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ELEWAITORR OPERRATORR 

Dramatis personæ: 
Count von Count 
Kermit the Frog 

The Count: Ha, ha, hotsy-potsy. My first day on the job as elevator operator. I can not 
wait to take someone upstairs on the elevator so I can count the numbers on the different 
floors. Ah, ha. Here comes someone now. 

(Enters Kermit the Frog.) 

Kermit: Oh, hi there. Uh, could you take me up to ... Count!? Is ... is it you? 

The Count: Yes! 

Kermit: Well, what are you doing here? 

The Count: I am the new elevator operator, ah, ah! 

Kermit: Ooh. 

The Count: I got the job this morning. 

Kermit: Wonderful. 

The Count: Ah, yes. And I'm going to love it because I get to count the floors. 

Kermit: Ah, well, listen, could you take me up to the seventh floor? 

The Count: Ah, at last! Walk this way. 

Kermit: Okay. Into the elevator. 

The Count: Watch your step, please. Going up. 

(The elevator door closes.) 

The Count: Starting at one and going up. That's two, two floors! Three, three floors! 
Four, four floors! Five, five floors! Six, six floors! Seven floors! Eight floors! 

Kermit: Um, um. Wait a second, Count! I ... I wanted to get off on the seventh floor. 

The Count: Nine floors! Ten, that's ten floors! I love it! Ah, ha, ha, ha!!! 

(Thunder and lightning.) 

Kermit: Uh, Count! I wanted to get off on the seventh floor! 

The Count: I'm sorry, Kermit. Oh, but I could not stop till I reached the top, ah, ah, ah. 

Kermit: Well, would you please take me back down to the seventh floor,  

please? 

The Count: Well, of course. That's my job. 

Kermit: Yes, it is, your job. 

The Count: Starting at ten and going down. Nine! Eight! Seven! 

Kermit: Uh, this is it. 

The Count: Six! 

Kermit: No, no, no! You went to the wrong floor again! Listen, Count! Will you stop this 
please!? Count! Oh, I'll run this elevator myself! 

(Kermit tries to get to the controller but The Count won't let him.) 
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The Count: Five, four, three, two, one! Ah, ah, ah. ah! I love it! Wait, I can't! Oh! 

(Both get off the elevator.) 

The Count: But wait, Kermit. You're angry with me. 

Kermit: Yes, I'm angry! 

The Count: But why? 

Kermit: Because you were supposed to stop at the seventh floor!!! 

The Count: Why? 

Kermit: Well, because that's what elevator operators do! They're supposed to take people 
to whatever floor they want to go in the building! 

The Count: They are? 

Kermit: Yes! And I wanted to go to the seventh floor!!! 

The Count: Ah, but that is no problem. 

Kermit: Yeah? 

The Count: I know how to take you to whatever floor you want to go to in the building, 
and I can still count all the floors without stopping, ah, ah. 

Kermit: Oh yeah? How? 

The Count: I will take the elevator, and you can hop up the stairs. 

Kermit: The ... the stairs? 

(The elevator door closes.) 

The Count: Bye-bye! 

 
 
(http://www.youtube.com/watch?v=Fup_IpYtDHQ) 
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ZUSAMMENFASSUNG 

Etwa 3 bis 6% der Bevölkerung sind nicht in der Lage wenigstens basale nu-
merische und arithmetische Fertigkeiten zu entwickeln (Shalev, 2007). Dies 
lässt die Ergebnisse (neuro-)kognitiver Studien, die sich den Ursachen entwick-
lungsbedingter Störungen im Bereich mathematischer Verarbeitung, d.h. der 
Dyskalkulie, widmen, eher dürftig erscheinen und zudem nicht ausreichend 
eindeutig. Die vorliegende Dissertation setzt sich aus vier experimentellen Stu-
dien zusammen, die neue Erkenntnisse über die Entwicklung normaler und 
gestörter numerischer Verarbeitungsprozesse generieren sollen. Behaviorale, 
Blickbewegungs- und elektrophysiologische Parameter wurden eingesetzt, um 
die Repräsentation numerischer Größe sowie die entsprechenden Verarbei-
tungsprozesse bei Kindern zu untersuchen. 

Die erste Studie widmet sich der Frage, ob bzw. inwiefern sich die Verarbei-
tung numerischer Größeninformation bei Kindern in Abhängigkeit von der 
Menge der zu erfassenden Objekte unterscheidet. Dazu wurden EEG-Daten 
erhoben, während Kinder im Grundschulalter Aufgaben lösten, die einen nu-
merischen Größenvergleich non-symbolischer Stimuli erforderten. Die zweite 
Studie untersuchte elektrophysiologische Korrelate basaler numerischer Verar-
beitung bei Kindern mit Rechenstörung im Vergleich zu einer Kontrollgruppe. 
Auch hier wurde ein klassischer numerischer Größenvergleich non-
symbolischer Stimuli als Experimentalanordnung eingesetzt, um eine Manipu-
lation der numerischen Distanz zwischen zu vergleichenden Mengen von Ob-
jekten zu ermöglichen. Die dritte Studie nutzte Blickbewegungsmessung, um 
die Entwicklung basaler Repräsentation numerischer Größe im Grundschulal-
ter zu untersuchen. Dazu wurden die teilnehmenden Kinder mit zwei paralle-
len Implementierungen einer klassischen Zahlenstrahl-Schätzaufgabe konfron-
tiert, bei der sich eine auf die Erhebung behavioraler Daten beschränkte, wäh-
rend die zweite zusätzlich eine Erhebung von Blickbewegungsdaten beinhaltete. 
Für die vierte Studie wurde ein numerischer Stroop-Test eingesetzt, bei der 
Kinder einerseits einen numerischen Größenvergleich und andererseits einen 
Vergleich der Schriftgröße von Ziffernpaaren durchführten. Effekte der Mani-
pulation von Kongruenz zwischen numerischer und Schriftgröße sowie Dis-
tanzeffekte wurden für eine Gruppe von Grundschülern ermittelt, von denen 
ein Teil unterdurchschnittliche Leistung in einem standardisierten Mathematik-
leistungstest zeigte, während die Vergleichsgruppen im mittleren Leistungsbe-
reich bzw. überdurchschnittlich abschnitten. 

Die Ergebnisse der Studien deuten darauf hin, dass (a) Repräsentation nu-
merischer Größe bedeutsame qualitative Veränderungen während der ersten 
Schuljahre durchläuft (vgl. Studie 3), dass (b) bei expliziten numerischen Ent-
scheidungsprozessen die Rekrutierung domänenspezifischer Ressourcen, die in 
parietalen Hirnarealen lokalisiert werden, nicht abhängig von der Anzahl der zu 
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verarbeitenden Objekte ist (vgl. Studie 1), dass (c) gestörte numerische Verar-
beitung nicht auf ein Automatisierungsdefizit im Bereich der Zugriffs auf nu-
merische Information zurückzuführen ist (vgl. Studie 4), sondern (d) eher auf 
Unterschiede in der Funktionalität domänenspezifischer Verarbeitungssysteme, 
die vor allem in rechtshemisphärischen inferioren parietalen Kortexarealen 
verankert sind (vgl. Studie 2). Es ist jedoch festzustellen, dass diese Studien 
zwar einerseits gewisse Rückschlüsse über behaviorale und neurophysiologi-
sche Charakteristiken normaler und gestörter Verarbeitung numerischer In-
formation bei Schulkindern zulassen, dass andererseits aber experimentelle 
Zugänge gefunden werden sollten, die eine Entwicklungsperspektive implizie-
ren. Nur so werden tiefere Einblicke in typische und abweichende Entwick-
lungsverläufe basaler und höherer numerischer Fertigkeiten ermöglicht. 
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SUMMARY 

Considering the fact that about 3 to 6% of the population fail to develop even 
the most basic numerical and arithmetic skills (Shalev, 2007), the outcome of 
(neuro-) cognitive research into the causes of developmental impairments in 
the mathematical domain, i.e. developmental dyscalculia, seems rather sparse 
and, at the same time, controversial. This thesis consists of four experimental 
studies that aim to gain further insight into the development of normal and 
impaired numerical processing. Behavioral, eye-movement and electrophysio-
logical measures were used to tap into children's representation and processing 
of numerical magnitude information.  

In order to shed light on the question whether and in what way enumera-
tion of small and large sets of objects is functionally different, the first study 
focused on basic numerical magnitude processing in normally developing chil-
dren. EEG data were collected from sixty primary schoolers performing a non-
symbolic numerical comparison task. The second study investigated electro-
physiological correlates of basic numerical processing in children with mathe-
matical learning disabilities compared to a matched group of normally develop-
ing children. Again, children were tested with a standard non-symbolic numeri-
cal comparison paradigm that allowed for a manipulation of numerical dis-
tances between stimulus arrays for different quantity ranges. Study three used 
eye movement measurement to investigate the development of basic knowl-
edge about numerical magnitude in primary school children. Sixty-six children 
from grades one to three (i.e. 6 to 9 years) were presented with parallel versions 
of a classic number line estimation task. The fourth study adopted a numerical 
Stroop paradigm, where children were asked to make numerical and physical 
size comparisons on digit pairs. The effects of congruity and numerical dis-
tance were determined for primary school children, of which a subgroup 
scored low in a standardized math achievement test, while others were normal 
or high achievers. 

The results suggest that (a) numerical magnitude representations undergo 
relevant qualitative changes during the first years of formal mathematical train-
ing (cf. study 3), that (b) for explicit numerical decisions the involvement of 
domain-specific processing resources in parietal regions does not depend on 
quantity features of the input, i.e. numerical range (cf. study 1), that (c) im-
paired numerical processing may not be caused by a lack of automaticity in 
accessing numerical magnitude representations (cf. study 4), but rather (d) by 
differential recruitment of domain-specific processing resources in predomi-
nantly right parietal regions by low math achievers compared to their normally 
developing peers (cf. study 2). However, even though these studies allow for 
certain insights into the behavioral and neurophysiological characteristics of 
normal and impaired numerical processing in school-aged children, future 
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studies should implement truly developmental approaches so as to provide 
more fine-grained information about typical and atypical developmental trajec-
tories of basic and higher-level number-related skills. 
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INTRODUCTION 

Mind is a leaky organ, forever escaping 
its "natural" confines and mingling 
shamelessly with body and with world.∗ 

Literacy is commonly used as a standard measure of a society's degree of so-
phistication. However, it is almost impossible to imagine a society that was able 
to read and write and, yet, had no grasp of numerical concepts. It is my strong 
conviction that numeracy – the ability to understand and deal with numbers – 
is as important for describing, predicting and manipulating our complex envi-
ronments as is our use of written language. 

