,
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so we arrive at the inequality

Es ≤ lim sup
h→0

h−1 [µs+h (φs)− µs (φs)]

+ lim sup
h→0

h−1

∫
U

[
φs+h(x)− φs(x)− h∂φ

∂t
(s, x)

]
dµs+h(x)

+ lim sup
h→0

µs+h

(
∂φ

∂t
(s, ·)

)
.

(3.6)

By Definition 3.4 we can estimate

lim sup
h→0

h−1 [µs+h (φs)− µs (φs)] = Dtµt(φs)
∣∣∣
t=s
≤ B (µs, φs) . (3.7)

Here we needed to be allowed to use (3.3) to use (3.1), see Remark 3.5.2. Set

K :=
⋃

t∈[t1,t2]

sptµt ∩ V ⊂⊂ U.

By Lemma 3.6 there exists an M ∈ (0,∞) such that supt∈[t1,t2] µt(K) ≤ M .
This lets us estimate∫

U

[
φs+h(x)− φs(x)− h∂φ

∂t
(s, x)

]
dµs+h(x)

=

∫
U

∫ h

0

[
∂φ

∂t
(s+ r, x)− ∂φ

∂t
(s, x)

]
dr dµs+h(x)

= Mh sup
r∈(−|h|,|h|)

sup
x∈K

∣∣∣∣∂φ∂t (s+ r, x)− ∂φ

∂t
(s, x)

∣∣∣∣ .
Then by the continuity of the derivative

lim sup
h→0

h−1

∫
U

[
φs+h(x)− φs(x)− h∂φ

∂t
(s, x)

]
dµs+h(x) = 0. (3.8)

Inserting (3.7) and (3.8) into (3.6) we arrive at

Dtµt (φ(t, ·))
∣∣∣
t=s
≤ B (µs, φ(s, ·)) + lim sup

h→0
µs+h

(
∂φ

∂t
(s, ·)

)
for every s ∈ [t1, t2). At times where µs is continuous the last term is
µs
(
∂φ
∂t

(s, ·)
)

and according to Lemma 3.7 this is the case for almost every
s ∈ (t1, t2).
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Next we derive a certain estimate of the Brakke variation for a cylindrical
cut-off function in terms of mean curvature- and height-excess. It particularly
shows that, if the mean curvature-excess is large compared to the height-
excess one gets a negative bound from above on the Brakke variation and
thus for a Brakke flow the measure of the cut-off function is decreasing. This
is taken from [B, 6.5].

3.10 Lemma (Variation Bound, [B, 6.5]). There exists a constant C ∈
(1,∞) such that for R, γ ∈ (0,∞) the following holds: Let µ be an integral

n-varifold in U with L2-integrable mean curvature vector ~H. Suppose

R−n−2

∫
CR(0)

|πRk(x)|2dµ(x) ≤ γ2. (3.9)

Then the estimate

R−n+2B
(
µ, φ2

R

)
≤ −1

2
R−n+2

∫
U

| ~H|2φ2
R dµ+ CM2γ2 (3.10)

holds for all φ ∈ C2
c ([−1, 1],R+) with φ′ ≡ 0 on [−1

2
, 1

2
], where φR(x) =

φ (R−1|x̂|) and M := max{sup |φ|, sup |φ′|, sup |φ′′|, 1}
Proof. Set Φ := φR, then max{sup |Φ|, R sup |DΦ|, R2 sup |D2Φ|} ≤M . Set

α2 := R−n+2

∫
U

| ~H|2Φ2dµ.

By definition of the Brakke variation and Remark A.7.1 we have

R−n+2B
(
µ,Φ2

)
= R−n+2

∫
U

~H ·D
(
Φ2
)
dµ− α2

≤ 2R−n+2

∫
U

Φ |DΦ| |πTxµ − πRn| | ~H|dµ− α2,

where we used DΦ ∈ Rn×{0}k and ~H ⊥ Txµ by Theorem 2.7. With Young’s
inequality it then follows that

R−n+2B
(
µ,Φ2

)
≤ 2R−n+2

∫
U

|πTxµ − πRn|
2 |DΦ|2 dµ− 3

4
α2, (3.11)

By Lemma A.13 we can estimate∫
U

|πTxµ − πRn|
2 |DΦ|2 dµ

≤ Cn

(∫
U

|πRk(x)|2 |D |DΦ(x)||2 dµ(x)

+

√∫
U

| ~H(x)|2Φ2(x)dµ(x)

∫
U

|πRk(x)|2 |DΦ(x)|4
Φ2(x)

dµ(x)

)
.
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Here we used Lemma A.13 with f = Φ, g = |DΦ| and h = Φ−1|Dφ|2.
By Proposition A.6.1 h is actually well defined if we sustain with 0 outside
{Φ > 0}. Proposition A.6 also yields |D |DΦ||2 ≤ |D2Φ|2 ≤ R−4M2 and
φ−1|DΦ|2 ≤ 2 sup |D2Φ| ≤ 2R−2M . Combined with Young’s inequality this
lets us estimate∫

U

|πTxµ − πRn|
2 |DΦ|2 dµ

≤ CnR
4M2

∫
CR(0)

|πRk(x)|2dµ(x) +
1

8

∫
U

| ~H(x)|2Φ2(x)dµ(x)

≤
(
CnM

2γ2 +
α2

8

)
Rn−2.

Inserting this into (3.11) establishes the result.

A very important tool are barrier functions, introduced in the next Lemma,
which is from [B, 3.6]

3.11 Lemma (Barrier Function Lemma, Brakke [B, 3.6]). Let µ be an inte-
gral n-varifold in B2R(x0), x0 ∈ Rn+k, R ∈ (0,∞) and f ∈ C2 (R,R+) with
f ′′ ≥ 0 and f(t) = 0 for t ≥ R2. For (t, x) ∈ [t0,∞) × Rn+k, t0 ∈ R set
r(t, x) := |x− x0|2 + 2n(t− t0). Then

B (µ, f(r(s, ·))) ≤ −
∫
B2R(x0)

d

ds
f(r(s, x))dµ(x)

for all s ∈ (t0 − 3R2

2n
,∞)

Proof. For s ∈ (t0− 3R2

2n
,∞) set rs(x) = |x−x0|2+2n(s−t0). We may assume

µ has L2-integrable mean curvature vector ~H, or else B (µ, f(r(s, ·))) = −∞,
which directly implies the result. By the definition of mean curvature and
divergence (see Definitions 2.4 and 2.5) calculate∫

Rn+k

D(f(rs(x))) · ~Hdµ = −
∫
Rn+k

divµ(D(f(rs(x))))dµ

= −
∫
Rn+k

divµ(2f ′(rs(x))(x− x0))dµ(x)

= −2

∫
Rn+k

∇µf ′(rs(x)) · (x− x0)dµ(x)− 2

∫
Rn+k

f ′(rs(x))divµx dµ(x)

= −4

∫
Rn+k

f ′′(rs(x))|πTxµ(x− x0)|2dµ(x)− 2n

∫
Rn+k

f ′(rs(x))dµ(x)
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thus we can estimate∫
Rn+k

D(f(rs(x))) · ~Hdµ(x) ≤ −2n

∫
Rn+k

f ′(rs(x))dµ(x)

= −
∫
Rn+k

d

ds
f(r(s, x))dµt(x).

Then the result follows by Definition 3.1, as the | ~H|2-integral is always neg-
ative. Note that for s ∈ (t0 − 3R2

2n
,∞), rs(x) < R2 implies |x − x0|2 < 4R2,

so spt(f ◦ rs) ⊂ B2R(x0) for all s ∈ (t0 − 3R2

2n
,∞).

This can now be used to establish local area and height bounds

3.12 Lemma. For an open subset U ⊂ Rn+k, t1 ∈ R, t2 ∈ (t1,∞), a
Brakke flow (µt)t∈[t1,t2] in U , x0 ∈ Rn+k, R ∈ (0,∞) with BR(x0) ⊂⊂ U and

r(t, x) := |x− x0|2 + 2n(t− t1) the following holds:

1. Let f ∈ C2 ([0,∞),R+) with f ′′ ≥ 0 and f(t) = 0 for t ≥ R2 then∫
U

f(r(s2, x))dµs2(x) ≤
∫
U

f(r(s1, x))dµs1(x)

holds for all t1 ≤ s1 ≤ s2 ≤ t2.

2. For fR(r) := ({1−R−2r}+)
3

and κ ∈ (0, 1) this implies

µt1 (BR(x0)) ≥ (κ− κ2)3µt
(
B(1−κ)R(x0)

)
for all t ∈ [t1, t1 + (2n)−1κR2] ∩ [t1, t2]

3. For δ ∈ (0,∞) and K ⊂ U compact with d(K, ∂U) > 2δ there exists
N = N(K, δ) ∈ N such that

Nµt1 (Kδ) ≥ µt (K)

for all t ∈ [t1, t1 + (4n)−1δ2]∩ [t1, t2], where Kδ := {x ∈ Rn+kd(x,K) <
δ}.

4. Consider δ ∈ (0, 6−1] and v ∈ Rn+k with |v| = 1. If we have

sptµt1 ∩BR(x0) ⊂ {x ∈ U : (x− x0) · v ≤ 0} , (3.12)

then

sptµt ∩BR
2
(x0) ⊂ {x ∈ U : (x− x0) · v ≤ δR} (3.13)

for all t ∈ [t1, t1 + (6n)−1δR2] ∩ [t1, t2].
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5. Suppose U = Rn+k and v ∈ Rn+k with |v| = 1. If we have

sptµt1 ⊂
{
x ∈ Rn+k : (x− x0) · v ≤ 0

}
, (3.14)

then

sptµt ⊂
{
x ∈ Rn+k : (x− x0) · v ≤ 0

}
(3.15)

for all t ∈ [t1, t2].

Proof. 1. Combine Lemma 3.11 and inequality (3.5) from Proposition 3.8.

2. Note that for the derivatives of f we have f ′R = −2R−2 ({1−R−2r}+)
2

and f ′′R = −4R−4 ({1−R−2r}+). By Result 1. with s1 = t1 and s2 = t
this yields∫

U

f(r(t, x))dµt(x) ≤
∫
U

f(r(t1, x))dµt1(x) ≤ µt1 (BR(x0)) ,

where we used sptf(r(t1, ·)) ⊂ BR(x0). For t ∈ [t1, t1 + (2n)−1κR2] ∩
[t1, t2] and x ∈ B(1−κ)R(x0) calculate

f(r(t, x)) ≥
(
{1− ((1− κ)2 + κ)}+

)3
=
(
κ− κ2

)3
,

which verifies the result.

3. Consider the covering K ⊂
⋃
x∈K B δ

2
(x). By compactness of K there

exists an N0 ∈ N and x1, . . . , xN such that K =
⋃N0

i=1B δ
2
(x). Then we

can use result 2. with x0 = xi, κ = 1
2

and R = δ to estimate

µt (K) ≤
N0∑
i=1

µt

(
B δ

2
(xi)

)
≤ 8

N0∑
i=1

µt1 (Bδ(xi)) ≤ 8N0µt1 (Kδ)

for all t ∈ [t1, t1 + (4n)−1δ2] ∩ [t1, t2]. Here we used 8
(

1
2
− 1

4

)3
= 1

8
.

Then the result follows for N = 8N0.

4. Set T := {x ∈ Rn+k : x · v = 0}. Let s ∈ [t1, t1 + (6n)−1δ2R2] ∩ [t1, t2]
and y ∈ sptµs ∩BR

2
(x0) be arbitrary. Set

a := y − ((y − x0) · v)v

a0 := a+ 3−1Rv.

Note that a is the projection of y onto T + x0. The idea is to define
a ball above a in v-direction, which does not intersect sptµt1 , then by
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statement 2 a slightly smaller ball will not intersect sptµt at later times,
which then implies a height bound for y. We can calculate (a−x0)·v = 0
and (a0 − x0) · v = 3−1R which yields

(x− x0) · v = 3−1R + (x− a0) · v (3.16)

for all x ∈ Rn+k. Also we see

|a− x0| = |y − x0 − ((y − x0) · v)v| = |πT (y − x0)| ≤ 2−1R

and

|a0 − x0| =
√
|πT (a0 − x0)|2 + |(a0 − x0) · v|2

≤
√
|a− x0|2 + 3−2R2 ≤ 2

3
R.

Then B3−1R(a0) ⊂ BR(x0) ⊂⊂ U . By (3.16) we see that

(x− x0) · v ≥ 3−1R− |x− a0|

for all x ∈ Rn+k. Combined with assumption (3.12) this yields sptµt1 ∩
B3−1R(a0) = ∅. Then use statement 2 with x0 = a0, κ = 3δ and R
replaced by 3−1R to obtain

sptµt ∩B(3−1−δ)R(a0) = ∅

for all t ∈ [t1, t1 + (6n)−1δR2] ∩ [t1, t2]. In particular

|y − a0| ≥ (3−1 − δ)R. (3.17)

By definition of a0 we see

y − a0 − ((y − a0) · v)v = y − a0 − ((y − a) · v − 3−1R)v = 0.

In particular this means

|y − a0| = (a0 − y) · v, or |y − a0| = (y − a0) · v.

Combined with (3.17) and (3.16) with x = y we can conclude

(y − x0) · v ≤ δR, or (y − x0) · v ≥ (3−1 + 3−1 − δ)R.

The second case contradicts y ∈ BR
2
(x0), as |y − x0| ≥ (y − x0) · v and

δ ≤ 6−1. Thus we obtain the height bound and as s, y where arbitrary
this establishes the result.
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5. Let s ∈ [t1, t2], y ∈ sptµs and ε ∈ (0, 1) be arbitrary. Set R :=
max{ε−2, (6n(s − t1))2, 4|y − x0|, 4}, then use statement 4. with δ =

R−
3
2 < 1

6
to obtain

sptµt ∩BR
2
(x0) ⊂

{
x ∈ U : (x− x0) · v ≤ R−

1
2

}
for all t ∈ [t1, t1 + (6n)−1

√
R] ∩ [t1, t2]. By the choice of R we have

s ∈ [t1, t1 + (6n)−1
√
R], y ∈ BR

2
(x0) and R−

1
2 ≤ ε. Thus (y−x0) · v ≤ ε

and as s, y, ε where arbitrary, this establishes the result.

In the smooth case a Brakke flow can be characterized by the mean cur-
vature flow equation.

3.13 Definition. Let (Mt)t∈[t1,t2] be an immersed family of n-manifolds in

Rn+k, that is Mt = Ft(N) for an n-dimensional manifold N and a smooth
family of immersions Ft = F (t, ·) : N → Rn+k. (Mt)t∈[t1,t2] is called a
(smooth) mean curvature flow, if for every t ∈ (t1, t2) and p ∈ N(

∂F

∂t
(t, p)

)⊥
= ~H (F (t, p)) . (3.18)

If Ft is actually an proper embedding for all t ∈ [t1, t2], we call (Mt)t∈[t1,t2]

an embedded mean curvature flow

3.14 Remark. For an open subset U ⊂ Rn+k every properly embedded
manifold M defines a Radon measure µM in U via µM = H n (M ∩ U). This
associated measure is an integral n-varifold and satisfies µ

(
Rn+k \ U

)
= 0.

For an embedded mean curvature flow (Mt)t∈[t1,t2] as above we can calcu-
late

d

dt

∫
Rn+k

φ(t, ·)dµt =

∫
Rn+k

(
−| ~H|2φ(t, ·) + ~H ·Dφ(t, ·)

)
dµt (3.19)

for every φ ∈ C1
c (U,R). Here µt = µMt and we used the evolution of the area

element under mean curvature flow, which was first calculated in [H1]. This
formula is found in [E4].

If U ∩
(⋃

[t1,t2] ∂Mt

)
= ∅, the smooth mean curvature vector restricted to

U defines a generalised mean curvature vector for µt. Then (3.19) implies the
Brakke flow equation (3.1), such that the associated measure forms a Brakke
flow in U .
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The reverse is in general false. However, a Brakke flow (µt)t∈[t1,t2] in U ,

for which the µt are generated by a family of embedded C1,α-graphs with
certainly small C1,α-norm actually creates a smooth mean curvature flow via
Mt = sptµt ∩ U . This has been done by Brakke as part of [B, 6.10], but the
proof contains many gaps and small errors. There exists a new proof in [T],
see in particular [T, 6.3].
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4 Heat Diffusion

Consider a Brakke flow (µt)t∈[t1,t2] in an open subset U ⊂ Rn+k. The aim
of this section is to show that evolution by Brakke flow is somehow close to
linear heat diffusion. A convolution of some function g ∈ C∞

(
Rn+k

)
with

the cylindrical heat kernel Ψ on µt would evolve for time τ by the Brakke flow
by just changing the measure. However, we could also evolve by changing the
parameter in the heat kernel, which is like moving by linear heat diffusion.

∫
g(x)Ψ(s, x)dµt(x)

∫
g(x)Ψ(s, x)dµt+τ (x)

∫
g(x)Ψ(s+ τ, x)dµt(x)

��
��

��
��

��
��1

Brakke flow

PPPPPPPPPPPPq
heat diffusion

?

Figure 1: evolution for time τ

The main result of this section is Theorem 4.15, which estimates the
difference of these two outcomes. Later we will use this for g(x) = xn+j

and Brakke flows in a certainly narrow slab. In this case the two evolutions
almost behave identically.

This section is based on [B, 6.8 and 6.9]. In particular Theorem 4.15 is like
an integrated version of [B, 6.8], but it is much more general and the proof
is very different. We will calculate the mean curvature evolution equation
for our heat kernel, which yields Proposition 4.11. Combining this with the
Brakke flow equation and the definition of the mean curvature vector, in the
form of Lemma 4.13, already produces Theorem 4.15. Note that the results
from this section are not covered in [KT]. In [KT] a completely different
approach is taken as far as [B, 6.8 and 6.9] is concerned. Here we decided to
adhere to Brakke’s original method which is interesting in its own right.

We start with the definition and some basic properties of the heat kernel.
As we are looking at the flow only locally we have to modify the heat kernel
with a cut-off function ζ.

4.1 Definition. Fix ζ ∈ C∞ ([0,∞), [0, 1]) with

ζ(r) =

{
1 for 0 ≤ r ≤ 1− 2−n−9

0 for 1 ≤ r

and such that max {sup |ζ ′|, sup |ζ ′′|} ≤ σ1, for some constant σ1 ∈ (0,∞).
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4.2 Definition. For t, ρ ∈ (0,∞) and x̂ ∈ Rn we define the cylindrical heat
kernel Ψ by

Ψ(t, x̂) := σ2 t
−n

2 e−
|x̂|2
4t

Ψρ(t, x̂) := Ψ(t, x̂)ζ
(
ρ−1|x̂|

)
where σ−1

2 :=
∫
Rn e

− |x̂|
2

4 dx, so
∫
Rn Ψρ(t, x̂)dL n(x̂) ≤ 1 for every t > 0.

4.3 Remark. Note that σ1 and σ2 are considered absolute constants and
dependence on σ1, σ2 will not be denoted explicitly in the sequel.

4.4 Remark. For the truncated heat kernel we calculate the following deriva-
tives:

∂Ψρ

∂t
(t, x̂) =

(
|x̂|2

4t2
− n

2t

)
Ψρ(t, x̂)

∂Ψρ

∂xi
(t, x̂) = − x̂i

2t
Ψρ(t, x̂) +

x̂i
ρ|x̂|

ζ ′(ρ−1|x̂|)Ψ(t, x̂)

∂2Ψρ

∂xi∂xj
(t, x̂) =

(
x̂ix̂j
4t2
− δij

2t

)
Ψρ(t, x̂) +

x̂ix̂j
ρ2|x̂|2

ζ ′′(ρ−1|x̂|)Ψ(t, x̂)

+

(
δij
ρ|x̂|
− x̂ix̂j
ρ|x̂|3

− x̂ix̂j
tρ|x̂|

)
ζ ′(ρ−1|x̂|)Ψ(t, x̂)

∆Rn+kΨρ(t, x̂) =

(
|x̂|2

4t2
− n

2t

)
Ψρ(t, x̂) + ρ−2ζ ′′(ρ−1|x̂|)Ψ(t, x̂)

+

(
n− 1

ρ|x̂|
− |x̂|
tρ

)
ζ ′(ρ−1|x̂|)Ψ(t, x̂).

Here 1 ≤ i, j ≤ n.

4.5 Remark. 1. Ψ(t, x̂) ≤ σ2t
−n

2 for all t ∈ (0,∞) and all x̂ ∈ Rn.

2. For every P ∈ [0,∞) exists κ ∈ (0, 1) such that the following holds:
Let t, r ∈ (0,∞), x̂0 ∈ Rn and x̂ ∈ Rn \Br(x0), then we can estimate

Ψ(t, x̂) ≤ σ2t
−n

2 e−
r2

4t .

Suppose r−2t ≤ κ for κ small enough depending on P and n, then we
can estimate further

Ψ(t, x̂) ≤ σ2r
−n(t−1r2)

n
2 e−

r2

4t ≤ σ2r
−n(r−2t)P .
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3. Statement 2 will be used to estimate all the extra-terms arising from
the cut-off function in the derivatives above. Note that the derivatives
of ζ(ρ−1(x)) are 0 for x ∈ B ρ

2
(0), so statement 2 says that, if ρ is large

compared to t, cutting-off only produces small extra-terms.

4.6 Lemma. For every P ∈ [0,∞) there exists a Λ ∈ (1,∞) such that for
all t ∈ (0,∞) and all x̂0 ∈ Rn∫

Rn
|x̂− x̂0|PΨ(t, x̂− x̂0)dL n(x̂) ≤ Λt

P
2 .

Proof. By the transformation of variables ŷ = t−
1
2 (x̂− x̂0) we obtain∫

Rn
|x̂− x̂0|P t−

n
2 e−

|x̂−x̂0|
2

4t dL n(x̂) =

∫
Rn
|
√
tŷ|P t−

n
2 e−

t|ŷ|2
4t t

n
2 dL n(ŷ)

= t
P
2

∫
Rn
|ŷ|P e−

|ŷ|2
4 dL n(ŷ).

Then for Λ := σ2

∫
Rn |ŷ|

P e−
|ŷ|2

4 dL n(ŷ) + 1 the result follows.

4.7 Lemma. There exists a C ∈ (1,∞) such that for all q0 ∈ (0,∞), q ∈
(q0,∞) and all x̂0 ∈ Rn∫

Rn
|Ψ(q, x̂− x̂0)−Ψ(q0, x̂− x̂0)| dL n(x̂) ≤ C log

(
1 + q−1

0 (q − q0)
)
.

Proof. Use the fundamental theorem of calculus and Fubini’s theorem to
obtain ∫

Rn
|Ψ(q, x̂− x̂0)−Ψ(q0, x̂− x̂0)| dL n(x̂)

=

∫
Rn

∣∣∣∣∫ q−q0

0

∂

∂t
Ψ(q0 + s, x̂− x̂0)ds

∣∣∣∣ dL n(x̂)

≤
∫ q−q0

0

∫
Rn

∣∣∣∣ ∂∂tΨ(q0 + s, x̂− x̂0)

∣∣∣∣ dL n(x̂)ds.

(4.1)

With Lemma 4.6 we can estimate∫
Rn

∣∣∣∣ ∂∂tΨ(q0 + s, x̂− x̂0)

∣∣∣∣ dL n(x̂)

≤
∫
Rn

(
|x̂− x̂0|2

4(q0 + s)2
+

n

2(q0 + s)

)
Ψ(q0 + s, x̂− x̂0)dL n(x̂) ≤ Cn(q0 + s)−1.
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Inserting this into (4.1) yields∫
Rn
|Ψ(q, x̂− x̂0)−Ψ(q0, x̂− x̂0)| dL n(x̂) ≤ Cn

∫ q−q0

0

(q0 + s)−1ds

= Cn log
(
q−1

0 q
)

This establishes the result.

4.8 Lemma. For every P0 ∈ (0,∞) there exists a κ0 ∈ (0, 1) such that for
all r, t ∈ (0,∞), x0 ∈ Rn+k with r−2t ≤ κ0 the following holds:

1. We have ∫
Rn\Br(x̂0)

Ψ(t, x̂− x̂0)dL n(x̂) ≤ (r−2t)P0 .

2. For every R ∈ (r,∞) and every Radon measure µ with µ(CR(x0)) <∞
we have∫

CR(x0)\Cr(x0)

Ψ(t, x̂− x̂0)dµ(x) ≤ (r−2t)P0r−nµ(CR(x0))

Proof. Writing the integral in spherical coordinates we obtain∫
Rn\Br(x̂0)

Ψ(t, x̂− x̂0)dL n(x̂) = σ2ωn

∫ ∞
r

ρn−1t−
n
2 e−

ρ2

4t dρ

then transforming s = t−
1
2ρ yields∫

Rn\Br(x̂0)

Ψ(t, x̂− x̂0)dL n(x̂) = σ2ωn

∫ ∞
t−

1
2 r

sn−1e−
s2

4 ds.

For the last integral we estimate∫ ∞
t−

1
2 r

sn−1e−
s2

4 ds ≤
∫ ∞
t−

1
2 r

s−2P0−1

2P0σ2ωn
ds ≤ tP0

r2P0σ2ωn
,

where we used that sn−1e−
s2

4 ≤ 1
2P0σ2ωn

s−2P0−1 for s ≥ t−
1
2 r large enough,

which can be achieved for small enough κ0 depending on P0. This establishes
result 1.

For statement 2. we can directly estimate∫
CR(x0)\Cr(x0)

Ψ(t, x̂− x̂0)dµ(x) ≤ σ2

∫
CR(x0)\Cr(x0)

t−
n
2 e−

r2

4t dµ(x)

≤ σ2t
−n

2 e−
r2

4t µ(CR(x0)).
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For r−2t ≤ κ0 small enough depending on P0 we have

σ2t
−n

2 e−
r2

4t = σ2r
−n (r−2t

)−n
2 e−

r2

4t ≤ r−n
(
r−2t

)P0

which establishes result 2.

4.9 Lemma. For every P1 ∈ (0,∞) there exists a κ1 ∈ (0, 1) such that for
all ρ, t ∈ (0,∞) with ρ−2t ≤ κ1 and every x0 ∈ Rn+k the following holds: Let
µ be a Radon measure with µ(Cρ(x0)) <∞ then∫

Cρ(x0)

|DΨ(t, x̂− x̂0)ζ
(
ρ−1|x̂− x̂0|

)
−DΨρ(t, x̂− x̂0)|dµ(x)

≤ (ρ−2t)P1ρ−n−1µ(Cρ(x0))

(4.2)

and ∫
Cρ(x0)

|D2Ψ(t, x̂− x̂0)ζ
(
ρ−1|x̂− x̂0|

)
−D2Ψρ(t, x̂− x̂0)|dµ(x)

≤ (ρ−2t)P1ρ−n−2µ(Cρ(x0))

(4.3)

Proof. We may assume x0 = 0. Use Remark 4.4 to estimate

D1 :=

∫
Cρ(0)

|DΨ(t, x̂)ζ
(
ρ−1|x̂|

)
−DΨρ(t, x̂)|dµ(x)

≤ nmax
i

∫
Cρ(0)

|x̂i|
ρ|x̂|

ζ ′
(
ρ−1|x̂|

)
Ψ(t, x̂)dµ(x),

as well as

D2 :=

∫
Cρ(0)

|D2Ψ(t, x̂)ζ
(
ρ−1|x̂|

)
−D2Ψρ(t, x̂)|dµ(x)

≤ n2 max
i,j

[∫
Cρ(0)

|x̂ix̂j|
ρ2|x̂|2

ζ ′′
(
ρ−1|x̂|

)
Ψ(t, x̂)dµ(x)

+

∫
Cρ(0)

(
δij
ρ|x̂|

+
|x̂ix̂j|
ρ|x̂|3

+
|x̂ix̂j|
tρ|x̂|

)
ζ ′
(
ρ−1|x̂|

)
Ψ(t, x̂)dµ(x)

]
.

By definition of ζ we have ζ ′(ρ−1|x̂|) = ζ ′′(ρ−1|x̂|) = 0 for all x ∈ C ρ
2
(0) and

all x ∈ Rn+k \ Cρ(0). Also we have max{sup |ζ ′|, sup |ζ ′′|} ≤ σ1 so we can
estimate for D1 and D2

ρiDi ≤ Cn

(
1 +

ρ2

t

)∫
Cρ(0)\C ρ

2
(0)

Ψ(t, x̂)dµ(x)
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for i ∈ {1, 2}. Note that we estimated σ1 ≤ Cn. Now we can use Lemma
4.8.2 with P0 = P1 + 2 and R = 2r = ρ to find a κ0 ∈ (0, 1) depending on P1

such that

ρiDi ≤ Cn22P1+4

(
1 +

ρ2

t

)
(ρ−2t)P1+2ρ−nµ(Cρ(0)) (4.4)

for i ∈ {1, 2}. Here we chose κ1 ≤ 4κ0, so ρ−2t ≤ κ1 ≤ 4κ0. Also for κ1 small
enough depending on P1 the inequality ρ−2t ≤ κ1 leads to

Cn22P1+4

(
1 +

ρ2

t

)
(ρ−2t)2 ≤ Cn22P1+6κ1 ≤ 1.

Thus (4.4) becomes

ρiDi ≤ (ρ−2t)P1ρ−nµ(Cρ(0))

for i ∈ {1, 2}, which establish the result.

If the time parameter goes to zero, the truncated heat kernel converges
to the Dirac delta distribution. This is shown in the following proposition.

4.10 Proposition. For every P ∈ (0,∞) there exists a κ ∈ (0, 1) such that
for all ρ, s,M ∈ (0,∞) and every x̂0 ∈ Rn the following holds:

1. For f : Bn
ρ (x̂0)→ [−M,M ] and r ∈

(
0, ρ

2

]
with r−2s ≤ κ we have∣∣∣∣f(x̂0)−

∫
Rn
f(x̂)Ψρ(s, x̂− x̂0)dL n(x̂)

∣∣∣∣
≤ sup

Bnr (x̂0)

|f(x̂0)− f(x̂)|+M
(
r−2s

)P
.

2. For a continuous function f ∈ C0(Bn
ρ (x̂0)) we obtain

f(x̂0) = lim
t↘0

∫
Rn
f(x̂)Ψρ(t, x̂− x̂0)dL n(x̂).

3. If ρ−2s ≤ κ we can estimate∫
Rn

Ψ(s, x̂− x̂0)−Ψρ(s, x̂− x̂0)dL n(x̂) ≤
(
ρ−2s

)P
.
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Proof. Use
∫
Rn Ψ(s, x̂)dL n(x̂) = 1 and Ψρ(x̂) = Ψ(x̂)ζ (ρ−1|x̂|) to calculate∣∣∣∣f(x̂0)−
∫
Rn
f(x̂)Ψρ(s, x̂− x̂0)dL n(x)

∣∣∣∣
=

∣∣∣∣∫
Rn
f(x̂0)Ψ(s, x̂− x̂0)dL n(x̂)−

∫
Rn
f(x̂)Ψρ(s, x̂− x̂0)dL n(x̂)

∣∣∣∣
=

∣∣∣∣∫
Rn

(
f(x̂0)− f(x̂)ζ(ρ−1|x̂− x̂0|)

)
Ψ(s, x̂− x̂0)dL n(x̂)

∣∣∣∣ .
Here we set f ≡ 0 outside Bn

ρ (x̂0). Partitioning Rn into Br(x0) and Rn \
Br(x0) we can estimate∣∣∣∣f(x̂0)−

∫
Rn
f(x̂)Ψρ(s, x̂− x̂0)dL n(x̂)

∣∣∣∣
≤
∫
Rn

∣∣f(x̂0)− f(x̂)ζ(ρ−1|x̂− x̂0|)
∣∣Ψ(s, x̂− x̂0)dL n(x̂)

≤ sup
x̂∈Br(x̂0)

∣∣f(x̂0)− f(x̂)ζ(ρ−1|x̂− x̂0|)
∣∣ ∫

Br(x̂0)

Ψ(s, x̂− x̂0)dL n(x̂)

+ sup
x̂∈Rn

∣∣f(x̂0)− f(x̂)ζ(ρ−1|x̂− x̂0|)
∣∣ ∫

Rn\Br(x̂0)

Ψ(s, x̂− x̂0)dL n(x̂).

As ζ ≡ 1 on Bn
ρ
2
(x0) ⊃ Bn

r (x0) and |f | ≤M we obtain∣∣∣∣f(x̂0)−
∫
Rn
f(x̂)Ψρ(s, x̂− x̂0)dL n(x̂)

∣∣∣∣
≤ sup

x̂∈Br(x̂0)

|f(x̂0)− f(x̂)|+ 2Mωn

∫
Rn\Br(x̂0)

Ψ(s, x̂− x̂0)dL n(x̂)
(4.5)

By Lemma 4.8.1 with P0 = P + 1 we find a κ0 ∈ (0, 1) depending on P such
that ∫

Rn\Br(x̂0)

Ψ(s, x̂− x̂0)dL n(x̂) ≤
(
r−2s

)P+1

for r−2s ≤ κ0. Inserting this into (4.5) yields∣∣∣∣f(x̂0)−
∫
Rn
f(x̂)Ψρ(s, x̂− x̂0)dL n(x̂)

∣∣∣∣
≤ sup

x̂∈Br(x̂0)

|f(x̂0)− f(x̂)|+ 2M
(
r−2s

)P+1
(4.6)
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for r−2s ≤ κ0. For κ small enough depending on κ0 which in turn depends
on P , this establishes statement 1.

To prove statement 2. let ε ∈ (0, 1) be arbitrary. By continuity of f there
exists r ∈

(
0, ρ

2

]
such that

sup
x̂∈Br(x̂0)

|f(x̂0)− f(x̂)| ≤ ε

2
.

Using statement 1. with P = 1, s = t and M := supBnρ (x̂0) |f | yields a

κ ∈ (0, 1) such that∣∣∣∣f(x̂0)−
∫
Rn
f(x̂)Ψρ(t, x̂− x̂0)dL n(x̂)

∣∣∣∣ ≤ ε

2
+Mr−2t

for all t ∈ (0, κr2]. Set δ = min{κ,M−1 ε
2
}r2. Then for all t ∈ (0, δ]∣∣∣∣f(x̂0)−

∫
Rn
f(x̂)Ψρ(t, x̂− x̂0)dL n(x̂)

∣∣∣∣ ≤ ε

and as ε was arbitrary this establishes statement 2.
In Order to show statement 3. we apply (4.6) with f ≡ 1 and r = ρ

2
to

obtain ∣∣∣∣1− ∫
Rn

Ψρ(s, x̂− x̂0)dL n(x̂)

∣∣∣∣ ≤ 22P+3
(
ρ−2s

)P+1

for ρ−2s ≤ 4κ0. For κ small enough 22P+3 (ρ−2s)
P+1 ≤ (ρ−2s)

P
. Then∫

Rn Ψ(s, x̂ − x̂0)dL n = 1 verifies the wanted estimate. Here the choice of κ
depends on P and κ0 which in turn also depends on P .

We know that Ψ satisfies the heat equation in Rn+k. For a sufficiently
flat varifold mean curvature flow almost coincides with heat diffusion. Con-
sequently the evolution equation of the heat kernel is controlled by curvature
and tilt-excess.

4.11 Proposition. For every P ∈ (0,∞) there exists a κ ∈ (0, 1) such that
for all ρ, s,K ∈ (0,∞) with ρ−2s ≤ κ and every open subset U ⊂ Rn+k the
following holds: Let µ be an integral n-varifold in U with L2-integrable mean
curvature vector ~H. Suppose µ (Cρ(x0)) < ∞. Then for every g : U →
[−K,K]∫

U

∣∣∣∣g(x)

(
∂

∂t
−∆µ

)
Ψρ(s, x̂)

∣∣∣∣ dµ(x)

≤ 1

2

∫
U

|g(x)|| ~H(x)|2Ψρ(s, x̂)dµ(x) + (ρ−2s)PKρ−n−2µ (Cρ(0))

+

∫
U

|g(x)| |x̂|
2 + s

s2
|πTxµ − πRn|

2 Ψρ(s, x̂)dµ(x).
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4.12 Remark. This formula is also valid for the non-truncated heat kernel.
In this case we can leave out the (ρ−2s)Pρ−n−2µ (Cρ(0))-term, but have to
replace U by Rn+k and we have to assume that the integrals on the right
hand side exist.

Proof. For x ∈ sptµ such that Txµ exists let {νj}1≤j≤k be an orthonormal

basis of Txµ
⊥. By Remark 2.6.5 we have∫

U

(
∂

∂t
−∆µ

)
Ψρ dµ

=

∫
U

((
∂

∂t
−∆Rn+k

)
Ψρ −DΨρ · ~H +

k∑
l=1

νl ·D2Ψρ(νl)

)
dµ.

(4.7)

To calculate the first term on the right hand side of (4.7) use Remark 4.4.
This yields(

∂

∂t
−∆Rn+k

)
Ψρ(s, x̂)

= −ρ−2ζ ′′(ρ−1|x̂|)Ψ(s, x̂)−
(
n− 1

ρ|x̂|
− |x̂|
sρ

)
ζ ′(ρ−1|x̂|)Ψ(s, x̂)

(4.8)

for all x ∈ Rn+k. Also by Remark 4.4 we can calculate

DΨρ(s, x̂) · ~H(x) = − 1

2s
x̂ · ~HΨρ(s, x̂) +

1

ρ|x̂|
x̂ · ~Hζ ′(ρ−1|x̂|)Ψ(s, x̂) (4.9)

for all x ∈ sptµ. For x ∈ sptµ such that Txµ exists calculate

k∑
l=1

n∑
i,j=1

x̂ix̂j (νl · ei) (νl · ej) =
k∑
l=1

(νl · x̂)2 =
∣∣π⊥TxV (x̂)

∣∣2 . (4.10)

Proposition A.11 implies

k∑
l=1

n∑
i,j=1

δij (νl · ei) (νl · ej) =
n∑
i=1

k∑
l=1

(νl · ei)2 =
1

2
|πRn − πTxµ|

2 . (4.11)
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Using Remark 4.4 in combination with (4.10) and (4.11) we can calculate

k∑
l=1

νl ·D2Ψρ(s, x̂)(νl) =
k∑
l=1

n∑
i,j=1

∂2Ψρ

∂xi∂xj
(s, x̂) (νl · ei) (νl · ej)

=

(∣∣π⊥Txµ (x̂)
∣∣2

4s2
− |πR

n − πTxµ|
2

4s

)
Ψρ(s, x̂)

+

∣∣π⊥Txµ (x̂)
∣∣2

ρ2|x̂|2
ζ ′′(ρ−1|x̂|)Ψ(s, x̂)

+

(
|πRn − πTxµ|

2

2ρ|x̂|
−
∣∣π⊥Txµ (x̂)

∣∣2
ρ|x̂|3

−
∣∣π⊥Txµ (x̂)

∣∣2
sρ|x̂|

)
ζ ′(ρ−1|x̂|)Ψ(s, x̂)

(4.12)

for all x ∈ sptµ such that Txµ exists.
Inserting (4.8), (4.9) and (4.12) into (4.7) yields∫

U

(
∂

∂t
−∆µ

)
Ψρ(s, x̂)dµ(x)

=

∫
U

[(∣∣π⊥Txµ (x̂)
∣∣2

4s2
− |πTxµ − πR

n|2

4s
+ ~H(x) · x̂

2s

)
Ψρ(s, x)

+

∣∣π⊥Txµ (x̂)
∣∣2 − |x̂|2

ρ2|x̂|2
ζ ′′(ρ−1|x̂|)Ψ(s, x̂)

− ~H(x) · x̂

ρ|x̂|
ζ ′(ρ−1|x̂|)Ψ(s, x̂)

+
|πRn − πTxµ|

2 − 2(|x̂|−2 + s−1)
∣∣π⊥Txµ (x̂)

∣∣2
2ρ|x̂|

ζ ′(ρ−1|x̂|)Ψ(s, x̂)

+

(
|x̂|
sρ
− n− 1

ρ|x̂|

)
ζ ′(ρ−1|x̂|)Ψ(s, x̂)

]
dµ(x).

By definition of ζ we have ζ ′(ρ−1|x̂|) = ζ ′′(ρ−1|x̂|) = 0 for all x ∈ ¯C ρ
2
(0) and

all x ∈ U \ Cρ(0). Also we have max{sup |ζ ′|, sup |ζ ′′|} ≤ σ1, supU |g| ≤ K
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and |πRn − πTxµ|
2 ≤ 2n (by Proposition A.11), so we can estimate∫

U

∣∣∣∣g(x)

(
∂

∂t
−∆µ

)
Ψρ(s, x̂)

∣∣∣∣ dµ(x)

≤
∫
U

|g(x)|

∣∣∣∣∣
(∣∣π⊥Txµ (x̂)

∣∣2
4s2

− |πTxµ − πR
n|2

4s

)
Ψρ(s, x̂)

+ ~H(x) ·
(
x̂

2s
Ψρ(s, x)− x̂

ρ|x̂|
ζ ′(ρ−1|x̂|)Ψ(s, x̂)

) ∣∣∣∣∣dµ(x)

+ Cn
(
ρ−2 + s−1

)
K

∫
Cρ(0)\C ρ

2
(0)

Ψ(s, x̂)dµ(x)

(4.13)

Note that σ1 is controlled by Cn. By 4.8.2 with P0 = P + 2, x̂0 = 0 and
R = 2r = ρ we find a κ0 ∈ (0, 1) such that∫

Cρ(0)\C ρ
2

(0)

Ψ(s, x̂)dµ(x) ≤ Cn22P+4(ρ−2s)P+2ρ−nµ (Cρ(0)) . (4.14)

Here we chose κ ≤ 4κ0, so ρ−2s ≤ κ ≤ 4κ0. Inserting (4.14) into (4.13) yields∫
U

∣∣∣∣g(x)

(
∂

∂t
−∆µ

)
Ψρ(s, x̂)

∣∣∣∣ dµ(x)

≤
∫
U

|g(x)|

(∣∣π⊥Txµ (x̂)
∣∣2

4s2
+
|πTxµ − πRn|

2

4s

)
Ψρ(s, x̂)dµ(x)

+

∫
U

|g(x)|
∣∣∣∣ ~H(x) ·

(
x̂

2s
Ψρ(s, x)− x̂

ρ|x̂|
ζ ′(ρ−1|x̂|)Ψ(s, x̂)

)∣∣∣∣ dµ(x)

+ Cn22P+4
(
ρ−2 + s−1

)
(ρ−2s)P+2ρ−nKµ (Cρ(0)) .

(4.15)

As ρ−2s ≤ κ ≤ 1 we have (ρ−2 + s−1) (ρ−2s)2 ≤ 2κρ−2. Also we can estimate∣∣π⊥Txµ (x̂)
∣∣2 = |x̂− πTxµ (x̂)|2 ≤ |πTxµ − πRn|

2 |x̂|2. Then (4.15) becomes∫
U

∣∣∣∣g(x)

(
∂

∂t
−∆µ

)
Ψρ(s, x̂)

∣∣∣∣ dµ(x)

≤
∫
U

|x̂|2 + s

4s2
|g(x)| |πTxµ − πRn|

2 Ψρ(s, x̂)dµ(x)

+

∫
U

|g(x)|
∣∣∣∣ ~H(x) ·

(
x̂

2s
Ψρ(s, x) +

x̂

ρ|x̂|
ζ ′(ρ−1|x̂|)Ψ(s, x̂)

)∣∣∣∣ dµ(x)

+ Cn22P+4κ(ρ−2s)Pρ−n−2Kµ (Cρ(0)) .

(4.16)
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By Theorem 2.7 we can use Remark A.7 to calculate for almost every x ∈ sptµ
that ~H · x̂ = ~H · (πRn(x̂)− πTxµ(x̂)) . Then with Young’s inequality we can
estimate ∣∣∣∣ ~H(x) · x̂

2s

∣∣∣∣ ≤ 1

4
| ~H(x)|2 + |πTxµ − πRn|

2 |x̂|2

2s2
.

Hence ∫
U

|g(x)|
∣∣∣∣ ~H(x) · x̂

2s
Ψρ(s, x̂)

∣∣∣∣ dµ(x)

≤ 1

4

∫
U

|g(x)|| ~H(x)|2Ψρ(s, x̂)dµ(x)

+

∫
U

|g(x)| |x̂|
2

2s2
|πTxµ − πRn|

2 Ψρ(s, x̂)dµ(x).

(4.17)

Using again Young’s inequality we also have∣∣∣∣ ~H(x) · x̂

ρ|x̂|
ζ ′(ρ−1|x̂|)

∣∣∣∣ ≤ 1

4
| ~H(x)|2ζ(ρ−1|x̂|) +

(ζ ′(ρ−1|x̂|))2

ρ2ζ(ρ−1|x̂|)
.

Note that by Proposition A.6.1 the function ζ−1(ζ ′)2 is well defined and can
be controlled by sup |ζ ′′| ≤ σ1. Also use again that spt(ζ ′(ρ−1|πRn(·)|)) ⊂
Cρ(0) \ C ρ

2
(0) and supU |g| ≤ K. Thus we obtain∫

U

|g(x)|
∣∣∣∣ ~H(x) · x̂

ρ|x̂|
ζ ′(ρ−1|x̂|)

∣∣∣∣Ψ(s, x̂)dµ(x)

≤ 1

4

∫
U

|g(x)|| ~H(x)|2Ψρ(s, x̂)dµ(x) + 2σ1ρ
−2K

∫
Cρ(0)\C ρ

2
(0)

Ψ(s, x̂)dµ(x).

With (4.14) this yields∫
U

|g(x)|
∣∣∣∣ ~H(x) · x̂

ρ|x̂|
ζ ′(ρ−1|x̂|)

∣∣∣∣Ψ(s, x̂)dµ(x)

≤ 1

4

∫
U

|g(x)|| ~H(x)|2Ψρ(s, x̂)dµ(x)

+ Cn22P+4κ(ρ−2s)Pρ−n−2Kµ (Cρ(0)) ,

(4.18)

where we used again ρ−2s ≤ κ ≤ 1. Then inserting (4.17) and (4.18) into
(4.16) establishes the result for κ small enough depending on P .
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From the definition of the mean curvature vector on varifolds (see Defi-
nition 2.5) we obtain the following lemma:

4.13 Lemma. For every ρ, s ∈ (0,∞) and every open subset U ⊂ Rn+k the
following holds: Let µ be an integral n-varifold in U with mean curvature
vector ~H and

sptµ ∩ Cρ(0) ⊂⊂ U. (4.19)

Then for every g ∈ C2 (U)∫
U

g(x)∆µΨρ(s, x̂)dµ(x)

=

∫
U

(
Dg(x) · ~H(x) + divµDg(x)

)
Ψρ(s, x̂)dµ(x).

(4.20)

Proof. First we can calculate using equality (2.3) and Remark 2.6.3∫
U

g(x)∆µΨρ(s, x̂)dµ(x)−
∫
U

∆µ (g(x)Ψρ(s, x̂)) dµ(x)

= −
∫
U

(Ψρ(s, x̂)∆µg(x) + 2∇µg(x) · ∇µΨρ(s, x̂)) dµ(x)

= −
∫
U

(
divµDg(x) +Dg(x) · ~H(x)

)
Ψρ(s, x̂)dµ(x)

− 2

∫
U

Dg(x) · ∇µΨρ(s, x̂)dµ(x).

By assumption (4.19) we can use equality (2.2) and combine this with Remark
2.6.3 to obtain∫

U

Dg(x) · ∇µΨρ(s, x̂)dµ(x)

=

∫
U

divµ (Ψρ(s, x̂)Dg(x))− divµDg(x)Ψρ(s, x̂)dµ(x)

= −
∫
U

(
divµDg(x) +Dg(x) · ~H(x)

)
Ψρ(s, x̂)dµ(x).

Combining these two calculations already establishes∫
U

g(x)∆µΨρ(s, x̂)dµ(x)−
∫
U

∆µ (g(x)Ψρ(s, x̂)) dµ(x)

=

∫
U

(
divµDg(x) +Dg(x) · ~H(x)

)
Ψρ(s, x̂)dµ(x).

By assumption (4.19) we can use Remark 2.6.7 to see that the Laplace term
vanishes, which establishes the result.
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4.14 Lemma. For every P1 ∈ (0,∞) there exists a κ1 ∈ (0, 1) such that,
for every s, ρ,K ∈ (0,∞) with ρ−2s ≤ κ1 and every open subset U ⊂ Rn+k

the following holds: Let µ be an integral n-varifold in U with L2-integrable
mean curvature vector ~H. Suppose µ (Cρ(x0)) < ∞, then for every g : U →
[−K,K] ∫

U

g ~H(x) ·DΨρ(s, x̂)dµ(x)

≤
∫
U

|g|
2
| ~H|2Ψρ(s, x̂)dµ(x) +K

(
ρ−2s

)P1 ρ−n−2µ (Cρ(0))

+K

∫
U

|πTxµ − πRn|
2 |x̂|2

2s2
Ψρ(s, x̂)dµ(x).

Proof. Set ψ(s, x) := Ψρ(s, x̂) for x ∈ Rn+k. By Theorem 2.7 and Young’s
inequality we can estimate

~H ·Dψ = | ~H · (πTxµ(Dψ)− πRn(Dψ)) |

≤ 1

2
| ~H|2ψ + |πTxµ − πRn |

2 |Dψ|2

2ψ
.

Note that by Proposition A.6.1 the term ψ−1|Dψ|2 is well defined. Thus we
have ∫

U

g ~H ·Dψ dµ

≤
∫
U

|g|
2
| ~H|2ψ dµ+K

∫
U

|πTxµ − πRn|
2 ψ−1|Dψ|2dµ,

(4.21)

where we estimated supU |g| by K. Using Remark 4.4 yields

(Ψρ(s, x̂))−1 |DΨρ(s, x̂)|2

≤ (Ψρ(s, x̂))−1

(
|x̂|2

2s2
Ψ2
ρ(s, x̂) +

2

ρ2

(
ζ ′(ρ−1|x̂|)

)2
Ψ2(s, x̂)

)
≤ |x̂|

2

2s2
Ψρ(s, x̂) +

2

ρ2

(
ζ(ρ−1|x̂|)

)−1 (
ζ ′(ρ−1|x̂|)

)2
Ψ(s, x̂)

for all x̂ ∈ Rn. By definition of ζ we have spt(ζ ′(ρ−1|πRn(·)|)) ⊂ Cρ(0)\C ρ
2
(0).

Combine this with Proposition A.6.1 and with the relation |ζ ′′(ρ−1|x̂|)| ≤ σ1
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to obtain ∫
U

|πTxµ − πRn|
2 ψ−1|Dψ|2dµ

≤
∫
U

|πTxµ − πRn|
2 |x̂|2

2s2
ψdµ(x)

+
2σ1

ρ2

∫
Cρ(0)\C ρ

2
(0)

|πTxµ − πRn|
2 Ψ(s, x̂)dµ(x).

(4.22)

Now by Lemma 4.8.2 with P0 = P1 + 1, R = 2r = ρ and t = s there exists a
κ0 ∈ (0, 1) depending on P1 such that∫

Cρ(0)\C ρ
2

(0)

Ψ(s, x̂)dµ(x) ≤ 22P1+2(ρ−2s)P1+1ρ−nµ (Cρ(x0))

if ρ−2s ≤ 4κ0, so choose κ1 ≤ 4κ0. As
∣∣πTxµt0 − πRn∣∣2 ≤ 4n2 (by Proposition

A.11) we can insert this into (4.22) to conclude∫
U

|πTxµ − πRn|
2 ψ−1|Dψ|2dµ

≤
∫
U

|πTxµ − πRn|
2 |x̂|2

2s2
ψdµ(x) + Cn22P1+2(ρ−2s)P1+1ρ−n−2µ (Cρ(0))

Now use ρ−2s ≤ κ1, so for κ1 small enough depending on P1, we can estimate
Cn22P1+2(ρ−2s) ≤ 1. Then with (4.21) the result follows.

By Proposition 4.11, Lemma 4.13 and Lemma 4.14 we can control the
right hand side of (3.5) for functions of the form φ = gΨ, for g ∈ C2 (U, [0, K]),
K ∈ (1,∞). This lets us estimate the difference between evolution by Brakke
flow and evolution by increasing the heat kernel parameter. The following
result is an improvement of [B, 6.8].

4.15 Theorem (Heat Diffusion, [B, 6.8]). For every P0 ∈ (0,∞) there exists
a κ0 ∈ (0, 1) such that, for all t0 ∈ R, ρ, p, q,∈ (0,∞) with ρ−2(p + q) ≤ κ0

and every open subset U ⊂ Rn+k the following holds: Let (µt)t∈[0,q] be a
Brakke flow in U with ⋃

t∈[0,q]

sptµt ∩ Cρ(0) ⊂⊂ U. (4.23)
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Then for every h ∈ C2 (U, [−M,M ])∣∣∣∣∫
U

h(x)Ψρ(p, x̂)dµq(x)−
∫
U

h(x)Ψρ(p+ q, x̂)dµ0(x)

∣∣∣∣
≤ 4M

[∫ q

0

∫
U

|πTxµt − πRn|
2 |x̂|2 + p+ q − t

(p+ q − t)2
Ψρ(p+ q − t, x̂)dµt(x)dt

+

∣∣∣∣∫
U

Ψρ(p+ q, x̂)dµ0(x)−
∫
U

Ψρ(p, x̂)dµq(x)

∣∣∣∣
+ (ρ−2(p+ q))P0ρ−n−2

∫ q

0

µt (Cρ(0)) dt

]

+

∫ q

0

∫
U

|divµtDh(x)|Ψρ(p+ q − t, x̂)dµt(x)dt.

4.16 Remark. • If h ≥ 0 we leave out the second term (
∫

ΨR(s2)dµ0 −∫
ΨR(s0)dµτ ), but in exchange only obtain the estimate without abso-

lute value. This is more like the version Brakke has in [B, 6.8, 6.9].

• For result [B, 6.8] Brakke needs certain area ratio bounds as well as
small tilt- and height-excess, as he uses Lipschitz approximations in
the proof. Our theorem can be applied to any Brakke flow. However
for the right hand side to be optimal, one needs small tilt-excess.

• For affine h the divergence term vanishes. Actually here the theorem
will only be used with h(x) := xn+j + a for j = 1, . . . , k, a ∈ R

Proof. For x ∈ Rn+k and t ∈ (−∞, p+ q) set

ψ(t, x) := Ψρ(p+ q − t, x̂)

g(x) := h(x) +M

g(x) := −h(x) +M.

Note that both supU |g| and supU |g| are bounded by 2M . For g = g or
g = g, as g is positive and by (4.23) we can use Proposition 3.8 with φ = gψ
to estimate

D(g) :=

∫
U

g(x)ΨR(p, x̂)dµq(x)−
∫
U

g(x)ΨR(p+ q, x̂)dµ0(x)

≤
∫ q

0

∫
U

(
~H ·D(gψ)− | ~H|2gψ +

∂

∂t
(gψ)

)
dµt dt.

(4.24)
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Here we used that at almost every time the Brakke variation is not singular.
Fix a time t ∈ [0, q] where µt has L2-integrable mean curvature ~H in U . In
view of Lemma 4.13 with s = p+ q − t we can estimate∫

U

(
~H ·D(gψ) + g

∂

∂t
ψ

)
dµt ≤

∫
U

g

(
∆µ +

∂

∂t

)
ψ dµt

+

∫
U

g ~H ·Dψdµt

+

∫
U

|divµtDg|ψ dµt.

(4.25)

Using the bound on the evolution equation of the heat kernel derived in
Proposition 4.11 with P = P0, µ = µt and s = p+ q − t we can estimate∫

U

g

(
∆µ +

∂

∂t

)
ψ dµt

≤
∫
U

g

2
| ~H|2ψ dµt + 2M

(
ρ−2(p+ q)

)P0 ρ−n−2µt (Cρ(0))

+ 2M

∫
U

|πTxµt − πRn|
2 |x̂|2 + p+ q − t

(p+ q − t)2
ψ dµt(x).

(4.26)

Here we used p + q − t ≤ p + q ≤ κ0 ≤ κ, where κ is from Proposition 4.11.
Note that ∂

∂t
ψ(t, x) = − ∂

∂t
Ψρ(s, x̂). By Lemma 4.14 with P1 = P0, µ = µt0+t

and s = p+ q − t we can estimate∫
U

g ~H ·Dψdµt

≤
∫
U

g

2
| ~H|2ψdµt + 2M

(
ρ−2(p+ q)

)P0 ρ−n−2µt (Cρ(0))

+M

∫
U

|πTxµt − πRn|
2 |x̂|2

(p+ q − t)2
ψ(t, x)dµt(x).

