Effiziente Computersimulationen zur Struktur und Dynamik von β -Cyclodextrinen und Wasser im Kristallverbund

Katrin Braesicke Institut für Kristallographie FU Berlin

Effiziente Computersimulationen zur Struktur und Dynamik von β -Cyclodextrinen und Wasser im Kristallverbund

Dissertation zur Erlangung des Grades "Doktor der Naturwissenschaften" am Fachbereich Biologie, Chemie, Pharmazie der Freien Universität Berlin

> vorgelegt von Katrin Braesicke

Berlin, Juni 1999

1. Gutachter: Prof. Dr. E. W. Knapp 2. Gutachter: Prof. Dr. U. Heinemann

Die vorliegende Dissertation wurde unter der Betreuung von Herrn Prof. Dr. E. W. Knapp am Institut für Chemie der FU Berlin angefertigt. Die Computersimulationen konnten auf einer Origin2000 der Zedat durchgeführt werden. Teile der Arbeit wurden durch ein Graduiertenkollegstipendium der DFG ermöglicht.

Inhaltsverzeichnis

1	Einl	eitung	9
2	Gru	ndlagen	13
	2.1	Cyclodextrine	13
		2.1.1 Allgemeine Einführung	13
		2.1.2 Cyclodextrinkristalle	17
		2.1.3 β -Cyclodextrin	18
		2.1.4 β -Cyclodextrinkristalle	18
	2.2	Wasserstoffbrücken	21
	2.3	Unordnung	24
	2.4	Molekulardynamik	30
		2.4.1 Energiefunktion	30
		2.4.2 Verletliste	32
		2.4.3 Zellenliste	33
	2.5	Diffusion	34
		2.5.1 Diffusionskonstante	34
		2.5.2 Richtungsmaxima	37
3	Effiz	zienzvergleich	43
	3.1	Verletliste	43
	3.2	Zellenliste	49
	3.3	Vergleich	53
4	Dur	chführung der Simulation	55
	4.1	MD-Simulationen der großen Systeme	56
	4.2	MD-Simulationen der kleinen Systeme	61
	4.3	MD-Simulation eines β -Cyclodextrinmoleküls in Wasser	65
5	Übe	rblick über die Ergebnisse	69
	5 1	rms-Fluktuationen	69
	5.2	Torsionswinkel	73
	5.2	5.2.1 Torsionswinkel zwischen den Glucoseringen	7/
		5.2.1 Torsionswinkel zum Sauerstoffstom $\Omega(6)$	93 93
	53	Bindungswinkel (a) zwischen den Glucoseringen	80
	5.5 5.4	O(4) $O(4)$ Abstände	02
	5.4	Mittlere Molekülstrukturen	92 06
	5.5 5.6	Wasserstoffbrückenbindungen	00
	5.0	5.6.1 Intramolekulare Wasserstoffbrücken	<i>77</i> 100
			100

	5.6.2Intermolekulare Wasserstoffbrücken5.7Diffusion	104 110
6	Zusammenfassung und Ausblick	117
Ar	nhang A: Abkürzungen	119
Anhang B: Parameter		121
Ar	nhang C: Tabellen	125
Ar	nhang D: Kugeloberflächeneinteilung	129
Lit	teraturverzeichnis	138

Abbildungsverzeichnis

2.1	Struktur der α , D-Glucose
2.2	Zwei α , D-Glucosen mit einer $\alpha(1 \rightarrow 4)$ -Bindung
2.3	Zwei β ,D-Glucosen mit einer $\beta(1 \rightarrow 4)$ -Bindung
2.4	Cellulose
2.5	Amylose
2.6	Aufsicht auf einen β -Cyclodextrinring
2.7	Schemata vom Cyclodextrinkristallaufbau 17
2.8	Kristallaufbau in der von a und c aufgespannten Ebene 19
2.9	Kristallaufbau in der von a und b aufgespannten Ebene 20
2.10	Mögliche Wasserstoffbrücken
2.11	Zyklische Systeme von Wasserstoffbrücken
2.12	Beispiel einer Flip-Flop Wasserstoffbrücke
2.13	Schematische Diagramme der potentiellen Energie atomarer Positionen 25
2.14	Streukurven
2.15	Skizze zum Modell von Dunitz and White 1985
2.16	Scheinbare Bindungslängenverkürzung
2.17	Skizze zur Verletliste
2.18	Skizze zur Zellenliste
2.19	Skizze zur Diffusion durch eine Kugel
2.20	Schnitt von tan x und x
2.21	Reguläre Polyeder
2.22	Ecken- und Flächennumerierung
2.23	Ikosaeder-Dodekaeder-Dreieckseinteilung 41
2.24	Ikosaeder-Dreiecksnetz
3.1	Verletliste 30 Å Kantenlänge
3.2	Verletliste 40 Å Kantenlänge
3.3	Verletliste 50 Å Kantenlänge
3.4	Aufstellen der Verletliste
3.5	Verletliste 30 Å Kantenlänge
3.6	Verletliste 40 Å Kantenlänge
3.7	Verletliste 50 Å Kantenlänge
3.8	Skizze zur Wechselwirkung über periodische Randbedingungen 50
3.9	Zellenliste 30 Å Kantenlänge
3.10	Zellenliste 40 Å Kantenlänge
3.11	Zellenliste 50 Å Kantenlänge
3.12	Rechenzeitvergleich
3.13	Speicherplatzvergleich