It is thus hardly surprising that there is a growing scientific interest not only 
in describing the manifold behavioral manifestations, but also in decoding the 
neural correlates of basic number processing and arithmetic. Ever since 
Dehaene (1992) wrote his first review article on "Varieties of Numerical Abili-
ties", cognitive neuroscience made significant advances in identifying and locat-
ing numerical processing functions in the adult brain. And, whereas research 
on the development of numeracy is still lagging behind research on normal and 
impaired written language acquisition, there is meanwhile a substantial body of 
studies available that address issues of typical and atypical development of nu-
merical abilities. All the more reason to start reflecting upon a certain theoreti-
cal framework that pervades the emerging field of the developmental cognitive 
neuroscience of numerical cognition: Namely, the more or less implicit as-
sumption that, as Johnson (2011a) puts it, "…functional brain development is 
the reverse of adult neuropsychology, with the difference that specific brain 
regions are added-in instead of being damaged" (p. 14). 

In the case of numerical processing, there is a continued research tradition 
that probably started with Henschen's (1919) treatise on selective impairments 
of certain higher cognitive processes, and culminates in Butterworth's (1999) 
conception of an innate "number module". Ever since Henschen observed "… 
dass die Zifferblindheit durch Herde in der Angularwindung entsteht, die sich 
nach vorn (und oben?) auf die Rinde der Fissura intraparietalis ausdehnen." (p. 
288), researchers set out to identify the specific neural circuits specialized for 
all kinds of quantity processing in healthy adults. As a result of these concerted 
efforts, the commonly held assumption is that basic and higher numerical abili-
ties are the result of the workings of a genetically predetermined modular sys-
tem that is assumed to be localized in bilateral inferior parietal lobes. Neuro-
                                                 
∗ Andy Clark, Being There. Cambridge, MA: The MIT Press, 1997. 
(Chapter 3: Mind and world: The Plastic Frontier.) 
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psychological studies added further evidence in support of this approach to 
number processing by demonstrating that focal damage to these brain regions 
typically results in impaired numerical abilities. 

0.1 The Development of Numerical Processing 

Not wholly surprising is that, in what I would call a scientific knee-jerk reaction, 
the general findings from studies on adult numerical cognition in healthy popu-
lations and in patients with neurological disorders were twisted into an ap-
proach to typical and atypical numerical development. The development of 
numerical abilities is, thus, assumed to be directly related to the genetically trig-
gered coming into function of certain parietal cortex areas, i.e., the number 
module is "turned on" at a certain point in ontogeny. Consequently, develop-
mental impairments of numerical and mathematical processing are immediately 
reducible to disruptions in the maturation of these very same cortical regions.  

Karmiloff-Smith (1998) challenges the validity of such "non-
developmental" (p. 389) scientific endeavors by pointing out that developmen-
tal disorders may not be so much the result of impairments at the level of ge-
netically predetermined domain-specific processing systems, but rather the 
outcome of developmental pathways that involve complex interactions of 
more general genetic constraints with the child's physical and social environ-
ment. She explicitly calls for longitudinal approaches to the study of develop-
mental disorders instead of focusing on deviant end-state processing systems 
(Ansari & Karmiloff-Smith, 2002). 

Before addressing the issue of what I take to be an appropriate theoretical 
framework for neurocognitive research on developmental impairments of nu-
merical cognition – or any developmental disorder, for that matter –, I will first 
describe a stage model of basic and numerical and arithmetic development. 
Subsequently, I will briefly outline the classic theoretic approaches to cognitive 
development, namely the nativist and the empiricist frame of reference, both 
of which will be contrasted with the interactive specialization framework 
(Johnson, 2011b). 

0.1.1 A Model of Numerical Development 

Even though human beings seem to be born with certain pre-numerical capaci-
ties (Feigenson, Dehaene, & Spelke, 2004) which are commonly taken to be 
phylogenetically advanced adaptive systems serving as precursors for the de-
velopment of numerical processing functions, it typically takes at least until the 
end of the first years of formal schooling until children can be assumed to be 
equipped with the basic numerical abilities that allow for the formation of 
higher, i.e. formal and fully abstract mathematical concepts. In the following 
paragraphs, I will briefly describe the four-step model of number development 
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suggested by von Aster and colleagues (von Aster, 2005; von Aster & Shalev, 
2007) which summarizes concisely the current state of research into numerical 
development (see Figure 0.1).  

 

Figure 0.1: von Aster's four-step model of number development  
(cf. von Aster & Shalev, 2007) 

0.1.1.1 Infants' Numerical Capacities 

Whereas Piaget (Piaget & Szeminska, 1972), who was one of the first devel-
opmental psychologists to investigate children's numerical abilities systemati-
cally, started from the assumption that children are not able to carry out even 
the simplest forms of arithmetic before the age of six, when they finally have 
mastered basic concepts such as object permanence, more recent studies show 
that this picture is way to pessimistic. Only a few months after birth, human 
infants are already able to discriminate the cardinality of small sets of objects, 
i.e. numerosities within the subitizing range of 1 to 3 (Wynn, 1992). A second 
cognitive function that becomes apparent well before the infants' first birthday, 
is the ability to discriminate larger sets of items when their ratio is about 1:2 or 
1:3 (Xu & Spelke, 2000). However, with smaller numerical distances between 
the to-be-compared sets of items, infants inevitably fail. The demonstrations of 
early capacities in handling non-symbolic quantities are interpreted as reflec-
tions of innate number-specific representation systems that kick in working 
long before verbal and other symbolic capacities develop. The assumption that 
human infants are endowed with certain cognitive tools apparently independ-
ent from individual learning or cultural transmission, are corroborated by 
comparative studies that found similar capacities in other species (Brannon & 
Terrace, 1998).  
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0.1.1.2 Children's Early Numerical Development 

Children's numerical development during their first years of life is character-
ized mainly by a growth in language functions which are the basis for the de-
velopment of early counting skills (see Figure 1.1 in Chapter 1, which illustrates 
the five main counting principles that children have to master in the course of 
their pre-school development). At the same time, children start to get a grip on 
simple arithmetic principles such as 'adding to' or 'subtracting from' by ma-
nipulating collections of physical objects. However, much of the child's early 
arithmetic capacities remain very concrete in that they are inextricably tied to 
the use of fingers, i.e. finger counting (Butterworth, 1999), a strategy which is 
typically abandoned in the course of the first years of formal mathematical 
training. 

0.1.1.3 Starting School 

Among the first things that children are confronted with in school is the arabic 
notation system and, only slightly later, the place-value system. One of the 
most challenging tasks that, for example, German children have to master, is to 
cope with irregularities of the number syntax, e.g. the inversion of tens and 
units in number words such as 'Dreizehn' or irregularities in number conver-
sion such as 'Elf'. By comparing US-American and Chinese primary schoolers, 
Geary and colleagues (1993) demonstrated that such language-specific obsta-
cles may delay children's formal math development considerably. 

0.1.1.4 The First Years of Formal Training 

When children have finally managed these basic steps, more complex numeri-
cal skills develop. Apart from the formation of ordinal number representations 
that allow for a sophisticated mental manipulation of numerical magnitudes, 
children start to build up numerical rote memory, e.g. mental storage of addi-
tion and multiplication tables. The latter is, on the one hand, tied to the devel-
opment of verbal working memory functions at that age, and, on the other 
hand, crucial for the formation of higher mathematical abilities that rely on the 
availability of domain-general cognitive resources. When children finally finish 
primary school, they typically possess considerable conceptual, e.g. understand-
ing of the base-10 system, and procedural knowledge, e.g. strategies such as 
columnar trading, which, in combination with an increased automaticity in the 
manipulation of numerical content, provides for their entering the realm of 
higher, abstract mathematics. 



Numbers do Count 

21 

0.1.2 Theoretical Approaches to Cognitive Development 

According to the maturational model, cognitive functions are immediately 
linked to the genetically predetermined maturation of certain brain regions. As 
soon as these mainly cortical areas become functional the new cognitive func-
tion becomes manifest on the behavioral level. The central assumption here is 
what Gottlieb (2007) referred to as deterministic epigenesis, i.e. an unidirectional 
relation between genetic activity → structure → function. The other extreme of the 
theoretical spectrum is the skill learning approach that assumes that new cogni-
tive functions are the result of the child's exposure to and interaction with cer-
tain environmental stimuli. The empiricist basically takes as a given that the 
processes and functions effective in the infant's acquisition of a new cognitive, 
sensory or motor ability are the same that adult skill learning is based upon. 

Both theoretical approaches, i.e. in Johnson's (2011b) terminology, the 
maturational and the skill learning perspectives, share the underlying assump-
tion of static and localized mappings between certain brain structures and re-
spective cognitive functions, i.e. the notion that the same discrete brain areas 
do – or in the case of impaired functioning, do not – subserve the same cogni-
tive capacities throughout lifetime. However, there is meanwhile enough em-
pirical evidence to refute this assumed functional stability over time where ba-
sic or higher numerical functions are concerned (see e.g. Rivera, Reiss, Eckert, 
& Menon, 2005). This means that it is essential for a developmental cognitive 
neuroscience of numerical cognition to find more adequate theoretical ap-
proaches so as to provide for an appropriate explanatory framework to tackle 
issues related to normal and impaired trajectories of numerical development.  

