III Experimenteller Teil

5 Allgemeines

5.1 Arbeitsmethoden und Geräte

Alle Arbeiten wurden in ausgeheizten Glas- oder PFA- (Polyperfluorethen-perfluorvinylether-Copolymerisat) Geräten unter Argon mittels Schlenktechnik oder im Vakuum (Glas bzw. Metallvakuumapparatur) durchgeführt. Die verwendeten Lösemittel wurden nach den üblichen Methoden gereinigt und getrocknet. Die käuflichen Ausgangssubstanzen wurden, falls nicht erwähnt, ohne vorherige Reinigung verwendet.

Die Handhabung hydrolyse- und sauerstoffempfindlicher Substanzen, die bei Raumtemperatur stabil sind, erfolgte unter Argonatmosphäre in einem Handschuhkasten der Firma Braun, Typ MB 150 B/G mit automatischer Trocknungseinrichtung.

Die NMR-Spektren wurden je nach Substanz bei Raumtemperatur oder unter Kühlung mit einem 400 MHz Multikern-Spektrometer der Firma Jeol, Typ Lambda 400 aufgenommen. Die chemischen Verschiebungen beziehen sich auf Tetramethylsilan (¹H; ¹³C) bzw. Trichlorfluormethan (¹⁹F) als Standard, wobei negative Werte entsprechend der IUPAC-Übereinkunft niederfrequente Verschiebungen (Hochfeldverschiebung) beinhalten.

Die Raman-Messungen wurden je nach Substanz in abgeschmolzenen Glaskapillaren (0,2 mm bis 4 mm) oder in PFA-Röhrchen (4 mm) bei Raum- oder Tieftemperatur mit einem FT-Raman-Spektrometer der Firma Bruker, Typ RFS 100 durchgeführt. Die Anregung erfolgte mit einem Nd-YAG-Laser der Wellenlänge 1064 nm und Leistungen von 5 - 550 mW.

Die Einkristallmessungen erfolgten unter Stickstoffkühlung auf einem Vierkreisdiffraktometer, CAD4, der Firma Enraf-Nonius oder auf einem Bruker-Smart-CCD-1000-M-Diffraktometer mit Mo-K_{α}-Strahlung, $\lambda = 0,71073$ Å, Graphitmonochromator. Die Kristalle wurden zur Messung unter Schutzgas (N₂) und Kühlung in einer speziellen Apparatur [85] auf einen Glasfaden montiert. Nach empirischer Absorptionskorrektur (Ψ -Scan bzw. SADAB) erfolgte die Strukturlösung und Verfeinerung mit Hilfe der Programme SHELXS und SHELX (Version 93 und 97) [86]. Zur Visualisierung der Kristallstrukturen wurde das Programm DI-AMOND (Crystal-Impact, Version 2.1d) [87] verwendet.

5.2 Ausgangssubstanzen

Acetonitril	Fa. Merck
Diethylether	Fa. Merck
Fluorwasserstoff	Spende der Fa. Bayer AG
Frigen 11, CFCl ₃	stand im Arbeitskreis zur Verfügung
Methylenchlorid	Fa. Merck
Nitromethan	Fa. Merck
Perfluorbutansulfonsäurefluorid	Fa. Bayer
Perfluorhexan	Fa. ABCR
Sulfurylchloridfluorid	dargestellt nach Lit. [88]
Tetrahydrofuran	Fa. Merck
Toluol	Fa. Merck
Iodbenzol	Fa. Merck
p-Iodtoluol	Fa. Merck
Iodoxybenzol	dargestellt nach Lit. [89]
Phenylioddichlorid	dargestellt nach Lit. [90]
Phenyliodtetrafluorid	dargestellt nach Lit.[64a]
Triphenyliod	dargestellt nach Lit. [52b]
Diphenylzink	dargestellt nach Lit. [91], gereinigt durch
	Vakuumsublimation
Phenyllithium, 1,6 M	Fa. Fluka
n-Butyllithium	Fa. Aldrich
p-Brom-trifluormetylbenzol	Fa. Aldrich
Chlor	Fa. Linde, über P_2O_5 destilliert
Sauerstoff	Fa. Linde
Fluor	Fa. Solvay
Xenon	Fa. Linde
Iod	Fa. Merck, sublimiert und pulverisiert
Xenondifluorid	dargestellt nach Lit. [92]
Antimonpentafluorid	Fa. Aldrich
Iodpentafluorid	stand im Arbeitskreis zur Verfügung
1,1,3,3,5,5-Hexametylpiperidiniumfluorid	dargestellt nach Lit. [93]
Tetrametylammoniumiodid	Fa. Merck
Tetrametylammoniumdifluoroiodat	dargestellt nach Lit. [30]
Tetramethylammoniumtetrafluoroiodat	dargestellt nach Lit. [36]
Tetraethylammoniumchlorid	Fa. Aldrich. in Acetonitril umkristallisiert
5	und bei 60 °C im Vakuum getrocknet
Bortrichlorid	stand im Arbeitskreis zur Verfügung
Pentafluoroorthotellursäure	stand im Arbeitskreis zur Verfügung
Bor-tris-pentafluoroorthotellurat	dargestellt nach Lit. [94]. gereinigt durch
- F	Vakuumsublimation
Xenon-bis-pentafluoroorthotellurat	stand im Arbeitskreis zur Verfügung
Xenon-bis-pentafluoroorthotellurat	stand im Arbeitskreis zur Verfügung

6 Synthesevorschriften und Kristallstrukturanalysen

6.1 Versuche zur Darstellung von Iodmonofluorid IF

a) Nach den von Schmeißer et al. beschriebenen Methoden [17]:

1. Aus den Elementen über die Tieftemperaturfluorierung:

Bei dieser Methode bereitete die Endpunkterkennung Schwierigkeiten, so dass keine Suspensionen, sondern nur Lösungen verwendet wurden.

1 g (3,9 mmol) frisch sublimiertes und fein verteiltes Iod wurden in einem Dreihalskolben mit Einleitungsrohr, KPG-Rührer und Gasableitung über eine -78 °C gekühlte Schutzfalle in 80 ml Frigen 11 unter intensivem Rühren bei -78 °C gelöst. Zu der violetten Lösung wurde anschließend solange vorgekühltes Fluor/Argon Gasgemisch im Verhältnis 1:7 eingeleitet, bis die Lösung nicht mehr violett, sondern hellrot gefärbt war. Nach Verdrängen des überschüssigen Fluors mit Argon wurde das Lösemittel im Vakuum bei -50 °C abgezogen. Zurück blieb ein grauweißes Pulver, das sich weit unterhalb von 0 °C zersetzte. Als Zersetzungsprodukte konnten I₂ und IF₅ nachgewiesen werden. Das Pulver wurde auch von Laserlicht geringster Leistung zersetzt, so dass keine Ramandaten aufgenommen werden konnten. Röntgenaufnahmen bei tiefen Temperaturen wiesen die Substanz als röntgenamorph aus.

2. Über eine Komproportionierungsreaktion von IF₃ und I₂:

5 g (19,7 mmol) frisch sublimiertes und fein verteiltes Iod wurden bei -45 °C in 150 ml Frigen 11 suspendiert und mit einem vorgekühlten Gasgemisch aus Fluor und Argon im Verhältnis 1:7 solange fluoriert, bis ein rein gelber Feststoff von IF₃ entstand und die Lösung farblos wurde. Nach Vertreiben von noch gelöstem überschüssigem Fluor wurden 9 g (35,4 mmol) fein verteiltes Iod und wenige Tropfen Pyridin zugegeben. Anschließend wurde diese Suspension bei -40 °C zehn Tage intensiv gerührt, wobei eine Farbaufhellung zu erkennen war. Das Produkt wurde durch Trennen der Lösung mittels eines Teflonschlauchs bei -40 °C isoliert und nach mehrmaligem Waschen mit kaltem F11 im Vakuum bei -40 °C getrocknet. Der erhaltene graue Feststoff verhält sich wie das oben beschriebene grau-weiße Produkt. Er ist thermisch instabil und als Zersetzungsprodukte konnten I₂ und IF₅ nachgewiesen werden. b) Über die Zersetzungsreaktion von IF3 in verschiedenen Lösemitteln:

Ca. 300 mg (1,6 mmol) IF₃ wurden in einem PFA-Reaktionsrohr (6,5 mm Innendurchmesser) bei -78 °C vorgelegt. Hierzu wurden 2 ml F11 an einer Vakuumapparatur kondensiert. Anschließend wurde das PFA-Röhrchen langsam unter Rühren auf -28 °C, der Zersetzungstemperatur von IF₃, erwärmt und bei dieser Temperatur für 3 h belassen. Nach Ablauf dieser Zeit wurde das Röhrchen langsam auf -80 °C gekühlt, wobei rot-schwarze Kristalle von ICl neben IF₅ erhalten wurden.

Wird die beschriebene Zersetzung von IF_3 in aHF oder in $C_4F_9SO_2F$ durchgeführt, kann nur Iod neben IF_5 nachgewiesen werden.

c) Umsetzung von Me₄NIF₂ mit verschiedenen Fluoridakzeptoren:

- aHF: In ein PFA-Reaktionsrohr wurde frisch hergestelltes Me₄NIF₂ vorgelegt und dazu an einer Metallvakuumapparatur bei Stickstofftemperatur 2 ml aHF kondensiert. Beim Erwärmen der Probe auf -78 °C trat spontan eine Zersetzung auf, was an einem Farbumschlag nach braun-schwarz erkennbar war.
- 2. BF₃: Zu einem mit frisch hergestelltem Me₄NIF₂ gefülltem PFA-Reaktionsrohr wurde an einer Metallvakuumapparatur bei Stickstofftemperatur 2 ml SO₂ClF und BF₃ kondensiert. Die Probe wurde langsam auf -78 °C erwärmt, wobei sich die Suspension rot verfärbte. Nach Abziehen des überschüssigen BF₃ und des Lösemittels bei -78 °C blieb ein roter, amorpher Feststoff zurück, der aufgrund der schlechten Handhabbarkeit (Zersetzung beim Abfüllen an einer speziellen Tieftemperatur-Apparatur) nicht näher charakterisiert werden konnte.
- 3. AsF₅: Zu einer Suspension von Me₄NIF₂ in SO₂ClF wurde an einer Metallvakuumapparatur bei Stickstofftemperatur AsF₅ kondensiert und langsam auf -78 °C erwärmt. Die Suspension verfärbt sich rotbraun. Bei Raumtemperatur ändert sich die Farbe. Sie schlägt zu blau um. Bei tiefen Temperaturen erscheint die rotbraune Farbe wieder. Es liegt anscheinend ein Gleichgewicht zwischen I₂⁺AsF₆⁻ und der dimerisierten I₄²⁺AsF₆⁻-Verbindung vor.
- 4. SbF₅: Analog zu der oben beschriebenen Vorschrift wurde zu einer Me₄NIF₂ Suspension in SO₂ClF im dynamischen Vakuum SbF₅ kondensiert. Hier verfärbte sich die Suspension nach grün-schwarz. Nach Abziehen des überschüssigem SbF₅ und des Lösemittels wurde ein grünschwarzer Feststoff erhalten, der als I₅⁺Sb₂F₁₁⁻ identifiziert werden konnte.

6.1.1 bis-Heptaiod-hexafluorosilikat, (I₇)⁺₂SiF₆²⁻·12 IF₅·6 HF

6.1.1.1 Synthese

In einem PFA-Rohr (6,5 mm Innendurchmesser) wurden 222 mg (1 mmol) mit SiF₄ verunreinigtes IF₅ und 127 mg (0,5 mmol) I₂ in der Dry-box vorgelegt. Nach dem Aufkondensieren von wasserfreiem HF bei Stickstofftemperatur wurde das Reaktionsgemisch zunächst auf -78 °C und dann kurzfristig auf -20 °C erwärmt. Man erhielt eine braunschwarze Lösung. Nach anschließendem Abkühlen der Lösung auf -78 °C fielen braunschwarze Nadeln aus.

6.1.1.2 Kristall- und Strukturdaten von (I₇)⁺₂SiF₆²⁻·12 IF₅ · 6 HF

Summenformel	Fra Iac Hc Si	
Molmasse [g / mol]	4699 36	
Kristallsystem	triklin	
Raumgruppe	$P\overline{1}$	
Gitterkonstanten [nm [.] °]	a = 989 9(2)	$\alpha = 68.56(0)$
Gitterkonstanten [pin,]	$h = 1281 \ 73(19)$	$\beta = 77.07(0)$
	$c = 1743 \ 0(4)$	p = 77,07(0) y = 84.71(0)
Zellvolumen [nm ³]	2 0073(6)	$\gamma = 04, 71(0)$
Formeleinheiten pro Zelle	2,0075(0)	
Kristallahmessungen [mm ³]	$2 0 1 \times 0 1 \times 0 5$	
Farbe und Kristallform	schwarzbraune Nadeln	
Wellenlänge [nm]	71 073	
Messtemperatur [K]	203(2)	
Messbereich [°]	$1.28 < \theta < 30.53$	
Indexbereich	$-14 \le h \le 14$ $-18 \le k \le 18$	3 -74<=1<=73
F(000)	2040	$5, 24 \times 1 \times 25$
Dichte (berechnet) $\left[g/cm^3 \right]$	3 884	
Absorptionskoeffizient $[mm^{-1}]$	10 213	
Gemessene Reflexe	24484	
Unabhängige Reflexe	12083 [R(int) = 0.0403]	
Vollständigkeit zu $A = 30.53^{\circ}$	98 5 %	
Methode der Strukturverfeinerung	Vollmatrix-kleinste Fehler	rauadrate gegen F ²
Reflexe / restraints / Parameter	12083 / 0 / 449	Iquadrate gegen I
Goodness-of-fit gegen F^2	0.936	
R mit [I>2sigma(I)]	$R_1 = 0.0406 \text{ wR}_2 = 0.091$	18
R (alle Daten)	R1 = 0.0654 wR2 = 0.104	15
Extinktionskoeffizient	0.00055(5)	-
Restelektonendichte max./min [e/ Å ⁻³]	2,440 / -2,331	

Liste 1 Kristalldaten und Angaben zur Kristallstrukturbestimmung.

	Х	у	Z	U(eq)	
I(1)	890(1)	5381(1)	3425(1)	21(1)	
F(11)	2711(4)	5896(4)	3268(3)	31(1)	
F(12)	-612(4)	4694(4)	3302(3)	37(1)	
F(13)	1766(4)	4882(4)	2585(3)	40(1)	
F(14)	1489(5)	3960(4)	4076(3)	40(1)	
F(15)	676(5)	6649(4)	2489(3)	42(1)	
I(2)	3752(1)	2131(1)	4610(1)	26(1)	
F(21)	3982(4)	2037(4)	5684(3)	39(1)	
F(22)	1867(4)	1759(4)	5093(3)	41(1)	
F(23)	3909(5)	624(4)	5085(4)	49(1)	
F(24)	3621(6)	1775(5)	3681(3)	58(2)	
F(25)	5689(5)	2031(5)	4302(4)	55(1)	
I(3)	5656(1)	5371(1)	2596(1)	24(1)	
F(31)	4548(4)	4190(4)	2707(3)	41(1)	
F(32)	6606(5)	5035(5)	1690(3)	49(1)	
F(33)	7123(4)	6403(4)	2229(3)	46(1)	
F(34)	6870(4)	4250(4)	3121(3)	33(1)	
F(35)	4767(5)	6356(5)	1759(3)	50(1)	
I(4)	984(1)	8969(1)	4079(1)	26(1)	
F(41)	989(5)	7911(4)	5164(3)	41(1)	
F(42)	1594(5)	9919(4)	2964(3)	50(1)	
F(43)	1163(6)	7776(4)	3674(3)	52(1)	
F(44)	1387(6)	10069(4)	4452(3)	51(1)	
F(45)	2838(5)	8723(5)	3996(4)	56(2)	
I(5)	1002(1)	7536(1)	-2969(1)	29(1)	
F(51)	582(5)	6207(4)	-2036(3)	38(1)	
F(52)	161(5)	8135(4)	-2179(3)	42(1)	
F(53)	2553(5)	7693(4)	-2571(3)	45(1)	
F(54)	-818(5)	7564(4)	-3108(3)	45(1)	
F(55)	1131(5)	9069(4)	-3653(3)	43(1)	
I(6)	-2686(1)	8915(1)	2411(1)	28(1)	
F(61)	-2089(5)	10257(4)	1606(3)	47(1)	
F(62)	-1148(5)	8413(4)	1777(3)	43(1)	
F(63)	-1460(6)	9303(4)	2940(3)	52(1)	
F(64)	-4056(6)	9851(5)	2742(4)	62(2)	
F(65)	-3677(5)	8943(5)	1599(3)	52(1)	
I(7)	1483(1)	10767(1)	550(1)	39(1)	
I(8)	2882(1)	8917(1)	1384(1)	39(1)	
I(9)	4258(1)	8420(1)	-100(1)	34(1)	
I(10)	5620(1)	7973(1)	-1627(1)	47(1)	
I(11)	6926(1)	6062(1)	-790(1)	43(1)	
I(12)	1687(1)	6171(1)	-393(1)	49(1)	
I(13)	33(1)	7022(1)	656(1)	54(1)	
S1	5000	5000	5000	18(1)	
F(1)	4437(4)	4352(3)	4457(2)	24(1)	
F(2)	6238(4)	5627(3)	4143(2)	24(1)	
F(3)	3891(3)	6094(3)	4660(2)	23(1)	
F(311)	4771(4)	7427(4)	3108(3)	34(1)	
F(312)	1351(4)	5520(4)	4976(3)	32(1)	
F(211)	0(4)	67/1(4)	3699(3)	39(1)	

Liste 2 Atomkoordinaten (x 10⁴) und äquivalente isotrope Temperaturfaktoren (pm² x 10⁻¹) für $(I_7)^+_2 SiF_6^{2-} \cdot 12IF_5 \cdot 6HF$. U(eq) ist definiert als $1/_3$ des orthogonalisierten U_{ij} Tensors.

Liste 3 Anisotrope Temperaturfaktoren (pm² x 10⁻¹) für $(I_7)^+_2 SiF_6^{2-} \cdot 12IF_5 \cdot 6HF$. Der anisotrope Temperaturfaktor hat die Form : $-2\pi^2$ [h²a^{*2}U₁₁ + ... + 2 h k a* b* U₁₂].

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂	
I(1)	17(1)	25(1)	21(1)	-8(1)	-6(1)	0(1)	
F(11)	18(2)	44(3)	33(2)	-14(2)	-4(2)	-7(2)	
F(12)	27(2)	50(3)	44(3)	-27(2)	-10(2)	-4(2)	
F(13)	31(2)	60(3)	43(3)	-38(3)	-3(2)	1(2)	
F(14)	39(2)	25(2)	51(3)	-5(2)	-17(2)	4(2)	
F(15)	47(3)	43(3)	28(2)	0(2)	-14(2)	4(2)	
I(2)	29(1)	22(1)	25(1)	-7(1)	-2(1)	-3(1)	
F(21)	40(2)	45(3)	27(2)	-6(2)	-7(2)	-9(2)	
F(22)	28(2)	35(3)	53(3)	-11(2)	-4(2)	-4(2)	
F(23)	54(3)	19(2)	63(4)	-8(2)	-5(2)	5(2)	
F(24)	80(4)	67(4)	35(3)	-31(3)	2(3)	-27(3)	
F(25)	30(2)	63(4)	65(4)	-27(3)	8(2)	-6(2)	
I(3)	21(1)	29(1)	20(1)	-8(1)	-1(1)	1(1)	
F(31)	31(2)	45(3)	58(3)	-29(3)	-12(2)	-1(2)	
F(32)	44(3)	80(4)	26(3)	-30(3)	3(2)	10(2)	
F(33)	34(2)	40(3)	50(3)	-6(2)	8(2)	-13(2)	
F(34)	25(2)	34(2)	41(3)	-17(2)	-10(2)	9(2)	
F(35)	50(3)	62(4)	27(3)	-4(2)	-14(2)	15(2)	
I(4)	27(1)	24(1)	25(1)	-8(1)	-2(1)	-1(1)	
F(41)	57(3)	36(3)	27(2)	-7(2)	-11(2)	-1(2)	
F(42)	59(3)	44(3)	28(3)	-1(2)	6(2)	-1(2)	
F(43)	89(4)	32(3)	46(3)	-25(2)	-18(3)	9(3)	
F(44)	73(3)	36(3)	52(3)	-21(3)	-17(3)	-12(2)	
F(45)	25(2)	72(4)	65(4)	-21(3)	-5(2)	7(2)	
I(5)	37(1)	27(1)	24(1)	-13(1)	-7(1)	5(1)	
F(51)	47(3)	35(3)	31(3)	-10(2)	-8(2)	3(2)	
F(52)	57(3)	42(3)	30(3)	-21(2)	-1(2)	7(2)	
F(53)	43(3)	56(3)	42(3)	-23(3)	-15(2)	-3(2)	
F(54)	41(2)	41(3)	52(3)	-12(2)	-17(2)	3(2)	
F(55)	64(3)	28(2)	33(3)	-7(2)	-8(2)	2(2)	
I(6)	27(1)	24(1)	25(1)	0(1)	-4(1)	-1(1)	
F(61)	46(3)	28(3)	45(3)	7(2)	-2(2)	-6(2)	
F(62)	39(2)	42(3)	38(3)	-7(2)	1(2)	-1(2)	
F(63)	65(3)	45(3)	48(3)	-9(3)	-22(3)	-19(2)	
F(64)	56(3)	44(3)	62(4)	-7(3)	11(3)	13(2)	
F(65)	50(3)	59(3)	33(3)	10(2)	-20(2)	-15(2)	
I(7)	30(1)	50(1)	39(1)	-22(1)	0(1)	0(1)	
I(8)	47(1)	40(1)	24(1)	-6(1)	-1(1)	-5(1)	
I(9)	35(1)	30(1)	28(1)	0(1)	-7(1)	0(1)	
I(10)	55(1)	53(1)	26(1)	-10(1)	-3(1)	7(1)	
I(11)	42(1)	46(1)	40(1)	-20(1)	0(1)	3(1)	
I(12)	64(1)	52(1)	32(1)	-20(1)	-6(1)	10(1)	
I(13)	56(1)	72(1)	32(1)	-23(1)	-9(1)	24(1)	
S1	16(1)	19(1)	17(1)	-5(1)	-3(1)	-3(1)	
F(1)	24(2)	28(2)	22(2)	-9(2)	-/(1)	-6(2)	
F(2)	21(2)	27(2)	21(2)	-6(2)	-1(1)	-3(1)	
F(3)	20(2)	23(2)	25(2)	-7(2)	-5(1)	I(1)	
F(311)	37(2)	35(3)	24(2)	-6(2)	-1(2)	-5(2)	
F(312)	25(2)	40(3)	27(2)	-6(2)	-4(2)	-8(2)	
F(211)	26(2)	30(2)	55(3)	-11(2)	0(2)	-8(2)	

I(1)-F(13)	182 2(4)	I(4)-F(45)	181 5(4)
I(1) - F(15)	187.2(4)	I(4) - F(44)	186,1(5)
I(1)-F(14)	188.3(4)	I(4)-F(42)	187.3(5)
I(1)-F(12)	188.6(4)	I(4)-F(43)	188.4(5)
I(1) - F(11)	190 4(3)	I(4)-F(41)	188 4(5)
I(2)-F(23)	180 9(5)	I(5)-F(52)	182,1(5)
I(2) - F(24)	187,1(5)	I(5) - F(54)	186 6(4)
I(2) - F(25)	187.8(5)	I(5) - F(53)	187 4(4)
I(2) - F(22)	189 4(4)	I(5) - F(51)	187 7(5)
I(2) - F(21)	189.6(5)	I(5) - F(55)	188.8(5)
I(3)-F(32)	182.2(4)	I(6) - F(61)	182,5(4)
I(3)-F(35)	187 7(4)	I(6) - F(64)	186 2(5)
I(3)-F(31)	187.8(4)	I(6) - F(63)	187.6(5)
I(3)-F(34)	188.7(4)	I(6)-F(62)	188.1(5)
I(3)-F(33)	189.5(4)	I(6)-F(65)	188.3(5)
	272 (2(0)		272.01(0)
I(7) - I(8)	272,62(9)	I(10)-I(11)	2/2,91(9)
I(7)-I(13)#1	331,25(9)	I(11)-I(12)#2	324,96(10)
I(8) - I(9)	290,32(9)	I(12)-I(13)	264,/2(9)
I(9)-I(10)	293,14(9)		
Si-F(1)#3	167,2(4)	Si-F(2)#3	169,3(4)
Si-F(1)	167,2(4)	Si-F(3)#3	170,9(4)
Si-F(2)	169,3(4)	Si-F(3)	170,9(4)
F(13)-I(1)-F(15)	80,3(2)	F(34)-I(3)-F(33)	88,1(2)
F(13)-I(1)-F(14)	80,5(2)	F(45)-I(4)-F(44)	81,1(3)
F(15)-I(1)-F(14)	160,5(2)	F(45)-I(4)-F(42)	80,9(2)
F(13)-I(1)-F(12)	80,40(19)	F(44)-I(4)-F(42)	89,7(2)
F(15)-I(1)-F(12)	90,3(2)	F(45)-I(4)-F(43)	81,4(3)
F(14)-I(1)-F(12)	89,2(2)	F(44)-I(4)-F(43)	162,5(2)
F(13)-I(1)-F(11)	80,77(19)	F(42)-I(4)-F(43)	87,6(2)
F(15)-I(1)-F(11)	86,88(19)	F(45)-I(4)-F(41)	80,5(2)
F(14)-I(1)-F(11)	87,34(19)	F(44)-I(4)-F(41)	88,4(2)
F(12)-I(1)-F(11)	161,16(19)	F(42)-I(4)-F(41)	161,4(2)
F(23)-I(2)-F(24)	82,2(3)	F(43)-I(4)-F(41)	88,7(2)
F(23)-I(2)-F(25)	82,7(2)	F(52)-I(5)-F(54)	81,5(2)
F(24)-I(2)-F(25)	88,5(3)	F(52)-I(5)-F(53)	80,5(2)
F(23)-I(2)-F(22)	79,9(2)	F(54)-I(5)-F(53)	162,0(2)
F(24)-I(2)-F(22)	90,4(2)	F(52)-I(5)-F(51)	80,8(2)
F(25)-I(2)-F(22)	162,5(2)	F(54)-I(5)-F(51)	88,1(2)
F(23)-I(2)-F(21)	81,2(2)	F(53)-I(5)-F(51)	88,7(2)
F(24)-I(2)-F(21)	163,3(2)	F(52)-I(5)-F(55)	81,1(2)
F(25)-I(2)-F(21)	87,9(2)	F(54)-I(5)-F(55)	88,6(2)
F(22)-I(2)-F(21)	88,1(2)	F(53)-I(5)-F(55)	89,0(2)
F(32)-I(3)-F(35)	80,2(2)	F(51)-I(5)-F(55)	161,9(2)
F(32)-I(3)-F(31)	81,7(2)	F(61)-I(6)-F(64)	80,6(2)
F(35)-I(3)-F(31)	90,3(2)	F(61)-I(6)-F(63)	80,5(2)
F(32)-I(3)-F(34)	80,3(2)	F(64)-I(6)-F(63)	91,0(3)
F(35)-I(3)-F(34)	160,4(2)	F(61)-I(6)-F(62)	80,6(2)
F(31)-I(3)-F(34)	86,3(2)	F(64)-I(6)-F(62)	161,1(2)
F(32)-I(3)-F(33)	80,8(2)	F(63)-I(6)-F(62)	88,3(2)
F(35)-I(3)-F(33)	89,4(2)	F(61)-I(6)-F(65)	81,2(2)
F(31)-I(3)-F(33)	162,3(2)	F(64)-I(6)-F(65)	87,8(3)

Liste 4	Bindungslängen	[pm] und -winkel	[°] für (I ₇)) [⁺] 2SiF ₆ ^{2–} ·12IF ₅ · 6HF.
---------	----------------	------------------	---------------------------	--

Experimenteller Teil		Synthesevorschriften und Kristallstrukturanalysen		
F(63)-I(6)-F(65)	161,6(2)	F(62)-I(6)-F(65)	86,9(2)	
I(8)-I(7)-I(13)#1	173,72(3)	I(11)-I(10)-I(9)	94,57(3)	
I(7)-I(8)-I(9)	95,82(2)	I(10)-I(11)-I(12)#2	173,76(3)	
I(8)-I(9)-I(10)	178,49(2)			
F(1)#3-Si-F(1)	180,000(1)	F(2)-Si-F(3)#3	90,19(18)	
F(1)#3-Si-F(2)	90,64(18)	F(2)#3-Si-F(3)#3	89,81(18)	
F(1)-Si-F(2)	89,36(18)	F(1)#3-Si-F(3)	90,42(18)	
F(1)#3-Si-F(2)#3	89,36(18)	F(1)-Si-F(3)	89,58(18)	
F(1)-Si-F(2)#3	90,64(18)	F(2)-Si-F(3)	89,81(18)	
F(2)-Si-F(2)#3	180,0(3)	F(2)#3-Si-F(3)	90,19(18)	
F(1)#3-Si-F(3)#3	89,58(18)	F(3)#3-Si-F(3)	180,0(3)	
F(1)-Si-F(3)#3	90,42(18)			

Verwendete Symmetrietransformation für Generierung äquivalenter Atome: #1 -x,-y+2,-z #2 -x+1,-y+1,-z #3 -x+1,-y+1,-z+1

6.1.2 Heptaiod-hexafluorobromat, I7⁺BrF₆⁻· 4 IF₅

6.1.2.1 Synthese

In einem PFA-Rohr (6,5 mm Innendurchmesser) wurden 222 mg (1mmol) IF₅ mit Spuren von BrF₅ (Verunreinigung) und 127 mg (0,5 mmol) I₂ in der Dry-box vorgelegt. Nach dem Aufkondensieren von wasserfreiem HF bei -196 °C wurde das Reaktionsgemisch zunächst auf -78 °C und dann kurzfristig auf -20 °C erwärmt. Man erhielt eine braunschwarze Lösung. Nach anschließendem Abkühlen der Lösung auf -78 °C fielen braunschwarze Nadeln aus.

6.1.2.2 Kristall- und Strukturdaten I₇⁺BrF₆⁻· 4 IF₅

Liste 5	Kristalldaten und Angaben zur Kristallstrukturbestimmung.
---------	---

Summenformel Molmasse [g / mol] Kristallsystem Raumgruppe Gitterkonstanten [pm; °]	Br $F_{26} I_{11}$ 1969,81 triklin P1 a = 922,2(3) b = 1276,1(3) c = 1468,4(5)	$\alpha = 111,832(10)$ $\beta = 92,168(6)$ $\gamma = 95,482(6)$
Zellvolumen [nm ³] Formeleinheiten pro Zelle Kristallabmessungen [mm ³] Farbe und Kristallform Wellenlänge [pm] Messtemperatur [K] Messbereich [°] Indexbereich F(000)	1,5917(9) 2 0,1x 0,1 x 0,4 schwarzbraune Nadeln 71,073 208(2) 1,50 < θ < 26,37 -11<=h<=11, -15<=k<=14 1704	4, -18<=l<=18

Dichte (berechnet) [g/cm ³]	4,110
Absorptionskoeffizient [mm ⁻¹]	12,109
Gemessene Reflexe	14405
Unabhängige Reflexe	11170 [R(int) = 0.0437]
Vollständigkeit zu $\theta = 26,37^{\circ}$	99,9 %
Methode der Strukturverfeinerung	Vollmatrix-kleinste Fehlerquadrate gegen F ²
Reflexe / restraints / Parameter	11170 / 3 / 686
Goodness-of-fit gegen F ²	0,907
R mit [I>2sigma(I)]	R1 = 0.0514, $wR2 = 0.1103$
R (alle Daten)	R1 = 0,0915, wR2 = 0,1303
Extinktionskoeffizient	0,00014(4)
Restelektonendichte max./min [e/ Å ⁻³]	1,724 / -2,609

Liste 6 Atomkoordinaten (x 10⁴) und äquivalente isotrope Temperaturfaktoren (pm² x 10⁻¹) für $I_7^+BrF_6^- \cdot 4IF_5$. U(eq) ist definiert als 1/3 des orthogonalisierten U_{ij} Tensors.

