Content

Abbreviations and definitions			
Aim of thesis			
1 Literature review			
1.1 Microdialysis – general aspects	2		
1.1.1 Perfusion rate and recovery	2		
1.1.2 Temperature and recovery	3		
1.1.3 Stirring and recovery	3		
1.1.4 Materials and recovery	3		
1.1.4.1 Tubing	3		
1.1.4.2 Microdialysis probe	4		
1.1.4.3 Perfusate	4		
1.2 Microdialysis of lipophilic compounds	5		
1.2.1 Compound adsorption to tubing materials	6		
1.2.2 Influence of the membrane material on compound recovery	7		
1.2.3 Influence of perfusate additives on compound recovery	9		
2 Materials and methods			
2.1 Materials	12		
2.1.1 Compounds	12		
2.1.2 Tubing materials	13		
2.1.3 Microdialysis probes	14		
2.1.4 Equipment and miscellaneous materials	15		
2.2 Methods	17		
2.2.1 Testing of tubing materials	17		
2.2.1.1 Experimental method tubing test	17		
2.2.1.2 Sample analysis tubing test	18		
2.2.2 Testing of microdialysis probes	19		
2.2.2.1 Experimental method microdialysis test	19		
2.2.2.2 Sample analysis microdialysis test	20		
2.3 Data evaluation	21		
2.3.1 Evaluation of tubing data	21		
2.3.1.1 Evaluation of individual sample data – tubing materials	21		
2.3.1.1.1 Calculation of the sample concentration	21		
2.3.1.1.2 Calculation of the percentage of starting concentration	21		

2.3.1.1.3 Calculation of the number of dead volume exchanges	21
2.3.1.2 Evaluation of individual data sets – tubing materials	22
2.3.1.2.1 Deduction of the amount eluted	22
2.3.1.3 Descriptive statistical evaluation of the tubing data	23
2.3.1.3.1 Graphical and numerical mean and standard deviation	23
2.3.1.3.2 Comparison of tubing materials	23
2.3.1.3.3 Compound comparisons	23
2.3.1.3.4 Deduction of suitability criteria	23
2.3.2 Evaluation of microdialysis data	23
2.3.2.1 Evaluation of individual sample data – microdialysis probes	23
2.3.2.1.1 Calculation of the sample concentration	23
2.3.2.1.2 Calculation of the probe recovery	23
2.3.2.1.3 Calculation of the membrane mass transfer coefficient	24
2.3.2.2 Evaluation of individual data sets – microdialysis probes	24
2.3.2.2.1 Deduction of the overall REC and K	24
2.3.2.2.2 Description of steady-state	24
2.3.2.2.3 Percentage of the ideal Area Under the Data achieved	25
2.3.2.2.4 Calculation of the amount eluted	26
2.3.2.3 Descriptive statistical evaluation of microdialysis data	29
2.3.2.3.1 Graphical and numerical mean and standard deviation	29
2.3.2.3.2 Comparison of microdialysis probe materials	29
2.3.2.3.3 Compound comparisons	30
2.3.2.3.4 Deduction of suitability criteria	30
3 Results	31
3.1 Results tubing materials	31
3.1.1 Individual graphical data and Ae for tubing materials	31
3.1.1.1 Results individual FEP tubes	31
3.1.1.2 Results individual FEP/Teflon tubes	33
3.1.1.3 Results individual PEEK tubes	34
3.1.1.4 Results individual fused silica tubes	36
3.1.1.5 Results individual silicone tubes	37
3.1.2 Mean graphs and Ae for tubing materials	39
3.1.2.1 Comparison of mean results for different tubing materials tested	39
3.1.2.1.1 Mean results for tubing materials tested with ZK 975	39
3.1.2.1.2 Mean results of tubing materials tested with ZK 894	40