An alternative model of cognitive development was put forward by Johnson 
et al. (2001, 2011b; Sirois et al., 2008). The interactive specialization framework 
is intended to provide a domain-general theoretical model for the field of de-
velopmental cognitive neuroscience. According to this view, developmental 
changes in a certain cortical region's response to intrinsic or extrinsic stimula-
tion are the result of an interaction and competition between neighboring and 
other regions in a functional network. So, it is not so much intra-regional but 
inter-regional functional modification that is relevant for emerging competen-
cies on the behavioral level. As a result of these processes of change, a certain 
brain area becomes more specific or specialized in its response behavior. This 
approach crucially depends on Gottlieb's (2007) concept of probabilistic epi-
genesis which holds that bidirectional influences exist between the levels of 
genetic activity ↔ structure ↔ function. Furthermore, the mappings between cogni-
tive capacities and their neural substrates are assumed to be dynamic in that 
there is no one-to-one relation between behavioral performance and underly-
ing neurocognitive mechanisms. Depending on age and group, a similar behav-
ioral output may rely on rather different neural processing systems. Finally, the 
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approach abandons the concept of brain development as the result of an en-
capsulated process that follows a certain genetic blue-print. Cognitive devel-
opment is at least partially influenced by specific input from the brain's imme-
diate physical milieu, as well the organism's social and cultural environment. So, 
to use Clark's metaphor, it is not only the mind itself that is leaky, but also its 
molding in the course of development. 

Interestingly, while most research on typical and atypical development of 
numerical abilities actually starts from a nativist background, an interactive 
specialization model of higher-level cognitive development actually provides a 
considerably better fit to the available empirical data (for a review, see Ansari, 
2008). This obvious inconsistency may actually have a rather trivial cause. 
While the maturational model may actually not be the most suitable theoretical 
basis for a developmental cognitive neuroscience, it is the by all means the 
most convenient theoretical approach. Convenient, in that it allows for the 
implementation of rather focused and straight-forward experimental studies 
that deal with certain local hypotheses. Incorporating more complex frame-
works such as the interactive specialization approach entails considerably more 
sophisticated study designs. 

This said, I have to concede that my own scientific undertakings in the do-
main of numerical development did not necessarily start from the realization of 
a set of well-defined theoretical assumptions that were to guide and pervade all 
steps of the research process from the planning of an experiment to the publi-
cation of the results. Even though I am actually firmly rooted in what was 
called developmental connectionism some years ago (Elman et al., 1996), when 
I started making up my mind about language in general and, specifically, the 
ontogenesis of syntactic categories, I may have cut a corner or two when it 
comes to the theoretical consolidation and integration of my own hands-on 
research activity into a broader framework. This may be the reason that the 
four experimental studies that make up the core of this doctoral thesis are 
reminiscent of what Johnson (2011b) called "isolated islands of data" (p. 8), 
symptomatic for a still prevalent neglect in terms of defining adequate theoreti-
cal foundations for the emerging field of developmental cognitive neuroscience. 
However, there is no better time to reflect on the broader issues of research in 
developmental cognitive neuroscience than now that this important period in 
my scientific training comes to an end. While I will not try to pretend some-
thing that wasn't, I will still use the opportunity to review my past research 
activities, and try to define some basic concepts that shall guide my future re-
search. 

0.2 Philosophical Background 

Before starting this foray into the subject matter of philosophy of mathematics, 
it may be appropriate to first point out some central concepts, namely the di-
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mensions of the ontology and epistemology of mathematical entities or objects. 
Discussions of mathematical ontology are concerned with the question of ob-
jectivity and truth of mathematical objects such as numbers, points, sets, func-
tions. The issue here is, where those entities actually reside, and whether they 
exist independently of the human mind. Epistemology of mathematics, in turn, 
covers questions of how mathematical knowledge is possible, or, to put it in 
another way, what has to happen for a human knower to gain access to any 
mathematical object. That is, any philosophical approach to the subject matter 
of mathematics has to tackle not only the issue of what it is that is known, but 
also how it is known; its epistemology should dovetail its ontology. 

The idea that mathematical entities exist objectively, i.e. independent from 
the human knower, is called realism in ontology. So, realism in the philosophy 
of mathematics refers to the assumption that mathematical objects are mind-
independent, i.e. have an existence on their own. There are at least two main 
versions of realism in ontology, one of which is Platonism, according to which 
numbers are non-physical entities belonging to another realm than the physical 
world, and empiricism, which relates numbers to our physical world (cf. Balaguer, 
2009). Anti-realists in ontology do either completely deny the existence of 
mathematical objects, i.e. mathematical objects are void of meaning, or, alter-
natively, hold that mathematical objects do exists, however, not objectively but 
as constructions of the individual or an ideal human mind, and are, thus, mind-
dependent entities. The former school of thought in the philosophy of mathe-
matics is called the nominalism, the latter constructivism or intuitionism. Real-
ism in epistemology refers to the assumption that it is the nature of the object 
that determines the form of our knowledge about it, while epistemological 
anti-realism holds that we simply cannot know how nature really is.  

0.2.1 Platonism in the Philosophy of Mathematics 

With reference to the conversations between the neuroscientist Pierre 
Changeux and the mathematician Alain Connes, Dehane argues against what 
he calls an "ethereal [emphasis added] conception of mathematics" (1997; p. 
117), with which he alludes to Connes' assumed Platonist stance. Interestingly, 
Connes himself rejects such a reading in stating his "belief in the existence of 
raw mathematical reality, as an inexhaustible source of information, [which] is 
the result of long personal experience, not of reading Plato – whose ideas [he 
doesn't] necessarily agree with" (Changeux & Connes, 1995; p. 233).  

Since it is an allegedly Platonist version of realism in ontology, that the cog-
nitive scientist guns for, its theory of Forms will be briefly elaborated (cf. 
Balaguer, 1998; Balaguer, 2008). Plato based his ontology on the assumption of 
two separate worlds, i.e. the physical world and the realm of what he calls 
Forms. While in our physical world everything is inevitably flawed and ulti-
mately non-perfect, the realm of Forms only contains perfects entities, such as 
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e.g. Beauty itself or Justice itself, and so on. Physical objects are beautiful only 
to the extent that they resemble these Forms to a certain degree. While objects 
of the physical world are subject to change, i.e. a just person can become un-
just, or the beauty of objects can vanish over time, the Forms are eternal and 
unchanging. 

 

Figure 0.2: The physical and the realm of Forms, by Fogelin (1971; p. 371) 

It is, however, through the inevitably non-perfect objects in our physical world, 
that we humans are able to gain a limited understanding of the ideal Forms. In 
Plato's view, the visible objects our physical world is made of are mere images 
or reflections of the originals, i.e. the objects of the realm of Forms. While we 
access the objects of the physical world through sense perception, the original 
Forms are intelligible only, i.e. accessible to a certain degree through mental 
reflections (see Figure 0.2). While we are able to see the beautiful things in our 
physical environment, e.g. a beautiful flower, we have to think in order to get 
in contact with Beauty itself. Plato also elaborates on the idea that it is through 
our souls, which are in contact with both realms, that we can do the trick. In 
this version, no experience with the worldly reflections of eternal Forms is 
necessary, knowledge is a priori.  

And do you not know that, although they [the mathematicians] make use of 
their visible forms and reason about them, they are thinking not of these, but of 
the ideals which they resemble; not of the figures which they draw, but of the 
absolute square and the absolute diameter, and so on the forms which they 
draw or make, and which have shadows and reflections in water of their own, 
are converted by them into images, but they are really seeking to behold the 
things themselves, which can only be seen with the eye of the mind? (Plato, 
Republic, as cited by Kline, 1985; p. 46) 

According to Plato, mathematics and its objects are entities of the realm of 
eternal Forms. Physical objects are reflections of mathematical objects, which, 
in turn, are ultimately reflections of eternal Forms. So, while some round ob-
jects such as, say, a saucer or a circle drawn by a pair of compasses approxi-
mate the a geometric circle, those physical entities are only imperfect reflec-
tions of the original mathematical object. The same applies for arithmetic 
properties, which are about the abstract objects of numbers, which, being part 
of mathematics, are independent from the mathematician. Numerosities of 
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collections of objects are to be distinguished from numbers themselves which 
are not instantiated by the object collections but only reflected by them.  

For a cognitive scientist, the main problem with Platonism is, of course, 
that it leaves us with the realization of an insurmountable epistemic gap be-
tween the world of physical objects, which the human knower belongs to, and 
the objects of mathematics proper, which are part of the inaccessible realm of 
the Forms. Since we can hardly content with mystical ideas of souls that medi-
ate between these two worlds, the cognitive scientist is forced to turn his or 
her back to this version of realism in ontology. 

However, it is as soon as through the contemplations of Aristotle's, Plato's 
own disciple, that something which resembles an empiricist view was intro-
duced to the philosophy of mathematics. For Aristotle, the eternal Forms do 
not belong to another realm, but are not to be separated from the objects in 
our physical world that instantiate them. Universal Forms such as circles are 
abstractions over classes of objects sharing a certain property such as being 
round. And in this sense, the number four is grasped by abstractions over sets 
of four physical objects. So, instead of throwing out the baby with the bathwa-
ter by focusing on Plato's hard-to-swallow ideas about mathematics, it seems to 
be more appropriate to find out whether after more that two thousand years of 
philosophy of mathematics other approaches are available that are more in line 
with what we, or, at least what I think we are dealing with in a cognitive psy-
chology of mathematics. Trying to avoid what Putnam called "the intellectual 
dishonesty of denying the existence of what one daily presupposes" (Putnam, 
1971; p. 57), I am definitely siding with Clark here. 

I deliberately avoid this [i.e. an anti-realist view of the world], which runs the 
risk of obscuring the scientific value of an embodied, embedded approach [to 
cognition] by linking it to the problematic idea that objects are not independent 
of mind. My claim, in contrast, is simply that the aspects of real-world structure 
which biological brains represent will often be tightly geared to specific needs 
and sensorimotor capacities. (Clark, 1997; p. 173) 

0.2.2 Outline of Contemporary Approaches to Realism in the Philosophy of 
Mathematics 

In the following, I will briefly describe some contemporary realist positions in 
philosophy of mathematics that are well in line with the explicit or implicit 
assumptions that my scientific approach is based upon, i.e. the views of Quine, 
Gödel and, finally, Penelope Maddy.  