(4.27)

Here we used p + q − t ≤ p + q ≤ κ0 ≤ κ1, where κ1 is from Lemma 4.14.
Inserting (4.26) and (4.27) into (4.25) yields∫

U

(
~H ·D(gψ) + g

∂

∂t
ψ

)
dµt

≤
∫
U

g| ~H|2ψ dµt + 4M
(
ρ−2(p+ q)

)P0 ρ−n−2µt (Cρ(0))

+ 3M

∫
U

|πTxµ − πRn|
2 |x̂|2 + p+ q − t

(p+ q − t)2
ψ dµt(x)

+

∫
U

|divµtDh|ψ dµt
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for all t ∈ [0, q] where µt has L2-integrable mean curvature ~H in U . Here we
also used that Dg = Dh. We substitude this into (4.24) to conclude

D(g) ≤ 4M

[∫ q

0

∫
U

|πTxµt − πRn|
2 |x̂|2 + p+ q − t

(p+ q − t)2
ΨR(p+ q − t, x)dµt(x)dt

+
(
ρ−2(p+ q)

)P0 ρ−n−2

∫ q

0

µt (Cρ(0)) dt

]

+

∫ q

0

∫
U

|divµtDg(x)|Ψρ(p+ q − t, x)dµt(x)dt

for g = g or g. To turn this into an estimate for h instead of g note that∫
U

h(x)Ψρ(p, x̂)dµq(x)−
∫
U

h(x)Ψρ(p+ q, x̂)dµ0(x)

≤ D(g) +M

∣∣∣∣∫
U

Ψρ(p+ q, x̂)dµ0(x)−
∫
U

Ψρ(p, x̂)dµq(x)

∣∣∣∣
and ∫

U

h(x)Ψρ(p+ q, x̂)dµ0(x)−
∫
U

h(x)Ψρ(p, x̂)dµq(x)

≤ D(g) +M

∣∣∣∣∫
U

Ψρ(p+ q, x̂)dµ0(x)−
∫
U

Ψρ(p, x̂)dµq(x)

∣∣∣∣ ,
which establishes the result.

We will use Theorem 4.15 only in integrated form. Note that in the form
above we need point-wise small tilt to control the right hand side. Doing
one more integration in space can be used to bring in the tilt-excess, as the
following lemma shows (when considered with φ = |πTxµt − πRn|

2).

4.17 Lemma. Let ρ, r, t ∈ (0,∞), y0 ∈ Rn+k and µ be a rectifiable n-varifold
in Rn+k. Suppose φ ∈ L1

µ(sptµ,R+) and ϑ ∈ C0
c ([−ρ, ρ],R+). Then we can

estimate ∫
Bnr (ŷ0)

∫
Rn+k

φ(x)ϑ(|x̂− ŷ|)Ψ(t, x̂− ŷ)dµ(x)dL n(ŷ)

≤
∫
Cr+ρ(y0)

φ(x)dµ(x)

∫
Rn
ϑ(|ŷ|)Ψ(t, ŷ)dL n(ŷ).
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Proof. Calculate using Fubini and spt(ϑ(| · |)) ⊂ Bn
ρ (0)∫

Bnr (ŷ0)

∫
Rn+k

φ(x)ϑ(|x̂− ŷ|)Ψ(t, x̂− ŷ)dµ(x)dL n(ŷ)

=

∫
Cr+ρ(y0)

(
φ(x)

∫
Bnr (ŷ0)

ϑ(|x̂− ŷ|)Ψ(t, x̂− ŷ)dL n(ŷ)

)
dµ(x).

As φ, ϑ,Ψ ≥ 0 we then can estimate∫
Bnr (ŷ0)

∫
Rn+k

φ(x)ϑ(|x̂− ŷ|)Ψ(t, x̂− ŷ)dµ(x)dL n(ŷ)

≤
∫
Cr+ρ(y0)

(
φ(x)

∫
Rn
ϑ(|x̂− ŷ|)Ψ(t, x̂− ŷ)dL n(ŷ)

)
dµ(x).

Now the inner integral is actually independent of x which yields the result.

With Lemma 4.17 we obtain the following version of Theorem 4.15. This
will be made use of in Lemma 8.1.

4.18 Lemma. There exists a C ∈ (1,∞) such that for every P0 ∈ (0,∞)
there exists a κ0 ∈ (0, 1) such that for all t0 ∈ R, ρ, r, p, q, γ ∈ (0,∞) with
ρ−2(p + q) ≤ κ0 and every open subset V ⊂ Rn+k the following holds: Let
(µt)t∈[t0,t0+q] be a Brakke flow in V , and j ∈ {1, . . . , k} with⋃

t∈[t0,t0+q]

sptµt ∩ Cr+ρ(0) ⊂ {x ∈ Cr+ρ(0), |xn+j| ≤ γρ} ⊂⊂ V. (4.28)

Then∫
Bnr (0)

∣∣∣∣ ∫
V

xn+jΨρ(p, x̂− ŷ)dµt0+q(x)

−
∫
V

xn+jΨρ(p+ q, x̂− ŷ)dµt0(x)

∣∣∣∣dL n(ŷ)

≤ Cγρ

[
p−1

∫ t0+q

t0

∫
Cr+ρ(0)

|πTxµ − πRn|
2 dµt(x)dt

+
(
ρ−2(p+ q)

)P0 rnρ−n−2

∫ t0+q

t0

µt (Cρ+r(0)) dt

+ max
q̃∈{0,q}

sup
ŷ∈Bnr (0)

rn
∣∣∣∣ ∫

V

Ψρ(p+ q − q̃, x̂− ŷ)dµt0+q̃(x)− 1

∣∣∣∣
]
.

53



Proof. First we consider the case t0 = 0. For given V ⊂ Rn+k set

U := {x ∈ V, |xn+j| ≤ 2γρ} , (4.29)

then by (4.28) we have µt = µt U . In particular (µt)t∈[t0,t0+q] is a Brakke
flow in U as well. Note that (4.28) also holds with V replaced by U . The set
U is introduced, because we want a small bound for h(x) = xn+j, which we
do not have in V .

For t ∈ [0, q] define φt ∈ L1
µ(sptµt) by

φt(x) := |πTxµt − πRn|
2

for x ∈ sptµt such that Txµt exists, which is the case for almost every x ∈
sptµt. For t ∈ [0, q] and a ∈ [0, ρ] define ϑt ∈ C∞c ([0, ρ],R+) by

ϑt(a) :=
a2 + p+ q − t
(p+ q − t)2

ζ(ρ−1a),

where ζ is the cut-off function from Definition 4.1.
For ŷ ∈ Bn

r (0) set y = (ŷ, 0). We can use Theorem 4.15 with h(x) = xn+j

and translated in space by y to obtain∣∣∣∣∫
U

xn+jΨρ(p, x̂− ŷ)dµq(x)−
∫
U

xn+jΨρ(p+ q, x̂− ŷ)dµ0(x)

∣∣∣∣
≤ Cnγρ

[∫ q

0

∫
U

φt(x)ϑt(|x̂− ŷ|)Ψ(p+ q − t, x̂− ŷ)dµt(x)ds

+
(
ρ−2(p+ q)

)d0 ρ−n−2

∫ q

0

µt0+s (Cρ(y)) ds

+

∣∣∣∣∫
U

Ψρ(p+ q, x̂− ŷ)dµ0(x)−
∫
U

Ψρ(p, x̂− ŷ)dµq(x)

∣∣∣∣
]

(4.30)

Here we used that by (4.28) and (4.29) we have supU∩Cρ(y) |xn+j| ≤ 2γρ. Also
(4.28) holds with V replaced by U , which guarantees (4.23) with 0 replaced
by y. Note that D2xn+j = 0 so the divergence-term vanishes. By Lemma
4.17 with y0 = 0 we can estimate for t ∈ [0, q]∫

Bnr (0)

∫
U

φt(x)ϑt(|x̂− ŷ|)Ψ(p+ q − t, x̂− ŷ)dµt(x)dL n(ŷ)

≤
∫
Cr+ρ(0)

φt(x)dµt(x)

∫
Rn

|ŷ|2 + p+ q − t
(p+ q − t)2

Ψρ(p+ q − t, ŷ)dL n(ŷ),
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where we inserted our definition of ϑt. As Ψρ ≤ Ψ we can use Lemma 4.6 to
estimate the second integral which yields∫

Bnr (0)

∫
U

φt(x)ϑt(|x̂− ŷ|)Ψ(p+ q − t, x̂− ŷ)dµt(x)dL n(ŷ)

≤ Cnp
−1

∫
Cr+ρ(0)

|πTxµt − πRn|
2 dµt(x)

(4.31)

for all t ∈ [0, q], where we inserted our definition of φt and we roughly
estimated (p+ q − t)−1 ≤ p−1. We can directly estimate for t ∈ [0, q]∫

Bnr (0)

µt (Cρ(y)) dL n(ŷ) ≤ ωnr
nµt (Cρ+r(0)) (4.32)

and also by the triangle inequality∣∣∣∣∫
U

Ψρ(p+ q, x̂− ŷ)dµ0(x)−
∫
U

Ψρ(p, x̂− ŷ)dµq(x)

∣∣∣∣
≤ 2 max

q̃∈{0,q}

∣∣∣∣ ∫
U

Ψρ(p+ q − q̃, x̂− ŷ)dµq̃(x)− 1

∣∣∣∣ (4.33)

for all y ∈ Cn
r (0).

Then in view of µt = µt V = µt U we can integrate (4.30) in ŷ and
then switch the order of integration to use estimates (4.31), (4.32) and (4.33),
which establishes the result for t0 = 0.

Now for arbitrary t0 ∈ R consider µ̃t := µt−t0 . As (µt)t∈[t0,t0+q] is a
Brakke flow in V , (µ̃t)t∈[0,q] is a Brakke flow in V as well. Applying the
already established statement to (µ̃t) implies the statement for (µt).

We want to use that for small parameter the heat kernel converges to
the Dirac delta function, as we showed in Proposition 4.10.2. The difference
between f(ŷ) and

∫
f(x̂)Ψρ(p, x̂− ŷ)dx̂ can be bounded in terms of |f |, |Df |

and p, which we prove in the next lemma. This result is based on a calculation
from [B, 6.9].

4.19 Lemma ([B, 6.9]). There exists a C ∈ (1,∞) such that for every
P ∈ (0,∞) there exists a κ ∈ (0, 1) such that for all ρ, r, p ∈ (0,∞) with
ρ−2p ≤ κ the following holds: Consider g ∈ C0,1

(
Bn
r+ρ(0)

)
then we can

estimate∫
Bnr (0)

∣∣∣∣∣g(ŷ)−
∫
Bnρ (ŷ)

g(x̂)Ψρ(p, x̂− ŷ)dL n(x̂)

∣∣∣∣∣ dL n(ŷ)

≤ Cp
1
2

∫
Bnr+ρ(0)

|Dg(x̂)|dL n(x̂) + (ρ−2p)P sup
Bnr+ρ(0)

|g|rn.
(4.34)
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Proof. For ŷ ∈ Br(0) set

φ(ŷ) :=

∣∣∣∣∣g(ŷ)−
∫
Bnρ (ŷ)

g(x̂)Ψρ(p, x̂− ŷ)dL n(x̂)

∣∣∣∣∣ . (4.35)

By Proposition 4.10.2 and the fundamental theorem of calculus we can cal-
culate∫

Bnρ (ŷ)

g(x̂)Ψρ(p, x̂− ŷ)dL n(x̂)− g(ŷ)

=

∫
Bnρ (ŷ)

g(x̂)Ψρ(p, x̂− ŷ)dL n(x̂)− lim
q↘0

∫
Bnρ (ŷ)

g(x̂)Ψρ(q, x̂− ŷ)dL n(x̂)

=

∫ p

0

∫
Bnρ (ŷ)

g(x̂)
d

ds
Ψρ(s, x̂− ŷ)dL n(x̂)ds.

Here we used that the last integral exists by Remark 4.4 and Lemma 4.6.
Thus for φ from (4.35) we have

φ(ŷ) ≤
∫ p

0

∣∣∣∣∣
∫
Bnρ (ŷ)

g(x̂)∆RnΨρ(s, x̂− ŷ)dL n(x̂)

∣∣∣∣∣ ds
+

∫ p

0

∣∣∣∣∣
∫
Bnρ (ŷ)

g(x̂)

(
∂

∂t
−∆Rn

)
Ψρ(s, x̂− ŷ)dL n(x̂)

∣∣∣∣∣ ds
(4.36)

for all ŷ ∈ Br(0). Note that the second integral would vanish for the usual
(non-truncated) heat kernel. But we already showed how to estimate the
extra terms from the cut-off function. Using Lemma 4.9 with µ = L n,
x0 = (ŷ, 0) and P1 = P we find a κ1 depending on P such that we can
estimate∣∣∣∣∣
∫
Bnρ (ŷ)

g(x̂)
(
∆RnΨρ(s, x̂− ŷ)−∆RnΨ(s, x̂− ŷ)ζ

(
ρ−1|x̂− ŷ|

))
dL n(x̂)

∣∣∣∣∣
≤ Cn(ρ−2p)Pρ−2 sup

Bnr+ρ(0)

|g|

for all ŷ ∈ Br(0) and all s ∈ (0, p], where we used ρ−2s ≤ ρ−2p ≤ κ ≤ κ1, for
κ ≤ κ1. Thus we can calculate∣∣∣∣∣

∫
Bnρ (ŷ)

g(x̂)

(
∂

∂t
−∆Rn

)
Ψρ(s, x̂− ŷ)dL n(x̂)

∣∣∣∣∣
≤ Cn(ρ−2p)Pρ−2 sup

Bnr+ρ(0)

|g|
(4.37)
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for all ŷ ∈ Br(0) and all s ∈ (0, p]. Here we used that

∂

∂t
Ψρ(s, ẑ) =

∂

∂t
Ψ(s, ẑ)ζ

(
ρ−1|ẑ|

)
= ∆RnΨ(s, ẑ)ζ

(
ρ−1|ẑ|

)
for all s ∈ (0,∞) and all ẑ ∈ Rn. Inserting (4.37) into (4.36) yields

φ(ŷ) ≤
∫ p

0

∣∣∣∣∣
∫
Bnρ (ŷ)

g(x̂)∆RnΨρ(s, x̂− ŷ)dL n(x̂)

∣∣∣∣∣ ds
+ Cn(ρ−2p)P+1 sup

Bnr+ρ(0)

|g|
(4.38)

for all ŷ ∈ Br(0) and all s ∈ (0, p]. Now integration by parts yields∫
Bnρ (ŷ)

g(x̂)∆RnΨρ(s, x̂− ŷ)dL n(x̂)

= −
∫
Bnρ (ŷ)

Dg(x̂) ·DΨρ(s, x̂− ŷ)dL n(x̂).

By Remark 4.4 we know |DΨρ(s, ẑ)| =
(
|ẑ|
2t
ζ(ρ−1|ẑ|) + ρ−1ζ ′(ρ−1|ẑ|)

)
Ψ(s, ẑ)

for all ẑ ∈ Rn. Then we can estimate using Lemma 4.17 with µ = L n,
φ = |Dg|, ϑ(a) = a

2t
ζ(ρ−1a) + ρ−1ζ ′(ρ−1a) and ŷ0 = ŷ∫

Bnr (0)

∣∣∣∣∣
∫
Bnρ (ŷ)

g(x̂)∆RnΨρ(s, x̂− ŷ)dL n(x̂)

∣∣∣∣∣ dL n(ŷ)

≤
∫
Bnr (0)

∫
Bnρ (ŷ)

|Dg(x̂)||DΨρ(s, x̂− ŷ)|dL n(x̂)dL n(ŷ)

≤
∫
Bnr+ρ(0)

|Dg(x̂)|dL n(x̂)

∫
Rn
|DΨρ(s, ŷ)|dL n(ŷ)

(4.39)

for all s ∈ (0,∞). Using Lemma 4.9 with µ = L n, x0 = 0 and P1 = 1 we
find a κ1 such that we can estimate∫

Rn
|DΨρ(s, ŷ)|dL n(ŷ) ≤

∫
Rn
|DΨ(s, ŷ)|dL n(ŷ) + Cnρ

−3p

for all s ∈ (0, p], where we used ρ−2s ≤ ρ−2p ≤ κ ≤ κ1 for κ ≤ κ1. Here we
also estimated ζ ≤ 1. As DΨ(s, ŷ) = (2s)−1ŷΨ(s, ŷ) we can then use Lemma
4.6 to estimate∫

Rn
|DΨρ(s, ŷ)|dL n(ŷ) ≤ Cns

− 1
2 + Cnρ

−3p ≤ Cns
− 1

2
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for all s ∈ (0, p], where we used ρ−2p ≤ κ ≤ 1. Inserting this into (4.39)
yields ∫

Bnr (0)

∣∣∣∣∣
∫
Bnρ (ŷ)

g(x̂)∆RnΨρ(s, x̂− ŷ)dL n(x̂)

∣∣∣∣∣ dL n(ŷ)

≤ Cns
− 1

2

∫
Bnr+ρ(0)

|Dg(x̂)|dL n(x̂)

for all s ∈ (0, p]. Then with (4.38) we conclude∫
Bnr (0)

φ(ŷ)dL n(ŷ) ≤ Cn

∫ p

0

s−
1
2ds

∫
Bnr+ρ(0)

|Dg(x̂)|dL n(x̂)

+ Cn(ρ−2p)P+1 sup
Bnr+ρ(0)

|g|rn.

Now estimate Cn(ρ−2p) ≤ Cnκ ≤ 1 for κ small depending on P . Also

calculate
∫ p

0
s−

1
2ds = 2p

1
2 . In view of (4.35) this establishes the result.
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5 Clearing Out

A very important local result for mean curvature flow is the clearing out
lemma, which essentially states that regions in which the flow has small
mass will develop parts which do not contain the flowing surfaces at all. The
clearing out lemma first appeared in Brakke’s original work [B, 6.3]. Here
we derive an improved version, see Lemma 5.7, based on Brakke’s original
calculations in [B, 6.3]. This will be used to verify an L∞-estimate in form of
Proposition 5.10, which can in turn be used in the proof of Theorem 8.4 as an
alternative to Corollary 6.8. In the proof of [B, 6.9] Brakke uses a statement
similar to Proposition 5.10, but his argumentation contains a major gap. In
particular it is unclear why the conditions he states there allow the usage of
his clearing out lemma [B, 6.3].

We will need the following two results which can be found in [All, 5.1.3]
and [EG, 1.5.2] respectively.

5.1 Lemma ([All, 5.1.3]). Let R ∈ (0,∞), λ ∈ [0,∞) and let µ be an integral
n-varifold in Rn+k with

‖δµ‖
(
Br(0)

)
≤ λµ

(
Br(0)

)
(5.1)

for all r ∈ (0, R). Then exp(λr)r−nµ
(
Br(0)

)
is non-decreasing on (0, R).

Recall that the first variation of µ is defined by

‖δµ‖ (A) :=

{∫
A

divµXdµ, X ∈ C1
c

(
A,Rn+k

)
, |X(x)| ≤ 1 ∀x ∈ A

}
5.2 Theorem (Besicovitch Covering Theorem). For every N ∈ N there
exists a constant K ∈ N such that the following holds: For U ⊂ RN consider
a family of balls (Bu)u∈U , where Bu := Bru(u) with ru ∈ (0, R), R ∈ (0,∞).

Then there exist K subsets Vl ⊂ U such that U ⊂
⋃K
l=1

⋃
u∈Vl Bu and the

closures of balls in the same Vl are disjoint, that means Bu ∩ Bv = ∅ for all
u, v ∈ Vl, u 6= v for all l = 1, . . . , K.

The following lemma is a generalization of a part of the proof of [B, 6.3].
In particular Brakke uses a fixed test-function φ and only considers q = 1.
Note that the possibility to choose q = 1

2
will be crucial in proving Lemma

5.7.

5.3 Lemma ([B, 6.3]). For every m ∈ (2,∞) there exists a δ ∈ (0, 1] such
that, for all ρ ∈ (0,∞), q ∈ (0, 1] and every open subset U ⊂ Rn+k the
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following holds: Let x0 ∈ U , µ be a rectifiable n-varifold in U with L2-
integrable mean curvature vector ~H and Θn(µ, x0) ≥ 1. Then for every φ ∈
C0,1
c (U,R+) there exists a radius r ∈ (0,∞) such that∫

Br(x0)

| ~H|2φmdµ+

∫
Br(x0)

|∇µφ|2φm−2dµ+ ρ−2

∫
Br(x0)

φm−qdµ

≥ δρ−2ξ−α
∫
Br(x0)

φmdµ

(5.2)

for ξ := ρ−n
∫
U
φmdµ, where α = 2q

nq+2m
.

5.4 Remark. Note that although the proof is done by contradiction, we
obtain an explicit lower bound for δ, see (5.5). Also note that r may depend
on ρ. For Lemma 5.7 Bρ(x0) will be the support of φ.

Proof. Set Br = Br(x0). We want to prove the lemma by contradiction.
Assume the statement is false, then there exists an m ∈ (2,∞) such that,
for every δ > 0 there exist ρ ∈ (0,∞), q ∈ (0, 1], an open subset U ⊂ Rn+k,

a rectifiable n-varifold µ in U with L2-integrable mean curvature vector ~H
and a point x0 ∈ U with Θn(µ, x0) ≥ 1. Also there exists a test function
φ ∈ C0,1

c (U,R+) such that for every r ∈ (0,∞)∫
Br

| ~H|2φmdµ+

∫
Br

|∇µφ|2φm−2dµ+ ρ−2

∫
Br

φm−qdµ

< δρ−2ξ−α
∫
Br

φmdµ.

(5.3)

In particular as all terms are positive each term on the left hand side is
smaller than the one on the right hand side. Multiply (5.3) with r−n, then
letting r ↘ 0 we obtain with the third term on the left hand side of (5.3)
that

ρ−2φ(x0)m−qΘn (µ, x0)ωn < δρ−2ξ−αφ(x0)mΘn (µ, x0)ωn,

where we used the definition of density and continuity of φ. As Θn(µ, x0) > 0
we can conclude

φ(x0) > δ−
1
q ξ

α
q . (5.4)

We want to use Allard’s monotonicity lemma on the varifold µbφm. For some
X ∈ C1

c

(
Br,Rn+k

)
with |X(x)| ≤ 1 ∀x ∈ Br Remark 2.63, property (2.2)
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and Hölder’s inequality can be used to obtain∫
Br

(divµX)φmdµ

=

∫
Br

divµ (Xφm) dµ−
∫
Br

X · ∇µφmdµ

≤
∫
Br

| ~H|φmdµ+m

∫
Br

|∇µφ|φm−1dµ

≤

((∫
Br

| ~H|2φmdµ
) 1

2

+

(
m

∫
Br

|∇µφ|2φm−2dµ

) 1
2

)(∫
Br

φmdµ

) 1
2

.

Thus using (5.3) yields∫
Br

(divµX)φmdµ < (1 +m)
√
δξ−αρ−1

∫
Br

φmdµ = λµbφm(Br),

for λ := (1 + m)
√
δξ−αρ−1 and for every r ∈ (0,∞). Then Lemma 5.1 tells

us that exp(λr)r−n
∫
Br
φmdµ is non-decreasing in r. Letting r ↘ 0 we obtain

exp(λr)r−n
∫
Br

φmdµ ≥ ωnΘn(µ, x0)φ(x0)m,

again by definition of density and continuity of φ. For r = λ−1 we then
obtain with estimate (5.4)

exp(1)λn
∫
U

φmdµ > ωnΘn(µ, x0)δ−
m
q ξ

αm
q ,

where we also used µ
(
Br \ U

)
= 0. By definition of ξ, λ and as Θn(µ, x0) ≥ 1

this yields

exp(1)(1 +m)nδ
n
2 ξ−

αn
2

+1 > ωnδ
−m
q ξ

αm
q ,

which implies

δ
n
2

+m
q > ωn exp(1)−1(1 +m)−nξ

αm
q

+αn
2
−1 = ωn exp(1)−1(1 +m)−n, (5.5)

where we used the definition of α for the last equality. In view of (5.5) we
obtain a contradiction for δ small enough.

Combining this lemma with the Besicovitch covering theorem 5.2 yields
the following Sobolev-type inequality. This is also a generalization of part of
the proof of [B, 6.3].
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5.5 Lemma ([B, 6.3]). For every m ∈ (2,∞) there exists a Λ0 ∈ (1,∞)
such that for all q ∈ (0, 1], ρ ∈ (0,∞) and every open subset U ⊂ Rn+k the
following holds: Let µ be a rectifiable n-varifold in U with L2-integrable mean
curvature vector ~H and let φ ∈ C0,1

c (U,R+) then we have

ραn
(∫

U

φmdµ

)1−α

≤ Λ0

∫
U

(
ρ2φm| ~H|2 + ρ2φm−2|∇µφ|2 + φm−q

)
dµ,

where α := 2q
nq+2m

< 1.

Proof. Set ξ := ρ−n
∫
U
φmdµ. By Lemma 5.3 we obtain a δ depending only

on m,n such that for every x ∈ Rn+k with Θn(µ, x) ≥ 1 there exists a radius
r(x) ∈ (0,∞) such that for Bx = Br(x)(x)∫

Bx

| ~H|2φm + |∇µφ|2φm−2 + ρ−2φm−qdµ ≥ δρ−2ξ−α
∫
Bx

φmdµ. (5.6)

As we assumed that φ has compact support there exists an R0 ∈ (0,∞)
such that sptφ ⊂ BR0(0). For x ∈ B2R0(0) with Θn(µ, x) ≥ 1 set r̃(x) :=
min{r(x), 3R0}, then (5.6) also holds for Bx = Br̃(x)(x). For x /∈ B2R0(0) set
r̃(x) := R0, then (5.6) for Bx = Br̃(x)(x) trivially becomes 0 ≥ 0. So we may
assume r(x) ∈ (0, 3R0) for all x ∈ Rn+k with Θn(µ, x) ≥ 1.

Now set A :=
{
x ∈ Rn+k, Θ(µ, x) ≥ 1

}
and consider the family

(
Bx

)
x∈A.

By Theorem 5.2 there exists a constant K ∈ N depending only on n+ k and
subsets Ai ⊂ A, i = 1, . . . , K such that Bx ∩ By = ∅ for all x 6= y, x, y ∈ Ai
and A ⊂

(⋃K
i=1

⋃
x∈Ai Bx

)
. Then we can estimate using (5.6)

∫
U

φmdµ ≤
K∑
i=1

∑
x∈Ai

∫
Bx

φmdµ

≤ δ−1ρ2ξα
K∑
i=1

∑
x∈Ai

∫
Bx

| ~H|2φm + |∇µφ|2φm−2 + ρ−2φm−qdµ

≤ δ−1ξαK

∫
U

R2| ~H|2φm + ρ2|∇µφ|2φm−2 + φm−qdµ.

Now divide by ξα to verify the result for Λ0 = δ−1K.

For a Brakke flow and a test function φ satisfying inequality (5.8) stated
below, Lemma 5.5 can be used to obtain a differential inequality (see (5.13))
for the integral of the function. Solving this inequality yields that sptφ will
become empty after some time. This is again a generalization of a part of
Brakke’s proof for [B, 6.3].
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5.6 Proposition ([B, 6.3]). For every m ∈ (2,∞) and q ∈ (0, 1] there
exists a Λ ∈ (1,∞) such that for α := 2q

nq+2m
, for all ρ ∈ (0,∞), η ∈

[0,∞), ,λ ∈ [0, 1] t0 ∈ R, T ∈ (Λλ−1ηαρ2,∞) and every open subset U ⊂
Rn+k the following holds: Let (µt)t∈[t0,t0+T ] be a Brakke flow in U and φ ∈
C0,1 ([t0, t0 + T ]× U,R+). For φt = φ(t, ·) suppose⋃

t∈[t0,t0+T ]

sptφt ⊂⊂ U. (5.7)

Also assume∫
U

(
∂

∂t
(φ(t, x)m)− divµtD(φ(t, x)m)

)
dµt(x)

≤ −λ
∫
U

(
|∇µtφ(t, x)|2φ(t, x)m−2 + ρ−2φ(t, x)m−q

)
dµt(x)

(5.8)

for almost every t ∈ [t0, t0 + T ] and

ρ−n
∫
U

φ(t0, x)mdµt0(x) ≤ η. (5.9)

Then

sptµt ∩ sptφt = ∅. (5.10)

for every t ∈ [t0 + Λλ−1ηαρ2, t0 + T ].

Proof. Set ξ(t) := ρ−n
∫
U
φmt dµt. Let t ∈ (t0, t0 + T ) be a non-singular time,

i.e. B(µt, φ
m
t ) < ∞. In particular the mean curvature vector ~H is defined

and L2-integrable on U . At such a time we can use Definition 3.1 and (2.2)
to estimate

B(U, µt, φ
m
t ) +

∫
U

∂

∂t
(φmt ) dµt ≤

∫
U

−| ~H|2φmt +
∂

∂t
(φmt )− divµtD(φmt )dµt.

With (5.8) and as λ ≤ 1 we can then estimate further

B(U, µt, φ
m
t ) +

∫
U

∂

∂t
(φmt ) dµt

≤ −λ
∫
U

(
| ~H|2φmt + |∇µtφ|2φm−2

t + ρ−2φm−qt

)
dµt.

(5.11)

By Lemma 5.5 there exists a Λ0 depending on m, q such that

ρn−2 (ξ(t))1−α ≤ Λ0

∫
U

| ~H|2φmt + |∇µφt|2φm−2
t + ρ−2φm−qt dµt (5.12)
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Combining (5.11) and (5.12) with Proposition 3.8 we conclude

Dξ(t) ≤ −λΛ−1
0 ρ−2 (ξ(t))1−α ≤ 0 (5.13)

for almost every t ∈ [t0, t0 + T ]. Here we used that at almost every time
t ∈ (t0, t0 + T ) the Brakke variation is non-singular. Also we needed (5.7)
to apply Proposition 3.8. Note that ξ(t) ≥ 0 for all t ∈ [t0, t0 + T ]. Let
s ∈ [t0, t0 +T ] be such that ξ(t) > 0 for all t ∈ [t0, s]. Then with Proposition
A.19 and Proposition A.20 we can estimate

ξ(s)α − ξ(t0)α ≤
∫ s

t0

Dt (ξ(p)α) dp = α

∫ s

t0

ξ(p)α−1Dtξ(p)dp,

so by (5.13) we have

ξ(s)α − ξ(t0)α ≤ −αλΛ−1
0 ρ−2(s− t0).

Hence with (5.9) we obtain

s ≤ t0 + α−1Λ0λ
−1(ξ(t0)α − ξ(s)α)ρ2 < t0 + Λλ−1ηαρ2,

where we set Λ := α−1Λ0. So there has to exist an s0 ∈ [t0, t0 + Λλ−1ηαρ2]
such that ξ(s0) = 0. Then Proposition A.19 and (5.13) imply ξ(t) = 0 for all
t ∈ [s0, t0 + T ], which establishes the result.

Now we shall insert a specific test-function into Proposition 5.6 to obtain
a clearing out result. Due to our generalizations we can chose a different Φ
to the one Brakke chooses in [B, 6.3].

5.7 Lemma (Clearing Out Lemma, [B, 6.3]). There exists a constant C ∈
(1,∞) such that for σ = 1

n+12
for all r, R ∈ (0,∞), η ∈ [0,∞), x0 ∈ Rn+k,

t0 ∈ R, T ∈ [Cη2σRr,∞) and every open subset U ⊂ Rn+k with Cr(x0) ∩
BR(x0) ⊂⊂ U the following holds: Let (µt)t∈[t0,t0+T ] be a Brakke flow in U
and suppose

(Rr)−
n
2

∫
U

Φ3dµt0 ≤ η, (5.14)

where

Φ(x) :=
{

1−R−2|x− x0|2
}

+

{
1− r−2|x̂− x̂0|2

}
+
. (5.15)

Then for all t ∈ [t0 + Cη2σRr, t0 + T ]

µt(Cr(t)(x0) ∩BR(t)(x0)) = 0, (5.16)

where r(t) :=
√
{r2 − 4n(t− t0)}+ and R(t) :=

√
{R2 − 4n(t− t0)}+. In

the special case where R = r we obtain the same result with σ = 1
n+6
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5.8 Remark. Note that this is a new result. Only the special case where
R = r is from [B, 6.3]. In particular for the proof of Proposition 5.10 it is
crucial to choose R >> r.

Proof. Consider the functions f, g : R× Rn+k → R+

f(t, x) :=
1

R2

{
R(t)2 − |x− x0|2

}
+
,

g(t, x) :=
1

r2

{
r(t)2 − |x̂− x̂0|2

}
+
.

We want to use the previous lemma with φ(t, x) = f(t, x)g(t, x). Set again
φt = φ(t, ·), ft = f(t, ·), gt = g(t, ·). Let m ≥ 3, such that φm is C2 in both
space and time. Calculate

∂

∂t
(φ(t, x)m) = mφm−1

t

∂

∂t
(f(t, x)g(t, x))

= mφm−1
t

(
R−2

(
2R(t)

−2n

R(t)

)
g(t, x) + r−2

(
2r(t)

−2n

r(t)

)
f(t, x)

)
,

so

∂

∂t
(φ(t, x)m) = −4nm

(
R−2gt(x) + r−2ft(x)

)
φm−1
t (x) (5.17)

for every (t, x) ∈ R × Rn+k. Consider t ∈ (0, T ) where the measure µt is

a rectifiable n-varifold with L2-integrable mean curvature vector ~H, which
is the case for almost every t ∈ (0, T ). For µt-almost every point in U the
approximate tangent space exists. Then we can calculate at such a point

divµtD(φmt ) = m(m− 1)|∇µtφt|2φm−2
t +m (divµtDφt)φ

m−1
t . (5.18)

For divµtDφt we can calculate using Remark 2.6.3

divµtDφt = divµt(ftDgt + gtDft)

= ftdivµtDgt + gtdivµtDft + 2∇µtft · ∇µtgt

= −2r−2ftdivµt(x̂)− 2R−2gtdivµt(x) + 2∇µtft · ∇µtgt,

which yields the estimate

divµtDφt ≥ −2n
(
R−2gt + r−2ft

)
+ 2∇µtft · ∇µtgt. (5.19)

Also estimate

2 (∇µtft · ∇µtgt)φ = 2gt∇µtft · ft∇µtgt ≤ |gt∇µtft + ft∇µtgt|2 ,
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so

2 (∇µtft · ∇µtgt)φ ≤ |∇µtφt|2. (5.20)

Inserting (5.19) and (5.20) into (5.18) yields

divµtD(φmt ) ≥ m(m− 1)|∇µtφt|2φm−2
t −m|∇µtφt|2φm−2

t

− 2nm
(
R−2gt + r−2ft

)
φm−1
t

(5.21)

for almost every t ∈ [t0, t0 + T ], for µt-almost every x ∈ U and for all
m ∈ [3,∞). Now set m = 3. By combining (5.21) with (5.17) we obtain

∂

∂t

(
φ(t, x)3

)
− divµt

(
φt(x)3

)
≤
(
− 12n

(
R−2gt + r−2ft

)
φ2
t − 6|∇µtφt|2φt

+ 6n
(
R−2gt + r−2ft

)
φ2
t + 3|∇µtφt|2φt

)∣∣∣
x

=
(
− 6n

(
R−2gt + r−2ft

)
φ2
t − 3|∇µtφt|2φt

)∣∣∣
x

thus as φ is positive

∂

∂t

(
φ(t, x)3

)
− divµt

(
φt(x)3

)
≤ −

(
(Rr)−1φ

5
2
t + |∇µtφt|2φt

) ∣∣∣
x

(5.22)

for almost every t ∈ [t0, t0 + T ] and for µt-almost every x ∈ U . Here we used
that

R−2gt + r−2ft ≥
√
R−2gtr−2ft = (Rr)−1φ

1
2
t .

Then the result follows from Proposition 5.6 with m = 3, q = 1
2
, λ = 1 and

ρ =
√
Rr. Note that sptφt = Cr(t)(x0) ∩BR(t)(x0) and φ(t0, ·) = Φ.

In the special case R = r the same calculation with φ(t, x) = f(t, x) yields
a slightly better estimate. In this case we can use Proposition 5.6 with q = 1
which yields the better σ.

For a Brakke flow starting with an integral height bound the clearing out
lemma yields a point-wise height bound.

5.9 Lemma. There exists a C ∈ (1,∞) such that for σ := 1
n+6

for all
R ∈ (0,∞), l,Γ, η ∈ [0,∞) and δ ∈ (0, (4n)−1), t0 ∈ R the following holds:
Let (µt)t∈[t0,t0+δR2] be a Brakke flow in C2R(0) satisfying

µt0
(
C2R(0) \ (Bn

2R(0)×Bk
Γ(0))

)
≤ ηRn. (5.23)

Then

sptµt ∩ CR(0) ⊂ {x ∈ CR(0) : |πRk(x)| ≤ 4nδR + Γ} (5.24)

for all t ∈ [t0 + Cη2σR2, t0 + δR2]. Note that this interval is empty unless η
is sufficiently small.
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Proof. Let s ∈ [t0 + Cη2σR2, t0 + δR2] and y ∈ sptµs ∩ CR(0) be arbitrary.
First suppose

|πRk(y)| ≥ R + Γ

Then (5.23) yields

µt0 (BR(y)) ≤ ηRn.

Thus we can use Lemma 5.7 with r = R and x0 = y to obtain

µt(BR(t)(y)) = 0

for all t ∈ [t0 + Cnη
2σ, t0 + δR2], where R(t) :=

√
R2 − 4n(t− t0). As δ <

(4n)−1 and by assumption s ∈ [t0 +Cnη
2σ, t0 + δR2] we can estimate R(s) ≥√

R2 − 4nδR2 > 0. In particular y /∈ sptµs, which is a contradiction.
Now suppose

0 < |πRk(y)| < R + Γ, (5.25)

then set

v := |y − ŷ|−1(y − ŷ)

a0 := ŷ + (Γ +R)v.

We want to use the clearing out lemma around a0 with r = R. To do so
we have to show that BR(a0) has small µt0-measure. First note that as
v ∈ {0}n × Rk and ŷ ∈ Bn

R(0) we have

|πRk(a0)| = Γ +R and |â0| ≤ R.

In particular we see

BR(a0) ⊂ C2R(0) \ (Bn
2R(0)×Bk

Γ(0)).

Then (5.23) yields

µt0 (BR(a0)) ≤ ηRn.

Thus we can use Lemma 5.7 with r = R, x0 = a0 to obtain

µt(BR(t)(a0)) = 0
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for all t ∈ [t0 + Cnη
2σ, t0 + δR2], where R(t) :=

√
R2 − 4n(t− t0). As δ ≤

(4n)−1 we can estimate

R(t) ≥
√
R2 − 4nδR2 =

√
1− 4nδR ≥ (1− 4nδ)R = R− 4nδR

for all t ∈ [t0 + Cnη
2σ, t0 + δR2]. In particular

µs(BR−4nδR(a0)) = 0.

Thus by choice of s and y we have

|y − a0| ≥ R− 4nδR. (5.26)

By definition of a0 and v we can calculate

|y − a0| = |πRk(y − a0)| = |πRk(y)− (Γ +R)v| = ||πRk(y)| − (Γ +R)|.

Thus (5.26) implies

||πRk(y)| − (Γ +R)| ≥ R− 4nδR. (5.27)

A case distinction in (5.27) then yields

|πRk(y)| ≤ 4nδR + Γ, or |πRk(y)| ≥ 2R + Γ− 4nδR > R + Γ,

where we used δ < (4n)−1. The second case contradicts our assumption
(5.25). Thus we obtain the height bound and as s, y where arbitrary this
establishes the result.

A similar approach is now used to prove Brakke’s height estimate, which
is a different version of Lemma 5.9. Here we already assume a hight bound
which then will be improved. Note that Brakke does not state a result like
Proposition 5.10, but the proof here mostly follows a calculation from [B,
6.9]. However, the argumentation in [B, 6.9] contains a major gap, as Brakke
indirectly uses Lemma 5.7 in our generalized form, though he only proved
the usual spherical clearing out lemma (Lemma 5.7 with R=r).

5.10 Proposition (Height Estimate, [B, 6.9]). There exists a c ∈ (0, 1)
such that for all λ, δ ∈ (0, 1], ρ ∈ (0,∞), h ∈ (0, λ−1], s0 ∈ R, y0 ∈ Rn+k,
Λ := λ−1ρ and every open subset U ⊂ Rn+k with C4

√
nρ(y0) ∩ B2Λ(y0) ⊂⊂ U

the following holds: Let (µt)t∈[s0−2δρ2,s0+ρ2] be a Brakke flow in U and j ∈
{1, . . . k} and suppose there exists an s ∈ [s0 − 2δρ2, s0 − δρ2] such that⋃

t∈[s,s0+ρ2]

sptµt ∩ C4
√
nρ(y0) ⊂ {x ∈ U, (x− y0) · en+j ≤ hρ} , (5.28)∫

C4
√
nR(y0)

{Λ− |x− y0 − Λen+j|}+ dµs(x) ≤ cλ3δ
n+12

2 h−2ρn+1. (5.29)
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Then for all t ∈ [s0, s0 + ρ2]

sptµt ∩Bρ(y0) ⊂ {x ∈ U, (x− y0) · en+j ≤ (24n+ 1)λρ} . (5.30)

5.11 Remark. Basically λ denotes the new height bound, whereas h is the
height bound we already have. The time one has to wait until the new height
bound comes into effect is related to δ. In particular for fixed δ and h the
point-wise height estimate (5.30) becomes smaller the smaller the integral in
(5.29) is. Note that (5.29) is similar to an integral height bound.

Proof. We may assume (24n + 1)λ ≤ h and as h ≤ λ−1 this yields (24n +
1)λ2 ≤ 1. First note that by (5.28) and hρ ≤ λ−1ρ = Λ we know that
(x− y0 − Λen+j) · en+j is negative, so

(x− y0) · en+j = (x− y0 − Λen+j) · en+j + Λ

= Λ− |(x− y0 − Λen+j) · en+j|
(5.31)

for all x ∈ sptµt ∩ C4
√
nρ(y0), t ∈ [s, s0 + ρ2]. Then using (5.31) we can

calculate

(x− y0) · en+j

= Λ−
(
|(x− y0 − Λen+j|2 −

∑
1≤i≤n+k, i6=n+j

|(x− y0) · ei|2
) 1

2

≤ Λ−
√
|(x− y0 − Λen+j|2 − |x− y0|2

(5.32)

for all x ∈ sptµt ∩ C4
√
nρ(y0), t ∈ [s, s0 + ρ2]. We want to show that for all

t ∈ [s0, s0 + ρ2]

sptµt ∩ Cρ(y0) ∩BΛ0(y0 + Λen+j) = ∅ (5.33)

for Λ0 := Λ − 12nλρ > 0. Suppose (5.33) would be true, then in view of
(5.32) we can estimate for all t ∈ [s0, s0 + ρ2] and for all x ∈ sptµt ∩Bρ(y0)

(x− y0) · en+j ≤ Λ−
√
|x− (y0 + Λen+j)|2 − |x− y0|2 ≤ Λ−

√
Λ2

0 − ρ2.

By definition of Λ0 and by Λ = λ−1ρ we can estimate further

(x− y0) · en+j ≤ Λ

(
1−

√
(1− 12nλ2)2 − λ2

)
≤ Λ

(
1−

√
1− (24n+ 1)λ2

)
≤ (24n+ 1)Λλ2 ≤ (24n+ 1)λρ.
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which establishes (5.30). Here we used (24n + 1)λ2 ≤ 1. So it remains to
show (5.33).

To verify (5.33) we will use Lemma 5.7 with R = Λ, r = 4
√
nρ, t0 = s

and x0 = y0 + Λen+j, so we have to consider the test function

Φ(x) :=
{

1− Λ−2|x− y0 − Λen+j|2
}

+

{
1− (4

√
nρ)−2|x̂− ŷ0|2

}
+
.

Set

η := (4
√
nΛρ)−

n
2

∫
U

Φ3dµs, (5.34)

then Lemma 5.7 yields

sptµt ∩ Cr(t)(y0) ∩BR(t)(y0 + Λen+j) = ∅ (5.35)

for all t ∈ [s + Cnη
2

n+12 Λρ, s0 + ρ2], where r(t) :=
√

16nρ2 − 4n(t− s) and

R(t) :=
√

Λ2 − 4n(t− s). But for t ∈ [s + Cnη
2

n+12 Λρ, s0 + ρ2] we have
t− s ≤ s0 + ρ2 − (s0 − 2δρ2) ≤ 3ρ2, so we can estimate

R(t) ≥
√

Λ2 − 12nρ2 =
√

1− 12nλ2Λ ≥
(
1− 12nλ2

)
Λ = Λ0

r(t) ≥
√

16nρ2 − 12nρ2 ≥ ρ

for all t ∈ [s + Cnη
2

n+12 Λρ, s0 + ρ2]. Thus if s + Cnη
2

n+12 Λρ ≤ s0 then (5.35)
implies (5.33), which establishes the result. By assumption s ≤ s0 − δρ2, so

it suffices to show Cnη
2

n+12 Λρ ≤ δρ2. In view of (5.34) it remains to prove

Cn

(
(Λρ)−

n
2

∫
U

Φ3dµs

) 2
n+12

≤ Λ−1δρ. (5.36)

To establish inequality (5.36) we calculate for x ∈ sptµs∩C4
√
nρ(y0)∩BΛ(y0+

Λen+j) using (5.31) and (5.28)

Φ(x)3 ≤
{

1− Λ−2|x− y0 − Λen+j|2
}3

+

=
{

Λ−6(Λ + |x− y0 − Λen+j|)3(Λ− |x− y0 − Λen+j|)3
}

+

≤ Λ−6(Λ + Λ)3|(x− y0) · en+j|2 {Λ− |x− y0 − Λen+j|}+

≤ Λ−3h2ρ2 {Λ− |x− y0 − Λen+j|}+ .

Then with assumption (5.29) we obtain

Cn

∫
U

Φ3dµs ≤ CnΛ−3h2ρ2

∫
C4
√
nR(y0)

{Λ− |x− y0 − Λen+j|}+ dµs(x)

≤ Cncλ
6δ

n+12
2 ρn,
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where we used Λ = λ−1ρ and sptΦ ⊂ C4
√
nR(y0) ∩BΛ(y0 + Λen+j). This can

now be used to estimate

Cn

(
(Λρ)−

n
2

∫
U

Φ3dµs

) 2
n+12

≤ Cn
(
cλ6+n

2

) 2
n+12 δ = Cnc

2
n+12 δλ.

Now as λ = Λ−1ρ this implies (5.36) for c small enough. As before (5.36)
then establishes the result.

5.12 Lemma. For every Λ ∈ (0,∞) and every j ∈ {1, . . . k} we have

{Λ− |x− Λen+j|}+ ≤
{
x · en+j − (2Λ)−1 |x̂|2

}
+

(5.37)

for all x ∈ Rn+k.

For the proof we will use the following fact

5.13 Remark. For a, b, c ∈ R+ with a2 ≥ b2 + c2 we can estimate

a−
√
b2 + c2 ≤

√
a2 − b2 − c. (5.38)

To verify this compute

a2c2 ≤ b2(a2 − b2 − c2) + c2a2 = (b2 + c2)(a2 − b2),

which implies

(a+ c)2 = a2 + 2ac+ c2 ≤ a2 + 2
√
b2 + c2

√
a2 − b2 + c2 + b2 − b2

=
(√

b2 + c2 +
√
a2 − b2

)2

and this verifies the result.

Proof. To illustrate this statement note that x̂→ (2Λ)−1 |x̂|2 is a paraboloid
and BΛ(Λen+j) the best fitting ball through 0. Consider the functions f, g ∈
C∞ (Bn

Λ(0),R+)

f(x̂) := (2Λ)−1 |x̂|2

g(x̂) := Λ−
√

Λ2 − |x̂|2.
(5.39)

For the derivatives we can calculate

∂

∂xi
f(x̂) = Λ−1x̂ · ei

∂

∂xi
g(x̂) =

(
Λ2 − |x̂|2

)− 1
2 x̂ · ei
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for 1 ≤ i ≤ n and x̂ ∈ Bn
Λ(0). Note that f(0) = g(0) = 0. Also for v̂ ∈ Bn

Λ(0)
and θ ∈ [0, 1] we can estimate

D(g − f)(θv̂) · v̂ =
(
Λ2 − θ2|v̂|2

)− 1
2 θ|v̂|2 − Λ−1θ|v̂|2 ≥ 0.

Then by Taylor’s formula

(g − f)(v̂) = (g − f)(0) +

∫ 1

0

D(g − f)(θv̂) · v̂ dθ ≥ 0,

so we conclude

g(x̂) ≥ f(x̂) (5.40)

for all x̂ ∈ Bn
Λ(0).

Next we want to show

Λ− |x− Λen+j| ≤ x · en+j − g(x̂) (5.41)

for all x ∈ BΛ(Λen+j). Inequality (5.41) basically says that for a point inside
a ball the shortest distance to the boundary is smaller than the distance to
the lower boundary point on the same vertical line. For x ∈ Rn+k we can
estimate

Λ− |x− Λen+j| = Λ−

(
n∑
i=1

|x · ei|2 +
k∑
i=1

|(x− Λen+j) · en+i|2
) 1

2

≤ Λ−
√
|x̂|2 + |(x− Λen+j) · en+j|2

= Λ−
√
|x̂|2 + (Λ− x · en+j)2.

If x ∈ BΛ(Λen+j) we have (Λ− x · en+j)
2 + |x̂|2 ≤ |x− Λen+j|2 ≤ Λ2, so we

can use (5.38) to obtain

Λ− |x− Λen+j| ≤
√

Λ2 − |x̂|2 − (Λ− x · en+j) = x · en+j − g(x̂)

for all x ∈ BΛ(Λen+j), where we used definition (5.39) in the last step. Thus
we proved (5.41) which in view of (5.40) yields

{Λ− |x− Λen+j|}+ ≤ x · en+j − f(x̂)

for all x ∈ BΛ(Λen+j) and by definition (5.39) this verifies (5.37). Here we
used that for points outside BΛ(Λen+j) the left hand side of (5.37) is zero
and the right hand side is positive.
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The form in which Proposition 5.10 will be used is the following:

5.14 Lemma. There exist c ∈ (0, 1) and C ∈ (1,∞) such that for all τ ∈
(0, 1], R ∈ (0,∞), h ∈ (0, 1], t0 ∈ R, y0 ∈ Rn+k and every open subset
V ⊂ Rn+k with B2τ−1R(y0) ⊂⊂ V the following holds: Let (µt)t∈[t0−2R2,t0+R2]

be a Brakke flow in U and T be an n-dimensional subspace in Rn+k with⋃
t∈[t0−2R2,t0+R2]

sptµt ∩ CT
4
√
nR(y0) ⊂

{
x ∈ V,

∣∣π⊥T (x− y0)
∣∣ ≤ hR

}
. (5.42)

Suppose there exists a t1 ∈ [t0 − 2R2, t0 − R2] and an orthonormal basis
(νj)1≤j≤k of the co-space T⊥ such that

R−n−1

∫
CT

4
√
nR

(y0)

{
|(x− y0) · νj| −

|πT (x− y0)|2

2τ−1R

}
+

dµt1(x) ≤ c
τ 3

h2
(5.43)

for every j ∈ {1, . . . k}. Then for all t ∈ [t0, t0 +R2]

sptµt ∩BR(y0) ⊂
{
x ∈ V,

∣∣π⊥T (x− y0)
∣∣ ≤ CτR

}
. (5.44)

Here CT
r (x0) := {x ∈ Rn+k : |πT (x− x0)| ≤ r}.

Proof. Fix an arbitrary j ∈ {1, . . . k} and a sign ? ∈ {+,−}. Fix an associ-
ated rotation S ∈ SO(n+ k) with S(Rn) = T , S(Rk) = T⊥ and in particular
S(en+j) = ?νj. Consider the Brakke flow (µ̃t)t∈[t0−3R2,t0+R2] defined by

µ̃t(A) := µt(S(A)),

for all A ⊂ Rn+k, where S(A) := {S(a), a ∈ A}. Assumptions (5.42) and
(5.43) imply for the rotated flow⋃

t∈[t0−2R2,t0+R2]

sptµ̃t ∩ C4
√
nR(y0) ⊂ {x ∈ U, |πRk(x− y0)| ≤ hR} , (5.45)

R−n−1

∫
C4
√
nR(y0)

{
|(x− y0) · en+j| −

|x̂− ŷ0|2

2τ−1R

}
+

dµ̃t1(x) ≤ c
τ 3

h2
(5.46)

where U := S−1(V ). By Lemma 5.12 with Λ = τ−1R estimate (5.46) implies

R−n−1

∫
C4
√
nR(y0)

{Λ− |x− y0 − Λen+j|}+ dµ̃t1(x) ≤ cτ 3h−2. (5.47)
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Here we used (x−y0) ·en+j ≤ |(x−y0) ·en+j|. Now we can apply Proposition
5.10 with δ = 1, λ = τ , ρ = R, s0 = t0 and s = t1. Note that (5.45) implies
(5.28), as (x− y0) · en+j ≤ |πRk(x− y0)|. Proposition 5.10 then yields

sptµ̃t ∩BR(y0) ⊂ {x ∈ U, (x− y) · en+j ≤ CτR} .

for all t ∈ [t0, t0 + R2] for some C ∈ (1,∞). Thus by definition of (µ̃t) we
obtain

sptµt ∩BR(y0) ⊂ {x ∈ V, ?(x− y) · νj ≤ CτR} .

As j ∈ {1, . . . k} and ? ∈ {+,−} were arbitrary this establishes (5.44)
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6 Monotonicity Formula

We want to prove Huisken’s monotonicity formula 6.2 taken from [H2] for the
spherical heat kernel on Brakke flows, which has been established by Ilmanen
in [I2]. This will lead to the L∞ − L2-estimate Corollary 6.8, an important
tool for proving local regularity later. Here we follow [E4, chapter 4], where
smooth flows are considered, but the results carry over to our case.

To prove the monotonicity formula we need the spherical heat kernel Φ.
Later we will use the spherically shrinking cut-off function ϕ defined below,
to obtain local estimates.

6.1 Definition. Let x0 ∈ Rn+k, t0 ∈ R, ρ ∈ (0,∞) be fixed. For x ∈ Rn+k

and t ∈ (−∞, t0) set

Φ(t0,x0)(t, x) := (4π(t0 − t))−
n
2 exp

(
|x− x0|2

4(t− t0)

)
.

ϕ(t0,x0),ρ(t, x) :=
{

1− ρ−2
(
|x− x0|2 + 2n(t− t0)

)}3

+
.

6.2 Theorem (Monotonicity Formula, [H2]). Consider an open subset U ⊂
Rn+k, (t0, x0) ∈ R × U and s0 ∈ (−∞, t0). Let (µt)t∈[s0,t0] be a Brakke flow

in U and let f ∈ C2
(
[s0, t0]× Rn+k,R+

)
with⋃

t∈[s0,t0]

sptf(t, ·) ⊂⊂ U. (6.1)

Then for s0 < s1 < s2 < t0∫
U

f(s2, x)Φ(t0,x0)(s2, x)dµs2(x)−
∫
U

f(s1, x)Φ(t0,x0)(s1, x)dµs1(x)

≤
∫ s2

s1

∫
U

((
∂

∂t
−∆µt + ~H ·D

)
f −

∣∣∣ ~H − ϑ(t0,x0)

∣∣∣2 f)Φ(t0,x0)dµt dt,

where ϑ(t0,x0)(t, x) =
π⊥Txµt

(x−x0)

2(t−t0)
.

Applying this theorem with f = ϕ yields a local monotonicity formula
for the heat kernel. This was discovered by Ecker, see [E4].

6.3 Remark ([E4, 4.8]). Under the above assumptions for ρ ∈ (0,∞) with
Bρ(x0) ⊂⊂ U and f = ϕ(t0,x0),ρ we can use Definition 2.5 and Remark 2.6 to
estimate (

∂

∂t
−∆µt + ~H ·D

)
ϕ(t0,x0),ρ(t, x) ≤ 0

75



for almost every t ∈ [s0, t0] and almost every x ∈ sptµt. Then by Theorem
6.2 ∫

U

Φ(t0,x0)ϕ(t0,x0),ρ dµs2 ≤
∫
U

Φ(t0,x0)ϕ(t0,x0),ρ dµs1 (6.2)

for all s0 < s1 < s2 < t0.

Proof of Theorem 6.2. We fix (t0, x0) throughout the proof and just write Φ,
omitting the index. Consider times t ∈ (s1, s2) where µt is integral and has

L2-integrable mean curvature vector ~H. Let ∇, div and ∆ be with respect
to µt. Then we can calculate for the heat kernel by Definition 2.5(

~HD + ∆
)

Φ = divDΦ + 2 ~H ·DΦ

= divDΦ +

∣∣∇⊥Φ
∣∣2

Φ
−
∣∣∣∣ ~H − ∇⊥Φ

Φ

∣∣∣∣2 Φ + | ~H|2Φ
(6.3)

at points x ∈ sptµt where ~H ⊥ Txµt, which are µt-almost all x due to
Theorem 2.7. Using Definition 6.1 and definition of ϑt0,x0 one can directly
calculate

∂Φ

∂t
+ divDΦ +

∣∣∇⊥Φ
∣∣2

Φ
= 0,

∇⊥Φ(t, x) =
π⊥Txµt(x− x0)

2(t− t0)
Φ(t, x) = ϑ(t0,x0)(t, x)Φ(t, x).