	Х	У	Z	U(eq)	
I(1)	6039(2)	-1939(2)	1537(1)	32(1)	
I(11)	8972(2)	5389(2)	-218(1)	32(1)	
I(2)	-2475(2)	108(2)	2644(1)	35(1)	
I(21)	17386(2)	3342(2)	-1255(1)	36(1)	
I(3)	-1389(2)	498(2)	959(1)	27(1)	
I(31)	16295(2)	3008(2)	484(1)	26(1)	
I(4)	-284(2)	874(2)	-740(1)	35(1)	
I(41)	15104(2)	2585(2)	2127(1)	29(1)	
I(5)	1264(2)	-7084(2)	328(1)	31(1)	
I(51)	13630(2)	10546(2)	916(1)	27(1)	
I(6)	3203(2)	-4663(2)	1648(2)	41(1)	
I(61)	11769(2)	8170(2)	-472(1)	30(1)	
I(7)	4186(2)	-4376(2)	69(1)	32(1)	
I(71)	10872(2)	7791(2)	1096(1)	34(1)	
I(8)	6280(2)	-2736(2)	-1994(1)	30(1)	
F(81)	5512(19)	-1939(16)	-879(11)	51(5)	
F(82)	4300(20)	-2989(19)	-2485(14)	73(6)	
F(85)	5780(20)	-3943(16)	-1535(13)	61(6)	
F(84)	7980(20)	-2320(20)	-1166(16)	96(9)	
F(83)	6340(30)	-1384(17)	-2190(18)	98(9)	
I(81)	8858(2)	5944(2)	3303(1)	25(1)	
F(811)	9858(18)	6928(15)	2847(13)	50(5)	
F(812)	7472(18)	5966(15)	2396(13)	48(5)	
F(813)	7895(17)	7157(13)	4109(12)	47(4)	
F(814)	9450(20)	4811(18)	2249(14)	64(6)	
F(815)	7396(17)	4872(14)	3441(12)	45(4)	
I(9)	7215(2)	-6318(1)	-4444(1)	22(1)	
F(91)	8417(16)	-6399(15)	-3414(10)	40(4)	
F(95)	5871(17)	-7093(15)	-3965(12)	44(5)	
F(93)	5625(17)	-6441(15)	-5301(12)	44(4)	
F(94)	7492(16)	-7803(12)	-5161(12)	37(4)	
F(92)	6494(16)	-5062(13)	-3520(11)	40(4)	
I(91)	8152(2)	9582(2)	5716(1)	31(1)	
F(911)	7450(20)	10910(14)	6082(13)	52(5)	
F(912)	6325(17)	9193(14)	6057(11)	46(4)	

Experimenteller Teil		Synthesevo	orschriften und	Kristallstrukturanalysen
F(913)	7240(20)	9471(17)	4526(14)	69(6)
F(914)	9740(20)	10414(19)	5512(14)	72(6)
F(915)	8800(20)	10123(18)	7013(12)	61(5)
I(10)	3909(2)	267(2)	-2566(1)	27(1)
F(101)	3426(19)	1481(14)	-1546(13)	57(5)
F(102)	5768(16)	777(14)	-1901(13)	46(4)
F(103)	1931(19)	170(17)	-2916(13)	56(5)
F(104)	4320(20)	1352(18)	-3124(16)	75(7)
F(105)	3370(20)	-424(16)	-1691(14)	58(5)
I(111)	3652(2)	-3680(1)	-5147(1)	25(1)
F(111)	5440(20)	-3684(19)	-4458(13)	65(6)
F(113)	3537(16)	-2223(13)	-4188(10)	35(4)
F(112)	4156(17)	-4829(13)	-6268(12)	38(4)
F(114)	2217(14)	-3425(12)	-5993(10)	34(4)
F(115)	4805(17)	-2814(13)	-5618(12)	40(4)
I(112)	11886(2)	-6070(2)	-3100(1)	34(1)
F(121)	13440(20)	-6194(16)	-2458(13)	58(5)
F(123)	13278(16)	-5374(13)	-3628(12)	43(4)
F(122)	12321(19)	-7507(16)	-3973(12)	56(5)
F(124)	11980(20)	-4687(18)	-2015(12)	68(6)
F(125)	11000(20)	-6768(19)	-2333(15)	73(6)
I(113)	2686(2)	10251(2)	4222(1)	32(1)
F(133)	3460(50)	10770(30)	3500(40)	270(30)
F(132)	1010(20)	9379(18)	3574(15)	76(7)
F(134)	4680(30)	10790(20)	4760(20)	118(10)
F(131)	2700(30)	9540(30)	5119(18)	125(11)
F(135)	3490(20)	9024(17)	3548(16)	72(6)
Br(1)	-171(5)	-3131(4)	-3653(3)	67(1)
F(1)	1339(16)	-3811(15)	-3916(12)	48(5)
F(2)	-1170(17)	-4164(12)	-4625(10)	37(4)
F(3)	-1696(17)	-2471(14)	-3435(12)	46(4)
F(4)	256(16)	-2454(15)	-4425(11)	42(4)
F(5)	760(20)	-2073(16)	-2751(12)	56(5)
F(6)	-670(19)	-3832(16)	-2951(12)	53(5)
Br(2)	10748(4)	3106(3)	3819(2)	42(1)
F(7)	8947(18)	3043(16)	3458(13)	51(5)
F(8)	10510(20)	1771(13)	3865(15)	56(5)
F(9)	10919(19)	4512(13)	3930(13)	51(5)
F(10)	11180(20)	2728(17)	2679(11)	60(5)
F(11)	12499(17)	3253(19)	4284(14)	64(6)
F(12)	10262(14)	3598(11)	5033(10)	26(3)

Liste 7 Anisotrope Temperaturfaktoren (pm²x 10⁻¹) für $I_7^+BrF_6^-$ · 4IF₅. Der anisotrope Temperaturfaktor hat die Form : $-2\pi^2$ [$h^2a^{*2}U_{11} + ... + 2 h k a^* b^* U_{12}$].

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂	
I(1)	36(1)	27(1)	35(1)	15(1)	8(1)	3(1)	
I(11)	30(1)	32(1)	42(1)	23(1)	8(1)	2(1)	
I(2)	46(1)	33(1)	24(1)	10(1)	1(1)	-6(1)	
I(21)	44(1)	37(1)	30(1)	16(1)	7(1)	-5(1)	
I(3)	29(1)	23(1)	26(1)	7(1)	2(1)	0(1)	
I(31)	26(1)	23(1)	29(1)	9(1)	0(1)	-2(1)	
I(4)	43(1)	37(1)	25(1)	10(1)	8(1)	7(1)	

1(41) $37(1)$ $25(1)$ $23(1)$ $7(1)$ $2(1)$ $10(1)$ $1(51)$ $28(1)$ $22(1)$ $33(1)$ $13(1)$ $5(1)$ $10(1)$ $1(61)$ $37(1)$ $21(1)$ $16(1)$ $7(1)$ $11(1)$ $6(1)$ $1(1)$ $1(61)$ $34(1)$ $22(1)$ $30(1)$ $11(1)$ $6(1)$ $1(1)$ $1(7)$ $35(1)$ $37(1)$ $8(1)$ $7(1)$ $5(1)$ $10(1)$ $1(7)$ $35(1)$ $37(1)$ $8(1)$ $7(1)$ $5(1)$ $10(1)$ $1(7)$ $33(1)$ $37(1)$ $8(1)$ $7(1)$ $2(1)$ $11(1)$ $1(7)$ $33(1)$ $37(1)$ $8(1)$ $7(1)$ $7(1)$ $10(1)$ $11(1)$ $1(81)$ $20(1)$ $27(1)$ $9(1)$ $14(10)$ $24(11)$ $14(8)$ $1(81)$ $34(10)$ $49(12)$ $59(11)$ $71(1)$ $0(8)$ $-23(9)$ $1(81)$ $31(1)$ $30(1)$ $11(1)$ $10(9)$ $18(1)$ $44(8)$ $14(8)$ $16($	Experi	menteller	Teil	Syn	thesevorsc	hriften und	Kristallstruk	turanalysen
Action Action Action Action Action 1(5) 35(1) 36(1) 13(1) 5(1) 10(1) 1(6) 55(1) 39(1) 37(1) 21(1) 16(1) 7(1) 1(6) 55(1) 39(1) 37(1) 11(1) 6(1) 7(1) 1(7) 43(1) 28(1) 14(1) 7(1) 2(1) 1(7) 35(1) 33(1) 37(1) 18(1) 7(1) 2(1) 1(8) 39(1) 28(1) 28(1) 14(1) 7(1) 2(1) 1(8) 39(1) 28(1) 28(1) 14(1) 7(1) 2(1) 1(8) 20(1) 5(1) 39(1) 20(1) 14(1) 2(1) 24(1) F(81) 110(20) 71(15) 106(18) 48(14) 110(1) 110(1) 21(1) 22(1) F(81) 34(10) 49(1) 57(1) 7(9) -13(8) 14(4) F(81) 31(1) 4(1) 7(1) 10(1) 14(1) 14(1) F(81) 31(1) 44(1)	I(41)	37(1)	25(1)	23(1)	7(1)	2(1)	-1(1)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I(5)	35(1)	30(1)	35(1)	18(1)	12(1)	10(1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I(51)	28(1)	22(1)	33(1)	13(1)	5(1)	1(1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I(6)	55(1)	39(1)	37(1)	21(1)	16(1)	7(1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I(61)	34(1)	25(1)	30(1)	11(1)	6(1)	1(1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I(7)	43(1)	28(1)	28(1)	14(1)	7(1)	5(1)	
$ \begin{array}{ll} 1(8) & 39(1) & 28(1) & 28(1) & 12(1) & 15(1) & 10(1) \\ F(8) & 54(12) & 76(14) & 27(9) & 18(9) & 19(8) & 25(10) \\ F(82) & 54(13) & 87(16) & 60(13) & 61(2) & -13(10) & 17(11) \\ F(85) & 101(17) & 57(13) & 39(10) & 29(10) & 14(10) & 24(11) \\ F(83) & 150(20) & 57(14) & 130(20) & 71(15) & 106(18) & 48(14) \\ 1(81) & 20(1) & 25(1) & 29(1) & 9(1) & -1(1) & 5(1) \\ F(81) & 34(10) & 49(12) & 59(11) & 17(10) & 0(8) & -23(9) \\ F(812) & 31(10) & 46(11) & 57(11) & 7(9) & -13(8) & 14(8) \\ F(813) & 42(10) & 33(10) & 61(11) & 10(9) & 1(8) & 14(8) \\ F(813) & 42(10) & 33(10) & 61(11) & 10(9) & 1(8) & 14(8) \\ F(814) & 60(13) & 90(16) & 59(12) & 35(12) & 25(10) & 58(12) \\ F(815) & 33(10) & 49(11) & 55(11) & 21(9) & 1(8) & 5(8) \\ F(91) & 32(9) & 76(13) & 25(8) & 33(9) & 11(6) & 15(8) \\ F(95) & 31(9) & 61(12) & 60(111) & 45(10) & 22(8) & 5(8) \\ F(94) & 23(8) & 23(8) & 52(10) & 3(8) & 6(7) & -8(6) \\ F(92) & 36(9) & 33(9) & 49(10) & 8(8) & 24(7) & 17(7) \\ 16(1) & 77(14) & 22(9) & 57(12) & 17(9) & -6(10) & 1(9) \\ F(911) & 77(14) & 22(9) & 57(12) & 17(9) & -6(10) & 1(9) \\ F(912) & 42(10) & 51(11) & 34(9) & 12(8) & -17(7) & -18(8) \\ F(913) & 94(16) & 66(14) & 60(13) & 38(11) & 1(11) & 18(11) \\ F(914) & 53(13) & 98(18) & 57(13) & 20(12) & 21(10) & 5(11) \\ F(101) & 44(11) & 40(11) & 68(12) & -4(9) & 25(9) & 11(8) \\ F(101) & 44(11) & 40(11) & 68(12) & -4(9) & 25(9) & 11(8) \\ F(102) & 29(1) & 25(1) & 25(1) & 12(9) & 29(10) \\ F(104) & 95(17) & 65(15) & 95(17) & 56(14) & 42(13) & 34(12) \\ F(105) & 57(12) & 58(13) & 75(13) & 41(11) & 12(10) & 14(10) \\ 1(111) & 19(1) & 29(1) & 27(1) & -1(8) & 51(1) & 7(1) \\ F(101) & 44(10) & 30(9) & 44(10) & 6(8) & 12(77) & 1(7) \\ F(112) & 34(10) & 30(9) & 64(11) & 33(9) & 6(8) & -8(7) \\ F(1212) & 54(1) & 35(10) & 57(11) & -1(8) & -6(7) & -3(7) \\ F(1212) & 54(13) & 97(16) & 24(1) & 3(10) & 0(9) & 35(12) \\ F(122) & 57(12) & 57(13) & 47(11) & 12(10) & 14(10) \\ F(123) & 19(8) & 35(10) & 57(11) & -1(8) & -6(7) & -3(7) \\ F(124) & 74(14) & 87(16) & 32(10) & 3(10) & 0(9) & 35(12) \\ F(125) & 57(15) & 54(14) & 51(1$	I(71)	35(1)	33(1)	37(1)	18(1)	7(1)	2(1)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	I(8)	39(1)	28(1)	28(1)	12(1)	15(1)	10(1)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	F(81)	54(12)	76(14)	27(9)	18(9)	19(8)	25(10)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	F(82)	54(13)	87(16)	60(13)	6(12)	-13(10)	17(11)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	F(85)	101(17)	57(13)	39(10)	29(10)	14(10)	24(11)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	F(84)	64(15)	110(20)	71(15)	-18(14)	2(12)	21(13)	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	F(83)	150(20)	57(14)	130(20)	71(15)	106(18)	48(14)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	I(81)	20(1)	25(1)	29(1)	9(1)	-1(1)	5(1)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	F(811)	34(10)	49(12)	59(11)	17(10)	0(8)	-23(9)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	F(812)	31(10)	46(11)	57(11)	7(9)	-13(8)	14(8)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	F(813)	42(10)	33(10)	61(11)	10(9)	1(8)	14(8)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	F(814)	60(13)	90(16)	59(12)	35(12)	25(10)	58(12)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	F(815)	33(10)	49(11)	55(11)	21(9)	1(8)	5(8)	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	I(9)	18(1)	21(1)	27(1)	9(1)	3(1)	2(1)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	F(91)	32(9)	76(13)	25(8)	33(9)	1(6)	15(8)	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	F(95)	31(9)	61(12)	60(11) 20(10)	45(10)	22(8)	5(8)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	F(93)	29(10)	63(12)	39(10) 52(10)	21(9)	-8(7)	-1(8)	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	F(94)	25(8)	23(8) 22(0)	52(10)	3(8)	6(7)	-8(6)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	F(92)	30(9) 27(1)	33(9)	49(10)	$\delta(\delta)$	$\frac{24(7)}{7(1)}$	$\frac{1}{(1)}$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	F(011)	$\frac{3}{(1)}$	33(1) 22(9)	20(1) 57(12)	13(1) 17(0)	7(1) 6(10)	10(1) 1(0)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F(911) F(912)	$\frac{7}{14}$	51(11)	3/(12) 3/(9)	17(9) 12(8)	-0(10)	-18(8)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F(912)	94(16)	51(11) 66(14)	60(13)	38(11)	$\frac{-1}{(11)}$	18(11)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F(914)	53(13)	98(18)	57(13)	20(12)	21(10)	5(11)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F(915)	49(12)	92(16)	42(11)	27(11)	-2(9)	7(11)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I(10)	28(1)	26(1)	25(1)	8(1)	5(1)	1(1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F(101)	44(11)	40(11)	68(12)	-4(9)	25(9)	11(8)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F(102)	29(9)	35(10)	69(12)	17(9)	-5(8)	-7(7)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F(103)	41(11)	78(14)	55(12)	25(11)	12(9)	29(10)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F(104)	95(17)	65(15)	95(17)	56(14)	42(13)	34(12)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F(105)	57(12)	58(13)	75(13)	41(11)	12(10)	14(10)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I(111)	19(1)	29(1)	27(1)	11(1)	2(1)	0(1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F(111)	49(12)	120(18)	59(12)	76(13)	-27(9)	14(11)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F(113)	32(9)	36(9)	34(8)	10(7)	7(7)	5(7)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F(112)	34(10)	30(9)	44(10)	6(8)	12(7)	1(7)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F(114)	20(8)	41(9)	43(9)	24(8)	-19(6)	-13(7)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F(115)	36(10)	30(9)	64(11)	33(9)	6(8)	-8(7)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I(112)	24(1)	48(1)	22(1)	5(1)	-4(1)	9(1)	
F(123) $19(8)$ $35(10)$ $57(11)$ $-1(8)$ $-6(7)$ $-3(7)$ $F(122)$ $57(12)$ $59(13)$ $45(10)$ $12(10)$ $-4(9)$ $-3(9)$ $F(124)$ $74(14)$ $87(16)$ $32(10)$ $3(10)$ $0(9)$ $35(12)$ $F(125)$ $80(16)$ $95(18)$ $68(14)$ $56(14)$ $5(11)$ $9(13)$ $I(113)$ $39(1)$ $31(1)$ $24(1)$ $5(1)$ $4(1)$ $8(1)$ $F(133)$ $390(60)$ $90(20)$ $430(70)$ $170(40)$ $340(60)$ $150(30)$ $F(132)$ $55(13)$ $77(16)$ $74(14)$ $-3(12)$ $-12(10)$ $41(11)$ $F(134)$ $69(17)$ $100(20)$ $160(30)$ $11(19)$ $-7(16)$ $11(14)$ $F(131)$ $190(30)$ $140(30)$ $67(16)$ $55(19)$ $18(18)$ $50(20)$ $F(135)$ $75(15)$ $54(13)$ $91(16)$ $24(12)$ $4(12)$ $39(11)$	F(121)	69(14)	46(12)	48(11)	3(9)	6(10)	19(10)	
F(122) $57(12)$ $59(13)$ $45(10)$ $12(10)$ $-4(9)$ $-3(9)$ $F(124)$ $74(14)$ $87(16)$ $32(10)$ $3(10)$ $0(9)$ $35(12)$ $F(125)$ $80(16)$ $95(18)$ $68(14)$ $56(14)$ $5(11)$ $9(13)$ $I(113)$ $39(1)$ $31(1)$ $24(1)$ $5(1)$ $4(1)$ $8(1)$ $F(133)$ $390(60)$ $90(20)$ $430(70)$ $170(40)$ $340(60)$ $150(30)$ $F(132)$ $55(13)$ $77(16)$ $74(14)$ $-3(12)$ $-12(10)$ $41(11)$ $F(134)$ $69(17)$ $100(20)$ $160(30)$ $11(19)$ $-7(16)$ $11(14)$ $F(131)$ $190(30)$ $140(30)$ $67(16)$ $55(19)$ $18(18)$ $50(20)$ $F(135)$ $75(15)$ $54(13)$ $91(16)$ $24(12)$ $4(12)$ $39(11)$	F(123)	19(8)	35(10)	57(11)	-1(8)	-6(7)	-3(7)	
F(124) $/4(14)$ $8/(16)$ $32(10)$ $3(10)$ $0(9)$ $35(12)$ $F(125)$ $80(16)$ $95(18)$ $68(14)$ $56(14)$ $5(11)$ $9(13)$ $I(113)$ $39(1)$ $31(1)$ $24(1)$ $5(1)$ $4(1)$ $8(1)$ $F(133)$ $390(60)$ $90(20)$ $430(70)$ $170(40)$ $340(60)$ $150(30)$ $F(132)$ $55(13)$ $77(16)$ $74(14)$ $-3(12)$ $-12(10)$ $41(11)$ $F(134)$ $69(17)$ $100(20)$ $160(30)$ $11(19)$ $-7(16)$ $11(14)$ $F(131)$ $190(30)$ $140(30)$ $67(16)$ $55(19)$ $18(18)$ $50(20)$ $F(135)$ $75(15)$ $54(13)$ $91(16)$ $24(12)$ $4(12)$ $39(11)$	F(122)	57(12)	59(13)	45(10)	12(10)	-4(9)	-3(9)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F(124)	/4(14)	8/(16)	52(10)	5(10)	0(9)	55(12) 0(12)	
I(115) $59(1)$ $51(1)$ $24(1)$ $5(1)$ $4(1)$ $8(1)$ $F(133)$ $390(60)$ $90(20)$ $430(70)$ $170(40)$ $340(60)$ $150(30)$ $F(132)$ $55(13)$ $77(16)$ $74(14)$ $-3(12)$ $-12(10)$ $41(11)$ $F(134)$ $69(17)$ $100(20)$ $160(30)$ $11(19)$ $-7(16)$ $11(14)$ $F(131)$ $190(30)$ $140(30)$ $67(16)$ $55(19)$ $18(18)$ $50(20)$ $F(135)$ $75(15)$ $54(13)$ $91(16)$ $24(12)$ $4(12)$ $39(11)$	F(125)	$\frac{80(16)}{20(1)}$	95(18)	08(14)	50(14)	S(11)	9(13)	
F(135) $550(50)$ $50(20)$ $450(70)$ $170(40)$ $540(60)$ $150(50)$ $F(132)$ $55(13)$ $77(16)$ $74(14)$ $-3(12)$ $-12(10)$ $41(11)$ $F(134)$ $69(17)$ $100(20)$ $160(30)$ $11(19)$ $-7(16)$ $11(14)$ $F(131)$ $190(30)$ $140(30)$ $67(16)$ $55(19)$ $18(18)$ $50(20)$ $F(135)$ $75(15)$ $54(13)$ $91(16)$ $24(12)$ $4(12)$ $39(11)$	I(113) = E(122)	200(60)	31(1)	24(1) 120(70)	3(1) 170(40)	4(1)	$\delta(1)$ 150(20)	
F(132) $55(13)$ $77(10)$ $74(14)$ $-5(12)$ $-12(10)$ $41(11)$ $F(134)$ $69(17)$ $100(20)$ $160(30)$ $11(19)$ $-7(16)$ $11(14)$ $F(131)$ $190(30)$ $140(30)$ $67(16)$ $55(19)$ $18(18)$ $50(20)$ $F(135)$ $75(15)$ $54(13)$ $91(16)$ $24(12)$ $4(12)$ $39(11)$	F(133) = F(123)	55(12)	90(20)	430(70) 74(14)	$\frac{1}{0}(40)$	340(00) 12(10)	130(30)	
F(134) $O(17)$ $IO(20)$ $IO(20)$ $IO(30)$ $II(19)$ $-I(10)$ $II(14)$ $F(131)$ $190(30)$ $140(30)$ $67(16)$ $55(19)$ $18(18)$ $50(20)$ $F(135)$ $75(15)$ $54(13)$ $91(16)$ $24(12)$ $4(12)$ $39(11)$	F(132) F(124)	55(13) 60(17)	100(20)	74(14) 160(20)	-3(12)	-12(10) 7(16)	41(11) 11(14)	
F(135) = 75(15) = 54(13) = 91(16) = 24(12) = 4(12) = 39(11)	F(134) F(131)	190(30)	100(20) 120(30)	67(16)	55(10)	-7(10) 18(18)	50(20)	
$1 (1 \cup j) = j (1$	F(135)	75(15)	54(13)	91(16)	24(12)	$\Delta(10)$	30(20) 39(11)	
Br(1) 62(3) 61(3) 71(3) 18(2) 14(2) 1(2)	Br(1)	62(3)	61(3)	71(3)	18(2)	14(2)	1(2)	

Experimenteller Teil			er Teil Synthesevorschriften und Kristallstrukturanalysen				
F(1)	24(9)	52(11)	52(10)	-2(9)	9(7)	15(8)	
F(2)	53(10)	18(8)	32(8)	8(7)	-4(7)	-16(7)	
F(3)	34(9)	47(10)	55(10)	8(8)	27(8)	28(8)	
F(4)	35(9)	66(12)	33(9)	31(9)	6(7)	-9(8)	
F(5)	71(14)	45(11)	39(10)	7(9)	-17(9)	-11(10)	
F(6)	51(12)	72(14)	45(10)	39(10)	-2(8)	-19(10)	
Br(2)	41(2)	45(2)	37(2)	12(2)	3(1)	-1(2)	
F(7)	36(10)	69(13)	58(11)	37(10)	-10(8)	1(9)	
F(8)	75(14)	15(9)	89(15)	27(9)	35(11)	19(8)	
F(9)	58(12)	26(9)	74(13)	22(9)	16(9)	7(8)	
F(10)	61(13)	82(15)	20(9)	0(9)	0(8)	7(11)	
F(11)	17(9)	123(19)	74(14)	63(14)	0(8)	3(10)	
F(12)	27(8)	22(8)	31(8)	12(6)	-1(6)	8(6)	

 $\label{eq:Liste 8} \mbox{ Bindungslängen [pm] und -winkel [°] für I_7^+Br$F_6^-$$`$4IF_5$.}$

I(1)-I(2)#1	270,8(3)	I(31)-I(41)	289,5(3)
I(1)-I(7)	331,0(3)	I(4)-I(5)#3	271,4(3)
I(11)-I(21)#2	272,5(3)	I(41)-I(51)#4	273,5(3)
I(11)-I(71)	324,1(3)	I(5)-I(4)#4	271,4(3)
I(2)-I(1)#2	270,8(3)	I(5)-I(6)	327,5(3)
I(2)-I(3)	289,5(3)	I(51)-I(41)#3	273,5(3)
I(21)-I(11)#1	272,5(3)	I(51)-I(61)	323,1(3)
I(21)-I(31)	293,8(3)	I(6)-I(7)	265,7(3)
I(3)-I(4)	291,1(3)	I(61)-I(71)	266,8(3)
I(8)-F(81)	178,9(15)	I(10)-F(101)	181,6(15)
I(8)-F(83)	184,8(18)	I(10)-F(103)	185,7(17)
I(8)-F(84)	186(2)	I(10)-F(105)	186,5(17)
I(8)-F(82)	188,8(19)	I(10)-F(104)	187,1(19)
I(8)-F(85)	192,4(18)	I(10)-F(102)	187,1(15)
I(81)-F(812)	182,1(16)	I(111)-F(115)	179,7(14)
I(81)-F(811)	182,5(16)	I(111)-F(112)	186,3(15)
I(81)-F(814)	182,8(18)	I(111)-F(113)	188,4(15)
I(81)-F(813)	188,8(15)	I(111)-F(111)	190,3(15)
I(81)-F(815)	189,8(16)	I(111)-F(114)	191,3(13)
I(9)-F(95)	183,2(14)	I(112)-F(121)	174(2)
I(9)-F(94)	184,2(15)	I(112)-F(125)	184,4(19)
I(9)-F(93)	185,2(15)	I(112)-F(123)	184,6(16)
I(9)-F(92)	187,2(14)	I(112)-F(124)	187,8(18)
I(9)-F(91)	188,1(14)	I(112)-F(122)	189,8(18)
I(91)-F(911)	177,0(17)	I(113)-F(133)	160(3)
I(91)-F(915)	182,3(17)	I(113)-F(135)	176,4(19)
I(91)-F(914)	183(2)	I(113)-F(132)	182(2)
I(91)-F(912)	185,1(16)	I(113)-F(131)	185(3)
I(91)-F(913)	185,8(19)	I(113)-F(134)	193(3)
Br(1)-F(5)	163,6(17)	Br(2)-F(10)	163,8(16)
Br(1)-F(6)	164,9(16)	Br(2)-F(11)	169,5(16)
Br(1)-F(3)	168,8(14)	Br(2)-F(7)	171,0(16)
Br(1)-F(1)	169,2(15)	Br(2)-F(8)	172,3(15)
Br(1)-F(4)	169,7(15)	Br(2)-F(9)	173,1(15)
Br(1)-F(2)	170,1(14)	Br(2)-F(12)	174,8(13)

I(2)#1-I(1)-I(7)	176 28(9)
1(2), $1(1)$, $1(7)$	170,20(9)
I(21)#2-I(11)-I(71)	1//,53(9)
I(1)#2-I(2)-I(3)	93,66(8)
I(11)#1-I(21)-I(31)	95 08(8)
I(2) I(2) I(4)	17054(10)
1(2)-1(3)-1(4)	179,34(10)
I(41) - I(31) - I(21)	1/6,94(9)
I(5)#3-I(4)-I(3)	95,02(8)
$\mathbf{F}(01)$ $\mathbf{I}(0)$ $\mathbf{F}(02)$	000(0)
F(81)-I(8)-F(83)	82,9(8)
F(81)-I(8)-F(84)	82,1(9)
F(83)-I(8)-F(84)	95,4(13)
F(81)-I(8)-F(82)	81 5(8)
E(92) I(9) E(92)	91,5(0)
$\Gamma(03)-\Gamma(0)-\Gamma(02)$	05,0(11)
F(84)-I(8)-F(82)	163,3(9)
F(81)-I(8)-F(85)	81,0(8)
F(83)-I(8)-F(85)	162.7(8)
F(84)-I(8)-F(85)	88 9(11)
E(92) I(9) E(95)	95.(11)
F(82)-I(8)-F(85)	85,0(9)
F(812)-I(81)-F(811)	80,6(8)
F(812)-I(81)-F(814)	83,2(8)
F(811)-I(81)-F(814)	86 2(9)
E(212) I(21) E(212)	80, 2(7)
$\Gamma(812)$ - $\Gamma(812)$ - $\Gamma(813)$	80,0(7)
F(811)-I(81)-F(813)	88,8(8)
F(814)-I(81)-F(813)	163,6(8)
F(812)-I(81)-F(815)	81,5(8)
F(811)-I(81)-F(815)	161.9(8)
F(814)- $I(81)$ - $F(815)$	89 2(9)
$\Gamma(014)^{-1}(01)^{-1}(015)$ $\Gamma(012) \Gamma(011) \Gamma(015)$	0,2(7)
$\Gamma(013)-I(01)-\Gamma(013)$	90,8(7)
F(95)-I(9)-F(94)	/8,6(/)
F(95)-I(9)-F(93)	81,7(7)
F(94)-I(9)-F(93)	90,1(8)
F(95)-I(9)-F(92)	82.0(7)
F(94)-I(9)-F(92)	160 5(7)
F(02) I(0) F(02)	88.3(7)
$\Gamma(93)-\Gamma(9)-\Gamma(92)$	88,3(7)
F(95)-I(9)-F(91)	81,5(7)
F(94)-I(9)-F(91)	87,6(7)
F(93)-I(9)-F(91)	163,2(7)
F(92)-I(9)-F(91)	88.3(7)
F(911)-I(91)-F(915)	82 0(9)
$F(911)_{I}(91)_{F}(914)$	81.8(9)
E(015) I(01) E(014)	01,0(9)
$\Gamma(913)-I(91)-\Gamma(914)$	88,0(9)
F(911)-I(91)-F(912)	/9,/(8)
F(915)-I(91)-F(912)	88,8(7)
F(914)-I(91)-F(912)	161,5(9)
F(911)-I(91)-F(913)	79.7(8)
$F(915)_{I}(91)_{F}(913)$	161 7(9)
$\Gamma(014) \Gamma(01) \Gamma(012)$	(01,7(9))
$\Gamma(914) - \Gamma(91) - \Gamma(913)$	09,0(9)
F(912)-I(91)-F(913)	87,5(8)
$F(5)_{-}Br(1)_{-}F(6)$	94 0(9)
$\Gamma(0) = Dr(1) = \Gamma(0)$ $\Gamma(5) = Dr(1) = \Gamma(2)$	01.0(9)
F(3)-DI(1)-F(3)	91,0(9)
F(6)-Br(1)-F(3)	90,3(9)
F(5)-Br(1)-F(1)	90,7(9)
F(6)-Br(1)-F(1)	90,8(9)
F(3)-Br(1)-F(1)	177.9(9)
F(5)-Br(1)-F(4)	89 7(9)
$F(4) D_{r}(1) F(4)$	1765(0)
г(0)-DI(1)-Г(4)	1/0,3(9)