0.2.2.1 Quine's Web of Belief 

I will start with the naturalist-empiricist position of Quine which culminates in 
the posit that any science, which in Quine's view includes mathematics, is ulti-
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mately nothing but a tool "for predicting future experience in the light of past 
experience" (Quine, 1998; p. 49). For Quine, there is no principled boundary 
between mathematics and other sciences, be it natural sciences such as physics 
or more applied ones such as economics. The whole scientific enterprise forms 
a continuum from mere experimental sciences to abstract mathematics. 

I am inclined to lighten somewhat the emphatic contrast usually drawn between 
mathematics and natural science. I already equated the roles of mathematical 
laws with laws of nature. (Quine, 1995; p. 53) 

Quine's entire thinking with respect to philosophy of mathematics is based on 
a metaphor that describes all kinds of knowledge, which he calls "beliefs", to 
form a "man-made fabric", i.e. Quine's web of belief (Resnik, 2007), which not 
only encompasses the empirical sciences but also mathematical knowledge. 
Within this web the atoms of our vast knowledge are represented and linked 
together to form a web. 

The totality of our so-called knowledge or belief, from the most casual matters 
of geography and history to the profoundest laws of atomic physics or even of 
pure mathematics and logic, is a man-made fabric which impinges on experi-
ences only along the edges. Or, to change the figure, total science is like a field 
of force whose boundary conditions are experience. (Quine, 1998; p. 47) 

Empirical evidence, gathered e.g. by direct observation, enters the web only 
"along the edges"; all other knowledge arises from within. In case of new 
knowledge that is not immediately compatible with what is already there, the 
whole system - this reflects Quine's holism - is changed by readjustment of the 
links within the web until an equilibrium is restored. 

A conflict with experience at the periphery occasions readjustments in the inte-
rior of the field. Truth values have to be redistributed over some of our state-
ments. Re-evaluation of some statements entails re-evaluation of others, be-
cause of their logical interconnections. (…) The edge of the system must kept 
squared with experience; the rest, with all its elaborate myths of fictions, has as 
its objective the simplicity of laws. (Quine, 1998; pp. 47-50) 

The fact that mathematical knowledge appears to us as more stable and less 
prone to refutation or reinterpretation than, say, biological theories, is ex-
plained with reference to the fact that mathematical knowledge pervades the 
web more entirely than other types of knowledge. It is, thus, more parsimoni-
ous to seek equilibrium by first adjusting all other "chunks" (Quine, 1981; p. 
71) of knowledge within the web before changing the mathematical basis. 
Even though we have the "natural tendency to disturb the total system as little 
as possible" (Quine, 1998; p. 49), there is, however, no categorical difference 
between falsification in natural sciences and the falsification of mathematical 
axioms. Since "no statement is immune to revision"(Quine, 1998; p. 48), all 
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entities within our web of belief, from simple arithmetic facts to the most ab-
stract mathematical theories, is prone to be rejected when proven false.  

Quine obviously argues for a certain ontological realism, when he states that 
insofar as we belief in any object to be existent, there is no reason not to belief 
in the reality of mathematical objects. 

Now I suggest that experience is analogous to the rational numbers and that 
the physical objects, in analogy to the rational numbers are posits which serve 
merely to simplify our treatment of experience. (Quine, 1998; p. 49) 

The assumption of the existence of mathematical objects is, thus, essentially 
the same as the assumption of, for example, dark-matter axions (Asztalos et al., 
2010), hypothetical particles that were posited in astrophysics to explain certain 
phenomena. However, contrary to the Platonist view, there is no a priori 
knowledge, but the entire web of knowledge is based on empirical or sensory 
"experience". 

Quinean realism is justified mainly by the so-called Quine/Putnam Indis-
pensability Argument which starts from the observation that mathematics 
seems to be essential for the pursuit of science (Resnik, 2007). And, when we 
accept any given scientific claim as true and referring to real entities in our 
physical environment, then we must also accept as ontologically true, i.e. as 
referring to actually existing objects, the mathematical presuppositions that are 
tied to it – in for a penny, in for a pound, so to speak. According to Quine, the 
best explanation for the predictive power of any scientific theory is that it is 
more or less true, and so are its mathematical foundations. 

So far I have been developing an argument for realism along roughly the fol-
lowing lines: quantification over mathematical entities is indispensable for sci-
ence, both formal and physical: therefore we should accept such quantification; 
but this commits us to accepting the existence of the mathematical entities in 
question. This type of argument stems, of course, from Quine, who has for 
years stressed (…) the indispensability of quantification over mathematical enti-
ties. (Putnam, 1971; p. 57) 

Quine assumes the scientist is not only using the tools the mathematician of-
fers him or her to use for their scientific endeavors, but he or she actually pre-
supposes the truth of the implied mathematical objects and principles. And it is 
ultimately scientific application and applicability that decides about the existen-
tial fate of mathematical objects, i.e. it is science that decides on mathematical 
truth and existence.  

So much of mathematics as is wanted for use in empirical science is for me on 
par with the rest of science. Transfinite ramifications are on the same footing 
insofar as they come of a simplicatory rounding out, but anything further is on 
par with uninterpreted systems. (Quine, 1984; p. 788) 
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Apart from the question of whether mathematics is indeed indispensable for 
science to work (cf. Field, 1980; chapter 6: A nominalistic treatment of 
Newtonian space-time, where Field presumably demonstrates how certain 
branches of physics, i.e. gravitational theory, can be approached without 
relying on mathematic descriptions*),∗ one obvious problem with Quine's natu-
ralist position is, of course, that when he accepts the truth and existence of 
only those parts of mathematics – with some "rounding out" – that are 'ap-
plied', his theory covers only a relatively small part of mathematics. This does 
not go well with what mathematicians do and feel, and is also in conflict with 
the experiences of natural scientists such as Wigner, who described the "un-
canny usefulness of mathematical concepts" (Wigner, 1995; 535) by pointing 
out that oftentimes the scientific applicability of a certain mathematical theory 
becomes apparent only much later after its initial discovery. 

It is true, of course, that physics chooses certain mathematical concepts for the 
formulation of the laws of nature, and surely only a fraction of all mathematical 
concepts is used in physics. It is true also that the concepts which were chosen 
were not selected arbitrarily from a listing of mathematical terms but were de-
veloped, in many if not most cases, independently by the physicist and recog-
nized then as having been conceived before by the mathematician. (Wigner, 
1995; 541) 

Another objection that the Quinean has to face, was expressed by Parsons, 
who mentions the fact that some mathematical knowledge seems to come to 
us immediately without any obvious inductive reasoning, i.e. "mathematical 
intuition has a certain de re character"(Parsons, 1979; p. 146) 

The empiricist view, even in the subtle and complex form it takes in the work 
of Professor Quine, seems subject to the objection that it leaves unaccounted 
for precisely the obviousness of elementary mathematics. (Parsons, 1979; p. 
151)  

0.2.2.2 Gödel on Intuition 

This point, i.e. the alleged obviousness of elementary numeric and geometric 
truths is nicely taken up by Gödel's theoretical views regarding the ontology 
and epistemology of mathematics. For him basic set-theoretical objects have 
some kind of 'cognitive obtrusiveness' in that everybody seems to immediately 
recognize the truth related, for example, to the concept of union in set theory 
which seems to be reflected in our physical world when we deal, for example, 
with collections of physical objects. 

                                                 
∗ "Presumably" here means only that judging the feasibility of Field's approach is way over my 
head. There are others who certified this anti-realist theory to be a "major intellectual achieve-
ment" (Shapiro, 2000; p. 237). 



Numbers do Count 

29 

Despite their remoteness from sense experience, we do have something like a 
perception also of the objects of set theory, as is seen from the fact that the 
axioms force themselves on us as being true. (Gödel, 1983; pp. 483-484) 

So, even though the 'two-ness' of a set of two and the 'four-ness', that results 
when we unite two sets of two distinct elements, is nothing we grasp via simple 
sensory processes, we nevertheless have an immediate experience of what it 
means to unite two sets of two items, given that they are not identical. In this 
sense the basic algebra of sets, such as commutative properties related to set 
union, seems kind of obvious. 

Explicitly relating mathematical intuition to sense perception, Gödel alludes 
to the fact that in both cases it is, of course, possible to be mistaken by relying 
on intuition. 

I don’t see any reason why we should have less confidence in this kind of per-
ception, i.e. in mathematical intuition, than in sense perception, which induces 
us to build up physical theories and to expect that future sense perceptions will 
agree with them (…). The set-theoretical paradoxes are hardly any more trou-
blesome for mathematics than deceptions of the senses are for physics. (Gödel, 
1983; p. 484) 

So, similar to Quine, Gödel parallels the basic epistemological and ontological 
assumptions that guide mathematics with those of other sciences such as phys-
ics. Mathematical objects are introduced to explain certain mathematical ex-
periences in the same vein, as the physicist introduces particles such as dark-
matter axions to explain certain cosmological phenomena. 

Interestingly, in contrast to Quine's view, Gödel assumes two epistemic lev-
els. On the one hand, there is the lower tier of intuitively graspable mathemati-
cal truths, on top of which rests the considerable amount of higher and ab-
stract mathematics which is, of course, beyond simple intuition. 

However, even disregarding the [intuitive immediacy] of some new axiom, and 
even in case it has no [intuitive immediacy] at all [emphasis added], a probable 
decision about its truth is possible also in another way, namely, inductively by 
studying its "success". Success here means fruitfulness in consequences, in par-
ticular in "verifiable" consequences (…). There might exist axioms so abundant 
in their verifiable consequences, shedding so much light upon a whole field, 
and yielding such powerful methods for solving problems (…) that, no matter 
whether or not they are [intuitive], they would have to be accepted at least in 
the same sense as any well-established physical theory. (Gödel, 1983; pp. 476-
477) 

In the higher realms of mathematics, on the other hand, truth is justified pri-
marily from within the system of mathematics itself. Assumptions of higher 
mathematics are justified mainly by their consequences, i.e. their explanatory 
"success". Gödel's claim here is very similar to Quine's, in that both equate 
mathematics with any other sciences and, in that, in both cases, it is its explana-
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tory power that renders a theory "true". However, while Quine identifies the 
natural sciences as the arbiter that decides on the truths of mathematical ob-
jects, Gödel allows for purely mathematical justification. 