Combining this with (6.3) yields(
∂

∂t
+ ~H ·D + ∆

)
Φ− | ~H|2Φ

= −
∣∣∣∣ ~H − ∇⊥Φ

Φ

∣∣∣∣2 Φ = −
∣∣∣ ~H − ϑ(t0,x0)

∣∣∣2 Φ

(6.4)

for almost every time t ∈ (s1, s2) at µt-almost every point x ∈ sptµt.
Now we integrate in time over (s1, s2) and use inequality (3.5) to obtain∫

U

f(s2, x)Φ(s2, x)dµs2(x)−
∫
U

f(s1, x)Φ(s1, x)dµs1(x)

≤
∫ s2

s1

(∫
U

(
∂

∂t
+ ~H ·D

)
(fΦ)− | ~H|2fΦdµt

)
dt

≤
∫ s2

s1

∫
U

[
Φ

(
∂

∂t
−∆ + ~H ·D

)
f

+

((
∂

∂t
+ ~H ·D + ∆

)
Φ− | ~H|2Φ

)
f

]
dµt dt
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and together with equality (6.4) this establishes the result.

6.4 Definition (Gaussian Density, [H2]). Consider t1, t2 ∈ R with t1 < t2
and an open subset U ⊂ Rn+k. Let (µt)t∈[t1,t2] be a Brakke flow in U . For all

t0 ∈ (t1, t2], ρ ∈ (0,∞) and x0 ∈ Rn+k with Bρ(x0) ⊂⊂ U set

Θ(µ, t0, x0) := lim
t↗t0

∫
U

Φ(t0,x0)(t, x) ϕ(t0,x0),ρ(t, x) dµt(x). (6.5)

This is called the Gaussian density of (µt) at (t0, x0). Actually this limit
always exists and is independent of ρ. Note that the Gaussian density is
different from the density Θn in Definition 2.1.4.

Proof. By Remark 6.3 we have that t →
∫
Rn+k Φ(t0,x0)ϕ(t0,x0),ρ dµt is mono-

tonically decreasing for t < t0. Also it is bounded from below by 0, so the
limit for t↗ t0 has to exist.

Now let 0 < ρ1 < ρ2 <∞ with Bρ2(x0) ⊂⊂ U . In particular there exists
R ∈ (ρ2,∞) such that BR(x0) ⊂⊂ U . For arbitrarily small ε ∈ (0, 1) consider
t ∈ (t0 − ερ2

1, t0). We may assume ε is small enough such that

sptϕ(t0,x0),ρi(t, ·) ⊂ BR(x0) ⊂⊂ U (6.6)

for i ∈ {1, 2}. For x ∈ B√ερ1
(x0) we can estimate

|ϕ(t0,x0),ρi(t, x)− 1| = 1− (1− ρ−2
i (|x− x0|2 + 2n(t− t0)))3 ≤ Cnε (6.7)

for i ∈ {1, 2}, where we used that ρ−2
i ρ2

1 ≤ 1 and that ε small enough. The
Gaussian density difference between ρ = ρ1 and ρ = ρ2 can be estimated by

D :=

∫
U

Φ(t0,x0)

∣∣ϕ(t0,x0),ρ2 − ϕ(t0,x0),ρ1

∣∣ dµt
≤
∫
U

Φ(t0,x0)

(∣∣ϕ(t0,x0),ρ2 − 1
∣∣+
∣∣ϕ(t0,x0),ρ1 − 1

∣∣) dµt.
Thus with (6.7) and (6.6)

D ≤ Cnε

∫
BR(x0)

Φ(t0,x0)dµt + 2

∫
BR(x0)\B√ερ1 (x0)

Φ(t0,x0)dµt. (6.8)

Note that by Lemma 3.6 and (6.6) there exists an M ∈ (1,∞) such that
µt(BR(x0)) ≤ M for all t ∈ [t1, t2]. Then as Φ is bounded, the first integral
in (6.8) is bounded by a constant times ε. The second integral in (6.8) can
be estimated by∫

BR(x0)\B√ερ1 (x0)

Φ(t0,x0)dµt ≤ Cn(t0 − t)−
n
2 exp

(
− ερ2

1

4(t0 − t)

)
M
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and this expression tends to 0 for t↗ t0. Thus we can find a δ ∈ (0, 1) such
that for all t ∈ (t0 − δ, t0) the estimate D ≤ Cnε holds. As ε is arbitrarily
small, this establishes the independence of ρ.

Next we prove a lower bound on the Gaussian density like [E4, 4.20]. This
time it actually is more difficult than in the smooth case, see also [W2].

6.5 Proposition. For every T ∈ (0,∞) and every open subset U ⊂ Rn+k

the following holds: Let (µt)t∈[−T,0] be a Brakke flow in U . Suppose µt0 is
an integral n-varifold for some t0 ∈ (−T, 0], then for H n-almost every x0 ∈
sptµt0

Θ(µ, t0, x0) ≥ 1.

Proof. As µt0 is an integral n-varifold we have Θn (µt0 , x) ≥ 1, Txµt0 exists
and (2.1) holds for H n-almost every x ∈ sptµt0 . Let x0 ∈ U be such a point
and let ε ∈ (0, 1) be given. By Remark 2.3 for every ball Br(x0), r ∈ (0,∞)
we can calculate

lim
δ↘0

∫
Br(x0)

Φ(t0+δ,x0)(t0, x)dµt0(x)

= (4π)−
n
2 lim
δ↘0

(√
δ
)−n ∫

Br(x0)

e
−
∣∣∣x0−x

16
√
δ

∣∣∣2
dµt0(x)

= (4π)−
n
2 Θn (µt0 , x0)

∫
Tx0µt0

e−
|y|2

4 dL n(y) = Θn (µt0 , x0) ≥ 1,

where we identified Tx0µt0 with Rn. So there exists δ1 ∈ (0, (2n)−1ερ2) such
that ∫

B√ερ(x0)

Φ(t0+δ,x0)dµt0 ≥ 1− ε (6.9)

for all δ ∈ (0, δ1). There exists ρ ∈ (0,
√
T + t0) such that Bρ(x0) ⊂⊂ U . By

Definition 6.4 we can find a t ∈ (t0 − ρ2, t0) such that

Θ(µ, t0, x0) ≥
∫
Rn+k

Φ(t0,x0)(t, x)ϕ(t0,x0),ρ(t, x)dµt(x)− ε. (6.10)

By the continuity of our test functions we can choose δ ∈ (0, δ1) such that∫
Rn+k

Φ(t0+δ,x0)(t, x)ϕ(t0+δ,x0),ρ(t, x)dµt(x)

≤
∫
Rn+k

Φ(t0,x0)(t, x)ϕ(t0,x0),ρ(t, x)dµt(x) + ε.

(6.11)
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Now combine estimates (6.10) and (6.11) to obtain

Θ(µ, t0, x0) ≥
∫
Rn+k

Φ(t0,x0)(t, x)ϕ(t0,x0),ρ(t, x)dµt(x)− ε

≥
∫
Rn+k

Φ(t0+δ,x0)(t, x)ϕ(t0+δ,x0),ρ(t, x)dµt(x)− 2ε.

Then with the monotonicity (6.2) we can conclude

Θ(µ, t0, x0) ≥
∫
Rn+k

Φ(t0+δ,x0)(t0, x)ϕ(t0+δ,x0),ρ(t0, x)dµt0(x)− 2ε. (6.12)

Now use that δ ≤ δ1 ≤ (2n)−1ερ, so for x ∈ B√ερ(x0) we can estimate

ϕ(t0+δ,x0),ρ(t0, x) = (1− ρ−2(|x− x0|2 + 2nδ))3 ≥ (1− 2ε)3.

Inserting this into (6.12) we can use (6.9) to finally estimate

Θ(µ, t0, x0) ≥ (1− 2ε)3

∫
B√ερ(x0)

Φ(t0+δ,x0)(t0, x)dµt0(x)− 2ε ≥ (1− 2ε)4 − 2ε,

and for ε↘ 0 this establishes the result.

The monotonicity formula can now be used to prove a mean value in-
equality. The proof we will give follows [E4, 4.25] and [E5, 2.1]. In [KT, 6.5]
a similar result can be found for a more general flow but with fixed function
f .

6.6 Proposition (Mean Value Inequality, [E4, 4.25], [E5, 2.1], [KT, 6.5]).
There exists a constant C ∈ (1,∞) such that for all T ∈ (0,∞), t0 ∈
R and every open subset U ⊂ Rn+k the following holds: Let (µt)t∈[t0−T,t0]

be a Brakke flow in U such that µt0 is an integral n-varifold. Let f ∈
C2 ([t0 − T, t0]× U,R) be such that for almost every t0 − T ≤ t ≤ t0 for
µt-almost every x ∈ U(

∂

∂t
−∆µt + ~H ·D

)
f(t, x) ≤ 0. (6.13)

Then for all ρ ∈ (0, 2−1
√
T ) and a ∈ Rn+k with B2ρ(a) ⊂ U the inequality

|f(s, y)| ≤ Cρ−n−2

∫ t0

t0−4ρ2

∫
B2ρ(a)

|f(t, x)|dµt(x)dt (6.14)

holds, for all s ∈ [t0 − ρ2, t0] and all y ∈ sptµs ∩Bρ(a).
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6.7 Remark. Here only the L2-version of (6.14) will be proven. Then we
refer to [E5, 2.1], where an advanced calculus trick due to Schoen and Bartnik
is used to derive the L1-version from its corresponding L2-estimate.

Proof. Fix a ∈ Rn+k and ρ ∈ (0, 2−1
√
T ) with B2ρ(a) ⊂ U . First we will

assume f(t, x) ≥ 0 for all (t, x) ∈ [t0 − T, t0]× U . We want to show

f(s, y)2 ≤ Cρ−n−2

∫ t0

t0−4ρ2

∫
B2ρ(a)

f(t, x)2dµt(x) dt (6.15)

for all s ∈ [t0 − ρ2, t0] and all y ∈ sptµs ∩ Bρ(a). Fix s0 ∈ [t0 − 2ρ2, t0] and
y0 ∈ sptµs0 ∩ Bρ(a) with Θ(µ, s0, y0) ≥ 1. We want to show (6.15) holds for
(s, y) = (s0, y0).

Consider a time t such that µt is integral and has L2-integrable mean
curvature vector ~H. Let ∇ and ∆ be with respect to µt, then by Remark
2.6.3 we can calculate at almost every point(

∂

∂t
−∆ + ~H ·D

)
f 2 = 2f

(
∂

∂t
−∆ + ~H ·D

)
f − 2 |∇f |2 . (6.16)

Furthermore for a φ ∈ C2
(
[−T, 0]× Rn+k,R

)
we can estimate using Young’s

inequality

∇f 2 · ∇φ2 = 4fφ∇f · ∇φ ≤ φ2 |∇f |2 + 4f 2 |∇φ|2 . (6.17)

Combining (6.16) and (6.17) we obtain(
∂

∂t
−∆ + ~H ·D

)
f 2φ2

≤ φ2

(
∂

∂t
−∆ + ~H ·D

)
f 2 + f 2

(
∂

∂t
−∆ + ~H ·D

)
φ2 − 2∇f 2 · ∇φ2

≤ 2fφ2

(
∂

∂t
−∆ + ~H ·D

)
f + f 2

[(
∂

∂t
−∆ + ~H ·D

)
φ2 + 8 |∇φ|2

]
.

at almost every point in sptµt. Integrating in space and time we can drop the
first term, as it is negative by assumption (6.13) and as we assumed f ≥ 0,
such that by Theorem (6.2) we have∫

U

f 2φ2Φ(s0,y0)dµs −
∫
U

f 2φ2Φ(s0,y0)dµs0−ρ2

≤
∫ s

s0−ρ2

∫
U

f 2Φ(s0,y0)Cφ dµt dt =: I
(6.18)
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for all s ∈ (s0−ρ2, s0), where Cφ :=
(
∂
∂t
−∆µt + ~H ·D

)
φ2 + 8 |∇µtφ|2. Now

choose φ(x) = φ0(x− y0) where

φ0(t, x) =

{
1, (t, x) ∈ (s0 − ρ2

4
, 0)×Bn+k

ρ
2

(0)

0, t ≤ s0 − ρ2

2
or |x| ≥ ρ

and smooth in between such that Cφ ≤ ρ−2Cn. Then the µs0−ρ2-integral
in (6.18) vanishes, so (6.18) becomes

∫
U
f 2φ2Φ(s0,y0)dµs ≤ I. Furthermore

Cφ = 0 on (s0 − ρ2

4
, 0) × B ρ

2
(x0) and outside Bρ(x0). Then we can estimate

the integral I from (6.18) by

I ≤ Cn
ρ2

∫ s0− ρ
2

4

s0−ρ2

∫
B ρ

2

f 2Φ(s0,y0) dµt dt+

∫ s0

s0−ρ2

∫
Bρ\B ρ

2

f 2Φ(s0,y0) dµt dt


≤ Cn

ρ2

∫ s0− ρ
2

8n

s0−ρ2

∫
Bρ

f 2Φ(s0,y0) dµt dt+

∫ s0

s0− ρ
2

8n

∫
Bρ\B ρ

2

f 2Φ(s0,y0) dµt dt


where all the balls are centred in y0. Now with Definition 6.1 and as r →
r−αe−βr

−1
is monotonously increasing on (0, βα−1] we can estimate for t ∈[

s0 − ρ2

8n
, s0

)
and x /∈ B ρ

2
(y0)

Φ(s0,y0)(t, x) ≤ Cn(s0 − t)−
n
2 exp

(
− ρ2

16(s0 − t)

)
≤ Cn

(
ρ2

8n

)−n
2

exp

(
− 1

2n

)
≤ Cnρ

n

Also Definition 6.1 implies Φ(s0,y0)(t, x) ≤ Cnρ
n for all t ∈

[
s0 − ρ2, s0 − ρ2

8n

]
.

Then we obtain for I

I ≤ Cn
ρn+2

∫ s0

s0−ρ2

∫
Bρ

(f(t, x))2 dµt(x)dt.

In view of (6.18) and by definition of φ this lets us conclude∫
B ρ

2
(y0)

f 2Φ(s0,y0)dµs =

∫
B ρ

2
(y0)

f 2φ2Φ(s0,y0)dµs

≤ Cn
ρn+2

∫ s0

s0−ρ2

∫
Bρ(y0)

f 2 dµt dt

(6.19)
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for all s ∈ (s0 − ρ2

4
, s0). By continuity of f we find r ∈ (0, 4−1ρ) such that

inf
[s0−r2,s0]×B2r(y0)

f(t, x)2 ≥ 1

2
f(s0, y0)2.

Furthermore for s ∈ (s0− r2

4n
, s0) by Definition 6.1 we have sptϕ(s0,y0),r(s, x) ⊂

B2r(y0) ⊂ B ρ
2
(y0), as well as ϕ(s0,y0),r(s, x) ≤ 2 for all x ∈ Rn+k. Thus with

(6.19) we conclude

f(s0, y0)2

∫
B2r(y0)

Φ(s0,y0)ϕ(s0,y0),r(s, x)dµs(x)

≤ 4

∫
B ρ

2
(y0)

f 2Φ(s0,y0)dµs ≤
Cn
ρn+2

∫ t0

t0−4ρ2

∫
B2ρ(a)

f 2 dµt dt

for s ∈ (s0 − r2

4n
, s0) ⊂ (s0 − ρ2

4
, s0), where we used 4r ≤ ρ. Also we used

Bρ(y) ⊂ B2ρ(a) and [s0 − ρ2, s0] ⊂ [t0 − 4ρ2, t0]. Then by Definition 6.4 for
s ↗ s0, as we assumed Θ(µ, s0, y0) ≥ 1 this establishes estimate (6.15) for
(s, y) = (s0, y0).

As (s0, y0) was arbitrary this shows (6.15) holds for all s ∈ [t0 − 2ρ2, t0]
and all y ∈ sptµs ∩ Bρ(a) with Θ(µ, s, y) ≥ 1. Due to continuity of f and
Proposition 6.5 we can extend this to all y ∈ sptµs ∩Bρ(a), s ∈ [t0 − ρ2, t0].

To see this let s ∈ [t0 − ρ2, t0] and let y ∈ sptµs ∩ Bρ(a) with Θ(µ, s, y)
arbitrary. For ε ∈ (0, 1) choose r ∈ (0, ρ) such that

(f(s, y))2 ≤ inf
[s−r2,s+r2]×Br(y)

(f(s0, y0))2 + ε, (6.20)

which is always possible by continuity of f . As y ∈ sptµs ∩ Bρ(a) we have
µs(Bδ(y)) > 0 for all δ ∈ (0,∞), see Remark 2.1. Then use Lemma 3.12.2
with κ = 1

2
, x0 = y and R = 2δ to see

µs0(B2δ(y)) > 0

for all s0 ∈ (s − n−1δ, s] for all δ ∈ (0,∞). Then choose δ small enough
such that 2δ ≤ r < ρ and B2δ(y) ⊂ Bρ(a). There exists s0 ∈ (s − n−1δ, s]
where µs0 is integral and using Proposition 6.5 we find y0 ∈ sptµs0 ∩ B2δ(y)
with Θ(µ, s0, y0) ≥ 1, in particular (6.15) holds for (s, y) = (s0, y0). Also, by
choice of δ we have (s0, y0) ∈ [s− r2, s+ r2]×Br(y). Then we can use (6.20)
and (6.15) to estimate

(f(s, y))2 ≤ (f(s0, y0))2 + ε ≤ Cn
ρn+2

∫ t0

t0−4ρ2

∫
B2ρ(a)

f 2 dµt dt+ ε
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and for ε↘ 0 we obtain (6.15) for all s ∈ [t0−ρ2, t0] and all y ∈ sptµs∩Bρ(a).
So we showed the L2-version of (6.14) for positive functions f . To obtain

the L1-estimate we refer to [E5, 2.1]. Note that the trick used there is just a
calculus iteration argument. In particular smoothness of the surfaces or the
flow equation are not needed. This yields

|f(s, y)| ≤ Cρ−n−2

∫ t0

t0−4ρ2

∫
B2ρ(a)

|f(t, x)|dµt(x)dt (6.21)

holds, for all s ∈ [t0 − ρ2, t0] and all y ∈ sptµs ∩Bρ(a) in the case f ≥ 0.
Now consider f ∈ C2 ([t0 − T, t0]× U,R) without sign condition (but sat-

isfying (6.13)). For ε ∈ (0, 1) consider
√
f 2 + ε2, then by Remark 2.6.3(

∂

∂t
−∆µt + ~H ·D

)√
f 2 + ε2

=
f√

f 2 + ε2

(
∂

∂t
−∆µt + ~H ·D

)
f − ε2

(f 2 + ε2)
3
2

|∇µf |2 ≤ 0

for almost every time t ∈ [t0 − T, t0] and µt-almost every point in U , where
we used that f satisfies (6.13). Thus

√
f 2 + ε2 is positive and satisfies (6.13),

so by (6.21) we obtain

√
f(s, y)2 + ε2 ≤ Cρ−n−2

∫ t0

t0−4ρ2

∫
B2ρ(a)

√
f(t, x)2 + ε2dµt(x)dt

for all s ∈ [t0 − ρ2, t0] and all y ∈ sptµs ∩ Bρ(a). Then for ε→ 0 follows the

result, as
√
f 2 + ε2 → |f |.

As a corollary we obtain a distance estimate like in [E4, 4.26]. There
already exists a similar result for weak mean curvature flow, see [KT, 6.5].

6.8 Corollary (Distance Estimate, [E4, 4.26], [KT, 6.5]). There exists a
constant C ∈ (1,∞) such that for all r ∈ (0,∞), t0 ∈ R, x0, y0, v ∈ Rn+k

and every open subset U ⊂ Rn+k with B2r(x0) ⊂ U the following holds: Let
(µt)t∈[t0−r2,t0] be a Brakke flow in U then

|(y − y0) · v| ≤ Cr−n−2

∫ t0

t0−4r2

∫
B2r(x0)

|(x− y0) · v|dµt(x) dt (6.22)

for all s ∈ [t0 − r2, t0] and all y ∈ sptµs ∩Br(x0).
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Proof. Consider the function f(x) = (x− y0) · v then f is C∞ and satisfies(
∂

∂t
−∆µt + ~H ·D

)
(x− x0) · v = −divµt((x− y0) · v) = 0

where we used Definition 2.4 and Definition 2.5. Thus the result follows
directly from Proposition 6.6 with ρ = r and a = x0
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7 Bounds On Area Ratio

In order to approximate Brakke flow by heat diffusion and for many other
purposes as well, we prefer our surface to be flat, in a sense which will be
made precise later. Here we consider Brakke flows which are contained in a
slab, or with bounded height-excess. We show that in this setting mild area
ratio bounds can imply almost flatness. We follow [B, 6.6 and 6.9], which is
also covered in [KT, chapter 6]. First we inspect the evolution of the area
ratio in a cylinder, in order to find that it is decreasing if it is not already
close to the area ratio of a plane, see Proposition 7.5. Assuming an upper
bound on the area ratio at the beginning and a lower bound later, we obtain
for some time in between that the surface almost has area ratio like a plane,
which directly implies bounds on mean curvature- and tilt-excess. This leads
to Theorem 7.7. The only small difference to [KT] and [B] is the usage of
variable test functions, which approximate the characteristic function of the
cylinder arbitrarily well. Using these we can state Theorem 7.7 for cylinders
directly, while the analogous statements in [KT] and [B] use fixed cylindrical
cut-off functions instead.

7.1 Definition. Consider ζ ∈ C∞ ([0,∞), [0, 1]) from Definition 4.1. For
R ∈ (0,∞) and p ∈ [1,∞) we define

ζR,p(x) := ζ
((
R−1 |x̂|

)p)
for all x = (x̂, x̃) ∈ Rn × Rk. Note that ζR,p is defined on Rn+k although it
only depends on the Rn-components. Moreover set

$p :=

∫
Bn1 (0)×{0}k

ζ2
1,pdH

n.

For a rectifiable n-varifold µ in U ⊂ Rn+k we are interested in the difference

E = E(µ,R, p) := R−n
∫
U

ζR,p dµt −$p.

7.2 Lemma. There exists a C ∈ (1,∞) such that for all R ∈ (0,∞) and
p ∈ [1,∞) the following holds:

1. for all x ∈ Rn+k

ζR,p(x) =

{
1 for 0 ≤ |x̂| ≤ (1− p−12−n−8)R

0 for R ≤ |x̂| .
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2. max {Rp−1 sup |DζR,p|, R2p−2 sup |D2ζR,p|} ≤ C.

3. R−n
∫
BnR(0)×{0}k ζ

2
R,pdH

n = $p.

4. (1− p−12−8)ωn ≤ $p ≤ ωn.

Proof. 1. Let |x̂| ≤ (1− p−12−n−8)R. By the binomial theorem we have(
R−1 |x̂|

)p ≤ (1− p−12−n−8)p

= 1− 2−n−8 +

(
p

2

)
(p−12−n−8)2 +

p∑
q=3

(
p

q

)
(−p−12−n−8)q.

Now by
(
p
q

)
≥
(
p
q+1

)
p−1 we see that the last sum is negative which yields(

R−1 |x̂|
)p ≤ 1− 2−n−8 +

(
p

2

)
p−2(2−n−8)2 ≤ 1− 2−n−9.

By Definition 4.1 we have ζ(r) = 1 for r ∈ [0, 1− 2−n−9], so we proved
statement 1.

2. Calculate for i, j ∈ {1, . . . , n}
∂

∂xi
ζR,p(x) = ζ ′

(
(R−1|x̂|)p

)
pR−p|x̂|p−2x̂i

and

∂2

∂xi∂xj
ζR,p(x) =ζ ′′

(
R−1|x̂|

)
p2R−2p|x̂|2p−4x̂ix̂j

+ ζ ′
(
(R−1|x̂|)p

)
pR−p

(
(p− 2)|x̂|p−4x̂ix̂j + |x̂|p−2δij

)
.

Statement 2 then follows by the properties of ζ (see Definition 4.1). In
particular we only have to consider the case R

2
≤ |x̂| ≤ R.

3. Property 3 follows from the transformation of variables ŷ = R−1x̂ inside
the integral.

4. To prove property 4 estimate for r = 1− p−12−n−8

rnωn =

∫
Bnr (0)

1dL n =

∫
Bnr (0)

ζ2
1,pdL

n ≤
∫
Bn1 (0)

ζ2
1,pdL

n

= $p ≤
∫
Bn1 (0)

1dL n = ωn,

where we used r ≤ 1 and Statement 1. Also note that

rn ≥ (1− p−12−n−8)n ≥ 1− 2np−12−n−8 = 1− p−12−8.
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The aim of this section is to find criteria that imply a bound on E.
Though E = 0 does not mean that we have a plane, a small E indicates a flat
shape and allows for Lipschitz approximations. Furthermore a Brakke flow
with bounded E for some time, can only have limited curvature integral in
that period, which leads to our excess bounds in this section’s main Theorem
7.7.

Applying Lemma 3.10 with φR = ζR,p yields the following statement:

7.3 Lemma. There exists a constant C ∈ (1,∞) such that for all R, γ ∈
(0,∞), p ∈ [1,∞) and every open subset U ⊂ Rn+k the following holds: Let

µ be an integral n-varifold in U with L2-integrable mean curvature vector ~H.
Suppose

R−n−2

∫
CR(0)

|πRk(x)|2dµ(x) ≤ γ2. (7.1)

Then

R−n+2B
(
U, µ, ζ2

R,p

)
≤ −1

2
R−n+2

∫
U

| ~H|2ζ2
R,pdµ+ Cp4γ2. (7.2)

Note that d
dt
E(µt, R, p) = d

dt
R−n+2B

(
U, µ, ζ2

R,p

)
so if we can bound the

right hand side of (7.2) by E, this will lead to a differential equation for E.
The biggest step in this direction is the next Lemma, which is based on the
first half of Brakke’s proof of the popping soap film lemma [B, 6.6].

7.4 Lemma (Area Ratio Derivative, [B, 6.6]). For every q ∈ [1,∞) there
exists a Q ∈ (1,∞) such that for every R ∈ (0,∞), every γ ∈ (0, Q−1]
and every open subset U ⊂ Rn+k the following holds: Let µ be an integral
n-varifold in U with L2-integrable mean curvature vector ~H. Suppose

sptµ ∩ CR(0) ⊂⊂ U (7.3)

R−n−2

∫
CR(0)

|πRk(x)|2dµ ≤γ2 (7.4)∣∣∣∣R−n ∫
U

ζ2
R,qdµ−$q

∣∣∣∣ =: |E| ∈
[
Qγ2, (1− (2q)−1)ωn

]
. (7.5)

Then

R−n+2B
(
U, µ, ζ2

R,q

)
≤ −Q−1

min
{
γ−

2
3 |E| 43 , 1

}
if n ≤ 2,

min
{
|E|n−2

n , γ−
2
3 |E| 43 , 1

}
if n > 2.

(7.6)
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Proof. We consider the mean curvature-excess

α2 := R−n+2

∫
U

| ~H|2ζ2
R,qdµ. (7.7)

We want to show that there exists a δ = δ(q) ∈ (0, 1) such that

α2 ≥ δ

min
{
γ−

2
3 |E| 43 , 1

}
if n ≤ 2,

min
{
|E|n−2

n , γ−
2
3 |E| 43 , 1

}
if n > 2.

(7.8)

Showing (7.8) is the main step of the proof. By definition of the right hand
side of (7.8) it suffices to consider small α2 and then show that |E| is bounded
from above in terms of α2. In order to show this we first use Lemma 2.8 to
transfer the area ratio bounds from (7.5) to smaller balls with radii R

3
, R

9
.

This leads to a Lipschitz approximation in Br0(0), r0 = R
9

, which then lets
us get better estimates on the area ratio, in this smaller ball. Using again
Lemma 2.8 yields the upper bound on |E| in terms of α2. Once (7.8) is
verified Lemma 7.3 can be used to establish the result.

To prove (7.8) we assume α2 ≤ δ and lead this assumption to the conclu-
sion

α2 ≥ δ

{
γ−

2
3 |E| 43 if n ≤ 2,

min
{
|E|n−2

n , γ−
2
3 |E| 43

}
if n > 2,

where we will choose δ small depending on q. Also we may assume γ2 ≤ δ,
which we can always achieve as γ ≤ Q−1 and we can choose Q ≥ δ−

1
2 .

Moreover the tilt-excess

β2 := R−n
∫
U

|πTxµ − πRn|
2 ζ2

R,pdµ (7.9)

can be estimated by the height- and curvature-excess due to Lemma A.13
with f = g = h = ζR,q. This yields

β2 = R−nβ2
g ≤ Cn

(
αγ +R−n

∫
U

|πRk(x)|2|∇µζR,q|dµ(x)

)
,

where we used sptζR,q ⊂ CR(0) to estimate α2
f ≤ Rn−2α2 and γ2

h ≤ Rn+2γ2.
Using |DζR,q| ≤ q2R−2σ1 and (7.4) we obtain

β2 ≤ Cn
(
αγ + q2γ2

)
≤ Cnq

2δ (7.10)
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where we used our bounds on α and γ for the second estimate. Thus all the
three excesses are bounded by α2 + β2 + γ2 for which

α2 + β2 + γ2 ≤ Cnq
2δ (7.11)

holds.
We want to approximate µ in Br0(0) by a Lipschitz function, for some

r0 ∈ (0, R). In order to use Theorem 2.9 we have to show

µ (Br0(0)) ≥ λωnr
n
0 (7.12)

µ (B3r0(0)) ≤ (2− λ)ωn(3r0)n (7.13)

for some λ ∈ (0, 1).
Define

r0 :=
R

9
, r1 := (1− q−12−n−8)r0, r2 := 3(1 + q−12−n−4)r0.

By Lemma 2.8.2 with R2 = R, R1 = ri, ΦR = ζR,q, α0 = α, β0 = β we obtain∣∣∣∣R−n ∫
U

ζ2
R,qdµ− r−ni

∫
U

ζ2
ri,q
dµ

∣∣∣∣
≤ r−ni Rn

((
n log

(
R

ri

)
+ 2

)
β2 +R−1(R− ri)αβ

)
for i ∈ {1, 2}. Here we had to use that (7.3) equals (2.5). Then we can
estimate∣∣∣∣R−n ∫

U

ζ2
R,qdµ− r−ni

∫
U

ζ2
ri,q
dµ

∣∣∣∣ ≤ Cn

(
R

ri

)n (
β2 + αβ

)
(7.14)

for i ∈ {1, 2}, where we used log(Rr−1
i ) ≤ log(18) ≤ 3. As the height-excess

is small due to (7.4), we can estimate the measure of a ball from below by the
measure of a cylinder with slightly smaller radius. In particular for Br0(0)
and Cr1(0) we obtain for the set A := {x ∈ Cr1(0) : |πRk(x)|2 > r2

0 − r2
1} that

µ (Cr1(0) \Br0(0)) ≤ µ (A) . (7.15)

Here we used that for x ∈ Cr1(0) with |πRk(x)|2 ≤ r2
0 − r2

1 we can estimate
|x|2 = |πRk(x)|2 + |x̂| ≤ r2

0 so x /∈ Cr1(0) \Br0(0). Using (7.4) the measure of
A implies a lower bound on γ by

Rn+2γ2 ≥ (r2
0 − r2

1)µ (A) ,
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so we can estimate with (7.15)

µ (Cr1(0) \Br0(0)) ≤ (r2
0 − r2

1)−1γ2Rn+2 ≤ Cnqγ
2Rn. (7.16)

Here we estimated r2
0 − r2

1 ≥ (1 − (1 − q−12−n−8)2)r2
0 ≥ (Cnq)

−1r2
0 and we

also used R2 = 81r2
0 by definition of r0. Now we can use estimate (7.14) and

(7.16) to bound µ (Br0(0)) from below

µ (Br0(0)) ≥
∫
U

ζ2
r1,q
dµ− µ (Cr1(0) \Br0(0))

≥ rn1R
−n
∫
U

ζ2
R,qdµ− CnRn

(
β2 + αβ

)
− Cnqγ2Rn.

Here the first step holds because sptζr1,q ⊂ Cr1(0). The bounds (7.5) and
(7.11) yield R−n

∫
U
ζ2
R,qdµ ≥ $q − (1− (2q)−1)ωn and β2 +αβ + γ2 ≤ Cnq

2δ,
so we can estimate

µ (Br0(0)) ≥ rn1
(
$q − (1− (2q)−1)ωn

)
− CnRnq3ωnδ.

Using r1 := (1− q−12−n−8)r0 and R := 9r0 we obtain

µ (Br0(0)) ≥ rn0
[
(1− q−12−n−8)n

(
$q − ωn + (2q)−1ωn

)
− Cnq3ωnδ

]
≥
[
(1− q−12−8)(−q−12−8 + (2q)−1)− Cnq3δ

]
ωnr

n
0

≥
[
2−3q−1 − Cnq3δ

]
ωnr

n
0 ≥ 2−4q−1ωnr

n
0 ,

where we had to choose δ small enough depending on q. Here we also used
$q ≥ (1 − q−12−8)ωn. So we verified (7.12) for λ ≤ 2−4q−1. For the upper
bound we can analogously estimate with (7.14)

µ (B3r0(0)) ≤
∫
U

ζ2
r2,q
dµ ≤ rn2R

−n
∫
U

ζ2
R,qdµ+ CnR

n
(
β2 + αβ

)
.

Here the first step holds because (1 − q−12−n−8)r2 ≥ 3r0, so sptζ2
r2,q
⊃ C3r0 .

Then the bounds (7.5) and (7.11) yield R−n
∫
U
ζ2
R,qdµ ≤ $q + (1− (2q)−1)ωn

and β2 + αβ + γ2 ≤ Cnq
2δ, so we can estimate

µ (B3r0(0)) ≤ rn2
(
$q + (1− (2q)−1)ωn

)
+ CnR

nq2ωnδ.

Using r2 := 3(1 + q−12−n−4)r0 and R := 9r0 we obtain

µ (B3r0(0)) ≤ (3r0)n
[
(1 + q−12−n−4)n($q + ωn − (2q)−1ωn) + Cnq

2δωn
]

≤ (3r0)nωn
[
(1 + q−12−4)(2− (2q)−1) + Cnq

2δ
]

≤ (2− 2−2q−1 + Cnq
2δ)ωn(3r0)n ≤ (2− 2−3q−1)ωn(3r0)n,
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where we had to choose δ small enough depending on q. Here we also needed
$q ≤ ωn. So (7.12) and (7.13) hold for λ = 2−4p−1. To apply Theorem 2.9
with α, β and γ we see that in view of sptµ ∩ B7r0(0) ⊂ U equations (7.4),
(7.7) (7.9) imply (2.18), (2.19) and (2.20). For Q large enough also γ ≤ γ0

is verified, such that we can use Theorem 2.9 in the ball Br0(0). This yields
the existence of a Lipschitz function f : Bn

r0
(0)→ Rk with lip(f) ≤ 1 and

µ
(
Bn
r0

(0)×Bk
r0

(0) \X
)

+ L n
(
Bn
r0

(0) \ Y
)
≤ Cnr

n
0

(
α

2n
n−2 δn≥3 + β2 + γ2

)
,

where X =
{
x ∈ Cr0(0) : ∃ŷ ∈ Bn

r0
(0), (ŷ, f(ŷ)) = x,Θ (µ, x) = 1

}
and Y =

πRn (X). Now we can approximate each integral on the varifold by the inte-
gral on the graph of f . In particular for ζ2

r1,q
we can estimate∣∣∣∣∣

∫
Br0 (0)

ζ2
r1,q
dµ−

∫
Bnr0 (0)

ζ2
r1,q

(ŷ, 0)dL n(ŷ)

∣∣∣∣∣
≤ Cn

(
R

9

)n (
α

2n
n−2 δn≥3 + β2 + γ2

)
,

see Remark 2.11. By definition of $q we have rn$q =
∫
ζ2
r,qdL

n for all
r ∈ (0, R), so∣∣∣∣∣r−n1

∫
Br0 (0)

ζ2
r1,q
dµ−$q

∣∣∣∣∣ ≤ Cn

(
α

2n
n−2 δn≥3 + β2 + γ2

)
, (7.17)

where we used r1 ≤ r0. We want such an estimate for U instead of Br0(0).
Use Br0(0) ⊂ {ζr1,q = 1} ⊂ sptζr1,q ⊂ Cr1(0) to see∫

Br0 (0)

ζ2
r1,q
dµ ≤

∫
U

ζ2
r1,q
dµ ≤

∫
Br0 (0)

ζ2
r1,q
dµ+ µ (Cr1(0) \Br0(0)) .

Then with (7.17), (7.16) and r1 := (1− q−12−n−8)9−1R we obtain∣∣∣∣r−n1

∫
U

ζ2
r1,q
dµ−$q

∣∣∣∣ ≤ Cnq
(
α

2n
n−2 δn≥3 + β2 + γ2

)
. (7.18)

We want (7.18) for R instead of r1. By (7.14) with r1 we can estimate∣∣∣∣R−n ∫
U

ζ2
R,qdµ− r−n1

∫
U

ζ2
r1,q
dµ

∣∣∣∣ ≤ 4nr−n1 Rn
(
αβ + β2

)
≤ Cn

(
αβ + β2

)
,

where we used r1 := (1− q−12−n−8)9−1R. Combining this with (7.18) yields

|E| =
∣∣∣∣R−n ∫

U

ζ2
R,qdµ−$q

∣∣∣∣ ≤ Cnq
(
α

2n
n−2 δn≥3 + αβ + β2 + γ2

)
.
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By the first inequality of (7.10) we have β ≤ Cnq(
√
αγ + γ), so we can

estimate αβ + β2 ≤ Cnq
2(αγ + γ2 + α

3
2γ

1
2 ) and arrive at

|E| ≤ Cnq
3 max

{
α

2n
n−2 δn≥3, α

3
2γ

1
2 , γ2

}
.

Assumption (7.5) yields the lower bound |E| ≥ Qγ2. So for Q large enough
depending on q we can rule out that the maximum is attained for γ2. Thus
we have

|E| ≤ Cnq
3 max

{
α

2n
n−2 δn≥3, α

3
2γ

1
2

}
and this inequality establishes the desired lower curvature bound (7.8) for δ
small depending on q, n, k.

Now we can use (7.8) to obtain a bound on the Brakke variation of ζ2
R,p.

Use that by Lemma 7.3

R−n+2B
(
U, µ, ζ2

R,q

)
≤ −α

2

2
+ C0q

4γ2 (7.19)

for a constant C0 ∈ (1,∞). We want to show that the last term in (7.19) is
smaller than α2

4
to bound the Brakke variation by −α2

4
from above.

By (7.5) we can estimate |E| ≥ Qγ2, so (7.8) yields

α2 ≥ δ

{
min {Qγ2, 1} if n ≤ 2,

min
{

(Qγ2)
n−2
n , Qγ2, 1

}
if n > 2.

By assumption we know Qγ2 ≤ Q−1 ≤ 1, so the 1 cannot be the minimum.
Also for n ≥ 3 we have n−2

n
≤ 1, thus (Qγ2)

n−2
n ≥ Qγ2, so for Q large enough

α2 ≥ δQγ2 ≥ 4C0q
4γ2,

where C0 is the constant from (7.19). Thus (7.19) combined with (7.8) implies

R−n+2B
(
U, µ, ζ2

R,q

)
≤ −α

2

4
≤ −δ

4

min
{
γ−

2
3 |E| 43 , 1

}
if n ≤ 2,

min
{
|E|n−2

n , γ−
2
3 |E| 43 , 1

}
if n > 2,

which establishes the result, if Q ≥ 4δ−1. Note that δ only depends on
q, n, k.

Now we can use this to derive a differential inequality for E. Solving this
inequality establishes bounds on µt(ζ

2
R,p) in a certain time interval. This is

done in the next proposition, which is a reformulation of Brakke’s popping
soap film lemma [B, 6.6].
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7.5 Proposition (Decreasing Area Ratio, [B, 6.6]). For every p ∈ [1,∞)
there exist P ∈ (1,∞) and γ0 ∈ (0, 1) such that for all R ∈ (0,∞), γ ∈ (0, γ0],
all t1, t2 ∈ R with t2−t1 > PR2 and every open subset U ⊂ Rn+k the following
holds: Let (µt)t∈[t1,t2] be a Brakke flow in U with⋃

t∈[t1,t2]

sptµt ∩ CR(0) ⊂⊂ U (7.20)

sup
t∈[t1,t2]

R−n−2

∫
U∩CR(0)

|πRk(x)|2dµt ≤γ2. (7.21)

Then

R−n
∫
U

ζ2
R,pdµt1 ≤ (2− p−1)ωn =⇒ R−n

∫
U

ζ2
R,pdµs1 ≤ $p + Pγ2 (7.22)

R−n
∫
U

ζ2
R,pdµt2 ≥ p−1ωn =⇒ R−n

∫
U

ζ2
R,pdµs2 ≥ $p − Pγ2 (7.23)

holds for all s1 ∈ [t1 + PR2, t2] and all s2 ∈ [t1, t2 − PR2].

Proof. For t ∈ [t1, t2] set

E(t) := R−n
∫
U

ζ2
R,pdµt −$p. (7.24)

By Lemma 7.4 applied with q = p there exists a Q depending on p such that

R−n+2B
(
U, µt, ζ

2
R,p

)
≤ −Q−1

min
{
γ−

2
3 |E(t)| 43 , 1

}
if n ≤ 2,

min
{
|E(t)|n−2

n , γ−
2
3 |E(t)| 43 , 1

}
if n > 2,

for all t ∈ [t1, t2] with Qγ2 ≤ |E(t)| ≤ (1 − (2p)−1)ωn. Note that we need
to choose γ0 ≤ Q−1 in order to apply Lemma 7.4. With the Brakke flow
inequality (3.1) we then have for all n ≥ 1

DE(t) = R−nD

(∫
U

ζ2
R,pdµt

)
≤ −Q−1R−2 min

{
|E(t)|

n−1
n , γ−

2
3 |E(t)|

4
3 , 1
} (7.25)

for all t ∈ [t1, t2] with Qγ2 ≤ |E(t)| ≤ (1 − (2p)−1)ωn. Here we used that

|E(t)|n−1
n ≤ |E(t)|n−2

n for |E(t)| ≤ 1 and when |E(t)| ≥ 1 the expression
|E(t)| cannot be the minimum. For the n ≤ 2 case we used that taking
a minimum over a larger set, only makes it smaller. Note that assumption
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(7.20) is necessary in order to apply (3.1). Inequality (7.25) implies that E(t)
is monotonically decreasing for certain t. Consider the set

V := [−(1− (2p)−1)ωn,−Qγ2] ∪ [Qγ2, (1− (2p)−1)ωn].

If E(t) is once smaller than v ∈ V it will stay below this value, i.e.

∃d1 ∈ [t1, t2] : E(d1) ≤ v =⇒ E(t) ≤ v ∀t ∈ [d1, t2], (7.26)

∃d2 ∈ [t1, t2] : E(d2) > v =⇒ E(t) > v ∀t ∈ [t1, d2] (7.27)

for all v ∈ V . To see (7.26) let v ∈ V , d1 ∈ [t1, t2] and consider the set
J := {d0 ∈ [d1, t2] : E(t) ≤ v ∀t ∈ [d1, d0]}. By Proposition 3.7.2 E(t)
cannot ”jump up” at any time t. Hence J is closed. Consider a d0 ∈ J . If
E(d0) < v we can use again Proposition 3.7.2 to find a δ ∈ (0, 1) such that
[d0, d0 + δ] ∩ [d1, t2] ⊂ J . If E(d0) = v use (7.25) to find such a δ. Thus J
is closed and open inside [d1, t2]. As [d1, t2] is connected this proves (7.26).
Then (7.26) implies (7.27) via a contra position argument.

For an interval I = [a, b] ⊂ [t1, t2] consider the properties:

Qγ2 ≤ E(t) ≤ (1− (2p)−1)ωn ∀t ∈ [a, b], (7.28)

−Qγ2 ≥ E(t) ≥ −(1− (2p)−1)ωn ∀t ∈ [a, b]. (7.29)

The proof is based on the following observation: There exists a P ∈ (1,∞)
such that for every I = [a, b] ⊂ [t1, t2] for which either (7.28) or (7.29) holds,
we can estimate

b− a ≤ PR2. (7.30)

To prove this let I = [a, b] ⊂ [t1, t2] be such that either (7.28) or (7.29) holds.
Then inequality (7.25) holds for all t ∈ I. In particular E is monotonically
decreasing and does not change sign on I. Let I1, I2, I3 ⊂ I be the parts,
where the min of (7.25) is 1, |E(t)|n−1

n or γ−
2
3 |E(t)| 43 respectively.

I1 :=
{
s ∈ I : 1 ≤ |E(s)| ≤ (1− (2p)−1)ωn

}
I2 :=

{
s ∈ I : γ

2n
3n+1 ≤ |E(s)| ≤ 1

}
I3 :=

{
s ∈ I : Qγ2 ≤ |E(s)| ≤ γ

2n
3n+1

}
.

By monotonicity of E the sets I1, I2, I3 are each intervals themselves with
I1 ∪ I2 ∪ I3 = I. We can solve the ODE inequality on each of this intervals
separately which will give an upper bound for b−a. For I1 = [a1, b1] estimate
by (7.25) and with Proposition A.19

E(b1)− E(a1) ≤
∫ b1

a1

DE(t)dt ≤ −Q−1(b1 − a1)R−2.
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Either (7.31) or (7.32) imply a bound of |E(b1)− E(a1)| by (1− (2p)−1)ωn,
so we obtain

b1 − a1 ≤ ωnQR
2. (7.31)

For I2 = [a2, b2] we will distinguish the cases where I satisfies (7.28) hence
E > 0 and where I satisfies (7.29) hence E < 0. By (7.25) with Propositions
A.19 and A.20 estimate for E > 0

E(b2)
1
n − E(a2)

1
n ≤

∫ b2

a2

D
(
E(t)

1
n

)
dt

≤ n−1

∫ b2

a2

E(t)
−n+1
n DE(t)dt ≤ −(nQ)−1(b2 − a2)R−2.

Here we used that for f(r) = r
1
n , r > 0 the derivative satisfies Df(r) > 0.

Analogously we can estimate for E < 0

(−E(b2))
1
n − (−E(a2))

1
n ≥

∫ b2

a2

D
(

(−E(t))
1
n

)
dt

≥ −n−1

∫ b2

a2

(−E(t))
−n+1
n DE(t)dt ≥ (nQ)−1(b2 − a2)R−2.

Here we used that for f(r) = (−r) 1
n , r < 0 the derivative satisfies Df(r) < 0.

In both cases we can estimate

b2 − a2 ≤ nQR2
∣∣∣|E(b2)|

1
n − |E(a2)|

1
n

∣∣∣ ≤ n
√
ωnnQR

2, (7.32)

where we used |E(t)| ≤ (1− (2p)−1)ωn for all t ∈ I.
For I3 = [a3, b3] we will again distinguish the cases where I satisfies

(7.28) hence E > 0 and where I satisfies (7.29) hence E < 0. By (7.25) with
Propositions A.19 and A.20 estimate for E > 0

E(b3)−
1
3 − E(a3)−

1
3 ≥

∫ b3

a3

D
(
E(t)−

1
3

)
dt

≥ −1

3

∫ b3

a3

E(t)−
4
3DE(t)dt ≥ (3Q)−1(b3 − a3)γ−

2
3R−2.

Here we used that for f(r) = r−
1
3 , r > 0 the derivative satisfies Df(r) < 0.

Analogously we can estimate for E < 0

(−E(b3))−
1
3 − (−E(a3))−

1
3 ≤

∫ b3

a3

D
(
E(t)−

1
3

)
dt

≤ 1

3

∫ b3

a3

E(t)−
4
3DE(t)dt ≤ −(3Q)−1(b3 − a3)γ−

2
3R−2.
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Here we used that for f(r) = (−r)− 1
3 , r < 0 the derivative satisfies Df(r) >

0. In both cases we can estimate

b3 − a3 ≤ 3QR2γ
2
3

∣∣∣|E(b3)|−
1
3 − |E(a3)|−

1
3

∣∣∣ ≤ 3nQ
2
3R2, (7.33)

where we used |E(t)| ≥ Qγ2 for all t ∈ I. Combining (7.31), (7.32) and (7.33)
we see b− a ≤ CnQR

2, thus we established (7.30) for some P depending on
Q which depended on p. Note that for larger P estimate (7.30) remains true.

Now we can use (7.30) to verify the statements (7.22) and (7.23). Suppose
R−n

∫
U
ζ2
R,pdµt1 ≤ (2−p−1)ωn, then with$p ≥ (1−p−12−8)ωn we can estimate

E(t1) = R−n
∫
U

ζ2
R,pdµt1 −$p ≤ (2− p−1 − 1 + p−12−8)ωn < (1− (2p)−1)ωn.

By (7.26) this yields E(t) ≤ (1− (2p)−1)ωn for all t ∈ [t1, t2]. Thus by (7.30)
in view of (7.28) there has to exist d1 ∈ [t1, t1 +PR2] such that E(d1) < Qγ2,
so by (7.26) we obtain E(t) ≤ Qγ2 for all [d1, t2]. As d1 ≤ t1 + PR2 and
by definition of E this verifies (7.22) for P ≥ Q. Suppose R−n

∫
U
ζ2
R,pdµt2 ≥

p−1ωn, then with $p ≤ ωn we can estimate

E(t2) = R−n
∫
U

ζ2
R,pdµt2 −$p ≥ p−1ωn − ωn > −(1− (2p)−1)ωn.

By (7.27) this yields E(t) ≥ −(1 − (2p)−1)ωn for all t ∈ [t1, t2]. Thus by
(7.30) in view of (7.29) there has to exist d2 ∈ [t2 − PR2, t2] such that
E(d2) > −Qγ2, so by (7.27) we obtain E(t) ≥ −Qγ2 for all [t1, d2]. As
d2 ≥ t2 − PR2 and by definition of E this verifies (7.23) for P ≥ Q.

In the slab setting this can be used to obtain a time interval, where the
flow is almost flat. This is the way in which Brakke uses the popping soap
film lemma in the proof of [B, 6.9].

7.6 Lemma. For every q ∈ [1,∞) there exists a Q ∈ (1,∞) such that, for all
K ∈ (1,∞) there exists a η0 ∈ (0, 1) such that for all ρ ∈ (0,∞), η ∈ (0, η0] ,
s1, s2 ∈ R with s2−s1 > 2QR2 and every open subset U ⊂ Rn+k the following
holds: Let (µt)t∈[s1,s2] be a Brakke flow in U with

sptµt ∩ Cρ(0) ⊂ {x ∈ Cρ(0), |πRk(x)| ≤ ηρ} ⊂⊂ U (7.34)

ρ−nµt (Cρ(0)) ≤ K (7.35)

for all t ∈ [s1, s2]. Suppose

ρ−n
∫
U

ζ2
ρ,qdµs1 ≤ (2− q−1)ωn , ρ−n

∫
U

ζ2
ρ,qdµs2 ≥ q−1ωn (7.36)
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Then for all s ∈ [s1 +QR2, s2 −QR2]∣∣∣∣ρ−n ∫
U

ζ2
ρ,qdµs −$p

∣∣∣∣ ≤ QKη2, (7.37)

ρ−n
∫ s+ρ2

s−ρ2

∫
U

| ~H|2ζ2
ρ,qdµt dt ≤ QKη2, (7.38)

ρ−n−2

∫ s+ρ2

s−ρ2

∫
U

|πTxµ − πRn|
2 ζ2

ρ,qdµt dt ≤ QKη2. (7.39)

Proof. For t ∈ [s1, s2] set

α2
t := ρ−n+2

∫
U

| ~H|2ζ2
ρ,qdµt (7.40)

β2
t := ρ−n

∫
U

|πTxµt − πRn|
2 ζ2

ρ,qdµt, (7.41)

where α is only defined for almost every t. We want to use Proposition 7.5.
The slab condition (7.34) and the cylindrical area ratio bound (7.35) directly
yield a bound for the height-excess, namely

ρ−n−2

∫
U∩Cρ(0)

|πRk(x)|2dµt(x) ≤ Kη2 (7.42)

for all t ∈ [s1, s2]. Proposition 7.5 with p = q, γ2 = Kη2, t1 = s1, t2 = s2 and
R = ρ yields P and γ0 depending on q such that∣∣∣∣ρ−n ∫

U

ζ2
ρ,qdµs −$p

∣∣∣∣ ≤ PKη2 (7.43)

for all s ∈ [s1+Pρ2, s2−Pρ2]. Here we used that (7.36) implies the validity of
the assumptions in the statements (7.22) and (7.23). Hence the conclusions
in (7.22) and (7.23) imply (7.43). Note that in order to use Proposition 7.5
we choose Q ≥ P = P (q) and Kη2 ≤ Kη2

0 ≤ γ2
0 for η0 small depending on K

and γ0 = γ0(q). Inequality (7.43) then directly implies (7.37).
To prove (7.38) we first note that by (7.43) we have

−2PKη2 ≤
(
ρ−n

∫
U

ζ2
ρ,qdµs+ρ2 − ρ−n

∫
U

ζ2
ρ,qdµs−ρ2

)
.

Then by (3.1) and Proposition A.19 we obtain

−2PKη2 ≤ ρ−n
∫ s+ρ2

s−ρ2

B(U, µt, ζ
2
ρ,q)dt (7.44)
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for all s ∈ [s1 + Pρ2 + ρ2, s2 − ρ2 − Pρ2]. Now by Lemma 7.3 with R = ρ,
γ2 = Kη2 and p = q combined with estimate (7.42) and in view of definition
(7.40) we have

ρ−n+2B(U, µt, ζ
2
ρ,q) ≤ −

α2
t

2
+ Cnq

4Kη2

for almost every t ∈ [s1, s2]. Combining this with (7.44) yields

−2PKη2 ≤ −1

2
ρ−2

∫ s+ρ2

s−ρ2

α2
tdt+ Cnq

4Mη2

for all s ∈ [s1 + (P + 1)ρ2, s2 − (P + 1)ρ2]. Thus we obtain

ρ−2

∫ s+ρ2

s−ρ2

α2
tdt ≤ Cn(P + q4)Kη2 (7.45)

for all s ∈ [s1 + (P + 1)ρ2, s2 − (P + 1)ρ2]. In view of (7.40) this implies
(7.38) for Q large enough depending on q. Note that P only depends on q
and constants.

Now as usual, bounds on mean curvature-excess and on height imply a
bound on tilt-excess. Using Lemma A.13 with f = g = h = ζρ,q yields

β2
t = ρ−nβ2

g ≤ Cn

(
αt
√
Kη + ρ−n

∫
U

|πRk(x)|2|∇µtζρ,q|2dµt(x)

)
for almost every t ∈ [s1, s2], where we used (7.42) to estimate γh ≤ ρn+2Kη2

and we used α2
f = ρn−2α2

t . Then again by (7.42) and using |Dζρ,q| ≤ qρ−1σ1

as well as Young’s inequality we obtain

β2
t ≤ Cn

(
α2
t +Kq2η2

)
for almost every t ∈ [s1, s2]. Thus integrating over time we can use (7.45) to
obtain

ρ−2

∫ s+ρ2

s−ρ2

β2
t dt ≤ Cn

(
P + q4

)
Kη2

for all s ∈ [s1 + (P + 1)ρ2, s2 − (P + 1)ρ2]. In view of (7.41) this verifies
(7.39) for Q large enough depending on q. Note again that P only depends
on q and constants.