I(51)#4-I(41)-I(31)	92,11(8)
I(4)#4-I(5)-I(6)	178,09(10)
I(41)#3-I(51)-I(61)	177,66(9)
I(7)-I(6)-I(5)	92,76(8)
I(71)-I(61)-I(51)	91,25(7)
I(6)-I(7)-I(1)	88,8/(8)
I(01) - I(71) - I(11)	93,33(7)
F(101)-I(10)-F(103)	80,1(8)
F(101)-I(10)-F(105)	79,6(8)
F(103)-I(10)-F(105)	87,4(8)
F(101)-I(10)-F(104) F(102) I(10) F(104)	83,0(9)
F(105)-I(10)-F(104) F(105) I(10) F(104)	90,3(9)
F(103)-I(10)-F(104) F(101)-I(10)-F(102)	82.0(8)
F(103)-I(10)-F(102)	162,0(8)
F(105)-I(10)-F(102)	90.8(8)
F(104)-I(10)-F(102)	86,2(9)
F(115)-I(111)-F(112)	81,6(7)
F(115)-I(111)-F(113)	79,3(7)
F(112)-I(111)-F(113)	160,8(6)
F(115)-I(111)-F(111)	82,3(8)
F(112)-I(111)-F(111)	90,4(8)
F(113)-I(111)-F(111)	87,3(8)
F(115)-I(111)-F(114)	81,2(7)
F(112)-I(111)-F(114)	86,5(7)
F(113)-I(111)-F(114) F(111)-I(111)-F(114)	90,2(6)
$\Gamma(111)-I(111)-\Gamma(114)$ $\Gamma(121) I(112) \Gamma(125)$	103,4(7) 81.2(0)
F(121)-I(112)-F(123) F(121)-I(112)-F(123)	81,2(9) 80.9(8)
F(125)-I(112)-F(123)	1620(8)
F(121)-I(112)-F(124)	81.3(8)
F(125)-I(112)-F(124)	87,9(10)
F(123)-I(112)-F(124)	87,8(8)
F(121)-I(112)-F(122)	80,6(8)
F(125)-I(112)-F(122)	89,3(9)
F(123)-I(112)-F(122)	89,3(7)
F(124)-I(112)-F(122)	161,9(8)
F(133)-I(113)-F(135)	84,3(11)
F(133)-I(113)-F(132) F(125) $I(112)$ $F(122)$	108(2)
$\Gamma(133)-I(113)-\Gamma(132)$ $\Gamma(133)$ $I(113)$ $\Gamma(131)$	83,1(9) 153(2)
F(135)-I(113)-F(131) F(135)-I(113)-F(131)	797(11)
F(132)-I(113)-F(131)	91 5(13)
F(133)- $I(113)$ - $F(134)$	73(2)
F(135)-I(113)-F(134)	81,7(10)
F(132)-I(113)-F(134)	164,6(10)
F(131)-I(113)-F(134)	83,1(14)
F(3)-Br(1)-F(4)	88.4(8)
F(1)-Br(1)-F(4)	90,5(9)
F(5)-Br(1)-F(2)	176,0(9)
F(6)-Br(1)-F(2)	89,2(8)
F(3)-Br(1)-F(2)	86,7(8)
F(1)-Br(1)-F(2)	91,5(8)
F(4)-Br(1)-F(2)	87,5(7)
F(10)-Br(2)- $F(11)$	94,0(9)

Experimenteller T	eil	Synthesevorschriften und Ki	ten und Kristallstrukturanalysen	
F(10)-Br(2)-F(7)	91 0(9)	F(7)-Br(2)-F(9)	86 8(9)	
F(10) Br(2) F(7) F(11)-Br(2)-F(7)	174,6(10)	F(8)-Br(2)-F(9)	172,5(9)	
F(10)-Br(2)-F(8)	97,9(10)	F(10)-Br(2)-F(12)	176,1(9)	
F(11)-Br(2)-F(8)	88,7(10)	F(11)-Br(2)-F(12)	87,3(8)	
F(7)-Br(2)-F(8)	92,7(9)	F(7)-Br(2)-F(12)	87,6(7)	
F(10)-Br(2)-F(9)	89,6(9)	F(8)-Br(2)-F(12)	85,8(8)	
F(11)-Br(2)-F(9)	91,1(10)	F(9)-Br(2)-F(12)	86,7(7)	

Verwendete Symmetrietransformation für Generierung äquivalenter Atome: #1 x+1,y,z #2 x-1,y,z #3 x,y+1,z #4 x,y-1,z

6.2 Versuche zur Darstellung von lod-pentafluoroorthotellurat

6.2.1 Pentaiodonium-iod(III)-tetrakis-pentafluoroorthotellurat, I₅⁺I(OTeF₅)₄⁻

6.2.1.1 Synthese und spektroskopische Daten

- a) 254 mg Iod (1 mmol) werden in ein PFA-Rohr (12 mm Innendurchmesser) mit Rührkern gegeben. Bei -196 °C werden hierzu im dynamischen Vakuum 609 mg (1mmol) Xe(OTeF₅)₂ und 5ml SO₂ClF kondensiert. Die Reaktionsmischung wird langsam unter Rühren auf -20 °C erwärmt, wobei eine Gasentwicklung einsetzt. Nach beendeter Reaktion werden bei -78 °C und anschließend bei -25 °C alle flüchtigen Bestandteile abgepumpt. Zurück bleibt ein braunschwarzer, hydrolyseempfindlicher, bei Raumtemperatur stabiler Feststoff. Die Kristallisation erfolgt in 8 mm Glasampullen in C₄F₉SO₂F bzw. in SO₂ClF beim Abkühlen von Raumtemperatur auf -50 °C. Es kristallisieren grundsätzlich nur sehr feine rotbraune Nadeln aus.
- b) Auch die Umsetzung von 1,4 g (5,5 mmol) Iod mit 0,61 g (2,75 mmol) IF₅ und 3,4 g (4,68 mmol) B(OTeF₅)₃ in C₄F₉SO₂F bei -30 °C liefert nur das hier beschriebene Produkt.

¹⁹F-NMR (C₄F₉SO₂F): AB₄-Muster für die OTeF₅-Gruppe:

 δ [ppm]: -43,2 (B-Teil), -44,9 (A-Teil); J(AB) = 160 Hz, J(¹²⁵Te-F) = 3692 Hz

Raman (krist., -60 °C):

 \overline{v} [cm⁻¹] = 82,77(s); 114,59(vs); 158,95(w); 198,48(m); 233,20(w); 296,84(vw); 329,63(vw); 421,23(w); 450,16(vw); 641,09(w); 676,77(w); 689,31(w); 703,77(vw); 758,74(vw); 805,99(vw)

6.2.1.2 Kristall- und Strukturdaten von $I_5^+I(OTeF_5)_4^-$

Summenformel	F ₁₅ I _{4,5} O ₃ Te ₃	
Molmasse [g / mol]	1286,85	
Kristallsystem	triklin	
Raumgruppe	$P\overline{1}$	
Gitterkonstanten [pm; °]	a = 1138,31(13)	$\alpha = 67,488(3)$
	b = 1910,7(2)	$\beta = 89,632(5)$
	c = 2219,4(2)	$\gamma = 77,260(3)$
Zellvolumen [nm ³]	4,3331(9)	• • • • • •
Formeleinheiten pro Zelle	6	
Kristallabmessungen [mm ³]	0,1 x 0,1 x 0,4	
Farbe und Kristallform	rotbraune Nadeln	
Wellenlänge [pm]	71,073	
Messtemperatur [K]	193(2)	
Messbereich [°]	$1,00 < \theta < 28,04$	
Indexbereich	-15<=h<=15, -25<=k<=24	4, -29<=l<=29
F(000)	4428	
Dichte (berechnet) [g/cm ³]	3,945	
Absorptionskoeffizient [mm ⁻¹]	10,549	
Gemessene Reflexe	46038	
Unabhängige Reflexe	20852 [R(int) = 0,0484]	
Vollständigkeit zu $\theta = 28,04^{\circ}$	99,3 %	
Methode der Strukturverfeinerung	Vollmatrix-kleinste Fehler	rquadrate gegen F ²
Reflexe / restraints / Parameter	20852 / 0 / 919	
Goodness-of-fit gegen F ²	0,905	
R mit [I>2sigma(I)]	R1 = 0,0375, wR2 = 0,068	35
R (alle Daten)	R1 = 0,0776, wR2 = 0,080	00
Restelektonendichte max./min [e/ Å ⁻³]	1,548 / -1,294	

Liste 9 Kristalldaten und Angaben zur Kristallstrukturbestimmung.

Liste 10 Atomkoordinaten (x 10⁴) und äquivalente isotrope Temperaturfaktoren (pm² x 10⁻¹) für $I_5^+I(OTeF_5)_4^-$. U(eq) ist definiert als $\frac{1}{3}$ des orthogonalisierten U_{ij} Tensors.

	Х	У	Z	U(eq)	
I(11)	10878(1)	-373(1)	7861(1)	40(1)	
I(12)	8640(1)	-444(1)	7569(1)	39(1)	
I(13)	7440(1)	1058(1)	7532(1)	32(1)	
I(14)	6244(1)	2592(1)	7546(1)	41(1)	
I(15)	4060(1)	2309(1)	7806(1)	46(1)	
I(16)	2519(1)	457(1)	8925(1)	24(1)	
O(11)	1806(5)	856(3)	9602(3)	32(2)	
Te(11)	2479(1)	1311(1)	10069(1)	41(1)	
F(111)	3962(5)	698(4)	10133(4)	70(2)	
F(112)	2148(7)	630(4)	10838(3)	76(2)	
F(113)	1026(7)	1963(4)	10025(4)	91(3)	
F(114)	3120(7)	1758(4)	10545(4)	79(2)	
F(115)	2862(8)	2047(4)	9338(4)	94(3)	
Te(12)	4441(1)	-283(1)	7869(1)	37(1)	
O(12)	2987(5)	-77(4)	8190(3)	35(2)	

Experimenteller Teil		Synthesev	vorschriften und	Kristallstrukturana	lysen
F(121)	3767(6)	-511(6)	7247(4)	100(3)	
F(122)	4787(6)	-1293(4)	8403(5)	98(3)	
F(123)	5259(5)	-42(4)	8434(3)	57(2)	
F(124)	4267(6)	712(4)	7270(3)	75(2)	
F(125)	5897(5)	-486(5)	7530(4)	84(3)	
O(13)	1986(5)	1626(3)	8189(3)	34(2)	
Te(13)	423(1)	2177(1)	7839(1)	26(1)	
F(131)	406(5)	1688(3)	7272(3)	46(2)	
F(132)	-279(4)	1439(3)	8423(3)	41(1)	
F(133)	277(5)	2707(3)	8373(3)	49(2)	
F(134)	989(5)	2942(3)	7214(3)	52(2)	
F(135)	-1097(4)	2729(3)	7477(3)	41(1)	
O(14)	3288(6)	-606(3)	9653(3)	38(2)	
Te(14)	2556(1)	-1351(1)	10195(1)	38(1)	
F(141)	1033(5)	-743(4)	9922(4)	79(2)	
F(142)	2658(9)	-1033(4)	10861(4)	98(3)	
F(143)	4027(6)	-2027(4)	10476(4)	82(2)	
F(144)	2403(7)	-1745(4)	9575(4)	82(2)	
F(145)	1884(7)	-2108(3)	10747(4)	74(2)	
I(21)	4452(1)	3571(1)	5531(1)	35(1)	
I(22)	2151(1)	3633(1)	5808(1)	37(1)	
I(23)	2093(1)	2129(1)	5822(1)	35(1)	
I(24)	2023(1)	619(1)	5791(1)	51(1)	
I(25)	-374(1)	912(1)	5572(1)	51(1)	
I(26)	6892(1)	2797(1)	4441(1)	24(1)	
O(21)	6814(5)	3293(4)	5185(3)	31(2)	
Te(21)	8087(1)	3504(1)	5536(1)	27(1)	
F(211)	9140(4)	3239(3)	4988(3)	42(1)	
F(212)	7743(5)	4525(3)	4963(3)	58(2)	
F(213)	7160(5)	3767(4)	6132(3)	56(2)	
F(214)	8580(6)	2499(3)	6143(3)	59(2)	
F(215)	9365(5)	3704(4)	5885(3)	53(2)	
O(22)	6705(6)	2436(4)	3704(3)	42(2)	
Te(22)	7897(1)	2155(1)	3217(1)	52(1)	
F(221)	7171(10)	2887(8)	2493(4)	187(6)	
F(222)	8849(9)	2639(8)	3387(7)	208(8)	
F(223)	8614(11)	1294(6)	3907(5)	177(6)	
F(224)	7045(14)	1547(8)	3079(7)	212(8)	
F(225)	9064(8)	1859(4)	2735(4)	99(3)	
O(23)	7098(5)	1590(4)	5142(3)	38(2)	
Te(23)	5927(1)	1057(1)	5457(1)	31(1)	
F(231)	4729(5)	1802(3)	4865(3)	50(2)	
F(232)	5509(6)	1504(4)	6038(3)	56(2)	
F(233)	7000(5)	258(3)	6087(3)	66(2)	
F(234)	6223(6)	538(4)	4922(4)	74(2)	
F(235)	4780(5)	499(3)	5778(3)	59(2)	
Te(24)	5764(1)	4686(1)	3268(1)	45(1)	
O(24)	7017(5)	3857(3)	3774(3)	34(2)	
F(241)	6341(10)	4657(5)	2514(4)	123(4)	
F(242)	6636(7)	5369(4)	3253(4)	95(3)	
F(243)	5092(7)	4/85(5)	3979(4)	9/(3)	
F(244)	4/94(8)	4061(4)	3252(5)	131(4)	
F(245)	4589(7)	5519(4)	$\frac{2}{4}$ (4)	89(3)	
I(51) I(22)	-1402(1)	5843(1)	1306(1)	42(1)	
I(32)	-3/92(1)	5203(1)	1005(1)	58(1)	
1(33)	-3002(1)	4/43(1)	002(1)	31(1)	

Experimenteller Teil		Syntheseve	orschriften ur	nd Kristallstrukturanalysen
I(34)	-3943(1)	3272(1)	803(1)	40(1)
I(35)	-6264(1)	3335(1)	1056(1)	37(1)
I(36)	1459(1)	3957(1)	2249(1)	25(1)
O(31)	1854(5)	4252(4)	2991(3)	32(2)
Te(31)	821(1)	4544(1)	3551(1)	36(1)
F(311)	202(11)	5472(5)	2947(5)	187(7)
F(312)	-380(7)	4198(7)	3337(5)	142(5)
F(313)	1313(10)	3599(5)	4198(4)	148(5)
F(314)	1971(8)	4868(8)	3823(6)	167(6)
F(315)	-154(6)	4836(4)	4114(3)	69(2)
O(32)	1448(6)	2875(3)	2907(3)	38(2)
Te(32)	2760(1)	2053(1)	3352(1)	46(1)
F(321)	3215(11)	1953(8)	2624(5)	206(8)
F(322)	3724(7)	2650(4)	3309(6)	165(6)
F(323)	2310(9)	2004(6)	4122(4)	125(4)
F(324)	1833(10)	1374(4)	3430(6)	167(6)
F(325)	4014(7)	1225(4)	3796(4)	86(3)
O(33)	1412(5)	3569(4)	1431(3)	35(2)
Te(33)	129(1)	3383(1)	1068(1)	32(1)
F(331)	979(6)	3268(4)	409(3)	65(2)
F(332)	-504(6)	4409(3)	561(3)	66(2)
F(333)	-844(5)	3489(4)	1703(3)	59(2)
F(334)	590(6)	2332(3)	1541(4)	78(2)
F(335)	-1148(5)	3178(4)	718(4)	68(2)
O(34)	1139(5)	5186(3)	1603(3)	31(2)
Te(34)	2273(1)	5750(1)	1265(1)	28(1)
F(341)	2172(5)	6169(3)	1878(3)	48(2)
F(342)	1134(5)	6579(3)	716(3)	43(2)
F(343)	2551(5)	5393(3)	606(3)	49(2)
F(344)	3541(4)	4957(3)	1769(3)	44(2)
F(345)	3411(5)	6311(3)	910(3)	53(2)

Liste 11 Anisotrope Temperaturfaktoren (pm² x 10⁻¹) für $I_5^+I(OTeF_5)_4^-$. Der anisotrope Temperaturfaktor hat die Form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2h k a^* b^* U_{12}]$.

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
I(11)	28(1)	48(1)	54(1)	-32(1)	-2(1)	-5(1)
I(12)	32(1)	41(1)	50(1)	-24(1)	-4(1)	-11(1)
I(13)	24(1)	37(1)	33(1)	-10(1)	-1(1)	-10(1)
I(14)	29(1)	30(1)	56(1)	-8(1)	7(1)	-9(1)
I(15)	26(1)	45(1)	59(1)	-13(1)	5(1)	-6(1)
I(16)	22(1)	25(1)	25(1)	-8(1)	-1(1)	-7(1)
O(11)	27(3)	36(4)	31(4)	-15(3)	-2(3)	-1(3)
Te(11)	52(1)	37(1)	37(1)	-18(1)	-10(1)	-6(1)
F(111)	45(4)	96(5)	85(5)	-56(5)	-16(4)	-8(4)
F(112)	113(6)	79(5)	36(4)	-18(4)	2(4)	-32(5)
F(113)	79(5)	84(5)	123(7)	-75(6)	-23(5)	17(4)
F(114)	109(6)	74(5)	74(5)	-51(5)	-26(5)	-18(4)
F(115)	139(7)	68(5)	77(6)	-4(4)	-19(5)	-74(5)
Te(12)	22(1)	47(1)	51(1)	-29(1)	3(1)	-8(1)
O(12)	18(3)	45(4)	49(5)	-24(4)	-1(3)	-11(3)
F(121)	54(4)	200(9)	117(7)	-132(7)	33(4)	-45(5)
F(122)	69(5)	39(4)	163(9)	-23(5)	10(5)	1(4)

Experir	menteller	Teil	Syr	nthesevorscl	hriften und	Kristallstrukt	uranalysen
F(123)	3/(3)	91(5)	57(4)	-40(4)	-2(3)	-19(3)	
F(123) F(124)	76(5)	75(5)	57(4) 53(5)	-40(4)	-2(3) 12(4)	-19(3) 26(4)	
$\Gamma(124)$ $\Gamma(125)$	70(3)	125(7)	148(8)	106(6)	12(4) 37(4)	-20(4)	
$\Gamma(123)$	$\frac{52(5)}{24(2)}$	123(7) 32(4)	140(0) 27(4)	-100(0)	$\frac{57(4)}{4(2)}$	-30(4)	
U(13) T ₂ (12)	24(3) 10(1)	32(4) 21(1)	$\frac{57(4)}{25(1)}$	-1(3)	-4(3)	-10(3)	
E(121)	19(1) 42(2)	51(1)	23(1) 20(4)	-9(1)	$\frac{0(1)}{7(2)}$	-3(1)	
$\Gamma(131)$ $\Gamma(122)$	42(3)	00(4)	<i>39</i> (4) <i>40</i> (4)	-28(3)	-7(3)	-1(3)	
F(132) F(122)	28(3)	48(3)	40(4)	-8(3)	4(3)	-14(3)	
F(133)	39(3) 21(2)	01(4)	61(4)	-41(4)	-5(3)	-0(3)	
$\Gamma(134)$	21(3)	43(3)	50(4)	11(3) 10(2)	3(3)	-0(3)	
F(133)	22(3)	44(3)	54(4) 20(4)	-19(3)	-4(3)	-3(2)	
O(14) T ₂ (14)	39(4)	29(3)	30(4)	4(3)	0(3)	-3(3)	
Te(14)	4/(1)	23(1)	42(1)	-9(1)	10(1)	-8(1)	
F(141)	$\frac{3}{(4)}$	52(4)	123(7)	-8(4)	25(4)	-9(3)	
F(142)	186(9)	/9(5)	56(5) 110(7)	-3/(4)	44(5)	-68(6)	
F(143)	51(4)	42(4)	110(7)	/(4)	-2(4)	6(3)	
F(144)	10/(6)	81(5)	82(6)	-48(5)	$\frac{1}{(5)}$	-41(5)	
F(145)	9/(5)	33(3)	88(6)	-14(4)	44(5)	-2/(4)	
I(21)	20(1)	42(1)	43(1)	-22(1)	/(1)	-12(1)	
I(22)	20(1)	40(1)	$\frac{4}{1}$	-18(1)	11(1) 2(1)	-9(1)	
I(23)	21(1)	$\frac{3}{(1)}$	38(1)	-0(1)	3(1)	-/(1)	
I(24)	28(1)	34(1)	85(1)	-10(1)	I(1)	-4(1)	
I(25)	31(1)	4/(1)	74(1) 24(1)	-21(1)	4(1)	-13(1)	
I(20)	23(1)	25(1)	24(1)	-8(1)	1(1)	-3(1)	
O(21)	21(3)	43(4)	36(4) 20(1)	-21(3)	2(3)	-9(3)	
1e(21)	21(1)	32(1)	29(1)	-12(1)	2(1)	-9(1)	
F(211)	24(3)	63(4)	$\frac{4}{(4)}$	-32(3)	12(3)	-9(3)	
F(212)	54(4)	32(3)	(1(4))	-5(3)	0(4)	-9(3)	
F(213)	41(3)	98(5)	61(4)	-57(4)	21(3)	-31(3)	
F(214)	61(4)	48(4)	46(4)	4(3)	-15(3)	-6(3)	
F(215)	28(3)	84(5)	68(5)	-52(4)	-4(3)	-14(3)	
U(22)	33(4)	38(4)	43(5)	-22(4)	4(4)	-18(3)	
E(221)	83(1)	38(1) 245(14)	44(1) 52(6)	-23(1)	22(1)	-18(1)	
F(221)	15/(10) 117(9)	243(14) 240(17)	33(0)	2(7) 250(17)	44(0)	54(10)	
F(222)	$\frac{11}{(8)}$	340(17)	40/(19)	-350(17)	182(11)	-161(10)	
F(223)	$1/\delta(11)$ 200(17)	121(8) 227(14)	128(9)	7(7)	70(8) 192(15)	08(8)	
F(224)	299(17)	$\frac{227(14)}{72(5)}$	295(17)	-234(14)	183(15)	-189(13)	
F(223)	145(8)	72(5)	101(7)	-30(3)	03(0)	-20(5)	
U(23)	24(3)	38(4) 27(1)	41(4) 40(1)	-4(3)	0(3)	-9(3)	
E(221)	21(1) 22(2)	$\frac{2}{1}$	40(1)	-7(1)	-3(1) 14(2)	-0(1)	
$\Gamma(231)$ $\Gamma(222)$	55(5) 61(4)	$\frac{31(4)}{74(5)}$	30(4)	-7(3)	-14(3)	-4(3)	
$\Gamma(232)$ $\Gamma(232)$	$\frac{01(4)}{22(2)}$	74(3)	41(4) 86(5)	-27(4)	10(3) 14(3)	-22(4)	
F(233) F(234)	52(5) 60(4)	40(4)	115(6)	73(5)	-14(3)	-10(3) 12(4)	
F(234) F(235)	24(2)	$\frac{78(3)}{20(2)}$	86(5)	-73(3)	20(4) 10(3)	-12(4) 14(2)	
$T_{2}(24)$	54(3) 67(1)	39(3) 25(1)	30(3) 36(1)	-1(3)	10(3) 12(1)	-14(3)	
O(24)	$\frac{0}{(1)}$	23(1) 27(3)	30(1) 36(4)	-0(1)	-13(1)	-4(1) 11(3)	
F(241)	108(10)	$\frac{27(3)}{103(7)}$	30(4)	-4(3) 28(5)	2(3)	-11(3) 23(7)	
F(241) F(242)	100(6)	36(4)	130(8)	-28(3)	5(0)	23(7) 22(4)	
F(2/12)	82(5)	106(6)	77(6)	-10(3) -32(5)	-13(3)	-22(+) 25(5)	
F(243)	110(7)	$\Delta \Delta (A)$	209(11)	-32(3)	-102(7)	23(3)	
F(244)	110(7) 115(6)	$\frac{1}{30(4)}$	209(11) 81(6)	-19(0)	-102(7)	-2(4) 1/(4)	
I(31)	32(1)	35(1)	54(1)	-3(-7)	-55(5)	_11(1)	
I(32)	$\frac{32(1)}{20(1)}$	35(1)	$\frac{3}{40(1)}$	-12(1) -17(1)	-5(1)	-1(1)	
I(32)	$\frac{29(1)}{24(1)}$	33(1) 37(1)	$\frac{1}{33(1)}$	-1/(1)	-3(1) 1(1)	-5(1)	
I(34)	$\frac{2\pi(1)}{32(1)}$	$\frac{37(1)}{40(1)}$	53(1)	-1 - (1) -25(1)	$\frac{1(1)}{8(1)}$	-6(1)	
I(35)	32(1) 35(1)	37(1)	$\frac{33(1)}{44(1)}$	-20(1)	6(1)	- 10(1)	
1(22)	22(1)	57(1)	1 (1)	20(1)		10(1)	

Experimenteller Teil			Syr	nthesevorsc	hriften und	Kristallstruktu	ıranalysen
I(36)	25(1)	24(1)	25(1)	-10(1)	1(1)	-4(1)	
O(31)	32(3)	38(4)	34(4)	-22(3)	3(3)	-9(3)	
Te(31)	43(1)	33(1)	38(1)	-20(1)	12(1)	-10(1)	
F(311)	239(13)	86(7)	110(8)	25(6)	105(9)	93(7)	
F(312)	86(6)	280(13)	204(11)	-211(11)	85(7)	-116(8)	
F(313)	215(11)	93(7)	57(6)	7(5)	58(7)	50(7)	
F(314)	97(7)	327(16)	252(13)	-268(13)	98(8)	-117(9)	
F(315)	83(5)	77(5)	73(5)	-53(4)	47(4)	-31(4)	
O(32)	45(4)	25(3)	36(4)	-5(3)	0(3)	-3(3)	
Te(32)	62(1)	25(1)	42(1)	-10(1)	-14(1)	1(1)	
F(321)	209(12)	228(13)	107(9)	-100(9)	-37(8)	161(11)	
F(322)	54(5)	41(4)	324(16)	11(7)	-65(7)	-9(4)	
F(323)	133(8)	156(9)	51(6)	-31(6)	-22(5)	20(7)	
F(324)	182(10)	32(4)	243(13)	-10(6)	-135(10)	-17(5)	
F(325)	99(6)	37(4)	92(6)	-12(4)	-45(5)	22(4)	
O(33)	32(3)	52(4)	31(4)	-27(4)	7(3)	-12(3)	
Te(33)	29(1)	35(1)	34(1)	-15(1)	0(1)	-8(1)	
F(331)	60(4)	109(6)	65(5)	-68(5)	21(4)	-34(4)	
F(332)	71(5)	43(4)	62(5)	-2(3)	-10(4)	-6(3)	
F(333)	42(3)	87(5)	60(4)	-36(4)	22(3)	-23(3)	
F(334)	74(5)	35(4)	111(7)	-13(4)	-15(5)	-15(3)	
F(335)	37(3)	103(6)	90(6)	-63(5)	2(4)	-22(4)	
O(34)	23(3)	24(3)	39(4)	-2(3)	1(3)	-8(3)	
Te(34)	22(1)	26(1)	32(1)	-10(1)	3(1)	-5(1)	
F(341)	43(3)	54(4)	58(4)	-35(3)	-1(3)	-9(3)	
F(342)	32(3)	31(3)	55(4)	-8(3)	-7(3)	-2(2)	
F(343)	52(4)	51(4)	41(4)	-18(3)	9(3)	-5(3)	
F(344)	23(3)	38(3)	68(4)	-21(3)	-4(3)	-2(2)	
F(345)	30(3)	44(3)	81(5)	-20(3)	20(3)	-13(3)	

Liste 12 Bindungslängen [pm] und -winkel [°] für $I_5^+I(OTeF_5)_4^-$.

I(11)-I(12)	267,65(9)	I(13)-I(14)	295,81(9)
I(12)-I(13)	286,30(9)	I(14)-I(15)	267,17(9)
I(21)-I(22)	267,41(9)	I(23)-I(24)	293,16(10)
I(22)-I(23)	287,70(10)	I(24)-I(25)	266,96(10)
I(31)-I(32)	267,59(9)	I(33)-I(34)	290,71(10)
I(32)-I(33)	291,90(10)	I(34)-I(35)	268,37(9)
I(16)-O(11) I(16)-O(14) I(16)-O(13) I(16)-O(12) O(11)-Te(11) Te(11)-F(111) Te(11)-F(112)	202,2(6) 205,5(6) 215,6(6) 223,8(6) 184,5(6) 180,1(6)	Te(12)-F(124) Te(12)-F(125) O(13)-Te(13) Te(13)-F(133) Te(13)-F(135) Te(13)-F(134) Te(13)-F(134)	182,4(7) 184,1(6) 185,6(6) 181,9(5) 182,1(5) 182,3(5)
Te(11)-F(112) $Te(11)-F(113)$ $Te(11)-F(115)$ $Te(11)-F(114)$ $Te(12)-F(122)$ $Te(12)-F(123)$ $Te(12)-F(121)$ $Te(12)-O(12)$	180,5(7) 181,6(7) 182,0(7) 183,2(6) 178,9(7) 181,6(6) 181,7(6) 182,0(6)	$\begin{array}{c} \text{Te}(13)\text{-F}(131) \\ \text{Te}(13)\text{-F}(132) \\ \text{O}(14)\text{-Te}(14) \\ \text{Te}(14)\text{-F}(142) \\ \text{Te}(14)\text{-F}(142) \\ \text{Te}(14)\text{-F}(143) \\ \text{Te}(14)\text{-F}(141) \\ \text{Te}(14)\text{-F}(144) \end{array}$	183,4(5) 184,1(5) 183,6(6) 181,2(7) 181,5(6) 181,8(6) 181,8(6) 182,9(7)

I(26)-O(22)	203,2(6)	Te(22)-F(223)	179,1(10)
I(26)-O(24)	203,6(6)	Te(22)-F(225)	182,9(7)
I(26)-O(21)	219,0(6)	O(23)-Te(23)	182,9(6)
I(26)-O(23)	219,2(6)	Te(23)-F(234)	180,4(6)
O(21)-Te(21)	183,9(6)	Te(23)-F(232)	181,1(6)
Te(21)-F(212)	182,9(6)	Te(23)-F(233)	182,9(6)
Te(21)-F(215)	183,0(5)	Te(23)-F(231)	182,9(5)
Te(21)-F(211)	183,4(5)	Te(23)-F(235)	183,5(5)
Te(21)-F(214)	183,5(6)	Te(24)-F(242)	179,7(7)
Te(21)-F(213)	183,6(5)	Te(24)-F(244)	180,5(7)
O(22)-Te(22)	184,4(7)	Te(24)-F(243)	180,6(8)
Te(22)-F(222)	169,9(8)	Te(24)-F(241)	180,9(8)
Te(22)-F(221)	173,5(10)	Te(24)-F(245)	182,5(6)
Te(22)-F(224)	177,7(10)	Te(24)-O(24)	186,2(6)
I(36)-O(31)	201,8(6)	Te(32)-F(324)	180,5(9)
I(36)-O(32)	202,7(6)	Te(32)-F(325)	182,7(6)
I(36)-O(34)	218,0(6)	O(33)-Te(33)	183,7(6)
I(36)-O(33)	221,1(6)	Te(33)-F(331)	180,5(6)
O(31)-Te(31)	186,0(6)	Te(33)-F(332)	182,4(6)
Te(31)-F(311)	175,6(8)	Te(33)-F(334)	182,7(6)
Te(31)-F(314)	176,6(8)	Te(33)-F(333)	183,0(6)
Te(31)-F(312)	178,2(7)	Te(33)-F(335)	183,5(6)
Te(31)-F(313)	179 2(8)	O(34)-Te(34)	183,7(6)
Te(31)-F(315) O(32)-Te(32) Te(32) F(322) Te(32) F(322) Te(32) F(322) Te(32) F(322) Te(32) F(322) Te(32) F(322) Te(32) F(32) F	182,9(6)	Te(34)-F(341)	181,7(5)
	186,3(6)	Te(34)-F(342)	181,9(5)
	172,8(8)	Te(34)-F(342)	182,4(6)
Te(32)-F(322)	172,8(8)	Te(34)-F(343)	183,4(6)
Te(32)-F(323)	175,5(8)	Te(34)-F(344)	184,2(5)
Te(32)-F(321)	176,0(9)	Te(34)-F(345)	184,4(5)
I(11)-I(12)-I(13) I(12)-I(13)-I(14)	96,56(3) 177,72(3)	I(15)-I(14)-I(13)	97,35(3)
I(21)-I(22)-I(23) I(22)-I(23)-I(24)	96,25(3) 178,17(3)	I(25)-I(24)-I(23)	96,46(3)
I(31)-I(32)-I(33) I(34)-I(33)-I(32)	95,79(3) 178,21(3)	I(35)-I(34)-I(33)	96,15(3)
O(11)-I(16)-O(14)	90,3(3)	F(113)-Te(11)-O(11)	91,0(3)
O(11)-I(16)-O(13)	89,3(2)	F(115)-Te(11)-O(11)	93,6(3)
O(14)-I(16)-O(13)	170,3(2)	F(114)-Te(11)-O(11)	178,6(3)
O(11)-I(16)-O(12)	168,9(2)	F(122)-Te(12)-F(123)	91,8(4)
O(14)-I(16)-O(12)	88,8(2)	F(122)-Te(12)-F(121)	90,0(4)
O(13)-I(16)-O(12)	93,5(2)	F(123)-Te(12)-F(121)	173,4(3)
Te(11)-O(11)-I(16)	129,5(3)	F(122)-Te(12)-O(12)	93,3(3)
F(111)-Te(11)-F(112)	91,3(4)	F(123)-Te(12)-O(12)	94,3(3)
F(111)-Te(11)-F(113)	176 4(3)	F(121)-Te(12)-O(12)	91,9(3)
F(112)-Te(11)-F(113) F(111)-Te(11)-F(115) F(112) Te(11) F(115)	89,1(4) 89,0(4)	F(122)-Te(12)-F(124) F(123)-Te(12)-F(124) F(123)-Te(12)-F(124)	172,2(3) 88,9(3) 88 5(4)
F(112)- $F(113)F(113)$ - $Te(11)$ - $F(115)F(111)$ - $Te(11)$ - $F(114)$	90,3(4) 88,3(3)	P(121)-Te(12)-F(124) O(12)-Te(12)-F(124) F(122)-Te(12)-F(125)	88,5(4) 94,3(3) 87,2(4)
F(112)-Te(11)-F(114)	86,9(3)	F(123)-Te(12)-F(125)	86,5(3)
F(113)-Te(11)-F(114)	88,2(3)	F(121)-Te(12)-F(125)	87,2(3)
F(115)-Te(11)-F(114)	87,5(3)	O(12)-Te(12)-F(125)	178,9(3)
F(111)-Te(11)-O(11)	92,5(3)	F(124)-Te(12)-F(125)	85,1(3)
F(112)-Te(11)-O(11)	92,0(3)	Te(12)-O(12)-I(16)	128,4(3)