But, from the position of a cognitive science of mathematics, more interest-
ing than the questions of proof for higher mathematical posits is Gödel's con-
ception of our basic capacity to intuit certain mathematical concepts. He ties 
this intuition, as shown above, to basic set-theoretic objects and axioms, which 
he describes as experienced immediately in a way analogous to sensory percep-
tion. For a cognitive scientist, such an assumption seems very appealing since it 
offers an epistemological way in. Unfortunately, Gödel himself remains rather 
opaque in his description of this low-level access to mathematical objects and 
truths. Gödel offers only the fuzzy description of mathematical intuition – 
which Kitcher refers to as "one of the most overworked terms in the philoso-
phy of mathematics" (Kitcher, 1984; p. 49) – as being somehow analogue to 
the natural scientist's sensory perception.  

This analogy, however, is difficult to maintain, at least prima facie, since 
mathematical objects such as "natural numbers, real numbers, complex num-
bers, sets, geometric points, functions, topological spaces, groups, rings, and 
fields" (Shapiro, 2008; p. 158) are wholly abstract, which renders obvious the 
fact that the mathematician's access cannot be simple sensory perception. This 
is the crucial point of attack launched against Gödel's version of realism. 

For X to know that S is true requires some causal relation to obtain between X 
and the referents of the names, predicates, and quantifiers of S. (…) For 
Hermione to know that the black object she is holding is a truffle, [requires] 
that 'the black object she is holding is a truffle' must figure in a suitable way in a 
causal explanation of her belief that the black object she is holding is a truffle. 
(…) It [i.e. X's knowledge about S] will involve, causally, some direct reference 
to the facts known, and, through that, reference to these objects themselves. 
(Benacerraf, 1983; p. 412-413) 

Since the Platonist – and Gödel's view is a version of Platonism in assuming "a 
'given' underlying mathematics [that] may represent an aspect of objective real-
ity [the] presence [of which] in us may be due to another kind of relationship 
between ourselves and reality [than sense perception]" (Gödel, 1983; p. 484) – 
assumes mathematical objects to be non-spatiotemporal entities, i.e. acausal 
objects, no causal relation between the knower and the known is possible. Yet, 
I obviously know something about mathematics – and there are others who 
know even more – which means that something is off with the Platonist's ac-
count.  

0.2.2.3 Maddy's Way out of the Dilemma 

For a cognitive science of mathematics, I believe Maddy's (1990) set-theoretic 
realism offers a way out of the dilemma without having to relinquish one's 
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realistic stance, by relating Gödel's intuition to the actual perception of collec-
tions of medium-sized objects, i.e. entities in our physical environment. 

Maddy meets the epistemological challenges the realist has to face by actu-
ally attributing physical properties to certain mathematical objects. Further-
more, she assumes that the higher tiers of set theory are rooted in basic knowl-
edge gained in interaction with so-called impure sets, i.e. sets of physical ob-
jects such as a pair of shoes, or sets of sets of physical objects such as a cup-
board full of pairs of shoes, and so on. So, we have access to knowledge about 
sets via causal connections to them, e.g. via observational interaction with col-
lections of physical items. To use her own words, Maddy intends to "bring 
[mathematical objects such as sets] into the world we know" (Maddy, 1990; p. 
48). 

Maddy’s theory of how we actually perceive sets is a compromise between 
the approaches to philosophy of mathematics proposed by Quine and by 
Gödel. With Quine, she assumes that the success of mathematical applications 
in other sciences justifies mathematical practice, i.e. the indispensability of 
mathematics for other sciences is reason enough to believe in the existence and 
truth of mathematical objects. At the same time, she builds her theory on 
Gödel's two-level approach with the lower-level, i.e. Gödel's intuition, provid-
ing the foundations for the whole edifice of mathematical reasoning, from the 
most basic to the most abstract. However, through her naturalistic view of how 
we actually interact with certain mathematical objects, she avoids Benacerraf's 
objections regarding the question of how to be able to interact with mathe-
matical objects.  

Referring to Quine's indispensability argument at this point would be rather 
dangerous ground for justifying the assumption that "mathematics is a science 
[and] that much of it at least approximates truth" (Maddy, 1990; p. 34), since it 
does not fully answer Benacerraf's objection. And this is exactly, where Maddy 
appeals to Gödel's intuition as a way to gain a kind of hands-on mathematical 
experience. Essentially, Maddy's set-theoretic realism translates Gödel's ideas 
by proposing a basic form of perception-like mathematical experience gained 
in (causal) interaction with physical objects, i.e collections of things in our en-
vironment. This offers an explanation of how we come to have mathematical 
knowledge. Perception of impure sets is a crucial aspect in Maddy’s two-level 
epistemology of mathematics, which obviously follows Gödel's approach. In 
that, Maddy's ideas provide justificatory arguments for an ontological realism. 

Maddy's proposition of quasi-perceptual access to certain kinds of sets rests 
on Hebb 's (Hebb, 1980) theory of cell-assemblies as the neurophysiological 
basis for any perceptual processes. In appealing to Hebb’s theory, she provides 
a physiologically reasonable and at least partially realistic approach to a person's 
development of mathematical knowledge. Drawing heavily on Hebb's (1980; cf. 
pp. 88-89) model of how infants come to know about entities such as triangu-
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lar figures, Maddy describes perceptual processes as based on certain neuro-
physiological mechanisms, i.e. Hebbian learning. 

The ability to perceive physical objects is not unlike the ability to perceive tri-
angular figures, though it is more complex. The trick is to see a series of pat-
terns as constituting views of a single thing. Just as the ability to see triangles 
develops over time, through the painstaking process of seeking out corners and 
comparing one triangle with another, the ability to see continuing physical ob-
jects develops over a period of experience with watching and manipulating 
them. (Maddy, 1990; p. 57) 

Referring to Hebb's description of the formation of superordinate cell-
assemblies (Hebb, 1980; p. 107), Maddy tackles Benacerraf's problem. 

The question is what bridges the gap between what is causally interacted with 
and what is perceived, and the hope is that something like what does the bridg-
ing in the case of physical object perception can be seen to do the same job in 
the case of set perception. Notice that this way of putting the problem already 
assumes that we do in fact perceive physical objects. (Maddy, 1990; p. 50). 

On this basis, Maddy claims that the ability to perceive sets, i.e. mathematical 
objects, is just the same as our ability to perceive Gestalt-like entities or physi-
cal objects, in that it draws on similar perceptual mechanisms. As long as mid-
dle-sized objects are located close to another, we are endowed with the capac-
ity to perceive them as sets. 

Steve needs two eggs for a certain recipe. The egg carton he takes from the re-
frigerator feels ominously light. He opens the carton and sees, to his relief, 
three eggs there. My claim is that Steve has perceived a set of three eggs. By the 
account of perception just canvassed, this requires that there be a set of three 
eggs in the carton, that Steve acquire perceptual beliefs about it, and that the set 
of eggs participate in the generation of these perceptual beliefs in the same way 
that my hand participates in the generation of my belief that there is a hand be-
fore me when I look at it in good light. (Maddy, 1990; p. 58) 

She assumes that the ability to know of the actual set of eggs, instead of merely 
perceiving three individual eggs, is a specific perceptual capacity acquired 
through experience. So, according to Maddy it seems perfectly reasonable to 
infer that we do perceive sets in the same way we perceive triangles or more 
complex objects. This set perception mechanism is, according to Maddys view, 
the basis of our ability to have intuitive access to higher-level mathematical 
knowledge. The centrality of the capacity of 'set-perception' is why her ap-
proach is referred to as "set-theoretic realism". According to Maddy, "physical 
object detectors" (Maddy, 1990; p. 58), namely certain higher-level cell assem-
blies, allow for the perception of physical objects. In the same vein, "set detec-
tors" allow for the discrimination of collections of objects from the environ-
ment. It goes without saying that Maddy does not claim the perception of im-
pure sets to explain the realm of higher, i.e. truly abstract knowledge of set-
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theory. Maddy merely provides an 'inner-worldly', or, to use her own words, 
"down-to-earth" model (Maddy, 2000; p. 108) of the lower-level of Gödel's 
two-tiered epistemological theory, namely intuition, which provides the simple 
basis from which pure and formalized mathematics arises.  

By suggesting that natural numbers are ultimately properties of sets, Maddy 
also provides a model of how basic numerical abilities are ultimately grounded 
in the perception of set. 

I agree that numbers (…) are not objects of some other sort. They are proper-
ties of sets [emphasis added], and number theory is that part of set theory 
which deals with number properties of finite sets. (Maddy, 2002; p. 352) 

Interpreting the perception and cognitive manipulation of the numerical prop-
erties of sets as the basis of a development of complex faculties such as sym-
bolic number processing, reverberates nicely with current cognitive science of 
mathematics, i.e. with my own approaches to the study of number processing 
and the development thereof. 

The set-theoretic realist's assumption is, thus, that the basic numerical 
knowledge is knowledge about impure sets, and that the perception of those 
sets of physical objects which have certain numerical properties, i.e. numerosity, 
bridges the epistemic gap between the human knower and abstract mathemati-
cal objects. 

The physical stuff by itself cannot be three [because there is no definite way to 
split the eggs up, i.e. they can be divided into eggs, molecules, atoms, and so 
on]. If not the physical stuff making up the eggs, then what is the subject of a 
number property? (…) the set-theoretic realist opts for the set of eggs in the 
carton. (…) What I'm getting at is this: the amount we know about things by 
perception is very limited. About physical objects, for example, we no little 
more than that they are, in Hebb's words, "space-occupying and sense-
stimulation somethings". Beyond that, the bulk of our knowledge abut them is 
theoretical (…). The same goes for sets. What we perceive is simply something 
with a number property (…) Nailing down this number-bearer's more esoteric 
properties is a theoretical matter. (Maddy, 1990; p. 61)  

In contrast to the classical Platonist view, set-theoretic realism poses that not 
all sets are non-spatiotemporal, eternal mathematical objects, but some are 
rather physical and non-abstract, and therefore not causally inert. Given this 
translation of Gödel's intuition, Maddy offers a rather attractive approach to 
the questions regarding the ontology and epistemology of mathematical objects. 
Interestingly for the cognitive scientist, she explicitly ties the quasi-perceptual 
belief about numerical properties of small sets of objects to the subitizing ca-
pacity (Kaufman, Lord, Reese, & Volkmann, 1949), which is one of the central 
concepts in cognitive science of mathematics (see chapters 1 to 3).  
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I content that the numerical belief – there are three eggs in the carton – is per-
ceptual (…) There is empirical evidence, based on reaction times, that such be-
liefs about small numbers are non-inferential. (Maddy, 1990; p. 60) 

Maddy's model, which basically links Quine's naturalist and empiricist view 
with Gödel's two-tiered epistemological approach, strikes me as a very attrac-
tive candidate for a philosophical foundation a cognitive scientist can work 
with, i.e. a plausible theory of what mathematical objects are, and how it is 
possible to come to know about them. 