Now combine this with the cylindrical growth lemma 2.8, to obtain nice
density ratio estimates for smaller radii as well. This is the form in which
Brakke’s popping soap film lemma enters the calculations in [B, 6.9], although
it is never formulated as an own statement.
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7.7 Proposition (Local Flatness, [B, 6.9], [KT, 5.7]). For every λ ∈ (0, 1]
there exists a Λ ∈ (1,∞) such that, for every τ ∈ (0, 1] and every M ∈ [1,∞)
there exists a h0 ∈ (0, 1) such that for all h ∈ (0, h0] ,R ∈ (0,∞), y0 ∈ Rn+k

t1, t2 ∈ R with t2− t1 > 2ΛR2 and every open subset U ⊂ Rn+k the following
holds: Let (µt)t∈[t1,t2] be a Brakke flow in U with

sptµt ∩ C(1+λ)R(y0) ⊂
{
x ∈ C(1+λ)R(y0), |πRk(x− y0)| ≤ hR

}
⊂⊂ U, (7.46)

R−nµt
(
C(1+λ)R(y0)

)
≤M. (7.47)

for all t ∈ [t1, t2]. Suppose

R−nµt1
(
C(1+λ)R(y0)

)
≤ (2− λ)ωn , R−nµt2 (CR(y0)) ≥ λωn. (7.48)

Then for all s ∈ [t1 + ΛR2, t2 − ΛR2] and every r ∈ [τR,R]∣∣r−nµt (Cr(y0))− ωn
∣∣ ≤ λωn, (7.49)

R−n
∫ s+R2

s−R2

∫
CR(y0)

| ~H|2dµt dt ≤ ΛMh2, (7.50)

R−n−2

∫ s+R2

s−R2

∫
CR(y0)

|πTxµ − πRn|
2 dµt dt ≤ ΛMh2. (7.51)

Proof. We may assume y0 = 0. For given λ ∈ (0, 1] and R ∈ (0,∞) set
q := 2nλ−1 and R0 := (1 + λ)R and for t ∈ [t1, t2] set

α(t)2 := R−n+2
0

∫
U

| ~H|2ζ2
R0,q

dµt, (7.52)

β(t)2 := R−n0

∫
U

|πTxµt − πRn |
2 ζ2

R0,q
dµt, (7.53)

where α is only defined for almost every t. The idea is to use Lemma 7.6 with
ρ = R0 to obtain plane-like area ratio for the flow inside CR0 . By Lemma 2.8
these area ratios can be transferred to the smaller cylinder Cr but they may
become worse. Using Lemma 7.6 again but this time with ρ = r we obtain
plane-like area ratios for Cr. By choice of q and Lemma 7.2.1 we have

{ζ(1+2−n−1λ)r0,q = 1} ⊃ C(1−q−12−n−8)(1+2−n−1λ)r0(0) ⊃ Cr0(0) (7.54)

for all r0 ∈ (0,∞), where we calculated

(1− q−12−n−8)(1 + 2−n−1λ) = (1− 2−2n−8λ)(1 + 2−n−1λ) ≥ 1,

as q := 2nλ−1
1 . In particular for r0 = R we obtain

CR0(0) ⊃ sptζR0,q ⊃ {ζR0,q = 1} ⊃ CR(0), (7.55)
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where we used R0 = (1 + λ)R ≥ (1 + 2−n−1λ)R
We want to apply Lemma 7.6 with s1 = t1, s2 = t2, K = M , ρ = R0

and η = h. We immediately see that (7.46) implies (7.34) and (7.47) implies
(7.35). By (7.48), q := 2nλ−1 and λ ≤ 1 we can estimate

R−n0

∫
U

ζ2
R0,q

dµt1 ≤ R−nµt1 (CR0(0)) ≤ (2− λ)ωn = (2− 2−nq−1)ωn,

R−n0

∫
U

ζ2
R0,q

dµt2 ≥ (1 + λ)−nR−nµt2 (CR(0)) ≥ 2−nλωn = q−1ωn

which verifies (7.36). Here we had to use (7.55) for the first estimate in the
second line. To apply Lemma 7.6 as above we also have to choose h0 ≤ η0

and Λ ≥ (1 + λ)2Q, where Q ∈ (1,∞) depends on q and η0 depends on M
and q. Note that q is determined by λ. Lemma 7.6 then yields∣∣∣∣R−n0

∫
U

ζ2
R0,q

dµs −$q

∣∣∣∣ ≤ $q

2
(7.56)

and

R−2
0

∫ s+R2
0

s−R2
0

α(t)2dt ≤ QMh2, R−2
0

∫ s+R2
0

s−R2
0

β(t)2dt ≤ QMh2 (7.57)

for all s ∈ [t1 + QR2
0, t2 − QR2

0]. Note that by t2 − t1 ≥ 2Λ ≥ 2Q the time
interval is non-empty. To obtain (7.56) we estimated QMh2 ≤ $q

2
, as h ≤ h0

for h0 small depending on λ and M . In view of definitions (7.52) and (7.53),
as R ≤ R0 ≤ 2R and by (7.55) the inequalities in (7.57) already verify (7.50)
and (7.51) for Λ ≥ 2n+2Q.

Next we want to use Lemma 2.8.2 at times where mean curvature- and
tilt-excess are small. By (7.57) we have∫ s+R2

0

s−R2
0

(
α(t)2 + β(t)2

)
dt ≤ QMh2R2

0

for all s ∈ [t1 + QR2
0, t2 − QR2

0]. In particular for Λ ≥ (Q + 1)(1 + λ)2 this
holds for s = t1 + (Q+ 1)R2

0 and s = t2 − (Q+ 1)R2
0, so we can find

a1 ∈
(
t1 +QR2

0, t1 + (Q+ 2)R2
0

)
,

a2 ∈
(
t2 − (Q+ 2)R2

0, t2 −QR2
0

) (7.58)

with

α(ai)
2 + β(ai)

2 ≤ 4QMh2, i ∈ {1, 2}. (7.59)
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Now for the varifolds µai , i ∈ {1, 2} use Lemma 2.8.2 with R2 = R0, R1 = r0

and Φρ = ζρ,q to obtain∣∣∣∣R−n0

∫
U

ζ2
R0,p

dµai − r−n0

∫
U

ζ2
r0,p
dµai

∣∣∣∣
≤ r−n0 Rn

0

((
n log

(
R0

r0

)
+ 2

)
β(ai)

2 +
R0 − r0

R0

α(ai)β(ai)

)
for all r0 ∈ (0, R0), t ∈ [t1, t2], i ∈ {1, 2}. Here we had to use that as
R2 = R0 = (1 + λ)R we see that (7.46) implies (2.5). Thus we can estimate
with (7.59)∣∣∣∣R−n0

∫
U

ζ2
R0,p

dµai − r−n0

∫
U

ζ2
r0,p
dµai

∣∣∣∣ ≤ Cnr
−n−1
0 Rn+1QMh2 (7.60)

for all r0 ∈ (0, R0), t ∈ [t1, t2] i ∈ {1, 2}. Here we used R0 ≤ 2R, α(ai)β(ai) ≤
α(ai)

2 + β(ai)
2, and we estimated log

(
R0

r0

)
≤ r−1

0 R0. Now use (7.60) with

r0 = r ∈ [τR,R] and r0 = r2 := (1 + 2−n−1λ)r at times a1, a2 and combine
this with (7.56) to obtain

r−n
∫
U

ζ2
r,qdµa1 ≤

3

2
$q + Cnτ

−n−1QMh2 ≤ 5

3
ωn, (7.61)

r−n
∫
U

ζ2
r,qdµa2 ≥

1

2
$q − Cnτ−n−1QMh2 ≥ 1

3
ωn, (7.62)

r−n2

∫
U

ζ2
r2,q
dµa1 ≤

3

2
$q + Cn(1 + 2−n−1λ)−n−1τ−n−1QMh2 ≤ 5

3
ωn, (7.63)

r−n2

∫
U

ζ2
r2,q
dµa2 ≥

1

2
$q − Cn(1 + 2−n−1λ)−n−1τ−n−1QMh2 ≥ 1

3
ωn, (7.64)

where we used r ≥ τR and we had to choose h0 small depending on Q,M, τ .
Note that Q depends on q which is determined by λ. Here we also used that
by (7.58) a1 and a2 are contained in [t1 +QR2

0, t2−QR2
0], which is necessary

for (7.56). Moreover we used 7
8
ωn ≤ ωq ≤ ωn.

Next we want to apply Lemma 7.6 in the smaller scale r0 ∈ {r, r2}. Our
assumptions (7.46) and (7.47) imply

sptµt ∩ Cr0(0) ⊂
{
x ∈ U, |πRk(x)| ≤ τ−1hr0

}
⊂⊂ U, (7.65)

r−n0 µt (Cr0(0)) ≤ τ−nM, (7.66)

for all t ∈ [a1, a2] for r0 ∈ {r, r2}, where we used r ≥ τR and 1 ≤ 1 + 2−n−1λ.
We want to apply Lemma 7.6 with s1 = a1, s2 = a2, K = τ−nM , η = τ−1h
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one time we will choose ρ = r and the second time ρ = r2. Statements (7.65)
and (7.66) imply (7.34) and (7.35) respectively. Estimates (7.61) and (7.62)
yield (7.36) for ρ = r, as q−1 ≤ 1

3
. Similarly estimates (7.63) and (7.64)

yield (7.36) for ρ = r2. We have to choose h0 ≤ τη0 to use η = τ−1h as
height bound, where η0 depends on τ , M and q. Note that η0 is different
from the one above because of the larger choice of K. By (7.58) we have
a2 − a1 ≥ t2 − t1 − 2(Q+ 2)R2

0 ≥ (Λ− 2(Q+ 2))R2
0, so for Λ ≥ 2(Q+ 3) the

time interval is large enough. Then by Lemma 7.6 we obtain∣∣∣∣r−n ∫
U

ζ2
r,qdµs −$q

∣∣∣∣ ≤ τ−n−2QMh2 (7.67)∣∣∣∣r−n2

∫
U

ζ2
r2,q
dµs −$q

∣∣∣∣ ≤ τ−n−2QMh2. (7.68)

for all s ∈ [a1+QR2
0, a2−QR2

0]. Actually we would get different time intervals
but we coarsely estimated r and r2 by R0. Note that we applied Lemma 7.6
with the same q as above, so Q is the same as before. By (7.67) we can now
estimate for r

r−nµs (Cr(0)) ≥ r−n
∫
U

ζ2
r,qdµs ≥ $q − τ−n−2QMh2

≥ (1− q−12−8)ωn − τ−n−2QMh2 ≥ (1− λ)ωn

(7.69)

for all s ∈ [a1 + QR2
0, a2 − QR2

0], where we used q = 2nλ−1, Lemma 7.2.4
and h ≤ h0 for h0 small depending on λ, τ,Q,M . Using (7.54) with r0 = r
we have {ζr2,p = 1} ⊃ Cr(0), as r2 = (1 + 2−n−1λ)r. Then by (7.68) we can
estimate

r−nµs (Cr(0)) ≤ (1 + 2−n−1λ)nr−n2

∫
U

ζ2
r2,q
dµs

≤ (1 + 2−1λ)
(
$q + τ−n−2QMh2

)
≤ (1 + λ)ωn

(7.70)

for all s ∈ [a1 + QR2
0, a2 −QR2

0], where we used $q ≤ ωn and h ≤ h0 for h0

small depending on λ, τ,Q,M .
Inequalities (7.69) and (7.70) then imply (7.49) for all s ∈ [a1 +QR2

0, a2−
QR2

0]. By (7.58) we see that [a1 + QR2
0, a2 − QR2

0] ⊃ [t1 + 2(Q + 1)R2
0, t2 −

2(Q + 1)R2
0], so as R0 = (1 + λ)R, we can choose Λ ≥ 2(Q + 1)(1 + λ)2 to

establish the result. Note that Q depends on q which is determined by λ.

In the above setting the bounds in (7.48) remain valid for points y ∈
Bλ

2
(y0) in slightly weaker form, which is shown in the next lemma.
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7.8 Lemma. For every λ1 ∈ (0, 1] there exists a Λ1 ∈ (1,∞) such that, for
every M ∈ [1,∞) there exists a η1 ∈ (0, 1) such that for all R0 ∈ (0,∞),
η ∈ [0, η1], t1, t2 ∈ Rn+k with t2 − t1 > 2Λ1R

2
0 the following holds: Let

(µt)t∈[t1,t2] be a Brakke flow in B(1+2λ1)R0(0) with

sptµt ⊂
{
x ∈ B(1+2λ1)R0(0), |πRk(x)| ≤ ηR0

}
, (7.71)

R−n0 µt
(
B(1+2λ1)R0(0)

)
≤M (7.72)

for all t ∈ [t1, t2] and

R−n0 µt1
(
B(1+2λ1)R0(0)

)
≤ (2− λ1)ωn , R−n0 µt2 (BR0(0)) ≥ λ1ωn. (7.73)

Set ρ0 := 2−2R0, then for all y ∈ Bn
λ1R0

(0)× {0}k the estimates

ρ−n0 µt
(
B(1+2−n−2λ1)ρ0

(y)
)
≤ 3

2
ωn , ρ−n0 µt (Bρ0(y)) ≥ 1

2
ωn (7.74)

hold for all t ∈ [t1 + Λ1R
2
0, t2 − Λ1R

2
0].

Proof. We want to apply Proposition 7.7 with R =
(
1 + λ1

4

)
R0. For given

λ1 ∈ (0, 1] fix an arbitrary y ∈ Bn
λ1R

(0)× {0}k. As η ≤ η1 for η1 < 2−1λ1 we
see by (7.71)

(sptµt ∩ C(1+
λ1
2 )R0

(y)) ⊂ (sptµt ∩ C(1+ 3
2
λ1)R0

(0)) ⊂⊂ B(1+2λ1)R0(0)

for all t ∈ [t1, t2]. Now estimate

(1 + 2−n−4λ1)

(
1 +

λ1

4

)
≤ 1 +

λ1

4
+ 2−n−3λ1 ≤ 1 +

λ1

2
.

Then for R :=
(
1 + λ1

4

)
R0 we have

sptµt ∩ C(1+2−n−4λ1)R(y) ⊂⊂ B(1+2λ1)R0(0) (7.75)

for all t ∈ [t1, t2]. In view of (7.75) we can use (7.73) to estimate

R−nµt1
(
C(1+2−n−4λ1)R(y)

)
≤
(

1 +
λ1

4

)−n
R−n0 µt1

(
B(1+2λ1)R0(0)

)
≤ (2− λ1)ωn ≤ (2− 2−n−4λ1)ωn.

Also by (7.73) we have

R−nµt2 (CR(y)) ≥
(

1 +
λ1

4

)−n
R−n0 µt1 (BR0(0)) ≥ 2−nλ1ωn ≥ 2−n−4λ1ωn
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where we used R ≥ R0 and λ1 ≤ 1. This allows us to apply Proposition 7.7
with U = B(1+2λ1)R0(0), λ := 2−n−4λ1, h = η, R :=

(
1 + λ1

4

)
R0, τ = 1

8
and

y0 = y. As R ≥ R0 we have ηR ≥ ηR0, so in view of (7.75) assumption
(7.71) implies (7.46). Proposition 7.7 then yields a Λ depending on λ1 and a
h0 depending on M and λ1 such that, if η1 ≤ h0 we have

|r−nµt (Br(y))− ωn| ≤ 2−n−4λ1ωn (7.76)

for all r ∈ (2−3R,R) and all t ∈ [t1 + Λ1R
2, t2 − Λ1R

2]. Here we chose
Λ1 ≥ 4Λ. Note that then, as 2R0 ≥ R

[t1 + ΛR2, t2 − ΛR2] ⊃ [t1 + Λ1R
2
0, t2 − Λ1R

2
0].

Now consider ρ0 = 2−2R0. As R = (1 + λ1

4
)R0 and λ1 ∈ (0, 1] we see

ρ0 ∈ (2−3R,R). Using (7.76) with r = ρ0 we obtain

ρ−n0 µt (Bρ0(y)) ≥ (1− 2−n−4λ1)ωn ≥
1

2
ωn

for all t ∈ [t1 + ΛR2, t2 − ΛR2], where we used λ1 ≤ 1. Also we have

R

8
≤ R0

4
≤ (1 + 2−n−2λ1)ρ0 ≤ (1 + 2−2λ1)R0 = R

as λ1 ≤ 1, ρ0 = 2−2R0 and R = (1 + λ1

4
)R0. Thus we can use (7.76) with

r = (1 + 2−n−2λ1)ρ0 to obtain

ρ−n0 µt
(
B(1+2−n−2λ1)ρ0

(y)
)

= (1 + 2−n−2λ1)n
(
(1 + 2−n−2λ1)ρ0

)−n
µt
(
B(1+2−n−2λ1)ρ0

(y)
)

≤ (1 + 2−2λ1)(1 + 2−n−4λ1)ωn ≤ (1 + 2−2)(1 + 2−4)ωn ≤
3

2
ωn

for all t ∈ [t1 + ΛR2, t2 − ΛR2], where we used λ1 ≤ 1. This establishes the
result.
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8 Local Regularity

In this section we establish Theorem 8.4, which is our version of Brakke’s
local regularity theorem [B, 6.10]. This result states that, if a Brakke flow
in a suitable region is contained in a narrow enough slab and its area ratios
are controlled by certain bounds, then in a smaller region it is actually a
smooth graphical mean curvature flow. All our later results like Theorem 9.7
or Theorem 11.7 will use this fact in some way. The proof of Theorem 8.4
is based on an iteration argument stated in Lemma 8.1, which is based on
[B, 6.9]. Note that the original proof in [B, 6.9] contains a serious gap in the
usage of the clearing out lemma in order to obtain a supremum bound on the
height. This gap we have fixed in section 5. We also give an alternative proof
replacing the height estimate from section 5 by Corollary 6.8 from section 6.
Besides this the overall strategy is very similar as in [B]. There also exists a
new proof of local regularity, using very different techniques, see [KT].

The key to proofing local regularity is the following iteration lemma. It
states that under certain conditions, if a Brakke flow in some region for a
large enough time is contained in a narrow slab with respect to Rn then we
can find a subspace T such that in a smaller region for a smaller time interval
the flow is in a more narrow slab with respect to T .

8.1 Lemma (Iteration Lemma, [B, 6.9]). For every λ0 ∈ (0, 2−n−5] there
exists a Λ0 ∈ (1,∞) such that, for every ε ∈ (0, 1] there exists a δ0 ∈ (0, 1)
such that, for every δ ∈ (0, δ0] there exists a η0 ∈ (0, 1) such that, for all
R0 ∈ (0,∞) and η ∈ [0, η0] the following holds: Let (µt)t∈[−Λ0R2

0,Λ0R2
0] be a

Brakke flow in B3R0(0) with

sptµt ⊂
{
x ∈ B3R0(0), |πRk(x)| ≤ ηR0

}
, (8.1)

R−n0 µt
(
B(1+λ0)R0(0)

)
≤ 3

2
ωn , R−n0 µt (BR0(0)) ≥ 1

2
ωn (8.2)

for all t ∈ [−Λ0R
2
0,Λ0R

2
0]. Then there exist an n-dimensional subspace T ⊂

Rn+k with |πT − πRn| ≤ δ−εη, and a point z ∈ {0}n × Rk with |z| ≤
√
kηR0

such that

sptµt ∩B16δR0(z) ⊂
{
x ∈ Rn+k, |π⊥T (x− z)| ≤ δ2−εηR0

}
(8.3)

(δR0)−nµt
(
B(1+2λ0)δR0(z)

)
≤ 5

4
ωn (8.4)

(δR0)−nµt
(
B(1−2λ0)δR0(z)

)
≥ 3

4
ωn (8.5)

for all t ∈ [−Λ0δ
2R2

0,Λ0δ
2R2

0].
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Proof. For given R0 ∈ (0,∞) and Λ0 set

ρ := 2−4R0,

r0 :=
√

2Λ0δR0.

For given t ∈ [−Λ0R
2
0,Λ0R

2
0] set

α2
t := R−n+2

0

∫
CR0

(0)

| ~H(x)|2dµt(x), (8.6)

β2
t := R−n0

∫
CR0

(0)

|πTxµ − πRn|
2 dµt(x). (8.7)

Note that αt is only defined for almost every t ∈ [−Λ0R
2
0,Λ0R

2
0].

By (8.1) and η ≤ η0 we can choose η0 small enough depending on δ such
that

sptµt ∩ C(1+2−1λ0)r(0) ⊂ sptµt ∩B(1+λ0)r(0) (8.8)

for all r ∈ [2−1δR0, R0] and all t ∈ [−Λ0R
2
0,Λ0R

2
0]. Using (8.8) with r = R0

combined with (8.1) and (8.2) implies

R−n−2
0

∫
CR0

(0)

|πRk(x)|2 dµt(x) ≤ 3

2
ωnη

2 (8.9)

for all t ∈ [−Λ0R
2
0,Λ0R

2
0]. First we use the Proposition 7.7 to obtain bounds

on mean cruvature- and tilt-excess, as well as area ratios close to ωn. In
particular this yields good Lipschitz approximations.

For r ∈ (0, R) we want to use Proposition 7.7 with U = B3R0(0), R = R0,
y0 = 0, λ = 2−1λ0, h = η, t1 = −Λ0R

2, t2 = Λ0R
2, M = 3

2
ωn and τ = 2−1δR0.

In view of (8.8), we see that (8.1) and (8.2) verify (7.46), (7.47) and (7.48).
Theorem 7.7 then yields a Λ depending on λ0 and a h0 depending on λ0 and
δ such that ∣∣r−nµs (Cr(0))− ωn

∣∣ ≤ 2−1λ0ωn, (8.10)

R−2
0

∫ s+R2
0

s−R2
0

(
α2
t + β2

t

)
dt ≤ 3

2
ωnΛ0η

2 (8.11)

for all r ∈ (2−1δR0, R0] and s ∈ [−2−1Λ0R
2
0, 2
−1Λ0R

2
0]. Here we chose η0 ≤ h0

and Λ0 ≥ 2Λ. Note that then h = η ≤ h0 and

[−Λ0R
2
0 + ΛR2

0,Λ0R
2
0 − ΛR2

0] ⊃ [−2−1Λ0R
2
0, 2
−1Λ0R

2
0].
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Now for some x ∈ {0}n × Rk ∩ B√kηR0
(0) we can use (8.10) to obtain

density ratios like in (8.4) and (8.5). As δ ≤ δ0 we have

[−Λ0δR
2
0,Λ0δR

2
0] ⊂ [−2−1Λ0R

2
0, 2
−1Λ0R

2
0] (8.12)

for δ0 ≤ 2−2. Set r1 := (1 + 2λ0)δR0 and r2 := (1− 3λ)(1 + λ0)−1δR0. Using
(8.10) with r = r1 we can estimate

(δR0)−nµs
(
B(1+2λ0)δR0(x)

)
≤ (1 + 2λ0)nr−n1 µs (Cr1(x))

≤ (1 + 2λ0)n(1 + λ0)ωn

for all x ∈ {0}n × Rk and all s ∈ [−2−1Λ0R
2
0, 2
−1Λ0R

2
0]. Now as λ0 ≤ 2−n−5,

we can calculate (1 + 2λ0)n(1 + λ0) ≤ 1 + 2n+3λ0 ≤ 1 + 2−2, to see

(δR0)−nµs
(
B(1+2λ0)δR0(x)

)
≤ 5

4
ωn (8.13)

for all x ∈ {0}n × Rk and all s ∈ [−2−1Λ0R
2
0, 2
−1Λ0R

2
0]. Using (8.10) with

r = r2 and (8.8) with r = r2 we can estimate

(δR0)−nµs
(
B(1−3λ0)δR0(0)

)
= (1− 3λ0)−n(1 + λ0)nr−n2 µs

(
B(1+λ0)r2(0)

)
≥ r−n2 µs (Cr2(0)) ≥ (1− λ0)ωn ≥

3

4
ωn

for all s ∈ [−2−1Λ0R
2
0, 2
−1Λ0R

2
0], where we also used λ0 ≤ 2−1. Now as

η ≤ η0 we have
√
kηR0 ≤ λ0δR0 for η0 small depending on λ0 and δ. Then

(δR0)−nµs
(
B(1−2λ0)δR0(x)

)
≥ (δR0)−nµs

(
B(1−3λ0)δR0(0)

)
≥ 3

4
ωn (8.14)

for all x ∈ B√kηR0
(0) and all s ∈ [−2−1Λ0R

2
0, 2
−1Λ0R

2
0].

Consider µs for s ∈ [−2−1Λ0R
2
0, 2
−1Λ0R

2
0]. We want to use Theorem 2.9

with R = 2ρ = R0

8
and l = 1. Inequality (8.10) implies (2.16) and (2.17)

for R = 2ρ. In view of B14ρ(0) ⊂ CR0(0) and definitions (8.6), (8.7) and
estimate (8.9), the estimates (2.18), (2.19) and (2.20) hold for α = Cnαs,
β = Cnβs and γ = Cnη. Using η ≤ η0 we can also achieve Cnη ≤ γ0 for
η0 small enough. Then for every s ∈ [−2−1Λ0R

2
0, 2
−1Λ0R

2
0] Theorem 2.9 and

Remark 2.10 yield the existence of a Lipschitz function fs : Bn
2ρ(0)→ Rk and

Fs(ŷ) := (ŷ, ft(ŷ)) such that

lip(fs) ≤ 1, sup |fs| ≤ ηR0 (8.15)

and such that we can estimate

µ (C2ρ(0) \Xs) + L n
(
Bn

2ρ(0) \ Yt
)
≤ Cnρ

nEs, (8.16)
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where for Ms := graph(fs)

Ys :=
{
ŷ ∈ Bn

2ρ(0) : y := Ft(ŷ) ∈ C2ρ(0) ∩ U, Θn (µs, y) = 1,

TyMs and Tyµs exist with TyMs = Tyµs
}
,

Xs := {x ∈ C2ρ(0) : ∃ŷ ∈ Y x = (ŷ, f(t, ŷ))} .
(8.17)

Here the error term Es is given by

Es =

(
α

2n
n−2
s δn≥3 + β2

s + η2

)
. (8.18)

Note that for αs ≤ 1, we have α
2n
n−2
s δn≥3 ≤ α2

s. In order to obtain the height
bound in (8.15), we had to cut-off the function f one would normally obtain
from Theorem 2.9 by setting

fs(ŷ) =


ηR0 if f(ŷ) > ηR0

f(ŷ) if |f(ŷ)| ≤ ηR0

−ηR0 if f(ŷ) < ηR0

for all ŷ ∈ Bn
2ρ(0). This does not increase the Lipschitz constant and in view

of (8.1) it does not change the sets Xs, Ys, so (8.16) remains valid. To obtain
(8.16), we also used (8.1), in order to see thatBn

2ρ(0)×Bk
2ρ(0)∩sptµs ⊂ C2ρ(0).

The Lipschitz approximation will be used to write an integral over µs as an
integral over Rn. For s ∈ [−2−1Λ0R

2
0, 2
−1Λ0R

2
0], r ≤ 2ρ and an L1-integrable

function
φ : Cr(0) ∩ [sptµs ∪ graph(fs)]→ R

we can use Remark 2.11 to estimate∣∣∣∣∫
Cr(0)

φ(x)dµs(x)−
∫
Bnr (0)

φ(Fs(x̂))dL n(x̂)

∣∣∣∣ ≤ CnR
n
0 sup |φ|Es, (8.19)

where sup |φ| is the essential supremum of |φ| over the set

Cr(0) ∩ [sptµs ∪ graph(fs)] .

Here we used Remark 2.11 with φ
∣∣
Cr(0)

and that by (8.1) we have Bn
r (0) ×

Bk
2ρ(0) ∩ sptµs = Cr(0) ∩ sptµs. Also we used 16ρ = R0.

For given ε ∈ (0, 1], δ ∈ (0, δ0] and N ∈ (1,∞) consider the parameters

p := δNR2
0,

q0 := δεR2
0,
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where N will be chosen large depending on n, k. To define suitable T and z,
we need to find a time s0 near −7Λ0δ

2R2
0−q0, where the Lipschitz approxima-

tion is actually good. As δ ≤ 1 and for Λ0 ≥ 8 we have q0 = δεR2
0 ≤ 2−3Λ0R

2
0.

Let δ0 ≤ 2−3 then 7Λ0δ
2R2

0 ≤ 2−3Λ0R
2
0, so

−7Λ0δ
2R2

0 − q0 ∈ [−2−2Λ0R
2
0, 2
−2Λ0R

2
0]. (8.20)

Then by inequality (8.11) and δ ≤ 1 there exists

s0 ∈
(
−(7Λ0 + 1)δ2R2

0 − q0,−7Λ0δ
2R2

0 − q0

)
(8.21)

with

α2
s0

+ β2
s0
≤ CnΛ0δ

−2η2. (8.22)

Statements (8.20), (8.21) and δ ≤ δ0 ≤ 2−3, Λ0 ≥ 1 imply

[s0,Λ0δ
2R2

0] ⊂ [−2−1Λ0R
2
0, 2
−1Λ0R

2
0], (8.23)

in particular a Lipschitz approximation exists for all t ∈ [s0,Λ0δ
2R2

0]. By
(8.22) and η ≤ η0 we have αs0 ≤ 1, for η0 small enough depending on δ and
Λ0, then

Es0 ≤ δ−3η2, (8.24)

where we also used δ ≤ δ0 and chose δ0 small depending on Λ0. Here Et is
the error term defined in (8.18). This lets us define T and z as follows: For
i ∈ {1, . . . , n}, j ∈ {1, . . . , k} and ŷ ∈ Rn set

tj(ŷ) :=
n∑
i=1

ŷitij, tij := −
∫
Bnρ (0)

fs0 · ej
∂Ψρ

∂xi
(q0, x̂)dL n(x̂), (8.25)

zn+j :=

∫
Bnρ (0)

fs0 · ejΨρ(q0, x̂)dL n(x̂). (8.26)

Then set T := {x̂+
∑k

j=1 tj(x̂)en+j, x̂ ∈ Rn} and z := (0, zn+1, . . . , zn+k). In

view of (8.23) there exists a Lipschitz function fs0 : Bn
2ρ(0) → Rk satisfying

(8.15) and (8.16). By choice of s0 the error term Es0 is small, which will let
us estimate |tij| and |zn+j|.

To estimate the tilt of T let i ∈ {1, . . . , n}, j ∈ {1, . . . , k}. By Lemma 4.9
with measure L n and P1 = 1, we can estimate using also (8.15)

|tij| ≤ ηR0

∫
Bnρ (0)

|DΨρ(q0, ŷ)|L n(ŷ)

≤ Cnη

(
R0

∫
Bnρ (0)

|DΨ(q0, ŷ)|L n(ŷ) +R−2
0 q0

)
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where we used 16ρ = R0 and ρ−2q0 = Cnδ
ε ≤ Cnδ

ε
0 ≤ κ1 for δ0 small enough

depending on ε. Also we estimated ζ ≤ 1. As DΨ(q0, ŷ) = (2q0)−1ŷΨ(q0, ŷ),
we can use Lemma 4.6 to estimate

|tij| ≤ Cnη
(
q
− 1

2
0 R0 +R−2

0 q0

)
≤ Cnδ

− ε
2η (8.27)

for all i ∈ {1, . . . , n}, j ∈ {1, . . . , k}, where we used q0 = δεR2
0 and δ ≤ 1.

To estimate the excess of T , we define ai = ei +
∑k

j=1 tijen+j for 1 ≤ i ≤ n.
Then we have T = span(ai)1≤i≤n and our bound for the |tij| yields |ai−ei| ≤
Cnδ

− ε
2η. Thus by Lemma A.10.2 with B = Rn we obtain

|πT − πRn| ≤ δ−εη, (8.28)

where we used δ ≤ δ0, so Cnδ
− ε

2 ≤ δ−ε for δ0 small enough depending on ε.
To estimate |z| let j ∈ {1, . . . , k}. As ζ ≤ 1 and

∫
Rn Ψ(q0, ŷ)L n(ŷ) = 1,

we can estimate using (8.15)

|zn+j| ≤ ηR0

∫
Bnρ (0)

Ψ(q0, ŷ)L n(ŷ) ≤ ηR0

for all j ∈ {1, . . . , k} and in view of ẑ = 0 this yields

|z| ≤
√
kηR0. (8.29)

Thus (8.25) and (8.26) define T and z that are close to Rn and 0 as supposed.
In particular we have z ∈ {0}n × Rk ∩ B√kηR0

(0), so in view of (8.12) the
estimates (8.13) and (8.14) imply (8.4) and (8.5).

The main part is now to show that T and z actually provide a smaller slab
containing the Brakke flow. We can either use the distance estimate from the
monotonicity section Corollary 6.8 or the improving height estimate from the
clearing out section Lemma 5.12, which will both require to estimate pretty
similar integrals.

1. With Corollary 6.8:
Fix an arbitrary j ∈ {1, . . . , k}. We want to use Corollary 6.8 with v :=
en+j −

∑n
i=1 tijei and x0 = y0 = z. Thus

|(x− z) · v| = Φ(x) := |xn+j − tj(x̂)− zn+j| (8.30)

for all x ∈ Rn+k, where we used ẑ = 0. Note that by (8.27), (8.29) and δ ≤ 1
we obtain that Φ satisfies the height bound

|Φ(x)| ≤ Cnδ
− ε

2ηR0
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for all x ∈ Rn with |xn+j| ≤ δ−
ε
2ηR0, so by (8.1) and (8.15)

|Φ(x)| ≤ Cnδ
− ε

2ηR0 (8.31)

for all x ∈ sptµt ∪ graph(ft) for all t ∈ [−2−1Λ0R
2
0, 2
−1Λ0R

2
0]. In view of

(8.30), Corollary 6.8 with t0 = Λ0δ
2R2

0 and r = r0 =
√

2Λ0δR0 yields

S := sup
[−Λ0δ2R2

0,Λ0δ2R2
0]

sup
sptµt∩B16δR0

(z)

Φ

≤ Cnr
−n−2
0

∫ Λ0δ2R2
0

−7Λ0δ2R2
0

∫
B4r0 (z)

Φdµt dt.
(8.32)

where we used Λ0 ≥ 27, so r0 ≥ 16δR0.
Our aim is to show that S is smaller then δ1−εηr0. To estimate the right

hand side of (8.32), we want to bring in our Lipschitz approximations. This
is only useful for times s where the error term Es can be estimated. We
obtain an L1-bound on Es, but only integrating over times where α ≤ 1. In
view of (8.20) we have

[−7Λ0δ
2R2

0,Λ0δ
2R2

0] ⊂ [−2−1Λ0R
2
0, 2
−1Λ0R

2
0], (8.33)

as δ ≤ 1 and q0 ≥ 0. Then we can use (8.11) to obtain∫ Λ0δ2R2
0

−7Λ0δ2R2
0

(
α2
t + β2

t

)
dt ≤ CnΛ0η

2R2
0. (8.34)

Here we also used that 8Λ0δR
2
0 ≤ 2R2

0 as δ ≤ δ0, for δ0 small depending on
Λ0. Set

Iα :=
{
t ∈ [−7Λ0δ

2R2
0,Λ0δ

2R2
0] : αt ≤ 1

}
, (8.35)

so for all t ∈ Iα we can estimate α
2n
n−2

t ≤ α2
t . This will allow us to bound Et

for t ∈ Iα. The Lipschitz approximations above live in the cylinder C2ρ(0),
so we want the balls B4r0(z) to be contained in this cylinder. As ρ = 2−4R0,
and δ ≤ δ0, for δ0 small depending on Λ0 we have 8

√
nΛ0δR0 ≤ 2−1ρ. Also

as |z| ≤
√
kηR0 and η ≤ η0, for η0 small depending on k, we have |z| ≤ 2−1ρ.

Thus we conclude

B4r0(z) ⊂ B8
√
nΛ0δR0

(z) ⊂ Bρ(0) ⊂ BR0(0), (8.36)

where we used that r0 =
√

2Λ0δR0. Here including the second ball looks a
bit out of place, but will be of use later. In view of (8.33) for all t ∈ Iα a
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Lipschitz approximation fs : Bn
2ρ(0)→ Rk satisfying (8.15) and (8.16) exists.

By (8.36) we can use these Lipschitz functions to describe the integral on

the right hand side of (8.32). Also by (8.35) we have α
2n
n−2

t ≤ α2
t for t ∈ Iα,

so the error term defined in (8.18), can be estimate with inequality (8.34),
which leads to ∫

Iα

Et dt ≤ CnΛ0η
2R2

0. (8.37)

Note that by (8.35) and r0 =
√

2Λ0δR0 we have

|Iα| ≤ 4r2
0 = 8Λδ2R2

0 ≤ R2
0, (8.38)

as δ ≤ δ0 for δ0 small depending on Λ0. By (8.34) and definition of Iα we
can estimate∣∣[−7Λ0δ

2R2
0,Λ0δ

2R2
0] \ Iα

∣∣ ≤ ∫
[−7Λ0δ2R2

0,Λ0δ2R2
0]\Iα

α2
tdt ≤ CnΛ0η

2R2
0.

Combined with (8.31) this yields∫ Λ0δ2R2
0

−7Λ0δ2R2
0

∫
B4r0 (z)

Φdµt dt−
∫
Iα

∫
B4r0 (z)

Φdµt dt

≤ CnΛ0δ
− ε

2η3R3
0 sup
t∈[−7Λ0δ2R2

0,Λ0δ2R2
0]

µt(B4r0(z)) ≤ CnΛ0δ
− ε

2η3Rn+3
0 ,

(8.39)

where we used (8.2) and (8.36), to estimate the measure of the ball. In view
of (8.31), Φ is bounded on both sptµt and graphft. Then by (8.19) and
ẑ = 0, we obtain∫

Iα

∫
C4r0 (z)

Φdµt dt−
∫
Iα

∫
Bn4r0

(0)

Φ(Ft(ŷ))dL n(ŷ) dt

≤
∫
Iα

Cnδ
− ε

2ηRn+1
0 Et dt ≤ CnΛ0δ

− ε
2η3Rn+3

0

(8.40)

where we used (8.37) to estimate Et. Here we also used 4r0 = 4
√

2Λ0δR0 ≤
2−3R0 = 2ρ, as δ ≤ δ0, for δ0 small depending on Λ0. Inserting (8.39) and
(8.40) into (8.32), we conclude

S ≤ Cnr
−n−2
0

∫
Iα

∫
Bn4r0

(0)

Φ(Ft(ŷ))dL n(ŷ) dt+ δ2−εηR0, (8.41)
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where we used Φ ≥ 0, r0 =
√

2Λ0δR0, ε ≥ 0, Λ0 ≥ 1, η ≤ η0 and η0 small
depending on δ and Λ0. For ŷ ∈ Bn

ρ (0) set

f jt (ŷ) := ft(ŷ) · ej.

Then by definition (8.30) we have

Φ(Ft(ŷ)) =
∣∣f jt (ŷ)− tj(ŷ)− zn+j

∣∣
and by the triangle inequality we can estimate for t ∈ Iα and ŷ ∈ Bn

ρ (0)

Φ(Ft(ŷ)) ≤ Φ1(t, ŷ) + Φ2(t, ŷ) + Φ3(t, ŷ) + Φ4(ŷ), (8.42)

where the Φi are defined by

Φ1(t, ŷ) :=

∣∣∣∣∣f jt (ŷ)−
∫
Bρ(ŷ)

f jt Ψρ(p, x̂− ŷ)dL n(x̂)

∣∣∣∣∣ (8.43)

Φ2(t, ŷ) :=

∣∣∣∣∣
∫
Bρ(ŷ)

f jt (ŷ)Ψρ(p, x̂− ŷ)dL n(x̂)

−
∫
Bρ(ŷ)

f js0(ŷ)Ψρ(p+ t− s0, x̂− ŷ)dL n(x̂)(x)

∣∣∣∣∣
(8.44)

Φ3(t, ŷ) :=

∣∣∣∣∣
∫
Bρ(ŷ)

f js0(ŷ)Ψρ(p+ t− s0, x̂− ŷ)dL n(x̂)

−
∫
Bρ(ŷ)

f js0Ψρ(q0, x̂− ŷ)dL n(x̂)

∣∣∣∣∣
(8.45)

Φ4(ŷ) :=

∣∣∣∣∣
∫
Bρ(ŷ)

f js0Ψρ(q0, x̂− ŷ)dL n(x̂)− tj(ŷ)− zn+j

∣∣∣∣∣ . (8.46)

In view of (8.41), in order to establish S ≤ δ2−εηR0, we can estimate the
space-time integrals over these Φi.

In order to estimate Φ1, we want to use that for small parameter the heat
kernel converges to the Dirac delta function, as we showed in Proposition
4.10.2. In view of (8.43), we can use Lemma 4.19 with g = f jt , r = ρ and
P = 3 to obtain∫

Bnρ (0)

Φ1(t, ŷ)dL n(ŷ)

≤ Cnp
1
2

∫
Bn2ρ(0)

|Df jt (x̂)|dL n(x̂) + (ρ−2p)3ηR0ρ
n

(8.47)
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for all t ∈ Iα, where we used that by p = δNR2
0 = 28δNρ2, we can estimate

ρ−2p ≤ 28δN0 , so for δ0 small we have ρ−2p ≤ κ. Also we used (8.15) to
estimate sup |f jt | ≤ ηR0. By (8.15) we also have lipft ≤ 1, so by Proposition
A.12.1 we can estimate

|Df jt (x̂)| ≤ Cn|πTFt(x̂)Mt − πRn|

for all x̂ ∈ Bn
2ρ(0), where Mt = graphft. So with (8.16) we can estimate∫

Bn2ρ(0)

|Df jt (x̂)|dL n(x̂) ≤ Cn

∫
Bn2ρ(0)∩Yt

|πTFt(x̂)Mt − πRn|dL n(x̂) + CnEtR
n
0 .

Then by the definition of Yt in (8.17) and as JF ≥ 1, we have∫
Bn2ρ(0)

|Df jt (x̂)|dL n(x̂) ≤ Cn

∫
Cn2ρ(0)∩Xt

|πTxµt − πRn|dµt(x) + CnEtR
n
0 .

Thus Hölder’s inequality and the definition of βt in (8.7) yield∫
Bn2ρ(0)

|Df jt (x̂)|dL n(x̂) ≤ CnβtR
n
0 + CnEtR

n
0 ,

where we used 16ρ = R0. Inserting this into (8.47) we obtain∫
Bnρ (0)

Φ1(t, ŷ)dL n(ŷ) ≤ Cnp
1
2 (βt + Et)R

n
0 + Cnp

3ηRn−5
0 (8.48)

for all t ∈ Iα. Then integrating in time yields∫
Iα

∫
Bnρ (0)

Φ1(t, ŷ)dL n(ŷ)dt ≤ Cnp
1
2

∫
Iα

(βt + Et)dtR
n
0 + Cnp

3η|Iα|Rn−5
0 ,

where we used 16ρ = R0. Use again Hölder’s inequality combined with (8.34),
(8.37) and (8.38) to estimate∫

Iα

∫
Bnρ (0)

Φ1(t, ŷ)dL n(ŷ)dt

≤ Cnp
1
2

(√
|Iα|

∫
Iα

β2
t dt+

∫
Iα

Etdt

)
Rn

0 + Cnp
3η|Iα|Rn−5

0

≤ CnΛ0p
1
2

(
η + η2

)
Rn+2

0 + Cnp
3ηRn−3

0 ≤ CnΛ0R
n+2
0 p

1
2η
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where we used p = δNR2
0 ≤ R2

0 as δ ≤ 1. Now use that p
1
2 = δ

N
2 R0 ≤ δn+6R0

for N ≥ 2n+ 12. Then we conclude

(δR0)−n−2

∫
Iα

∫
Bnρ (0)

Φ1(t, ŷ)dL n(ŷ)dt ≤ Cnδ
3ηR0, (8.49)

where we choose δ small depending on Λ0.
For Φ2 we can use the relation between Brakke flow and convolution of

the height function of our family of varifolds with the heat kernel. In view
of (8.21), p = δNR2

0, q0 = δεR2
0, δ ≤ δ0 and 16ρ = R0, we can estimate

p+ t− s0 ≤ p+ q0 + (8Λ0 + 1)δ2R2
0 ≤ Cn(δN + Λ0δ

2)R2
0 + q0

≤ 2q0 = 2δεR2
0 = 29δε0ρ

2 (8.50)

for all t ∈ (−∞,Λ0δ
2R2

0], for δ0 small enough depending on ε and Λ0. Note
that by (8.21) and (8.35), estimate (8.50) holds for t = s0 and all t ∈ Iα. By
definition of the heat kernel (see Definition 4.2) we can estimate

|Ψρ(p+ s− s0, ẑ)| ≤ Cnp
−n

2 (8.51)

for all ẑ ∈ Rn and all s ∈ [s0,∞). Then by (8.19) we can estimate∣∣∣∣ ∫
Cρ(y)

xn+jΨρ(p+ s− s0, x̂− ŷ)dµs(x)

−
∫
Bnρ (ŷ)

f js (x̂)Ψρ(p+ s− s0, x̂− ŷ)dL n(x̂)

∣∣∣∣
≤ Cnηp

−n
2Rn+1

0 Es ≤ Cnηδ
−n

2
NR0Es ≤ EsR0

(8.52)

for all s ∈ [s0,∞) and all y ∈ Cn
ρ (0), where we used (8.1), (8.15) and (8.51)

to estimate the sup in (8.19). Also we used p = δNR2
0 and η ≤ η0 for η0 small

depending on δ. By (8.21) and (8.35), we have t ∈ [s0,∞) for all t ∈ Iα. In
view of (8.44) we then can estimate using (8.52) for s = t and s = s0

Φ2(t, ŷ) ≤
∣∣∣∣ ∫

B3R0
(0)

xn+j(x̂)Ψρ(p, x̂− ŷ)dµt(x̂)

−
∫
B3R0

(0)

xn+j(x̂)Ψρ(p+ t− s0, x̂− ŷ)dµs0(x̂)

∣∣∣∣
+ (Et + Es0)R0

(8.53)

for all t ∈ Iα and ŷ ∈ Bn
ρ (0). Here we used that by (8.1), 16ρ = R0 and η ≤ 1

we have

Cρ(y) ∩ sptΨρ(p, · − ŷ) ∩ sptµt = B3R0(0) ∩ sptΨρ(p, · − ŷ) ∩ sptµt (8.54)
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for all y ∈ Rn+k and all t ∈ [−Λ0R
2
0,Λ0R

2
0]. Integrating (8.53) over ŷ, the

difference on the right hand side can be estimated using Lemma 4.18 with
V := B3R0(0), γ = 16η P0 = ε−1(n+ 5), r = ρ, t0 = s0 and q = t− s0. Doing
so we obtain∫

Bnρ (0)

Φ2(t, ŷ)dL n(y)

≤ Cnηρ

[
p−1Rn

0

∫ t

s0

β2
sds+ (ρ−2(p+ t− s0))

n+5
ε ρ−2

∫ t

s0

µs (C2ρ(0)) ds

+ sup
y∈Bnρ (0)

ρn
∣∣∣∣ ∫

B3R0
(0)

Ψρ(p, x̂− ŷ)dµt(x)− 1

∣∣∣∣
+ sup

y∈Bnρ (0)

ρn
∣∣∣∣ ∫

B3R0
(0)

Ψρ(p+ t− s0, x̂− ŷ)dµs0(x)− 1

∣∣∣∣
]

+ Cn(Et + Es0)Rn+1
0

(8.55)

for all t ∈ Iα, where we used the definition of βs in (8.7) and 2ρ ≤ R0 to
estimate the tilt term. Also we used that by (8.50) we have p + t − s0 ≤
Cnδ

ε ≤ κ0ρ
2 for δ0 small depending on ε and κ0. Note that by 16ρ = R0

and by choosing γ = 16η assumption (8.1) implies (4.28). By (8.23) we have
s0 ∈ [−2−1Λ0R

2
0, 2
−1Λ0R

2
0]. For t ∈ Iα we see by (8.21), (8.35) and q0 = δεR2

0

that t ∈ [s0, s0 +R2
0] for δ small depending on Λ0. Thus we can use (8.11) to

estimate

p−1Rn
0

∫ t

s0

β2
sds ≤ CnΛ0p

−1η2Rn+2
0 ≤ δn+5Rn

0 , (8.56)

for all t ∈ Iα, where we used p = δNR2
0 and η ≤ η0 and we chose η0 small

depending on δ, Λ0 and N . In view of (8.8), (8.2) and 16ρ = R0 we can
estimate µs (C2ρ(0)) ≤ CnR

n
0 . Combining this with (8.50) we obtain

(ρ−2(p+ t− s0))
n+5
ε ρ−2

∫ t

s0

µs (C2ρ(0)) ds

≤ Cn(ρ−2(p+ t− s0))
n+5
ε

+1Rn
0 ≤ Cnδ

n+5Rn
0

(8.57)

for all t ∈ Iα, where we used 16ρ = R0 and δ, ε ≤ 1. By (8.19) we can
estimate ∣∣∣∣∣

∫
Cρ(y)

Ψρ(p+ t− s, x̂− ŷ)dµs(x)− 1

∣∣∣∣∣
≤

∣∣∣∣∣
∫
Bnρ (ŷ)

Ψρ(p+ t− s, x̂− ŷ)dL n(x̂)− 1

∣∣∣∣∣+ Cnp
−n

2Rn
0Es
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for all s ∈ [−2−1Λ0R
2
0, 2
−1Λ0R

2
0], t ∈ [s,∞) and y ∈ Cn

ρ (0), where we used
(8.51) to estimate the sup in (8.19). By Proposition 4.10.3 with P = ε−1(n+
5) and x̂0 = ŷ this can be estimated by∣∣∣∣ ∫

Cρ(y)

Ψρ(p+ t− s, x̂− ŷ)dµs − 1

∣∣∣∣
≤
(
ρ−2(p+ t− s)

)n+5
ε + Cnp

−n
2Rn

0Es ≤ Cnδ
n+5 + η−1Es

for all t ∈ [s0,Λ0δR
2
0], s ∈ {t, s0} and all y ∈ Cn

ρ (0). Here we used that
p + t − s ≤ Cnδ

ερ2 ≤ κρ2, for δ0 small enough depending on ε and κ,
which follows by (8.50) for s = s0 and by p = δNR2

0 for s = t. Also we
used p = δNR2

0 and η ≤ η0 for η0 small depending on δ and N to estimate
Cnp

−n
2Rn

0 ≤ η−1. In particular for all t ∈ Iα we have∣∣∣∣ ∫
B3R0

(0)

Ψρ(p+ t− s0, x̂− ŷ)dµs0 − 1

∣∣∣∣ ≤ Cnδ
n+5 + η−1Es0 (8.58)∣∣∣∣ ∫

B3R0
(0)

Ψρ(p, x̂− ŷ)dµt − 1

∣∣∣∣ ≤ Cnδ
n+5 + η−1Et (8.59)

for all ŷ ∈ Bn
ρ (0), where we used that by (8.21) and (8.35) we have Iα ⊂

[s0,Λ0δ
2R2

0] and that by (8.54) integrating this function over B3R0(0) is the
same as integrating over Cρ((ŷ, 0)). Inserting (8.56), (8.57), (8.58) and (8.59)
into (8.55) we obtain∫

Bnρ (0)

Φ2(t, y)dL n(y) ≤ Cnηδ
n+5Rn+1

0 + Cn(Et + Es0)Rn+1
0 (8.60)

for all t ∈ Iα, where we used 16ρ = R0. The error term Es0 is small due to
(8.24) and integrating in time we can use (8.37) to estimate Et, thus we have∫

Iα

∫
Bnρ (0)

Φ2(t, ŷ)dL n(y)dt ≤ CnR
n+1
0

(
ηδn+5R2

0 +

∫
Iα

Etdt+ Es0R
2
0

)
≤ CnR

n+3
0

(
ηδn+5 + Λ0η

2 + δ−3η2
)
,

where we used |Iα| ≤ R2
0 by (8.38). Then as η ≤ η0 for η0 small depending

on δ and Λ0, we can conclude

(δR0)−n−2

∫
Iα

∫
Bnρ (0)

Φ2(t, ŷ)dL n(y)dt ≤ Cnδ
3ηR0. (8.61)

For Φ3 we want to use Lemma 4.7. To do so, we have to get rid of the
cut-off part of our heat kernel. First, in view of (8.45), we can use (8.15) to
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estimate

Φ3(t, ŷ) ≤ ηR0

∫
Bnρ (0)

|Ψρ(p+ t− s0, x̂− ŷ)−Ψρ(q0, x̂− ŷ)| dL n(x̂) (8.62)

for all t ∈ Iα and all ŷ ∈ Bn
ρ (0). Proposition 4.10.3 with P = 3ε−1 and x̂0 = ŷ

yields ∫
Bnρ (0)

|Ψ(q, x̂− ŷ)−Ψρ(q, x̂− ŷ)| dL n(x̂) ≤
(
ρ−2q

) 3
ε ≤ Cnδ

3

for all q ∈ (0, 2q0] and all ŷ ∈ Bn
ρ (0), where we used q0 = δεR2

0 ≤ Cnδ
ερ2, so

as δ ≤ δ0 we have ρ−2q ≤ κ for δ0 small enough depending on κ and ε. By
(8.50) we have p+ t− s0 ≤ 2q0, thus (8.62) becomes

Φ3(t, ŷ) ≤ ηR0

∫
Bnρ (0)

|Ψ(p+ t− s0, x̂− ŷ)−Ψ(q0, x̂− ŷ)| dL n(x̂)

+ Cnδ
3ηR0

for all t ∈ Iα and all ŷ ∈ Bn
ρ (0). Now we can use Lemma 4.7 with q = p+t−s0.

Note that by (8.21) and (8.35), we can estimate p + t − s0 > q0 for every
t ∈ Iα. Then with Lemma 4.7 we obtain

Φ3(t, ŷ) ≤
(
log
(
1 + q−1

0 (p+ t− s0 − q0)
)

+ Cnδ
3
)
ηR0

≤
(
q−1

0 (p+ t− s0 − q0) + Cnδ
3
)
ηR0

for all t ∈ Iα and all ŷ ∈ Bn
ρ (0). Now use (8.21) and (8.35), to estimate

p+ t− s0 − q0 ≤ CnΛ0δ
2R2

0 for all t ∈ Iα. Then as q0 = δεR2
0, we arrive at

Φ3(t, ŷ) ≤ CnΛ0δ
2−εηR0

for all t ∈ Iα and all ŷ ∈ Bn
ρ (0). By (8.38) we have |Iα| ≤ 4r2

0, thus we
conclude

r−n−2
0

∫
Iα

∫
Bn4r0

(0)

Φ3(t, ŷ)dL n(ŷ) dt ≤ CnΛ0δ
2−εηR0. (8.63)

Here we also used (8.36) to see that Bn
4r0

(0) ⊂ Bn
ρ (0).

For Φ4 we can use that µs0 becomes flat by convolution with the heat
kernel with high parameter. By definition of tj and zn+j (see (8.25) and
(8.26)) we have∫

Bnρ (ŷ)

f js0Ψρ(q0, x̂− ŷ)dL n(x̂)− tj(ŷ)− zn+j

=

∫
Bnρ (ŷ)

f js0 (Ψρ(q0, x̂− ŷ)−Ψρ(q0, x̂) + ŷ ·DΨρ(q0, x̂)) dL n(x̂)

(8.64)
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for all ŷ ∈ Bn
ρ (0). Due to Taylor’s expansion theorem the last integrand can

be estimated in terms of the second derivative

|Ψρ(q0, x̂− ŷ)−Ψρ(q0, x̂) + ŷ ·DΨρ(q0, x̂)|

≤

∣∣∣∣∣
∫ 1

0

(1− θ)

(
n∑

i,j=1

ŷiŷj
∂2Ψρ

∂xi∂xj
(q0, x̂− θŷ)

)
dθ

∣∣∣∣∣
≤ |ŷ|2

∫ 1

0

∣∣D2Ψρ(q0, x̂− θŷ)
∣∣ dθ.

Then in view of (8.46) we can use (8.64) and (8.15) to estimate

Φ4(q0, ŷ) ≤ ηR0|ŷ|2
∫
Bnρ (ŷ)

∫ 1

0

∣∣D2Ψρ(q0, x̂− θŷ)
∣∣ dθdL n(x̂) (8.65)

for all ŷ ∈ Bn
ρ (0). In order to estimate the second derivatives, we first get

rid of the cut-off part of our heat kernel. Use Lemma 4.9 with µ = L n and
P1 = 1 to obtain∫

Rn

∣∣D2Ψρ(q0, x̂− x̂0)
∣∣ dL n(x̂)

≤
∫
Bnρ (x̂0)

∣∣D2Ψ(q0, x̂− x̂0)
∣∣ dL n(x̂) + Cnq0ρ

−4

for all x̂0 ∈ Rn. Here we used that by q0 = 28δερ2, and δ ≤ δ0 we can
estimate ρ−2q0 ≤ κ1, for δ0 small enough depending on ε and κ1. Also we
used sptΨρ(q0, · − x̂0) ⊂ Bn

ρ (x̂0). Then we can differentiate the heat kernel
and use Lemma 4.6 to estimate∫

Rn

∣∣D2Ψρ(q0, x̂− x̂0)
∣∣ dL n(x̂)

≤
∫
Bnρ (x̂0)

(
(4q0)−2|x̂− x̂0|2 + q−1

0

)
Ψ(q0, x̂− x̂0)dL n(x̂) + Cnq0ρ

−4

≤ Cnq
−1
0 + Cnq0ρ

−4 ≤ Cnδ
−εR−2

0

for all x̂0 ∈ Rn, where we used q0 = δεR2
0 and δ ≤ 1. Inserting this into (8.65)

with x̂0 = θŷ we obtain

Φ4(q0, ŷ) ≤ CnηR
−1
0 |ŷ|2δ−ε (8.66)

for all ŷ ∈ Bn
ρ (0). For ŷ ∈ Bn

4r0
(0) we have |ŷ|2 ≤ CnΛ0δ

2R2
0, as r0 =√

2Λ0δR0. Then we can conclude

r−n−2
0

∫
Iα

∫
Bn4r0

(0)

Φ4(q0, ŷ)dL n(ŷ) dt ≤ CnΛ0δ
2−εηR0. (8.67)
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Here we used (8.36) to see that Bn
4r0

(0) ⊂ Bn
ρ (0) and also we used that by

(8.38) we have |Iα| ≤ 4r2
0.