$T_{e}(13) - O(13) - I(16)$	126 5(3)
$F(133) T_{0}(13) F(135)$	120,3(3) 87 7(2)
F(133) - F(133) - F(133) $F(132) - T_{2}(12) - F(133)$	07,7(2)
F(133)-F(13)-F(134)	90,8(3)
F(135)-1e(13)-F(134)	8/,/(2)
F(133)-Te(13)-F(131)	174,1(2)
F(135)-Te(13)-F(131)	86,5(2)
F(134)-Te(13)-F(131)	89,7(3)
F(133)-Te(13)-F(132)	90,5(3)
F(135)-Te(13)-F(132)	87.4(2)
F(134)-Te(13)-F(132)	174 8(2)
F(131)-Te(13)-F(132)	88.4(3)
F(133)- $Te(13)$ - $O(13)$	928(3)
F(135) = Te(13) = O(13)	1787(3)
$\Gamma(133)$ - $\Gamma(13)$ - $O(13)$ $\Gamma(124)$ $T_{2}(12)$ $O(12)$	1/0, 7(3)
F(134)-Te(13)-O(13)	91,1(2)
F(131)-1e(13)-O(13)	93,0(3)
F(132)-Te(13)-O(13)	93,8(2)
O(22)-I(26)-O(24)	89 9(3)
O(22)-I(26)-O(21)	1713(2)
O(24)-I(26)-O(21)	87.5(2)
O(22) I(26) O(22)	07,3(2)
O(22) - I(20) - O(23)	1(0, 9(3))
O(24)-I(20)-O(23)	169,8(2)
O(21)-I(26)-O(23)	95,2(2)
Ie(21)-O(21)-I(26)	126,4(3)
F(212)-Te(21)-F(215)	87,2(3)
F(212)-Te(21)-F(211)	90,3(3)
F(215)-Te(21)-F(211)	86,4(2)
F(212)-Te(21)-F(214)	173,8(3)
F(215)-Te(21)-F(214)	86,6(3)
F(211)- $Te(21)$ - $F(214)$	88,7(3)
F(212)-Te(21)-F(213)	90,7(3)
F(215)-Te(21)-F(213)	88,3(2)
F(211)-Te(21)-F(213)	174,5(2)
F(214)-Te(21)-F(213)	89,8(3)
F(212)-Te(21)-O(21)	93,2(3)
F(215)-Te(21)-O(21)	179,4(3)
F(211)-Te(21)-O(21)	93,2(2)
F(214)-Te(21)-O(21)	93.0(3)
F(213)-Te(21)-O(21)	92 2(3)
Te(22)-O(22)-I(26)	1274(4)
F(22)-Te(22)-F(221)	98 2(8)
F(222) - Te(22) - F(224)	173 1(7)
F(222) = F(22) - F(224)	87.4(7)
F(221) - F(22) - F(224) F(222) - F(223)	80.4(7)
F(222) = F(222) = F(223) $F(221) = T_{2}(22) = F(223)$	170.0(7)
$\Gamma(221)$ - $\Gamma(22)$ - $\Gamma(223)$ $\Gamma(224)$ $T_{2}(22)$ $\Gamma(222)$	170,9(7)
F(224)-F(22)-F(223) F(222) = F(222) = F(225)	84,7(7)
F(222)- $F(222)$ - $F(223)F(221) T_{2}(22) F(225)$	80,7(4)
F(221)-Ie(22)-F(225)	88,0(4)
F(224)-1e(22)-F(225)	89,5(4)
F(223)-Te(22)-F(225)	87,5(4)
F(222)-Te(22)-O(22)	94,6(3)
F(221)- $Te(22)$ - $O(22)$	92,2(4)
Q(31)-I(36)-Q(32)	89 3(3)
O(31)-I(36)-O(34)	88 0(2)
O(32)- $I(36)$ - $O(34)$	169 2(2)
$O(31)_{I(36)_{-}O(33)}$	169,2(2) 168 8(2)
0(31)-1(30)-0(33)	100,0(2)

Te(14)-O(14)-I(16)	129,2(3)
F(142)-Te(14)-F(145)	87,2(3)
F(142)-Te(14)-F(143)	90,8(4)
F(145)-Te(14)-F(143)	88,4(3)
F(142)-Te(14)-F(141)	91,7(4)
F(145)-Te(14)-F(141)	87,8(3)
F(143)-Te(14)-F(141)	175.3(3)
F(142)-Te(14)-F(144)	174.9(3)
F(145)-Te(14)-F(144)	87.7(3)
F(143)-Te(14)-F(144)	88 6(4)
F(141)-Te(14)-F(144)	88 6(4)
F(142)-Te(14)-O(14)	92 3(3)
F(145)-Te(14)-O(14)	177 9(3)
F(143)-Te(14)-O(14)	89 6(3)
F(141)- $Te(14)$ - $O(14)$	94.2(3)
F(144)-Te(14)-O(14)	97.8(3)
1(1+)-10(1+)-0(1+)	<i>72</i> ,0(<i>3</i>)
F(224)- $Te(22)$ - $O(22)$	89,2(4)
F(223)- $Te(22)$ - $O(22)$	92,2(4)
F(225)-Te(22)-O(22)	178,7(3)
Te(23)-O(23)-I(26)	128,8(3)
F(234)-Te(23)-F(232)	173,2(3)
F(234)-Te(23)-F(233)	89,3(3)
F(232)-Te(23)-F(233)	89,7(3)
F(234)-Te(23)-F(231)	90,9(3)
F(232)- $Te(23)$ - $F(231)$	89,4(3)
F(233)- $Te(23)$ - $F(231)$	173,9(3)
F(234)- $Te(23)$ - $O(23)$	92,7(3)
F(232)- $Te(23)$ - $O(23)$	94,1(3)
F(233)- $Te(23)$ - $O(23)$	92,1(3)
F(231)- $Te(23)$ - $O(23)$	94,0(3)
F(234)-Te(23)-F(235)	86,4(3)
F(232)-Te(23)-F(235)	86,8(3)
F(233)-Te(23)-F(235)	86,8(3)
F(231)-Te(23)-F(235)	87,2(3)
O(23)-Te(23)-F(235)	178,6(3)
F(242)-Te(24)-F(244)	1/5,7(3)
F(242)-Te(24)-F(243)	89,0(4)
F(244)-Te(24)-F(243)	90,3(5)
F(242)-1e(24)-F(241)	90,6(5)
F(244)-1e(24)-F(241)	89,/(5)
F(243)-1e(24)-F(241)	1/5,2(4)
F(242)-1e(24)-F(245) $F(244) = T_{2}(24) = F(245)$	8/,4(3)
F(244)-1e(24)-F(245) $F(242) = T_{2}(24) = F(245)$	88,3(3)
F(243)-F(24)-F(245)	89,2(4)
F(241)-1e(24)-F(245) $F(242) T_{2}(24) O(24)$	80,1(4)
F(242)-Te(24)-O(24) F(244)-Te(24)-O(24)	90,0(3)
F(244) - F(24) - O(24) $F(242) = T_{2}(24) - O(24)$	93,7(3)
$\Gamma(243) = \Gamma(24) = O(24)$ $\Gamma(241) = T_{0}(24) = O(24)$	72,7(3)
$\Gamma(241) - \Gamma(24) - O(24)$ $F(245) - T_{a}(24) - O(24)$	72,0(3) 177 7(2)
$T_{P}(24) = T_{P}(24) = 0(24)$ $T_{P}(24) = 0(24) = 10(24)$	1778(3)
10(24)-0(24)-1(20)	127,0(3)
O(32)-I(36)-O(33)	90,9(3)
O(34)-I(36)-O(33)	93,7(2)
Te(31)-O(31)-I(36)	128,8(3)
F(311)-Te(31)-F(314)	92,6(7)

F(311)-Te(31)-F(312)	89,5(7)	F(331)-Te(33)-F(332)	90,6(3)
F(314)-Te(31)-F(312)	175,7(4)	F(331)-Te(33)-F(334)	90,1(3)
F(311)-Te(31)-F(313)	174,5(5)	F(332)-Te(33)-F(334)	172,8(3)
F(314)-Te(31)-F(313)	90,5(6)	F(331)-Te(33)-F(333)	175,2(3)
F(312)-Te(31)-F(313)	87,2(6)	F(332)-Te(33)-F(333)	88,8(3)
F(311)-Te(31)-F(315)	87,5(3)	F(334)-Te(33)-F(333)	90,0(3)
F(314)-Te(31)-F(315)	88,4(3)	F(331)-Te(33)-F(335)	88,3(3)
F(312)-Te(31)-F(315)	87,8(3)	F(332)-Te(33)-F(335)	86,8(3)
F(313)-Te(31)-F(315)	88,0(3)	F(334)-Te(33)-F(335)	86,0(3)
F(311)-Te(31)-O(31)	92,9(3)	F(333)-Te(33)-F(335)	86,8(3)
F(314)-Te(31)-O(31)	89,7(3)	F(331)-Te(33)-O(33)	92,0(3)
F(312)-Te(31)-O(31)	94,0(3)	F(332)-Te(33)-O(33)	94,3(3)
F(313)-Te(31)-O(31)	91,7(3)	F(334)-Te(33)-O(33)	92,9(3)
F(315)-Te(31)-O(31)	178,1(3)	F(333)-Te(33)-O(33)	92,9(3)
Te(32)-O(32)-I(36)	128,5(3)	F(335)-Te(33)-O(33)	178,9(3)
F(322)-Te(32)-F(323)	94,1(6)	Te(34)-O(34)-I(36)	127,6(3)
F(322)-Te(32)-F(321)	92,3(7)	F(341)-Te(34)-F(342)	91,2(3)
F(323)-Te(32)-F(321)	171,5(6)	F(341)-Te(34)-F(343)	172,0(3)
F(322)-Te(32)-F(324)	176,2(4)	F(342)-Te(34)-F(343)	89,4(3)
F(323)-Te(32)-F(324)	85,3(6)	F(341)-Te(34)-O(34)	94,1(3)
F(321)-Te(32)-F(324)	87,9(7)	F(342)-Te(34)-O(34)	92,2(2)
F(322)-Te(32)-F(325)	87,5(3)	F(343)-Te(34)-O(34)	93,9(3)
F(323)-Te(32)-F(325)	86,6(4)	F(341)-Te(34)-F(344)	89,9(3)
F(321)-Te(32)-F(325)	88,2(4)	F(342)-Te(34)-F(344)	174,2(3)
F(324)-Te(32)-F(325)	88,6(4)	F(343)-Te(34)-F(344)	88,7(3)
F(322)-Te(32)-O(32)	94,3(3)	O(34)-Te(34)-F(344)	93,4(2)
F(323)-Te(32)-O(32)	92,9(4)	F(341)-Te(34)-F(345)	87,1(3)
F(321)-Te(32)-O(32)	92,2(3)	F(342)-Te(34)-F(345)	87,6(2)
F(324)-Te(32)-O(32)	89,5(3)	F(343)-Te(34)-F(345)	84,9(3)
F(325)-Te(32)-O(32)	178,1(3)	O(34)-Te(34)-F(345)	178,8(3)
Te(33)-O(33)-I(36)	128,7(3)	F(344)-Te(34)-F(345)	86,8(2)

6.3 lodtrifluorid, IF₃

6.3.1 Synthese und spektroskopische Daten

a) Nach der von Schmeißer et al. beschriebenen Methode direkt aus den Elementen [34]: In einem 100 ml Dreihalskolben mit Einleitungsrohr, KPG-Rührer und Gasableitung über eine auf -78 °C gekühlte Schutzfalle werden 7 g frisch sublimiertes und fein gemörsertes Iod in 80 ml Frigen 11 unter intensivem Rühren bei -45 °C suspendiert. Zu dieser violetten Suspension wird vorgekühltes, mit Argon im Verhältnis 1:7 verdünntes Fluor solange eingeleitet, bis ein gelber Feststoff entsteht und die Lösung farblos ist. Dann wird das in F11 gelöste überschüssige Fluor durch Argon verdrängt und das in F11 nicht lösliche IF₃ durch Trennen der F11-Lösung mittels eines Teflonschlauches isoliert. Der gelbe Feststoff wird zweimal mit auf -40 °C vorgekühltem F11 gewaschen, um letzte Reste nicht umgesetzten Iods zu entfernen, und anschließend bei -40 °C im Vakuum getrocknet. IF₃ ist ein zitronengelber Feststoff, der äußerst hydrolyseempfindlich ist und sich bei ca. -28 °C zersetzt.

Kristallisationsversuche: In ein mit IF₃ bestücktes PFA-Rohr wird an einer Metallvakuumapparatur wasserfreie HF kondensiert und durch Öffnen der Apparatur bei -50 °C solange Zutritt für eine kleine Menge Wasser geschaffen, bis sich das IF₃ unter Umschütteln fast gelöst hat und die HF-Lösung eine gelbbraune Farbe angenommen hat. Erwärmen auf -30 °C und langsames Abkühlen auf -78 °C liefert IF₃ in Form zartgelber Plättchen, die für die Röntgenstrukturanalyse geeignet sind.

Ausbeute: nahezu quantitativ bezogen auf Iod.

b) Neue Methode:

In einem Handschuhkasten werden in ein PFA-Reaktionsrohr (12 mm Innendurchmesser) mit Rührkern 150 mg (0,5 mmol) Me₄NIF₄ gefüllt. Hierzu werden bei Stickstofftemperatur an einer Metallvakuumapparatur 5 ml aHF kondensiert. Die Reaktionsmischung wird unter Rühren zunächst auf -78 °C, dann kurzfristig auf -40 °C erwärmt und wieder auf -78 °C gebracht. Es entsteht IF₃ in Form zartgelber Kristalle.

Raman (krist., -130 °C):

 \overline{v} [cm⁻¹] = 211(m), 328(vw), 427(vw), 487(s), 620(s), 631(w), siehe auch Literatur [33]

6.3.2 Kristall- und Strukturdaten für IF₃

Liste 13 Kristalldaten und Angaben zur Kristallstrukturbestimmung.

Summenformel Molmasse [g / mol] Kristallsystem Raumgruppe Gitterkonstanten [pm; °]	IF ₃ 183,89 orthorhombisch Pcmn a = 465,00(10) b = 665,50(10)	$\alpha = 90$ $\beta = 90$
Zellvolumen [nm ³] Formeleinheiten pro Zelle Kristallabmessungen [mm ³] Farbe und Kristallform Wellenlänge [pm]	c = 875,50(10) 0,27093(8) 4 0,4 x 0,2 x 0,05 zitronengelbe Plättchen 71,069	γ = 90
Messtemperatur [K] Messbereich [°] Indexbereich F(000) Dichte (berechnet) [g/cm ³]	138(2) 4,66 < θ < 31,50 -6<=h<=6, -9<=k<=9, -12 320 4,509	<=1<=12

Absorptionskoeffizient [mm ⁻¹]	11,641
Gemessene Reflexe	2975
Unabhängige Reflexe	465 [R(int) = 0.0826]
Vollständigkeit zu $\theta = 31,50^{\circ}$	96,1 %
Methode der Strukturverfeinerung	Vollmatrix-kleinste Fehlerquadrate gegen F ²
Reflexe / restraints / Parameter	465 / 0 / 23
Goodness-of-fit gegen F ²	1,014
R mit [I>2sigma(I)]	R1 = 0,0307, wR2 = 0,0626
R (alle Daten)	R1 = 0,0461, wR2 = 0,0657
Extinktionskoeffizient	0,0056(12)
Restelektonendichte max./min [e/ Å ⁻³]	1,627 / -1,472

Liste 14 Atomkoordinaten (x 10^4) und äquivalente isotrope Temperaturfaktoren (pm² x 10^{-1}) für IF₃. U(eq) ist definiert als 1/3 des orthogonalisierten U_{ij} Tensors.

	Х	У	Z	U(eq)	
I(1)	199(1)	2500	6848(1)	10(1)	
F(1)	847(7)	5436(4)	6669(3)	16(1)	
F(2)	3528(8)	2500	5645(5)	16(1)	

Liste 15 Anisotrope Temperaturfaktoren (pm² x 10⁻¹)für IF₃. Der anisotrope Temperaturfaktor hat die Form : $-2\pi^2$ [h²a⁺²U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂].

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
I(1) F(1)	10(1) 17(1)	9(1) 13(2)	11(1) 20(2)	0 1(1)	0(1) 0(1)	$0 \\ 0(1)$
F(2)	10(2)	23(2)	15(2)	0	5(2)	0

Liste 16 Bindungslängen [pm] und -winkel [°] für IF₃.

I(1)-F(2)	187,2(4)	I(1)-F(1)#2	276,9(3)	
I(1)-F(1)	198,3(3)	I(1)-F(1)#3	276,9(3)	
I(1)-F(1)#1	198,3(3)			
F(2)-I(1)-F(1)	80,20(9)	F(1)#2-I(1)-I(1)#4	131,85(7)	
F(2)-I(1)-F(1)#1	80,20(9)	F(1)#3-I(1)-I(1)#4	83,36(7)	
F(1)-I(1)-F(1)#1	160,26(18)	F(2)-I(1)-I(1)#2	127,461(18)	
F(2)-I(1)-F(1)#2	150,23(6)	F(1)-I(1)-I(1)#2	151,97(9)	
F(1)-I(1)-F(1)#2	129,56(13)	F(1)#1-I(1)-I(1)#2	47,77(9)	
F(1)#1-I(1)-F(1)#2	70,09(9)	F(1)#2-I(1)-I(1)#2	22,88(6)	
F(2)-I(1)-F(1)#3	150,23(6)	F(1)#3-I(1)-I(1)#2	82,04(6)	
F(1)-I(1)-F(1)#3	70,09(9)	I(1)#4-I(1)-I(1)#2	148,57(2)	
F(1)#1-I(1)-F(1)#3	129,56(13)	F(2)-I(1)-I(1)#5	127,461(18)	
F(1)#2-I(1)-F(1)#3	59,48(13)	F(1)-I(1)-I(1)#5	47,77(9)	
F(2)-I(1)-I(1)#4	72,33(8)	F(1)#1-I(1)-I(1)#5	151,97(9)	
F(1)-I(1)-I(1)#4	32,87(9)	F(1)#2-I(1)-I(1)#5	82,04(6)	
F(1)#1-I(1)-I(1)#4	135,64(9)	F(1)#3-I(1)-I(1)#5	22,88(6)	

Experimenteller Teil		Synthesevorschriften und Kristallstrukturanalysen			
I(1)#4-I(1)-I(1)#5	66,919(14)	F(1)#3-I(1)-I(1)#6	131,85(7)		
I(1)#2-I(1)-I(1)#5	104,199(15)	I(1)#4-I(1)-I(1)#6	104,199(15)		
F(2)-I(1)-I(1)#6	72,33(8)	I(1)#2-I(1)-I(1)#6	66,919(14)		
F(1)-I(1)-I(1)#6	135,64(9)	I(1)#5-I(1)-I(1)#6	148,57(2)		
F(1)#1-I(1)-I(1)#6	32,87(9)	I(1)-F(1)-I(1)#4	124,25(13		
F(1)#2-I(1)-I(1)#6	83,36(6)				

Verwendete Symmetrietransformation für Generierung äquivalenter Atome: #1 x,-y+1/2,z #2 x-1/2,y-1/2,-z+3/2 #3 x-1/2,-y+1,-z+3/2 #4 x+1/2,y+1/2,-z+3/2 #5 x-1/2,y+1/2,-z+3/2 #6 x+1/2,y-1/2,-z+3/2

6.4 Difluoroiodonium-hexafluoroantimonat, $IF_2^+SbF_6^-$

6.4.1 Synthese und spektroskopische Daten

Auf ca. 80 mg (0,4 mmol) IF₃ werden in einem PFA-Reaktionsrohr (6,5 mm Innendurchmesser) bei -196 °C 200 mg (0,9 mmol) SbF₅ und 2 ml aHF kondensiert. Die Reaktionsmischung wird unter Schütteln zunächst auf -78 °C und dann auf -50 °C erwärmt, bis sich IF₃ komplett umgesetzt hat. Anschließend werden bei -78 °C alle flüchtigen Bestandteile im Vakuum abgepumpt. Zurück bleibt ein farbloser, hydrolyseempfindlicher Feststoff, der sich langsam oberhalb von +10 °C zersetzt. Die Kristallisation erfolgt in PFA-Röhrchen (6,5 mm Innendurchmesser) in aHF durch langsames Abkühlen von 0 °C auf -78 °C. Es kristallisieren zartgelbe Plättchen aus.

Raman (krist., -80 °C):

 $\overline{v} \ [cm^{-1}] = 82,77(vs); \ 119,41(m); \ 179,20(s); \ 187,87(m); \ 237,05(vs); \ 260,20(w); \\ 270,80(m); \ 282,38(m); \ 486,81(w); \ 521,52(w); \ 550,45(m); \ 636,27(m); \\ 659,42(m); \ 667,13(s); \ 694,13(w)$

6.4.2 Kristall- und Strukturdaten von IF₂⁺SbF₆⁻

Summenformel	F ₈ I Sb		
Molmasse [g / mol]	400,65		
Kristallsystem	orthorhombisch		
Raumgruppe	$Pca2_1$		
Gitterkonstanten [pm; °]	a = 982,6(2)	$\alpha = 90$	
	b = 668,00(13)	$\beta = 90$	
	c = 993,4(2)	$\gamma = 90$	
Zellvolumen [nm ³]	0,6521(2)		
Formeleinheiten pro Zelle	4		
Kristallabmessungen [mm ³]	0,4 x 0,4 x 0,1		
Farbe und Kristallform	zartgelbe Plättchen		

Liste 17 Kristalldaten und Angaben zur Kristallstrukturbestimmung.

Wellenlänge [pm] Messtemperatur [K]	71,073
Messbereich [°]	$3,05 < \theta < 30,53$
Indexbereich	-14<=h<=14, -9<=k<=9, -13<=l<=14
F(000)	704
Dichte (berechnet) [g/cm ³]	4,081
Absorptionskoeffizient [mm ⁻¹]	9,056
Gemessene Reflexe	7478
Unabhängige Reflexe	1929 [R(int) = $0,0320$]
Vollständigkeit zu $\theta = 30,53^{\circ}$	99,9 %
Methode der Strukturverfeinerung	Vollmatrix-kleinste Fehlerquadrate gegen F ²
Reflexe / restraints / Parameter	1929 / 1 / 93
Goodness-of-fit gegen F ²	1,040
R mit [I>2sigma(I)]	R1 = 0,0224, wR2 = 0,0539
R (alle Daten)	R1 = 0,0293, wR2 = 0,0566
Extinktionskoeffizient	0,0049(3)
Absoluter Strukturparameter (Flack)	0,48(6)
Restelektonendichte max./min [e/ Å ⁻³]	1,120 / -0,959

Liste 18 Atomkoordinaten (x 10⁴) und äquivalente isotrope Temperaturfaktoren (pm² x 10⁻¹) für $IF_2^+SbF_6^-$. U(eq) ist definiert als 1/3 des orthogonalisierten Uij Tensors.

	х	У	Z	U(eq)
Sb	491(1)	1094(1)	1423(1)	15(1)
Ι	-2499(1)	3648(1)	-1079(1)	17(1)
F(1)	-3585(8)	5562(13)	-1828(8)	44(2)
F(2)	-1430(8)	5745(13)	-410(8)	37(2)
F(3)	1070(3)	3754(4)	1461(11)	25(1)
F(4)	-180(4)	-1482(5)	1537(14)	33(2)
F(5)	-1048(5)	1847(8)	410(5)	37(1)
F(6)	-594(4)	1811(7)	3002(5)	25(1)
F(8)	1695(11)	388(14)	2761(7)	58(3)
F(7)	1695(10)	498(16)	64(9)	72(4)

Liste 19 Anisotrope Temperaturfaktoren (pm² x 10⁻¹) für $IF_2^+SbF_6^-$. Der anisotrope Temperaturfaktor hat die Form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2h k a^* b^* U_{12}]$.

	U_{11}	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U_{12}
Sh	13(1)	13(1)	18(1)	2(1)	0(1)	0(1)
I	16(1)	15(1)	19(1)	$\frac{2(1)}{1(1)}$	-2(1)	-1(1)
F(1)	37(4)	15(3)	82(6)	-5(3)	-35(4)	11(3)
F(2)	45(4)	20(3)	45(4)	-11(3)	-6(3)	-3(3)
F(3)	29(1)	15(1)	30(2)	7(3)	4(4)	-5(1)
F(4)	35(2)	16(1)	49(5)	5(3)	4(4)	-7(1)
F(5)	32(2)	39(2)	40(3)	3(2)	-20(2)	2(2)
F(6)	24(2)	25(2)	27(2)	-2(2)	10(2)	1(2)
F(8)	114(8)	27(5)	33(4)	10(3)	-51(4)	9(5)
F(7)	91(7)	28(5)	98(8)	-9(4)	70(6)	-20(5)

Sb-F(7) Sb-F(8) Sb-F(4)	183.9(8) 184.1(6) 184.6(3)	Sb-F(3) Sb-F(5) Sb-F(6)	186.6(3) 188.5(4) 195.7(4)	
I-F(1) I-F(2) I-F(5)	182.4(8) 187.3(8) 238.0(5)	I-F(6)#1 F(6)-I#2	241.9(4) 241.9(4)	
F(7)-Sb-F(8) F(7)-Sb-F(4) F(8)-Sb-F(4) F(7)-Sb-F(3) F(8)-Sb-F(3) F(4)-Sb-F(3) F(7)-Sb-F(5) F(8)-Sb-F(5)	93.5(3) 94.2(5) 87.0(5) 91.4(4) 91.9(4) 174.3(4) 100.5(4) 165.8(4)	F(4)-Sb-F(5) F(3)-Sb-F(5) F(7)-Sb-F(6) F(8)-Sb-F(6) F(4)-Sb-F(6) F(3)-Sb-F(6) F(5)-Sb-F(6)	89.7(3) 90.0(3) 173.0(4) 80.4(3) 89.1(4) 85.2(3) 85.7(2)	
F(1)-I-F(2) F(1)-I-F(5) F(2)-I-F(5) F(1)-I-F(6)#1	87.05(19) 163.3(3) 79.7(3) 75.4(3)	F(2)-I-F(6)#1 F(5)-I-F(6)#1 Sb-F(5)-I Sb-F(6)-I#2	161.4(3) 116.22(14) 161.3(3) 148.1(2)	

Liste 20 Bindungslängen [pm] und -winkel [°] für IF₂⁺SbF₆⁻.

Verwendete Symmetrietransformation für Generierung äquivalenter Atome: #1 -x-1/2,y,z-1/2 #2 -x-1/2,y,z+1/2

6.5 Iod-tris-pentafluoroorthotellurat, I(OTeF₅)₃

6.5.1 Synthese und spektroskopische Daten

In einem Quarzgefäß werden auf 635 mg (2,5 mmol) Iod bei -196 °C 20 ml F11, 1,65 g (7,5 mmol) IF₅ und 9,13 g (12,5 mmol) B(OTeF₅)₃ im dynamischen Vakuum kondensiert. Das Reaktionsgemisch wird auf Raumtemperatur erwärmt und 2 h bei dieser Temperatur gerührt. Das dabei entstehende BF₃ wird gelegentlich abgepumpt. Nach beendeter Reaktion werden alle flüchtigen Bestandteile im Vakuum entfernt. Es bleibt eine orangerote Flüssigkeit zurück, die langsam kristallisiert. Die Ausbeute ist fast quantitativ. I(OTeF₅)₃ ist sehr hydrolyseempfindlich und reagiert langsam mit F11 unter Fluor-Chlor-Austausch.

Aus Perfluorhexan können durch langsames Abkühlen auf -78 °C zartgelbe, plättchenförmige Kristalle erhalten werden, während aus C₄F₉SO₂F solvathaltige gelbe Plättchen der Zusammensetzung I(OTeF₅)₃·C₄F₉SO₂F gezüchtet werden können.

¹⁹F-NMR (n-C₆F₁₄): AB₄-Muster für die OTeF₅-Gruppen: δ [ppm] = -48,21 (A-Teil), -45,55 (B-Teil), J(AB) = 175 Hz, J(¹²⁵Te-F) = 3699 Hz Raman (krist., 20 °C):

 $\overline{v} \quad [cm^{-1}]: 82,77(s); 129,05(vs); 161,84(w); 174,37(m); 234,16(s); 251,52(m); 296,84(w); 308,41(w); 322,88(m); 340,23(w); 388,45(w); 445,34(m); 462,70(m); 482,95(m); 596,74(w); 635,31(w); 663,27(s); 689,31(m); 700,88(m); 715,34(m); 730,7(w); 747,17(w); 758,74(w); 805,99(w)$

6.5.2 Kristall- und Strukturdaten für I(OTeF₅)₃

Summenformel	F_{15} I O ₃ Te ₃	
Molmasse [g / mol]	842,70	
Kristallsystem	monoklin	
Raumgruppe	$P2_1/c$	
Gitterkonstanten [pm; °]	a = 1447,82(12)	$\alpha = 90$
	b = 973,41(8)	$\beta = 91,423(2)$
	c = 1027,36(8)	$\gamma = 90$
Zellvolumen [nm ³]	1,4474(2)	
Formeleinheiten pro Zelle	4	
Kristallabmessungen [mm ³]	0,4 x 0,3 x 0,01	
Farbe und Kristallform	gelbe Plättchen	
Wellenlänge [pm]	71,073	
Messtemperatur [K]	145(2)	
Messbereich [°]	$1,41 < \theta < 31,46$	
Indexbereich	-21<=h<=21, -13<=k<=14	l, - 13<=l<=14
F(000)	1472	
Dichte (berechnet) [g/cm ³]	3,867	
Absorptionskoeffizient [mm ⁻¹]	8,313	
Gemessene Reflexe	14499	
Unabhängige Reflexe	4485 [R(int) = 0,1226]	
Vollständigkeit zu $\theta = 31,46^{\circ}$	93,3 %	
Methode der Strukturverfeinerung	Vollmatrix-kleinste Fehler	rquadrate gegen F ²
Reflexe / restraints / Parameter	4485 / 0 / 200	
Goodness-of-fit gegen F ²	0,953	
R mit [I>2sigma(I)]	$R_1 = 0.0499, WR_2 = 0.119$	02
R (alle Daten)	R1 = 0.0742, wR2 = 0.127	76
Extinktionskoeffizient	0,00141(19)	
Restelektonendichte max./min [e/ Å ⁻³]	2,762 / -2,310	

Liste 21 Kristalldaten und Angaben zur Kristallstrukturbestimmung.