The elementariness of the notion of set, its ease of manipulation, and the im-
mense success of set theory, both as a foundation for other branches of 
mathematics and as a mathematical theory in its own right, all help to make the 
set of eggs the most attractive candidate for the role of number-bearer. (…) 
They are the best mathematical entities for the mathematical theory this par-
ticular world – with its continuous phenomena – requires. (Maddy, 1990; pp. 
62-63) 

Maddy's approach to a philosophy of mathematics is appealing to me, in that it 
provides an escape from the most obvious problems mathematical realism is 
confronted with by invoking originally psychological concepts such as atten-
tional processes, on which it depends whether I perceive two shoes or a pair, 
subitizing, as a mechanism to extract numerical information from small sets, 
figure-ground discrimination, that allows for the perception of sets of objects, 
or, more general concepts such as cognitive development. 

Just as the concept of an independent and continuing [in the sense of object 
permanence] physical object is acquired in stages, the concept of a set with in-
clusions and a constant number property is (…) gained over time, and depends 
on experience with groups of objects. (Maddy, 1990; p. 64) 

Returning to Dehaene, who seems to be torn between a rejection of classic 
Platonist views and a rather obvious, yet somewhat implicit realist stance, I 
think that Maddy's approach may offer a nice way out for him, too. His ap-
proach is easily compatible with a set-theoretic realism. 

Mathematics consists of the formalization and progressive refinement of our 
fundamental intuitions (Dehaene, 1997; 245) 

So, in lieu of having to yield the decision of what "provides the most coherent 
and productive pathway for research [to the] mathematical community" 
(Dehaene, 1997; p. 245), I rather opt for a serious interaction with and discus-
sion of current approaches to philosophy of mathematics within the field of 
cognitive science of mathematics. 
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In the course of the next few chapters first recapitulate the output of my re-
search on typical and atypical numerical development: The first part was writ-
ten as a stand-alone introduction into the neurocognitive basis of developmen-
tal disabilities in number processing. Even though it was written for a broader 
audience, it will provide the necessary background information for the four 
empirical studies that follow. To provide an outline of what is to come, they 
will be summarized briefly in the next few paragraphs. 

Study 1 

Whether and in what way enumeration processes differ for small and large sets 
of objects is still a matter of debate. In order to shed light on this issue, EEG 
data were obtained from sixty normally developing primary school children. 
Adopting a standard non-symbolic numerical comparison paradigm allowed us 
to manipulate numerical distance between stimulus arrays for different quantity 
ranges, i.e. the subitizing, counting and estimation ranges. In line with the ex-
isting literature, the amplitudes of parietal positive going ERP components 
showed systematic effects of numerical distance, which did not depend on set 
size. In contrast to the similarities in surface distribution of electrophysiological 
activity across all number ranges, applying source localization we found dis-
tance related current density effects in inferior parietal processing systems to 
be similar for all numerical ranges, there was, however, considerable variation 
in the involvement of medial parietal and lateral occipital regions. The precu-
neus, which is known to be involved in visual imagery, showed distance effects 
exclusively for numerical comparisons on large set sizes. In contrast, the proc-
essing of small quantities and stimulus arrays arranged into canonical patterns 
relied on lateral occipital areas that are linked to higher-level shape recognition. 
These findings suggest, on the one hand, that for explicit numerical decisions 
an involvement of domain-specific resources does not depend on quantity 
features of the visual input. On the other hand, it seems that the recruitment of 
mediating perceptual systems differs between the apprehension of small quan-
tities and the enumeration of large sets of objects. 

Study 2 

The aim of this study was to probe electrophysiological effects of nonsymbolic 
numerical processing in 20 children with mathematical learning disabilities 
compared to a group of 20 typically developing matched controls. EEG data 
were obtained while children were tested with a standard non-symbolic nu-
merical comparison paradigm that allowed us to investigate the effects of nu-
merical distance manipulations for different set sizes, i.e. the subitizing, count-
ing and estimation ranges. Effects of numerical distance manipulations on ERP 
amplitudes as well as activation patterns of underlying current sources were 
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analyzed. In typically developing children, the amplitudes of a late parietal posi-
tive-going ERP component showed systematic numerical distance effects that 
did not depend on set size. For the group of children with mathematical learn-
ing disabilities, ERP distance effects were found only for stimuli within the 
subitizing range. Current source density analysis of distance-related group ef-
fects suggested that areas in right inferior parietal regions are involved in the 
generation of the parietal ERP amplitude differences. The results suggest that 
right inferior parietal regions are recruited differentially by controls compared 
to children with mathematical learning disabilities in response to non-symbolic 
numerical magnitude processing tasks, but only for stimuli with set sizes that 
exceed the subitizing range. 

Study 3 

To date, a number of studies have demonstrated the existence of mismatches 
between children’s implicit and explicit knowledge at certain points in devel-
opment that become manifest by their gestures and gaze orientation in differ-
ent problem solving contexts. Stimulated by this research, we used eye move-
ment measurement to investigate the development of basic knowledge about 
numerical magnitude in primary school children. Sixty-six children from grades 
one to three (i.e. 6 to 9 years) were presented with two parallel versions of a 
number line estimation task of which one was restricted to behavioral meas-
ures, while the other included the recording of eye movement data. The results 
of the eye movement experiment indicate a quantitative increase as well as a 
qualitative change in children's implicit knowledge about numerical magnitudes 
in this age group that precedes the overt, i.e. behavioral, demonstration of ex-
plicit numerical knowledge. The finding that children’s eye movements reveal 
substantially more about the presence of implicit precursors of later explicit 
knowledge in the numerical domain than do classical diagnostic and experi-
mental approaches, suggests further exploration of eye movement measure-
ment as a potential early assessment tool of individual achievement levels in 
numerical processing. 

Study 4 

In the context of a numerical Stroop experiment, children were asked to make 
numerical and physical size comparisons on digit pairs. 66 primary school chil-
dren were selected for this study, of which 21 scored low in a standardized 
math achievement test, 23 were normal and 22 high achievers. The effects of 
congruity and numerical distance were determined. All children exhibited con-
gruity and distance effects in the numerical comparison. In the physical com-
parison, children of all performance groups showed Stroop effects when the 
numerical distance between the digits was large, but failed to show them when 
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the distance was small. Numerical distance effects depended on the congruity 
condition, with a typical effect of distance in the congruent, and a reversed 
distance effect in the incongruent condition. Our results are hard to reconcile 
with theories that suggest that deficits in the automaticity of numerical process-
ing can be related to differential math achievement levels. Immaturity in the 
precision of mappings between numbers and their numerical magnitudes might 
be better suited to explain the Stroop effects in children. However, as the re-
sults for the high achievers demonstrate, in addition to numerical processing 
capacity per se, domain-general functions might play a crucial role in Stroop 
performance, too. 

The final part of this thesis will discuss the findings of the experimental studies 
with respect to the broader issues raised in the introductory section and will 
provide an outline of what should be the next steps. 
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1. RECHENSTÖRUNG1 

 

                                                 
1 Book chapter in: Heine, A., Engl, V., Thaler, V., Fussenegger, B., & Jacobs, A. M. (in press). 
Neuropsychologie von Entwicklungsstörungen schulischer Fertigkeiten. Göttingen: Hogrefe. 
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2. ELECTROPHYSIOLOGICAL CORRELATES OF NON-SYMBOLIC 

NUMERICAL MAGNITUDE PROCESSING IN CHILDREN:  
JOINING THE DOTS2 

 

                                                 
2 Published as: Heine, A., Tamm, S., Anders, J., & Jacobs, A. M. (2011). Electrophysiological 
correlates of non-symbolic numerical magnitude processing in children: Joining the dots.  
Neuropsychologia, 49, 3238-3246. DOI: 10.1016/j.neuropsychologia.2011.07.028. 
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3. AN ELECTROPHYSIOLOGICAL INVESTIGATION OF NON-
SYMBOLIC MAGNITUDE PROCESSING: NUMERICAL DISTANCE 

EFFECTS IN CHILDREN WITH AND WITHOUT MATHEMATICAL 

LEARNING DISABLITIES3 

 

                                                 
3 MS submitted to Cortex. 
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4. WHAT THE EYES ALREADY ‘KNOW’: USING EYE MOVEMENT 

MEASUREMENT TO TAP INTO CHILDREN'S IMPLICIT 

NUMERICAL MAGNITUDE REPRESENTATIONS4 

 

                                                 
4 Published as: Heine, A., Thaler, V., Tamm, S., Hawelka, S., Schneider, M.,  
Torbeyns, J., De Smedt, B., Verschaffel, L., Stern, E., Jacobs, A. M. (2010). What the eyes 
already 'know': Using eye measurement to tap into children's implicit numerical magnitude 
representations. Infant and Child Development, 19, 175-186. DOI: 10.1002/icd.640. 
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5. THE NUMERICAL STROOP EFFECT IN PRIMARY SCHOOL 

CHILDREN: A COMPARISON OF LOW, NORMAL AND HIGH 

MATHS ACHIEVERS5 

 

                                                 
5 Published as: Heine, A., Tamm, S., De Smedt, B., Schneider, M., Thaler, V.,  
Torbeyns, J., Stern, E., Verschaffel, L., & Jacobs, A. M. (2010). The numerical Stroop effect in 
primary school children: A comparison of low, normal, and high maths achievers.  
Child Neuropsychology, 16, 461-477. DOI: 10.1080/09297041003689780. 
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6. GENERAL DISCUSSION AND OUTLOOK 

The main purpose of the research studies that constitute the present doctoral 
thesis was to investigate the development of mental representations of numeri-
cal magnitude in normally developing, and in children suffering from mathe-
matical learning disabilities. 