3.1.2.2	Comparison of mean tubing results for ZK 975 versus ZK 894	41
3.1.3 Stab	oility of ZK 975 and ZK 894 under tubing test conditions	42
3.2 Results mi	icrodialysis probes	44
3.2.1 Gra	phical data, REC and %iAUD for microdialysis probes	44
3.2.1.1	Results individual CMA/12 probes (20 kDa PC-membrane)	44
3.2.1.2	Results individual MAB 2.14.4 probes (35 kDa PES-membrane)	46
3.2.1.3	Results individual BR-4 probes (20 kDa PAN-membrane)	48
3.2.1.4	Results individual MAB 4.15.4.Cu probes (6 kDa Cu-membrane)	50
3.2.1.5	Results individual MBR-4-10 probes (38 kDa Cell-membrane)	52
3.2.1.6	Results individual CMA/12 probes (100 kDa PES-membrane)	54
3.2.1.7	Results individual MAB 6.14.4 probes (15 kDa-membrane)	56
3.2.1.8	Results individual MAB 9.14.4 probes (6 kDa PES-membrane)	58
3.2.1.9	Results individual MAB 8.4.4 probes (6 kDa PES-membrane)	60
3.2.1.10	Results individual MAB 4.15.4.PES probes (6 kDa PES-membrane)	62
3.2.1.11	Results individual CMA/11 probes (6 kDa Cu-membrane)	64
3.2.2 Mea	an graphs, %iAUD, Ae and K of microdialysis probes tested	66
3.2.2.1	Mean results for microdialysis probes tested with ZK 975	66
3.2	2.2.1.1 Comparison of membrane materials tested with ZK 975	66
3.2	2.2.1.2 Comparison of pore sizes tested with ZK 975	68
3.2	2.2.1.3 Comparison of membrane surface areas tested with ZK 975	69
3.2	2.2.1.4 Comparison of membrane thicknesses tested with ZK 975	71
3.2	2.2.1.5 Comparison of outlet material with ZK 975	72
3.2.2.2	Mean results for microdialysis probes tested with ZK 894	74
3.2	2.2.2.1 Comparison of membrane materials tested with ZK 894	74
3.2	2.2.2.2 Comparison of pore sizes tested with ZK 894	76
3.2	2.2.2.3 Comparison of membrane surface areas tested with ZK 894	78
3.2	2.2.2.4 Comparison of membrane thicknesses tested with ZK 894	79
3.2	2.2.2.5 Comparison of outlet materials tested with ZK 894	81
3.2.2.3	Comparison of mean microdialysis results for ZK 975 versus ZK 894	83
3.2	2.2.3.1 Comparison of mean %iAUD obtained with either compound	83
3.2	2.2.3.2 Comparison of mean Ae obtained with either compound	84
3.2	2.2.3.3 Comparison of mean K obtained with either compound	85
3.2.3 Stab	bility of ZK 975 and ZK 894 under microdialysis test conditions	86

4	Discus	ssion	87
	4.1 Discussion of the tubing experiments		87
	4.1.1	Handling of fused silica tubing	87
	4.1.2	Prerinsing of tubes with Ringer's solution	88
	4.1.3	Comments on the length of the saturation phase	90
	4.1.4	Graphical representation of the tubing data	90
	4.1.5	Assessment of the parameter Ae for tubing materials	90
	4.1.6	Reproducibility of the tubing experiments	91
	4.1.7	Relevance of the tubing results for pharmacokinetic applications	91
	4.2 Disc	ussion of the microdialysis experiments	91
	4.2.1	Prerinsing of probes with Ringer's solution	91
	4.2.2	Comment on the microdialysis experimental method	91
	4.2.3	Graphical interpretation of the microdialysis data	92
	4.2.4	Assessment of the parameter REC for microdialysis probes	92
	4.2.5	Assessment of the parameter K for microdialysis probes	92
	4.2.6	Assessment of the parameter %iAUD for microdialysis probes	93
	4.2.7	Assessment of the parameter Ae for microdialysis probes	93
	4.2.8	Reproducibility of the microdialysis experiments	94
	4.2.9	Relevance of microdialysis results for pharmacokinetic applications	94
	4.3 Furth	ner recommended research	94
5	Conclu	isions	96
5.1 Conclusions on testing and selecting tubing material			
	5.2 Conc	clusions on testing and selecting microdialysis probes	96
6	Refere	nces	98
	immary - <i>l</i> oplications	<i>n vitro</i> optimization of microdialysis for pharmacokinetic	i
		assung - In vitro Optimierung der Mikrodialyse für	
ph		netische Fragestellungen	iii
	Einlei	tung	iii
	Mater	ialien	iii
	Metho	ode	v
	Ausw	ertung	v
	Ergeb	nisse	vi
	Schlus	ssfolgerung	ix

Appendix I (Graphs)	Х
Appendix II (Tables)	xxviii
Appendix III (Chromatograms)	lvii
Acknowledgements	lxvii
Curriculum vitae	lxviii
Declaration	lxix