	Х	У	Z	U(eq)	
Ι	3084(1)	-252(1)	9717(1)	21(1)	
Te(1)	4457(1)	2227(1)	8128(1)	22(1)	
Te(2)	1137(1)	1412(1)	8737(1)	24(1)	
Te(3)	2088(1)	-3435(1)	8973(1)	25(1)	
O(1)	3750(4)	1624(6)	9477(5)	28(1)	
F(11)	5189(4)	2844(5)	6827(5)	36(1)	
F(12)	3557(4)	3371(5)	7496(5)	40(1)	
F(13)	4947(4)	3580(6)	9147(5)	47(2)	
F(14)	4053(4)	872(5)	7020(5)	36(1)	
F(15)	5434(3)	1116(6)	8628(5)	43(1)	
O(2)	2211(4)	354(5)	8381(5)	22(1)	
F(21)	434(3)	180(5)	7846(5)	34(1)	
F(22)	956(3)	476(5)	10257(4)	33(1)	
F(23)	1840(4)	2658(5)	9648(5)	38(1)	
F(24)	1319(4)	2342(5)	7235(5)	41(1)	
F(25)	120(4)	2440(6)	9043(6)	47(2)	
O(3)	2250(4)	-1895(6)	10020(5)	30(1)	
F(31)	1419(5)	-4266(6)	10209(6)	55(2)	
F(32)	2769(4)	-2686(6)	7665(5)	48(2)	
F(33)	1037(4)	-2727(6)	8239(7)	53(2)	
F(34)	1906(4)	-4923(5)	7918(6)	45(1)	
F(35)	3127(4)	-4268(7)	9606(6)	61(2)	

Liste 22 Atomkoordinaten $(x10^4)$ und äquivalente isotrope Temperaturfaktoren $(pm^2 \times 10^{-1})$ für $I(OTeF_5)_3$. U(eq) ist definiert als $\frac{1}{3}$ des orthogonalisierten U_{ij} Tensors.

Liste 23 Anisotrope Temperaturfaktoren (pm²x10⁻¹) für I(OTeF₅)₃. Der anisotrope Temperaturfaktor hat die Form: $-2\pi^2$ [h²a^{*2}U₁₁ + ... + 2 h k a* b* U₁₂].

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂	
T	23(1)	21(1)	19(1)	O(1)	-5(1)	- 2 (1)	
Te(1)	23(1) 22(1)	21(1) 22(1)	21(1)	3(1)	-3(1)	-2(1)	
Te(2)	22(1) 27(1)	22(1) 25(1)	21(1) 21(1)	$\frac{3(1)}{1(1)}$	-3(1)	$\frac{-1(1)}{4(1)}$	
Te(3)	27(1) 29(1)	20(1)	26(1)	-1(1)	-4(1)	-1(1)	
O(1)	32(3)	33(3)	19(3)	-7(2)	-2(2)	-10(2)	
F(11)	32(3)	44(3)	27(3)	11(2)	0(2)	-5(2)	
F(12)	43(3)	39(3)	37(3)	5(2)	1(2)	20(2)	
F(13)	66(4)	37(3)	37(3)	-3(2)	2(3)	-32(3)	
F(14)	42(3)	37(3)	30(3)	-8(2)	-1(2)	-5(2)	
F(15)	30(3)	52(3)	46(3)	19(3)	-6(2)	15(3)	
O(2)	20(2)	29(3)	16(2)	-1(2)	-4(2)	-2(2)	
F(21)	22(2)	42(3)	39(3)	-6(2)	-13(2)	-1(2)	
F(22)	31(3)	43(3)	24(2)	6(2)	3(2)	-2(2)	
F(23)	45(3)	33(3)	35(3)	-9(2)	-1(2)	-2(2)	
F(24)	63(4)	29(3)	30(3)	9(2)	-4(2)	5(3)	
F(25)	42(3)	57(4)	41(3)	-5(3)	-2(3)	24(3)	
O(3)	46(4)	21(3)	21(3)	0(2)	1(2)	-1(3)	
F(31)	80(5)	29(3)	57(4)	-5(3)	31(3)	-16(3)	
F(32)	62(4)	61(4)	23(3)	-12(2)	6(3)	-27(3)	

F(33) $42(3)$ $37(3)$ $78(4)$ $-11(3)$ $-27(3)$ $11(3)$ $F(34)$ $61(4)$ $28(3)$ $45(3)$ $-13(2)$ $-3(3)$ $-2(3)$ $F(35)$ $53(4)$ $65(4)$ $61(4)$ $-14(3)$ $-27(3)$ $29(3)$	Experimenteller Teil		Synthesevorschriften und Kristallstrukturanalysen					
	F(33) F(34) F(35)	42(3) 61(4) 53(4)	37(3) 28(3) 65(4)	78(4) 45(3) 61(4)	-11(3) -13(2) -14(3)	-27(3) -3(3) -27(3)	11(3) -2(3) 29(3)	

Liste 24	Bindungslängen	[pm] und	-winkel [°	'] für l(OTeF ₅) ₃
		LL			0/0

Te(2)-F(25) 181,4(5)	
O(2)-I-O(3) 88,2(2) F(24)-Te(2)-F(22) 179.8(3)	
O(2)-I- $O(1)$ 86,8(2) $F(23)$ -Te(2)-F(22) 89,0(2)	
O(3)-I- $O(1)$ 170,6(2) $F(21)$ -Te(2)- $O(2)$ 89,8(2)	
F(13)-Te(1)-F(12) 91,6(3) F(25)-Te(2)-O(2) 178,7(2)	
F(13)-Te(1)-F(11) 87,6(2) $F(24)-Te(2)-O(2)$ 88,2(2)	
F(12)-Te(1)-F(11) 87,8(2) $F(23)-Te(2)-O(2)$ 90,6(2)	
F(13)-Te(1)-F(14) 175,1(3) $F(22)-Te(2)-O(2)$ 91,7(2)	
F(12)-Te(1)-F(14) 90,2(3) $F(31)-Te(3)-F(35)$ 90,1(3)	
F(11)-Te(1)-F(14) 87,9(2) F(31)-Te(3)-F(33) 90,2(3)	
F(13)-Te(1)-O(1) 90,8(2) $F(35)-Te(3)-F(33)$ 174,9(3)	
F(12)-Te(1)-O(1) 93,3(3) $F(31)-Te(3)-F(34)$ 89,4(3)	
F(11)-Te(1)-O(1) 178,1(2) $F(35)-Te(3)-F(34)$ 88,0(3)	
F(14)-Te(1)-O(1) 93,6(2) $F(33)-Te(3)-F(34)$ 87,0(3)	
F(13)-Te(1)-F(15) 88,8(3) $F(31)-Te(3)-F(32)$ 176,7(3)	
F(12)-Te(1)-F(15) 174,4(2) $F(35)-Te(3)-F(32)$ 89,1(3)	
F(11)-Te(1)-F(15) 86,6(2) $F(33)-Te(3)-F(32)$ 90,3(3)	
F(14)-Te(1)-F(15) 88,9(3) $F(34)-Te(3)-F(32)$ 87,3(2)	
O(1)-Te(1)-F(15) 92,3(3) $F(31)-Te(3)-O(3)$ 90,9(2)	
F(21)-Te(2)-F(25) 90,3(3) $F(35)-Te(3)-O(3)$ 93,5(3)	
F(21)-Te(2)-F(24) 89,5(3) $F(33)-Te(3)-O(3)$ 91,5(3)	
F(25)-Te(2)-F(24) 90,4(3) $F(34)-Te(3)-O(3)$ 178,4(3)	
F(21)-Te(2)-F(23) 179,6(2) $F(32)-Te(3)-O(3)$ 92,3(2)	
F(25)-Te(2)-F(23) 89,4(3) $Te(1)-O(1)-I$ 129,6(3)	
F(24)-Te(2)-F(23) 90,8(2) $Te(2)-O(2)-I$ 123,3(3)	
F(21)-Te(2)-F(22) 90,7(2) $Te(3)-O(3)-I$ 127,8(3)	
F(25)-Te(2)-F(22) 89,6(2)	

6.5.3 Kristall- und Strukturdaten für I(OTeF₅)₃·C₄F₉SO₂F

Liste 25 Kristalldaten und Angaben zur Kristallstrukturbestimmung.

Summenformel Molmasse [g / mol] Kristallsystem Raumgruppe Gitterkonstanten [pm; °]	C ₄ F ₂₅ I O ₅ S Te ₃ 1144,80 monoklin P2 ₁ /a a = 990,7(5) b = 2446,0(10) a = 1051,4(4)	$\alpha = 90$ $\beta = 114,72(2)$
Zellvolumen [nm ³]	c = 1051,4(4) 2 3143(17)	γ- 90
Formeleinheiten pro Zelle	4	
Kristallabmessungen [mm ³]	0,5 x 0,5 x 0,1	
Farbe und Kristallform	orangegelbe Plättchen	
Wellenlänge [pm]	71,069	
Messtemperatur [K]	145(2)	
Messbereich [°]	$1,66 < \theta < 30,51$	
Indexbereich	-14<=h<=14, -34<=k<=34	4 , - 14<=l<=15
F(000)	2056	
Dichte (berechnet) [g/cm ³]	3,286	
Absorptionskoeffizient [mm ⁻¹]	5,399	
Gemessene Reflexe	27894	
Unabhängige Reflexe	7008 [R(int) = 0.0413]	
Vollständigkeit zu $\theta = 30,51^{\circ}$	99,3 %	
Methode der Strukturverfeinerung	Vollmatrix-kleinste Fehlen	rquadrate gegen F ²
Reflexe / restraints / Parameter	7008 / 0 / 353	
Goodness-of-fit gegen F ²	1,047	
R mit [I>2sigma(I)]	R1 = 0,0255, WR2 = 0,058	38
R (alle Daten)	R1 = 0,0312, wR2 = 0,060)8
Extinktionskoeffizient	0,00045(5)	
Restelektonendichte max./min [e/ Å ⁻³]	0,806 / -0,824	

Liste 26 Atomkoordinaten (x 10⁴) und äquivalente isotrope Temperaturfaktoren (pm² x 10⁻¹) für $I(OTeF_5)_3 \cdot C_4F_9SO_2F$. U(eq) ist definiert als $1/_3$ des orthogonalisierten U_{ij} Tensors.

	Х	У	Z	U(eq)	
I(1)	7122(1)	566(1)	6270(1)	20(1)	
Te(1)	6571(1)	-544(1)	8126(1)	21(1)	
Te(2)	4504(1)	1320(1)	6773(1)	21(1)	
Te(3)	9648(1)	1625(1)	7310(1)	23(1)	
O(1)	6075(3)	-135(1)	6513(2)	25(1)	
F(11)	7006(3)	-956(1)	9696(2)	41(1)	
F(12)	8213(2)	-125(1)	9142(2)	38(1)	
F(13)	4961(2)	-985(1)	7215(2)	31(1)	
F(14)	5449(3)	-112(1)	8733(2)	40(1)	
F(15)	7732(2)	-1010(1)	7660(2)	37(1)	
O(2)	6303(2)	908(1)	7451(2)	21(1)	
F(21)	4624(2)	1476(1)	5132(2)	41(1)	
F(22)	2814(2)	1724(1)	6188(2)	39(1)	

Experimentelle	er Teil	Synthesev	orschriften und	l Kristallstrukturanal	ysen
F(23)	4345(3)	1155(1)	8380(2)	44(1)	
F(24)	3394(2)	717(1)	5931(3)	42(1)	
F(25)	5577(2)	1925(1)	7582(3)	44(1)	
O(3)	7839(2)	1330(1)	6074(2)	26(1)	
F(31)	11417(2)	1918(1)	8479(2)	40(1)	
F(32)	9667(2)	2070(1)	5928(2)	34(1)	
F(33)	9732(3)	1187(1)	8761(2)	40(1)	
F(34)	10682(2)	1101(1)	6843(3)	41(1)	
F(35)	8731(3)	2155(1)	7870(2)	40(1)	
S(1)	8747(1)	385(1)	3005(1)	25(1)	
F(47)	7791(3)	-43(1)	1942(2)	41(1)	
F(48)	10414(3)	2559(1)	3462(3)	59(1)	
F(49)	9436(4)	2906(1)	1419(4)	75(1)	
F(410)	8096(4)	2725(1)	2524(5)	89(1)	
F(42)	6818(2)	971(1)	1038(2)	35(1)	
F(44)	10174(2)	1433(1)	3580(2)	34(1)	
F(43)	8928(2)	865(1)	906(2)	33(1)	
F(41)	7657(3)	2001(1)	444(3)	56(1)	
F(46)	10039(3)	1879(1)	1230(3)	44(1)	
F(45)	7885(3)	1657(1)	3100(2)	41(1)	
O(4)	8110(3)	472(1)	3961(3)	37(1)	
O(5)	10243(3)	237(1)	3431(3)	40(1)	
C(2)	8824(3)	1518(1)	2543(3)	25(1)	
C(1)	8280(3)	966(1)	1759(3)	24(1)	
C(3)	8931(4)	1986(2)	1593(4)	33(1)	
C(4)	9215(5)	2556(2)	2284(5)	48(1)	

Liste 27 Anisotrope Temperaturfaktoren (pm² x 10⁻¹) für I(OTeF₅)₃·C₄F₉SO₂F. Der anisotrope Temperaturfaktor hat die Form: $-2\pi^2$ [h²a^{*2}U₁₁ + ... + 2 h k a* b* U₁₂].

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂	
I(1)	22(1)	18(1)	24(1)	-1(1)	13(1)	-1(1)	
Te(1)	23(1)	20(1)	22(1)	1(1)	10(1)	-1(1)	
Te(2)	19(1)	23(1)	22(1)	0(1)	9(1)	2(1)	
Te(3)	25(1)	21(1)	24(1)	1(1)	12(1)	-4(1)	
O(1)	32(1)	20(1)	23(1)	2(1)	11(1)	-5(1)	
F(11)	46(1)	40(1)	31(1)	14(1)	10(1)	-2(1)	
F(12)	37(1)	37(1)	29(1)	-2(1)	4(1)	-12(1)	
F(13)	28(1)	29(1)	35(1)	2(1)	11(1)	-9(1)	
F(14)	52(1)	40(1)	40(1)	-2(1)	31(1)	8(1)	
F(15)	35(1)	29(1)	50(1)	-1(1)	20(1)	7(1)	
O(2)	23(1)	20(1)	23(1)	1(1)	11(1)	3(1)	
F(21)	39(1)	56(2)	31(1)	18(1)	19(1)	18(1)	
F(22)	24(1)	47(1)	43(1)	3(1)	11(1)	12(1)	
F(23)	42(1)	66(2)	34(1)	11(1)	26(1)	18(1)	
F(24)	29(1)	37(1)	51(1)	-13(1)	8(1)	-8(1)	
F(25)	32(1)	25(1)	62(2)	-12(1)	7(1)	3(1)	
O(3)	26(1)	22(1)	28(1)	2(1)	11(1)	-6(1)	
F(31)	33(1)	37(1)	41(1)	-1(1)	5(1)	-12(1)	
F(32)	43(1)	30(1)	32(1)	3(1)	19(1)	-12(1)	
F(33)	43(1)	43(1)	29(1)	10(1)	11(1)	-11(1)	
F(34)	35(1)	31(1)	60(1)	-3(1)	24(1)	3(1)	
F(35)	48(1)	35(1)	45(1)	-11(1)	28(1)	-2(1)	

Experimenteller Teil Synthesevorschriften und Kristallstrukte			Kristallstruktu	iranalysen			
S(1)	29(1)	25(1)	24(1)	3(1)	13(1)	5(1)	
F(47)	56(1)	29(1)	37(1)	-2(1)	19(1)	-7(1)	
F(48)	66(2)	44(2)	55(2)	-18(1)	15(1)	-14(1)	
F(49)	103(3)	28(1)	83(2)	6(1)	27(2)	-12(2)	
F(410)	71(2)	39(2)	164(4)	-27(2)	57(2)	7(2)	
F(42)	24(1)	40(1)	32(1)	7(1)	1(1)	-4(1)	
F(44)	31(1)	34(1)	24(1)	-3(1)	0(1)	3(1)	
F(43)	50(1)	31(1)	29(1)	-6(1)	26(1)	-8(1)	
F(41)	54(2)	42(1)	42(1)	17(1)	-10(1)	-7(1)	
F(46)	59(2)	34(1)	50(1)	-4(1)	34(1)	-8(1)	
F(45)	44(1)	42(1)	44(1)	-7(1)	26(1)	9(1)	
O(4)	47(2)	39(2)	32(1)	10(1)	24(1)	12(1)	
O(5)	32(1)	38(2)	54(2)	11(1)	21(1)	14(1)	
C(2)	24(1)	29(2)	21(1)	-2(1)	8(1)	4(1)	
C(1)	24(1)	28(2)	18(1)	1(1)	8(1)	2(1)	
C(3)	36(2)	23(2)	32(2)	1(1)	8(1)	1(1)	
C(4)	51(2)	27(2)	64(3)	-5(2)	23(2)	2(2)	

 $\label{eq:Liste 28} \mbox{ Bindungslängen [pm] und -winkel [°] für I(OTeF_5)_3 \cdot C_4F_9SO_2F.$

	•	•• • • •		_
I(1)-O(2)	193,4(2)	Te(2)-F(22)	181,6(2)	
I(1)-O(3)	203,9(2)	Te(2)-F(21)	181,9(2)	
I(1)-O(1)	207,3(2)	Te(2)-F(24)	183,1(2)	
Te(1)-F(11)	182,6(2)	Te(2)-O(2)	190,8(2)	
Te(1)-F(15)	182,8(2)	Te(3)-F(31)	181,5(2)	
Te(1)-F(13)	183,0(2)	Te(3)-F(35)	181,6(2)	
Te(1)-F(14)	183,1(2)	Te(3)-F(32)	182,2(2)	
Te(1)-F(12)	183,9(2)	Te(3)-F(34)	183,2(2)	
Te(1)-O(1)	185,0(2)	Te(3)-F(33)	183,8(2)	
Te(2)-F(23)	180,7(2)	Te(3)-O(3)	186,4(2)	
Te(2)-F(25)	181,4(2)			
S(1)-O(5)	140,5(3)	F(44)-C(2)	134,1(3)	
S(1)-O(4)	140,9(3)	F(43)-C(1)	132,7(4)	
S(1)-F(47)	153,4(2)	F(41)-C(3)	133,3(4)	
S(1)-C(1)	185,6(3)	F(46)-C(3)	133,1(5)	
F(48)-C(4)	130,9(5)	F(45)-C(2)	133,5(4)	
F(49)-C(4)	133,2(6)	C(2)-C(3)	155,2(5)	
F(410)-C(4)	130,3(6)	C(2)-C(1)	155,7(5)	
F(42)-C(1)	132,4(4)	C(3)-C(4)	154,3(6)	
O(2)-I(1)-O(3)	85 79(10)	F(15)-Te(1)-O(1)	92 70(11)	
O(2)-I(1)-O(1)	84 99(10)	F(13)-Te(1)-O(1)	89 99(10)	
O(3)-I(1)-O(1)	169 39(10)	F(14)-Te(1)-O(1)	92 33(11)	
F(11)-Te(1)-F(15)	87.70(11)	F(12)-Te(1)-O(1)	93.57(10)	
F(11)-Te(1)-F(13)	88.40(10)	F(23)-Te(2)-F(25)	90.34(13)	
F(15)-Te(1)-F(13)	89,97(11)	F(23)-Te(2)-F(22)	90,54(11)	
F(11)-Te(1)-F(14)	87.27(11)	F(25)-Te(2)-F(22)	89,46(11)	
F(15)-Te(1)-F(14)	174,97(10)	F(23)-Te(2)-F(21)	178,67(12)	
F(13)-Te(1)-F(14)	89,99(11)	F(25)-Te(2)-F(21)	90,87(13)	
F(11)-Te(1)-F(12)	88,04(10)	F(22)-Te(2)-F(21)	88,92(10)	
F(15)-Te(1)-F(12)	90,03(11)	F(23)-Te(2)-F(24)	90,20(12)	
F(13)-Te(1)-F(12)	176,44(9)	F(25)-Te(2)-F(24)	178,91(11)	
F(14)-Te(1)-F(12)	89,71(12)	F(22)-Te(2)-F(24)	89,59(11)	
F(11)-Te(1)-O(1)	178,34(10)	F(21)-Te(2)-F(24)	88,58(12)	

F(23)- $Te(2)$ - $O(2)$	88,04(10)	F(35)-Te(3)-F(33)	90,13(12)
F(25)-Te(2)-O(2)	89,04(10)	F(32)-Te(3)-F(33)	176,95(10)
F(22)- $Te(2)$ - $O(2)$	177,93(10)	F(34)-Te(3)-F(33)	88,71(12)
F(21)-Te(2)-O(2)	92,53(9)	F(31)-Te(3)-O(3)	178,67(11)
F(24)-Te(2)-O(2)	91,93(10)	F(35)-Te(3)-O(3)	92,14(11)
F(31)-Te(3)-F(35)	88,38(11)	F(32)-Te(3)-O(3)	90,19(10)
F(31)-Te(3)-F(32)	88,58(10)	F(34)-Te(3)-O(3)	91,37(11)
F(35)-Te(3)-F(32)	90,33(11)	F(33)-Te(3)-O(3)	92,81(10)
F(31)-Te(3)-F(34)	88,14(11)	Te(1)-O(1)-I(1)	127,24(12)
F(35)-Te(3)-F(34)	176,36(11)	Te(2)-O(2)-I(1)	124,43(11)
F(32)-Te(3)-F(34)	90,65(11)	Te(3)-O(3)-I(1)	123,99(12)
F(31)-Te(3)-F(33)	88,42(11)		
O(5)-S(1)-O(4)	122,66(18)	F(42)-C(1)-S(1)	107,5(2)
O(5)-S(1)-F(47)	107,76(17)	F(43)-C(1)-S(1)	106,6(2)
O(4)-S(1)-F(47)	107,36(16)	C(2)-C(1)-S(1)	111,2(2)
O(5)-S(1)-C(1)	109,87(16)	F(46)-C(3)-F(41)	109,1(3)
O(4)-S(1)-C(1)	109,52(16)	F(46)-C(3)-C(4)	107,7(3)
F(47)-S(1)-C(1)	96,41(14)	F(41)-C(3)-C(4)	108,7(3)
F(45)-C(2)-F(44)	108,9(3)	F(46)-C(3)-C(2)	108,9(3)
F(45)-C(2)-C(3)	110,0(3)	F(41)-C(3)-C(2)	108,0(3)
F(44)-C(2)-C(3)	108,9(3)	C(4)-C(3)-C(2)	114,3(3)
F(45)-C(2)-C(1)	107,6(3)	F(410)-C(4)-F(48)	108,9(4)
F(44)-C(2)-C(1)	107,7(3)	F(410)-C(4)-F(49)	108,9(4)
C(3)-C(2)-C(1)	113,7(3)	F(48)-C(4)-F(49)	107,4(4)
F(42)-C(1)-F(43)	109,7(3)	F(410)-C(4)-C(3)	112,0(4)
F(42)-C(1)-C(2)	110,4(3)	F(48)-C(4)-C(3)	111,4(3)
F(43)-C(1)-C(2)	111,2(3)	F(49)-C(4)-C(3)	108,0(4)

6.6 4-Toluol-bis-4-trifluorphenyliod, 4-Toll(4-CF₃Ph)₂

6.6.1 Synthese und spektroskopische Daten

Zu einer Lösung von 1,4 g (6 mmol) 4-Brombenzotrifluorid in 7 ml Diethylether werden bei -78 °C 6 mmol n-BuLi getropft und für ca. eine Stunde gerührt. Anschließend wird diese Lösung mittels eines Teflonschlauches in eine bei -78 °C gerührte Suspension von 0,73 g (2,7 mmol) frisch hergestelltem 4-TolICl₂ in 5 ml Diethylether gedrückt. Man erhält eine klare gelb-braune Lösung, die innerhalb von 30 min einen gelben kristallinen Feststoff abscheidet. Nach zweistündigem Nachrühren bei -78 °C wird von der überstehenden Lösung abdekantiert, zweimal mit wenig gekühltem Diethylether gewaschen und im Hochvakuum bei -30 °C getrocknet.

4-TolI(4-CF₃Ph)₂ ist hydrolyseempfindlich und zersetzt sich bei 30 °C heftig. In Lösung wird bei 5 °C eine Zersetzung beobachtet. Für die Röntgenstrukturanalyse geeignete Kristalle konnten aus Diethylether durch Lösen der Substanz bei -15 °C und langsames Abkühlen auf - 80 °C erhalten werden.

¹H-NMR (-50 °C, CDCl₃): δ [ppm] = 2,3673 (s; 3H; Ph-CH₃), 7,1268 bis 7,769 (m; Ph-H) ¹⁹F-NMR (-50 °C, CDCl₃): δ [ppm] = 62,313 (s; -CF₃; <u>1</u>),

6.6.2 Thermolyse

- a) des Feststoffs: ca. 25 mg 4-Toll(4-CF₃Ph)₂ werden in einem PFA-Rohr (6 mm Innendurchmesser) gefüllt und unter Vakuum abgeschmolzen. Dieses Rohr wird in einen Autoklaven eingeschlossen und auf einem Sandbad bei 35 °C für 3 h gehalten. Nachfolgend wurde auf -78 °C gequencht und die Thermolyseprodukte schließlich bei 20 °C vollständig mit CDCl₃ herausgelöst und sowohl NMR-spektroskopisch als auch mittels eines GC-MS-Spektrometers analysiert. Es können hierbei hauptsächlich die Zersetzungsprodukte 4-Iodtoluol und 4,4'-bis(Trifluormethyl)biphenyl identifiziert werden.
- b) der Lösung: ca. 25 mg 4-TolI(4-CF₃Ph)₂ werden in CD₂Cl₂ bei -30 °C gelöst und auf 5 °C gebracht und 30 min bei dieser Temperatur gehalten. Anschließend werden die Thermolyseprodukte NMR-spektroskopisch und mit dem GC-MS-Spektrometer analysiert. Als Zersetzungsprodukte werden hauptsächlich 4-Iodtoluol, 4,4'-bis(Trifluormethyl)biphenyl, 4-Methyl-4'-(trifluormethyl)biphenyl und 4-Iodbenzotrifluorid identifiziert.

6.6.3 Kristall- und Strukturdaten für 4-Toll(4-CF₃Ph)₂

Liste 29 Kristalldaten und Angaben zur Kristallstrukturbestimmung.

Summenformel Molmasse [g / mol] Kristallsystem Raumgruppe Gitterkonstanten [pm; °]	$C_{25} H_{25} F_6 I O$ 582,35 monoklin P2 ₁ /a a = 788,10(10) b = 2850,4(4) c = 1115,00(10)	$\alpha = 90$ $\beta = 102,040(10)$ $\gamma = 90$
Zellvolumen [nm ³] Formeleinheiten pro Zelle Kristallabmessungen [mm ³] Farbe und Kristallform Wellenlänge [pm] Messtemperatur [K] Messbereich [°]	2,4496(5) 4 0,3 x 0,3 x 0,1 gelbe Plättchen 71,069 173 2,74 < θ < 24,98	

Indexbereich	-9<=h<=0, 0<=k<=33, -12<=l<=10
F(000)	1160
Dichte (berechnet) [g/cm ³]	1,579
Absorptionskoeffizient [mm ⁻¹]	1,367
Gemessene Reflexe	4394
Unabhängige Reflexe	4095 [R(int) = 0,0196]
Vollständigkeit zu $\theta = 24,98^{\circ}$	94,9 %
Methode der Strukturverfeinerung	Vollmatrix-kleinste Fehlerquadrate gegen F ²
Reflexe / restraints / Parameter	4095 / 0 / 374
Goodness-of-fit gegen F ²	1,034
R mit [I>2sigma(I)]	R1 = 0,0302, wR2 = 0,0716
R (alle Daten)	R1 = 0,0501, wR2 = 0,0776
Restelektonendichte max./min [e/ Å ⁻³]	0,910 / -0,618

Liste 30 Atomkoordinaten (x 10⁴) und äquivalente isotrope Temperaturfaktoren (pm² x 10⁻¹) für 4-Toll(4-CF₃Ph)₂. U(eq) ist definiert als $^{1}/_{3}$ des orthogonalisierten U_{ij} Tensors.

	Х	у	Z	U(eq)	
I(1)	977(1)	616(1)	8843(1)	28(1)	
F(11)	8618(3)	-464(1)	7737(3)	61(1)	
F(12)	7098(4)	-649(1)	5990(3)	76(1)	
F(13)	7098(4)	-1083(1)	7556(3)	57(1)	
C(11)	2937(5)	176(1)	8036(3)	29(1)	
C(12)	3696(5)	302(1)	7065(3)	28(1)	
C(13)	5028(5)	36(1)	6776(3)	28(1)	
C(14)	5604(5)	-364(1)	7452(3)	29(1)	
C(15)	4843(5)	-496(1)	8415(4)	35(1)	
C(16)	3524(5)	-228(1)	8703(4)	34(1)	
C(17)	7090(5)	-641(1)	7168(4)	35(1)	
F(21)	-4807(5)	2373(1)	10227(6)	144(2)	
F(22)	-5578(6)	1831(2)	11148(4)	151(2)	
F(23)	-6621(5)	1924(2)	9343(4)	123(2)	
C(21)	-1151(5)	1097(1)	9263(3)	27(1)	
C(22)	-773(5)	1458(1)	10109(3)	31(1)	
C(23)	-2079(5)	1730(1)	10389(3)	29(1)	
C(24)	-3795(5)	1640(1)	9833(3)	28(1)	
C(25)	-4187(5)	1279(1)	8994(4)	32(1)	
C(26)	-2865(5)	1010(1)	8711(4)	33(1)	
C(27)	-5200(5)	1934(1)	10135(4)	36(1)	
C(31)	117(4)	861(1)	7031(3)	24(1)	
C(32)	232(5)	1332(1)	6790(4)	29(1)	
C(33)	-305(5)	1488(1)	5593(3)	30(1)	
C(34)	-979(5)	1179(1)	4655(3)	29(1)	
C(35)	-1088(5)	708(1)	4929(4)	29(1)	
C(36)	-531(5)	541(1)	6113(3)	28(1)	
C(37)	-1557(7)	1349(2)	3358(4)	43(1)	
O(1)	5476(3)	-2255(1)	4793(2)	34(1)	
C(1)	3362(6)	-2309(2)	2931(5)	47(1)	
C(2)	4444(6)	-1986(2)	3841(4)	43(1)	
C(3)	6422(6)	-1968(2)	5729(4)	40(1)	
C(4)	7546(6)	-2270(2)	6665(5)	46(1)	

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂	
I(1)	29(1)	30(1)	26(1)	2(1)	8(1)	3(1)	
F(11)	35(1)	51(2)	98(2)	-7(2)	15(1)	5(1)	
F(12)	85(2)	98(2)	49(2)	5(2)	28(2)	52(2)	
F(13)	57(2)	32(1)	85(2)	-2(1)	24(2)	9(1)	
C(11)	28(2)	30(2)	28(2)	-3(2)	4(2)	2(2)	
C(12)	28(2)	25(2)	30(2)	3(2)	6(2)	-1(2)	
C(13)	30(2)	28(2)	27(2)	-3(2)	7(2)	-3(2)	
C(14)	28(2)	28(2)	32(2)	-5(2)	4(2)	-1(2)	
C(15)	37(2)	29(2)	39(2)	6(2)	7(2)	7(2)	
C(16)	37(2)	34(2)	33(2)	3(2)	11(2)	5(2)	
C(17)	39(2)	28(2)	40(2)	-2(2)	10(2)	4(2)	
F(21)	87(3)	54(2)	312(7)	-47(3)	93(4)	5(2)	
F(22)	171(4)	206(5)	110(3)	81(3)	109(3)	143(4)	
F(23)	63(2)	177(4)	113(3)	-66(3)	-16(2)	67(3)	
C(21)	28(2)	32(2)	24(2)	2(2)	12(2)	2(2)	
C(22)	27(2)	38(2)	27(2)	-1(2)	4(2)	0(2)	
C(23)	37(2)	30(2)	21(2)	-2(2)	8(2)	1(2)	
C(24)	31(2)	30(2)	24(2)	6(2)	10(2)	4(2)	
C(25)	27(2)	36(2)	34(2)	-2(2)	10(2)	-5(2)	
C(26)	30(2)	34(2)	37(2)	-8(2)	13(2)	-4(2)	
C(27)	39(2)	39(2)	32(2)	2(2)	13(2)	7(2)	
C(31)	22(2)	27(2)	23(2)	1(1)	6(1)	3(1)	
C(32)	28(2)	28(2)	31(2)	-5(2)	10(2)	-1(2)	
C(33)	34(2)	25(2)	33(2)	3(2)	12(2)	2(2)	
C(34)	27(2)	32(2)	31(2)	2(2)	10(2)	4(2)	
C(35)	26(2)	34(2)	28(2)	-4(2)	7(2)	-1(2)	
C(36)	27(2)	24(2)	33(2)	0(2)	8(2)	-1(1)	
C(37)	51(3)	43(3)	34(2)	7(2)	6(2)	4(2)	
O(1)	35(2)	34(1)	34(2)	-1(1)	9(1)	0(1)	
C(1)	39(3)	61(3)	41(3)	8(2)	8(2)	-3(2)	
C(2)	38(2)	41(2)	50(3)	4(2)	7(2)	9(2)	
C(3)	37(2)	43(2)	41(3)	-6(2)	14(2)	-4(2)	
C(4)	42(3)	57(3)	38(3)	-9(2)	7(2)	-2(2)	

Liste 31 Anisotrope Temperaturfaktoren (pm² x 10⁻¹) für 4-Toll(4-CF₃Ph)₂. Der anisotrope Temperaturfaktor hat die Form: $-2\pi^2$ [h²a⁺²U₁₁ + ,,, + 2 h k a⁺ b⁺ U₁₂].