Contrary to theories that assume numerical processing of small sets of items 
to be fundamentally different from enumeration of large set sizes, the results of 
the first study suggest that domain-specific systems in inferior parietal regions 
are recruited for magnitude processing across the whole numerical range. We 
found, however, that mediating domain-general perceptual and memory func-
tions were recruited differentially depending on set size. 

On the basis of these findings, the second study was designed to investigate 
behavioral and electrophysiological indices of basic numerical processing in 
children with mathematical learning disabilities compared to normally develop-
ing children. In contrast to similarities on the level of behavioral performance 
measures, the analysis of electrophysiological data revealed obvious differences 
between the two achievement groups. For large arrays of dots, no late parietal 
numerical distance effects were found for the group of children with mathe-
matical disabilities. Current source analysis of the distance-related group effects 
demonstrated current density differences in right inferior parietal cortices, 
which can be assumed to reflect differential recruitment of format-independent 
numerical magnitude representations. However, for dot arrays in the subitizing 
range, the ERP data yielded no differences between the low and the normal 
achievers. Both groups showed similar distance effects, and no group differ-
ences in current source density in parietal regions were found. 

The results of the third study demonstrate that children's representation of 
numerical magnitude develops substantially during their first years in primary 
school. Behavioral data from two number line estimation tasks showed that 
children’s performance in this task improves considerably in the course of their 
first years of formal mathematical training. The behavioral data confirm the 
assumption that with the transition from grade one to grade two, children’s 
numerical magnitude representations change from an immature logarithmic 
pattern of representation to the more appropriate linear model. Interestingly, 
the data demonstrate that even in cases where no evidence of representational 
change can be found in children's overt behavioral responses, eye movement 
parameters, which can be assumed to tap into a more implicit level of knowl-
edge, may reveal early manifestations of new kinds of knowledge at work. 

The fourth study used a numerical Stroop paradigm to test whether devel-
opmental learning abilities in the mathematical domain are related to deficits in 
the automatization of access to numerical magnitude representations. However, 
when the influence of numerical distance was taken into consideration, chil-
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dren of different achievement groups, i.e. low, normal and high achievers in 
the domain of mathematics, show similar congruity effects in the number 
Stroop tasks. In particular, the finding of considerably large reversed numerical 
distance effects not only for the group of normal achievers, but also for the 
children with mathematical disabilities, contradicts theories that propose auto-
matization deficits to be the cause of developmental impairments of number 
processing. 

6.1 Numerical Development 

Classical domain-specific models suggest mathematical learning disabilities to 
be related to deficits in the mental representation of numerical magnitude 
(Butterworth, 1999; Dehaene, 1997). Ultimately, the present results corrobo-
rate this assumption. However, at the same time the eye-movement data sug-
gest that representations of numerical magnitude are not stable over time, but 
subject to fundamental changes in the course of development. Such a finding 
entails that only research approaches that incorporate a dynamic perspective 
allow for an in-depth understanding of how impairments of number process-
ing unfold over time.  

In my opinion, the prevailing focus on the description of deviant "end-state 
processing systems" (Ansari & Karmiloff-Smith, 2002) obscures the fact that 
what is required is deeper insight into the developmental trajectories that lead 
to their formation. For instance, only longitudinal studies that incorporate be-
havioral and neurophysiological data on low-level number-relevant processes 
and representational functions can actually answer one rather important yet still 
open basic question: Namely, whether differential functioning of inferior parie-
tal brain regions is primary, in the sense of an impaired maturation of phyloge-
netically specified localized modules for numerical processing, or rather secon-
dary to basic functional impairments of more fundamental and probably wide-
spread processing systems. The adequate way to study developmental disorders 
is to identify the most basic level of functional deviation and find out how, in 
interaction with the child's environment, it finally leads to impaired higher-level 
cognition. 

With regard to the explanatory scope of the findings presented here, this 
means that while for an arbitrary point in developmental time certain differ-
ences in neurocognitive measures were demonstrated between groups of chil-
dren – while others were not –, there is no way to explain the original causes of 
these deviations. In that, the four studies merely emphasize the fact that it is 
essential to actually start studying the developmental pathways of normal and im-
paired numerical abilities. Or, as Karmiloff-Smith (1998) put it so aptly, "de-
velopment is the key to understanding developmental disorders". 
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Knowing this, a current research project at the FU Berlin on the neurocogni-
tive basis of normal and impaired numerical abilities focuses on both, domain-
general and domain-specific factors that may play a causal role. Using a longi-
tudinal study design, this project focuses on the collection of more fine-grained 
data on the development of lower-level and higher-level functions. And, hope-
fully, future studies will provide a more comprehensive view on how behav-
ioral, neurophysiological and even environmental factors interact in the devel-
opment of number processing capacities. 

6.2 Mathematical Knowledge 

In the introduction to the present thesis, I raised the question of what it is that 
we in we, the cognitive scientists, who are interested in human number proc-
essing capacities, are actually thinking about when we refer to certain mathe-
matical concepts such as numbers. And, while most research in cognitive sci-
ence of mathematics is done without explicit reference to the questions of on-
tology and epistemology of the mathematical objects under scrutiny, I think 
that it is necessary to reflect upon at least once in a while what the premises are 
upon which one's own research is rooted in. 

All science, from physics to physiology, is a function of its philosophic presup-
positions, but psychology is more vulnerable than others to the effect of mis-
conceptions in fundamental matters because the object of its study is after all 
the human mind and the nature of human thought. As long as the ideas are im-
plicit they are dangerous, make them explicit and perhaps they can be defused. 
(Hebb, 1980; p. 2) 

Before linking my own studies to what I think is an approach to philosophy of 
mathematics that I can relate to, I will first examine how some prominent 
members of my scientific community, namely Dehaene (1997) Lakoff and 
Núñez (2000) dealt with the question of mathematical ontology and epistemol-
ogy.  

6.2.1 Dehaene's Approach to the What and How of Mathematical Knowledge 

Interestingly, what we get from Dehaene are somewhat mixed signals. On the 
one hand, he writes that it is his conviction that "mathematics is a human con-
struction [emphasis added]" (Dehaene, 1997; p. 247) and that "among the avail-
able theories on the nature of mathematics, intuitionism [emphasis added] seems 
to (…) to provide the best account of the relations between arithmetic and the 
human brain" (Dehaene, 1997; 244). This means that he assumes that human 
mathematicians, equipped with human brains, come up with mathematical 
concepts which fully depend on the evolved structure of our minds. On the 
other hand, he drops his anti-realistic stance when he writes that "Platonism 
hits upon an undeniable element of truth when it stresses that physical reality is 
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organized according to structures that predate the human mind [emphasis added]" 
(Dehaene, 1997; p. 251) or that "it is rather remarkable that nature founded the 
bases of arithmetic [emphasis added] on the most fundamental laws of physics" 
(Dehaene, 1997; p. 60).  

I think that his problems in committing himself to the one or the other is 
based on an obvious confusion of the dimensions of ontology and epistemol-
ogy. The question here is, whether an anti-realism in epistemology – Dehaene 
closes his book with the unequivocal statement that "[mathematics] is the only 
language with which we can read [nature]" (Dehaene, 1997; p. 252) – necessar-
ily entails ontological anti-realism? This is clearly not the case, i.e. "one may be 
a realist about some things without being a realist about others." (Resnik, 1999; 
p. 10). To clarify this point: realism in ontology and epistemology is the view 
that the world is independent of our minds and that we can know it as it is 
independently of the specifics of our cognitive predispositions. The thor-
oughbred anti-realist thinks that both the world and our knowledge of it de-
pend on our minds, conceptual schemata, intellectual habits, social practices, 
and so on. In this view, mathematics is something we make up, a construct. 
But there is kind of a middle-ground between the two extreme versions, i.e. 
ontological realists, who are epistemological anti-realists, assume that the, or 
better some world exists independent of us, but that we cannot know it inde-
pendently of our minds.  

Dehaene's theory of number processing is originally only about how we 
come to know. In this sense, it is mainly an epistemological approach and here 
his constructivism comes into play. 

Number appears as one of the fundamental dimensions according to which our 
nervous system parses the external world [emphasis added]. Just as we cannot 
avoid seeing objects in color (…) and at definite locations in space (…), in the 
same way numerical quantities are imposed on us effortlessly through the spe-
cialized circuits of our inferior parietal lobe. The structure of our brain defines 
the categories according to which we apprehend the world. (Dehaene, 1997; p. 
245) 

For the nativist Dehaene, numerical concepts are cognitive primitives, i.e. in 
contrast to e.g. Piaget (Piaget & Szeminska, 1972) human mathematical abilities 
do not derive from logical reasoning or other domain-general precursors. In-
stead, we are endowed with a domain-specific mechanism that is shaped by 
natural selection to enable us and other animals to discriminate numerosities-
cues in our environment. However, Dehaene does not deny the role of the 
external world in shaping our "number sense", to use his own terminology. 