In view of (8.42) we can insert (8.49),(8.61), (8.63)and (8.67) into (8.41)
to obtain

S ≤ CnΛ0δ
2−εηR0,

where we used Λ0 ≥ 1 and Bn
4r0

(0) ⊂ Bn
ρ (0), by (8.36). By (8.30) and (8.32)

this yields

sup
[−Λ0δ2R2

0,Λ0δ2R2
0]

sup
x∈sptµt∩B16δR0

(z)

|xn+j − tj(x̂)− zn+j| ≤ CnΛ0δ
2−εηR0

for every 1 ≤ j ≤ k. Note that by definition of T (see (8.25)), we have

|π⊥T (x)| = inf
v∈T
|x− v| = inf

ŵ∈Rn

∣∣∣∣∣x−
(
ŵ +

k∑
j=1

tj(ŵ)en+j

)∣∣∣∣∣
for all x ∈ Rn+k. Thus we can can estimate for all x ∈ sptµt ∩B16δR0(z) and
all t ∈ [−Λ0δ

2R2
0,Λ0δ

2R2
0]

|π⊥T (x− z)| ≤

∣∣∣∣∣x− z −
(
x̂+

k∑
j=1

tj(x̂)en+j

)∣∣∣∣∣
=

∣∣∣∣∣
k∑
j=1

(xn+j − tj(x̂)− zn+j) en+j

∣∣∣∣∣ ≤ CnΛ0δ
2−εηR0,

where we used ẑ = 0. As δ ≤ δ0 and δ0 small depending on ε and Λ0 we
conclude

|π⊥T (x− z)| ≤ δ2−2εηR0,

for all x ∈ sptµt ∩B16δR0(z) and all t ∈ [−Λ0δ
2R2

0,Λ0δ
2R2

0]. This establishes
(8.3) with ε replaced by 2ε, which completes the result. Next we give an
alternative method how to establish (8.3), which is closer to Brakke’s original
work.

2. With Lemma 5.14:
In this case we need the extra assumption that µt is a Brakke flow in
Bδεη−1R0

(0). Also (8.1) has to be changed to

sptµt ∩ C3R0(0) ⊂ {x ∈ C3R0(0), |πRk(x)| ≤ ηR0} (8.68)
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for all t ∈ [−Λ0R
2
0,Λ0R

2
0]. Note that these assumptions are only stronger and

all the previous statements remain true. It turns out that we have to choose
T and z a bit different, depending on a time t1 defined below:

Let δ0 ≤ 2−2, then 4δ2R2
0 ≤ 2−2R0, so −4Λ0δ

2R2
0 ∈ [−2−2Λ0R

2
0, 2
−2Λ0R

2
0].

Then by inequality (8.11) and δ ≤ 1 there exists t1 ∈ [−5Λ0δ
2R2

0,−3Λ0δ
2R2

0]
with

α2
t1

+ β2
t1
≤ CnΛ0δ

−2η2. (8.69)

For δ ≤ δ0 ≤ 2−2 we have t1 ∈ [−2−1Λ0R
2
0, 2
−1Λ0R

2
0], in particular a Lipschitz

approximation exists at time t1. By (8.69) we have αt1 ≤ 1, as η ≤ η0 for η0

small depending on δ and Λ0. Thus

Et1 ≤ δ−3η2, (8.70)

where we also used δ ≤ δ0 and chose δ0 small depending on Λ0. Here Et is
the error term defined in (8.18).

This lets us define T̄ and z̄ as follows: Set

q̄ := p+ t1 − s0.

For j ∈ {1, . . . , k} and ŷ ∈ Rn set

t̄j(ŷ) :=
n∑
i=1

ŷit̄ij, t̄ij := −
∫
Bnρ (0)

fs0 · ej
∂Ψρ

∂xi
(q̄, x̂)dL n(x̂), (8.71)

z̄n+j :=

∫
Bnρ (0)

fs0 · ejΨρ(q̄, x̂)dL n(x̂). (8.72)

Then set T̄ := {x̂ +
∑k

j=1 t̄j(x̂)en+j, x̂ ∈ Rn} and z̄ := (0, z̄n+1, . . . , z̄n+k).

Note that by (8.21), p = δNR2
0, q0 = δεR2

0 and δ ≤ δ0 for δ0 small depending
on Λ0 we have

q̄ ≤ (δN + (4Λ0 + 1)δ2)R2
0 + q0 ≤ 2q0

q̄ ≥ (δN + 2Λ0)R2
0 + q0 ≥ q0,

so basically all estimates above hold with q0 replaced by q̄, except some used
to estimate Φ3. In particular (8.27), (8.28), (8.29) and (8.36) still hold for T
and z replaced by T̄ and z̄.

To use Lemma 5.14 we need to verify a height bound in the tilted cylinder

C T̄√
32nΛ0δR0

(z̄) = {x ∈ Rn+k : |πT̄ (x− z̄)| ≤
√

32nΛ0δR0}. (8.73)
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For x ∈ Rn+k we can estimate

|x̂| = |x− πRk(x)| = |x− z̄ − πRk(x− z̄)|
= |πT̄ (x− z̄) + π⊥T̄ (x− z̄)− πRk(x− z̄)|
≤
∣∣π⊥T̄ − πRk∣∣ |x− z̄|+ |πT̄ (x− z̄)|

thus in view of Remark A.7.2 we can use (8.28) and (8.29) to obtain

|x̂| ≤ δ−εη|x|+ Cnδ
−εη2R0 + |πT̄ (x− z̄)|.

In particular this yields

C T̄√
32nΛ0δR0

(z̄) ∩Bδεη−1R0
(0) ⊂ C2R0(z̄),

where we estimated 1 + Cnδ
−εη2 +

√
32nΛ0δ ≤ 2, by δ ≤ δ0, η ≤ η0 and for

δ0 small depending on Λ0, as well as η0 small depending on δ and ε. Then
(8.68) yields

sptµt ∩ C T̄
32
√
nΛ0δR0

(z̄) ⊂ {x ∈ C3R0(0), |πRk(x− z̄)| ≤ ηR0} (8.74)

for all t ∈ [−Λ0R
2
0,Λ0R

2
0]. By Remark A.7.3 we have

|π⊥T̄ (y)| ≤ 2|πRk(π⊥T̄ (y))|

for all y ∈ Rn+k, where we used |π⊥
T̄
− πRk | = |πT̄ − πRn| ≤ δ−εη ≤ 2−1, due

to (8.28) and as η ≤ η0 for η0 small depending on δ and ε. Then estimate for
y ∈ Rn+k

|π⊥T̄ (y)| ≤ 2|πRk(π⊥T̄ (y))| = 2|πRk(y)− πRk(πT̄ (y))|
= 2|πRk(y)− πT̄ (y) + πRn(πT̄ (y))|
≤ 2 (|πRk(y)|+ |πT̄ − πRn||πT̄ (y)|) .

In particular for x ∈ C T̄√
32nΛ0δR0

(z̄) and in view of (8.28) this yields

|π⊥T̄ (x− z̄)| ≤ 2|πRk(x− z̄)|+ 2δ−εη
√

32nΛ0δR0 ≤ 2|πRk(x− z̄)|+ ηR0,

where we used δ ≤ δ0 and δ0 small depending on ε and Λ0. Thus (8.74)
implies

sptµt ∩ C T̄√
32nΛ0δR0

(z̄) ⊂
{
x ∈ C3R0(0), |π⊥T̄ (x− z̄)| ≤ 3ηR0

}
(8.75)

for all t ∈ [−Λ0R
2
0,Λ0R

2
0].
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To use Lemma 5.14, we need a suitable orthonormal basis (νj)1≤j≤k of
T̄⊥. Set

Nj := en+j −
n∑
i=1

t̄ijei, (8.76)

j ∈ {1, . . . , k}, these Nj form a basis of T̄⊥ and will be later used to calculate.
By (8.27) we have |Nj − en+j| ≤ δ−εη for all j ∈ {1, . . . , k}, as δ ≤ δ0 for δ0

small depending on ε. Then by Lemma A.10.1 with B = Rn there exists an
orthonormal basis (νj)1≤j≤k of T̄⊥ such that

max{|Nj − en+j|, |νj − en+j|, |νj −Nj|} ≤ Cnδ
−εη (8.77)

for all j ∈ {1, . . . , k}. We want to use Lemma 5.14 with τ = δ1−2εη, h = 3η,
t0 = −Λ0δ

2R2
0 and R = r0 =

√
2Λ0δR0. Fix a j ∈ {1, . . . , k}. In order to

verify (5.43), we have to show that

S̄ := (δR0)−n
∫
CT̄√

32nΛ0δR0
(z̄)

{
|νj · (x− z̄)| − η |πT (x− z̄)|2

2δ2εR0

}
+

dµt1 (8.78)

is smaller than c0δ
4−6εηR0 for some c0 ∈ (0, 1), where we used Λ0 ≥ 1.

In view of (8.75) and (8.36), we see that

sptµt ∩ C T̄√
32nΛ0δR0

(z̄) ⊂ sptµt ∩B8
√
nΛ0δR0

(0) ⊂ Cρ(0). (8.79)

For the first inclusion of (8.79) we estimated for x ∈ sptµt ∩ C T̄√
32nΛ0δR0

(z̄)

|x| ≤ |x− z̄|+ CnηR0 ≤ |πT̄ (x− z̄)|+ |π⊥T̄ (x− z̄)|+ CnηR0

≤
√

32nΛ0δR0 + CnηR0 ≤ 8
√
nΛ0δR0,

where we used (8.75) and |z̄| ≤ CnηR0 by (8.29). Also we used Λ0 ≥ 1 and
η ≤ η0 for η0 small depending on δ. The second inclusion of (8.79) then
follows from (8.36).

For x ∈ sptµt1∩C T̄√
32nΛ0δR0

(z̄) and j ∈ {1, . . . , k} in view of the definition

of Nj in (8.76), we can use (8.77) and (8.75), to estimate

|νj · (x− z̄)− (xn+j − t̄j(x̂)− z̄n+j)| = |νj · (x− z̄)−Nj · (x− z)|
≤ |νj −Nj|

∣∣π⊥T̄ (x− z̄)
∣∣ ≤ Cnδ

−εη2R0.

Also by (8.28),(8.79) and πRn(z̄) = 0, we have∣∣|πT̄ (x− z̄)|2 − |x̂|2
∣∣

= |(|πT̄ (x− z̄)|+ |πRn(x− z̄)|) (|πT̄ (x− z̄)| − |πRn(x− z̄)|)|
≤ 2 |πT̄ − πRn| |x− z̄|2 ≤ CnΛ0δ

2−εηR2
0,
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thus we have{
|νj · (x− z̄)| − δ−2εη |πT̄ (x− z)|2R−1

0

}
+

≤
{
|xn+j − t̄j(x̂)− z̄n+j| − δ−2εη|x̂|2R−1

0

}
+

+ Cnδ
−εη2R0,

(8.80)

for all x ∈ sptµt1∩C T̄√
32nΛ0δR0

(z̄) and all j ∈ {1, . . . , k}, where we used δ ≤ δ0,
for δ0 small depending on ε and Λ0.

Similar to (8.30) set this time

Φ̄(x) := |xn+j − t̄j(x̂)− z̄n+j| .

As (8.27) and (8.29) hold for tij and zn+j replaced by t̄ij and z̄n+j, we have
that (8.31) holds for Φ replaced by Φ̄. By (8.80) and (8.79), the S̃ from
(8.78) can be estimated by

S̄ ≤ (δR0)−n
∫
B

8
√
nΛ0δR0

(0)

{
Φ̄(x)− η|x̂|2

2δ2εR0

}
+

dµt1(x)

+ Cnδ
−εη2R0.

(8.81)

As we have a Lipschitz approximation at time t1, we can use (8.19), to write
this as an integral over Rn. To do so, we have to bound the integrand. By
(8.31) we obtain

Φ̄(x)− η|x̂|2

2δ2εR0

≤ Cn
(
δεη + Λ0δ

2−2εη
)
R0 ≤ Cnδ

εηR0

for all x ∈ sptµt1∩B8
√
nΛ0δR0

(0), where we used δ ≤ δ0 for δ0 small depending
on Λ0 and ε. Then combining (8.19) with (8.81) yields

S̄ ≤ (δR0)−n
∫
Bn

8
√
nΛ0δR0

(0)

{
Φ̄(Ft1(ŷ))− η|ŷ|2

2δ2εR0

}
+

L n(ŷ)

+ Cn
(
δεη(δR0)−nρnEt1 + Λ0δ

−εη2
)
R0,

where we estimated 8
√
nΛ0δR0 ≤ 2−4R0 = ρ, as δ ≤ δ0 for δ0 small depending

on Λ0. Now by (8.70), (8.79), η ≤ η0 and η0 small depending on δ we obtain

S̄ ≤ (δR0)−n
∫
Bnρ (0)

{
Φ̄(Ft1(ŷ))− η|ŷ|2

2δ2εR0

}
+

L n(ŷ) + CnΛ0δ
−εη2R0. (8.82)

Like in (8.42) we can use the triangle inequality to estimate{
Φ̄(Ft1(ŷ)− η|ŷ|2

2δ2εR0

}
+

≤ Φ1(t1, ŷ) + Φ2(t1, ŷ) +

{
Φ̄4(ŷ)− η|ŷ|2

2δ2εR0

}
+

(8.83)
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for all ŷ ∈ Bn
ρ (0). Here Φ1(t1, ŷ), Φ2(t1, ŷ) are defined as in (8.43), (8.44),

where now we only look at the fixed time t1, i.e.

Φ1(t1, ŷ) :=

∣∣∣∣∣f jt (ŷ)−
∫
Bρ(ŷ)

f jt1Ψρ(p, x̂− ŷ)dL n(x̂)

∣∣∣∣∣ (8.84)

Φ2(t1, ŷ) :=

∣∣∣∣∣
∫
Bρ(ŷ)

f jt1(ŷ)Ψρ(p, x̂− ŷ)dL n(x̂)

−
∫
Bρ(ŷ)

f js0(ŷ)Ψρ(p+ t1 − s0, x̂− ŷ)dL n(x̂)(x)

∣∣∣∣∣.
(8.85)

The quantity Φ̄4 is defined by

Φ̄4(ŷ) :=

∣∣∣∣∣
∫
Bρ(ŷ)

f js0Ψρ(q̄, x̂− ŷ)dL n(x̂)− t̄j(ŷ)− z̄n+j

∣∣∣∣∣ . (8.86)

To see (8.83) we used q̄ = p+t1−s0. Note that as t1 ∈ [−5Λ0δ
2R2

0,−3Λ0δ
2R2

0]
and by (8.69) we have t1 ∈ Iα defined in (8.35). Thus by (8.48)∫

Bnρ (0)

Φ1(t1, ŷ)dL n(ŷ)dt ≤ Cnp
1
2 (βt1 + Et1)Rn

0 + Cnp
3ηRn+5

0 .

Then we can use (8.69) and (8.70) to estimate∫
Bnρ (0)

Φ1(t1, ŷ)dL n(ŷ)dt ≤ Cnp
1
2 (Λ0δ

−1η + δ−3η2)Rn
0 + Cnp

3ηRn+5
0

≤ Cnp
1
2 Λ0δ

−3ηRn+1
0 ≤ CnΛ0δ

N
2
−3ηRn+1

0 ,

where we used p = δNR2
0 and δ ≤ 1. Then as δ ≤ δ0 for δ0 small depending

on Λ0 and for N ≥ 2n+ 18, we conclude∫
Bnρ (0)

Φ1(t1, ŷ)dL n(ŷ)dt ≤ δn+5ηRn+1
0 . (8.87)

Also we have by (8.60)∫
Bnρ (0)

Φ2(t1, y)dL n(y) ≤ Cnηδ
n+5Rn+1

0 + Cn(Et1 + Es0)Rn+1
0

so with (8.70) and (8.24) we obtain∫
Bnρ (0)

Φ2(t1, y)dL n(y) ≤ Cn
(
δn+5 + δ−3η

)
ηRn+1

0 ≤ Cnδ
n+5ηRn+1

0 , (8.88)

125



where we used η ≤ η0 for η0 small depending on δ.
By definitions (8.71) and (8.72), we have

Φ̄4(ŷ) =

∫
Bnρ (ŷ)

f js0Ψρ(q̄, x̂− ŷ)− tj(ŷ)− zn+jdL
n(x̂)

=

∫
Bnρ (ŷ)

f js0 (Ψρ(q̄, x̂− ŷ)−Ψρ(q̄, x̂) + ŷ ·DΨρ(q̄, x̂)) dL n(x̂).

Similar calculations as those which led to (8.66) will yield

Φ̄4(ŷ) ≤ CnηR
−1
0 |ŷ|2δ−ε

for all ŷ ∈ Bn
ρ (0). Here we used q̄ ∈ [q0, 2q0], so q̄ = Cnδ

εR2
0. Thus we see{

Φ̄4(ŷ)− η|ŷ|2

2δ2εR

}
+

= 0 (8.89)

for all ŷ ∈ Bn
ρ (0), where we used δ ≤ δ0 for δ0 small depending on ε. In view

of (8.83), we can insert (8.87),(8.88) and (8.89) into (8.82), to obtain

S̃ ≤ Cnδ
5ηR0. (8.90)

Now we can use Lemma 5.14 with τ = δ1−2εη, h = 3η, t0 = −Λ0δ
2R2

0, y0 = z
and R =

√
2Λ0δR0. By (8.29) we have |z̄| ≤ CnηR0, so Bδ2ε(3η)−1R0

(z̄) ⊂⊂
Bδ2εη−1R0

(0), as δ ≤ 1, η ≤ η0 and η0 small. Inclusion (8.75) directly es-
tablishes (5.42). In view of (8.78), inequality (8.90) implies (5.43). Then
Lemma 5.14 yields

sptµt ∩B√2Λ0δR0
(z̄) ⊂ {x ∈ Rn+k, |π⊥T̄ (x− z̄)| ≤ Cn

√
Λ0δ

2−2εηR0}.

For Λ0 ≥ 27, we see B√2Λ0δR0
(z̄) ⊃ B16δR0(z̄). Also as δ ≤ δ0 for δ0 small

depending on Λ0, we can estimate Cn
√

Λ0δ
2−2εηR0 ≤ δ1−3εηr0. So we estab-

lished the result with ε replaced by 3ε.
Note that because of the different assumption (8.68) we actually have

sptµt ∩ C T̄
15δR0

(z̄) = sptµt ∩B16δR0(z̄) (8.91)

thus we can exchange the set B16δR0(z̄) in (8.3) by C T̄
15δR0

(z̄). This is very
important, if one wants to iterate this version of the Lemma, because this
now implies the different condition (8.68) for the next step. To see inclusion
(8.91) consider x ∈ sptµt ∩ C T̄

15δR0
(z̄). As

√
nΛ0 ≥ 1, we can use (8.75), to

calculate

|x− z̄| = |πT̄ (x− z̄) + π⊥T̄ (x− z̄)| ≤ 15δR0 + 3ηR0 ≤ 16δR0,

where we used η ≤ η0 for η0 ≤ 3−1δ.
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8.2 Remark. Brakke claims the unit density hypothesis is needed to obtain
the above result. He says it is crucial to estimate the difference between ft
and the convolution ft ∗ ψ. In our proof this is done in the calculation for
Φ1(t, y). However, we do not appear to need the unit density hypothesis for
our proof.

To iterate Lemma 8.1 properly one wants the centre points to have a fixed
projection onto Rn. The form in which Lemma 8.1 is used is the following:

8.3 Lemma. For every λ0 ∈ (0, 2−n−5] there exists a Λ0 ∈ (1,∞) such
that, for every α ∈ (0, 1) there exists a β0 ∈ (0, 1) such that, for every
β ∈ (0, β0] there exists a γ0 ∈ (0, 1) such that, for all ρ ∈ (0,∞), t0 ∈ R,
ŷ0 ∈ Rn, γ ∈ [0, γ0] and every open subset U ⊂ Rn+k the following holds:
Let (µt)t∈[t0−Λ0ρ2,t0+Λ0ρ2] be a Brakke flow in U . Let A be an n-dimensional

subspace of Rn+k with |πA − πRn| ≤ 1
4
. Let a ∈ {ŷ0} × Rk with B3ρ(a) ⊂ U .

Suppose

sptµt ∩ C3ρ(a) ⊂
{
x ∈ B5ρ(a), |π⊥A(x− a)| ≤ γρ

}
, (8.92)

ρ−nµt
(
B(1+λ0)ρ(a)

)
≤ 3

2
ωn , ρ−nµt (Bρ(a)) ≥ 1

2
ωn (8.93)

for all t ∈ [t0−Λ0ρ
2, t0 + Λ0ρ

2]. Then there exist an n-dimensional subspace
A∗ of Rn+k with |πA − πA∗| ≤ δα−1γ and a point a∗ ∈ {ŷ0}×Rk with |a∗−a| ≤
3
√
kγR0 such that

sptµt ∩ C3βρ(a
∗) ⊂

{
x ∈ B5βρ(a

∗), |π⊥A∗(x− a∗)| ≤ γβ1+αρ
}
, (8.94)

(βρ)−nµt
(
B(1+λ0)βρ(a

∗)
)
≤ 3

2
ωn , (βρ)−nµt (Bβρ(a

∗)) ≥ 1

2
ωn (8.95)

for all t ∈ [t0 − Λ0β
2ρ2, t0 + Λ0β

2ρ2].

Note that the cylinders in (8.92) and (8.94)are ordinary cylinders with re-
spect to Rn, whereas the height bounds are with respect to the n-dimensional
subspaces A and A∗.

Proof. Fix a rotation S ∈ SO(n+k) with S(Rn) = A, S(Rk) = A⊥. Consider
the Brakke flow (µ̃t)t∈[−Λ0ρ2,Λ0ρ2] in B3ρ(0) defined by

µ̃t(B) := µt+t0(S(B) + a) B3ρ(0),

for all B ⊂ Rn+k, where S(B) + a = {S(b) + a, b ∈ B}. Here we used
B3ρ(a) ⊂ U , to see that S(U + a) ⊃ B3ρ(0). This is necessary for (µ̃t) to be
a Brakke flow in B3ρ(0). Then (µ̃t) satisfies

sptµ̃t ∩B3ρ(0) ⊂ {x ∈ B5ρ(0), |πRk(x)| ≤ γρ} , (8.96)

ρ−nµ̃t
(
B(1+λ0)ρ(0)

)
≤ 3

2
ωn , ρ−nµ̃t (Bρ(0)) ≥ 1

2
ωn (8.97)
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for all t ∈ [−Λ0ρ
2,Λ0ρ

2]. Note that we used B3ρ(0) ⊂ C3ρ(0). Thus we can
use Lemma 8.1 with ε = 1 − α, δ = β, η0 = γ0, η = γ and R0 = ρ. Lemma
8.1 then yields an n-dimensional subspace T with |πRn − πT | ≤ βα−1γ and a
point z ∈ {0}n with |z| ≤

√
kγρ such that

sptµ̃t ∩B16βρ(z) ⊂
{
x ∈ B16βρ(z), |π⊥T (x− z)| ≤ δ1+αγρ

}
, (8.98)

(βρ)−nµ̃t
(
B(1+2λ0)βρ(z)

)
≤ 5

4
ωn , (βρ)−nµ̃t

(
B(1−2λ0)βρ(z)

)
≥ 3

4
ωn (8.99)

for all t ∈ [−Λ0β
2ρ2,Λ0β

2ρ2]. Now set A∗ := S(T ), then by Remark A.8.3

|πA − πA∗| =
∣∣πS−1(A) − πS−1(A∗)

∣∣ = |πRn − πT | ≤ βα−1γ.

Set b = S(z)+a, then |b−a| = |S(z)| ≤
√
kγρ. Statements (8.98) and (8.99)

imply for (µt)

sptµt ∩B16βρ(b) ⊂
{
x ∈ B16βρ(b), |π⊥A∗(x− b)| ≤ δ1+αγρ

}
, (8.100)

(βρ)−nµt
(
B(1+2λ0)βρ(b)

)
≤ 5

4
ωn , (βρ)−nµt

(
B(1−2λ0)βρ(b)

)
≥ 3

4
ωn (8.101)

for all t ∈ [t0 − 2Λ0β
2ρ2, t0 + 2Λ0β

2ρ2].
Note that b may not be in {ŷ}×Rk, but shifting b a bit yields a suitable

a∗ as we will see below. We can estimate

|πRn − πA∗| ≤ |πRn − πA|+ |πA − πA∗| ≤ 2−2 + βα−1γ ≤ 2−1 (8.102)

as γ ≤ γ0 for γ0 small depending on α and β. Thus using Proposition A.9.4,
there exists a unique intersection point in {ŷ}×Rk∩A∗+ b, so we can define
a∗ by

{a∗} = {ŷ} × Rk ∩ A∗ + b.

Combining |a− b| ≤
√
kγρ and πRn(a) = πRn(a∗) = ŷ with a∗ ∈ A∗ + b and

(8.102), we can estimate

|a∗ − b| = |πRk (a∗ − b) + πRn (a∗ − b)|
≤
∣∣(πRk − π⊥A∗) (a∗ − b)

∣∣+ |πRn (a− b)|

≤ |a
∗ − b|
2

+
√
kγρ.

So we have |a∗ − b| ≤ 2
√
kγρ, which yields |a∗ − a| ≤ |b− a| + 2

√
kγρ ≤

3
√
kγρ. Also we see |a∗ − b| ≤ λ0βρ, as γ ≤ γ0 for γ0 small depending on λ0

and β, thus (8.101) implies (8.95).
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Now it remains to show that the height bound (8.100) actually holds for
the cylinder. Let x ∈ sptµt ∩C3βρ(a

∗), by |a∗− a| ≤ 3
√
kγρ we can estimate

|x− a∗| ≤ |x− a|+ |a− a∗| ≤ |πA(x− a)|+
∣∣π⊥A(x− a)

∣∣+ 3
√
kγρ.

Use (8.92) and Remark A.7.3 to obtain

|x− a∗| ≤ 4

3
|πRn(πA(x− a))|+ γρ+ 3

√
kγρ.

Using â = ŷ and again (8.92) yields

|x− a∗| ≤ 4

3
|πRn(x− a)|+ 4

3

∣∣πRn(π⊥A(x− a))
∣∣+ (1 + 3

√
k)γρ

≤ 4

3
|x̂− ŷ|+ 2γρ+ (1 + 3

√
k)γρ,

so as x ∈ C3βρ(a
∗) we can conclude

|x− a∗| ≤ 4βρ+ (3 + 3
√
k)γρ ≤ 5βρ

where we used γ ≤ γ0 for γ0 small depending on β. Thus we showed

sptµt ∩ C3βρ(a
∗) ⊂ B5βρ(a

∗) ⊂ B16βρ(a
∗),

so (8.100) implies (8.94), which completes the statement. Actually we never
make full use of the factor 16 in (8.100) and could change it to a factor 5 in
Lemma 8.1.

For a point ŷ ∈ Rn Lemma 8.3 can now be used to obtain a sequence of
points in {ŷ}×Rk and subspaces of Rn+k which converge to a point in sptµt
and its tangent space. This will define a function f with graph(f) = sptµt
and by the type of convergence we obtain C1,α-regularity for f .

8.4 Theorem (Local Regularity Theorem,[B, 6.10]). For every λ ∈ (0, 1]
and α ∈ (0, 1) there exists a Λ ∈ (1,∞) such that for every K ∈ [1,∞) there
exists a h0 ∈ (0, 1) such that for all R ∈ (0,∞), h ∈ [0, h0], t1, t2 ∈ Rn+k

with t2 − t1 > 2ΛR2 the following holds: Let (µt)t∈[t1,t2] be a Brakke flow in
B(1+2λ)R(0) with

sptµt ⊂
{
x ∈ B(1+2λ)R(0), |πRk(x)| ≤ hR

}
, (8.103)

R−nµt
(
B(1+2λ)R(0)

)
≤ K (8.104)
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for all t ∈ [t1, t2] and

R−nµt1
(
B(1+2λ)R(0)

)
≤ (2− λ)ωn , R−nµt2 (BR(0)) ≥ λωn. (8.105)

Then there exists a smooth function f : [t1 + ΛR2, t2 − ΛR2]×Bn
λR(0)→ Rk

such that for Mt = graph(f(t, ·)) we have

(sptµt ∩ CλR(0)) = Mt. (8.106)

Furthermore the estimates

|f(t, x̂)− f(s, ŷ)| ≤ Λh
(
R−α|t− s|

1+α
2 + |x̂− ŷ|

)
, (8.107)∣∣πTxMt − πTyMs

∣∣ ≤ ΛhR−α
(
|t− s|

α
2 + |x̂− ŷ|α

)
(8.108)

hold for all t, s ∈ [t1 + ΛR2, t2 − ΛR2] and all x̂, ŷ ∈ Bn
λR(0), where x =

(x̂, f(t, x̂), y = (ŷ, f(t, ŷ).

8.5 Remark. Here we will only prove the C1,α- regularity. For the higher
regularity we refer to [T] and [LSU].

Proof. We want to apply Lemma 8.3. By assumption we have a height bound
and by Lemma 7.8 we obtain area ratio bounds as well. For given R ∈ (0,∞)
set ρ0 := 2−2R. Using Lemma 7.8 with η = h, λ1 = λ, M = K and R0 = R
yields

ρ−n0 µt
(
B(1+2−n−2λ)ρ0

(y)
)
≤ 3

2
ωn , ρ−n0 µt (Bρ0(y)) ≥ 1

2
ωn (8.109)

for all y ∈ Bn
λR0

(0) × {0}k for all t ∈ [t1 + 2−1ΛR2, t2 − 2−1ΛR2]. Here we
had to chose h0 ≤ η1 and Λ ≥ 2Λ1. Note that then

[t1 + Λ1R
2, t2 − Λ1R

2] ⊃ [t1 + 2−1ΛR2, t2 − 2−1ΛR2].

Now temporarily fix y0 ∈ Bn
λR(0) × {0}k and t0 ∈ [t1 + ΛR2, t2 − ΛR2].

For given Λ0 ∈ (1,∞) we can choose Λ ≥ 2Λ0 and obtain from (8.109)

ρ−n0 µt
(
B(1+2−n−5λ)ρ0

(y0)
)
≤ 3

2
ωn , ρ−n0 µt (Bρ0(y0)) ≥ 1

2
ωn (8.110)

for all t ∈ [t0 − Λ0ρ
2
0, t0 + Λ0ρ

2
0]. Here we calculated as ρ0 ≤ R

t0 + Λ0ρ
2
0 ≤ t2 − ΛR2 + Λ0R

2 ≤ t2 − 2−1ΛR2

t0 − Λ0ρ
2
0 ≥ t1 + ΛR2 − Λ0R

2 ≥ t1 + 2−1ΛR2.
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Consider α ∈ (0, 1) and Λ0 ∈ (1,∞), where Λ0 may depend on λ and α. Let
δ ∈ (0, 1) be a variable we will choose later depending on α and Λ0. Note
that our choice of Λ will depend on δ. Let m ∈ N0 = N ∪ {0} then set

ρm := δmρ0, ηm := 4δαmh, τm := Λ0δ
2mρ2

0,

z0(t0, ŷ0) := y0, T0(t0, ŷ0) := Rn.
(8.111)

Iterating Lemma 8.3 with λ0 = 2−n−5λ and β = δ then yields Λ0 =
Λ0(α, λ) ∈ (1,∞), β0 = β0(α, λ) ∈ (0, 1) and γ0 = γ0(δ, α, λ) ∈ (0, 1) such
that for Λ ≥ 2Λ0, δ ≤ β0 and h0 ≤ γ0 the following holds: For every
m ∈ N0 = N ∪ {0} there exist an n-dimensional subspace Tm = Tm(t0, ŷ0) of
Rn+k with

|πTm − πRn| ≤ 8δ−1h ≤ 2−3 (8.112)

and a point zm = zm(t0, ŷ0) in {ŷ0} × Rk with

B3ρm(zm) ⊂ BR(0) (8.113)

such that

(sptµt ∩ C3ρm(zm)) ⊂
{
x ∈ B5ρm(zm),

∣∣π⊥Tm(x− zm)
∣∣ ≤ ηmρm

}
, (8.114)

ρ−nm µt
(
B(1+λ0)ρm(zm)

)
≤ 3

2
ωn, ρ−nm µt (Bρm(zm)) ≥ 1

2
ωn (8.115)

for all t ∈ [t0 − τm, t0 + τm], and such that the following recursions hold∣∣πTm+1 − πTm
∣∣ ≤ δ−αηm , |zm+1 − zm| ≤ 3

√
kηmρm. (8.116)

To prove this use induction. For m = 0 by definitions in (8.111) statement
(8.115) directly follows from (8.110). For (8.114) use (8.103) and

sptµt ∩ C3ρ0(y0) ⊂ B4ρ0(y0),

as 4ρ0 = R and h ≤ h0 for h0 ≤ 2−2.
Now assume for all l ∈ {0, . . . ,m} we can find Tl, zl such that (8.112)-

(8.116) hold. Then use Lemma 8.3 with λ0 = 2−n−5λ, a = zm, A = Tm,
β = δ, γ = ηm and ρ = ρm to obtain zm+1 := a∗ and Tm+1 := A∗ such that
(8.114), (8.115) and (8.116) hold for m+ 1. By (8.116) we have

|πTm+1 − πRn| ≤
m+1∑
l=0

∣∣πTl+1
− πTl

∣∣ ≤ 4δ−1h
m+1∑
l=0

δαl ≤ 8δ−1h ≤ 2−3, (8.117)

131



where we used δα ≤ 2−1, for δ small depending on α and h ≤ h0 for h0 small
depending on δ. This implies (8.112) for m+ 1. By (8.116) we also have

|zm+1 − zm| ≤ 3
√
kηmρm = 12

√
kδαmhρm ≤ 2−1ρm,

as δ ≤ 1 and h ≤ h0 for h0 small. For δ ≤ 2−1 we see ρm+1 ≤ 2−1ρm
so B3ρm+1(zm+1) ⊂ B3ρm(zm), which implies (8.113) Thus we established
(8.112)- (8.116) for all m ∈ N0.

As ŷ0 ∈ Bn
λR(0) and t0 ∈ [t1 +ΛR2, t2−ΛR2] where arbitrary, we can now

define f : [t1 + ΛR2, t2 − ΛR2]×Bn
λR(0)→ Rk by

f(t, ŷ) := lim
m→∞

πRk(zm(t, ŷ))

F (t, ŷ) := (ŷ, f(t, ŷ))
(8.118)

for all (t, ŷ) ∈ [t1 + ΛR2, t2 − ΛR2] × Bn
λR(0) which is well defined, as by

(8.116) the zm form a Cauchy sequence, thus the limes exists. In particular
we can estimate

|f(t, ŷ)− πRk(zm(t, ŷ))| ≤ 3
√
k
∞∑
l=m

ηlρl ≤ Cnδ
(1+α)mhρ0

∞∑
l=0

δαl

and as δα ≤ 2−1, for δ small depending on α, this yields

|f(t, ŷ)− πRk(zm(t, ŷ))| ≤ δ(1+α)mhρ0 (8.119)

for all ŷ ∈ Bn
λR(0) and all t ∈ [t1 + ΛR2, t2 − ΛR2].

We want to show that for every t ∈ [t1 + ΛR2, t2 − ΛR2] the graph
of f(t, ·) is indeed equal to the varifold µt inside CλR(0). First suppose
y ∈ sptµt∩CλR(0), then for every m ∈ N it is obviously true that y ∈ C3ρm(ŷ).
By (8.114) this implies y ∈ B5ρm(zm(t, ŷ)) for all m ∈ N. In view of defi-
nition (8.118) letting m → ∞ then yields y = (ŷ, f(t, ŷ)). Here we used
limm→∞ ρm = δmρ0 = 0.

Second suppose ŷ ∈ Bn
λR(0) and let ε > 0 be arbitrary. By using again

that limm→∞ ρm = 0 combined with definition (8.118) there exists m ∈ N
such that ρm ≤ ε

2
and |f(t, ŷ)− πRk(zm(t, ŷ))| ≤ ε

2
. Then we can use the

density ratio bound (8.115) at zm(t, ŷ), to estimate

µt (Bε((ŷ, f(t, ŷ))) ≥ µt(Bρm(zm(t, ŷ)) ≥ ωn
2
ρnm > 0

and as ε was arbitrary, we conclude (ŷ, f(t, ŷ)) ∈ sptµt. Thus we established
(8.106).

132



Now that we have established that sptµt is a graph, we can attack con-
tinuity. First we want to show that f is C0, 1+α

2 in the t variable. It suf-
fices to prove this locally. Fix t ∈ [t1 + ΛR2, t2 − ΛR2], ŷ ∈ Bn

λR(0) and
consider the iteration Tm = Tm(t, ŷ), zm = zm(t, ŷ) for m ∈ N0. For any
s ∈ (t− ρ2

0, t+ ρ2
0) ∩ [t1 + ΛR2, t2 − ΛR2], there exists an m ∈ N such that

δ2(m+1)ρ2
0 ≤ |t− s| ≤ δ2mρ2

0 = τm.

In view of (8.112) we can use Remark A.7.3 to estimate

|f(t, ŷ)− f(s, ŷ)| = |πRk (F (t, ŷ)− F (s, ŷ))| ≤ 2
∣∣π⊥Tm (F (t, ŷ)− F (s, ŷ))

∣∣
≤ 2

(∣∣π⊥Tm (F (t, ŷ)− zm)
∣∣+
∣∣π⊥Tm (F (s, ŷ)− zm)

∣∣) .
By choice of m and (8.114), we see that both F (t, ŷ) and F (s, ŷ) are contained
in
{
x ∈ Rn+k :

∣∣π⊥Tm (x− zm)
∣∣ ≤ ηmρm

}
. Note that we can use (8.114) here,

because (8.106) is already established. Thus we obtain

|f(t, ŷ)− f(s, ŷ)| ≤ 4ηmρm ≤ Cnδ
αm+mhρ0 ≤ Cnδ

−α−1hρ−α0 |t− s|
1+α

2 .

For Λ ≥ Cnδ
−α−1 and as 4ρ0 = R this establishes one part of (8.107).

Next we want to show that f is differentiable. Fix t ∈ [t1+ΛR2, t2−ΛR2],
ŷ ∈ Bn

λR(0) and consider the iteration Tm = Tm(t, ŷ), zm = zm(t, ŷ) for
m ∈ N0. For i ∈ {1, . . . , n} let pmi be the unique intersection point in
{ei}×Rk∩Tm, such a unique point exists by Proposition A.9.4, as by (8.112)
we have ‖πTm − πRn‖op < 1. We claim

∂

∂yi
f(t, ŷ) = gi(t, ŷ) := lim

m→∞
πRk(p

m
i ). (8.120)

To show (8.120) we first have to verify that the limit on the right hand side
exists. We know pmi ∈ Tm and πRn(pmi ) = ei. In view of (8.112), we can use
Remark A.7.3 to bound |pmi | by

|pmi | = |πTm(pmi )| ≤ 2|πRn (πTm(pmi )) | = 2|πRn(pmi )| = 2. (8.121)

Using πRn(pmi ) = ei and again Remark A.7.3, we then obtain

|pm1
i − p

m2
i | =

∣∣πTm1
(pm1
i )− πTm2

(pm2
i )
∣∣

≤
∣∣πTm1

(pm1
i − p

m2
i )
∣∣+
∣∣πTm1

− πTm2

∣∣ |pm2
i |

=
∣∣(πTm1

− πRn
)

(pm1
i − p

m2
i )
∣∣+

m2−1∑
l=m1

∣∣πTl+1
− πTl

∣∣ |pm2
i |

≤ 1

8
|pm1
i − p

m2
i |+ 2

m2−1∑
l=m1

∣∣πTl+1
− πTl

∣∣ .
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Thus with (8.116) we conclude

|pm1
i − p

m2
i | ≤ Cnδ

−α
m2−1∑
l=m1

ηl ≤ Cnδ
(m1−1)αh

∞∑
l=0

δαl ≤ Cnδ
(m1−1)αh (8.122)

for all m1,m2 ∈ N0 with m1 ≤ m2, where we used δα ≤ 2−1, for δ small
depending on α. Thus pmi is a Cauchy sequence, so gi is well defined. Fur-
thermore we can estimate the rate of convergence by

|gi(t, y)− πRk(pmi )| ≤ Cnδ
(m−1)αh. (8.123)

To show that gi actually is the derivative in ei-direction take some arbitrary
small ξ0 ∈ (0, ρ0 − |y|). For any ξ ∈ (−ξ0,+ξ0) \ {0} there exists m ∈ N0

such that

δm+1ρ0 ≤ |ξ| ≤ δmρ0 = ρm.

We want to show that the difference quotient of f converges to g. Note that

πRn(zm + ξpmi ) = ŷ + ξei = πRn(F (t, ŷ + ξei)).

Using (8.123) and (8.119) we obtain∣∣ξ−1 (f(t, ŷ + ξei)− f(t, ŷ))− gi(t, ŷ)
∣∣

≤ |ξ|−1 |f(t, ŷ + ξei)− πRk (zm)− ξπRk (pmi )|+ Cnδ
(m−1)αh

= |ξ|−1 |πRk (F (t, ŷ + ξei)− zm − ξpmi )|+ Cnδ
(m−1)αh,

where we used δα ≤ 1 and δm+1ρ0 ≤ |ξ|. In view of (8.112) we can use
Remark A.7.3 to estimate further∣∣ξ−1 (f(t, ŷ + ξei)− f(t, ŷ))− gi(t, ŷ)

∣∣
≤ 2|ξ|−1

∣∣π⊥Tm (F (t, ŷ + ξei)− zm − ξpmi )
∣∣+ Cnδ

(m−1)αh.

By choice of m we have |ξ| ≤ ρm, so in view of (8.114)

F (t, ŷ + ξei) ∈
{
x ∈ Rn+k :

∣∣π⊥Tm (x− zm)
∣∣ ≤ ηmρm

}
.

Also we know pmi ∈ Tm. Thus we can conclude∣∣ξ−1 (f(t, ŷ + ξei)− f(t, ŷ))− gi(t, ŷ)
∣∣

≤ 2|ξ|−1ηmρm + Cnδ
(m−1)αh ≤ Cnδ

−2h|ξ|αρ−α0 ,
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where we used δ, α ≤ 1, δm+1ρ0 ≤ |ξ| and ηmρm = 4δm+αmhρ0. For ξ0 → 0 the
last expression becomes arbitrary small, which shows that gi(t, ŷ) is indeed
the derivative of f(t, ŷ) in i-direction, which establishes (8.120).

To get a Lipschitz bound for f note that, as T0 = Rn, we have p0
i = ei.

Then by (8.122), we see

|pmi − ei| ≤ Cnδ
−αh (8.124)

for all i ∈ {1, . . . , n} and all m ∈ N0. Hence (8.120) implies

∂

∂yi
f(t, ŷ) ≤ Cnδ

−αh

for all t ∈ [t1 + ΛR2, t2 − ΛR2] and ŷ ∈ Bn
λR(0). Thus for Λ ≥ δ−α this

establishes the second part of (8.107).
Fix again arbitrary t ∈ [t1 + ΛR2, t2−ΛR2] and ŷ ∈ Bn

λR(0). We want to
conclude that Tm(t, ŷ) converges to TF (t,ŷ)Mt. Note that by differentiability
of f the tangent space TF (t,ŷ)Mt exists. In view of equality (8.120) we have

∂

∂yi
F (t, ŷ) = lim

m→∞
pmi .

In particular by (8.122)∣∣∣∣ ∂∂yiF (t, ŷ)− pmi
∣∣∣∣ ≤ Cnδ

(m−1)αh ≤ 1 (8.125)

for all m ∈ N0 and all i ∈ {1, . . . , n}, where we chose h small. By definition
of the pmi , we have pmi ∈ Tm(t, ŷ) for all i ∈ {1, . . . , n} and all m ∈ N0. Then
with inequality (8.124) we can estimate

|pmi · pmj − δij| = |(pmi − ei) · pmj + ei · (pmj − ej)| ≤ Cnδ
−αh ≤ C−1

A.10

for all i, j ∈ {1, . . . , n} and all m ∈ N0, where we used |pmj | ≤ 2 and we chose
h small depending on δ and CA.10. Here CA.10 denotes the constant from
Lemma A.10. As the ∂

∂yi
F (t, ŷ)1≤i≤n form a basis of TF (t,ŷ)Mt, we can now

use Lemma A.10.1 and estimate (8.125) to obtain∣∣∣πTF (t,ŷ)Mt − πTm(t,ŷ)

∣∣∣ ≤ Cnδ
(m−1)αh (8.126)

for all m ∈ N0, all t ∈ [t1 + ΛR2, t2 − ΛR2] and all ŷ ∈ Bn
λR(0). In particular

we can conclude that TF (t,ŷ)Mt = limm→∞ Tm(t, ŷ).
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To obtain C1,α-regularity, fix arbitrary t, s ∈ [t1 + ΛR2, t2 − ΛR2] and
x̂, ŷ ∈ Bn

λR(0). We want to show∣∣∣πTF (t,x̂)µt − πTF (s,ŷ)µs

∣∣∣ ≤ Cnδ
−2αhρ−α0

(
|t− s|+ |x̂− ŷ|2

)α
2 . (8.127)

If |t− s|+ |x̂− ŷ|2 > ρ2
0, inequality (8.127) directly follows from (8.126) with

m = 0 vie the triangle inequality. So we may assume there exists m ∈ N0

such that

δ2(m+1)ρ0 ≤ |t− s|+ |x̂− ŷ|2 ≤ δ2mρ2
0.

Consider the tangent spaces A1 = Tm(t, x̂) and A2 = Tm(s, ŷ). Let A1 =
span(τi)1≤i≤n with τi · τj = δij. Changing the τi a bit will give a basis for
A2 such that we can use Lemma A.10 to estimate |πA1 − πA2|. For any
i ∈ {1, . . . , n} set τ̃i := πA2(τi) then calculate by the triangle inequality

|ρmτi − ρmτ̃i| =
∣∣π⊥A2

(ρmτi)
∣∣

≤ |zm(t, x̂) + ρmτi − F (t, x̂+ ρmπRn(τi))|
+ |F (t, x̂)− zm(t, x̂)|
+
∣∣π⊥A2

(F (t, x̂+ ρmπRn(τi))− zm(s, ŷ))
∣∣

+
∣∣π⊥A2

(F (t, x̂)− zm(s, ŷ))
∣∣ .

(8.128)

By (8.119) we have

|F (t, x̂)− zm(t, x̂)| = |f(t, x̂)− πRk(zm(t, x̂))| ≤ δαmhρm, (8.129)

where we used πRn(zm(t, x̂)) = x̂ and ρm = δmρ0. By choice of m we have
|x̂− ŷ| ≤ ρm and |t− s| ≤ τm thus

|πRn (F (t, x̂)− zm(s, ŷ))| = |ŷ1 − ŷ2| ≤ ρm

|πRn (F (t, x̂+ ρmπRn(τi))− zm(s, ŷ))| = |x̂+ ρmπRn(τi)− ŷ| ≤ 2ρm

|πRn (F (t, x̂+ ρmπRn(τi))− zm(t, x̂))| = |ρmπRn(τi)| ≤ ρm.

So we can use (8.114) to see∣∣π⊥A2
(F (t, x̂)− zm(s, ŷ))

∣∣ ≤ ηmρm∣∣π⊥A2
(F (t, x̂+ ρmπRn(τi))− zm(s, ŷ))

∣∣ ≤ ηmρm∣∣π⊥A1
(F (t, x̂+ ρmπRn(τi))− zm(t, x̂))

∣∣ ≤ ηmρm.

(8.130)
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Note that we can use (8.114) here, because (8.106) is already established. In
view of (8.112), we can use Remark A.7.3 to estimate

|zm(t, x̂) + ρmτi − F (t, x̂+ ρmπRn(τi))|
= |πRk (zm(t, x̂) + ρmτi − F (t, x̂+ ρmπRn(τi)))|
≤ 2

∣∣π⊥A1
(zm(t, x̂) + ρmτi − F (t, x̂+ ρmπRn(τi)))

∣∣
= 2

∣∣π⊥A1
(F (t, x̂+ ρmπRn(τi))− zm(t, x̂))

∣∣ ,
where we used τi ∈ A1. Hence by (8.130)

|zm(t, x̂) + ρmτi − F (t, x̂+ ρmπRn(τi))| ≤ 2ηmρm. (8.131)

Inserting (8.129), (8.130) and (8.131) into (8.128) yields

|ρmτi − ρmτ̃i| ≤ Cn(ηm + δαmh)ρm = Cnδ
αmhρm

for all i ∈ {1, . . . , n}, thus we can use Proposition A.10.1 to conclude

|πA1 − πA2| ≤ Cnδ
αmh.

Recall that A1 = Tm(t, ŷ1) and A2 = Tm(t, ŷ2), so with (8.126) we obtain∣∣∣πTF (t,x̂)µt − πTF (s,ŷ)µs

∣∣∣ ≤ ∣∣∣πTF (t,x̂)µt − πA1

∣∣∣+ |πA1 − πA2 |+
∣∣∣πA2 − πTF (s,ŷ)µs

∣∣∣
≤ Cnδ

α(m−1)h,

where we used δ−α ≥ 1. By choice of m, we have

δα(m−1) ≤ δ−2αρ−α0

(
|t− s|+ |x̂− ŷ|2

)α
2 ,

so we verified (8.127). Note that (a + b)p ≤ 2p(ap + bp) for a, b, p ∈ [0,∞),
thus for Λ ≥ Cnδ

−α (8.127) establishes (8.108).
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9 General Regularity

Here we want to give a new, shorter proof of Brakke’s general regularity
theorem [B, 6.12]. The basic idea remains, that for almost every point in a
unit density varifold we either have density one and the existence of a tangent
space or density zero. Then looking close enough the conditions for either
the local regularity theorem or the clearing out lemma should be satisfied,
which establishes the required regularity.

We recall the definition of our usual cut-off function, which we shall use
here to cut-off spherically rather than cylindrically.

9.1 Definition. Recall ζ ∈ C∞ ([0,∞), [0, 1]) from Definition 4.1. We will
use

ζ(r) =

{
1 for 0 ≤ r ≤ 1− 2−n−9

0 for 1 ≤ r

and max {sup |ζ ′|, sup |ζ ′′|} ≤ σ1.

First we need another version of Theorem 8.4, where the absolute height
bound (8.103) is replaced by an integral one. This follows easily with Corol-
lary 6.8.

9.2 Theorem (Local Regularity Theorem (2nd Version), [B, 6.11]). For
every λ0 ∈ (0, 2−2] there exist a Λ0 ∈ (1,∞) and a γ0 ∈ (0, 1) such that
for all t0 ∈ R, y0 ∈ Rn+k and every R ∈ (0,∞) the following holds: Let
(µt)t∈[t0−Λ0R2,t0+Λ0R2] be Brakke flow in B(2+2λ0)R(0) and T an n-dimensional

subspace of Rn+k with

R−n−1

∫
B(2+2λ0)R(y0)

∣∣π⊥T (x− y0)
∣∣ dµt(x) ≤ γ0 (9.1)

R−nµt
(
B(1+2λ0)R(y0)

)
≤ (2− λ)ωn, R−nµt (BR(y0)) ≥ λωn (9.2)

for all t ∈ [t0 − Λ0R
2, t0 + Λ0R

2]. Then there exists a smooth function f :
[t0 −R2, t0 +R2]×Bn

λR(x̂0)→ Rk with

(sptµt ∩ CλR(y0)) = S(graph(f(t, ·))), (9.3)

for all t ∈ [t0 −R2, t0 +R2] and some S ∈ SO(n+ k)

Proof. We may assume y0 = 0 and T = Rn. Consider t ∈ [t0 − Λ0R
2 +

R2, t0 + Λ0R
2] and x0 ∈ sptµt ∩ B(1+2λ0)R(0), by Corollary 6.8 with y0 = 0,

v = en+j and r = 2−1R combined with (9.1) we obtain

|x0 · en+j| ≤ CnR
−n−2

∫ t0

t0−R2

∫
BR(x0)

|x · en+j|dµt(x) ≤ Cnγ0R
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for all j ∈ {1, . . . , k}, where we used y = x0. Thus we obtain

sptµt ∩B(1+2λ0)R(0) ⊂ {x ∈ Rn+k : |πRk(x)| ≤ Cnγ0R}

for all t ∈ [t0 − Λ0R
2 + R2, t0 + Λ0R

2]. Then we can apply Theorem 8.4
with t1 = t0 − Λ0R

2 + R2, t2 = t0 + Λ0R
2, λ = λ0, α = 2−1 and Brakke

flow (µt B1+2λ0)R(0))t∈[t1,t2], which yields a Λ = Λ(λ0) ∈ (1,∞) and an
h0 = h0(Λ0, λ0) ∈ (0, 1) such that, if Cnγ0 ≤ h0, we obtain (9.3) for the time
interval [t0 + (Λ + 1−Λ0)R2, t0 − (Λ−Λ0)R2]. So choosing γ0 ≤ C−1

n h0 and
Λ0 ≥ Λ + 2 establishes the result.

The Brakke flow allows the solution to ”jump” in the sense of a sudden
local loss of area. In such a case we cannot expect to obtain regularity, so in
the following we will rule out these ”jump-decreases” by an extra assumption.

9.3 Definition. For t1, t2 ∈ R with t1 < t2, an open subset U ∈ Rn+k, and a
time t0 ∈ (t1, t2), a Brakke flow (µt)t∈[t1,t2] in U is called continuous at time

t0, if for every φ ∈ C2
c (U,R+)

lim
δ→0

µt0+δ (φ) = µt0 (φ) . (9.4)

9.4 Lemma. For all R, τ ∈ (0,∞), x0 ∈ Rn+k and every open subset U ∈
Rn+k with BR(x0) ⊂⊂ U the following holds: Let (µt)t∈[−τ,τ ] be a Brakke flow
in U , which is continuous at time 0. Then

lim
δ↘0

∫ δ

−δ

∫
BR(x0)

| ~H|2dµt dt = 0. (9.5)

Proof. First suppose B3R(x0) ⊂⊂ U . Consider a δ ∈ (0, τ). Look at the test
function ϕ : (−δ,+δ)× Rn+k → R+

ϕ(t, x) =

{
1− |x− x0|2 + 2nt

4R2

}
+

.

Note that for t ≥ −2n−1R2 the support of ϕ lies in B3R(x0). For almost

every t ∈ (−δ,+δ) there exists an L2-integrable mean curvature vector ~H on
U . For these t we can calculate with Remark 2.6

∂

∂t

(
ϕ3
)
− divµtD

(
ϕ3
)

= − 3n

2R2
ϕ2 − 3ϕ∇µt(ϕ2) ·Dϕ− 3ϕ2divµt(Dϕ)

= − 3n

2R2
ϕ2 − 6ϕ |∇µtϕ|2 − 3

2R2
ϕ2divµt(x)

= −6ϕ |∇µtϕ|2 ≤ 0
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at almost every x ∈ B3R(x0), which yields∫
Rn+k

D
(
ϕ3
)
· ~Hdµt = −

∫
Rn+k

divµtD
(
ϕ3
)
dµt ≤ −

∫
Rn+k

∂

∂t

(
ϕ3
)
dµt.

Thus

B
(
µt, ϕ(t, ·)3

)
+

∫
U

∂

∂t

(
ϕ(t, x)3

)
dµt(x) ≤ −

∫
U

ϕ(t, x)3| ~H(x)|2dµt(x)

for almost every t ∈ (−δ,+δ). Then with Proposition 3.8 we obtain

µδ
(
ϕ(δ, ·)3

)
− µ−δ

(
ϕ(−δ, ·)3

)
≤ −

∫ δ

−δ

∫
U

ϕ(t, x)3| ~H(x)|2dµt(x)dt. (9.6)

For δ ≤ (2n)−1R2 and t ∈ [−δ, δ] we can estimate∣∣ϕ(t, x)3 − ϕ(0, x)3
∣∣ ≤ (ϕ(0, x) + (2R2)−1nδ

)3 − ϕ(0, x)3

≤ 23(2R2)−1nδ ≤ CnR
−2δ.

Here we used ϕ(0, x) ≤ 1. Also for x ∈ BR(x0) and δ ≤ (2n)−1R2 we can
estimate for t ∈ [−δ, δ]

ϕ(t, x)3 ≥
(

3R2 − 2nδ

4R2

)3

≥ 2−3.

Thus (9.6) implies

8

∫ δ

−δ

∫
BR(x0)

| ~H|2dµt dt ≤
(
µ−δ

(
ϕ(0, ·)3

)
− µδ

(
ϕ(0, ·)3

))
+ CnR

−2δ (µ−δ (B3R(x0)) + µδ (B3R(x0))) ,

(9.7)

for all 0 < δ ≤ min{τ, (2n)−1R2}. Here we used sptϕ(t, ·) ⊂ B3R(x0) for all
t ≥ −2n−1R2. For δ ↘ 0 the first difference on the right hand side of (9.7)
goes to 0, due to the continuity at time 0. Furthermore by Lemma 3.6 there
exists M ∈ (0,∞) such that,

µt (B3R(x0)) ≤M

for all t ∈ [−τ, τ ], so for δ ↘ 0 the second difference on the right hand side
of (9.7) goes to 0 as well. So we obtain

lim sup
δ↘0

∫ δ

−δ

∫
BR(x0)

| ~H|2dµt dt ≤ 0.
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But for almost every t ∈ (−δ, δ) the integral
∫
Rn+k | ~H|2dµt is well defined and

positive, which implies that the limit exists and equals 0.
If now BR(x0) ⊂⊂ U there exists r < 3−1d(∂U,BR(x0)). Then we can

cover BR(x0) by a finite collection of Br(xi), xi ∈ BR(xi), i = 1, . . . , N . For
each i we have B3r(xi) ⊂⊂ U , so we can use the previous conclusions inside
these balls and estimate∫ δ

−δ

∫
BR(0)

| ~H|2dµt dt ≤
N∑
i=1

∫ δ

−δ

∫
Br(xi)

| ~H|2dµt dt→ 0

for δ → 0.