Liste 32 Bindungslängen [pm] und -winkel [°] für 4-Toll(4-CF₃Ph)₂.

I(1)-C(31)	211,1(3)	F(21)-C(27)	128,7(5)	
I(1)-C(21)	228,9(4)	F(22)-C(27)	126,1(5)	
I(1)-C(11)	231,3(4)	F(23)-C(27)	127,3(5)	
F(11)-C(17)	133,8(5)	C(21)-C(22)	138,6(5)	
F(12)-C(17)	131,5(5)	C(21)-C(26)	138,5(5)	
F(13)-C(17)	133,3(4)	C(22)-C(23)	137,6(5)	
C(11)-C(12)	139,0(5)	C(23)-C(24)	138,9(5)	
C(11)-C(16)	139,6(5)	C(24)-C(25)	138,0(5)	
C(12)-C(13)	138,6(5)	C(24)-C(27)	148,3(5)	
C(13)-C(14)	139,0(5)	C(25)-C(26)	138,2(5)	
C(14)-C(15)	138,6(6)	C(31)-C(32)	137,7(5)	
C(14)-C(17)	150,0(5)	C(31)-C(36)	138,6(5)	
C(15)-C(16)	138,1(6)	C(32)-C(33)	138,6(5)	

C(33)-C(34)	138,5(5)	O(1)-C(3)	141,1(5)
C(34)-C(35)	138,3(5)	O(1)-C(2)	142,1(5)
C(34)-C(37)	150,3(6)	C(1)-C(2)	149,7(7)
C(35)-C(36)	138,6(5)	C(3)-C(4)	149,4(6)
C(31)-I(1)-C(21)	83,98(13)	C(25)-C(24)-C(23)	120,0(3)
C(31)-I(1)-C(11)	85,07(13)	C(25)-C(24)-C(27)	120,2(4)
C(21)-I(1)-C(11)	169,04(12)	C(23)-C(24)-C(27)	119,8(3)
C(12)-C(11)-C(16)	118,7(3)	C(24)-C(25)-C(26)	119,7(4)
C(12)-C(11)-I(1)	126,4(3)	C(25)-C(26)-C(21)	120,8(4)
C(16)-C(11)-I(1)	114,5(3)	C(25)-C(26)-I(1)	159,1(3)
C(13)-C(12)-C(11)	120,6(3)	C(21)-C(26)-I(1)	38,50(18)
C(13)-C(12)-I(1)	153,8(3)	F(22)-C(27)-F(23)	106,1(5)
C(11)-C(12)-I(1)	33,96(18)	F(22)-C(27)-F(21)	104,6(5)
C(12)-C(13)-C(14)	120,1(4)	F(23)-C(27)-F(21)	103,9(4)
C(15)-C(14)-C(13)	119,9(3)	F(22)-C(27)-C(24)	113,5(3)
C(15)-C(14)-C(17)	120,2(3)	F(23)-C(27)-C(24)	114,8(3)
C(13)-C(14)-C(17)	119,9(3)	F(21)-C(27)-C(24)	112,9(4)
C(16)-C(15)-C(14)	119,8(4)	C(32)-C(31)-C(36)	121,8(3)
C(15)-C(16)-C(11)	121,0(4)	C(32)-C(31)-I(1)	119,2(3)
C(15)-C(16)-I(1)	161,9(3)	C(36)-C(31)-I(1)	119,0(3)
C(11)-C(16)-I(1)	41,82(19)	C(31)-C(32)-C(33)	118,7(3)
F(12)-C(17)-F(13)	107,9(3)	C(31)-C(32)-I(1)	37,41(18)
F(12)-C(17)-F(11)	106,8(4)	C(33)-C(32)-I(1)	156,1(3)
F(13)-C(17)-F(11)	105,0(3)	C(34)-C(33)-C(32)	121,1(3)
F(12)-C(17)-C(14)	112,8(3)	C(35)-C(34)-C(33)	118,7(4)
F(13)-C(17)-C(14)	112,3(3)	C(35)-C(34)-C(37)	120,4(4)
F(11)-C(17)-C(14)	111,5(3)	C(33)-C(34)-C(37)	120,9(4)
C(22)-C(21)-C(26)	119,1(3)	C(34)-C(35)-C(36)	121,5(4)
C(22)-C(21)-I(1)	121,4(3)	C(35)-C(36)-C(31)	118,2(3)
C(26)-C(21)-I(1)	119,4(3)	C(35)-C(36)-I(1)	155,6(3)
C(23)-C(22)-C(21)	120,5(4)	C(31)-C(36)-I(1)	37,47(18)
C(23)-C(22)-I(1)	157,6(3)	C(3)-O(1)-C(2)	111,8(3)
C(21)-C(22)-I(1)	37,14(19)	O(1)-C(2)-C(1)	109,3(4)
C(22)-C(23)-C(24)	119,9(3)	O(1)-C(3)-C(4)	109,0(4)

6.7 Iod-fluoro-tetrakis-pentafluoroorthotellurat, FI(OTeF₅)₄

6.7.1 Synthese und spektroskopische Daten

2 g (2,7 mmol) B(OTeF₄)₃ werden in einem Handschuhkasten in ein PFA-Reaktionsrohr (12 mm Innendurchmesser) mit Rührkern gefüllt. Hierzu werden an einer Vakuumapparatur 5 ml Frigen 11 und 0,44 g (2 mmol) IF₅ kondensiert. Es wird auf -20 °C erwärmt, wobei Gasentwicklung von BF₃ eintritt, welches gelegentlich abgepumpt wird. Nach beendeter Gasentwicklung werden bei -40 °C bis -20 °C alle flüchtigen Substanzen im Vakuum abgepumpt. Anschließend wird das farblose Rohprodukt durch fraktionierte Kristallisation in C₄F₉SO₂F gereinigt. FI(OTeF₅)₄ ist hydrolyseempfindlich und zersetzt sich langsam bei Raumtemperatur.

Für die Röntgenstrukturanalyse geeignete Kristalle können aus SO₂ClF durch Lösen der Substanz bei -20 °C und langsames Abkühlen auf -78 °C erhalten werden.

¹⁹F-NMR (SO₂ClF, -20 °C): AB₄-Muster für die OTeF₅-Gruppe:

δ [ppm] = 99, 5 (1F, s), -35,5 (B-Teil), -46,5 (A-Teil), J(AB) = 180 Hz, J(¹²⁵Te-F) = 3696 Hz

Raman (krist., -50 °C):

 $\overline{v} \ [cm^{-1}] = 81,80(s), \ 107,84(m); \ 129,05(vs); \ 164,73(m); \ 202,34(w); \ 235,13(m); \\ 251,52(m); \ 261,16(m); \ 307,45(m); \ 323,84(m); \ 427,98(vs); \ 477,16(m); \\ 502,23(m); \ 627,59(m); \ 663,27(s); \ 672,92(vs); \ 709,56(s); \ 824,31(w); \\ 923,63(w); 952,56(w); 1209,06(w); 1218,71(m); 1439,53(w)$

6.7.2 Kristall- und Strukturdaten von FI(OTeF₅)₄

Liste 33 Kristalldaten und Angaben zur Kristallstrukturbestimmung.

Summenformel Molmasse [g / mol] Kristallsystem Raumgruppe Gitterkonstanten [pm; °]	$F_{21} I O_4 Te_4$ 1100,30 monoklin C2/c a = 1912,5(3) b = 992,46(14) c = 985,58(14)	$\alpha = 90$ $\beta = 96,393(3)$ $\alpha = 90$
Zellvolumen [nm ³]	1.8591(4)	<i>γ</i> = <i>9</i> 0
Formeleinheiten pro Zelle	4	
Kristallabmessungen [mm ³]	0,3 x 0,3 x 0,2	
Farbe	farblos	
Wellenlänge [pm]	71,073	
Messtemperatur [K]	293(2)	
Messbereich [°]	2,14 < θ < 29,19	
Indexbereich	-26<=h<=25, -13<=k<=12	2, -12<=1<=13
F(000)	1928	
Dichte (berechnet) [g/cm ³]	3,931	
Absorptionskoeffizient [mm ⁻¹]	8,086	
Gemessene Reflexe	8532	
Unabhängige Reflexe	2342 [R(int) = 0,0456]	
Vollständigkeit zu $\theta = 29,19^{\circ}$	93,0 %	2
Methode der Strukturverfeinerung	Vollmatrix-kleinste Fehle	rquadrate gegen F ²
Reflexe / restraints / Parameter	2342 / 0 / 138	
Goodness-of-fit gegen F^2	1,100	

R1 = 0,0243, wR2 = 0,0566
R1 = 0,0257, wR2 = 0,0572
0,00097(4)
1,218 und -0,929

Liste 34 Atomkoordinaten (x 10^4) und äquivalente isotrope Temperaturfaktoren (pm² x 10^{-1}) für FI(OTeF₅)₄ U(eq) ist definiert als 1/3 des orthogonalisierten U_{ij}-Tensors.

	Х	У	Z	U(eq)	
Te(1)	1576(1)	8548(1)	1312(1)	18(1)	
Te(2)	-1061(1)	6510(1)	-533(1)	18(1)	
Ι	0	7157(1)	2500	13(1)	
O(1)	932(2)	7310(3)	1918(3)	19(1)	
O(2)	-388(2)	7499(3)	556(3)	19(1)	
F(1)	0	8997(3)	2500	18(1)	
F(2)	-374(1)	5515(3)	-1248(2)	25(1)	
F(3)	-1083(1)	5249(3)	820(2)	26(1)	
F(4)	880(2)	9574(3)	417(3)	29(1)	
F(5)	2287(1)	7534(3)	2171(3)	27(1)	
F(6)	-1783(2)	7428(3)	95(3)	37(1)	
F(7)	1615(2)	7545(3)	-228(3)	33(1)	
F(8)	1557(2)	9586(3)	2832(3)	29(1)	
F(9)	-1024(2)	7708(3)	-1914(3)	37(1)	
F(10)	2227(2)	9685(3)	731(3)	35(1)	
F(11)	-1701(2)	5504(3)	-1599(3)	33(1)	

Liste 35 Anisotrope Temperaturfaktoren (pm² x 10⁻¹) für FI(OTeF₅)₄. Der anisotrope Temperaturfaktor hat die Form: $-2\pi^2$ [h²a^{*2}U₁₁ + ,,, + 2 h k a* b* U₁₂].

	U_{11}	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U_{12}
Te(1)	17(1)	23(1)	13(1)	2(1)	4(1)	-3(1)
Te(2)	18(1)	24(1)	12(1)	-4(1)	-2(1)	6(1)
Ι	12(1)	16(1)	9(1)	0	2(1)	0
O(1)	16(1)	20(1)	23(1)	4(1)	8(1)	0(1)
O(2)	24(1)	23(1)	11(1)	1(1)	-1(1)	-3(1)
F(1)	21(2)	16(2)	18(2)	0	4(1)	0
F(2)	24(1)	31(1)	20(1)	-7(1)	6(1)	9(1)
F(3)	26(1)	33(1)	20(1)	-1(1)	5(1)	-4(1)
F(4)	30(1)	32(1)	26(1)	12(1)	2(1)	2(1)
F(5)	18(1)	34(1)	30(1)	6(1)	2(1)	0(1)
F(6)	23(1)	51(2)	35(2)	-19(1)	-4(1)	15(1)
F(7)	35(2)	46(2)	20(1)	-6(1)	11(1)	-3(1)
F(8)	38(2)	28(1)	21(1)	-6(1)	3(1)	-4(1)
F(9)	54(2)	36(2)	17(1)	2(1)	-9(1)	6(1)
F(10)	30(1)	40(2)	37(2)	13(1)	8(1)	-13(1)
F(11)	26(1)	39(2)	32(1)	-15(1)	-10(1)	4(1)

	.gen [p] anna minner [] :		
Te(1)-F(10)	181.9(3)	Te(1)-O(1)	188,4(3)	
Te(1)-F(5)	182,2(3)	Te(2)-F(9)	181,5(3)	
Te(1)-F(8)	182,2(3) 182,2(3)	Te(2)-F(6)	182,0(3)	
Te(1)-F(4)	182,2(3) 182 5(3)	Te(2)-F(11)	182,1(3)	
Te(1)-F(7)	182.3(3)			
$T_{-}(2) \Gamma(2)$	192,2(2)	L Q(1)#1	102.9(2)	
Te(2)-F(3)	183,3(3)	I = O(1) # I	193,8(3)	
1e(2)-F(2)	184,6(2)	1-O(1)	193,8(3)	
Te(2)-O(2)	186,1(3)	I-O(2)#1	200,5(3)	
I-F(1)	182,6(3)	I-O(2)	200,5(3)	
F(10)-Te(1)-F(5)	89 31(13)	F(5)-Te(1)-O(1)	88 43(12)	
F(10)-Te(1)-F(8)	89 16(13)	F(8)-Te(1)-O(1)	91,94(12)	
F(5)-Te(1)-F(8)	90 71(13)	F(4)-Te(1)-O(1)	92.82(13)	
F(10)-Te(1)-F(4)	89.43(13)	F(7)-Te(1)-O(1)	89.82(13)	
F(5)-Te(1)-F(4)	178.51(12)	F(9)-Te(2)-F(6)	91.25(15)	
F(8)-Te(1)-F(4)	90.07(13)	F(9)-Te(2)-F(11)	90,36(14)	
F(10)-Te(1)-F(7)	89,08(14)	F(6)-Te(2)-F(11)	89,07(13)	
F(5)-Te(1)-F(7)	89,31(13)	F(9)-Te(2)-F(3)	177,67(13)	
F(8)-Te(1)-F(7)	178,24(13)	F(6)-Te(2)-F(3)	90,86(14)	
F(4)-Te(1)-F(7)	89,88(13)	F(11)-Te(2)-F(3)	88,68(13)	
F(10)-Te(1)-O(1)	177,50(13)			
F(9)-Te(2)-F(2)	88,56(13)	O(1)#1-I-O(1)	171,01(17)	
F(6)-Te(2)-F(2)	176,07(12)	F(1)-I-O(2)#1	80,23(8)	
F(11)-Te(2)-F(2)	87,00(12)	O(1)#1-I-O(2)#1	87,65(12)	
F(3)-Te(2)-F(2)	89,27(12)	O(1)-I-O(2)#1	90,83(12)	
F(9)-Te(2)-O(2)	90,26(13)	F(1)-I-O(2)	80,23(8)	
F(6)-Te(2)-O(2)	92,40(13)	O(1)#1-I-O(2)	90,83(12)	
F(11)-Te(2)-O(2)	178,39(13)	O(1)-I-O(2)	87,65(12)	
F(3)-Te(2)-O(2)	90,64(12)	O(2)#1-I-O(2)	160,47(17)	
F(2)-Te(2)-O(2)	91,53(12)	Te(1)-O(1)-I	143,17(16)	
F(1)-I-O(1)#1	85,50(8)	Te(2)-O(2)-I	128,33(15)	
F(1)-I-O(1)	85,50(8)			

Liste 36 Bindungslängen [pm] und -winkel [°] für FI(OTeF₅)₄.

Verwendete Symmetrietransformation für Generierung äquivalenter Atome: #1 - x, y, -z+1/2

6.8 1,1,3,3,5,5-Hexamethylpiperidinium-phenylpentafluoroiodat, pip⁺PhIF₅⁻

6.8.1 Synthese und spektroskopische Daten

In einem Handschuhkasten werden 140 mg (0,5 mmol) PhIF₄ und 150 mg (0,8 mmol) pip⁺F⁻ in ein PFA-Reaktionsrohr (12 mm Innendurchmesser) eingewogen. Hierzu werden an einer Glasvakuumapparatur bei -196 °C 5 ml Acetonitril kondensiert. Die Mischung wird unter Rühren auf -30 °C gebracht, wobei beide Komponenten in Lösung gehen. Nach kurzem Stehenlassen bei dieser Temperatur fällt ein farbloser Niederschlag aus. Zur Vervollständigung der Reaktion wird für eine weitere Stunde gerührt. Anschließend wird die überstehenden Lösung mittels eines dünnen Teflonschlauchs entfernt, der Rückstand mit wenig CH₃CN gewaschen und im Hochvakuum bei -30 °C getrocknet. Das farblose Produkt ist sehr hydrolyseempfindlich und bei Raumtemperatur nur kurzfristig stabil.

Die Kristallisation erfolgte aus Acetonitril durch langsames Abkühlen von 10 °C auf -35 °C.

¹⁹F-NMR (CD₃CN, 0 °C bzw. -25 °C):

 δ [ppm] = 10 (breites Singulett 5F,)

Raman (krist., -40 °C):

 $[cm^{-1}] = 106,87(vs); 155,09(w); 174,37(w); 226,45(w); 251,52(m); 270,80(w);$ $\overline{\nu}$ 298,77(w); 317,09(w); 340,23(w); 351,80(w); 372,06(m); 425,09(w); 474,27(w); 503,20(s); 552,38(w); 570,70(w); 609,27(w); 660,38(w); 784,77(w); 818,52(w); 830,10(w); 904,35(w); 916,88(vw); 940,99(w); 970,88(w); 994,99(w); 1004,63(vw); 1016,20(w); 1033,56(vw); 1045,13(w); 1096,24(vw); 1135,78(w); 1176,28(vw); 1263,06(w); 1370,10(vw); 1427,96(vw); 1470,39(w); 1567,78(vw); 1582,25(vw); 2110,68(w); 2254,36(w); 2873,44(vw); 2910,08(vw); 2931,29(w); 2960,22(w); 3039,30(vw); 3074,01(vw); 3091,37(vw)

Analog zu der oben beschriebenen Vorschrift werden 280 mg (1 mmol) $PhIF_4$ mit 100 mg (0,53 mmol) pip^+F^- umgesetzt. Es wird das Addukt der Zusammensetzung $pip^+PhIF_5^-$ · $PhIF_4$ erhalten.

¹⁹NMR (CD₃CN, 0 °C): δ [ppm] = 10 (br. s, 5F), -23 (s, 4F)

6.8.2 Kristall- und Strukturdaten für pip⁺PhIF₅⁻·CH₃CN

Summenformel	C ₁₈ H ₁₃₂ F ₅ I N ₂	
Molmasse [g / mol]	510,1	
Kristallsystem	monoklin	
Raumgruppe	$P2_1/c$	
Gitterkonstanten [pm; °]	a = 1173,01(17)	$\alpha = 90$
	b = 1756, 5(2)	$\beta = 92,654(12)$
	c = 1059,69(15)	$\gamma = 90$
Zellvolumen [nm ³]	2,1811(5)	,
Formeleinheiten pro Zelle	4	

Liste 37 Kristalldaten und Angabe zur Kristallstrukturbestimmung.

Farbe und KristallformfaWellenlänge [pm]71Messtemperatur [K]15Messbereich [°]1,Indexbereich-1 $F(000)$ 10Dichte (berechnet) [g/cm³]1,Absorptionskoeffizient [mm ⁻¹]1,Gemessene Reflexe26Unabhängige Reflexe66Vollständigkeit zu $\theta = 30,52^{\circ}$ 99Methode der StrukturverfeinerungVReflexe / restraints / Parameter66Goodness-of-fit gegen F²1,R mit [I>2sigma(I)]RR (alle Daten)RExtinktionskoeffizient0,	arbiose Plattchen 1,073 53(2) $,74 < \theta < 30,52$ 16 <=h <= 16, -25 <=k <= 24, -15 <= 1 <= 15 032 ,554 ,516 6861 656 [R(int) = 0,0520] 9,9 % Vollmatrix-kleinste Fehlerquadrate gegen F ² 656 / 0 / 342 ,045 A1 = 0,0309, wR2 = 0,0516 A1 = 0,0358, wR2 = 0,0544 ,00059(10)
Extinktionskoeffizient0,Restelektonendichte max/min $[e/Å^{-3}]$ 1,	,00059(10) ,773 / -2,700

Liste 38 Atomkoordinaten (x 10⁴) und äquivalente isotrope Temperaturfaktoren (pm² x 10⁻¹) für $pip^+PhIF_5^-CH_3CN$. U(eq) ist definiert als $^{1}/_{3}$ des orthogonalisierten U_{ij}-Tensors.

	х	у	Z	U(eq)	
I(1)	4983(1)	943(1)	8976(1)	18(1)	
F(1)	3803(1)	1659(1)	8158(1)	29(1)	
F(2)	6084(1)	89(1)	8644(1)	27(1)	
F(3)	5975(1)	764(1)	10547(1)	28(1)	
F(4)	4684(1)	1785(1)	10196(1)	30(1)	
F(5)	4714(1)	624(1)	7148(1)	28(1)	
C(1)	6265(1)	1651(1)	8320(1)	19(1)	
C(2)	7360(1)	1571(1)	8850(2)	24(1)	
C(3)	8211(2)	2040(1)	8411(2)	30(1)	
C(4)	7955(2)	2571(1)	7474(2)	33(1)	
C(5)	6852(2)	2639(1)	6962(2)	30(1)	
C(6)	5986(1)	2172(1)	7376(2)	23(1)	
N(1)	3563(1)	1223(1)	4051(1)	19(1)	
C(7)	3381(1)	380(1)	4289(2)	21(1)	
C(8)	2143(1)	117(1)	4397(2)	22(1)	
C(9)	1539(1)	642(1)	5315(2)	22(1)	
C(10)	1671(1)	1506(1)	5128(2)	20(1)	
C(11)	2938(1)	1694(1)	5002(2)	21(1)	
C(12)	3275(2)	1455(1)	2710(2)	25(1)	
C(13)	4820(1)	1373(1)	4281(2)	27(1)	
C(14)	2241(2)	-682(1)	4996(2)	33(1)	
C(17)	878(2)	1833(1)	4069(2)	27(1)	
C(15)	1490(2)	19(1)	3117(2)	29(1)	
C(16)	1337(2)	1904(1)	6352(2)	29(1)	
N(2)	192(3)	1109(2)	455(3)	69(1)	
C(18)	898(2)	801(1)	-60(3)	49(1)	
C(19)	1786(2)	401(2)	-705(3)	60(1)	

	U_{11}	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂	
I(1)	20(1)	15(1)	18(1)	1(1)	3(1)	0(1)	
F(1)	24(1)	28(1)	35(1)	6(1)	-1(1)	5(1)	
F(2)	28(1)	19(1)	36(1)	-2(1)	3(1)	4(1)	
F(3)	33(1)	28(1)	22(1)	4(1)	-2(1)	0(1)	
F(4)	37(1)	27(1)	27(1)	-6(1)	8(1)	3(1)	
F(5)	33(1)	29(1)	22(1)	-4(1)	-2(1)	-1(1)	
C(1)	21(1)	16(1)	20(1)	-1(1)	3(1)	-1(1)	
C(2)	25(1)	20(1)	25(1)	3(1)	-2(1)	-1(1)	
C(3)	23(1)	29(1)	38(1)	4(1)	-2(1)	-5(1)	
C(4)	33(1)	28(1)	38(1)	7(1)	5(1)	-9(1)	
C(5)	35(1)	25(1)	29(1)	9(1)	4(1)	-3(1)	
C(6)	25(1)	21(1)	22(1)	3(1)	1(1)	1(1)	
N(1)	19(1)	16(1)	22(1)	1(1)	3(1)	0(1)	
C(7)	20(1)	16(1)	26(1)	1(1)	4(1)	1(1)	
C(8)	21(1)	17(1)	28(1)	-1(1)	4(1)	-1(1)	
C(9)	21(1)	21(1)	24(1)	1(1)	5(1)	0(1)	
C(10)	20(1)	20(1)	21(1)	-2(1)	2(1)	3(1)	
C(11)	23(1)	17(1)	23(1)	-3(1)	2(1)	0(1)	
C(12)	31(1)	24(1)	20(1)	3(1)	4(1)	1(1)	
C(13)	19(1)	26(1)	35(1)	0(1)	4(1)	-3(1)	
C(14)	30(1)	19(1)	51(1)	6(1)	9(1)	-1(1)	
C(17)	24(1)	27(1)	30(1)	1(1)	-2(1)	7(1)	
C(15)	27(1)	29(1)	32(1)	-9(1)	1(1)	-4(1)	
C(16)	28(1)	30(1)	29(1)	-7(1)	5(1)	6(1)	
N(2)	77(2)	52(1)	76(2)	7(1)	-15(1)	12(1)	
C(18)	48(1)	41(1)	57(2)	20(1)	-19(1)	-6(1)	
C(19)	41(1)	70(2)	69(2)	35(2)	-2(1)	-3(1)	

Liste 39 Anisotrope Temperaturfaktoren (pm² x 10⁻¹) für pip⁺PhIF₅^{-.}CH₃CN. Der anisotrope Temperaturfaktor hat die Form: $-2\pi^2$ [h²a⁺²U₁₁ + ... + 2 h k a⁺ b⁺ U₁₂].

Liste 40 Bindungslängen [pm] und -winkel [°] für $pip^+PhIF_5^-CH_3CN$.

I(1)-F(4) I(1)-F(3)	200,65(10)	C(2)-H(2) C(3) C(4)	92(2) 138 5(3)
I(1)-F(2)	202,09(10)	C(3)-C(4) C(3)-H(3)	96(2)
I(1)-F(5)	202,69(10)	C(4)-C(5)	138,5(3)
I(1)-F(1)	203,38(10)	C(4)-H(4)	95(2)
I(1)-C(1)	209,48(15)	C(5)-C(6)	139,2(2)
C(1)-C(6)	138,4(2)	C(5)-H(5)	93(2)
C(1)-C(2)	138,4(2)	C(6)-H(6)	93(2)
C(2)-C(3)	139,1(2)		
N(1)-C(12)	150,2(2)	C(9)-C(10)	154,0(2)
N(1)-C(13)	150,7(2)	C(9)-H(9A)	98(2)
N(1)-C(11)	151,8(2)	C(9)-H(9B)	98(2)
N(1)-C(7)	151,9(2)	C(10)-C(11)	153,4(2)
C(7)-C(8)	153,3(2)	C(10)-C(17)	153,5(2)
C(7)-H(7A)	98(2)	C(10)-C(16)	154,0(2)
C(7)-H(7B)	99(2)	C(11)-H(11A)	97(2)
C(8)-C(15)	153,6(2)	C(11)-H(11B)	94(2)
C(8)-C(9)	153,7(2)	C(12)-H(12A)	94(2)
C(8)-C(14)	154,2(2)	C(12)-H(12B)	96(2)

Experimenteller Teil		Synthesevorschriften und Kris	tallstrukturanalysen
C(12)-H(12C) C(13)-H(13A) C(13)-H(13B) C(13)-H(13C) C(14)-H(14A) C(14)-H(14B) C(14)-H(14C) C(17)-H(17A)	93(2) 90(3) 94(2) 99(3) 98(2) 94(3) 97(2) 98(2)	C(17)-H(17B) C(17)-H(17C) C(15)-H(15A) C(15)-H(15B) C(15)-H(15C) C(16)-H(16A) C(16)-H(16B) C(16)-H(16C)	96(2) 93(2) 93(2) 93(2) 95(2) 97(2) 97(2) 97(2)
N(2)-C(18) C(18)-C(19) C(19)-H(19A)	114,8(4) 145,3(4) 90(2)	C(19)-H(19B) C(19)-H(19C)	90(3) 105(2)
F(4)-I(1)-F(3) $F(4)-I(1)-F(2)$ $F(3)-I(1)-F(2)$ $F(4)-I(1)-F(5)$ $F(2)-I(1)-F(5)$ $F(2)-I(1)-F(1)$ $F(3)-I(1)-F(1)$ $F(3)-I(1)-F(1)$ $F(5)-I(1)-F(1)$ $F(3)-I(1)-C(1)$ $F(3)-I(1)-C(1)$ $F(5)-I(1)-C(1)$ $F(5)-I(1)-C(1)$ $F(5)-I(1)-C(1)$ $F(1)-I(1)-C(1)$ $F(6)-C(1)-C(2)$ $C(6)-C(1)-I(1)$	$\begin{array}{c} 72,16(4)\\ 142,35(4)\\ 71,22(4)\\ 142,72(4)\\ 143,71(5)\\ 72,58(4)\\ 71,52(5)\\ 143,68(4)\\ 144,33(4)\\ 72,01(4)\\ 85,73(5)\\ 88,33(5)\\ 84,75(5)\\ 85,97(5)\\ 88,64(5)\\ 122,97(15)\\ 118,87(11)\\ \end{array}$	$\begin{array}{c} C(2)-C(1)-I(1)\\ C(1)-C(2)-C(3)\\ C(1)-C(2)-H(2)\\ C(3)-C(2)-H(2)\\ C(4)-C(3)-C(2)\\ C(4)-C(3)-H(3)\\ C(2)-C(3)-H(3)\\ C(2)-C(3)-H(3)\\ C(5)-C(4)-H(3)\\ C(5)-C(4)-H(4)\\ C(3)-C(4)-H(4)\\ C(3)-C(4)-H(4)\\ C(4)-C(5)-C(6)\\ C(4)-C(5)-H(5)\\ C(6)-C(5)-H(5)\\ C(1)-C(6)-H(6)\\ C(5)-C(6)-H(6)\\ \end{array}$	118,16(11) $118,11(15)$ $121,1(15)$ $120,7(15)$ $120,21(17)$ $123,0(14)$ $116,8(14)$ $120,43(17)$ $119,9(14)$ $119,7(14)$ $120,53(16)$ $122,2(14)$ $117,7(14)$ $117,74(15)$ $120,6(14)$ $121,7(14)$
C(12)-N(1)-C(13) C(12)-N(1)-C(11) C(13)-N(1)-C(11) C(13)-N(1)-C(7) C(13)-N(1)-C(7) C(11)-N(1)-C(7) N(1)-C(7)-C(8) N(1)-C(7)-H(7A) C(8)-C(7)-H(7A) C(8)-C(7)-H(7B) C(7)-C(8)-C(15) C(7)-C(8)-C(15) C(7)-C(8)-C(15) C(7)-C(8)-C(9) C(15)-C(8)-C(9) C(15)-C(8)-C(14) C(15)-C(8)-C(14) C(9)-C(8)-C(14) C(9)-C(8)-C(14) C(8)-C(9)-H(9A) C(10)-C(9)-H(9A) C(8)-C(9)-H(9A) C	$106,32(13) \\112,71(12) \\107,26(13) \\113,23(13) \\106,70(12) \\110,18(12) \\110,18(12) \\116,56(12) \\102,0(13) \\108,9(13) \\108,9(13) \\108,0(13) \\111,1(13) \\109,7(18) \\113,76(14) \\109,38(13) \\113,62(14) \\109,38(13) \\113,62(14) \\104,61(13) \\106,66(15) \\108,24(14) \\117,29(13) \\107,6(14) \\107,7(14) \\109,4(13) \\109,4(13) \\109,4(13) \\109,4(13) \\100,6(13) \\100,6(13) \\100,6(14) \\100,7(14) \\100,4(13) \\100,4(13) \\100,6(13) \\100,6(14) \\100,7(14) \\100,4(13) \\100,6(13) \\100,6(13) \\100,6(14) \\100,7(14) \\100,4(13) \\100,6(13) \\100,6(14) \\100,7(14) \\100,4(13) \\100,6(14) \\100,7(14) \\100,4(13) \\100,6(13) \\100,6(14) \\100,7(14) \\100,4(13) \\100,6(13) \\100,6(14) \\100,7(14) \\100,4(13) \\100,6(13) \\100,6(14) \\100,7(14) \\100,4(13) \\100,6(14) \\100,4(13) \\100,6(14) \\100,7(14) \\100,4(13) \\100,6(14) \\100,7(14) \\100,4(13) \\100,6(14) \\100,7(14) \\100,4(13) \\100,6(14) \\100,7(14) \\100,4(13) \\100,6(14) \\100,4(13) \\100,6(14) \\100,7(14) \\100,4(13) \\100,6(14) \\100,7(14) \\100,4(13) \\100,6(15) \\100$	$\begin{array}{c} C(17)-C(10)-C(9)\\ C(11)-C(10)-C(16)\\ C(17)-C(10)-C(16)\\ C(9)-C(10)-C(16)\\ N(1)-C(11)-C(10)\\ N(1)-C(11)-H(11A)\\ C(10)-C(11)-H(11B)\\ C(10)-C(11)-H(11B)\\ H(11A)-C(11)-H(11B)\\ H(11A)-C(11)-H(11B)\\ H(11A)-C(12)-H(12A)\\ N(1)-C(12)-H(12B)\\ H(12A)-C(12)-H(12B)\\ H(12A)-C(12)-H(12C)\\ H(12B)-C(12)-H(12C)\\ H(12B)-C(12)-H(12C)\\ H(12B)-C(12)-H(12C)\\ H(12B)-C(12)-H(12C)\\ H(12B)-C(12)-H(13B)\\ N(1)-C(13)-H(13B)\\ H(13A)-C(13)-H(13B)\\ N(1)-C(13)-H(13C)\\ H(13B)-C(13)-H(13C)\\ H(13$	113,74(14) $105,08(13)$ $106,08(13)$ $107,95(14)$ $116,11(13)$ $105,1(14)$ $113,8(14)$ $106,2(14)$ $109,3(14)$ $105,6(19)$ $106,7(14)$ $108,9(14)$ $111(2)$ $108,4(14)$ $111(2)$ $108,4(14)$ $111(2)$ $108,8(15)$ $112(2)$ $106,6(12)$ $111(2)$ $113,4(19)$
C(10)-C(9)-H(9B) C(10)-C(9)-H(9B) H(9A)-C(9)-H(9B) C(11)-C(10)-C(17) C(11)-C(10)-C(9)	109,4(13) 109,9(13) 104,0(18) 114,39(14) 109,01(12)	H(13B)-C(13)-H(13C) C(8)-C(14)-H(14A) C(8)-C(14)-H(14B) H(14A)-C(14)-H(14B) C(8)-C(14)-H(14C)	115,4(19) 111,7(14) 108,3(14) 108(2) 113,8(14)

H(14A)-C(14)-H(14C)	107,7(19)	H(15A)-C(15)-H(15B)	104,7(19)
H(14B)-C(14)-H(14C)	107(2)	C(8)-C(15)-H(15C)	111,3(14)
C(10)-C(17)-H(17A)	109,5(14)	H(15A)-C(15)-H(15C)	106(2)
C(10)-C(17)-H(17B)	110,2(14)	H(15B)-C(15)-H(15C)	109,7(19)
H(17A)-C(17)-H(17B)	104,8(19)	C(10)-C(16)-H(16A)	111,8(14)
C(10)-C(17)-H(17C)	113,5(14)	C(10)-C(16)-H(16B)	109,5(13)
H(17A)-C(17)-H(17C)	110(2)	H(16A)-C(16)-H(16B)	109,8(19)
H(17B)-C(17)-H(17C)	108,1(19)	C(10)-C(16)-H(16C)	109,2(14)
C(8)-C(15)-H(15A)	115,3(14)	H(16A)-C(16)-H(16C)	110,9(19)
C(8)-C(15)-H(15B)	109,9(14)	H(16B)-C(16)-H(16C)	105,6(19)
N(2)-C(18)-C(19)	179,1(3)	C(18)-C(19)-H(19C)	105,2(13)
C(18)-C(19)-H(19A)	107,9(16)	H(19A)-C(19)-H(19C)	109(2)
C(18)-C(19)-H(19B)	104,9(16)	H(19B)-C(19)-H(19C)	118(2)
H(19A)-C(19)-H(19B)	111(2)		

6.8.3 Kristall- und Strukturdaten für pip⁺PhIF₅⁻· PhIF₄

Liste 40 Kristalldaten und Angabe zur Kristallstrukturbestimmung.