Throughout phylogenetic evolution, as well as during cerebral development in 
childhood, selection has acted to ensure that the brain constructs internal repre-
sentations that are adapted to the external world [emphasis added]. Arithmetic 
is such an adaptation. At our scale, the world is mostly made up of separable 
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objects that combine into sets according to the familiar equation 1 + 1 = 2 
[emphasis added]. This is why evolution has anchored this rule in our genes. 
Perhaps our arithmetic would have been radically different, if, like cherubs, we 
had evolved in the heavens where one cloud plus another cloud is still one 
cloud. (Dehaene, 1997, p. 249) 

In this light, Dehaene’s position has affinities with both intuitionism and real-
ism. He views numerosity as a real and mind-independent property of the 
world, yet it is our mind that parses the world in accordance with our specific, 
i.e. innate cognitive predispositions. There is, in fact, no reason, why Dehaene's 
posit of an innate "number sense" should not be compatible with realism in 
ontology. Twisting Katz's statement that "the realist is only committed to there 
being some version of nativism that does the job" (Katz, 2002; p. 133), I would 
say that the nativist Dehane is only committed to there being some version of 
realism that does the job. In my reading of Dehaene, I would say that his ap-
proach is well in line with Maddy's (1990) set-theoretic realism. In this sense, 
Dehaene's view that subitizing and approximate estimation are the cognitive 
primitives that higher mathematical reasoning is based upon, is intuitively 
compatible with Maddy's two-level approach. Interpreting numbers as proper-
ties of sets is also a concept that Dehaene seems to be comfortable with, when 
he writes that "the maxim 'number is a property of sets of discrete physical 
objects' is deeply embedded in their brains" (Dehaene, 1997; p. 61).  

Just for the sake of completeness, I will briefly summarize the only other 
approach from within cognitive science that explicitly tackles the more funda-
mental questions related to human mathematical knowledge. 

6.2.2 The Constructivism of Lakoff and Núñez 

Lakoff and Núñez (2000) propose a theory of how conceptual metaphors, i.e. 
basic grounding metaphors and higher-level linking metaphors, give rise to the 
emergence of mathematical concepts. Via processes of inference-preserving 
conceptual mapping, knowledge about mathematics is grounded in knowledge 
human beings necessarily gain by interaction with their respective physical en-
vironment. 

Conceptual mapping and other mechanisms for human imagination are univer-
sally available, but they are not genetically determined, allowing for cultural and 
historical development and variation. (Núñez, 2011; p. 663) 

Complex mathematical thought is grounded in basic cognitive capacities 
through conceptual metaphor and conceptual blending.  
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The mapping of conceptual metaphors from a source domain such as "Object 
Collection" to the target domain "Arithmetic" would look like that: 

SOURCE→TARGET 

size of a object collection→size of a number or  

putting collections together→Addition (cf. Lakoff & Núñez, 2000; p. 55). 

According to Lakoff & Núñez, arithmetic objects and principles are, thus, the 
products of an inference-preserving mapping across domains in which the 
conceptual structure of the source domain renders a reasoning about the target 
domain possible. 

What we normally call 'laws' of arithmetic are in fact metaphorical entailments 
of the conceptual mapping we are operating with. (…) The Arithmetic is Ob-
ject Collection metaphor is a precise conceptual mapping from the domain of 
physical objects to the domain of numbers. (Núñez, 2009; p. 79) 

This means that when mathematicians are doing their work, they are guided by 
certain conceptual metaphors they not necessarily share with others. Conse-
quently what remains unclear, of course, is how people are able to share higher 
mathematical ideas that presuppose rather complex conceptual mappings. And 
what about the fact that metaphorical ideas are sometimes misleading? In this 
sense, we should probably not speak of mathematics, but of 'the diversity of 
human mathematical constructions'. 

Mathematics, and number systems and arithmetic in particular – even in their 
simplest forms – are not hardwired but, but rather they emerge as culturally 
shaped sophisticated forms of sense-making. They are the product of the inter-
action of certain communities of individuals with the appropriate culturally and 
historically shaped phenotype supported by language, writing systems, artifacts, 
education, and specific forms of environmental dynamics. (Núñez, 2009; p. 69) 

For the reader it is very annoying, on the one hand, that Lakoff and Núñez 
(2000) do not confine themselves to describing their approach to a cognitive 
theory of numerical capacities. Instead, they start a polemic about what I 
would call a kind of a scapegoat-Platonism which the authors dubbed "The 
Romance of Mathematics". 

A great many of those who have serious knowledge of mathematics not only 
tend to believe the mythology we call the Romance of Mathematics but tend to 
believe it fiercely. (…) It is a story that many people want to be true [since] the 
Romance serves the purposes of the mathematical community. It helps to 
maintain an elite (…) it is contributing to the social and economic stratification 
of society (…) and doing social harm. (Lakoff & Núñez, 2000; pp. 339-241) 

Lakoff and Núñez are, thus, evading a constructive discussion of any form of 
mathematical realism, which is especially irritating since the authors, on the 
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other hand, completely ignore what the philosophy of mathematics since Plato 
had and has to say about the subject matter.  

However, apart from these shortcomings, I think that this constructivist 
approach to a cognitive science of mathematics is easily reconcilable with 
Maddy's version of realism. With Dehaene, Lakoff and Núñez assume that 
humans are born with certain innate capacities, which higher-level mathemati-
cal reasoning is rooted in. 

We are born with a minimal innate arithmetic, part of which we share with 
other animals. (…) Innate arithmetic includes at least two capacities: (1) a ca-
pacity for subitizing – instant recognizing small numbers of items – and (2) a 
capacity for the simplest forms of adding and subtracting small numbers. (By 
number here we mean cardinal number, a number that specifies how many ob-
jects there are in a collection.). (Lakoff & Núñez, 2000; p. 51) 

Here, again, is seems obvious to relate this "minimal arithmetic" to the lower-
tier in Maddy's (1990) epistomology, i.e. to what she calls mathematical intui-
tion. The questions of how human beings develop the complex structure of 
abstract mathematics on the basis of their lower-level capacities, or how far 
these lower-level capacities carry us, and whether it is innate domain-specific 
cognitive functions (Dehaene, Piazza, Pinel, & Cohen, 2003; p. 498) or innate 
domain-general capacities such as the ability to form metaphors (Núñez, 2009; 
p. 81) that help us to go beyond basic mathematics, are linked to Maddy's 
realm of axiomatic mathematics in general, and set theory in particular. At this 
higher tier, mathematical truth is justified extrinsically, i.e. by the explanatory 
success (Gödel, 1983).  

6.2.3 Fitting Experimental Approaches into the Bigger Picture 

Being an experimental psychologist, I have difficulties to uphold an anti-realist 
stance of any shade. In designing the stimuli for my experiments, I have to 
assume some systematics between input and output, i.e. I start from the as-
sumption that some real properties of real input are able to excite certain reac-
tions. So, instead of paying lip-service to some admittedly smart ideas about 
everything being relative, and so on, I confess to a certain ontological realism – 
be it weekday or Sunday. 

Most (…) seem to agree that the typical working mathematician is a Platonist 
on weekdays and a formalist on Sundays. That is, when he is doing mathemat-
ics, he is convinced that he is dealing with an objective reality whose properties 
he is attempting to determine. But then, when challenged to give a philosophi-
cal account of this reality, he finds it easiest to pretend that he does not believe 
in it after all. (Hersh, 1979; p. 31) 

On the other hand, I agree with Dehaene that no cognitive scientists can agree 
with full-blown Platonism, since we are investigating brains, not souls or other 
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entities that are supposedly granting us access to other realms. So, for an ex-
perimental cognitive science of mathematics which is intrinsically incompatible 
with both, a Platonist version of mathematical realism and with mathematical 
anti-realism, Maddy's moderate philosophy of mathematics seems to be a plau-
sible approach to the questions of how we come to know about mathematical 
objects and what they are, in the first place. 

Reflecting on my own research in the domain of cognitive science of 
mathematics which basically amounts to this thesis, there seems to be a divide 
between the basic questions tackled by studies one and two, on the one hand, 
and studies three and four, on the other. In primarily targeting the develop-
mental course of internalization of certain external number representations 
systems such as visuo-spatial and symbolic representations of numerical magni-
tude (Núñez, 2011), the last two studies are obviously not dealing with any 
form of mathematical processing to be linked to the lower tier of Maddy's ap-
proach. These two studies are actually more about domain-general capacities 
such as metaphorical mapping in the case of the number-line study, and sym-
bolic functions in the case of the number-Stroop study. In that, they are not 
dealing with the fundamental questions of numerical development. 

However, the two studies on non-symbolic magnitude processing in typi-
cally developing and children with mathematical disabilities, seem to aim ex-
actly at the lower-level capacity of mathematical intuition as the basis for de-
velopment of higher mathematical abilities, and, thus, at how the lower-level 
capacities lead to higher numerical skills. If I had to translate these studies into 
the Maddyan model, I would say that originally, the processing of numerosity 
of collections of dots is part of the lower-tier capacities, which I would inter-
pret in agreement with Dehaene as not necessarily "mathematical in nature" 
(Dehaene, 1997; p. 251). This originally pre-numerical non-symbolic numerosity 
processing may be the reason that the finding of distance effects, which reflect 
the workings of end-state numerical representation systems, depend on the de-
sign of the task. If the task design is explicitly numeric in character, higher-level 
functions kick in, i.e. we can observe numerical distance effects. However, if 
the task targets only basic level capacities, such reflections of higher-level proc-
esses are not observable (Hyde & Spelke, 2009).  

In line with that, I think it would have been interesting to investigate the 
non-symbolic numerical processing capacities of children with mathematical 
disabilities under different study designs, i.e. for example comparing children's 
performance in task designs that require explicit numerical decisions versus in 
habituation paradigms. Doing that would allow for deeper insights into the 
question of where children's problems originate from, be it the lower level ca-
pacities, as assumed e.g. by Butterworth (2010) or Landerl and colleagues 
(Landerl, Bevan, & Butterworth, 2004; Schleifer & Landerl, 2011), or at the 
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transition to higher levels, which would be more in line with the results of my 
own studies.  
Furthermore, it seems worthwhile to look into whether and when the assumed 
processes of abstraction, that Maddy proposes to be the basis of the transition 
from perceiving a number of individual objects to perceiving sets of objects, 
actually take place and what their manifestations may be. Such a focus would 
lead immediately to Hannula's studies on Spontaneous Focusing on Numeros-
ity (Hannula, Lepola, & Lehtinen, 2010) which may be the cognitive processes 
at the basis of Maddyan abstraction. 

In conclusion, I would want to point out that it not only seems appropriate 
from a theoretical point of view for a cognitive science of mathematics to find 
out what models and views neighboring disciplines such as the philosophy of 
mathematics have to offer, but it may actually help researchers to broaden their 
view on their specific subject matter and, thus, even help with the formulation 
of future research questions. 
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