The main ingredient for the general regularity theorem will be the next
technical lemma. It basically says that if one considers the set of points x
where µt ”jumps” in a δ small parabolic ball around (t0, x), then the measure
of this set should vanish for δ ↘ 0. This lemma does not appear in [B], but
the main calculation, the one that leads to (9.10) below, is taken from [B,
6.12].

9.5 Lemma. For all R,L, τ ∈ (0,∞) the following holds: Let (µt)t∈[−R2,R2]

be a Brakke flow in B2R(0) which is continuous at time 0. Consider the set

D(τ, δ) := {x ∈ BR(0), D(x, δ) ≥ τ} , with

D(x, δ) := sup
φ∈C0,1

c (Bδ(x),[0,1]),lip(φ)≤δ−1L

sup
t∈(−δ2,δ2)

∣∣δ−nµt (φ)− δ−nµ0 (φ)
∣∣

for δ ∈ (0, R). Then H n
(⋂

δ∈(0,R) D(τ, δ)
)

= 0.

Now in addition assume there exists a subset A ⊂ BR(0) and a collection
of functions {ϑδ,x ∈ C0,1

c (Bδ(x), [0, 1]) , x ∈ A, δ ∈ (0, R)} with

lip(ϑδ,x) ≤ δ−1L and lim
δ↘0

δ−nµ0 (ϑδ,x) =: %(x) ∈ R

for all x ∈ A and all δ ∈ (0, R). Consider the set

E(τ, δ) :=

{
x ∈ A, sup

t∈(−δ2,δ2)

∣∣δ−nµt (ϑδ,x)− %(x)
∣∣ ≥ τ

}

for δ ∈ (0, R). Then H n
(⋂

δ∈(0,R) E(τ, δ)
)

= 0.

For the proof we need Vitali’s covering theorem found in [EG, 1.5.1] which
says:
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9.6 Theorem (Vitali Covering Theorem). Let R0 ∈ (0,∞) and (Bri(xi))i∈I
be a family of balls ri ∈ (0, R0), xi ∈ Rn for an arbitrary set of indices I.
Then there exists a countable subset J ⊂ I such that Bri(xi) ∩ Brj(xj) = ∅
for all i, j ∈ J and ⋃

i∈I

Bri(xi) ⊂
⋃
i∈J

B5ri(xi).

Proof of 9.5. Let R,L, τ ∈ (0,∞) be given. Consider δ ≤ 2−1R, then⋃
x∈D(τ,δ)

Bδ(x) ⊃ D(τ, δ). (9.8)

Thus by Theorem 9.6 we obtain a finite covering

N⋃
i=1

B5δ(bi) ⊃ D(τ, δ)

such that, the Bδ(bi) are disjoint and bi ∈ D(τ, δ) for all i ∈ {1, . . . , N},
where N ∈ N depends on δ. Here Vitali’s theorem first yields a countable
covering, but as D(τ, δ) is compact, we can choose finitely many balls, which
already cover D(τ, δ).

By definition of D(τ, δ) for every i ∈ {1, . . . , N} there exist a φi ∈
C0,1
c (Bδ(bi), [0, 1]) with lip(φi) ≤ δ−1L and a ti ∈ (−δ2, δ2) such that τ

2
δn ≤

|µti (φi)− µ0 (φi)| . Then by (3.1) and Proposition A.19 we can estimate

τ

2
δn ≤ |µti (φi)− µ0 (φi)|

≤ µ−δ2 (φi)− µδ2 (φi) + 2 sup
−δ2≤s1<s2≤δ2

|µs1 (φi)− µs2 (φi)|

≤ µ−δ2 (φi)− µδ2 (φi) + 2

∫ δ2

−δ2

∫
Bδ(bi)

|Dφi| | ~H|dµt dt

for every i ∈ {1, . . . , N}, where we used sptφi ⊂ Bδ(bi) and that Dφ exists
almost everywhere. Combined with (9.8) this lets us estimate the H n

10δ-
measure of D(τ, δ) by

H n
10δ (D(τ, δ)) ≤H n

10δ

(
N⋃
i=1

B5δ(bi)

)
≤ 5nωn

N∑
i=1

δn

≤ Cnτ
−1

(
N∑
i=1

(µ−δ2 (φi)− µδ2 (φi)) +

∫ δ2

−δ2

∫
Bδ(bi)

|Dφi| | ~H|dµt dt

)
.
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Then using |Dφi(x)| ≤ δ−1L for almost every x ∈ Bδ(bi) and the disjointness
of the Bδ(bi) yields

H n
10δ (D(τ, δ))

≤ Cnτ
−1

(
N∑
i=1

µ−δ2 (φi)− µδ2 (φi) + Lδ−1

∫ δ2

−δ2

∫
B2R(0)

| ~H|dµt dt

)
.

(9.9)

Now use the radial cut-off function ζ0(x) = ζ
(
|x|
2R

)
for x ∈ Rn+k, where ζ is

from Definition 9.1. By definition of ζ0 and δ ≤ 2−1R we have

B2R(0) ⊃⊃ sptζ0 ⊃ {ζ0 = 1} ⊃ B 3
2
R(0) ⊃ Bδ(bi) ⊃ sptφi

for all i ∈ {1, . . . , N}. So the disjointness of the Bδ(bi) yields

ζ0(x)−
N∑
i=1

φi(x) ≥ 0

for all x ∈ B2R. In particular this can be used as the test function in (3.1).
Then by (3.1) and Proposition A.19 we obtain

N∑
i=1

(µ−δ2 (φi)− µδ2 (φi))

= µ−δ2 (ζ0)− µδ2 (ζ0) + µδ2

(
ζ0 −

N∑
i=1

φi

)
− µ−δ2

(
ζ0 −

N∑
i=1

φi

)

≤ µ−δ2 (ζ0)− µδ2 (ζ0) +

∫ δ2

−δ2

∫
B2R(0)

∣∣∣∣∣D
(
ζ0 −

N∑
i=1

φi

)∣∣∣∣∣ | ~H|dµt dt.
As |Dφi| ≤ δ−1L and for δ ≤ (σ1L)−1R also |Dζ0| ≤ σ1(2R)−1 ≤ δ−1L we

can estimate
∣∣∣D (ζ0 −

∑N
i=1 φi

)∣∣∣ ≤ 2Lδ−1. Thus (9.9) becomes

H n
10δ (D(τ, δ))

≤ Cnτ
−1

(
(µ−δ2 (ζ0)− µδ2 (ζ0)) + Lδ−1

∫ δ2

−δ2

∫
V

| ~H|dµt dt

)
(9.10)

for all δ ∈ (0, (σ1L + 1)−1R), where V := sptζ0. Now let ε be given, then
there exists a δ1 ∈ (0, 1) depending on ε such that

H n

 ⋂
δ∈(0,R)

D(τ, δ)

 ≤H n
10δ0

 ⋂
δ∈(0,R)

D(τ, δ)

+ ε (9.11)
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for all δ0 ∈ (0, δ1]. Also as the flow is continuous at time 0 there exists
δ2 ∈ (0, 1) depending on ε such that

µ−δ2 (ζ0)− µδ2 (ζ0) ≤ ε (9.12)

for all δ ∈ (0, δ2]. As V = sptζ0 ⊂⊂ B2R, by Lemma 3.6 there exists an
M ∈ (1,∞) such that µt (V ) ≤ M for all t ∈ [−R2, R2]. Then use Hölder’s
estimate and Lemma 9.4 to obtain a δ3 ∈ (0, 1) depending on ε such that

δ−1

∫ δ2

−δ2

∫
B

| ~H|dµt dt ≤ Cn
√
M

(∫ δ2

−δ2

∫
B

| ~H|2dµt dt

) 1
2

≤ Cn
√
Mε (9.13)

for all δ ∈ (0, δ3]. Then combining (9.10)-(9.13) we conclude for δ0 =
min{δ1, δ2, δ3, (σ1L+ 1)−1R}

H n

 ⋂
δ∈(0,R)

D(τ, δ)

 ≤H n
10δ0

(D(τ, δ0)) + ε ≤ Cn(1 + τ−1)Mε

for all ε ∈ (0, 1) and letting ε go to 0 establishes the first result.
For the second part consider the set

A(r, δ) :=
{
x ∈ A,

∣∣δ−nµ0 (ϑδ,x)− %(x)
∣∣ ≥ r

}
for r ∈ (0,∞). Then for given τ ∈ (0,∞) we have

E(τ, δ) ⊂
(
D(2−2τ, δ) ∪ A(2−2τ, δ)

)
. (9.14)

To see this consider x ∈ E(τ, δ) \ A(2−2τ, δ). As x ∈ E(τ, δ) there has
to exist a t ∈ (−δ2, δ2) such that |δ−nµt (ϑδ,x)− %(x)| ≥ 2−1τ . Then, as
x /∈ A(2−2τ, δ), we can estimate∣∣δ−nµt (ϑδ,x)− δ−nµ0 (ϑδ,x)

∣∣ ≥ ∣∣δ−nµt (ϑδ,x)− %(x)
∣∣− ∣∣%(x)− δ−nµ0 (ϑδ,x)

∣∣
≥ 2−1τ − 2−2τ = 2−2τ

and as ϑδ,x ∈ C0,1
c (Bδ(x), [0, 1]) with lipϑδ,x ≤ δ−1L we see that x ∈ D(2−2τ, δ).

As we assumed limδ↘0 δ
−nµ0 (ϑδ,x) = %(x) we see that

⋂
δ∈(0,R) A(2−2τ, δ) =

∅. Thus (9.14) yields ⋂
δ∈(0,R)

E(τ, δ) ⊂
⋂

δ∈(0,R)

D(2−2τ, δ).

We have already seen that
⋂
δ∈(0,R) D(2−2τ, δ) has Hausdorff measure 0, which

establishes the result.
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Now we have all the ingredients to prove Brakke’s general regularity the-
orem

9.7 Theorem (General Regularity Theorem, [B, 6.12]). Let ρ ∈ (0,∞)
and (µt)t∈[−ρ2,ρ2] be a Brakke flow in B2ρ(0) which is continuous at time 0
and suppose µ0 is a unit density n-varifold. Then there exists a set S with
H n(S) = 0 such that the following holds: For every x ∈ Bρ(0)\S there exists
an r ∈ (0, ρ) such that either sptµt∩Br(x) = ∅ or sptµt∩Br(x) = Ft(B

n
r (0))

for a smooth family of embeddings Ft : (−r2, r2)×Bn
r (0)→ Rn+k.

Proof. Let S be the set of all x ∈ Bρ(0) for which there exists no such r. We
want to show H n(S) = 0. Consider the sets

V = {x ∈ Bρ(0), Θn(µ0, x) = θx = 1 ∧ ∃ Txµ0}
W = {x ∈ Bρ(0), Θn(µ0, x) = 0}.

As µ0 is a unit density varifold we have H n (Bρ(0) \ (V ∪W )) = 0 by Re-
mark (2.3). So it suffices to consider S ∩ V and S ∩ W and prove they
both have measure 0. We will do this by using the local regularity theo-
rem and the clearing out lemma respectively. Use the radial cut-off function
ζr,x(y) = ζ (r−1|y − x|) for x, y ∈ Rn+k, where ζ is from Definition 9.1. Set
$ :=

∫
Rn×{0}k ζ

2
1,0(y)dH n(y), then (1− 2−8)ωn ≤ $ ≤ ωn.

First we want to show H n(S ∩ V ) = 0. For Λ ∈ (1,∞), γ ∈ (0, 1) and
r ∈ (0,Λ−1ρ) consider

V1(r) =

{
x ∈ V, sup

t∈[−Λ2r2,Λ2r2]

r−n−1

∫
Br(x)

∣∣π⊥Txµ0
(y − x)

∣∣ ζr,x dµt ≥ γ

}

V2(r) =

{
x ∈ V, sup

t∈[−Λ2r2,Λ2r2]

∣∣r−nµt (ζr,x)−$
∣∣ ≥ ωn

4

}
.

By Theorem 9.2 we can fix Λ ∈ (1,∞) and γ ∈ (0, 1) such that

S ∩ V ⊂
⋂

r∈(0,(6Λ)−1ρ2)

(
V1(6r) ∪ V2((1 + 2−n−3)r) ∪ V2(r)

)
. (9.15)

To see this take an x ∈ V which is not in the larger set on the right. So there
exists r ∈ (0, (6Λ)−1R2) such that x is not in V1(3r)∪V2((1+2−n−3)r)∪V2(r)
which yields∫

B3r(x)

∣∣π⊥Txµ0
(y − x)

∣∣ dµt ≤ ∫
B6r(x)

∣∣π⊥Txµ0
(y − x)

∣∣ ζ6r,x(y)dµt ≤ γ(6r)n+1,

µt
(
B(1+2λ0)r(x)

)
≤ µt

(
ζ(1+2−n−3)r,x

)
≤ 5ωn

4
(1 + 2−n−3)nrn ≤ 3ωn

2
rn,

µt (Br(x)) ≥ µt (ζr,x) ≥
(
$ − ωn

4

)
rn ≥ ωn

2
rn
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for all t ∈ [−Λ2r2,Λ2r2] and 2λ0 := (1− 2−n−8)(1 + 2−n−3)− 1 ∈ (0, 2−n−3).
Here we used

Bδ(x) ⊃ sptζδ,x ⊃ {ζδ,x = 1} ⊃ B(1−2−n−8)δ(x) ⊃ B2−1δ(x).

Then by Theorem 9.2 with y0 = x, T = Txµ0 and R = r there exist Λ0 and
γ0 such that, if Λ2 ≥ Λ0 and γ ≤ 6−n−1γ0 we obtain that x /∈ S. This implies
(9.15).

By Remark 2.3 and as we have density 1 in x we obtain

lim
r↘0

r−n−1µ0

(∣∣π⊥Txµ0
(· − x)

∣∣ ζr,x)
= lim

r↘0
r−n

∫
Rn+k

∣∣∣∣π⊥Txµ0

(
y − x
r

)∣∣∣∣ ζ ( |y − x|r

)
dH n(y)

=

∫
Txµ0

∣∣π⊥Txµ0
(y)
∣∣ ζ (|y|) dH n(y) = 0,

for all x ∈ V . Then using Lemma 9.5 with R = ρ, τ = Λ−nγr, L = Λ(1+σ1),
δ = Λr, %(x) = 0 and ϑδ,x(y) = Λδ−1

∣∣π⊥Txµ0
(y − x)

∣∣ ζΛ−1δ,x(y) yields that⋂
r∈(0,Λ−1ρ) V1(r) has Hausdorff measure 0. Similarly by Remark 2.3 and as

we have density 1 in x we obtain

lim
r↘0

r−nµ0 (ζr,x) = lim
r↘0

r−n
∫
Rn+k

ζ

(
|y − x|
r

)
dµ0

=

∫
Txµ0

ζ (|y|) dH n(y) =

∫
Rn×{0}k

ζ1,0 dH
n = $,

Then using Lemma 9.5 with R = r, τ = 2−2Λ−nωn, L = Λσ1, δ = Λr, %(x) =
$ and ϑδ,x = ζΛ−1δ,x yields that

⋂
r∈(0,Λ−1ρ) V2(r) has Hausdorff measure 0.

Thus in view of (9.15) we conclude H n(S ∩ V ) = 0.
In the same way we can show H n(S ∩ W ) = 0. For β ∈ (0, 1) and

r ∈ (0, ρ) consider

W (r) =

{
x ∈ W, sup

t∈[−r2,r2]

δ−nµt (ζr,x) ≥ β

}
.

By Lemma 5.7 we can fix β ∈ (0, 1) such that

S ∩W ⊂
⋂

r∈(0,2−1ρ)

W (2r). (9.16)

To see this take an x ∈ W which is not in the set on the right. Then there
exists r ∈ (0,∞) such that x /∈ W (2r) which yields

µt (Br(x)) ≤ µt (ζ2r,x) ≤ βrn
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for all t ∈ [−2r2, 2r2]. Then by Lemma 5.7 with R = r, η = β, x0 = x and
t0 = −(8n)−1r2, we obtain that for all t ∈ [−(8n)−1r2 +Cnβ

2σr2, 2r2] we have

µt(Br(t)(x)) = 0,

where r(t) =
√
r2 − 4n(t− t0) and σ = 1

n+6
. In particular if we choose β

small enough such that Cnβ
2σ ≤ (8n)−1, we obtain that µ0(Br(0)(x)) = 0 and

as r(0) =
√
r2 − 2−1r2 ≥ 2−1r we see x /∈ S. This implies (9.16).

By definition of density (see Definition 2.1) and as we have density 0 in
x we obtain

0 ≤ lim
r↘0

r−nµ0 (ζr,x) ≤ lim
r↘0

r−nµ0 (Br(x)) = 0,

for all x ∈ W . Then using Lemma 9.5 with R = ρ, τ = γ, L = σ1, δ = r, ,
%(x) = 0 and ϑδ,x = ζδ,x yields that

⋂
r∈(0,ρ) W (r) has Hausdorff measure 0.

Thus in view of (9.16) we conclude H n(S ∩W ) = 0 which establishes the
result.
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10 Opening Holes

In this section we study how the area ratio of a Brakke flow inside a growing
cylinder behaves. Brakke observed that the increase can be controlled by a
bound on the height integral, see [B, 6.5]. We will reproduce his calculations
in a slightly different form, where we specify the exact dependence on the
growth rate of the cylinder. This leads to Proposition 10.4, which will be
used to show that for Brakke flows in narrow slabs, holes can open arbitrarily
fast, see Proposition 10.6.

10.1 Definition. Recall ζ ∈ C∞ ([0,∞), [0, 1]) from Definition 4.1. For
R ∈ (0,∞) we define

ζR(x) := ζ
((
R−1 |x̂|

))
for all x ∈ Rn+k. Also set $ :=

∫
Bn1 (0)×{0}k ζ

2
1dH

n.

This is as in Definition 7.1 with p = 1. Then as in Lemma 7.2 we have
again

10.2 Lemma. There exists a C ∈ (1,∞) such that for all R ∈ (0,∞) the
following holds:

1. for all x ∈ Rn+k

ζR(x) =

{
1 for 0 ≤ |x̂| ≤ (1− 2−n−8)R

0 for R ≤ |x̂| .

2. max {R sup |DζR|, R2 sup |D2ζR|} ≤ C.

3. R−n
∫
BnR(0)×{0}k ζ

2
RdH

n = $.

4. (1− 2−8)ωn ≤ $ ≤ ωn.

First we derive a bound for the time derivative of a growing test function
on a varifold. This is based on the first part of [B, 6.5].

10.3 Lemma. There exists a constant C ∈ (1,∞) such that for all R1, λ, γ
2 ∈

(0,∞), t1 ∈ R and every open subset U ⊂ Rn+k the following holds: Let µ be

an integral n-varifold in U with L2-integrable mean curvature vector ~H. Set
R(t) :=

√
R2

1 + λ(t− t1) and let t0 ∈ (t1 − λ−1R2
1,∞) be such that

sptµ ∩ CR(t0)(0) ⊂⊂ U (10.1)∫
CR(t0)(0)

|πRk(x)|2dµ ≤ γ2R(t0)n+2. (10.2)
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Then we can estimate∫
U

∂

∂t

(
ζ2
R(t)

) ∣∣∣
t=t0

dµ

≤ 1

2

∫
U

| ~H|2ζ2
R(t0)dµ+

λn

2R(t0)2

∫
U

ζ2
R(t0)dµ+ Cλ(λ+ 1)3γ2R(t0)n−2.

(10.3)

Proof. Fix a t0 ∈ (t1 − λ−1R2
1,∞) such that (10.1), (10.2) hold and setR =

R(t0). By definition 10.1 and R(t) we can calculate

2
∂

∂t

∣∣∣
t=t0

ζ2
R(t)(x) = 4ζR(x)ζ ′

(
R−1|x̂|

)
|x̂| ∂
∂t

∣∣∣
t=t0

R(t)−1

= −2ζR(x)ζ ′
(
R−1|x̂|

)
|x̂|R−3λ = −R−2λDζ2

R(x) · x̂

for all x ∈ Rn+k. At a point x where the approximate tangent space exists
we can use Remark 2.6.4 to obtain

divµ(ζ2
Rx̂) = ζ2

Rdivµ(x̂) +∇µζ2
R · x̂ ≤ nζ2

R +∇µζ2
R · x̂.

So we can estimate

∂

∂t

∣∣∣
t=t0

ζ2
R(t)(x) = − λ

2R2

(
∇µζ2

R · x̂+
(
Dζ2

R − πTxµ(Dζ2
R)
)
· x̂
)

≤ λ

2R2

(
nζ2

R − divµ(ζ2
Rx̂)−

(
Dζ2

R − πTxµ(Dζ2
R)
)
· (x̂− πTxµ(x̂))

)
for almost every x ∈ U , where we used Dζ2

R − πTxµ(Dζ2
R) ∈ T⊥x µ. Then by

Definition 2.5 and (10.1) we have∫
U

∂

∂t

(
ζ2
R(t)

) ∣∣∣
t=t0

dµ ≤ λ

2R2

(∫
U

ζ2
R(x) ~H(x) · x̂ dµ(x) + n

∫
U

ζ2
Rdµ

+

∫
U

|πRn − πTxµ|
2 |Dζ2

R(x)||x̂|dµ(x)

)
,

(10.4)

where we used Dζ2
R = πRn(Dζ2

R). Note that by (10.1) we can treat ζR like
a function in C∞c (U) here. By Theorem 2.7 we can use Remark A.7.1 and
combine this with Young’s inequality to obtain∫

U

ζ2
R(x) ~H(x) · x̂ dµ(x) =

∫
U

ζ2
R(x) ~H(x) · (πRn − πTxµ)x̂ dµ(x)

≤ R2

2λ

∫
U

ζ2
R| ~H|2dµ+

λ

2

∫
U

|πRn − πTxµ|
2 ζ2

Rdµ,
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where we estimated |x̂| ≤ R as sptζR ⊂ CR(0). Note that ζ2
R ≤ ζ

3
2
R and by

Proposition A.6.1 also |Dζ2
R||x̂| ≤ 2ζ

√
|D2ζR|ζR ≤ 2

√
σ1ζ

3
2
R for all x ∈ sptζR.

Thus (10.4) becomes∫
U

∂

∂t

(
ζ2
R(t)

) ∣∣∣
t=0
dµ ≤ 1

4

∫
U

ζ2
R| ~H|2dµ+

nλ

2R2

∫
U

ζ2
Rdµ

+
λ(4
√
σ1 + λ)

4R2

∫
U

|πRn − πTxµ|
2 |ζ

3
2
Rdµ.

(10.5)

Using Lemma A.13 with f = ζR, g = ζ
3
4
R and h = ζ

3
2
R , we have∫

U

|πRn − πTxµ|
2 ζ

3
2
Rdµ

≤ Cn

(∫
U

| ~H|2ζ2
Rdµ

∫
U

|πRk(x)|2ζ3
Rdµ

) 1
2

+ Cn

∫
U

|πRk(x)|2|∇µζ
3
4
R |

2dµ.

By Proposition A.6.1 we can estimate |∇µζ
3
4
R | ≤ ζ−

1
4

√
|D2ζR|ζ ≤

√
σ1R

−1ζ
1
4
R .

Then with 2
√
ab ≤ a+ b we obtain∫

U

|πRn − πTxµ|
2 ζ

3
2
Rdµ

≤ R2

λ(4
√
σ1 + λ)

∫
U

| ~H|2ζ2
Rdµ+ CnR

−2(λ(1 + λ) + 1)

∫
U

|πRk(x)|2ζ
1
2
Rdµ,

where we used ζ3
R ≤ ζ

1
2
R and σ1 is constant. Inserting into (10.5) yields∫

U

∂

∂t

(
ζ2
R(t)

) ∣∣∣
t=0
dµ ≤ 1

2

∫
U

ζ2
R| ~H|2dµ+

nλ

2R2

∫
U

ζ2
Rdµ

+ CnR
−4λ(1 + λ)(λ(1 + λ) + 1)

∫
CR(t0)(0)

|πRk(x)|2dµ,
(10.6)

where we used sptζR ⊂ CR(0). Finally we can estimate

CnR
−4λ(1 + λ)(λ(1 + λ) + 1) ≤ Cnλ(1 + λ)3R−4.

Then with assumption (10.2) and as R = R(t0) inequality (10.6) establishes
the result.

Now we can prove a bound for the measures inside expanding cylinders.
This is from [B, 6.5]. Here we give some more details and explicitly state
how the cylinder growth effects the measure bound.
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10.4 Proposition ([B, 6.5]). There exists a constant C ∈ (1,∞) such that
for all R1, λ, γ

2 ∈ (0,∞), t1 ∈ R, t2 ∈ (t1,∞) and every open subset U ⊂
Rn+k the following holds: Let (µt)t∈[t1,t2] be a Brakke flow in U with⋃

t∈[t1,t2]

sptµt ∩ CR(t2)(0) ⊂⊂ U, (10.7)

sup
t∈[t1,t2]

R(t)−n−2

∫
CR(t)(0)

|πRk(x)|2dµt ≤ γ2, (10.8)

where R(t) :=
√
R2

1 + λ(t− t1). Then

R(t)−nµt
(
ζ2
R(t)

)
≤ R−n1 µ0

(
ζ2
R1

)
+ C(λ−1 + λ3)γ2 log

(
R−1

1 R(t)
)

(10.9)

for all t ∈ [t1, t2].

Proof. For t ∈ [t1, t2] set

E(t) := R(t)−n
∫
U

ζ2
R(t)dµt.

We want to derive a differential inequality for E(t). By Lemma 10.3 with
t0 = s, and Lemma 3.10 with φ = ζ we can estimate

B
(
µs, ζ

2
R(s)

)
≤ −

∫
U

∂

∂t
ζ2
R(s)dµs +

λn

2
R(s)−2E(s) + Cn(1 + λ)4γ2R(s)n−2

for almost every s ∈ [t1, t2]. Thus by Proposition 3.8 we obtain

Dµs(ζ
2
R(s)) ≤

λn

2
R(s)−2E(s) + Cn(1 + λ)4γ2R(s)n−2

for almost every s ∈ [t1, t2]. Then with R′(s) = λ
2
R(s)−1 we conclude

DE(s) = −nR(s)−n−1R′(s)µs(ζ
2
R(s)) +R(s)−nDµs(ζ

2
R(s))

≤ Cn(1 + λ)4γ2R(s)−2 = Cn(λ−1 + λ3)γ2R′(s)R(s)−1

for almost every s ∈ [t1, t2]. Now this differential inequality can be integrated
using Proposition A.19 to see

E(t)− E(t1) ≤
∫ t

t1

DE(s)ds

≤ Cn(λ−1 + λ3)γ2

∫ t

t1

R′(s)R(s)−1ds

= Cn(λ−1 + λ3)γ2

∫ t

t1

∂

∂s
log(R(s))ds

= Cn(λ−1 + λ3)γ2 log
(
R−1

1 R(t)
)

for all t ∈ [t1, t2] and by definition of E(t) this establishes the result.
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Now this can be combined with the clearing out lemma 5.7 to show that
small holes become larger.

10.5 Lemma. There exist constants C ∈ (1,∞) and γ1 ∈ (0, 1)such that,
for all δ ∈ (0, 1], ρ ∈ (0,∞), γ0 ∈ (0, γ1], σ = 1

n+12
, for all s1, s2 ∈ R with

s2 − s1 ∈ (Cγ2σρ2, ρ] and every open subset U ⊂ Rn+k the following holds:
Let (µt)t∈[s1,s2] be a Brakke flow in U with

sptµt ∩ C3ρ(0) ⊂ B4ρ(0) ⊂⊂ U, (10.10)∫
C3ρ(0)

|πRk(x)|2dµt ≤ γ2
0δ
n+3ρn+2, (10.11)

µs1 (Cδρ(0)) = 0 (10.12)

for all t ∈ [s1, s2]. Then

sptµt ∩B3ρ(0) ∩ Cρ(0) = ∅ (10.13)

for all t ∈ [s1 + Cγ2σρ2, s2].

Proof. Consider an arbitrary s0 ∈ [s1 + γ2σρ2, s2]. Set λ := (9ρ2− δ2ρ2)(s0−
s1)−1 and ρ(t) :=

√
δ2ρ2 + λ|t− s1|. Then we see ρ(s0) = 3ρ and by (10.11)

ρ(t)−n−2

∫
Cρ(t)(0)

|πRk(x)|2dµt ≤ δ−n−2ρ−n−2

∫
C3ρ(0)

|πRk(x)|2dµt ≤ δγ2
0

for all t ∈ [s1, s0]. Thus we can use Proposition 10.4 with t1 = s1, t2 = s0,
γ2 = δγ2

0 and R1 = δρ to obtain

(3ρ)−nµs0(ζ2
3ρ) ≤ (δρ)−nµs1(ζ2

δρ) + Cn(λ−1 + λ3)δγ2
0 log(δ−1).

As C2r ⊂ {ζ3r = 1} ⊂ sptζ3r ⊂ C3r and with (10.12) we obtain

ρ−nµs0(C2ρ(0)) ≤ Cn(λ−1 + λ3)γ2
0

By choice of s0 and λ we have 1 ≤ λ ≤ Cnγ
−2σ
0 ≤ Cnγ

− 1
6

0 so we can estimate

ρ−nµs0(C2ρ(0)) ≤ Cnγ
2− 1

2
0 ≤ Cnγ0. (10.14)

Now we can use Lemma 5.7 with R = 4ρ, r = 2ρ, x0 = 0 and η = Cnγ0.
Note that sptΦ ⊂ C2ρ(0), so (10.14) implies (5.14). Then by Lemma 5.7 we
obtain a constant C0 such that

sptµt ∩BR(t) ∩ Cr(t) = ∅ (10.15)
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for all t ∈ [s0 + C0γ
2σ
0 ρ2, s2], where R(t) =

√
16ρ2 − 4n(t− s0) and r(t) =√

4ρ2 − 4n(t− s0). Note that the time interval may be empty. As γ0 ≤ γ1

we can estimate

2C0γ
2σ
0 ρ2 ≤ (4n)−1ρ2

for γ1 small depending on constants. Thus we obtain

R(s0 + 2C0γ
2σ
0 ρ2) ≥ 3ρ

r(s0 + 2C0γ
2σ
0 ρ2) ≥ ρ.

So if s0 + 2C0γ
2σ
0 ρ2 ≤ s2, equality (10.15) yields

sptµt ∩B3ρ ∩ Cρ = ∅

for t = s0+2C0γ
2σ
0 ρ2. Then as s0 was arbitrary in [s1+γ2σ

0 ρ2, s2], we conclude
that (10.13) holds for all t ∈ [s1 + (2C0 + 1)γ2σ

0 ρ2, s2] and for C ≥ (2C0 + 1)
this establishes the result.

To get rid of the bound (10.11) for all time, we can use Remark 3.12
which lets us replace this assumption by a mass bound and a slab condition
at the starting time. In this form the statement is very similar to White’s
expending hole theorem, see [W3, 4.1].

10.6 Proposition (Opening Holes). There exists a constant C ∈ (1,∞)
such that, for every β ∈ (0, 1] there exists a h0 ∈ (0, 1) such that, for all
r ∈ (0,∞),M ∈ [1,∞), h ∈ (0, h0], s0 ∈ R and Λ = Mh−2 the following
holds: Let (µt)t∈[s0,s0+n−1r2] be a Brakke flow in B3Λr(0) and suppose

sptµs0 ⊂
{
x ∈ B3Λr(0) : |πRk(x)| ≤M− 1

2hr
}
, (10.16)

µs0 (B5r(0)) ≤Mrn, (10.17)

µs0 (Cβr(0)) = 0. (10.18)

Then

sptµt ∩ Cr(0) ∩BΛr(0) = ∅ (10.19)

for all t ∈ [s0 + Chσr2, s0 + n−1r2], σ = 1
n+12

.

Proof. First we want to establish a height bound for later times. Fix an
arbitrary v ∈ {0}n × Rk with |v| = 1 and set x0 = M− 1

2hrv. Then (10.16)
yields

sptµt0 ⊂
{
x ∈ B2Λ(0) : (x− x0) · v ≤ 0

}
. (10.20)
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By Lemma 3.12.4 with U = B3Λr(0), t1 = s0, t2 = s0 + r2, R = 2Λr and

δ = M− 3
2h3 we obtain

sptµt ∩BΛr(0) ⊂
{
x ∈ B2Λr(0) : x · v ≤M− 1

2hr + 2M− 3
2h3Λr

}
(10.21)

for all t ∈ [s0, s0 + 4(6n)−1M− 3
2h3Λ2r2] ∩ [s0, s0 + n−1r2]. Here we estimated

M− 3
2h3 ≤ 6−1, as M ≥ 1 and h ≤ h0, for h0 small enough. Now as Λ = Mh−2

we have

2M− 3
2h3Λr = 2M−1hr

4(6n)−1M− 3
2h3Λ2r2 ≥ (6n)−1M

1
2h−1r2 ≥ n−1r2

where we used M ≥ 1 and h ≤ h0, for h0 small enough. Then as v was
arbitrary (10.21) yields

sptµt ∩BΛr(0) ⊂
{
x ∈ BΛr(0) : |πRk(x)| ≤ 3M− 1

2hr
}

(10.22)

for all t ∈ [s0, s0 + n−1r2]. As 3M− 1
2h ≤ 1 for h0 ≤ 3 this implies

sptµt ∩ C3r(0) ∩BΛr(0) ⊂ B4r(0) ⊂⊂ BΛr(0) (10.23)

for all t ∈ [s0, s0 + n−1r2].
Now we want to establish a measure bound for later times. By Lemma

3.12.2 with U = B3Λr(0), t1 = s0, t2 = s0 + r2, x0 = 0 R = 5r and κ = 1
5
, we

can estimate using (10.17)

µt (B4r(0)) ≤ Cnµ0 (B5r(0)) ≤ CnMrn (10.24)

for all t ∈ [s0, s0 +n−1r2]. Combined with (10.22) and (10.23) this establishes
the integral height bound∫

C3r(0)

|πRk(x)|2dµt ≤ Cnh
2rn+2 ≤ βn+3hrn+2,

for all t ∈ [s0, s0 + n−1r2], where we used h ≤ h0 for h0 small depending on
β. Then we can apply Lemma 10.5 to the restricted flow (µt BΛr(0)) with
ρ = r, s1 = s0, s2 = s0 + n−1r2, δ = β and γ2

0 = h. Note that due to the
restriction (10.23) verifies (10.10).

By Lemma 10.5 we obtain constants C0 and γ1 such that, for
√
h ≤
√
h0 ≤

γ1 and C ≥ C0 we have

sptµt ∩ Cr(0) ∩B3r(0) = ∅ (10.25)

for all t ∈ [s0 +Chσr2, s0 + n−1r2]. Then the result follows from (10.22) and

3M− 1
2h ≤ 1 as h ≤ h0 for h0 small enough.
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11 Plane-Like Varifolds

A further application of Brakke’s local regularity theorem is to show that
Brakke flows become graphical, provided the starting varifold is somehow
“plane-like”. First we introduce certain parameters that measure how “plane-
like ”a varifold is, see Definition 11.1. If the starting varifold is “plane-like
enough ”, that is if the parameters are chosen appropriately, this yields a
height bound and the necessary upper area ratio bounds required for Brakke’s
local regularity theorem 8.4. Now their are two possibilities. Either the lower
measure bound holds as well such that the theorem yields regularity, or there
exists a cylinder inside of which the flow has very small measure. In this case
this cylinder becomes empty after short time, that is void of the flow. This
is the main result of this section stated in theorem 11.7.

11.1 Definition. Let ρ ∈ (0,∞), l, h, ξ ∈ [0,∞), y0 ∈ Rn+k and S ⊂ Bn
ρ (ŷ0).

An integral n-varifold µ in Rn+k is called locally (ρ, S, l, γ, ξ)-plane-like around
y0, if there exists a function f ∈ C0,1

(
Bn
ρ (ŷ0) \ S,Rk

)
with

(sptµ ∩ Cρ(y0)) \
(
S × Rk

)
= graph(f), (11.1)

such that the following assumptions are satisfied:

lip(f) ≤ l, sup |f − πRk(y0)| ≤ γρ, (11.2)

µ(S × Rk) ≤ ξρn. (11.3)

A manifold M is called locally (ρ, S, l, γ, ξ)-plane-like around y0, if the asso-
ciated measure µ = H n M is locally (ρ, S, l, γ, ξ)-plane-like around y0.

11.2 Remark. 1. The varifold is more plane-like the smaller l, γ and ξ
are. A small ξ means the varifold is more graph-like, while small l and
γ induce flatness.

2. Note that for R, y0 and µ fixed one can choose different S to obtain
plane-likeness with different l, γ, ξ. Choosing S larger might increase ξ
but maybe allows smaller l and γ.

3. Let r,M,Γ ∈ (0,∞) and µ be an integer n-varifold in the slab Rn ×
Bk

Γ(0) with µ (CR(0)) ≤ Mrn. Suppose there exist R ∈ (r,∞), l ∈
(0,∞) and a function f ∈ C0,1

(
Bn
R(0) \Bn

r (0), Bk
Γ(0)

)
with lip(f) ≤ l

and

sptµ ∩ CR(0) \ Cr(0) = graph(f).

Then µ is (R,Bn
r (0), l,ΓR−1,MrnR−n)-plane-like around 0. In partic-

ular the last two parameters become arbitrary small for large R.
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4. Suppose µ is (ρ, S, l, γ, ξ)-plane-like around y0. Then µ is also (δρ, S ∩
Bn
δρ(ŷ0), l, δ−1γ, δ−nξ)-plane-like around y0 for every δ ∈ (0, 1].

In case µ has bounded mean curvature the measure µ(S × Rk) in (11.3)
can be bounded by L n(S) which is often nicer to estimate. This is a direct
consequence of the monotonicity formula in [S, 4.3.2].

11.3 Proposition. For every p ∈ (n,∞) there exists a P ∈ (1,∞) such that,
for all ρ,M ∈ (0,∞), l, γ, α ∈ [0,∞), δ ∈ [0, 1

2
] and every open subset U ∈

Rn+k the following holds: Let µ be an integral n-varifold in U with generalised
mean curvature vector ~H. Suppose µ (U) ≤Mρn,

∫
U
| ~H|pdµ ≤ αρn−p and

(sptµ ∩ Cρ(0)) ⊂ {x ∈ Cρ(0), |πRk(x)| ≤ γρ} ⊂⊂ U. (11.4)

Also suppose there exists a function f ∈ C0,1
(
Bn
ρ (0) \Bn

δρ(0), Bk
γρ(0)

)
with

lip(f) ≤ l and

sptµ ∩ Cρ(0) \ Cδρ(0) = graph(f). (11.5)

Then µ is (ρ,Bn
δρ(0), l, γ, ξ)-plane-like around 0 for ξ = P (M+α)(γ+δ)kδn−k.

11.4 Remark. In case n > k the measure bound ξ becomes arbitrary small
for small δ and fixed M,α, γ.

Let us recall the monotonicity formula:

11.5 Theorem (Monotonicity Formula, [S, 4.3.2]). For every R ∈ (0,∞),
α ∈ [0,∞), p ∈ (n,∞) and every open subset U ⊂ Rn+k with BR(0) ⊂⊂ U
the following holds: Let µ be an integral n-varifold in U with mean curvature
vector ~H and suppose

∫
BR(0)

| ~H|p dµ ≤ Γp, then

(
r−nµ (Br(0))

) 1
p −

(
R−nµ (BR(0))

) 1
p ≤ Γ

p− n

(
R

p−n
p − r

p−n
p

)
for all r ∈ (0, R).

Proof of Proposition 11.3. First we need to cover the set Bn
δρ(0)×Bk

γρ(0) by
balls. There exists an N ∈ N with N − 1 ≤ γδ−1 ≤ N . Define points
xa :=

∑k
j=1 ajδρen+j for a = (a1, . . . , ak) ∈ A := {−N, . . . , N}k. Then for

r :=
√

1 + kδρ we have

Bn
δρ(0)×Bk

γρ(0) ⊂
⋃
a∈A

Br(xa). (11.6)
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To see this let y ∈ Bn
δρ(0) × Bk

γρ(0). For j ∈ {1, . . . , k} choose any aj ∈
[δ−1ρ−1yn+j − 1, δ−1ρ−1yn+j + 1] ∩ {−N, . . . , N}, then

|y − xa| =

√√√√|ŷ|2 +
k∑
j=1

|yn+j − ajδρ|2

≤ δρ

√√√√1 +
k∑
j=1

|δ−1ρ−1yn+j − aj|2 ≤
√

1 + kδρ.

For each ball Br(xa) we can use Theorem 11.5 with R = ρ and Γp = αρn−p,
to estimate (

r−nµ (Br(xa))
) 1
p ≤M

1
p +

α
1
pρ

n−p
p

p− n
ρ
p−n
p ,

so

µ (Br(xa)) ≤ rn

(
M

1
p +

α
1
p

n− p

)p

≤ 2prn(M + (n− p)−pα)

≤ Cp(M + α)δnρn

for all a ∈ A and some Cp ∈ (1,∞) depending on n and p, where we used
r :=

√
1 + kδρ. Then with (11.6) and (11.4) we obtain

µ (Cδρ(0)) ≤
∑
a∈A

µ (Br(xa)) ≤ Cp|A|(M + α)δnRn

≤ CpN
k(M + α)δnRn ≤ Cp(M + α)(γδ−1 + 1)kδnRn,

where we used N ≤ 1 + γδ−1. For P large depending on n, k and p, this
establishes the result.

As we showed in section 5, the clearing out lemma can be used to obtain
a height bound, if the starting varifold has small measure above a certain
height. This can easily be applied to Brakke flows starting from a locally
plane-like varifold with small ξ.

11.6 Lemma. There exists a C ∈ (1,∞) such that for σ := 1
n+6

for all

ρ ∈ (0,∞), l ∈ [0,∞), γ, ξ ∈ (0, 1) τ ∈ (0, (16n)−1), s0 ∈ R, y0 ∈ Rn+k and
every S ⊂ Bn

ρ (ŷ0) the following holds: Let (µt)t∈[s0,s0+τρ2] be a Brakke flow in
Cρ(y0). Suppose µt0 is locally (ρ, S, l, γ, ξ)-graph-like around y0 then(

sptµt ∩ C ρ
2
(y0)

)
⊂
{
x ∈ B ρ

2
(y0) : |πRk(x− y0)| ≤ (16nτ + γ)ρ

}
(11.7)

for all t ∈ [s0 + Cξ2σρ2, τρ2]. Note that this interval is empty unless ξ is
sufficiently small.
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Proof. We may assume y0 = 0. As µs0 is locally (ρ, S, l, γ, ξ)-graph-like
around 0 we can use sup |f | ≤ γρ and (11.1) to see

µs0
(
Cρ(0) \ (Bn

ρ (0)×Bk
γρ(0))

)
≤ µs0

(
Cρ(0) ∩ (S × Rk)

)
thus by (11.3) we have

µs0
(
Cρ(0) \ (Bn

ρ (0)×Bk
γρ(0))

)
≤ ξρn

then using Lemma 5.9 with η = ξ, δ = 4τ , R = ρ
2
, t0 = s0 and Γ = γρ yields

the result.

11.7 Theorem (Local Graph Or Hole Alternative). There exist constants

C ∈ (1,∞), l, δ0 ∈ (0, 1) such that for all δ ∈ (0, δ0), ρ ∈ (0,∞), γ ∈ (0, δ
3
2 ),

ξ ∈ (0, (δ0δ)
n+6), s0 ∈ R, y0 ∈ Rn+k and every S ⊂ Bn

ρ (ŷ0) the following
holds:

Let (µt)t∈[s0,s0+3δ2ρ2] be a Brakke flow in Cρ(y0) and suppose µs0 is locally
(ρ, S, l, γ, ξ)-plane-like around y0. Then (at least) one of the following two
statements holds:

1. For I := [s0 +δ2ρ2, s0 +2δ2ρ2] and an f ∈ C∞
(
I ×Bn

δ0δρ
(ŷ0),Rk

)
, with

lip(f) ≤ C
√
δ, sup |f | ≤ Cδ

3
2ρ and

sptµt ∩ Cδ0δρ(y0) = graph(f(t, ·))

for all t ∈ I.

2. µs0+3δ2ρ2 (Cδ0δρ(y0)) = 0.

11.8 Remark. 1. Let C be the constant from A.4, then the only condi-
tions on l are l ≤ 2 and

√
1 + (kC)l2 < 8

5
. With slight modifications

in the proof, already
√

1 + (kC)l2 < 2 would be enough. In particular

in the case k = 1, we can choose l close to
√

3. Note that for higher l
we may need smaller δ.

2. Even for Brakke flows starting from a smooth locally graphical mani-
fold this is an interesting result, as it is not clear that such flows stay
graphical at all.

3. Both alternatives can be true for the same flow, for example if the flow
first becomes graphical and then vanishes abruptly. Actually this is the
only example we can think of.
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Proof. We may assume y0 = 0. Set 2σ := 2
n+6

=
(
n
2

+ 3
)−1

. Let δ ∈ (0, δ0],

ρ ∈ (0,∞), γ ∈ (0, δ
3
2 ), ξ ∈ (0, (δ0δ)

n+6), s0 ∈ R and S ⊂ Bn
ρ (0) be given.

First we want to establish a height bound. As µs0 is locally (ρ, S, l, γ, ξ)-

plane-like we can use Lemma 11.6 with y0 = 0 and τ = δ
3
2 to obtain(

sptµt ∩ C ρ
2
(0)
)
⊂
{
x ∈ C ρ

2
(0) : |πRk(x)| ≤ (16nδ

3
2 + γ)ρ

}
(11.8)

for all t ∈ [s0+Cnξ
2σρ2, s0+3δ2ρ2], where we used δ

3
2 ≤ (16n)−1 and δ

3
2 ≥ 3δ2,

as δ ≤ δ0 for δ0 small enough. Here we had to extend the Brakke flow by
setting µt = ∅ for all t ∈ (t0 +3δ2ρ2, δ

3
2ρ2], to use Lemma 11.6 with our choice

of τ . Consider some constant Λ0 ∈ (1,∞), which we will fix later depending
only on n and k. Set

R0 := (2Λ0)−
1
2 δρ

and use ξ2ρ ≤ δ0δ
2, γ ≤ δ

3
2 to obtain(

sptµt ∩ C ρ
2
(0)
)
⊂
{
x ∈ B ρ

2
(0) : |πRk(x)| ≤ C2

√
Λ0δR0

}
(11.9)

for all t ∈ [s0 + C1δ0Λ0R
2
0, s0 + 6Λ0R

2
0] for constants C1, C2 ∈ (1,∞)

Next we want to establish a measure bound. As µs0 is locally (ρ, S, l, γ, ξ)-
plane-like around 0, there exists a function g ∈ C0,1

(
Bn
ρ (0) \ S,Rk

)
with

lip(g) ≤ l and sup |g| ≤ γρ. Set G(ŷ) := (ŷ, g(ŷ)), by Proposition A.4 the
Jacobian of G is bounded by

JG(ŷ) ≤
√

1 + Cnl2

for all ŷ ∈ Bn
ρ (0). Then with (11.1), (11.3) and by ξ ≤ δn+6 we obtain

µs0 (Br(0)) ≤ µs0
(
Cr(0) \

(
S × Rk

))
+ µs0

(
S × Rk

)
≤ ωnr

n
√

1 + Cnl2 + δn+6ρn
(11.10)

for all r ∈ (0, ρ]. Note that
√

24nΛ0R0 = (12n)−
1
2 δρ ≤ ρ, as δ ≤ δ0 for δ0

small depending on Λ0. Then applying (11.10) with r =
√

24nΛ0R0 yields

µs0
(
B√24nΛ0R0

(0)
)
≤ ωn(

√
24nΛ0)nRn

0

√
1 + Cnl2 + δn+6ρn

≤ Cn(1 + δ6)Λ
n
2
0 R

n
0 ,≤ CnΛ

n
2
0 R

n
0

where we used R0 = CnΛ−
1
2 δρ and l, δ ≤ 1. Thus by Remark 3.12.2 with

R =
√

24nΛ0R0 and κ = 1
2

we can conclude

R−n0 µt (B2R0(0)) ≤ R−n0 µt
(
B√6nΛ0R0

(0)
)

≤ CnR
−n
0 µs0

(
B√24nΛ0R0

(0)
)
≤ C3Λ

n
2
0

(11.11)
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for all t ∈ [s0, s0 +6Λ0R
2
0] and a constant C3 ∈ (1,∞), where we used Λ0 ≥ 1.

Consider

t1 := s0 + C1δ0Λ0R
2
0,

λ0 := 2−n−4.

We want to show µt1B(1+2λ0)R0(0) ≤ 3
2
. By choice of λ0 we see (1 + 4λ0)R0 ≤

2Λ
− 1

2
0 δρ ≤ ρ, as δ ≤ δ0 for δ0 small depending on Λ0. Then applying (11.10)

with r = (1 + 4λ0)R0 yields

µs0
(
B(1+4λ0)R0(0)

)
≤ ωn(1 + 4λ0)nRn

0

√
1 + Cnl2 + δn+6ρn

≤ ωn(1 + 2−2)
√

1 + Cnl2R
n
0 + δ6

0Λ
n
2
0 R

n
0 ,

where we used R0 ≥ Λ
− 1

2
0 δρ and δ ≤ δ0. Thus for δ0 small depending on Λ0

and l small depending on n and k, we obtain

R−n0 µs0
(
B(1+4λ0)R0(0)

)
≤ 3

2
ωn. (11.12)

There exists a cut-off function φ ∈ C∞c
(
B(1+4λ0)R0(0), [0, 1]

)
with

B(1+4λ0)R0(0) ⊃ sptφ ⊃ {φ = 1} ⊃ B(1+2λ0)R0(0) (11.13)

and sup |D2φ| ≤ CnR
−2
0 . By (3.1) in view of Proposition A.19 and Remark

3.2.2 in view of sup |D2φ| ≤ CnR
−2
0 we can estimate

µt1(B(1+2λ0)R0(0)) ≤ µt1(φ) ≤ µs0(φ) +

∫ t1

s0

B(µt, φ)dt

≤ µs0 (φ) + Cnδ0Λ0 sup
t∈[s0,t1]

µt(sptφ)

≤ µs0
(
B(1+4λ0)R0(0)

)
+ Cnδ0Λ0 sup

t∈[s0,t1]

µt(B(1+4λ0)R0(0)),

where we used t1 − s0 = C1δ0Λ0R
2
0 and (11.13). By choice of λ0 we have

(1 + 4λ0)R0 ≤ 2R0 and for δ0 small enough we have t1 ≤ 6Λ0R
2
0. Then with

(11.11) and (11.12) we obtain

R−n0 µt1(B(1+2λ0)R0(0)) ≤ 3

2
ωn + Cnδ0Λ

1+n
2

0 ≤ 7

4
ωn ≤ (2− λ0)ωn, (11.14)

where we used λ0 = 2−n−4 and we chose δ0 small depending on Λ0
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If we would have a lower bound on µs0+5Λ0R2
0

(BR0(0)), then we could
apply the local regularity theorem. Let C5.7 be the constant from Lemma
5.7. We set

λ := min{λ0, ω
−1
n (8nC5.7)−

1
2σ },

t2 := s0 + 6Λ0R
2
0 − (8n)−1R2

0.

Case 1: Suppose

R−n0 µt2 (BR0(0)) ≥ λωn. (11.15)

Then we can apply Theorem 8.4 for our flow restricted to B2R0 with R = R0,

α = 1
2
, t1 = s0 + C1δ

2
0Λ0R

2
0, t2 = s0 + 6Λ0R

2
0 − (8n)−1R2

0, M = C3Λ
n
2
0 and

h = C2

√
Λ0δ. To see this let Λ depending on n and k and h0 depending

on Λ0 be from Theorem 8.4 corresponding to our choice of λ and M . Note
that as λ ≤ λ0, estimate (11.11) implies (8.104) by choice of M and (11.14)
combined with (11.15) imply (8.105). Moreover our height estimate (11.9)

implies (8.103), which also uses ρ
2
≥ (1 + 2λ)(2Λ0)−

1
2 δρ = (1 + 2λ)R0, as

δ ≤ δ0 for δ0 small depending on Λ0. Furthermore if Λ0 ≥ Λ we can estimate

t1 + ΛR2
0 = t0 + (C1δ

2
0Λ0 + Λ)R2

0 ≤ s0 + 2Λ0R
2
0 = s0 + δ2ρ

t2 − ΛR2
0 = s0 + (6Λ0 − Λ− (8n)−1)R2

0 ≥ s0 + 4Λ0R
2
0 = s0 + 2δ2ρ,

where we used R0 = (2Λ0)−
1
2 δρ, Λ0 ≥ 1 and δ0 small depending on n and

k. Thus we choose Λ0 ≥ Λ and δ0 ≤ C−2
2 h2

0Λ−1
0 , then Theorem 8.4 yields a

smooth function f ∈ C∞
(
I × CλR0(0),Rk

)
, with lip(f) ≤ Cn

√
Λ0δ, sup |f | ≤

Cn
√

Λ0δR0 and

sptµt ∩ CλR0(0) ∩B2R0(0) = graph(f(t, ·))

for all t ∈ I. Here the intersection with B2R0(0) is because we had to restrict
our flow. Actually this intersection is obsolete as in view of (11.9) we see
that

sptµt ∩ CλR0(0) ⊂ B2R0(0),

where we used R0 = (2Λ)−
1
2 δρ ≤ 2−2ρ, λ ≤ 1 and δ ≤ δ0 for δ0 small

depending on Λ0. As R0 = (2Λ0)−
1
2 δρ we can choose δ0 small and C large

enough depending on Λ0 and λ to establish the result in this case.
Case 2: Suppose

R−n0 µt2 (BR0(0)) < λωn.
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Then we can use Lemma 5.7 with R = r = R0, t0 = t2 = s0 + 6Λ0R
2
0 −

(8n)−1R2
0, x0 = 0 and η = λωn to obtain

µt
(
BR(t)(0)

)
= 0 (11.16)

for all t ∈ [t2 +C5.7(λωn)2σR2
0, s0 + 6Λ0R

2
0], where R(t) =

√
R2

0 − 4n(t− t2).
By choice of λ and t2, we have

t2 + C5.7(λωn)2σR2
0 ≤ t2 − (8n)−1 = s0 + 6Λ0R

2
0

Thus (11.16) holds for t = s0 + 6Λ0R
2
0 and

R(s0 + 6Λ0R
2
0) =

√
R2

0 − 2−1R2
0 ≥ 2−1R0.

As R0 = (2Λ)−
1
2 δρ ≥ 2δ0δρ for δ0 small depending on Λ0 this establishes

µs0+3δ2ρ2 (B2δ0δρ(0)) = 0. (11.17)

In view of (11.9) we see that

sptµs0+3δ2ρ2 ∩ Cδ0δρ(0) ⊂ B2δ0δρ(0),

where we used R0 = (2Λ)−
1
2 δρ and δ ≤ δ0 for δ0 small depending on Λ0. So

(11.17) establishes the second alternative of our statement.

The main drawback of Theorem 11.7 is that one only gets regularity, if
one can exclude the appearance of empty cylinders, that is cylinders which
do not contain the flow. A theorem in [W1] can help overcome this problem
under certain conditions. There White describes the topological changes that
may appear for a level set flow.

11.9 Definition. Consider t1 ∈ R, t2 ∈ (t1,∞). For a Brakke flow B =
(µt)t∈[t1,t2] in Rn+1 set

M(B) =
{

(t, x) ∈ [t1, t2]× Rn+1 : x ∈ sptµt
}
.

For an integral n-varifold µ set

B(µ) :=
{

(µt)t∈[t1,t2], Brakke flow in Rn+1 with µt1 = µ
}
.

A closed subsetM⊂ [t1, t2]×Rn+1 is called a level set flow in Rn+1, if there
exists an integral n-varifold µ such that

M =
⋃

B∈B(µ)

M(B).

A Brakke flow B = (µt)t∈[t1,t2] in Rn+1 corresponds to a level set flow ifM(B)
is a level set flow.

162



11.10 Theorem (Topological Change For Level Set Flow,[W1, 5.2]). Con-
sider t1 ∈ R and t2 ∈ (t1,∞). Let M be a closed subset of space-time
[t1, t2]× Rn+1 and let W be its complement. For s, s1, s2 ∈ [t1, t2] set

W [s] := {(t, x) ∈ W : t = s} ,
W [s1, s2] := {(t, x) ∈ W : s1 ≤ t ≤ s2} .

Suppose M is a level set flow, then the following holds: If X and Y are in
different connected components of W [t1], then they are in different connected
components of W [t1, t2].

11.11 Remark. 1. Note that the level set flow is only defined in the case
of co-dimension one.

2. For conditions implying that a Brakke flow corresponds to a level set
flow, see [I, 11.4].

11.12 Definition. Consider a subset U ⊂ Rm for some m ∈ N. We say two
points a, b ∈ U are path connected in U , if there exists a continuous function
γ : [0, 1]→ U with γ(0) = a and γ(1) = b.