Summenformel	C_{23} H ₃₄ F ₉ I ₂ N	
Molmasse [g / mol]	/49,31	
Kristallsystem	monoklin	
Raumgruppe	$P2_1/c$	
Gitterkonstanten [pm; °]	a = 1354,5(2)	$\alpha = 90$
	b = 1532,7(2)	$\beta = 110,01(1)$
	c = 1365,8(2)	$\gamma = 90$
Zellvolumen [nm ³]	2,6643(7)	
Formeleinheiten pro Zelle	4	
Kristallabmessungen [mm ³]	0,4 x 0,4 x 0,1	
Farbe und Kristallform	farblose Plättchen	
Wellenlänge [pm]	71,069	
Messtemperatur [K]	173	
Messbereich [°]	$2,93 < \theta < 24,98$	
Indexbereich	-15<=h<=16, 0<=k<=18,	-16<=1<=0
F(000)	1464	
Dichte (berechnet) [g/cm ³]	1,868	
Absorptionskoeffizient [mm ⁻¹]	2,436	
Gemessene Reflexe	4890	
Unabhängige Reflexe	4673 [R(int) = 0.0285]	
Vollständigkeit zu $\theta = 24,98^{\circ}$	99,9 %	
Methode der Strukturverfeinerung	Vollmatrix-kleinste Fehler	rquadrate gegen F ²
Reflexe / restraints / Parameter	4673 / 0 / 419	
Goodness-of-fit gegen F^2	1,035	
R mit [I>2sigma(I)]	R1 = 0.0326, $wR2 = 0.069$	93
R (alle Daten)	R1 = 0.0521, $wR2 = 0.074$	19
Restelektonendichte max./min [e/ Å ⁻³]	0,848 / -0,900	

	Х	у	Z	U(eq)
I(1)	8981(1)	9809(1)	1593(1)	15(1)
F(11)	8253(2)	10345(2)	170(2)	25(1)
F(12)	8599(2)	8846(2)	483(2)	24(1)
F(13)	8723(2)	11063(2)	1817(2)	24(1)
F(14)	9443(2)	8653(2)	2298(2)	27(1)
F(15)	9474(2)	10010(2)	3123(2)	25(1)
C(11)	7505(4)	9590(3)	1708(4)	18(1)
C(12)	7398(5)	8941(4)	2353(4)	25(1)
C(13)	6425(5)	8824(4)	2456(5)	37(2)
C(15)	5736(5)	10026(5)	1296(5)	34(2)
C(14)	5604(5)	9369(5)	1939(5)	37(2)
C(16)	6694(5)	10140(4)	1169(4)	26(1)
I(2)	2468(1)	10859(1)	1658(1)	17(1)
F(21)	3795(3)	11166(2)	1515(2)	31(1)
F(22)	2051(2)	12067(2)	1385(2)	23(1)
F(23)	1223(2)	10653(2)	2019(3)	34(1)
F(24)	3070(3)	9739(2)	2221(2)	34(1)
C(21)	3148(4)	11296(3)	3190(4)	16(1)
C(22)	2601(4)	11889(3)	3559(4)	20(1)
C(23)	3084(5)	12233(4)	4558(4)	27(1)
C(24)	4075(5)	11960(4)	5146(4)	33(1)
C(25)	4597(5)	11351(5)	4766(5)	37(2)
C(26)	4139(5)	11007(4)	3770(4)	29(1)
N(1)	9237(3)	2924(3)	-436(3)	17(1)
C(1)	9090(4)	3836(3)	-82(4)	15(1)
C(2)	8031(4)	4036(3)	33(4)	16(1)
C(3)	7149(4)	3736(3)	-953(4)	16(1)
C(4)	7213(4)	2799(3)	-1317(4)	18(1)
C(5)	8312(4)	2651(4)	-1373(4)	18(1)
C(6)	9474(5)	2272(4)	440(4)	24(1)
C(7)	10189(5)	2959(4)	-766(5)	25(1)
C(8)	7932(5)	3700(4)	1055(4)	23(1)
C(9)	7993(5)	5039(3)	93(5)	24(1)
C(10)	6864(5)	2112(4)	-683(5)	24(1)
C(111)	6466(5)	2709(4)	-2446(5)	29(1)

Liste 41 Atomkoordinaten (x 10⁴) und äquivalente isotrope Temperaturfaktoren (pm² x 10⁻¹) für pip⁺PhIF₅^{-.}PhIF₄. U(eq) ist definiert als 1 /₃ des orthogonalisierten U_{ij}-Tensors.

Liste 42 Anisotrope Temperaturfaktoren (pm² x 10⁻¹) für pip⁺PhIF₅-·PhIF₄. Der anisotrope Temperaturfaktor hat die Form: $-2\pi^2$ [h²a⁺²U₁₁ + ... + 2 h k a⁺ b⁺ U₁₂].

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
I(1)	19(1)	14(1)	11(1)	-2(1)	4(1)	0(1)
F(11)	40(2)	17(2)	17(2)	1(1)	9(1)	2(1)
F(12)	34(2)	16(2)	18(2)	-3(1)	3(1)	5(1)
F(13)	36(2)	13(1)	23(2)	-3(1)	12(1)	-3(1)
F(14)	36(2)	22(2)	21(2)	4(1)	7(1)	10(1)
F(15)	29(2)	28(2)	15(2)	-6(1)	4(1)	2(1)
C(11)	19(3)	18(2)	14(2)	-5(2)	3(2)	-3(2)
C(12)	31(3)	17(3)	27(3)	0(2)	10(3)	-4(2)
C(13)	42(4)	33(3)	42(4)	-7(3)	23(3)	-15(3)
C(15)	22(3)	47(4)	30(3)	-10(3)	4(3)	6(3)

Experin	nenteller	Teil	Syr	nthesevorsc	hriften und	Kristallstruktu	iranalysen
C(14)	29(3)	48(4)	41(4)	-21(3)	21(3)	-12(3)	
C(16)	28(3)	26(3)	22(3)	1(2)	5(2)	1(3)	
I(2)	24(1)	15(1)	12(1)	-1(1)	4(1)	1(1)	
F(21)	31(2)	45(2)	25(2)	3(2)	17(2)	6(2)	
F(22)	37(2)	18(2)	14(1)	-1(1)	6(1)	4(1)	
F(23)	26(2)	42(2)	32(2)	-2(2)	7(2)	-12(2)	
F(24)	60(2)	18(2)	22(2)	4(1)	13(2)	11(2)	
C(21)	17(3)	19(3)	13(2)	0(2)	5(2)	-4(2)	
C(22)	22(3)	20(3)	19(3)	4(2)	10(2)	4(2)	
C(23)	40(3)	27(3)	20(3)	-7(2)	18(3)	-7(3)	
C(24)	38(4)	45(4)	14(3)	-6(3)	7(3)	-16(3)	
C(25)	25(3)	64(5)	19(3)	-1(3)	5(2)	-2(3)	
C(26)	23(3)	44(4)	22(3)	-1(3)	10(2)	5(3)	
N(1)	17(2)	12(2)	19(2)	3(2)	4(2)	3(2)	
C(1)	17(3)	9(2)	18(3)	-1(2)	4(2)	-2(2)	
C(2)	19(3)	14(2)	14(2)	-3(2)	7(2)	-1(2)	
C(3)	17(3)	18(3)	13(2)	-1(2)	4(2)	5(2)	
C(4)	19(3)	17(3)	14(2)	-4(2)	2(2)	2(2)	
C(5)	20(3)	18(3)	13(3)	-1(2)	2(2)	3(2)	
C(6)	26(3)	19(3)	23(3)	12(2)	4(2)	3(2)	
C(7)	26(3)	22(3)	30(3)	0(3)	14(3)	5(2)	
C(8)	23(3)	31(3)	15(3)	-6(2)	7(2)	-3(2)	
C(9)	28(3)	16(3)	27(3)	-5(2)	7(3)	1(2)	
C(10)	23(3)	17(3)	31(3)	-2(2)	8(3)	-4(2)	
C(111)	26(3)	30(3)	22(3)	-10(3)	-3(3)	0(3)	

Liste 43 Bindungslängen [pm] und -winkel [°] für $pip^+PhIF_5^-\cdot PhIF_4$.

I(1)-F(15)	198,8(3)	C(12)-H(12)	97(6)	
I(1)-F(13)	199,7(3)	C(13)-C(14)	137,6(10)	
I(1)-F(14)	201,1(3)	C(13)-H(13)	90(6)	
I(1)-F(11)	202,8(3)	C(15)-C(16)	137,9(8)	
I(1)-F(12)	205,1(3)	C(15)-C(14)	138,8(10)	
I(1)-C(11)	208,5(5)	C(15)-H(15)	97(6)	
C(11)-C(12)	136,8(7)	C(14)-H(14)	94(6)	
C(11)-C(16)	138,1(8)	C(16)-H(16)	86(6)	
C(12)-C(13)	138,5(9)			
I(2)-F(21)	193,0(3)	C(22)-H(22)	95(6)	
I(2)-F(22)	193,4(3)	C(23)-C(24)	137,2(9)	
I(2)-F(23)	193,9(3)	C(23)-H(23)	94(6)	
I(2)-F(24)	194,2(3)	C(24)-C(25)	137,5(9)	
I(2)-C(21)	208,7(5)	C(24)-H(24)	98(6)	
C(21)-C(22)	137,4(7)	C(25)-C(26)	139,1(8)	
C(21)-C(26)	137,8(8)	C(25)-H(25)	97(6)	
C(22)-C(23)	139,9(8)	C(26)-H(26)	83(6)	
N(1)-C(7)	150,5(7)	C(2)-C(8)	153,7(7)	
N(1)-C(6)	150,6(6)	C(2)-C(9)	154,2(7)	
N(1)-C(5)	151,2(6)	C(3)-C(4)	153,3(7)	
N(1)-C(1)	151,4(6)	C(3)-H(3A)	90(6)	
C(1)-C(2)	152,6(7)	C(3)-H(3B)	95(6)	
C(1)-H(1A)	98(6)	C(4)-C(5)	153,4(7)	
C(1)-H(1B)	101(6)	C(4) - C(111)	153,5(7)	
C(2)-C(3)	153,3(7)	C(4) - C(10)	153,6(7)	
	· 、 ·			

C(5)-H(5A)	96(6)	C(8)-H(8C)	107(6)
C(5)-H(5B)	96(6)	C(9)-H(9A)	102(6)
C(6)-H(6A)	97(6)	C(9)-H(9B)	99(6)
C(6)-H(6B)	99(6)	C(9)-H(9C)	95(6)
C(6)-H(6C)	98(6)	C(10)-H(10A)	102(6)
$C(7) - H(7\Delta)$	105(6)	C(10) - H(10B)	101(6)
C(7) H(7R)	07(6)	C(10) + H(10C)	90(6)
C(7) H(7C)	97(0)	$C(10) - \Pi(10C)$ C(111) + U(11A)	90(0)
$C(7) - \Pi(7C)$ $C(8) - \Pi(8A)$	91(0) 05(6)	$C(111)$ - $\Pi(11R)$ $C(111)$ $\Pi(11R)$	90(0) 80(6)
$C(0) - \Pi(0A)$	95(0)	C(111)-H(11B)	03(0)
С(о)-П(оD)	90(0)	С(111)-П(11С)	95(0)
E(15) I(1) E(12)	72.70(12)	C(16) C(11) I(1)	1180(4)
F(15) - I(1) - I(15) F(15) - I(1) - F(14)	72,70(12) 72,28(12)	C(10) - C(11) - I(1) C(11) - C(12) - C(12)	118 2(6)
$\Gamma(13) - \Gamma(1) - \Gamma(14)$ $\Gamma(12) I(1) \Gamma(14)$	12,20(12)	C(11) - C(12) - C(13) C(11) - C(12) - U(12)	110,3(0) 121(2)
$\Gamma(15)-I(1)-\Gamma(14)$ $\Gamma(15) I(1) \Gamma(11)$	144,70(12) 145,22(12)	C(11)-C(12)-H(12) C(12)-C(12)-H(12)	121(3) 120(2)
F(13)-I(1)-F(11) F(12) I(1) F(11)	143,33(12)	C(13)-C(12)-H(12) C(14)-C(12)-C(12)	120(3)
F(13)-I(1)-F(11)	12,15(12)	C(14)-C(13)-C(12)	120,0(6)
F(14)-I(1)-F(11)	141, / / (12)	C(14)-C(13)-H(13)	123(4)
F(15)-I(1)-F(12)	142,88(12)	C(12)-C(13)-H(13)	117(4)
F(13)-I(1)-F(12)	142,51(12)	C(16)-C(15)-C(14)	120,2(6)
F(14)-I(1)-F(12)	71,24(12)	C(16)-C(15)-H(15)	118(3)
F(11)-I(1)-F(12)	70,54(11)	C(14)-C(15)-H(15)	122(3)
F(15)-I(1)-C(11)	86,06(16)	C(13)-C(14)-C(15)	120,6(6)
F(13)-I(1)-C(11)	85,43(16)	C(13)-C(14)-H(14)	120(4)
F(14)-I(1)-C(11)	88,37(17)	C(15)-C(14)-H(14)	119(4)
F(11)-I(1)-C(11)	88,45(17)	C(15)-C(16)-C(11)	117,8(6)
F(12)-I(1)-C(11)	86,23(16)	C(15)-C(16)-H(16)	123(4)
C(12)-C(11)-C(16)	123,2(5)	C(11)-C(16)-H(16)	118(4)
C(12)-C(11)-I(1)	118,7(4)		
E(21) I(2) E(22)	88 16(14)	C(21) C(22) H(22)	128(2)
$\Gamma(21)$ - $\Gamma(2)$ - $\Gamma(22)$ $\Gamma(21)$ $\Gamma(2)$ $\Gamma(22)$	170, 50(14)	C(21)-C(22)-H(22) C(22)-C(22)-H(22)	120(3)
$\Gamma(21)-I(2)-\Gamma(23)$ $\Gamma(22)$ $I(2)$ $\Gamma(23)$	170,30(14)	$C(23)-C(22)-\Pi(22)$ $C(24)-C(22)-\Pi(22)$	114(3)
$\Gamma(22)$ - $\Gamma(2)$ - $\Gamma(23)$ $\Gamma(21)$ $\Gamma(2)$ $\Gamma(24)$	89,01(14)	C(24)-C(23)-C(22)	119,0(3)
F(21)-I(2)-F(24)	88,64(15)	C(24)-C(23)-H(23)	121(4)
F(22)-I(2)-F(24)	16/,82(13)	C(22)-C(23)-H(23)	119(4)
F(23)-I(2)-F(24)	92,24(15)	C(23)-C(24)-C(25)	120,8(5)
F(21)-I(2)-C(21)	85,21(16)	C(23)-C(24)-H(24)	117(3)
F(22)-I(2)-C(21)	83,46(16)	C(25)-C(24)-H(24)	122(3)
F(23)-I(2)-C(21)	85,45(16)	C(24)-C(25)-C(26)	120,8(6)
F(24)-I(2)-C(21)	84,56(17)	C(24)-C(25)-H(25)	123(3)
C(22)-C(21)-C(26)	122,9(5)	C(26)-C(25)-H(25)	116(3)
C(22)-C(21)-I(2)	118,2(4)	C(21)-C(26)-C(25)	117,4(6)
C(26)-C(21)-I(2)	118,8(4)	C(21)-C(26)-H(26)	120(4)
C(21)-C(22)-C(23)	118,4(5)	C(25)-C(26)-H(26)	122(4)
C(7)-N(1)-C(6)	106 9(4)	C(1)- $C(2)$ - $C(8)$	113 8(4)
C(7) - N(1) - C(5)	100,9(1) 107.6(4)	C(3)-C(2)-C(8)	113,0(1) 1144(4)
C(6) N(1) C(5)	107,0(4) 112 2(4)	C(1) C(2) C(0)	104.8(4)
C(0) = N(1) = C(3) C(7) = N(1) = C(1)	112,2(4) 106 $1(4)$	C(1)-C(2)-C(3) C(3) C(2) C(9)	104,8(4) 108.4(4)
C(f) = N(1) - C(1) C(f) = N(1) - C(1)	100, 4(4)	C(3)-C(2)-C(3)	100, 4(4)
C(0) - IN(1) - C(1) C(5) N(1) C(1)	112,0(4) 111.2(4)	C(4) C(2) C(2)	103, 7(4)
U(3)-IN(1)-U(1)	111,3(4)	C(4) - C(3) - C(2)	$110,\delta(4)$
N(1)-C(1)-C(2)	110, /(4)	C(4)-C(3)-H(3A)	112(4)
N(1)-U(1)-H(1A)	100(3)	C(2)-C(3)-H(3A)	105(4)
C(2)-C(1)-H(1A)	108(3)	C(4)-C(3)-H(3B)	107(4)
N(1)-C(1)-H(1B)	105(3)	C(2)-C(3)-H(3B)	110(3)
C(2)-C(1)-H(1B)	115(3)	H(3A)-C(3)-H(3B)	107(5)
H(1A)-C(1)-H(1B)	106(5)	C(3)-C(4)-C(5)	108,6(4)
C(1)-C(2)-C(3)	109,1(4)	C(3)-C(4)-C(111)	108,6(4)

C(5)-C(4)-C(111)	104,7(4)	C(2)-C(8)-H(8B)	118(3)
C(3)-C(4)-C(10)	113,4(4)	H(8A)-C(8)-H(8B)	105(5)
C(5)-C(4)-C(10)	114,8(4)	C(2)-C(8)-H(8C)	112(3)
C(111)-C(4)-C(10)	106,3(5)	H(8A)-C(8)-H(8C)	109(5)
N(1)-C(5)-C(4)	117,0(4)	H(8B)-C(8)-H(8C)	101(5)
N(1)-C(5)-H(5A)	107(3)	C(2)-C(9)-H(9A)	110(3)
C(4)-C(5)-H(5A)	112(3)	C(2)-C(9)-H(9B)	109(3)
N(1)-C(5)-H(5B)	102(3)	H(9A)-C(9)-H(9B)	116(5)
C(4)-C(5)-H(5B)	112(3)	C(2)-C(9)-H(9C)	111(4)
H(5A)-C(5)-H(5B)	106(5)	H(9A)-C(9)-H(9C)	103(5)
N(1)-C(6)-H(6A)	113(3)	H(9B)-C(9)-H(9C)	108(5)
N(1)-C(6)-H(6B)	107(3)	C(4)-C(10)-H(10A)	105(3)
H(6A)-C(6)-H(6B)	119(5)	C(4)-C(10)-H(10B)	117(3)
N(1)-C(6)-H(6C)	108(3)	H(10A)-C(10)-H(10B)	114(5)
H(6A)-C(6)-H(6C)	105(5)	C(4)-C(10)-H(10C)	105(4)
H(6B)-C(6)-H(6C)	103(5)	H(10A)-C(10)-H(10C)	113(5)
N(1)-C(7)-H(7A)	112(3)	H(10B)-C(10)-H(10C)	103(5)
N(1)-C(7)-H(7B)	108(3)	C(4)-C(111)-H(11A)	114(3)
H(7A)-C(7)-H(7B)	108(5)	C(4)-C(111)-H(11B)	113(4)
N(1)-C(7)-H(7C)	108(4)	H(11A)-C(111)-H(11B)	107(5)
H(7A)-C(7)-H(7C)	113(5)	C(4)-C(111)-H(11C)	107(4)
H(7B)-C(7)-H(7C)	107(5)	H(11A)-C(111)-H(11C)	111(5)
C(2)-C(8)-H(8A)	110(3)	H(11B)-C(111)-H(11C)	105(5)
× / × / × /			

6.9 Phenyl-trifluoro-iodonium-hexafluoroantimonat, $PhIF_3^+SbF_6^-$

6.9.1 Synthese

140 mg (0,5 mmol) PhIF₄ werden in einem Handschuhkasten in ein PFA-Reaktionsröhrchen (6,5 mm Innendurchmesser) eingewogen. Anschließend werden 3 ml aHF und 200 mg (0,9 mmol) SbF₅ bei -196 °C einkondensiert. Nach Abschmelzen des Röhrchens wird die Lösung unter Schütteln auf -30 °C erwärmt. Nach langsamem Abkühlen auf -80 °C entstehen für die Röntgenstrukturanalyse geeignete Kristalle in Form von farblosen Plättchen.

6.9.2 Kristall- und Strukturdaten für PhIF₃⁺SbF₆⁻

Liste 44 Kristalldaten und Angaben zur Strukturbestimmung.

Summenformel	C ₆ H ₅ F ₉ I Sb	
Molmasse [g / mol]	496,75	
Kristallsystem	monoklin	
Raumgruppe	$P2_1/c$	
Gitterkonstanten [pm; °]	a = 556,37(10)	$\alpha = 90$
	b = 2401,7(6)	$\beta = 105,899(11)$

	$c = 867,3(2)$ $\gamma = 90$
Zellvolumen [nm ³]	1,1146(4)
Formeleinheiten pro Zelle	4
Kristallabmessungen [mm ³]	0,3 x 0,3 x 0,2
Farbe und Kristallform	farblose Würfel
Wellenlänge [pm]	71,073
Messtemperatur [K]	193(2)
Messbereich [°]	$1,70 < \theta < 30,01$
Indexbereich	-7<=h<=6, -25<=k<=33, -11<=l<=12
F(000)	904
Dichte (berechnet) [g/cm ³]	2,960
Absorptionskoeffizient [mm ⁻¹]	5,342
Gemessene Reflexe	7282
Unabhängige Reflexe	3220 [R(int) = 0.0548]
Vollständigkeit zu $\theta = 30,01^{\circ}$	99,0 %
Methode der Strukturverfeinerung	Vollmatrix-kleinste Fehlerquadrate gegen F ²
Reflexe / restraints / Parameter	3220 / 0 / 156
Goodness-of-fit gegen F ²	0,836
R mit [I>2sigma(I)]	R1 = 0.0383, WR2 = 0.0592
R (alle Daten)	R1 = 0,0829, wR2 = 0,0670
Extinktionskoeffizient	0,00026(7)
Restelektonendichte max./min [e/ Å ⁻³]	1,013 / -1,160

Liste 45 Atomkoordinaten (x 10⁴) und äquivalente isotrope Temperaturfaktoren (pm² x 10⁻¹) für PhIF₃⁺SbF₆⁻. U(eq) ist definiert als 1 /₃ des orthogonalisierten U_{ij}-Tensors.

	Х	у	Z	U(eq)	
Ι	750(1)	7066(1)	7110(1)	16(1)	
F(7)	3823(7)	7097(2)	8562(5)	35(1)	
F(8)	-322(7)	7202(2)	8979(4)	30(1)	
F(9)	2707(7)	6868(2)	5716(5)	33(1)	
C(1)	121(11)	6224(3)	7418(7)	18(1)	
C(2)	-1540(12)	6082(3)	8306(8)	24(2)	
C(3)	-1971(13)	5530(3)	8477(9)	33(2)	
C(4)	-805(15)	5128(3)	7836(9)	37(2)	
C(5)	829(14)	5284(3)	6936(8)	30(2)	
C(6)	1312(13)	5836(3)	6707(8)	24(2)	
Sb	-4203(1)	6450(1)	2684(1)	16(1)	
F(1)	-2934(7)	7011(2)	1602(4)	29(1)	
F(2)	-5402(7)	5919(2)	3859(5)	30(1)	
F(3)	-2869(6)	6853(2)	4625(4)	23(1)	
F(4)	-5523(7)	6059(2)	778(5)	35(1)	
F(5)	-7153(6)	6869(2)	2337(4)	24(1)	
F(6)	-1210(7)	6055(2)	3058(5)	32(1)	

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂	
Ι	16(1)	15(1)	15(1)	0(1)	2(1)	1(1)	
F(7)	24(2)	27(3)	42(3)	10(2)	-11(2)	-1(2)	
F(8)	50(3)	25(3)	20(2)	-2(2)	15(2)	9(2)	
F(9)	41(3)	29(3)	40(3)	2(2)	30(2)	6(2)	
C(1)	20(3)	17(4)	14(3)	7(3)	2(3)	5(3)	
C(2)	23(4)	20(4)	30(4)	3(3)	8(3)	4(3)	
C(3)	28(4)	31(5)	40(5)	12(4)	10(3)	-6(3)	
C(4)	54(5)	16(4)	35(5)	9(4)	3(4)	-1(4)	
C(5)	41(5)	22(4)	25(4)	0(3)	8(3)	7(4)	
C(6)	36(4)	19(4)	22(4)	-3(3)	18(3)	2(3)	
Sb	15(1)	16(1)	16(1)	-1(1)	3(1)	-1(1)	
F(1)	31(2)	37(3)	20(2)	6(2)	8(2)	-6(2)	
F(2)	37(3)	19(2)	35(2)	10(2)	12(2)	-4(2)	
F(3)	24(2)	25(2)	16(2)	0(2)	2(2)	-4(2)	
F(4)	34(3)	32(3)	35(3)	-9(2)	5(2)	-6(2)	
F(5)	15(2)	22(2)	30(2)	-1(2)	-2(2)	4(2)	
F(6)	21(2)	27(3)	46(3)	-4(2)	7(2)	8(2)	

Liste 46 Anisotrope Temperaturfaktoren (pm² x 10⁻¹)für PhIF₃⁺SbF₆⁻. Der anisotrope Temperaturfaktor hat die Form : $-2\pi^2$ [h²a⁺²U₁₁ + ... + 2 h k a⁺ b⁺ U₁₂].

Liste 47 Bindungslängen [pm] und -winkel [°] für $PhIF_3^+SbF_6^-$.

I-F(7)	182,6(4)	C(3)-C(4)	136,5(10)
I-F(9)	189,5(3)	C(3)-H(3)	95,00
I-F(8)	190,3(4)	C(4)-C(5)	140,3(10)
I-C(1)	208,2(7)	C(4)-H(4)	95,00
C(1)-C(6)	138,2(8)	C(5)-C(6)	137,9(9)
C(1)-C(2)	139,7(8)	C(5)-H(5)	95,00
C(2)-C(3) C(2)-H(2)	136,2(9) 95,00	C(6)-H(6)	95,00
Sb-F(6)	186,6(4)	Sb-F(5)	187,7(3)
Sb-F(2)	186,7(4)	Sb-F(1)	188,6(4)
Sb-F(4)	186,8(4)	Sb-F(3)	190,7(4)
$\begin{array}{l} F(7)-I-F(9)\\ F(7)-I-F(8)\\ F(9)-I-F(8)\\ F(7)-I-C(1)\\ F(9)-I-C(1)\\ F(8)-I-C(1)\\ C(6)-C(1)-C(2)\\ C(6)-C(1)-I\\ C(2)-C(1)-I\\ C(3)-C(2)-C(1)\\ C(3)-C(2)-H(2)\\ C(1)-C(2)-H(2)\\ \end{array}$	81,82(19) 81,84(19) 162,82(18) 96,3(2) 89,2(2) 87,4(2) 123,5(6) 118,6(5) 117,9(5) 117,4(6) 121,3 121,3	$\begin{array}{c} C(2)-C(3)-C(4)\\ C(2)-C(3)-H(3)\\ C(4)-C(3)-H(3)\\ C(3)-C(4)-C(5)\\ C(3)-C(4)-H(4)\\ C(5)-C(4)-H(4)\\ C(6)-C(5)-C(4)\\ C(6)-C(5)-H(5)\\ C(4)-C(5)-H(5)\\ C(5)-C(6)-H(5)\\ C(5)-C(6)-H(6)\\ C(1)-C(6)-H(6)\\ \end{array}$	121,8(7) 119,1 119,1 119,4(7) 120,3 120,3 121,3(7) 119,4 119,4 116,6(6) 121,7 121,7
F(6)-Sb-F(2)	89,60(18)	F(2)-Sb-F(5)	91,49(17)
F(6)-Sb-F(4)	90,80(18)	F(4)-Sb-F(5)	90,72(17)
F(2)-Sb-F(4)	91,53(18)	F(6)-Sb-F(1)	90,69(17)
F(6)-Sb-F(5)	178,10(18)	F(2)-Sb-F(1)	176,79(17)

Experimenteller Teil		Synthesevorschriften und Kristallstrukturanalyser		
F(4)-Sb-F(1)	91,66(17)	F(4)-Sb-F(3)	179,64(19)	
F(5)-Sb-F(1)	88,13(17)	F(5)-Sb-F(3)	88,94(16)	
F(6)-Sb-F(3)	89,53(17)	F(1)-Sb- $F(3)$	88,20(16)	
F(2)-Sb-F(3)	88,60(17)			

6.10 Phenyliodoxydifluorid, PhIOF₂

6.10.1 Synthese und spektroskopische Daten

Die Darstellung erfolgt gemäß Literatur [59a]:

In einem 200 ml FEP-Gefäß werden 3,5 g (14,8 mmol) PhIO₂ vorgelegt. Anschließend wird mit 40% iger Flusssäure eine gesättigte Lösung hergestellt und auf 60 °C erwärmt. Nach 30 min Rühren bei dieser Temperatur wird zunächst auf Raumtemperatur, dann auf 0 °C abgekühlt. Es bilden sich farblose, nadelförmige Kristalle, die nach Abdekantieren von der überstehenden Lösung an einer Metallvakuumapparatur bei Raumtemperatur getrocknet werden. Die Ausbeute ist fast quantitativ bezogen auf PhIO₂.