4.1	Temperatur- und Energieverläufe 24 β -Cyclodextrine (0 ps - 200 ps)	58
4.2	Temperatur- und Energieverläufe 24 β -Cyclodextrine (0 ns - 4 ns)	59
4.3	rms-Abweichungen 24 β -Cyclodextrine (0 ns - 4 ns)	60
4.4	Temperatur- und Energieverläufe 4 β -Cyclodextrine (0 ps - 200 ps)	62
4.5	Temperatur- und Energieverläufe 4 β -Cyclodextrine (0 ns - 7 ns)	63
4.6	rms-Abweichungen vier β -Cyclodextrine (0 ns - 7 ns)	64
4.7	Temperaturverlauf und Gesamtenergie β -Cyclodextrin in Wasser	66
4.8	rms-Abweichung β -Cyclodextrin in Wasser (0 ns - 2 ns)	67
4.9	β -Cyclodextrinstruktur mit min. und max. rms-Abweichungen	68
5.1	rms-Fluktuationen bei der Kristallstrukturanalyse	70
5.2	rms-Fluktuationen der MD-Simulation mit 15 % und 100 % Feuchte (großes System) $$.	71
5.3	Korrelation der rms-Fluktuationen	72
5.4	rms-Fluktuationen im Vergeich	73
5.5	Skizze zu den Torsionswinkeln ϕ und ψ	74
5.6	experimentelle Torsionswinkel ϕ und ψ	75
5.7	Verteilungsdichten von φ und ψ der MD-Simulation mit 100 % Feuchte (großes System)	77
5.8	Verteilungsdichten von ϕ und ψ der MD-Simulation mit 15 % Feuchte (großes System) $% \phi$.	79
5.9	Verteilungsdichten von ϕ und ψ der MD-Simulation eines $\beta\text{-Cyclodextrins}$ in Wasser $\ .$.	80
5.10	Skizze zu dem Torsionswinkel χ	84
5.11	Verteilungsdichten von χ der MD-Simulation mit 58 % Feuchte (großes System)	86
5.12	Verteilungsdichten von χ der MD-Simulation eines β -Cyclodextrinmoleküls in Wasser .	87
5.13	Verteilungsdichten von ω der MD-Simulation mit 58 % Feuchte (großes System)	89
5.14	Verteilungsdichten von ω der MD-Simulation eines β -Cyclodextrinmoleküls in Wasser .	91
5.15	Verteilungsdichten der Distanzen der MD-Simulation mit 58 % Feuchte (großes System)	93
5.16	Verteilungsdichten der Distanzen der MD-Simulation mit 15 % Feuchte (großes System)	94
5.17	Verteilungsdichten der Distanzen der MD-Simulation mit cons. harm. (großes System) .	94
5.18	Verteilungsdichten der Distanzen der MD-Simulation eines β-Cyclodextrinmoleküls in	
	Wasser	96
5.19	Molekül symmetrische Anfangsbedingungen	97
5.20	Molekülstrukturen	98
5.21	Skizze zu den intramolekularen Wasserstoffbrücken	100
5.22	Skizze zu den intermolekularen Wasserstoffbrücken	104
5.23	Relative Anzahlen zum Parameter Radius	111
5.24	Relative Anzahlen zum Parameter Ort	113
5.25	Schematische Darstellung des idealisierten Diffusionsweges	115
1	Ecken- und Flächennumerierung	130
2	Flächenschema	130
3	Skizze zu Gleichung (1)	131
4	Skizze zum Seitencosinussatz	133
5	Skizze zum Breitenbereich $\phi \in (-28^\circ, 0^\circ)$	134
6	Skizze zum Breitenbereich $\phi \in (-60^\circ, -28^\circ)$	136
7	Skizze zum Breitenbereich $\phi \in (28^\circ, 60^\circ)$	137
8	Skizze zum Breitenbereich $\varphi \in (0^\circ, 28^\circ)$	137