Consider an integral n-varifold µ in Rn+1 and a, b ∈ Rn+1 \ sptµ. We say
an integral n-varifold µ separates a and b, if a and b are not path connected
in Rn+1 \ sptµ

11.13 Corollary. There exist constants C ∈ (1,∞), l, δ0 ∈ (0, 1) such that

for all δ ∈ (0, δ0), ρ,Γ ∈ (0,∞), γ ∈ (0, δ
3
2 ), ξ ∈ (0, δ0δ

n+6), s0 ∈ R,
y0 ∈ Rn+1 and every S ⊂ Bn

ρ (ŷ0) the following holds:
Let (µt)t∈[s0,s0+3δ2ρ2] be a Brakke flow in Rn × [−Γ,Γ] that corresponds to

a level set flow. Suppose µs0 is locally (ρ, S, l, γ, ξ)-plane-like around y0 and
separates (ŷ0,−2Γ) and (ŷ0, 2Γ).

Then for I := [s0 + δ2ρ2, s0 + 2δ2ρ2] and r := δ0δρ there exists a smooth

function f ∈ C∞
(
I ×Bn

r (ŷ0),Rk
)
, with lip(f) ≤ C

√
δ, sup |f | ≤ Cδ

3
2ρ and

sptµt ∩ Cr(y0) = graph(f(t, ·))

for all t ∈ I.

Proof. By Theorem 11.7 applied to µt CR(y0) we immediately obtain the
result or

µs0+3δ2ρ2 (Cδ0δρ(y0)) = 0, (11.18)

which we will lead to a contradiction.
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Let a := (ŷ0,−2Γ) and b := (ŷ0, 2Γ), by (11.18) we see, that a and b
are path connected in Rn+1 \ sptµs0+3δ2ρ2 . In particular (s0 + 3δ2ρ2, a) and
(s0 + 3δ2ρ2, b) belong to the same connected component of W [s0 + 3δ2ρ2].
As the whole flow is contained in Rn × [−Γ,Γ] we have (s0 + 3δ2ρ2, a) is
connected to (s0, a) and (s0 + 3δ2ρ2, b) is connected to (s0, b) in W [s0, s0 +
3δ2ρ2], thus (s0, a) and (s0, b) belong to the same connected component of
W [s0, s0 + 3δ2ρ2]. As the Brakke flow corresponds to a level set flow we can
use Theorem 11.10 to obtain that a and b are path connected in Rn+1\sptµs0
as well. This contradicts the fact that µs0 separates a and b.

Now we want to transfer our local results to Brakke flows that are defined
in all of Rn+k.

11.14 Definition. Let l,Γ,Ξ ∈ [0,∞) and S ⊂ Rn. An integral n-varifold
µ in Rn+k is called globally (S, l,Γ,Ξ)-plane-like, if there exists a function
f ∈ C0,1

(
Rn \ S,Rk

)
with

sptµ \
(
S × Rk

)
= graph(f), (11.19)

such that the following assumptions are satisfied:

lip(f) ≤ l, sup |f | ≤ Γ, (11.20)

sup
ŷ∈Rn

µ
(
(Bn

R(ŷ) ∩ S)× Rk
)
≤ ΞRn−1 ∀R ∈ [Ξ,∞). (11.21)

A manifold Mt is called globally (S, l,Γ,Ξ)-plane-like, if the associated mea-
sure µt = H n Mt is globally (S, l,Γ,Ξ)-plane-like.

11.15 Remark. 1. Let l,Γ,Ξ,∈ [0,∞) and S ⊂ Rn. Suppose µ is glob-
ally (S, l,Γ,Ξ)-plane-like. For ρ ∈ [Ξ,∞) and ŷ ∈ Rn estimate

µ
(
(Bn

ρ (ŷ) ∩ S)× Rk
)
≤ Ξρn−1 ≤ ρ−1Ξρn,

where we used ρ ≥ Ξ and (11.21). This implies that µ is locally
(ρ,Bn

ρ (ŷ) ∩ S, l, ρ−1Γ, ρ−1Ξ)-plane-like around every y ∈ Rn × {0}k.

2. For an integral n-varifold µ an S ⊂ Rn with µ(S × Rk) ∈ [0,∞), we
can set M := µ(S × Rk) and estimate

sup
y∈Rn

µ
(
(Bn

R(ŷ) ∩ S)× Rk
)
≤ µ(S × Rk) = M

n
n ≤ n
√
MRn−1

for all R ∈ [ n
√
M,∞) and all ŷ ∈ Rn. So (11.21) is verified for Ξ ≥ n

√
M .
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3. Property (11.21) basically says that S is n− 1-dimensional and µ does
not concentrate in S × Rk. In particular (11.21) can hold although
µ(S × Rk) =∞.

11.16 Lemma. There exists a C ∈ (1,∞) such that for all l,Γ,Ξ ∈ [0,∞),
T ∈ [CΞ2,∞) and S ⊂ Rn the following holds: Let (µt)t∈[0,T ] be a Brakke
flow in Rn+k. Suppose µ0 is globally (S, l,Γ,Ξ)-plane-like, then

sptµt ⊂
{
x ∈ Rn+k : |πRk(x)| ≤ CΞ + Γ

}
(11.22)

for all t ∈ [CΞ2, T ]

Proof. We want to apply Lemma 11.6. Set σ = 1
n+6

, let ρ ∈ [Ξ,∞) and

y ∈ Rn×{0}k. By Remark 11.15.1 we have µ0 is (ρ,Bn
ρ (ŷ)∩S, l, ρ−1Γ, ρ−1Ξ)-

plane-like around y. Thus we can use Lemma 11.6 with s0 = 0, y0 = y,
γ = ρ−1Γ, ξ = ρ−1Ξ and τ = (32n)−1 to obtain a C1 ∈ (1,∞) such that(

sptµt ∩ C ρ
2
(y)
)
⊂
{
x ∈ C ρ

2
(y) : |πRk(x)| ≤

(
1

2
+ ρ−1Γ

)
ρ

}
for all t ∈ [C1Ξ2σρ−2σ+2, (32n)−1ρ2], if T ≥ (32n)−1ρ2. Now choose ρ :=

(32nC1)
1

2σΞ = (32nC1)2n+12Ξ ∈ [Ξ,∞), this yields(
sptµt1 ∩ C ρ

2
(y)
)
⊂
{
x ∈ C ρ

2
(y) : |πRk(x)| ≤ (32nC1)2n+12Ξ + Γ

}
for t1 := (32n)−1ρ2 = (32n)−1(32nC1)4n+24Ξ2, if T ≥ (32n)−1(32nC1)4n+24Ξ2.
Thus for C := (32nC1)4n+24 and as y was arbitrary, we obtain a global slab
bound at time t1

sptµt1 ⊂
{
x ∈ Rn+k : |πRk(x)| ≤ CΞ + Γ

}
,

where we used
√
C ≤ C. Now we can use that a global slab bound is

maintained forever. Namely use Lemma 3.12.5 with t2 = T , x0 = ±(CΞ +
Γ)en+j and v = ±en+j for all j ∈ {1, . . . , k}. This establishes the result as
t1 ≤ CΞ2.

11.17 Proposition. For every ε ∈ (0, 1) there exist Λ ∈ (1,∞), l ∈ (0, 1)
such that, for all R ∈ (0,∞), Γ,Ξ ∈ (0, R], s0 ∈ R and S ⊂ Rn the following
holds: Let (µt)t∈[s0,s0+3ΛR2] be a Brakke flow in in Rn+k with µs0 is globally
(S, l,Γ,Ξ)-plane-like. Then (at least) one of the following two statements
holds:
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1. For I = [s0 +ΛR2, s0 +2ΛR2] there exists an f ∈ C∞
(
I × Rn,Rk

)
with

lipf ≤ ε and

sptµt = graph(f(t, ·))

for all t ∈ I.

2. There exists a y ∈ Rn+k with µs0+3ΛR2 (CR(y)) = 0

Proof. We may assume s0 = 0. Take δ0, l ∈ (0, 1) from Theorem 11.7. For
δ ∈ (0, δ0] set

ρ := δ−2n−12R

and let y ∈ Rn × {0}k, then as Ξ ≤ R ≤ ρ and δ ≤ 1 we can use Re-
mark 11.15.1, to see that µ0 is locally (ρ,Bn

ρ (ŷ) ∩ S, l, δ2n+12, δ2n+12)-plane-
like around y. Thus for every y ∈ Rn×{0}k we can use Theorem 11.7, which
leads to one of the following two alternatives

Alternative 1:
For I0 = [δ2ρ2, 2δ2ρ2], for every y ∈ Rn×{0}k there exists a smooth function
fy ∈ C∞

(
I × Cδ0δρ(y),Rk

)
with lip(fy) ≤ Cn

√
δ and µt∩Cδ2ρ(y) for all t ∈ I.

Then all these functions have to be parts of just one function f defined on
all Rn with graph(f(t, ·)) = sptµt for all t ∈ I.

Alternative 2:
There exists a y ∈ Rn × {0}k such that µ3δ2ρ2 (Cδ0δρ(y)) = 0.

Now fix δ small enough depending on ε such that lip(fy) ≤ ε. Then we
can choose Λ = δ−4n−22 to establish the result. δ0δρ ≥ R as δ ≤ δ0 and by
definition of ρ.
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12 Graphical Hypersurfaces

Here we want to apply the results from the previous section to smooth mean
curvature flow of hypersurfaces in Rn+1.

It turns out that for smooth mean curvature flow in a sufficiently narrow
slab the gradient decreases. This will be used in the proof of Proposition
12.13, which is similar to Theorem 11.7, but without the small bound on the
Lipschitz constant of the starting surface. To compensate for this we have
to assume that the flow stays plane-like for a certain time. The key result
here is Theorem 12.11, which says that a graphical representation can be
extended to later times and additionally yields, that the Lipschitz constant
of the extended graphical representation is small, if the flow lies in a narrow
enough slab. This is a consequence of White’s smooth regularity theorem
12.8, where the idea to use this was suggested to the author by Felix Schulze.

Recall the following definitions:

12.1 Definition. For an open subset Ω ⊂ Rn consider an embedding F ∈
C2 (Ω,Rn+1) and M = F (Ω). Let ν ∈ C2 (M,Rn+1) be a normal field on M .
For p ∈ Ω and x = F (p) we define:

1. The first fundamental form g(p) ∈ Rn×n by

gij(p) :=
∂

∂xi
F (p) · ∂

∂xi
F (p),

gij(p) :=
(
g−1(p)

)
ij

for all p ∈ Ω and all 1 ≤ i, j ≤ n.

2. The second fundamental form A(x) : Rn×n by

Aij(x) :=
∂2

∂xi∂xj
F (p) · ν(x),

Aij(x) :=
n∑
l=1

gil(p)Alj(x),

‖A(x)‖2 :=
n∑

i,j=1

Aij(x)Aji (x)

for all x ∈M and all 1 ≤ i, j ≤ n.

3. At points x ∈M where ν(x) · en+1 6= 0 we set

v(x) := (ν(x) · en+1)−1
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12.2 Remark. In the above setting with F (ŷ) = (ŷ, f(ŷ)) for some f ∈
C2 (Ω,R), we have for all w ∈ Rn, ŷ ∈ Ω and y = F (ŷ)

v(y) =
√

1 + |Df(ŷ)|2

|D2f(ŷ)| ≤
(
1 + |Df(ŷ)|2

) 3
2 ‖A(y)‖ .

For a proof see for example [CM, 4.1]

The following elementary results show that small curvature of M yields
bounds on the first two derivatives of parametrisations of M over its tangent
space. The next statement can be found in [CM, 2.4], which we formulate
slightly differently, as we do not use intrinsic balls.

12.3 Proposition ([CM, 2.4]). There exist C ∈ (1,∞) and ε0 ∈ (0, 1) such
that, for every ε ∈ (0, ε0] and every R ∈ (0,∞) the following holds: Let M be
an embedded C2-hypersurface in Rn+1 with 0 ∈ M and T0M = Rn. Suppose
M satisfies ∂M ∩B2R(0) = ∅ and

sup
M∩B2R(0)

‖A‖ ≤ εR−1 (12.1)

Then there exists a g ∈ C2 (Bn
R(0),R) with graph(g) ⊂M and

g(0) = 0, Dg(0) = 0, (12.2)

max{R−1 sup |g|, sup |Dg|, R sup |D2g|} ≤ Cε. (12.3)

Proof. Consider radii r ∈ (0, R), such an r is called proper, if there exists
a gr ∈ C2 (Bn

r (0),R) with gr(0) = 0, Dgr(0) = 0, graph(gr) ⊂ M and
E(gr) ≤ 5ε, where

E(g) := max{R−1 sup |g|, sup |Dg|, R sup |D2g|}.

Consider the set

I := {r ∈ (0, R] : r is proper}

By Proposition A.16 and Remark A.17 there exist r0 and gr0 ∈ C2 (Bn
R(0),R)

with gr0(0) = 0, Dgr0(0) = 0 and graph(gr0) ⊂ M . Then by Remark 12.2
and by (12.1) we can estimate

|D2gr0(0)| ≤ εR−1

and by continuity we can choose r0 a bit smaller, such that E(gr0) ≤ 2ε.
Thus there exists an r0 ∈ I.
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Let (rm)m∈N be a sequence in I with rm → r ∈ (0, R], we want to show r ∈
I. Let gm be the corresponding functions. As gm(0) = 0 and graph(gm) ⊂M
for all m ∈ N, we have

gm1(ŷ) = gm2(ŷ)

for all ŷ ∈ Bn
r̃ (0), r̃ = min{rm1 , rm2} for all m1,m2 ∈ N. Then for every

ŷ ∈ Bn
r (0) there exists m ∈ N with ŷ ∈ Bn

rm(0). Set gr := gm(ŷ), which
is well defined by above considerations. As E(gm) ≤ 5ε for all m we have
E(gr) ≤ 5ε. By gm(0) = 0 and Dgm(0) = 0 for all m also gr(0) = 0 and
Dgr(0) = 0. Furthermore as graph(gm) ⊂ M for all m and as M is closed,
we have graph(fr) ⊂M . Thus r is proper.

Now we want to show I is also open (relative in (0, R]). As (0, R] is
connected, this would establish the result.

Fix r ∈ I. There exists a function gr ∈ C2 (Bn
r (0),R) with gr(0) = 0,

Dgr(0) = 0, graph(gr) ⊂M and E(gr) ≤ 5ε. Let x ∈ ∂ (graph(gr)) ∩M . As
ε ≤ ε0, we can estimate |gr(x)| ≤ E(gr)r ≤ 5εr ≤ r, for ε0 ≤ 5−1. Then we
have x ∈ B2R(0) and as M contains no boundary points in B2R(0), we know
x is an inner point of M . Also as x is close to graph(gr) the normal cannot
be perpendicular, so

‖πRn − πTxM‖op < 1.

Thus we can use Proposition A.16 and Remark A.17.2, to obtain a small
δx such that, M ∩ Bδx(x) can be written as a graph over Rn. Then as
x ∈ ∂ (graph(gr)) ∩M was arbitrary and by compactness of ∂ (graph(gr))
there exists a small δ ∈ (0, 1), such that gr can be extended to some gr+δ ∈
C2
(
Bn
r+δ(0),R

)
with

graph(gr+δ) ⊂M.

It remains to show that E(gr+δ) ≤ 5ε. To do this we will show that E(gr)
is actually bounded by 4εR−1 which then yields E(gr+δ) ≤ 5ε for small δ.

By Remark 12.2 we have

|D2gr(ŷ| ≤
(
1 + |Dg(ŷ)|2

) 3
2 ‖A(y)‖

for all ŷ ∈ Bn
r (0). Then E(gr) ≤ 5ε and (12.1) yield

|D2gr(ŷ| ≤ 4εR−1,

for all ŷ ∈ Bn
r (0), where we used |Dg(ŷ)| ≤ 5ε ≤ 1, as ε ≤ ε0 for ε0 ≤ 5−1.

Using gr(0) = 0, Dgr(0) = 0 and the mean value formula we obtain

|Dgr(ŷ| ≤ 4ε, |gr(ŷ| ≤ 4εR
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for all ŷ ∈ Bn
r (0). Thus E(gr) ≤ 4ε, which yields E(gr+δ) ≤ 5ε, for δ small

enough.
So I is open (relative in (0, R]) and as (0, R] is connected this establishes

the result.

In the case where M = grap(f) Proposition 12.3 can be used to show
that the tilt of the tangent space yields a lower bound on the radius of the
cylinder in which one can parametrize over the tangent space.

12.4 Corollary. There exist C ∈ (1,∞) and ε0 ∈ (0, 1) such that, for all
ε ∈ (0, ε0], R,L ∈ (0,∞) and every x0 ∈ Rn+1 the following holds: Let
f ∈ C2 (Bn

2R(x),R) with (x̂0, f(x̂0)) = x0 and |Df(x̂0)| ≤ L. Suppose M =
graph(f) satisfies

sup
M
‖A‖ ≤ εR−1.

Let (bi)1≤i≤n be an orthonormal basis of Tx0M . Then there exists a local
parametrisation g ∈ C2 (Bn

R(0),R) with g(0) = 0 and

x = πTx0M
(x) + g (xb) ν(x0) + x0 (12.4)

n∑
i=1

ŷibi + g(ŷ)ν(x0) + x0 ∈M (12.5)

for all x ∈M ∩Cr(x0) and all ŷ ∈ Bn
R(0), where xb :=

∑n
i=1 ((x− x0) · bi) ei

and r = (2(1 + L2))−
1
2R. Furthermore g satisfies

g(0) = 0, Dg(0) = 0, (12.6)

max
{
R−1 sup |g|+ sup |Dg|+R sup |D2g|

}
≤ Cε. (12.7)

Proof. Define S ∈ SO(n+ 1) by

S(x) =
n∑
i=1

xibi + xn+1ν(x0).

Then S(Rn) = T0M and S(en+1) = ν(x0).
Let ε0 be from Proposition 12.3. As ε ≤ ε0 we can apply Proposition 12.3

to the manifold S−1(M − x0) to obtain a function g ∈ C2 (Bn
R(0),R), which

satisfies (12.6), (12.7) and graph(g) ⊂ S−1(M − x0). In particular

S(ŷ, g(ŷ)) + x0 =
n∑
i=1

ŷibi + g(ŷ)ν(x0) + x0 ∈M (12.8)
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for all ŷ ∈ Bn
R(0). This already verifies (12.5).

Set N := S(graph(g)) + x0, we know N ⊂ M and want to show M ∩
Cr(0) ⊂ N for r2 = (2(1 + L2))−1R2. Consider the set

Y := {ŷ ∈ Bn
r (x̂0) : (ŷ, f(ŷ)) ∈ N} .

As g(0) = 0 we see x̂0 ∈ N , so x̂0 ∈ Y . Consider ŷ ∈ Y , as y = (ŷ, f(ŷ)) we
have ∥∥πRn − πTyM∥∥op < 1.

Thus we can use Proposition A.16 and Remark A.17.2, to obtain a δ such
that Bn

δ (ŷ) ∩ Bn
r (x̂0) ⊂ Y . This shows that Y is relatively open in Bn

r (0),
and as Bn

r (0) is connected it suffices to show Y is relatively closed to obtain
Y = Bn

r (0) and thus the result.
Consider a sequence (ŷm)m∈N in Y with limn→∞ ŷm = ŷ0, ŷ0 ∈ Bn

r (x̂0).
For m ∈ N set ym := (ŷm, f(ŷm)), we want to exclude the case that (ym)
converges to a point in ∂N . For m ∈ N we know ŷm ∈ Y , so there exists
ŵm ∈ Bn

R(0) such that

ym = S(ŵn, g(ŵm)) + x0.

For ŵm we can estimate

|ŵm|2 ≤ |(ŵm, g(ŵm))|2 = |S(ŵm, g(ŵm))|2 = |ym − x0|2

= |ŷm − x̂0|2 + |f(ŷm)− x0 · en+1|2 ≤ r2 + |f(ŷm)− f(x̂0)|2

for all m ∈ N, where we used f(x̂0) = x0 · en+1 and ŷm ∈ N ⊂ Bn
r (x̂0). Then

we can use the mean value formula and |Df(x̂0)| ≤ L, to obtain

|ŵm|2 ≤ r2 + |Df(x̂0)|2|ŷm − x̂0|2 ≤ (1 + L2)r2 =
R2

2

for all m ∈ N, where we used r2 = (2(1 + L2))−1R2. Thus a subsequence of
the ŵm converges to some ŵ0 ∈ Bn

R
2

(x̂0). In particular g(ŵ0) is defined. By

continuity of f and g we can conclude

(ŷ0, f(ŷ0)) = lim
m→∞

ym = lim
m→∞

S(ŵn, g(ŵm)) + x0 = S(ŵ0, g(ŵ0)) + x0,

so (ŷ0, f(ŷ0)) ∈ N , which shows that Y is closed in Bn
r (x̂0). As we already

showed Y is open, non-empty and Bn
r (0) is connected this establishes the

result.
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Also for manifolds in a narrow slab Proposition 12.3 can be used to obtain
a tilt bound from small curvature.

12.5 Corollary. There exist C ∈ (1,∞) and ε1 ∈ (0, 1) such that, for all
ε ∈ (0, ε1], R ∈ (0,∞) and every x0 ∈ Rn+1 the following holds: Let M be an
embedded C2-hypersurface in Rn+1 with x0 ∈M and

M ⊂ Rn × [x0 · en+1 − εR, x0 · en+1 + εR]. (12.9)

Suppose M also satisfies ∂M ∩ C2R(x0) = ∅ and

sup
M∩C2R(x0)

‖A(x)‖ ≤ εR−1. (12.10)

Then
∣∣πTx0M

− πRn
∣∣ ≤ Cε.

Proof. Let (bi)1≤i≤n be an orthonormal basis of Tx0M . Define S ∈ SO(n+1)
by

S(x) =
n∑
i=1

xibi + xn+1ν(x0).

Then S(Rn) = Tx0M and S(en+1) = ν(x0).
Let ε0 be from Proposition 12.3. Let ε1 ≤ ε0, then we can apply Proposi-

tion 12.3 to the manifold S−1(M−x0), to obtain a function g ∈ C2 (Bn
R(0),R)

with g(0) = 0, sup |g| ≤ CnεR and graph(g) ⊂ S−1(M − x0). In particular

S(ŷ, g(ŷ)) + x0 =
n∑
i=1

ŷibi + g(ŷ)ν(x0) + x0 ∈M (12.11)

for all ŷ ∈ Bn
R(0).

For i ∈ {1, . . . , n} and r = R
2

define wi ∈ Rn × {0}k by

wi := πRn (S (rei, g(rei))) = πRn (rbi + g(rei)ν(x0)) .

Then we can estimate

|rbi − wi| ≤ |g(rei)ν(x0)|+ |rbi + g(rei)ν(x0)− wi|
= |g(rei)|+ |S (rei, g(rei)) · en+1|.

By (12.11) we have S (rei, g(rei)) + x0 ∈M , so by the slap condition (12.9)
and with sup |g| ≤ CnεR, we obtain

|rbi − wi| ≤ Cnεr

for all i ∈ {1, . . . , n}, where we used r = R
2

. Now set w̃i := r−1wi for
i = 1, . . . , n. Then |bi − w̃i| ≤ Cnε. In particular as ε ≤ ε1 for ε1 small
enough the w̃i form a basis of Rn. Then Lemma A.10.2 with T = Rn and
B = Tx0M establishes the result.
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We want to show: If (Mt) is a smooth mean curvature flow (see Definition
3.13) which is graphical inside a cylinder for a long period of time, then it
stays graphical in a much smaller cylinder for a little longer. To do so we
need local gradient and curvature estimates established in [EH2], see also
[E4].

12.6 Proposition ([EH2, 2.1]). Let R, T ∈ (0,∞), t0 ∈ R, x0 ∈ Rn+1

and (Mt)t∈[t0,t0+T ] be a smooth mean curvature flow in Rn+1. Suppose for
t ∈ [t0, t0 + (2n)−1R2] we have that v is well-defined inside B√

R2−2n(s−t0)
(x0)

for all s ∈ [t0, t]. Then the estimate

v(x)

(
1− |x− x0|2 + 2n(t− t0)

R2

)
≤ sup

Mt0∩BR(x0)

v

holds for all x ∈Mt ∩B√R2−2n(t−t0)
(x0).

12.7 Proposition ([EH2, 3.1]). There exists C ∈ (1,∞) such that for all
R ∈ (0,∞), the following holds: Let (Mt)t∈[−4R2,0] be a smooth mean curva-
ture flow in Rn+1 such that

Mt ∩ C2R(0) ∩B3R(0) = graph(ft)

for some ft : Bn
2R(0)→ R for all t ∈ [−4R2, 0]. Then the estimate

‖At(x̂, ft(x̂))‖2 ≤ C
(
(t+ 4R2)−1 +R−2

)
sup

(s,x̂)∈[−4R2,t]×Bn2R(x̂0)

vs(x̂, fs(x̂))4

holds for all x̂ ∈ Bn
R(0) and all t ∈ (−4R2, 0].

The main ingredient to sustain the graphical representability of (Mt) is
the regularity result by White from [W4]. The version presented here is taken
from [E4, 5.6]

12.8 Theorem ([W4]). There exist constants c ∈ (0, 1) and C ∈ (1,∞)
such that for all R ∈ (0,∞), t0 ∈ R and x0 ∈ Rn+k the following holds: Let
(Mt)t∈[t0−8R2,t0] be a smooth mean curvature flow in Rn+1. Suppose x0 ∈Mt0

and for some ρ ∈ (2R,∞)∫
Mt

Φ(s,x)ϕ(s,x),ρ ≤ 1 + c (12.12)

for all (s, x) ∈ [t0 − 4R2, t0]×B2R(x0) and t ∈ [s− 4R2, s). Then

‖At(x)‖ ≤ CR−1 (12.13)

for all t ∈ [t0−R2, t0] and x ∈Mt∩BR(x0). Here Φ and ϕ are from Definition
6.1.
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Using these results we can prove, that graphical representation for a long
time on a large region implies curvature bounds on a smaller region for a
shorter time period. This new time period where the curvature is bounded
exceeds the time where we assumed a graphical representation.

12.9 Lemma. There exists a C ∈ (1,∞) such that, for all L ∈ [1,∞),
r ∈ (0,∞), t1 ∈ R the following holds: Let (Mt)t∈[t1−C2L6r2,t1+r2] be an em-
bedded mean curvature flow in Rn+1. Suppose there exists an f ∈ C∞([t1 −
C2L6r2, t1]×Bn

CL3r(0),R) with sup |Df | ≤ L and

graph(f(t, ·)) = Mt ∩ CCL3r(0) ∀t ∈
[
t1 − C2L6r2, t1

]
. (12.14)

Then

sup
x∈Mt∩Br(0)

‖At(x)‖ ≤ r−1 ∀t ∈
[
t1 − r2, t1 + r2

]
. (12.15)

Proof. We may assume t1 = 0. As |Du| ≤ L we have v ≤ 2L, thus Proposi-
tion 12.7 with R = 2−1CL3r yields

‖At(x̂, ft(x̂))‖2 ≤ Cn
(
(t+ C2L6r2)−1 + C−2L−6r−2

)
L4

for all x̂ ∈ Bn
2−1CL3r(0) and all t ∈ (−C2L6r2, 0]. In particular this implies

‖At(x̂, ft(x̂))‖ ≤ CnC
−1L−1r−1

for all x̂ ∈ Bn
2−1CL3r(0) and all t ∈ (−2−1C2L6r2, 0]. Consider a γ ∈ (0, 1)

which we will choose small depending only on n. Set

R0 = γ−1r and ρ = γ−2r.

We can choose C large enough depending on γ such that

‖At(x̂, ft(x̂))‖ ≤ γ(Lρ)−1 (12.16)

for all x̂ ∈ Bn
16Lρ(0) and all t ∈ (−8R2

0, 0], where we estimated L3 ≥ L ≥ 1.
We want to use Theorem 12.8 with t0 = r2, x0 = 0, R = R0 = γ−1r

and ρ = γ−2r, so consider arbitrary (s, x) ∈ (r2 − 4R2
0, r

2] × BR0(0) and
t ∈ (s−4R2

0, s). We want to verify (12.12). Set τ = t−r2 then τ ∈ (−8R2
0, 0]

and by the monotonicity formula (6.2) we can estimate∫
Mt

Φ(s,x)ϕ(s,x),ρ ≤
∫
Mτ

Φ(s,x)ϕ(s,x),ρ. (12.17)
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By choice of s, τ , r = γR0 = γ2ρ and by definition of ϕ (see Definition 6.1)
we can estimate

2n(s− τ) ≤ 2n(4R2
0 + r2) ≤ 10nγρ ≤ ρ,

thus sptϕ(s,x),ρ(t, ·) ⊂ B2ρ(x) ⊂ B4ρ(0) and

sup |ϕ(s,x),ρ(τ, ·)| ≤ (1 + 10nγ)3 ≤ 1 + Cnγ,

where we chose γ small depending on n. Then (12.17) yields∫
Mt

Φ(s,x)ϕ(s,x),ρ ≤ (1 + Cnγ)

∫
B4ρ(0)

Φ(s,x)dµτ . (12.18)

As τ ∈ (−8R2, 0] and as we have small curvature at this time, one would
expect the heat kernel integral on the right hand side of (12.18) to be lower
than 1 + c as in (12.12), this will be shown next.

In view of (12.16) for γ small enough we can use Corollary 12.4 for the
manifold M C16Lρ(0) and with R = 8Lρ, ε = 8γ, x0 = 0 to obtain a
parametrisation gτ ∈ C2

(
Bn

8Lρ(0),R
)

with

gτ (0) = 0, Dgτ (0) = 0, sup |D2gτ | ≤ CnγL
−1ρ−1 (12.19)

and

x =
n∑
i=1

(x · bi)bi + gτ (xb)ντ (0) (12.20)

for all x ∈ Mτ ∩ C4ρ(0), where (bi)i=1,...,n is an orthonormal basis of T0Mτ ,
xb :=

∑n
i=1(x · bi)ei and ντ (0) is the normal pointing upwards. Here we

estimated r = (2(1 + L2)−
1
2R ≥ (4L2)−

1
2 8Lρ = 4ρ, where we used L ≥ 1. In

view of (12.19) the mean value formula yields

sup
Bn4ρ(0)

√
1 + |Dgτ |2 ≤

√
1 + CnL−2γ2. (12.21)

Using (12.20), we can calculate∫
B4ρ(0)

Φ(s,x)dµτ =

∫
Bn4ρ(0)

Φ(s,(xa,gτ (x̂))) (τ, (ŷ, gτ (ŷ))) Jgτ (ŷ)dL n(ŷ).

In view of the definition of the Jacobian in co-dimension one we obtain with
(12.21) and by definition of Φ (see Definition 6.1)∫

B4ρ(0)

Φ(s,x)dµτ ≤ sup
Bn4R0

(0)

√
1 + |Dgτ |2

∫
Rn

Φ(s,(xa,0))(τ, (ŷ, 0))dL n(ŷ)

≤
√

1 + CnL−2γ2 ≤ 1 + Cnγ
2,
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where we used L ≥ 1 and Cnγ
2 ≤ 1 for γ small enough. Then (12.18) yields∫

Mt

Φ(s,x)ϕ(s,x),ρ ≤ (1 + Cnγ)(1 + Cnγ
2)

and for γ small enough this implies (12.12). Then Theorem 12.8 yields

‖At(x)‖ ≤ CnR
−1
0

for all t ∈ [r2−R2
0, r

2] and x ∈Mt ∩BR0(0). Now as r = γR0 we can choose
γ small to establish the result.

We want to use this to show that we actually can expand the graphical
representation to later times. We will need the following smoothness estimate
from [E4, 3.22]:

12.10 Proposition. Fore every C0 ∈ (1,∞) there exists a C1 ∈ (1,∞) such
that for all R ∈ (0,∞), t0 ∈ R the following holds: Let (Mt)t∈[t0−4R2,t0] be a
smooth mean curvature flow in Rn+1. If

‖At(x)‖2 ≤ C0R
−2

for all x ∈Mt ∩B2R(0) and t ∈ [t0 − 4R2, t0], then∥∥∇MtA(t, x)
∥∥2 ≤ C1R

−4

holds for all x ∈Mt ∩BR(0) and t ∈ [t0 −R2, t0].

12.11 Theorem (Staying Graphical). There exists a C ∈ (1,∞) such that
for all L ∈ [1,∞), ρ,Γ ∈ (0,∞), s0 ∈ R and a = (â, an+1) ∈ Rn+1 the follow-
ing holds: Let (Mt)t∈[s0−C2L8ρ2,s0+ρ2] be an embedded mean curvature flow in

Rn+1. Suppose there exists an f ∈ C∞
(

[s0 − C2L8ρ2, s0]×Bn
CL4ρ(â)

)
with

sup |Df | ≤ L, sup |f − an+1| ≤ Γ and

graph(f(t, ·)) = Mt ∩ CCL4ρ(a) ∀t ∈
[
s0 − C2L8ρ2, s0

]
. (12.22)

Then there exists a g ∈ C∞
(
[s0 − ρ2, s0 + ρ2]×Bn

ρ (â)
)

with sup |g−an+1| ≤
Γ + ρ and

graph(g(t, ·)) = Mt ∩ Cρ(a) ∀t ∈
[
s0 − ρ2, s0 + ρ2

]
. (12.23)

Also g satisfies √
1 + sup |Dg|2 ≤ 2

√
1 + sup |Df |2. (12.24)

If in addition Γ ≤ L−1ρ, then sup |Dg| ≤ CL−1.
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Proof. We may assume a = 0 and s0 = 0. Let Mt = φt(N) for an n-
dimensional manifold N and a smooth family of embeddings φt = φ(t, ·) :
N → Rn+k. For given ρ ∈ (0,∞) set

R0 = (2
√
n+ 4)ρ.

Let x ∈ CR0(0). For C large enough we see that

B12nL4ρ(x) ⊂ CCL4ρ(0).

As Mt ∩ CCL4ρ(0) ⊂ Rn × [−Γ,Γ] we can use Lemma 3.12.4 with t0 = −ρ2,
x0 = (x̂, 0)± Γen+1, v = ±en+1, R = 12nL4ρ and δ = (12n)−1L−8 to obtain

Mt ∩B6nL4ρ(x) ⊂ Rn × [−Γ− L−4ρ,Γ + L−4ρ]

for all t ∈ [−ρ2, ρ2] and all x ∈ CR0(0). Thus

Mt ∩ CR0(0) ⊂ Rn × [−Γ− L−4ρ,Γ + L−4ρ] (12.25)

for all t ∈ [−ρ2, ρ2].
Let C1 be from Proposition 12.10 for C0 = 2−1. By Lemma 12.9 with

r = 8C2
1LR0 and t1 = ρ2 − r2 we obtain

‖At(x)‖ ≤
(
8C2

1LR0

)−1

for all t ∈ [ρ2 − 2(8C2
1LR0)2, ρ2] and x ∈ Mt ∩ C8C2

1LR0
(0). Here we had to

choose C big depending on C1 and the constant from Lemma 12.9. Then
Proposition 12.10 with R = 4C2

1LR0 and t0 = ρ2 yields∥∥∇MtAt(x)
∥∥ ≤ (LR0)−2

for all t ∈ [ρ2 − 4C4
1LR

2
0, ρ

2] and x ∈ Mt ∩ C4C2
1LR0

(0). This implies bounds
on the mean curvature as well, so we have

‖A(t, x)‖ ≤ (LR0)−1 (12.26)∥∥∇MtA(t, x)
∥∥ ≤ (LR0)−2 (12.27)

|H(x)| ≤ (LR0)−1 (12.28)

|∇MtH(x)| ≤ (LR0)−2 (12.29)

for all t ∈ [−ρ2, ρ2] and x ∈ Mt ∩ C4R0(0). Here we estimated C1 ≥ 1 and
R2

0 ≥ 2ρ2.
Temporarily fix x ∈ Ms ∩ CR0(0), s ∈ [−ρ2, ρ2] then there exists p ∈ N

with φ(s, p) = x. We want to show

φ(t, p) ∈ C3R0(0) (12.30)
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for all t ∈ [−ρ2, s]. Set

I :=
{
τ ∈ [−ρ2, s] : φ(t, p) ∈ C3R0(0) ∀ t ∈ [τ, s]

}
.

By definition of p and by continuity of φ, we have that I is non-empty and
closed. Consider τ ∈ I then by integrating (3.18) and using (12.28), we can
estimate

|φ(τ, p)− φ(s, p)| ≤
∫ s

τ

|H(φ(t, p))|dt ≤ (s− τ) (LR0)−1 ≤ R0,

where we used s − τ ≤ 2ρ2 ≤ R2
0 and L ≥ 1. As φ(s, p) ∈ CR0(0) we see

φ(τ, p) ∈ C2R0(0), so continuity of φ implies that I is relative open. Thus,
as [−ρ2, s] is connected we have I = [−ρ2, s]. This establishes (12.30). The
bound on Df yields v(φ(−ρ2, p)) ≤ 2L, so

ν−ρ2(φ(−ρ2, p))) · en+1 = (v(φ(−ρ2, p)))−1 ≥ (2L)−1. (12.31)

From Huisken [H1] we know d
dt
ν(φ(t, p)) = ∇MtH(φ(t, p)), so in view of

(12.30), we can use (12.29), to estimate∣∣νs(x)− ν−ρ2(φ(−ρ2, p))
∣∣ =

∫ s

−ρ2

∣∣∇MtH(φ(t, p))
∣∣ dt

≤ (s+ ρ2) (LR0)−2 ≤ (4L)−1,

where we used s + ρ2 ≤ 2ρ2 ≤ 4−1R2
0 and L ≥ 1. So in view of (12.31) we

showed |νs(x) · en+1| ≥ (4L−1) and by Proposition A.9 this yields

‖πTxMs − πRn‖op < 1 (12.32)

for all x ∈Ms ∩ CR0(0), s ∈ [−ρ2, ρ2].
Temporary fix s ∈ [−ρ2, ρ2]. As the normal always has a non-zero en+1-

component everywhere in CR0(0), we obtain that the number of sheets has
to be constant there, so

N(ŷ) := ] {x ∈Ms ∩ {ŷ} × [−Γ− ρ,Γ + ρ]} = m0 (12.33)

for every ŷ ∈ Bn
R0

(0) for a fixed m0 ∈ N ∪ {0}. This we want to prove now.
First note that the height bound Γ + R in (12.33) is no restriction, as by
(12.25) and L ≥ 1, we have Ms ∩ CR0(0) ⊂ Bn

R0
(0)× [−Γ− ρ,Γ + ρ].

We observe that N(ŷ) has to be finite. To see this note that {ŷ}× [−Γ−
ρ,Γ + ρ] is bounded. Also in view of (12.32), we can use Proposition A.16 to
see that the x in N(ŷ) have to be discrete, so N(ŷ) has to be finite for every
ŷ ∈ Bn

R0
(0).
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For m ∈ N ∪ {0} consider the set

Y (m) :=
{
ŷ ∈ Bn

R0
(0) : N(ŷ) = m

}
.

We want to show that Y (m) is open and closed for every m thus N(ŷ) would
have to be constant.

To show that Y (m) is open let ŷ ∈ Y (m). Then there exist different
x1, . . . , xm ∈ {ŷ} × [−Γ− ρ,Γ + ρ] with xi ∈Ms. In view of (12.32), we can
use Proposition A.16 to obtain an ri > 0 and a function gi ∈ C∞

(
Bn

2ri
(x̂i)

)
with g(x̂i) = xi, such that

x = (x̂, gi(x̂)) (12.34)

(v̂, gi(v̂)) ∈M (12.35)

for all x ∈ B2ri(xi) and for all v̂ ∈ Bn
2ri

(xi). To see this use Proposition A.16
with S = Id, x0 = xi and gi(v̂) = g(v̂ − x̂i) + xi.

Now consider the set

W := {ŷ} ×

(
[−Γ− ρ,Γ + ρ] \

n⋃
i=1

(xi · en+1 − 2ri, xi · en+1 + 2ri)

)
.

This describes all the points on the {ŷ}-axis, which are certainly away from
the xi. By choice of the xi we see that W ∩Ms = ∅, so as Ms is closed for
every x ∈ W there exists a radius r̃x such that Br̃x(x) ∩Ms = ∅. As W is
compact we find an r̃ ∈ (0, 1) such that Br̃(x)∩Ms = ∅ for all x ∈ W . Then
by definition of W we have

Ms ∩ Cr̃((ŷ, 0)) \
n⋃
i=1

B2ri(xi) = ∅. (12.36)

Set r = min{r̃, r1, . . . , rm}, by (12.34), (12.35) and (12.36) we see

N(x̂) = m

for all x̂ ∈ Bn
r (ŷ), this implies Y (m) is open for every m ∈ N ∪ {0}.

Now let ŷ /∈ Y (m), then ŷ ∈ Y (m̃) for some m̃ 6= m. But as we just
showed there exists an r ∈ (0, 1) such that N(x̂) = m̃ for all x̂ ∈ Bn

r (ŷ) thus
Y (m) has to be closed and as Bn

R0
(0) is connected this implies (12.33).

Equality (12.33) holds for every s ∈ [−ρ2, ρ2]. In view of assumption
(12.22) we see m0 = 1 for all times s ∈ [−ρ2, 0]. However, the number of
sheets cannot jump, so we have m0 = 1 for all the times. Then Mt ∩ CR0(0)
is a graph for all t ∈ [−ρ2, ρ2], such that we can find g as stated. Note that
g is actually defined on Bn

R0
(0) and satisfies the height bound from (12.33).
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To obtain the gradient bound (12.24) consider x ∈ Ms ∩ Cρ(0), s ∈
[0, ρ2].sup By definition of R0 we have B√4nρ(x) ⊂ CR0(0), in particular v
is well defined in Mt ∩ B√4nρ(x) for all t ∈ [0, s]. By Proposition 12.6 with

t0 = 0, x = x0 and R =
√

4nρ we can estimate

1

2
v(x) ≤ v(x)

(
1− 2ns

4nρ2

)
≤ sup

Ms0∩C4nρ2 (0)

v ≤
√

1 + sup |Df |2.

Then
√

1 + sup |Dg|2 ≤ 2
√

1 + sup |Df |2, where the sup of g is over the set
Bn
ρ (0). This completes the first result.

For the second part we assume

Γ ≤ L−1ρ.

Note that

sup |Dg| ≤ 2
√

1 + sup |Df |2 ≤ 4L. (12.37)

Let ε1 be from Corollary 12.5. If L ≤ 4ε−1
1 , we can estimate sup |g| ≤ 4L ≤

16ε−2
1 L−1, thus the second result follows for C ≥ Cnε

−2
1 .

Now suppose L ≥ 4ε−1
0 . Consider x ∈ Mt ∩ C3ρ(0), then (12.25) and

(12.26) imply (12.9) and (12.10) with ε = L−1 and R = ρ. Here we use
R0 ≥ ρ and L ≥ 1. Then Corollary 12.5 yields

|πTxMt − πRn| ≤ CnL
−1 (12.38)

for all x ∈ Mt ∩ C3ρ(0) and all t ∈ [−ρ2, ρ2]. By Proposition A.12.1 we can
estimate

sup |Dg(t, x)| ≤ Cn |πTxMt − πRn| (1 + sup |Dg(t, x)|)2.

Combining this with (12.38) we arrive at

sup |Dg(t, x)| ≤ CnL
−1(1 + sup |Dg(t, x)|). (12.39)

Now by (12.37) and (12.39) we obtain sup |Dg(t, x)| ≤ Cn. Then using
(12.39) again yields sup |Dg(t, x)| ≤ CnL

−1.

Now recursively using Theorem 12.11 we see that the time interval for
which we obtain graphical representation can be arbitrarily large, if we start
with graphical representation in a large enough cylinder.
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12.12 Proposition. There exists a C ∈ (1,∞) such that for all L0 ∈ [1,∞),
ρ0,Γ0 ∈ (0,∞), τ ∈ (0, 1], t0 ∈ R, b = (b̂, bn+1) ∈ Rn+1 the following holds:
Let (Mt)t∈[t0−τ2ρ2

0,t0+ρ2
0] be an embedded mean curvature flow in Rn+1. Suppose

there exists an f ∈ C∞([t0 − τ 2ρ2
0, t0] × Bn

CL8
0τ
−1ρ0

(b̂) with sup |Df | ≤ L0,

sup |f − bn+1| ≤ Γ0 and

graph(f(t, ·)) = Mt ∩ CCL8
0τ
−1ρ0

(b) ∀t ∈
[
t0 − τ 2ρ2

0, t0
]
. (12.40)

Then exists a g ∈ C∞
(

[t0, t0 + ρ2
0]×Bn

ρ0
(b̂)
)

with sup |g − bn+1| ≤ Γ0 + ρ0

and

graph(g(t, ·)) = Mt ∩ Cρ0(b) ∀t ∈
[
t0, t0 + ρ2

0

]
. (12.41)

Also g satisfies √
1 + sup |Dg|2 ≤ 2

√
1 + sup |Df |2. (12.42)

If in addition Γ0 ≤ C−1τL−5
0 ρ0, then sup |Dg| ≤ L−1

0 .

Proof. We may assume t0 = 0 and b = 0. Let C12.11 be the constant from
Theorem 12.11. Set

L := 4C12.11L0.

Choose N ∈ N such that

C2
12.11L

8τ−2 ≤ N < 2C2
12.11L

8τ−2, (12.43)

then set

ρ2 := N−1ρ2
0.

The idea is to iterate the previous theorem with radius ρ. With each iteration
step we can continue g by a time interval of length ρ2, but inside a cylinder
with radius decreased by C12.11L

4ρ. For i ∈ {0, . . . , N} set

ri := 2−2CL8
0τ
−1ρ0 − i(C12.11L

4ρ+
√

4nρ0). (12.44)

This will be the radius of the cylinder in which we have graphical rep-
resentation after the i-th step. By Definition of ρ and (12.43) we have
Nρ =

√
Nρ0 ≤ 2C12.11L

4τ−1ρ0. Then we can estimate

ri ≥ rN ≥ 2−2CL8
0τ
−1ρ0 − C2

12.11L
8τ−1ρ0 −

√
4nρ0 ≥ ρ0 (12.45)
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for all i ∈ {0, . . . , N}, where we used L = CnL0, L0 ≥ 1 and we chose C
large enough.

We claim that for every i ∈ {0, . . . , N} the following holds: There exists
a function gi ∈ C∞

(
[(i− 2)ρ2, iρ2]×Bn

ri
(0)
)

with sup |gi| ≤ Γ0 + iρ,

graph(gi(t, ·)) = Mt ∩ Cri(0) ∀t ∈
[
−τ 2ρ2

0, iρ
2
]

(12.46)

and √
1 + sup |Dgi|2 ≤ 2

√
1 + sup |Df |2. (12.47)

We will prove this by induction. For i = 0 we can use g0 = f Cr0 , which
satisfies (12.46) and (12.47).

Now suppose our claim holds for some i ∈ {0, . . . , N − 1}. In particular
by (12.47) and sup |Df | ≤ L0 we have sup |Dgi| ≤ 4L0 ≤ L. Fix an arbitrary
y ∈ Bn

ri+1+
√

4nρ0
(0)× {0}. By (12.44) we have

CC12.11L3ρ(y) ⊂ Cri(0).

Also by ρ2 = Nρ2
0 and (12.43) we see that

iρ2 − C2
12.11L

6ρ2 ≥ −τ 2ρ2
0.

Theorem 12.11 with f = gi, Γ = Γ0 + iρ, s0 = iρ2 and a = y then yields a
function gy ∈

(
[(i− 1)ρ2, (i+ 1)ρ2]×Bn

ρ (ŷ)
)

with

graph(gy(t, ·)) = Mt ∩ Cρ(y) ∀t ∈
[
(i− 1)ρ2, (i+ 1)ρ2

]
and as y ∈ Bn

ri+1+
√

4nρ0
(0) × {0} was arbitrary and the gy overlap we can

assemble them to one g̃ ∈
(

[(i− 1)ρ2, (i+ 1)ρ2]× Cn
ri+1+

√
4nρ0

(0)
)

with

graph(g̃(t, ·)) = Mt ∩ Cri+1+
√

4nρ0
(0) ∀t ∈

[
(i− 1)ρ2, (i+ 1)ρ2

]
.

As by induction hypothesis gi is defined for all times [−τ 2r2, (i + 1)ρ2] we

obtain a gi+1 ∈
(

[−τ 2R2, (i+ 1)ρ2]×Bn
Ri+1+

√
4nR

(0)
)

that satisfies (12.46)

actually on the larger cylinder CRi+1+
√

4nρ0
(0).

To verify (12.47) consider x ∈ Ms ∩ Cri+1
(0), s ∈ [0, (i + 1)ρ2]. By

definition of ri+1 we have B√4nρ0
(x) ⊂ Cri+1+

√
4nρ0

(0), in particular v is well

defined in Mt ∩ B√4nρ(x) for all t ∈ [0, (i + 1)ρ2]. By Proposition 12.6 with

x = x0, t0 = 0 and R =
√

4nρ0 we can estimate

1

2
v(x) ≤ v(x)

(
1− 2ns

4nρ2
0

)
≤ sup

Ms0∩C4nρ20
(x)

v ≤
√

1 + sup |Df |2

182



where we used s ≤ Nρ2 = ρ2
0. Then

√
1 + sup |Dgi+1|2 ≤ 2

√
1 + sup |Df |2,

where the sup of gi+1 is over the set Bn
Ri+1

(0). This completes the induction
argument and thus yields the first result.

Now suppose Γ0 ≤ C−1τL−5
0 ρ0. By assumption (12.40) we have

Mt0−τ2ρ2
0
∩ CCL8

0τ
−1ρ0

(0) ⊂ Rn × [−Γ0,Γ0].

Then we can use Lemma 3.12.4 with t0 = −τ 2ρ2
0, x0 = ±Γ0en+1, v = ±en+1,

R = CL8
0τ
−1ρ0 and δ = 12nC−2L−16

0 τ 2 to obtain

Mt ∩B2−1CL8
0τ
−1ρ0

(0)

⊂ Rn × [−Γ0 − 12nC−1L−8
0 τρ0,Γ0 + 12nC−1L−8

0 τρ0]
(12.48)

for all t ∈ [−τ 2ρ2
0,−τ 2ρ2

0 + 2ρ2
0] ∩ [−τ 2ρ2

0, ρ
2
0]. Here we used that as L0 ≥ 1,

τ ≤ 1 and that for C large enough δ = 12nC−2L−16
0 τ 2 ≤ 6−1. Then with

Γ0 ≤ C−1τL−5
0 ρ0 we can estimate

Γ0 + 12nC−1L−8
0 τρ0 ≤ CnC

−1L−5
0 τρ0 ≤ CnC

−1L−1ρ ≤ L−1ρ,

where we used Nρ2 = ρ2
0, L = 4L0, C,L0 ≥ 1, and estimate (12.43). Also we

chose C large enough. Then (12.48) yields

Mt ∩ C2−2CL8
0τ
−1ρ0

(x) ⊂ Rn × [−L−1ρ, L−1ρ]

for all t ∈ [−τ 2ρ2
0, ρ

2
0], where we also used τ ≤ 1. Note that for ri from

(12.44), we have ri ≤ 2−2CL8
0τ
−1ρ0 for all i ∈ {0, . . . , N}. So all the gi in the

above induction argument satisfy the bound sup |gi| ≤ L−1ρ. Then in each
induction step we can additionally use the second statement of Theorem
12.11 to obtain sup |Dgi| ≤ C12.11L

−1 ≤ L−1
0 for all i ∈ {1, . . . , N}. This

establish the result.

Now we can use these statements to prove new versions of Theorem 11.7
and Proposition 11.17. We start with the local result (recall Definition 11.1).

12.13 Proposition. For every ε ∈ (0, 1) there exist λ, κ ∈ (0, 1) such that
for all R ∈ (0,∞), L0 ∈ [1,∞), β ∈ (0, 1], γ0 ∈ (0, βλL−6

0 ], ξ0 ∈ (0, λ],
r ∈ (0, λL−1

0 R] t0 ∈ R, x0, a0 ∈ Rn+1 the following holds:
Let (Mt)t∈[t0−β2R2,t0+3κR2] be an embedded mean curvature flow in Rn+1

with
⋃
t∈[t0−β2R2,t0+3κR2] ∂Mt∩C2R(x0) = ∅. Suppose for all t ∈ [t0−β2R2, t0]

we have: Mt is locally (R, St, L0, γ0, ξ0)-plane-like around x0 for some St ⊂
Bn
R(0) ∩Bn

r (â0). Then one of the following two statements holds:
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1. For I := [t0 + κR2, t0 + 2κR2] there exists an g ∈ C∞ (I ×Bn
λR(x̂0)),

with lip(g) ≤ ε, sup |g| ≤ εR and

sptµt ∩ CλR(x0) = graph(g(t, ·))

for all t ∈ I.

2. µt0+3κρ2 (CλR(x0)) = 0.

12.14 Remark. We believe that an argumentation like in Corollary 11.13
can be used to exclude the appearance of empty cylinders as in alternative
(2). In particular a result like Theorem 11.10 should hold for smooth mean
curvature flows as well.

Proof. We may assume t0 = 0 and x0 = 0.
Let l be the constant from Theorem 11.7 we want to show thatM0 actually

is locally (R, S, l, γ0, ξ)-plane-like around 0 for some small S ⊂ Bn
R(0) and

small ξ. So we have to show that the Lipschitz constant is actually smaller
at least on the major part of Bn

R(0). To see this we will use Theorem 12.11.
There the statement for the smaller gradient is obtained by a small height
bound, which we have on the graphical part.

As for all t ∈ [−R2, 0] we have Mt is locally (R, St, L0, γ0, ξ0)-plane-like
around 0 for some subset St ⊂ Bn

R(0) ∩ Bn
r (â0) there exists a function f ∈

C∞ ([−R2, 0]×Bn
R(0) \Bn

r (â0)) with lip(f) ≤ L0, sup |f | ≤ γ0R and

Mt ∩ CR(0) \ Cr(a) = graphf(t, ·) ∩ CR(0) \ Cr(a0). (12.49)

Let C12.11 be the constant from Theorem 12.11. Consider the radius

r1 := C−1
12.11L

−5
0

√
λβR

By choice of variables the sup bound of f implies

sup |f | ≤ γ0R = γ0C12.11L
5
0λ
− 1

2β−1r1 ≤ C12.11

√
λL−1

0 r1 ≤
3
√
λL−1

0 r1, (12.50)

where we used γ0 ≤ βλL−6
0 and we chose λ small depending on C12.11. Con-

sider

y ∈ Bn
R
2
(0) \Bn

r1+
√
λL−1

0 R
(â0)× {0}.

By choice of r1 we have C12.11L
4
0r1 =

√
λL−1

0 βR. Then by β ≤ 1, L0 ≥ 1 and
for
√
λ ≤ 2−1 we see

CC12.11L4
0r1

(y) ⊂ CR(0) \ Cr(a0).
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By choice of r1 we also have −C2
12.11L

8
0r

2
1 = −β2λL−2

0 R2 ≥ −β2R2, as
λ, L−1

0 ≤ 1. In view of (12.49) and (12.50), we can use Theorem 12.11

with a = y, s0 = 0, L = λ−
1
3L0 and ρ = r1 to obtain |Df(0, ŷ)| ≤ Cn

3
√
λL−1

0 .
Then as y was arbitrary we have

|Df(0, ŷ)| ≤ l (12.51)

for all ŷ ∈ Bn
R
2

(0) \ Bn
r+
√
λL−1

0 R
(â0), where we used L0 ≥ 1 and we chose λ

small depending on Cn and l. This establishes the desired Lipschitz bound
but only outside Bn

r+
√
λL−1

0 R
(â0). Next we want to establish a bound for the

µ0 measure of this set.
AsM0 is locally (R, S0, L0, γ, ξ0)-plane-like around 0 for some S0 ⊂ Bn

R(0)∩
Bn
r (â0) we obtain an f̃ ∈ C∞ (Bn

R(0) \ S0) with lip(f) ≤ L0 and

M0 ∩ CR(0) \ S0 × R = graphf̃ (12.52)

and also

µ0 (S0 × R) ≤ ξ0R
n. (12.53)

Consider the set

S = Bn
R
2
(0) ∩Bn

r+
√
λL−1

0 R
(â0).

With (12.52) and (12.53) we can estimate

µ0 (S × R) ≤ µ0 (S0 × R) +

∫
S\S0

√
1 + |Df(ŷ)|2dL n(ŷ)

≤ ξ0R
n + CnL0

(
r +
√
λL−1

0 R
)n
.

Thus by ξ0 ≤ λ, r = λL−1
0 R and L0 ≥ 1

µ0 (S × R) ≤ ξ0R
n + CnL0

(
r +
√
λL−1

0 R
)n

≤ Cn
√
λRn = Cn

√
λ2−nRn.

(12.54)

In view of (12.49), (12.51) and (12.54), we see that for S = Bn
r+
√
λL−1

0 R
(0) and

ξ = Cn
√
λ, we have M−τ2R2 is locally (2−1R, S, l, 2γ0, ξ)-plane-like around 0.

For λ small enough depending on δ we have

2γ0 ≤ 2λL−5
0 ≤ δ

3
2 and ξ = Cn

√
λ ≤ δ2n+12.
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As
⋃
t∈[s0−R2,s0+2τR2] ∂Mt ∩ C2R(0) = ∅ and (Mt) moves by smooth mean

curvature flow, we have that µt = H n Mt ∩C2R(0) is a Brakke flow. Then
we can use Theorem 11.7 with y0 = 0, s0 = 0, γ = 2γ0 and ρ = 2−1R. Choose
δ ≤ δ0 and small enough depending on ε, to obtain the desired gradient and
height bound for g. Then set κ := δ0δ and choose λ ≤ δ0

√
κ2−1. This

establishes the result.

Like for Brakke flows the local result yields a result for globally graph-like
flows (recall Definition 11.14).

12.15 Lemma. For every ε ∈ (0, 1) there exists a Λ0 ∈ (1, 0) such that for
all R0 ∈ (0,∞), L0 ∈ [1,∞), β0 ∈ (0, 1], T0 ∈ (R2

0,∞), Γ0 ∈ (0, β0L
−6
0 R0],

Ξ0 ∈ (0, R0], t0 ∈ R, a0 ∈ Rn+1 the following holds: Let (Mt)t∈[t0−β2
0Λ2

0R
2
0,t0+T0]

be an embedded mean curvature flow in Rn+1 without boundary. Suppose for
all t ∈ [t0 − β2

0Λ2
0R

2
0, t0] we have: Mt is globally (St, L0,Γ0,Ξ0)-graph-like for

some St ⊂ Bn
R0

(â0). Then one of the following two statements holds:

1. For I = [t0 + R2
0, t0 + T0] there exists an f ∈ C∞

(
I × Rn,Rk

)
with

lipf ≤ ε and

sptµt = graph(f(t, ·))

for all t ∈ I.

2. There exists a (t, y) ∈ [t0, t0 +R2
0]× Rn+1 with µt (CR0(y)) = 0

Proof. For given ε ∈ (0, 1) let λ, κ be from Proposition 12.13. Set

R := Λ0R0

and consider arbitrary y ∈ Rn × {0}, t ∈ [t0 − β2
0Λ2

0R
2
0, t0]. As Ξ0 ≤

R0 ≤ R we can use Remark 11.15.1, to see that µt is locally (R,Bn
R(ŷ) ∩

St, L0, β0L
−6
0 Λ−1

0 ,Λ−1
0 )-plane-like around y. Here we used Γ0 ∈ (0, β0L

−6
0 R0]

and Ξ0 ∈ (0, R0]. Note that

Bn
R(ŷ) ∩ St ⊂ Bn

R(ŷ) ∩Bn
Λ−1

0 R
(â0).

If we choose
Λ0 ≥ λ−1,

all the conditions for Proposition 12.13 used with γ = β0L
−6
0 Λ−1

0 , ξ = Λ−1
0 )

and r = Λ−1
0 are satisfied. Then using Proposition 12.13 for every y ∈

Rn × {0}k, leads to one of the following two cases
Alternative 1:

For I0 = [t0 + κR2, t0 + 2κR2] and for every y ∈ Rn there exists a smooth
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function fy ∈ C∞
(
I × CλR(y),Rk

)
with lip(fy) ≤ ε and graph(fy(t, ·)) =

sptµt for all t ∈ I. Then all these functions have to be restrictions of a singel
function f defined on all Rn with graph(f(t, ·)) = sptµt for all t ∈ I.

Moreover we can extend f to later times such that graph(f(t, ·)) moves
by smooth mean curvature flow for all t ∈ [t0 + κR2, t0 + T ], see [EH1, 4.4].
As also (Mt) is a smooth mean curvature flow and Mt0+κR2 coincides with
graph(f(t0 + κR2, ·)) they have to be the same for all later times as well.

Alternative 2:
There exists a y ∈ Rn such that µt0+3κR2 (CλR(y)) = 0.

As Λ0 ≥ λ−1 we have λR ≥ R0. Also choose Λ0 ≥
√

3κ. Then we have
3κR2 ≤ R2

0 which establishes the result.

In Lemma 12.15 we assume that the flow is globally plane-like for a long
time. Actually this condition can be weakened.

12.16 Proposition. There exists a P ∈ (1,∞) such that for every ε ∈ (0, 1)
there exists a Λ ∈ (1, 0) such that for all r ∈ (0,∞), L ∈ [1,∞), β ∈ (0, 1],
T ∈ (Λ2β−2LP r2,∞), Γ ∈ (0, r], Ξ ∈ (0, r], t0 ∈ R, a ∈ Rn+1 the following
holds: Let (Mt)t∈[−β2r2,T ] be an embedded mean curvature flow in Rn+1 without
boundary. Suppose for all t ∈ [−β2r2, 0] we have: Mt is globally (St, L,Γ,Ξ)-
plane-like for some St ⊂ Bn

r (â). Then one of the following two statements
holds:

1. For I = [Λ2LPβ−2r2, T ] there exists an f ∈ C∞ (I × Rn) with lipf ≤ ε
and

sptµt = graph(f(t, ·))

for all t ∈ I.

2. There exists a (t, y) ∈ [0,Λ2LPβ−2r2]× Rn+1 with µt (CΛr(y)) = 0

Proof. Let ε ∈ (0, 1) be given and let Λ0 be the quantity from Lemma 12.15
corresponding to this ε. As M0 is globally (St, L,Γ,Ξ)-plane-like we can use
Lemma 11.16 to obtain

sptµt ⊂
{
x ∈ Rn+1 : |xn+1| ≤ CnΞ + Γ

}
for all t ∈ [CnΞ2, T ]. In particular as Γ ≤ r and Ξ ≤ r, there exists a constant
C1 ∈ (1,∞) such that

|xn+1| ≤ C14−6r (12.55)
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for all x ∈ Mt for all t ∈ [C1r
2, T ]. Here we chose Λ2 ≥ C1, so this time

interval is non-empty. We want to use Proposition 12.12 with

ρ0 := 2C1Λ0L
6r

τ := (2C1Λ0L
6)−1β.

First calculate

τ 2ρ2
0 = β2r2. (12.56)

As for all t ∈ [−β2r2, 0] we have Mt is globally (St, L,Γ,Ξ)-plane-like for
some St ⊂ Bn

r (â) there exists an f ∈ C∞ ([−β2r2, 0]× Rn \Bn
r (â)) with

lip(f) ≤ L, sup |f | ≤ Γ and

Mt ∩ Rn+1 \ Cr(a) = graphf(t, ·) ∩ Rn+1 \ Cr(a). (12.57)

for all t ∈ [−β2R2, 0]. Let C12.12 be the constant from Proposition 12.12.
Considering the radius

ρ1 := C12.12L
8τ−1ρ0 = 4C2

1C12.12Λ0L
20β−1r = CnΛ0L

20β−1r (12.58)

and y ∈ Rn+1 \ Cr+ρ1(a), we have

Cρ1(y) ⊂ Rn+1 \ Cr(a). (12.59)

Then by (12.56), (12.57), (12.58) and (12.59), we can use Proposition 12.12
to obtain a gy ∈ C∞

(
[0, ρ2

0]×Bn
ρ0

(ŷ)
)

with lip(gy) ≤ 4L and

Mt ∩ Cρ0(y) = graphgy(t, ·) ∩ Cρ0(y).

for all t ∈ [0, ρ2
0]. As y was arbitrary in Rn+1 \ Cr+ρ1(a) and by (12.57) we

obtain a function g ∈ C∞
(
[0, ρ2

0]× Rn \Bn
r+ρ1

(â)
)

with lip(g) ≤ 4L and

Mt ∩ Rn+1 \ Cr+ρ1(a) = graphf(t, ·) ∩ Rn+1 \ Cr+ρ1(a). (12.60)

for all t ∈ [−β2r2, ρ2
0].

Next we want to bound the measure inside the set Cr+ρ1(a) for all times
t ∈ [0, ρ2

0]. By Remark 3.12.2 with R = 4
√
nρ1 and κ = 1

2
we obtain

µt
(
B2
√
nρ1

(a)
)
≤ 8µ0

(
B4
√
nρ1

(a)
)

for all t ∈ [0, ρ2
0], where we used ρ0 ≤ ρ1. Then using (12.55) and 2C1r ≤

ρ0 ≤ ρ1 this yields

µt (Cr+ρ1(a)) ≤ µt
(
B2
√
nρ1

(a)
)
≤ 8µ0

(
B4
√
nρ1

(a)
)

(12.61)
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for all t ∈ [2−1ρ2
0, ρ

2
0].

As M0 is globally (S0, L,Γ,Ξ)-bounded for some S0 ⊂ Bn
r (â) there exists

an f0 ∈ C∞ (Rn \Bn
r (â)) with lip(f0) ≤ L and

M0 ∩ Rn+1 \ Cr(a) = graphf0 ∩ Rn+1 \ Cr(a) (12.62)

and as Ξ ≤ r we also have

µ0 (S0 × R) = µ0 ((S0 ∩Bn
r (â))× R) ≤ rn. (12.63)

With (12.62) and (12.63) we can estimate

µ0

(
C4
√
nρ1

(a)
)
≤ µ0 (S0 × R) +

∫
B4
√
nρ1

(â)\S0

√
1 + |Df(ŷ)|2dL n(ŷ)

≤ rn + CnLρ
n
1 .

By ρ1 = CnΛ0L
20β−1r we obtain

µ0

(
C4
√
nρ1

(a)
)
≤ Cn

(
Λ0L

21β−1r
)n
,

where we used L ≥ 1. Thus by (12.61) we have

µt (Cr+ρ1(a)) ≤
(
C2Λ0L

21β−1r
)n

for all t ∈ [2−1ρ2
0, ρ

2
0], for some constant C2 ∈ (1,∞). In particular we see

sup
ŷ∈Rn

µt
((
Bn
ρ (ŷ) ∩Bn

r+ρ1
(â)
)
× Rk

)
≤ C2Λ0L

21β−1rρn−1 (12.64)

for all ρ ∈ [C2Λ0L
21β−1r,∞) and all t ∈ [0, ρ2

0].
Now we have all the ingredients to finally use Lemma 12.15. By (12.55),

(12.60) and (12.64) we can conclude that for all t ∈ [2−1ρ2
0, ρ

2
0] the manifold

Mt is globally (S, 4L,Γ0,Ξ0)-bounded with

S := Bn
r+ρ1

(â)

Γ0 := C14−6r

Ξ0 := C2Λ0L
21β−1r.

Now set

R0 := C2Λ0L
21β−1r

β0 := β(C2Λ0)−1C1L
−15.
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Then we can estimate

β2
0Λ2

0R
2
0 = C2

1Λ2
0L

12r2 = 2−2(2C1Λ0L
6r)2 ≤ 2−1ρ2

0

so the time interval [2−1ρ2
0, ρ

2
0] where the flow is globally plane-like is long

enough. To obtain the height bound we calculate

Γ0 = C14−6r = C14−6L−6Λ0L
21β−1βΛ−15

0 L−9r = (4L)−6β0R0.

So we can use Lemma 12.15 with t0 = ρ2
0. This establishes the result for

Λ ≥ C2Λ0 and P = 42.
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A Appendix

A.1 Lipschitz Functions

A.1 Definition. A function f : Ω → Rm for Ω ⊂ Rn is called Lipschitz
(continuous), if there exists an L ∈ R+ such that:

|f(x)− f(y)| ≤ L|x− y| ∀x, y ∈ Ω. (A.1)

Then lip(f) denotes the smallest such L.

A.2 Remark. Let Ω ⊂ Rn and f : Ω→ Rk a Lipschitz function. Then there
exists F : Rn → Rk with F (x) = f(x) ∀x ∈ Ω and lip(F ) ≤

√
k lip(f).

A.3 Theorem (Rademacher). Every Lipschitz function f : Rn → R is
differentiable L n-almost everywhere, that means there exists a set Ω ⊂ Rn

with L n (Rn \ Ω) = 0 and for every x ∈ Ω there exists Dfx : Rn → R with

lim
h→0

h−1 (f(hv + x)− f(x)− hDfx · v) = 0 (A.2)

for every v ∈ Sn−1

A.4 Proposition. There exists a constant C ∈ (1,∞) such that, for ev-
ery Ω ⊂ Rn the following holds: Let f ∈ C0,1

(
Ω,Rk

)
and define F ∈

C0,1
(
Ω,Rn+k

)
by F (y) := (x, f(y)). Then for almost every x ∈ Ω the Jaco-

bian JF =
√

det(DF TDF ) is well defined and satisfies the inequality

1 ≤ JF (x)2 ≤ 1 + CL2n

k∑
j=1

|Dfj(x)|2, (A.3)

where L := max{lip(f), 1}

Proof. By Theorem A.3 DF and hence JF are well defined almost every-
where. Thinking of DF T as a matrix with columns ai we obtain

DF T = (a1 · · · an · · · an+k) =
(
e1 · · · en DfT1 · · ·DfTk

)
,

so the columns of DF T are the n basis vectors of Rn and the gradients of fj.
To calculate the Jacobian we use a formula for the product of matrices

det(DF TDF ) =
∑

1≤l1<...<ln≤n+k

(
det
(
Al1···ln

))2
,
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where Al1···ln = (al1 · · · aln), which means Al1···ln is the matrix containing the
columns lj of DF T . The summand lj = j gives A1···n = En, which leads to

det(DF TDF ) = 1 +
∑

1≤l1<...<ln≤n+k

n+1≤ln

(
det
(
Al1···ln

))2
. (A.4)

This verifies the lower bound. So it remains to consider matrices Al1···ln with
n + 1 ≤ ln, which are those containing at least one gradient vector as a
column. Let ln = n + j, such that Al1···ln =

(
al1 · · · aln−1Df

T
j

)
and calculate

the determinant through developing by the last column

detAl1···ln =
∑

1≤i≤n

(−1)i+j
dfj
dxi

det
(
Al1···ln

)′
ij
,

where
(
Al1···ln

)′
ij

is constructed by erasing the jth column and the ith line

from Al1···ln . The determinant of this matrix can now be estimated directly
by using the Leibniz formula. As all entries of

(
Al1···ln

)′
ij

are bounded by L

we obtain

det
(
Al1···ln

)′
ij

=
∑
σ∈Sn

(−1)i+jsign(σ) · al1σ(l1) · · · aln−1σ(ln−1) ≤ (n− 1)!Ln−1.

This establishes an estimate for the determinant of dF ∗dF . Inserting this
into (A.4) yields

det(DF TDF ) ≤ 1 +
k∑
j=1

 ∑
1≤l1<...<ln≤n+k

n+j=ln

( ∑
1≤i≤n

(n− 1)!Ln−1 dfj
dxi

)2


≤ 1 + (n+ k)!(n!)2L2nn2

k∑
j=1

|Dfj|2,

which establishes the result.

A.5 Proposition. There exists a constant C ∈ (1,∞) such that for every
open subset Ω ⊂ Rn the following holds: Let f ∈ C0,1

(
Ω,Rk

)
and the n-

rectifiable set M = graph(f). Then

|Dfm(x̂)|2 ≤ 2nL2|∇Mxn+m|2 (A.5)

for every 1 ≤ m ≤ k, for almost all x ∈M , where L := max{lip(f), 1}
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Proof. Let 1 ≤ m ≤ k and 1 ≤ i ≤ n be fixed. Consider F (x) = (x, f(x)),
then ∂iF := ∂

∂xi
F is tangential. So for every x ∈M we have an orthonormal

basis τ1, . . . , τn of TxM with τ1 = ∂iF
|∂iF | . This lets us calculate

|∇Mxn+m|2 = |∇Mfm(x̂)|2 ≥ |〈Dfm(x̂), τ1〉τ1|2 =
| ∂
∂xi
fm(x̂)|2

|∂iF |2
.

Then by summing over i and by |∂iF |2 ≤ 1 + L2 we obtain the result.

A.6 Proposition (Zheng, [I, 6.6]). There exists a constant C ∈ (1,∞) such
that for every open subset Ω ⊂ Rn the following holds: Let f ∈ C2

c (Ω,R+)
Then the following estimates hold

1. For x̂ ∈ {f > 0} the estimate

|Df(x̂)|2

f(x̂)
≤ 2 sup |D2f |

holds. In particular g defined by g(x̂) = |Df(x̂)|2
f(x̂)

for x̂ ∈ {f > 0} and

g(x̂) = 0 for x̂ ∈ Ω \ {f > 0} is in C2
c (Ω,R+)

2. For every x̂ ∈ Ω we can estimate

|D|Df(x̂)||2 ≤ |D2f(x̂)|2

Proof. 1. See [I, 6.6]

2. Calculate

|D|Df(x̂)||2 =
n∑
i=1

(
∂

∂xi
|D(f(x̂))|

)2

=
n∑
i=1

(
Df(x̂)

|Df(x̂)|
∂

∂xi
Df(x̂)

)2

≤
n∑
i=1

∣∣∣∣ ∂∂xiDf(x̂)

∣∣∣∣2 = |D2f(x̂)|2,

which establishes the result.

A.2 Projections And Tilt

Let T,B be n-dimensional subspaces of Rn+k then |πT − πB| is called the tilt
between two subspaces T and B. Let µ be a rectifiable n-varifold in Rn+k.
For U ⊂ Rn+k the term ∫

U

|πTxµ − πT |
2 dµ(x)

is called the tilt-excess of µ in U .
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A.7 Remark. Consider two n-dimensional subspaces T1, T2 of Rn+k

1. If x ∈ T1 and y ∈ T⊥2 we can estimate the scalar product in the following
way

x · y = (x− πT2(x)) · y + πT2(x) · y = (πT1(x)− πT2(x)) · y + 0

≤ |πT1 − πT2| |x||y|

2. For the tilt the following identity holds:

|πT1 − πT2| =
∣∣−π⊥T1

+ π⊥T2
+ π⊥T1

+ πT1 − π⊥T2
− πT2

∣∣
=
∣∣−π⊥T1

+ π⊥T2
+ En+k − En+k

∣∣ =
∣∣π⊥T1
− π⊥T2

∣∣
3. Suppose |πT1 − πT2 | ≤ ε ∈ (0, 1). Then we can calculate

|πT1(x)| − |πT2 ◦ πT1(x)| ≤ |πT1(x)− πT2 ◦ πT1(x)| ≤ ε|πT1(x)|,

so |πT1(x)| ≤ (1− ε)−1|πT2 ◦ πT1(x)|.

A.8 Remark. For an isometry S ∈ SO(n+ k) the following holds:

1. Let T be an n-dimensional subspace of Rn+k. Let (ti)1≤i≤n be an or-
thonormal basis of T , then (S(ti))1≤i≤n is an orthonormal basis of S(T ),
thus we can calculate

πS(T )(x) =
n∑
i=1

(S(ti) · x)S(ti) = S

(
n∑
i=1

(ti · ST (x))ti

)
= S

(
πT (STx)

)
.

2. Let A,B ∈ Rn+k×n+k. As S(∂B1(0)) = ∂B1(0) we can calculate

‖A−B‖op = ‖S ◦ A− S ◦B‖op = ‖A ◦ S −B ◦ S‖op .

In particular if A,B ∈ SO(n+ k), we have

‖A−B‖op =
∥∥BT ◦ A− En+k

∥∥
op

=
∥∥BT − AT

∥∥
op

3. Let T1, T2 be n-dimensional subspaces of Rn+k. Combining statements
1 and 2 we can calculate

‖πT1 − πT2‖op =
∥∥S ◦ (πT1 − πT2) ◦ ST

∥∥
op

=
∥∥S ◦ πT1 ◦ ST − S ◦ πT2 ◦ ST

∥∥
op

=
∥∥πS(T1) − πS(T2)

∥∥
op
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A.9 Proposition. Let T1, T2 be m-dimensional subspaces of Rn+k

1. If there exists a v ∈ T1 ∩ T⊥2 with v 6= 0, then there also exists a
w ∈ T⊥1 ∩ T2 with w 6= 0,

2. We always have ‖πT1 − πT2‖op ≤ 1 and ‖πT1 − πT2‖op = 1, if and only
if there exists a v ∈ T⊥1 ∩ T2 with v 6= 0.

3. Let (bi)1≤i≤m be an orthonormal basis of T1 and suppose ‖πT1−πT2‖op <
1, then the vectors (πT2(bi))1≤i≤m form a basis of T2.

4. Consider x ∈ T2 and suppose ‖πT1−πT2‖op < 1, then there exists exactly
one point in T1 ∩

{
x+ v, v ∈ T⊥2

}
5. In particular for f ∈ C0,1

(
Ω,Rk

)
, Ω ⊂ Rn+k, M := graph(f) and

x̂ ∈ Ω, x = (x̂, f(x̂)) such that Df(x̂) and TxM exist, we have ‖πTxM −
πRn‖op < 1.

Proof. 1. Suppose there exists a v ∈ T1 ∩ T⊥2 , v 6= 0. As T1 is m-
dimensional and T⊥2 is n+k−m-dimensional and both subspaces share
one direction we have that T1 ∪ T⊥2 is at most n + k − 1-dimensional.

Thus there exists a w ∈
(
T1 ∪ T⊥2

)⊥
with w 6= 0. Then w ∈ T⊥1 ∩ T2.

2. Let v ∈ Rn+k with |v| = 1, then we can find an orthonormal basis
(bi)1≤i≤n+k of Rn+k with b1 = v. Calculate

n+k∑
i=1

((
v − πT⊥1 (v)− πT2(v)

)
· bi
)2

=
n+k∑
i=1

(
δ1i −

(
πT⊥1 (v) + πT2(v)

)
· bi
)2

=
n+k∑
i=1

(
δ1i − 2δ1i

(
πT⊥1 (v) + πT2(v)

)
· bi +

((
πT⊥1 (v) + πT2(v)

)
· bi
)2
)

= 1− 2
(
πT⊥1 (v) + πT2(v)

)
· v +

n+k∑
i=1

((
πT⊥1 (v) + πT2(v)

)
· bi
)2

= 1− 2
(
|πT⊥1 (v)|2 + |πT2(v)|2

)
+ |πT⊥1 (v) + πT2(v)|2

and combining this with the parallelogram law, we obtain

n+k∑
i=1

((πT1(v)− πT2(v)) · bi)2 ≤ 1− |πT⊥1 (v)− πT2(v)|2.
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As the | · |-norm is independent of the choice of basis this yields

|πT1(v)− πT2(v)| =
√

1− |πT⊥1 (v)− πT2(v)|2 (A.6)

for all v ∈ Rn+k with |v| = 1. This directly implies ‖πT1 − πT2‖op ≤ 1.

Now let v ∈ T⊥1 ∩ T2, v 6= 0, then

|πT1(v)− πT2(v)| = |v|,

so ‖πT1 − πT2‖ ≥ 1 and as we already know ≤ 1, we have equality.

If on the other side ‖πT1 − πT2‖ = 1, then there exists a v ∈ Rn+k with
|v| = 1 such that |πT1(v)− πT2(v)| = 1. This requires equality in (A.6),
so we have

πT⊥1 (v) = πT2(v) and πT⊥2 (v) = πT1(v)

thus πT⊥1 (v) ∈ T⊥1 ∩ T2 and πT1(v) ∈ T⊥2 ∩ T1. Here we used that T1

and T2 are exchangeable in (A.6). As either πT⊥1 (v) 6= 0 or πT1(v) 6= 0
and by statement 1, this establishes statement 2.

3. Let (bi)1≤i≤m be an orthonormal basis of T1 and suppose (πT2(bi))1≤i≤m
do not form a basis of T2. Then there exists a v in T2 with v ·πT2(bi) = 0
for all i ∈ {1, . . . ,m}. As v ∈ T2 this yields

v · bi = πT2(v) · bi = v · πT2(bi) = 0

for all i ∈ {1, . . . ,m}, so v ∈ T⊥1 ∩ T2, thus by statement 2, we have
‖πT1 − πT2‖ = 1.

4. Let x ∈ T2, ‖πT1 − πT2‖ < 1 and let (bi)1≤i≤m be an orthonormal basis
of T1. By statement 3 the vectors (πT2(bi))1≤i≤m form a basis of T2, so
there exists an α = (α1, . . . , αm) ∈ Rm such that

∑m
i=1 αiπT2(bi) = x.

Then the vector w :=
∑m

i=1 αibi is in T1 and πT2(w) = x, thus w ∈
T1 ∩

{
x+ v, v ∈ T⊥2

}
, so this set is not empty.

Now let x ∈ T2 and suppose there exist a, b ∈ T1 ∩
{
x+ v, v ∈ T⊥2

}
with a 6= b. Then b− a ∈ T1 ∩ T⊥2 and b− a 6= 0, thus by statement 2
‖πT1 − πT2‖ = 1.

5. Recall that (ei,
∂
∂xi
f(x̂)) span TxM . As each of this vectors has com-

ponents in Rn we have TxM ∩ Rk = {0}, so by statement 2 we can
conclude ‖πTxM − πRn‖ < 1.
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A.10 Lemma. There exists C ∈ (1,∞) such that for every ε ∈ [0, 1]
the following holds: Let T = span(ti)1≤i≤m and B = span(bi)1≤i≤m be m-
dimensional subspaces of Rn+k with |bi − ti| ≤ ε for all i ∈ {1, . . . ,m}, then
the following holds:

1. If the (bi)1≤i≤m are orthonormal, then there exists an orthonormal basis
(τi)1≤i≤n of T with |bi − τi| ≤ Cε for all i ∈ {1, . . . ,m}.

2. If |bi · bj − δij| ≤ 1
C

for all i, j ∈ {1, . . . ,m}, we have |πT − πB| ≤ Cε.

Proof. First we consider the case that the (bi)1≤i≤m are orthonormal. We
may assume bi = ei for i ∈ {1, . . . ,m} and B = Rm. We are going to prove
the statement by induction. In case m = 0, we have T = Rm = {0} and
everything trivially holds. Suppose both statements hold for m − 1 with
constant C̃. Define T̃ = span(ti)1≤i≤m−1 and

v := tm − πT̃ (tm).

By induction hypothesis there exists an orthonormal basis (τi)1≤i≤m−1 of T̃
with |ei − τi| ≤ Cε for all i ∈ {1, . . . ,m− 1}. By definition of v we directly
see v · τi = 0 for all i ∈ {1, . . . ,m− 1}. Also by induction hypothesis we have
|πT̃ − πRm−1 | ≤ C̃ε. This lets us calculate

|v − em| ≤ |tm − em|+ |πT̃ (tm)| ≤ ε+ |πT̃ − πRm−1| |tm|+ |πRm−1(tm)|
≤ ε+ C̃ε(1 + ε) + |πRm−1(tm − em)| ≤ 2(1 + C̃)ε,

where we used ε ≤ 1 and |em − tm| ≤ ε. In particular |1− |v|| ≤ 2(1 + C̃)ε
so for τm := |v|−1v we can estimate

|em − τm| = |em − |v|−1v| ≤ |em − v|+ |v − |v|−1v| ≤ 4(1 + C̃)ε,

thus (τi)1≤i≤m provides the desired orthonormal basis. To estimate the tilt
calculate for x ∈ Rn+k with |x| = 1

|πT (x)− πRn(x)| ≤ |πT̃ (x)− πRm−1(x)|+ |(τm · x)τm − (em · x)em|
≤ C̃ε+ |(τm · x)(τm − em)|+ |((τm · x)− (em · x))em|
≤ C̃ε+ 8(1 + C̃)ε

which establishes the estimate for m. Thus we showed result (1) and result
(2) for some constant C1 ∈ (1,∞) in the special case where the (bi)1≤i≤m are
orthonormal.
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Now suppose the (bi)1≤i≤m satisfy |bi · bj − δij| ≤ 1
C

for all i ∈ {1, . . . ,m}.
We can orthogonalize the (ti) and (bi) using the Gram-Schmidt process

τ1 := |tm1 |−1t1, τ̃i := ti −
i−1∑
j=1

(ti · τj)τj, τi = |τ̃i|−1τ̃i

ν1 := |tm1 |−1b1, ν̃i := bi −
i−1∑
j=1

(bi · νj)νj, νi = |ν̃i|−1ν̃i

for i = 2, . . . ,m. Then (τmi )1≤i≤n forms an orthonormal basis of T and
(νmi )1≤i≤n forms an orthonormal basis of B. We want to show by induction

|τi − νi| ≤ (16C1)iε (A.7)

|νi − bi| ≤ (16(n+ k))iC−1 (A.8)

for all i ∈ {1, . . . ,m}. For i = 1 we can estimate

|τ1 − ν1| ≤
∣∣|b1|−1 (t1 − b1)

∣∣+
∣∣(|t1|−1 − |b1|−1

)
t1
∣∣ ≤ 4ε,

where we used |b1| ≥
√

1− 1
C
≥ 1

2
for C ≥ 4

3
. Also we have

|b1 − ν1| ≤ ||b1| − 1| = ||b1|2 − 1|
|b1|+ 1

≤ C−1.

Now suppose (A.7) holds for all j ∈ {1, . . . , i− 1}. Set Ti := span(τj)1≤j≤i−1

and Bi := span(νj)1≤j≤i−1. By induction hypothesis (A.7) and by result (2)
for orthonormal vectors, we have

|πTi − πBi | ≤ C1(16C1)i−1ε.

Then we can estimate

|τ̃i − ν̃i| = |ti − πTi(ti)− bi + πBi(bi)|
≤ |ti − bi|+ |πTi(ti)− πTi(bi)|+ |πTi(bi)− πBi(bi)|
≤ 2ε+ 2C1(16C1)i−1ε,

where we used |bi| ≤
√

1 + C−1 ≤ 2. So we have

|τ̃i − ν̃i| ≤ 4−1(16C1)iε, ||τ̃i| − |ν̃i|| ≤ 4−1(16C1)iε. (A.9)
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By induction hypothesis (A.7) we can calculate

|ν̃i − bi| =

∣∣∣∣∣
i−1∑
j=1

(bi · bj + bi · (νj − bj))νj

∣∣∣∣∣
≤ (i− 1)

(
C−1 + 2(16(n+ k))i−1C−1

)
,

where we used |bi| ≤
√

1 + C−1 ≤ 2. As i ≤ m ≤ n+ k this yields

|ν̃i − bi| ≤ 4−1(16(n+ k))iC−1, ||ν̃i| − 1| ≤ 1

2
, (A.10)

where we chose C large depending on n and k for the second estimate. Com-
bining (A.9) and (A.10) we can estimate

|τi − νi| ≤
∣∣|ν̃i|−1 (τ̃i − ν̃i)

∣∣+
∣∣(|τ̃i|−1 − |ν̃i|−1

)
τ̃i
∣∣ ≤ (16C1)iε,

where we used (A.10) to estimate |ν̃i| ≥ 1
2
. By (A.10) we can also estimate

|νi − bi| ≤
∣∣|ν̃i|−1 (bi − ν̃i)

∣∣+
∣∣(1− |ν̃i|−1

)
bi
∣∣ ≤ (16(n+ k))iC−1

where we used |bi| ≤
√

1 + C−1 ≤ 2. This completes our induction argument,
which establishes the result.

A.11 Proposition. In case T = Rn (which we identify with Rn×{0}k) and
if x ∈ sptµ admits an approximate tangent space Txµ, the following identity
holds

|πTxµ − πRn|
2 = 2

k∑
j=1

|∇µxn+j|2 = 2
k∑
j=1

|πTxµ(en+j)|2 = 2
n∑
l=1

k∑
j=1

|τl · en+j|2 ,

where (τi)1≤i≤n is an orthonormal basis of Txµ. Another identity for |πTxµ − πRn |
is

|πTxµ − πRn|
2 = 2

n∑
i=1

∣∣π⊥Txµ(ei)
∣∣2 = 2

k∑
l=1

n∑
i=1

|νl · ei|2 ,

where (νj)1≤j≤k is an orthonormal basis of Txµ
⊥.

Proof. The first equality is obtained by the following calculation where p =
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πT and px = πTxµ.

|πTxµ − πRn|
2 = tr ((px − p)∗(px − p))

=
n+k∑
i=1

ei · ((px − p)∗(px − p)ei)

=
n+k∑
i=1

(px − p)ei · (px − p)ei

=
n+k∑
i=1

(
|px(ei)|2 − 2px(ei) · p(ei) + |p(ei)|2

)
=

k∑
j=1

|px(en+j)|2 +
n∑
i=1

(
|px(ei)|2 − 2px(ei) · ei

)
+

n+k∑
i=1

|p(ei)|2

=
k∑
j=1

|px(en+j)|2 −
n∑
i=1

|px(ei)|2 +
n+k∑
i=1

|px(ei)|2

= 2
k∑
j=1

|px(en+j)|2 = 2
k∑
j=1

|px (D(xn+j))|2 = 2
k∑
j=1

|∇µxn+j|2 .

This establishes the first identity. For the second identity we calculate

n∑
i=1

k∑
j=1

|τi · en+j|2 −
n∑
i=1

k∑
j=1

|νj · ei|2

=
n∑
i=1

n+k∑
j=1

|τi · ej|2 −
n∑
i=1

n∑
j=1

|τi · ej|2 −
n∑
i=1

k∑
j=1

|νj · ei|2

= n−
n∑
l=1

(
n∑
i=1

|τi · el|2 +
k∑
j=1

|νj · el|2
)
.

Now use that (τi)1≤i≤n and (νj)1≤j≤k together span all of Rn+k, so
∑n

i=1 |τi · el|
2+∑k

j=1 |νj · el|
2 = |el|2. Then

n∑
i=1

k∑
j=1

|τi · en+j|2 −
n∑
i=1

k∑
j=1

|νj · ei|2 = n−
n∑
l=1

|el|2 = n− n = 0.

This establishes the second identity.

Now combine this and A.11 with A.4 and A.5 to obtain:

200



A.12 Proposition. There exists a constant C ∈ (1,∞) such that, for every
Ω ⊂ Rn the following holds: For f ∈ C0,1

(
Ω,Rk

)
set F (y) := (y, f(y)),

µ := H n graph(f) and L := max{lip(f), 1}. Then at points ŷ ∈ Ω where
f is differentiable and hence the tangent space TF (ŷ)µ exists the following is
true:

1. We can estimate the tilt by |Df | and vice versa, i.e.

L−1C−1|Df(ŷ)| ≤ |πTF (ŷ)µ − πRn| ≤ C|Df(ŷ)|

2. The Jacobian JF =
√

det(DF TDF ) satisfies the inequality

1 ≤ JF (ŷ)2 ≤ 1 + CL2n+2
∣∣∣πTF (ŷ)µ − πRn

∣∣∣2 . (A.11)

Proof. For the first inequality of statement 1 combine A.5 and A.11. To show
the second inequality note that TF (y)µ = span(ei, Dif(y))1≤i≤n and we can
estimate |(ei, 0) − (ei, Dif(y))| ≤ |Df(y)|, so Proposition A.10.2 yields the
estimate.

Statement 2 follows from the first inequality of statement 1 combined
with A.4.

A.13 Lemma (Tilt Bound Lemma, [B, 5.5]). There exists a constant C ∈
(0,∞) such that for every open subset U ⊂ Rn+k the following holds: Let

µ be an integer n-varifold in U with L2-integrable mean curvature vector ~H.
Consider g ∈ C1

c (U,R), f, h ∈ C0
c (U,R) with g2 ≤ fh. Then the estimate

β2
g ≤ C

(
αfγh + ξ2

g

)
holds, where

α2
f :=

∫
U

| ~H(x)|2f(x)2dµ(x),

β2
g :=

∫
U

|πTxµ − πRn|
2 g(x)2dµ(x),

γ2
h :=

∫
U

|πRk(x)|2h(x)2dµ(x),

ξ2
g :=

∫
U

|πRk(x)|2|∇µg(x)|2dµ(x).

Proof. Consider X(x) := g(x)2πRk(x), then use Remarks 2.6 and A.11 to
estimate

2divµX(x) = 4g(x)∇µg(x) · πTxµ (πRk(x)) + 2g(x)2

n+k∑
j=n+1

ej (πTxµ(ej))

≥ −4g(x)|∇µg(x)| |πTxµ − πRn| |πRk(x)|+ g(x)2 |πTxµ − πRn|
2
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for all x ∈ sptµ ∩ U where Txµ exists. By integrating we obtain

β2
g ≤ 2

∫
U

divµX dµ+ 4βgξg.

If now β2
g ≤ 8βgξg then β2

g ≤ 64ξ2
g which yields the result for C ≥ 64. Else

we have β2
g ≤ 2

∫
U

divµXdµ+ 1
2
β2
g . Then by (2.2) and Hölder’s inequality

β2
g ≤ 4

∫
U

divµX dµ ≤ 4

∫
U

g(x)2|πRk(x)|| ~H(x)|dµ(x) ≤ 4αfγh,

which establishes the result for C ≥ 4.

A.14 Remark. Let µ be a rectifiable n-varifold in Rn+k and x ∈ sptµ such
that Txµ exists, then we can estimate

1− |πTxµ(x̂)|2

|x̂|2
=
(
|x̂|2 − |πTxµ(x̂)|2

)
|x̂|−2

=
(
|x̂− πTxµ(x̂)|2 + 2x̂ · πTxµ(x̂)− 2|πTxµ(x̂)|2

)
|x̂|−2

=
|x̂− πTxµ(x̂)|2

|x̂|2
≤ |πTxµ − πRn|

2 .

A.3 Local Parametrization

A.15 Definition. For an C1-regular n-manifold M in Rn+k and x ∈M set

SO(M,x) := {S ∈ SO(n+ k) : S(Rn) = TxM and S(Rk) = TxM
⊥}

where we identified Rn with Rn × {0}k and Rk with {0}n × Rk.

A.16 Proposition. Let m ∈ N ∪ {0}, M an embedded C1+m-regular n-
manifold in Rn+k, and x0 ∈M . Let S ∈ SO(n+ k) with∥∥πRn − πS−1(Tx0M)

∥∥
op
< 1. (A.12)

Then there exists an r ∈ (0,∞) such that the following holds:

1. For all x1, x2 ∈ M ∩ Br(x0) we have that x1 − x2 ∈ S(Rk) implies
x1 = x2

2. There exists a g ∈ C1+m
(
Bn
r (0),Rk

)
with g(0) = 0 and

S (v̂, g (v̂)) + x0 ∈M (A.13)

x = S (p(x), g (p(x))) + x0, (A.14)
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for all v̂ ∈ Bn
r (0) and all x ∈M ∩Br(x0), where p(x) := πRn ◦S−1(x−

x0). In particular M0 := graph(g) is a C1+m-regular n-manifold in
Rn+k with

S (M0 ∩Br(0)) + x0 = M ∩Br(x0) (A.15)

S(TxM0) = Tx0+S(x)M (A.16)

for all x ∈M0.

3. g is unique in the sense that for every g̃ ∈ C1+m
(
Bn
r (0),Rk

)
which

satisfies (A.13) actually g̃ = g

A.17 Remark. In the above setting:

1. There always exists Sx0 ∈ SO(n + k) such that Sx0(Rn) = Tx0M and
Sx0(Rk) = Tx0M

⊥. For S = Sx0 assumption (A.12) is always satisfied
and the resulting g can be seen as a parametrization over the tangent
space. In that case (A.16) implies Dg(0) = 0

2. In case
∥∥πRn − πTx0M

∥∥
op
< 1 we can use S = Id and obtain a parametri-

sation over Bn
r (x̂0).

Proof. First we need a local parametrization around x0. As M is embedded
there exists an open subset U ⊂ Rn+k with x0 ∈ U and a diffeomorphism
Ψ ∈ C1+m (B1(0), U) with Ψ(0) = x0, Ψ(B1(0)) = U and

M ∩ U = Ψ(Bn
1 (0)).

As DΨ(0) has rank = n+ k we have

d1 := inf
v∈∂B1(0)

DΨ(0) · v ∈ (0,∞). (A.17)

By assumption (A.12) there exists a d2 ∈ (0, 1) with∥∥πRn − πS−1(TxM)

∥∥
op
< 1− 2d2. (A.18)

As Ψ is continuous we can choose ρ ∈ (0, 1) such that

|DΨ(v)−DΨ(0)| ≤ d1d2 (A.19)

for all v ∈ Bρ(0). Set U1 := Ψ(Bρ(0)) then U1 is open and contains x0, so
there exists an r1 ∈ (0,∞) such that Br1(x0) ⊂ U1.

Suppose there exist x1, x2 ∈ M ∩ Br1(x0) with x1 6= x2 and x2 − x1 ∈
S(Rk). This will lead to a contradiction. Let v̂1, v̂2 ∈ Bn

ρ (0) with Ψ(v̂1) = x1
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and Ψ(v̂2) = x2, hence v̂1 6= v̂2 and Ψ(v̂2)−Ψ(v̂1) ∈ S(Rk). To get v̂1, v̂2 we
actually need that M is embedded. By the mean value theorem there exists
a t ∈ (0, 1) such that

Ψ(v̂2)−Ψ(v̂1) = DΨ(v̂1 + (v̂2 − v̂1)t) · (v̂2 − v̂1).

Set ŵ := v̂1 +(v̂2− v̂1)t and â := |v̂2− v̂1|−1(v̂2− v̂1). Then DΨ(ŵ) · â ∈ S(Rk)

and DΨ(0) · â ∈ TxM . Here we used the fact that the
(

∂
∂xi

Ψ(0)
)

1≤i≤n
span

TxM . As |â| = 1 we obtain with (A.19)

d1d2 ≥ |DΨ(ŵ)−DΨ(0)||â| ≥ |DΨ(ŵ) · â−DΨ(0) · â|

Now set â1 = S−1(DΨ(0)·â) and ã2 = S−1(DΨ(ŵ)·â). Then â1 ∈ S−1(TxM),
ã2 ∈ Rk and |â1− ã2| ≤ d1d2. Also by (A.17) we have d1 ≤ |â1|. With (A.18)
we can then conclude

|â1| = |πS−1(TxM)(â1)| = |πS−1(TxM)(â1)− πRn(â1) + πRn(â1)|
≤ |(πS−1(TxM) − πRn)â1|+ |â1 − ã2|
≤
∥∥πS−1(TxM) − πRn

∥∥
op
|â1|+ d1d2

< (1− 2d2)|â1|+ d2|â1| = (1− d2)|â1|.

This yields a contradiction, as d2 > 0 by assumption and |â1| > 0. Thus we
established the first statement for r ∈ (0, r1)

For the second part set ψ = Ψ
∣∣
Bn1 (0)

and consider the function Φ ∈
C1+m

(
Bn

1 (0)× Rk,Rn+k
)

defined by

Φ(ŷ, ỹ) := S−1(ψ(ŷ)− x0) + ỹ. (A.20)

As ψ(0) = x0, we see Φ(0) = 0. We want to use the inverse function theorem,
so we need to show DΨ(0) is invertible, hence calculate

∂

∂xi
Φ(ŷ, ỹ) =

{
S−1 ∂

∂xi
ψ(ŷ) if 1 ≤ i ≤ n,

ei if n+ 1 ≤ i ≤ n+ k

for all ŷ ∈ Bn
1 (0). Set bi := S−1

(
∂
∂xi
ψ(0)

)
for i = 1, . . . , n. The ma-

trix DΦ(0) is invertible if b1, . . . , bn, en+1, . . . , en+k are linearly independent.
Suppose this is not the case, then there exists an α ∈ Rn+k \ {0} such that

n∑
i=1

αibi =
k∑
j=1

αn+jen+j =: z.
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For the vector z we know z ∈ Rk and as the en+j are linearly independent

z 6= 0. As the
(

∂
∂xi
ψ(0)

)
1≤i≤n

form a basis of TxM , the vectors (bi)1≤i≤n form

a basis of S−1(TxM), so z ∈ S−1(TxM) ∩Rk. Then by Proposition A.9.2 we
have

∥∥πRn − πS−1(TxM)

∥∥
op

= 1 which is a contradiction, so such a z cannot

exist. Hence DΦ(0) is invertible.
By the inverse function theorem there exist a δ ∈ (0, 1) and a function

Φ−1 ∈ C1+m (U2, Bδ(0)), where U2 := Φ(Bδ(0)), such that Φ−1(Φ(y)) = y for
all y ∈ Bδ(0) and Φ(Φ−1(v)) = v for all v ∈ U2. Also U2 ⊂ Rn+k is open
and 0 ∈ U2, so there exists r2 ∈ (0,∞) such that Br2(0) ⊂ U2. Then define
G ∈ C1+m

(
Bn
r2

(0),Rn+k
)

and g ∈ C1+m
(
Bn
r2

(0),Rk
)

by

G(ŷ) := S−1
(
ψ
(
πRn(Φ−1(ŷ, 0))

)
− x0

)
, (A.21)

g(ŷ) := πRk (G(ŷ)) . (A.22)

As ψ(0) = x0 and Φ(0) = 0 we see G(0) = 0. We would like to have
(ŷ, g(ŷ)) = G(ŷ) for all ŷ ∈ Bn

r2
(0). To get this, consider ŷ ∈ Bn

r2
(0) and set

(v̂, ṽ) = Φ−1(ŷ, 0). Then calculate using the definition of Φ (A.20)

G(ŷ) = S−1 (ψ (v̂)− x) = Φ(v̂, 0)

and

πRn (G(ŷ)) = πRn (Φ(v̂, 0)) = πRn (Φ(v̂, ṽ)) = πRn (ŷ, 0) = ŷ.

So indeed (ŷ, g(ŷ)) = G(ŷ) for all ŷ ∈ Bn
r2

(0). Definition (A.21) then yields

S(ŷ, g(ŷ)) + x0 = S(G(ŷ) + x0 = ψ
(
πRn(Φ−1

1 (ŷ, 0))
)
∈M

for all ŷ ∈ Bn
r2

(0), which verifies (A.13) for r ∈ (0, r2). To prove (A.14) recall
r1 ∈ (0,∞) from the first statement. By setting r3 = min{r1, r2} we obtain
p(Br3(x0)) = Bn

r3
(0) ⊂ Bn

r2
(0) so g(p(x)) is defined for x ∈ Br3(x0). For

x1 ∈M ∩Br3(x0) set x2 := S(p(x1), g(p(x1))) + x0, we need to show that x1

and x2 actually are equal. By (A.13) we know x2 ∈M , then with definition
of x2 and p follows

S−1(x1 − x2) = S−1 (x1 − x0 − S(p(x1), g(p(x1)))

= S−1 (x1 − x0)− (p(x1), g(p(x1))

=
(
πRn

(
S−1 (x1 − x0)

)
− p(x1), πRk

(
S−1 (x1 − x0)

)
− g(p(x1))

)
=
(
0, πRk

(
S−1 (x1 − x0)

)
− g(p(x1))

)
∈ {0}n × Rk.

Thus statement 1 yields x1 = x2, which verifies (A.14) for r ∈ (0,min{r1, r2}].
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To see (A.15), note that S(Br(0)) + x0) = Br(x0). Consider an x ∈
S (M0 ∩Br(0)) +x0, then there exists v ∈ Bn

r (0) with x = S(v, g(v)) +x0, so
by (A.13) x ∈M . If x ∈M ∩Br(x0) then by (A.14) and p(Br(x0)) = Bn

r (0)
we have x = S(p(x), g(p(x))) + x0 ∈ S(M0 ∩Br(0)) + x0.

For (A.15) take x ∈ M0 and consider a curve c1 : (−1, 1) → M0 with
c1(0) = x. By (A.13) c2(t) := S(c1(t)) + x0 defines a curve in M and c2(0) =
S(x) + x0. We can calculate c′2(0) = S(c′1(0)), so S(TxM0) ⊂ Tx0+S(x)M and
as both are n-dimensional subspaces we actually have equality.

For the uniqueness suppose there exists a g̃ ∈ C1+m
(
Bn
r (0),Rk

)
that

satisfies (A.13). Consider v ∈ Bn
r (0), then by (A.13) x1 = S(v, g(v)) + x0

and x2 = S(v, g̃(v)) + x0 are both in M . We can calculate

πRn(S−1(x1 − x2)) = v − v = 0

so by statement 1 we have x1 = x2, hence S−1(x1 − x0) = S−1(x2 − x0) and
so g̃(v) = g(v). As this holds for all v ∈ Bn

r (0) we actually have g̃ = g. This
also shows that g is independent of the choice of ψ above.

A.4 Differential Inequalities

To rigorously deal with the differential equations in the Propositions 5.6, 7.5
and 10.4, we need the following propositions. First recall the upper and lower
derivative, which are just bounds on the differential quotient.

A.18 Definition. For a function f : (a, b) → R and a point t0 ∈ (a, b), the
upper and lower derivative are given by

Df(t0) := lim sup
h→0

f(t0 + h)− f(t0)

h

Df(t0) := lim inf
h→0

f(t0 + h)− f(t0)

h
.

We allow this to be ±∞, so it always exists.

For these derivatives the following version of the fundamental theorem of
integration holds:

A.19 Proposition. Let f : (a, b)→ R measurable

1. If Df(t) ∈ [−∞,M ] for some M ∈ R and all t ∈ (a, b). Then for all
a < t1 < t2 < b we have

f(t2)− f(t1) ≤
∫ t2

t1

Df(s)ds.
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2. If Df(t) ∈ [M,+∞] for some M ∈ R and all t ∈ (a, b). Then for all
a < t1 < t2 < b we have

f(t2)− f(t1) ≥
∫ t2

t1

Df(s)ds.

Proof. For the first statement suppose the assumption holds for some nega-
tive M . For n ∈ N define

gn(t) := n
(
f(t+ n−1)− f(t)

)
.

Then the gn are negative measurable functions and by Fatou’s Lemma we
obtain

lim sup
n→∞

∫ t2−ε

t1

gn(s)ds ≤
∫ t2−ε

t1

(
lim sup
n→∞

gn(s)

)
ds

for every ε > 0. By defintion of gn we clearly have lim supn→∞ gn(s) ≤
Df(s). Furthermore by negativity of the upper derivative, f is monotonically
decreasing and we can estimate∫ t2−ε

t1

gn(s)ds = n

∫ t2−ε+n−1

t2−ε
f(s)ds− n

∫ t1+n−1

t1

f(s)ds

≥ f(t2 − ε+ n−1)− f(t1) ≥ f(t2)− f(t1)

for n > ε−1. So for every ε > 0 we have

f(t2)− f(t1) ≤
∫ t2−ε

t1

Df(s)ds.

Now we can use the monotone convergence theorem with gn := Dfχ[t1,t2−n−1],
where here χ is the cut-off function on the interval. The gn converge point-
wise to Df on (t1, t2), so the theorem then states convergence of the integral
for ε↘ 0, which yields the result.

If M is positive we can just look at h(t) := f(t)−Mt. Then h has negative
upper derivative and applying the proposition to h implies the result on f .
For the second statement just look at −f and use the first statement, then
the result follows from D(−f) = −Df .

Furthermore we will need the following chain rule:

A.20 Proposition. For intervals (a1, b1), (a2, b2) ⊂ R and functions g :
(a1, b1) → (a2, b2), f : (a2, b2) → R consider h : (a1, b1) → R given by
h(t) := f(g(t)). Let t0 ∈ (a1, b1) be such that g is continuous in t0 and
f is differentiable in g(t0)
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1. If Df(g(t0)) > 0, we have Dh(t0) = Df(g(t0))Dg(t0) and Dh(t0) =
Df(g(t0))Dg(t0)

2. If Df(g(t0)) < 0, we have Dh(t0) = Df(g(t0))Dg(t0) and Dh(t0) =
Df(g(t0))Dg(t0)

(Note that the upper and lower derivatives are allowed to be ±∞)

Proof. Set s := g(t0). As f is differentiable in s we have for all δ ∈ (−δ0, δ0)

f(s+ δ) = f(s) + δDf(s) + δr(δ)

for some r : (−δ0, δ0)→ R with limδ→0 r(δ) = 0. Then we can calculate

h(t0 + δ)− h(t0)

δ
=
g(t0 + δ)− g(t0)

δ
(Df(g(t0) + r(g(t0 + δ)− g(t0))) .

If Df(s) > 0, we have that the term in brackets is positive for small δ. Taking
the lim supδ→0 yields

Dh(t0) = Dg(t0)
(
Df(g(t0) + lim

δ→0
r(g(t0 + δ)− g(t0)

)
and by the continuaty of g in t0 the error term vanishes in the limit. The
same calcultaion works with lim infδ→0. To get the Df < 0 statemnts just
use the previous on −f and combine this with D(−h) = −Dh.
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A.6 Abstract

English:
This work is about the regularity of the Brakke flow. A Brakke flow is a
family of Radon measures (µt)t∈[t1,t2] in Rn+k, such that the inequality

Dtµt (φ) ≤ B (µt, φ)

holds for all φ ∈ C0,1
c (U,R+). Here B (µt, φ) denotes the Brakke variation

defined by

B (µt, φ) := −
∫
U

φ| ~H|2dµ+

∫
U

Dφ · ~Hdµ,

if this expression exists and B (µt, φ) := −∞ else. Moreover we assume, that
the µt are integral at almost every time.

The central Result is Brakke’s local regularity theorem, which considers
Brakke flows that lie in a slab sptµt ∩ B1(0) ⊂ Rn × Bk

h(0). If this slab is
narrow enough, i.e. h small and the values µt1(B1(0)), µt2(B1(0)) are not too
far from L n(B1(0)), then there exists a small ball such that sptµt ∩Bδ(0) is
smooth and graphical for all times t ∈ [t1 + C(n, k), t2 − C(n, k)].

Now consider an arbitrary Brakke flow in U ⊂ Rn+k, then for almost
every time t0, we have that for all φ ∈ C0,1

c (U,R+) the function t→ µt(φ) is
continuous in t0 Let t0 be such a time and suppose µt0 has density one almost
everywhere. Brakke’s general regularity theorem states, that at time t0 the
singular set has H n-measure zero, this means, for almost every point x ∈ U
there exists a space-time-neighbourhood where the Brakke flow is smooth.
This result is primarily based on the fact, that for almost every point with a
tangent space, we can find a small neighbourhood, where the local regularity
theorem can be applied.

In the last part we consider Brakke flows, for which the starting varifold
µt1 restricted to C1(0) \ S̃ is graphical. If S̃ has small enough µt1-measure
and if the graphical part satisfies certain gradient- and height-bounds, then
one can use the local regularity theorem to show, that (µs)s∈[t1+C,t1+2C] is
completely graphical, or there exists a cylinder Cδ(0) with µs0-measure zero,
where s0 = t1 + 3C.
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Deutsch:
Diese Arbeit befasst sich mit der Regularität des Brakke Flusses. Bei einem
Brakke Fluss handelt es sich um eine Familie von Radon maßen (µt)t∈[t1,t2]

im Rn+k, die der Ungleichung

Dtµt (φ) ≤ B (µt, φ)

für alle φ ∈ C0,1
c (U,R+) genügen. Hierbei bezeichnet B (µt, φ) die Brakke

Variation gegeben durch

B (µt, φ) := −
∫
U

φ| ~H|2dµ+

∫
U

Dφ · ~Hdµ,

falls dieser Ausdruck definiert ist und B (µt, φ) := −∞ sonst. Darüber
hinaus nehmen wir an, dass µt für fast alle Zeiten eine integrale Varifaltigkeit
ist.

Zentrales Ergebnis ist Brakkes lokales Regularitätstheorem, dabei werden
Brakke Flüsse betrachtet die lokal in einer horizontalen Röhre liegen sptµt ∩
B1(0) ⊂ Rn × Bk

h(0). Ist nun die Röhre schmal genug, also h klein, und
sind die Werte µt1(B1(0)), µt2(B1(0)) nicht zu weit weg von L n(B1(0)), so
gibt es eine kleine Kugel in der sptµt ∩ Bδ(0) graphisch ist für alle Zeiten
t ∈ [t1 + C(n, k), t2 − C(n, k)].

Hat man nun einen beliebigen Brakke Fluss in U ⊂ Rn+k, so gilt für fast
alle Zeiten t0, dass für alle φ ∈ C0,1

c (U,R+) die Abbildung t → µt(φ) stetig
ist in t0. Sei t0 ein solcher Zeitpunkt und nehmen wir weiter an µt0 habe fast
überall Dichte Eins. Brakkes allgemeines Regularitätstheorem besagt, dass
zum Zeitpunkt t0 die singuläre Menge H n-maß Null hat, das heisst, dass
für fast alle Punkte x ∈ U eine kleine Raum-Zeit-Umgebung existiert in der
der Fluss glatt ist. Dieses Ergebnis beruht im wesentlichen darauf, dass sich
für fast alle Punkte mit Tangentialraum eine kleine Umgebung finden lässt,
in der das lokale Regulartätstheorem angewandt werden kann.

Im letzten Teil betrachten wir Brakke Flüsse, deren Anfangsvarifaltigkeit
µt1 eingeschränkt auf C1(0) \ S̃ graphisch ist. Ist dass µt1-maß von S̃ klein
genug und genügt der graphische Teil von µt1 bestimmten Gradienten- und
Höhen-schranken, so lässt sich mit Hilfe des lokalen Regulartätstheorems
zeigen, dass der Fluss (µs)s∈[t1+C,t1+2C] komplett graphisch ist, oder ein Zylin-
der Cδ(0) existiert der µs0-maß Null besitzt, wobei s0 = t1 + 3C.
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