Tabellenverzeichnis

2.1	Abmessungen und Eigenschaften von Cyclodextrinmolekülen	18
2.2	Maße der Kristalleinheitszellen und Anzahl der Wassermoleküle	21
2.3	Donatoren und Akzeptoren bei Wasserstoffbrückenbindungen	21
2.4	Kriterien für starke oder schwache Wasserstoffbrückenbindungen	22
2.5	Elementare Grundgrößen für Dodekaeder und Ikosaeder	39
2.6	Belegung der Kugeloberflächen	42
3.1	Vergleich von n^2 und $n\log_2 n$	53
5.1	Torsionswinkel zwischen Glucoseringen in der Kristallstrukturanalyse	76
5.2	Torsionswinkel zwischen Glucoseringen bei den MD-Simulationen des großen Systems .	82
5.3	Torsionswinkel χ in der Kristallstrukturanalyse	85
5.4	Torsionswinkel χ bei den MD-Simulationen des großen Systems	88
5.5	Bindungswinkel ω in der Kristallstrukturanalyse	89
5.6	Bindungswinkel ω bei den MD-Simulationen des großen Systems	90
5.7	O(4)-Distanzen in der Kristallstrukturanalyse	92
5.8	O(4)-Distanzen bei den MD-Simulationen des großen Systems	95
5.9	Intramolekulare Wasserstoffbrücken in der Kristallstrukturanalyse	101
5.10	Intramolekulare Wasserstoffbrücken bei den MD-Simulationen	102
5.11	Intermolekulare Wasserstoffbrücken in der Kristallstrukturanalyse	105
5.12	Intermolekulare Wasserstoffbrücken bei den MD-Simulationen	107
5.13	Vergleich von Wasserstoffbrücken mit Wassermolekülen	108
5.14	Intermolekulare Wasserstoffbrückensysteme bei den MD-Simulationen	109
5.15	Diffusionsrichtungen und -konstanten für verschiedene Kugelradien	112
5.16	Diffusionsrichtungen und -konstanten für verschiedene Kugelpositionen	114
1	Schrittzahlentabelle	125
2	Torsionswinkel zwischen Glucoseringen bei den MD-Simulationen des kleinen Systems	126
3	Bindungswinkel ω bei den MD-Simulationen des kleinen Systems	127
4	O(4)-Distanzen bei den MD-Simulationen des kleinen Systems	128

Summary and Outlook

This PhD thesis is entitled 'Efficient computer simulations of the structure and the dynamics of β -cyclodextrins and water in crystalline structures'. The structures were solved experimentally at different humidities by Dr Steiner 1994 in the group of Prof Dr Saenger. I verified the simulations with a comparison of the root mean square (rms) fluctuations of the molecular dynamics (md) simulations and the crystal structure. There is good agreement of the rms fluctuations of the atoms in the glucose rings between the data from the simulations and the experiment. The outer atoms have a larger flexibility in the simulations than in the experiment. I investigated the different types of disorder in the molecular and in the crystalline part. This shows that the crystalline part looks like the molecular part of disorder for the atoms of the glucose rings. The molecular part of the disorder is larger than the crystalline part of the disorder for the outer atoms. This additional characterisation of disorder is possible on simulations, but difficult in experiments. The effects of the flexibility on the distribution of some torsion angles and other structural parameters of the β -cyclodextrins were investigated too. Some deviations from the experiment with respect to sugars became evident. These differences are due to a weakness in the quality of the energy function in CHARMM. All of my comparisons indicate, that there is a good principal agreement between the measurement and the simulation data describing the structure and dynamics of the crystals of the β -cyclodextrins.

The pattern and the lifetimes of hydrogen bonds in the crystal were calculated. The hydrogen bonds stabilize the structure of the crystal and the β -cyclodextrin molecules. I get results for the structure and dynamics of the hydrogen bonds from the md simulations. These results correlate with the experimental results qualitatively in many aspects and quantitatively in some aspects. There is an obvious dependency on the humidity of the crystal. There are not enough water molecules in the crystal to stabilize the structure at low humidity. At high humidity the water molecules compete with one another, so they do not form larger systems of hydrogen bonds. An interesting aspect for the continuation of this investigation is a time resolved study of the changes of hydrogen bonds. It might be possible to find new effects by these simulations, which can be tested by experiments.

The most important point of the evaluation of the md simulations is the dynamics of the water molecules in the crystal. I determine the diffusion constant and path of water in the crystal. To do this, I have developed a fast algorithm to derive the most probable drift direction. It was possible to find a diffusion path through the crystal, which goes through the β -cyclodextrin rings. The inner and outer water molecules are connected by this diffusion path.

The newly developed simulation program has advantages in CPU time compared to CHARMM. This is due to the usage of a list of cells instead of the Verlet list.

Dank

Herrn Prof. Dr. Ernst Walter Knapp danke ich für die Stellung dieses interessanten Themas, für seine ständige Bereitschaft zur Diskussion und die hilfreichen Anregungen, die sehr zum Gelingen der Arbeit beigetragen haben. Den Mitgliedern der Arbeitsgruppe von Prof. Dr. E. W. Knapp, Herrn Björn Rabenstein, Herrn Benedikt Dietrich und Herrn Mathias Ullmann danke ich für ihre Anregungen und ihre Bereitschaft zu fachlichen Gesprächen. Herrn Dr. Thomas Steiner aus der Arbeitsgruppe von Prof. Dr. Wolfram Saenger gilt mein Dank für die weiterfürenden Erläuterungen zu seiner Veröffentlichung über die β-Cyclodextrinstrukturen, die die Grundlagen meiner Molekulardynamiksimulationen bildeten. Ohne die exzellente Ausstattung der Arbeitsgruppe und des Instituts mit Computern und die Nutzung der zentralen Rechnerversorgung durch die Zedat wäre die Arbeit nicht durchführbar gewesen. Mein spezieller Dank gilt hier Herrn Dr. Wolfgang Dreißig und Herrn Bernd Melchers, für die umgehende Lösung aufgetretener Soft- und Hardwareprobleme.