PhIOF₂ ist hydrolyseempfindlich und zersetzt sich erst bei 224 °C unter Verpuffung. Es ist in den gängigen organischen Lösemittel CH₃CN, CH₂CL₂, F11 etc. schwer bis gar nicht löslich.

¹⁹F-NMR (CH₃CN): δ [ppm] = -29,7 (s, PhIOF₂)

Raman (krist. RT):

 \overline{v} [cm⁻¹] = 82,77(vs); 140,62(m); 216,80(w); 254,41(m); 264,05(m); 299,73(w); 319,02(w); 330,59(w); 384,59(vw); 509,95(w); 527,31(w); 605,41(vw); 653,63(w); 657,49(w); 730,77(w); 787,67(S); 821,42(w); 992,10(w); 1013,31 (m); 1167,60(vw); 1184,96(vw); 1563,92(vw); 1581,28(vw); 3070,15(w)

6.10.2 Kristall- und Strukturdaten für PhIOF₂

Liste 48 Kristalldaten und Angaben zur Kristallstrukturbestimmung.

Summenformel	$C_6 H_5 F_2 I O$
Molmasse [g / mol]	258,00
Kristallsystem	triklin
Raumgruppe	$P\overline{1}$

Gitterkonstanten [pm; °]	a = 833,37(2)	$\alpha = 69,183(2)$
	b = 1201,49(4)	$\beta = 81,145(2)$
	c = 1603,48(5)	$\gamma = 70,602(2)$
Zellvolumen [nm ³]	1,41437(7)	•
Formeleinheiten pro Zelle	8	
Kristallabmessungen [mm ³]	0,1 x 0,1 x 0,5	
Farbe und Kristallform	farblose Nadeln	
Wellenlänge [pm]	71,073	
Messtemperatur [K]	193	
Messbereich [°]	$1,36 < \theta < 31,60$	
Indexbereich	-12<=h<=11, -17<=k<=	17, - 23<=l<=17
F(000)	960	
Dichte (berechnet) [g/cm ³]	2,423	
Absorptionskoeffizient [mm ⁻¹]	4,490	
Gemessene Reflexe	17105	
Unabhängige Reflexe	8372 [R(int) = 0.0720]	
Vollständigkeit zu $\theta = 31,60^{\circ}$	88,1 %	
Methode der Strukturverfeinerung	Vollmatrix-kleinste Fehl	erquadrate gegen F ²
Reflexe / restraints / Parameter	8372 / 0 / 422	
Goodness-of-fit gegen F ²	0,843	
R mit [I>2sigma(I)]	R1 = 0,0398, WR2 = 0,00	628
R (alle Daten)	$R1 = 0,0843, WR2 = 0,0^{\circ}$	716
Restelektonendichte max./min [e/ Å ⁻³]	1,574 / -1,686	

Liste 49 Atomkoordinaten (x 10^4) und äquivalente isotrope Temperaturfaktoren (pm² x 10^{-1}) für PhIOF₂. U(eq) ist definiert als $\frac{1}{3}$ des orthogonalisierten U_{ij}-Tensors.

	Х	у	Ζ	U(eq)	
I(1)	4929(1)	8714(1)	2284(1)	17(1)	
I(2)	1269(1)	1409(1)	2599(1)	17(1)	
I(3)	10120(1)	8234(1)	2635(1)	17(1)	
I(4)	-3796(1)	1866(1)	2480(1)	17(1)	
F(11)	5657(4)	10005(3)	1320(2)	24(1)	
F(12)	4396(4)	7237(3)	3157(2)	32(1)	
F(21)	1144(4)	-97(3)	3593(2)	29(1)	
F(22)	1293(4)	3002(3)	1698(2)	30(1)	
F(31)	11327(4)	6500(3)	3275(2)	27(1)	
F(32)	9072(4)	9947(3)	1867(2)	25(1)	
F(41)	-5170(4)	3434(3)	1697(2)	27(1)	
F(42)	-2642(4)	354(3)	3432(2)	29(1)	
O(1)	2810(4)	9355(3)	1887(2)	22(1)	
O(2)	3496(4)	991(3)	2736(3)	25(1)	
O(3)	8119(4)	7934(3)	2904(2)	21(1)	
O(4)	-2029(4)	2471(3)	2252(2)	22(1)	
C(11)	6035(7)	7570(5)	1488(4)	21(1)	
C(12)	5569(7)	8061(5)	609(4)	22(1)	
C(13)	6287(8)	7312(6)	72(4)	26(1)	
C(14)	7396(8)	6153(6)	411(4)	28(1)	
C(15)	7836(8)	5694(6)	1290(4)	30(2)	
C(16)	7140(8)	6408(6)	1855(4)	26(1)	
C(21)	271(7)	2388(5)	3515(3)	17(1)	

Experimentelle	er Teil	Synthesev	Synthesevorschriften und Kristallstrukturanalysen			
C(22)	554(7)	3531(5)	3318(4)	23(1)		
C(23)	-127(8)	4178(5)	3925(4)	26(1)		
C(24)	-1023(8)	3698(6)	4670(4)	29(2)		
C(25)	-1302(7)	2559(6)	4852(4)	25(1)		
C(26)	-632(7)	1894(5)	4262(4)	23(1)		
C(31)	10819(7)	7754(5)	1465(3)	19(1)		
C(32)	9814(7)	8459(5)	734(4)	21(1)		
C(33)	10203(9)	8078(6)	-12(4)	29(2)		
C(34)	11516(8)	7043(6)	-14(4)	31(2)		
C(35)	12489(8)	6350(6)	715(4)	31(2)		
C(36)	12155(8)	6694(6)	1479(4)	28(1)		
C(41)	-4950(7)	2502(5)	3549(3)	20(1)		
C(42)	-4958(7)	3707(5)	3460(4)	22(1)		
C(43)	-5577(8)	4110(6)	4190(4)	28(1)		
C(44)	-6196(8)	3358(6)	4952(4)	28(2)		
C(45)	-6196(8)	2163(6)	5009(4)	26(1)		
C(46)	-5558(7)	1738(5)	4290(4)	22(1)		

Liste 50 Anisotrope Temperaturfaktoren (pm² x 10⁻¹) für PhIOF₂. Der anisotrope Temperaturfaktor hat die Form: $-2\pi^2$ [h²a^{*2}U₁₁ + ... + 2 h k a* b* U₁₂].

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂	
I(1)	15(1)	18(1)	23(1)	-10(1)	-2(1)	-7(1)	
I(2)	14(1)	18(1)	25(1)	-12(1)	-2(1)	-6(1)	
I(3)	18(1)	19(1)	20(1)	-8(1)	-2(1)	-10(1)	
I(4)	15(1)	19(1)	22(1)	-10(1)	-2(1)	-8(1)	
F(11)	26(2)	18(2)	30(2)	-7(2)	-1(1)	-10(2)	
F(12)	44(2)	31(2)	27(2)	-5(2)	-1(2)	-22(2)	
F(21)	34(2)	16(2)	37(2)	-9(2)	-2(2)	-9(2)	
F(22)	36(2)	24(2)	29(2)	-7(2)	-1(2)	-12(2)	
F(31)	27(2)	26(2)	25(2)	2(1)	-10(1)	-11(2)	
F(32)	21(2)	27(2)	29(2)	-13(2)	1(1)	-9(2)	
F(41)	23(2)	29(2)	26(2)	-6(2)	-11(1)	-1(2)	
F(42)	34(2)	24(2)	31(2)	-11(2)	-1(2)	-8(2)	
O(1)	8(2)	27(2)	37(2)	-22(2)	-3(2)	0(2)	
O(2)	12(2)	31(3)	43(2)	-28(2)	1(2)	-5(2)	
O(3)	18(2)	30(2)	25(2)	-13(2)	3(2)	-15(2)	
O(4)	16(2)	26(2)	31(2)	-10(2)	-2(2)	-15(2)	
C(11)	21(3)	26(4)	27(3)	-15(3)	1(2)	-13(3)	
C(12)	23(3)	18(3)	26(3)	-6(3)	-8(2)	-7(3)	
C(13)	30(4)	30(4)	24(3)	-12(3)	-4(3)	-12(3)	
C(14)	38(4)	22(4)	33(3)	-17(3)	2(3)	-12(3)	
C(15)	40(4)	12(3)	37(4)	-7(3)	-7(3)	-3(3)	
C(16)	29(4)	25(4)	28(3)	-8(3)	-9(3)	-10(3)	
C(21)	21(3)	20(3)	15(2)	-10(2)	0(2)	-7(2)	
C(22)	24(3)	18(3)	26(3)	-5(3)	-9(2)	-5(3)	
C(23)	32(4)	14(3)	37(3)	-10(3)	-12(3)	-3(3)	
C(24)	31(4)	27(4)	31(3)	-18(3)	-9(3)	2(3)	
C(25)	24(3)	29(4)	18(3)	-7(3)	0(2)	-3(3)	
C(26)	26(3)	19(3)	25(3)	-6(3)	-6(2)	-9(3)	
C(31)	22(3)	18(3)	20(3)	-5(2)	-2(2)	-11(3)	
C(32)	25(3)	18(3)	19(3)	-2(2)	-2(2)	-10(3)	
C(33)	48(4)	24(4)	20(3)	-4(3)	-7(3)	-20(3)	

Experimenteller Teil			Syr	nthesevorsc	hriften und	Kristallstruktur	analysen
C(34)	41(4)	31(4)	29(3)	-18(3)	4(3)	-14(3)	
C(35)	29(4)	31(4)	45(4)	-26(3)	8(3)	-12(3)	
C(36)	24(3)	30(4)	34(3)	-12(3)	-8(3)	-8(3)	
C(41)	17(3)	25(3)	21(3)	-13(3)	-2(2)	-5(3)	
C(42)	22(3)	22(3)	25(3)	-6(3)	-6(2)	-12(3)	
C(43)	30(4)	25(4)	37(3)	-18(3)	-7(3)	-7(3)	
C(44)	24(3)	31(4)	30(3)	-21(3)	-6(3)	4(3)	
C(45)	28(3)	30(4)	17(3)	-5(3)	-1(2)	-8(3)	
C(46)	22(3)	18(3)	27(3)	-6(3)	-6(2)	-7(3)	

Liste 51 Bindungslängen [pm] und -winkel [°] für PhIOF₂.

I(1)-O(1)	179 2(3)	C(22)-H(22)	97(5)
I(1) - F(11)	194 8(3)	C(23)- $C(24)$	135 6(8)
I(1) - F(12)	196.8(3)	C(23)-H(23)	96(5)
I(1) - C(11)	209 9(5)	C(24)-C(25)	138 6(8)
I(2) - O(2)	1782(3)	C(24)-H(24)	94(5)
I(2) = E(22)	195 0(3)	C(25)-C(26)	138 7(7)
I(2) - F(21)	196 1(3)	C(25)-H(25)	96(5)
I(2) - C(21)	210 6(4)	C(26)-H(26)	98(5)
I(3) - O(3)	177 9(3)	C(31)-C(36)	138 1(8)
I(3) - F(31)	195 3(3)	C(31)- $C(32)$	138 6(7)
I(3)-F(32)	196 3(3)	C(32)-C(33)	138 4(7)
I(3)-C(31)	209.8(5)	C(32)-H(32)	84(5)
I(4) - O(4)	178 5(3)	C(33)-C(34)	135 7(8)
I(4) - F(41)	194 1(3)	C(33)-H(33)	98(5)
I(4) - F(42)	196 9(3)	C(34)- $C(35)$	136 7(8)
I(4) - C(41)	209 3(5)	C(34)-H(34)	99(4)
C(11)- $C(16)$	136 8(8)	C(35)-C(36)	138 8(7)
C(11)- $C(12)$	138.2(7)	C(35)-H(35)	101(5)
C(12)- $C(13)$	139.4(7)	C(36)-H(36)	103(5)
C(12)-H(12)	100(5)	C(41)- $C(46)$	136.3(8)
C(13)-C(14)	136.0(8)	C(41)-C(42)	140,2(7)
C(13)-H(13)	85(5)	C(42)-C(43)	138,6(7)
C(14)-C(15)	137,8(8)	C(42)-H(42)	93(5)
C(14)-H(14)	99(5)	C(43)-C(44)	138,0(8)
C(15)-C(16)	139,7(8)	C(43)-H(43)	91(5)
C(15)-H(15)	91(5)	C(44)-C(45)	140,6(8)
C(16)-H(16)	97(5)	C(44)-H(44)	89(5)
C(21)-C(26)	136,6(7)	C(45)-C(46)	138,5(7)
C(21)-C(22)	138,8(7)	C(45)-H(45)	94(5)
C(22)-C(23)	139,5(7)	C(46)-H(46)	76(5)
O(1)-I(1)-F(11)	90,99(15)	F(21)-I(2)-C(21)	86,49(17)
O(1)-I(1)-F(12)	91,60(16)	O(3)-I(3)-F(31)	91,61(15)
F(11)-I(1)-F(12)	171,28(13)	O(3)-I(3)-F(32)	91,97(15)
O(1)-I(1)-C(11)	99,42(18)	F(31)-I(3)-F(32)	173,20(12)
F(11)-I(1)-C(11)	85,64(18)	O(3)-I(3)-C(31)	100,04(17)
F(12)-I(1)-C(11)	85,72(18)	F(31)-I(3)-C(31)	86,52(17)
O(2)-I(2)-F(22)	91,15(16)	F(32)-I(3)-C(31)	87,16(17)
O(2)-I(2)-F(21)	90,11(16)	O(4)-I(4)-F(41)	90,04(15)
F(22)-I(2)-F(21)	174,02(12)	O(4)-I(4)-F(42)	93,21(15)
O(2)-I(2)-C(21)	101,14(17)	F(41)-I(4)-F(42)	170,74(13)
F(22)-I(2)-C(21)	87,53(17)	O(4)-I(4)-C(41)	98,63(18)

F(41)-I(4)-C(41)	87,38(17)	C(25)-C(26)-H(26)	118(3)
F(42)-I(4)-C(41)	83,57(17)	C(36)-C(31)-C(32)	122,7(5)
C(16)-C(11)-C(12)	124,1(5)	C(36)-C(31)-I(3)	119,1(4)
C(16)-C(11)-I(1)	119,6(4)	C(32)-C(31)-I(3)	117,9(4)
C(12)-C(11)-I(1)	116,3(4)	C(31)-C(32)-C(33)	117,6(6)
C(11)-C(12)-C(13)	117,0(6)	С(31)-С(32)-Н(32)	118(3)
С(11)-С(12)-Н(12)	121(3)	С(33)-С(32)-Н(32)	125(3)
С(13)-С(12)-Н(12)	122(3)	C(34)-C(33)-C(32)	120,5(6)
C(14)-C(13)-C(12)	120,6(5)	C(34)-C(33)-H(33)	113(3)
C(14)-C(13)-H(13)	127(3)	C(32)-C(33)-H(33)	126(3)
C(12)-C(13)-H(13)	112(3)	C(33)-C(34)-C(35)	121,3(5)
C(13)-C(14)-C(15)	120,8(5)	C(33)-C(34)-H(34)	122(3)
C(13)-C(14)-H(14)	119(3)	C(35)-C(34)-H(34)	117(3)
C(15)-C(14)-H(14)	120(3)	C(34)-C(35)-C(36)	120,4(6)
C(14)-C(15)-C(16)	120,6(6)	C(34)-C(35)-H(35)	125(3)
C(14)-C(15)-H(15)	126(3)	C(36)-C(35)-H(35)	115(3)
C(16)-C(15)-H(15)	113(3)	C(31)-C(36)-C(35)	117,4(6)
C(11)-C(16)-C(15)	116,8(5)	C(31)-C(36)-H(36)	131(3)
C(11)-C(16)-H(16)	124(3)	C(35)-C(36)-H(36)	111(3)
C(15)-C(16)-H(16)	119(3)	C(46)-C(41)-C(42)	124,0(5)
C(26)-C(21)-C(22)	122,9(5)	C(46)-C(41)-I(4)	120,3(4)
C(26)-C(21)-I(2)	119,6(4)	C(42)-C(41)-I(4)	115,6(4)
C(22)-C(21)-I(2)	117,5(4)	C(43)-C(42)-C(41)	116,8(5)
C(21)-C(22)-C(23)	117,0(5)	C(43)-C(42)-H(42)	124(3)
C(21)-C(22)-H(22)	123(3)	C(41)-C(42)-H(42)	119(3)
C(23)-C(22)-H(22)	120(3)	C(44)-C(43)-C(42)	120,6(6)
C(24)-C(23)-C(22)	120,8(6)	C(44)-C(43)-H(43)	120(3)
C(24)-C(23)-H(23)	125(3)	C(42)-C(43)-H(43)	119(3)
C(22)-C(23)-H(23)	114(3)	C(43)-C(44)-C(45)	120,9(5)
C(23)-C(24)-C(25)	121,4(5)	C(43)-C(44)-H(44)	118(3)
C(23)-C(24)-H(24)	128(3)	C(45)-C(44)-H(44)	121(3)
C(25)-C(24)-H(24)	111(3)	C(46)-C(45)-C(44)	119,3(6)
C(24)-C(25)-C(26)	119,0(6)	C(46)-C(45)-H(45)	122(3)
C(24)-C(25)-H(25)	125(3)	C(44)-C(45)-H(45)	119(3)
C(26)-C(25)-H(25)	116(3)	C(41)-C(46)-C(45)	118,4(5)
C(21)-C(26)-C(25)	118,9(5)	C(41)-C(46)-H(46)	129(4)
C(21)-C(26)-H(26)	123(3)	C(45)-C(46)-H(46)	112(4)

6.11 Diphenyloxoiodonium-trifluoroacatat, Ph₂IOTfa

6.11.1 Synthese und spektroskopische Daten

Die Darstellung erfolgt nach der von Beringer & Bodlaender beschrieben Vorschrift [59b]: Zu 125 ml einer 1M NaOH werden bei 0 °C unter Rühren 16,9 g (71,6 mmol) PhIO₂ gegeben. Nach 1,5 h wird das gebildete Natriumiodat abfiltriert und CO₂ in das Filtrat bis zur neutralen Reaktion geleitet. Dann wird langsam soviel CF₃COOH zugegeben, bis keine Gasentwicklung mehr zu beobachten ist. Der ausgefallene farblose Niederschlag wird abfiltriert, zunächst mit Wasser neutral gewaschen und anschließend zweimal mit Diethylether gespült. Das Produkt wird dann im Vakuum getrocknet.

Ausbeute: 7,72 g (18,8 mmol) 53% der Theorie Schmp.: 155,2 °C (Zers.)

¹H-NMR (CD₃CN):

 δ [ppm] = 7,49 (t, 2H(para), ³J(HH) = 7.4 Hz), 7,62 (m, 4H(meta)), 8,07 (m, 4H (ortho))

¹⁹F-NMR (CD₃CN):

 δ [ppm] = 76,6 (s, CF₃COO)

Raman (krist., RT):

$$\overline{v} \ [cm^{-1}] = 57,69(vs); \ 81,80(vs); \ 128,09(m); \ 178,23(w); \ 195,59(w); \ 211,98(w); \ 238,98(m); \ 252,48(m); \ 289,13(w); \ 315,16(w); \ 409,66(vw); \ 442,45(vw); \ 462,70(vw); \ 606,38(vw); \ 651,70(m); \ 699,92(S); \ 751,99(w); \ 833,95(vw); \ 993,06(w); \ 1013,31(w); \ 1042,24(vw); \ 1170,49(vw); \ 1181,10(vw); \ 1422,17(vw); \ 1562,96(vw); \ 1581,28(vw); \ 1652,64(vw); \ 3063,40(vw); \ 3127,05(vw)$$

6.12 Diphenyl-iod-oxyfluorid, Ph₂IOF

6.12.1 Synthese und spektroskopische Daten

Die Darstellung erfolgt nach der von Beringer u. Bodlaender beschriebenen Vorschrift [59b]: 5 g (10,6 mmol) Ph₂IOTfa werden in 40 ml kochendem Wasser gelöst. Hierzu wird solange kaltgesättigte KF-Lösung getropft, bis kein Niederschlag mehr ausfällt. Anschließend wird der Niederschlag abgesaugt, mit Diethylether gewaschen und im Vakuum getrocknet. Ph₂IOF wird als farbloses, kristallines Pulver erhalten. Geeignete Kristalle konnten aus CH₃CN durch Lösen der Substanz bei Raumtemperatur und langsames Abkühlen auf -40 °C erhalten werden.

Ausbeute: 2,8 g (8,9 mmol) 83% der Theorie Schmp.: 209,7 °C (Zers.)

¹⁹F-NMR (CH₃COOH): δ [ppm]: -69,7 (br. s, 1F) Raman (krist. RT):

 $\overline{v} \ [cm^{-1}] = 62,52(s); 80,84(vs); 126,16(m); 172,45(w); 223,55(w); 244,77(m); 256,34(m); 292,02(w); 400,98(w); 439,56(w); 606,38(w); 646,88(m); 658,45(w); 717,27(w); 732,70(w); 827,20(vw); 926,52(vw); 984,38(w); 994,03(w); 1015,24(w); 1183,03(vw); 1410,60(vw); 1466,53(vw); 1581,28(vw); 1643,96(vw); 3049,90(vw); 3079,80(vw)$

6.12.2 Kristall- und Strukturdaten für Ph₂IOF

v	•	
Summenformel	C ₁₂ H ₁₀ F I O	
Molmasse [g / mol]	316,10	
Kristallsystem	triklin	
Raumgruppe	PĪ	
Gitterkonstanten [pm; °]	a = 735,03(13)	$\alpha = 68,584(4)$
	b = 876,32(19)	$\beta = 82,332(7)$
	c = 877,25(18)	$\gamma = 82,403(5)$
Zellvolumen [nm ³]	0,51920(18)	• • • • • •
Formeleinheiten pro Zelle	2	
Kristallabmessungen [mm ³]	0,3 x 0,3 x 0,3	
Farbe und Kristallform	farblose Würfel	
Wellenlänge [pm]	71,073	
Messtemperatur [K]	193(2)	
Messbereich [°]	$2,50 < \theta < 30,00$	
Indexbereich	-9<=h<=10, -12<=k<=12,	, - 12<=l<=12
F(000)	304	
Dichte (berechnet) [g/cm ³]	2,022	
Absorptionskoeffizient [mm ⁻¹]	3,066	
Gemessene Reflexe	6160	
Unabhängige Reflexe	3000 [R(int) = 0,0230]	
Vollständigkeit zu $\theta = 30,00^{\circ}$	99,1 %	
Methode der Strukturverfeinerung	Vollmatrix-kleinste Fehle	rquadrate gegen F ²
Reflexe / restraints / Parameter	3000 / 0 / 138	
Goodness-of-fit gegen F ²	1,053	
R mit [I>2sigma(I)]	R1 = 0,0278, WR2 = 0,057	75
R (alle Daten)	R1 = 0,0345, wR2 = 0,059	95
Restelektonendichte max./min [e/ Å ⁻³]	1,263 / -0,630	

Liste 52 Kristalldaten und Angaben zur Kristallstrukturbestimmung.

Liste 53 Atomkoordinaten (x 10^4) und äquivalente isotrope Temperaturfaktoren (pm² x 10^{-1}) für Ph₂IOF. U(eq) ist definiert als 1/3 des orthogonalisierten U_{ij}-Tensors.

	Х	У	Z	U(eq)	
I(1)	2493(1)	9258(1)	5748(1)	22(1)	
F	5112(7)	8292(12)	4908(12)	25(1)	
0	162(7)	10018(14)	6626(14)	20(1)	
C(1)	1545(11)	6909(13)	6343(12)	19(2)	

Experimenteller Teil	Synthesevorschriften und Kristallstrukturanalysen			
C(2)	27(14)	6538(12)	7411(14)	27(2)
C(3)	-518(13)	4870(14)	7939(13)	28(2)
C(4)	367(11)	3753(17)	7309(18)	29(2)
C(5)	1884(16)	4179(12)	6222(14)	24(2)
C(6)	2421(14)	5813(14)	5766(14)	30(2)
C(7)	3465(12)	8597(13)	8113(11)	21(2)
C(8)	2368(12)	9351(11)	9200(10)	14(2)
C(9)	3039(16)	8949(14)	10660(13)	29(2)
C(10)	4608(13)	7863(17)	11089(16)	30(2)
C(11)	5635(14)	7163(15)	9968(14)	34(3)
C(12)	5032(13)	7483(14)	8521(14)	27(2)

Liste 54 Anisotrope Temperaturfaktoren (pm² x 10⁻¹) für Ph₂IOF. Der anisotrope Temperaturfaktor hat die Form: $-2\pi^2$ [h²a^{*2}U₁₁ + ... + 2 h k a* b* U₁₂].

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂	
I(1)	32(1)	22(1)	12(1)	-4(1)	-7(1)	-7(1)	
F	27(2)	21(2)	27(2)	-12(2)	3(2)	-3(2)	
0	20(2)	19(3)	25(3)	-12(2)	-8(2)	3(2)	
C(1)	20(4)	19(5)	17(4)	-3(3)	1(3)	-4(4)	
C(2)	37(5)	6(4)	36(5)	-1(3)	-9(4)	-7(3)	
C(3)	40(4)	14(3)	27(4)	-1(3)	0(3)	-16(3)	
C(4)	30(4)	12(4)	39(4)	3(3)	-13(3)	-9(3)	
C(5)	43(4)	1(2)	28(3)	-1(2)	-11(3)	-9(2)	
C(6)	27(4)	31(5)	28(4)	-5(3)	-4(3)	-7(3)	
C(7)	34(5)	20(5)	13(4)	-4(3)	-7(3)	-16(4)	
C(8)	24(3)	10(3)	13(3)	-8(2)	-2(2)	-3(2)	
C(9)	40(4)	19(4)	26(4)	-6(3)	4(3)	-14(3)	
C(10)	55(5)	20(4)	13(3)	1(3)	-9(3)	-16(3)	
C(11)	30(4)	37(5)	32(4)	-4(3)	-5(3)	-11(3)	
C(12)	23(4)	16(4)	43(6)	-12(4)	-13(4)	6(3)	

Liste 55 Bindungslängen [pm] und -winkel [°] für Ph₂IOF.

192,1(5)	C(5)-H(5)	95,00
211,9(10)	C(6)-H(6)	95,00
213,6(9)	C(7)-C(12)	140,2(13)
214,8(4)	C(7)-C(8)	145,2(11)
130,3(13)	C(8)-C(9)	134,2(14)
135,0(13)	C(8)-H(8)	95,00
145,7(15)	C(9)-C(10)	139,3(16)
95,00	C(9)-H(9)	95,00
134,8(14)	C(10)-C(11)	142,6(14)
95,00	C(10)-H(10)	95,00
136,3(16)	C(11)-C(12)	132,0(16)
95,00	C(11)-H(11)	95,00
143,4(15)	C(12)-H(12)	95,00
90,2(4)	C(7)-I(1)-F	88,9(3)
88,3(4)	C(6)-C(1)-C(2)	120,0(10)
92,25(12)	C(6)-C(1)-I(1)	122,1(7)
176,56(14)	C(2)-C(1)-I(1)	117,9(6)
87,9(3)	C(1)-C(2)-C(3)	117,7(8)
	$ \begin{array}{c} 192,1(5)\\ 211,9(10)\\ 213,6(9)\\ 214,8(4)\\ 130,3(13)\\ 135,0(13)\\ 145,7(15)\\ 95,00\\ 134,8(14)\\ 95,00\\ 136,3(16)\\ 95,00\\ 136,3(16)\\ 95,00\\ 143,4(15)\\ \begin{array}{c} 90,2(4)\\ 88,3(4)\\ 92,25(12)\\ 176,56(14)\\ 87,9(3)\\ \end{array} $	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Experimenteller Teil		Synthesevorschriften und Kri	stallstrukturanalysen
C(1)-C(2)-H(2)	121,1	C(8)-C(7)-I(1)	115,0(6)
C(3)-C(2)-H(2)	121,1	C(9)-C(8)-C(7)	113,7(9)
C(4)-C(3)-C(2)	122,0(10)	C(9)-C(8)-H(8)	123,2
C(4)-C(3)-H(3)	119,0	C(7)-C(8)-H(8)	123,2
C(2)-C(3)-H(3)	119,0	C(8)-C(9)-C(10)	122,3(10)
C(3)-C(4)-C(5)	118,4(12)	C(8)-C(9)-H(9)	118,9
C(3)-C(4)-H(4)	120,8	C(10)-C(9)-H(9)	118,9
C(5)-C(4)-H(4)	120,8	C(9)-C(10)-C(11)	121,5(11)
C(4)-C(5)-C(6)	118,2(10)	C(9)-C(10)-H(10)	119,2
C(4)-C(5)-H(5)	120,9	C(11)-C(10)-H(10)	119,2
C(6)-C(5)-H(5)	120,9	C(12)-C(11)-C(10)	119,2(10)
C(1)-C(6)-C(5)	123,5(10)	С(12)-С(11)-Н(11)	120,4
C(1)-C(6)-H(6)	118,2	C(10)-C(11)-H(11)	120,4
C(5)-C(6)-H(6)	118,2	C(11)-C(12)-C(7)	117,9(9)
C(12)-C(7)-C(8)	125,2(9)	С(11)-С(12)-Н(12)	121,1
C(12)-C(7)-I(1)	119,8(6)	С(7)-С(12)-Н(12)	121,1

6.13 Diphenyl-difluoroiodonium-trifluoroacetat, Ph₂IF₂⁺Tfa⁻

6.13.1 Synthese und spektroskopische Daten

Modifizierte Vorschrift nach Yagupolskii [59c]:

In einen Autoklaven mit 50 ml Füllvolumen werden 1,33 g (3,2 mmol) Ph₂IOTfa eingewogen und mit 25 ml CH₂Cl₂ versetzt. Anschließend wird bei -196 °C 0,5 g (4,6 mmol) SF₄ einkondensiert. Nach zwei Stunden Rühren bei -10 °C werden das Lösemittel und alle flüchtigen Komponenten entfernt. Das Rohprodukt wird zur weiteren Reinigung in einem Gemisch aus CH₂Cl₂ und Diethylether umkristallisiert. Ph₂IF₂Tfa ist ein farbloser, hydrolyseempfindlicher, kristalliner Feststoff. Einkristalle können aus einem CH₂Cl₂/Ether-Gemisch durch Lösen der Substanz bei Raumtemperatur und langsames Abkühlen auf -35 °C erhalten werden,

Ausbeute: 0,94 g (2,2 mmol), 63% der Theorie

 19 F-NMR (CH₂Cl₂):

 δ [ppm] = -76,4 (s, 3F; CF₃COO), -88,8 (s, 2F; Ph₂IF₂⁺)

Raman (krist., RT):

 $\overline{v} \ [cm^{-1}] = 81,80(vs); \ 119,41(m); \ 179,20(w); \ 255,38(s); \ 266,95(m); \ 292,02(w);$ $402,91(vw); \ 431,84(vw); \ 466,56(vw); \ 526,34(w); \ 542,74(w); \ 605,41(w);$ $644,95(w); \ 650,74(w); \ 718,24(vw); \ 832,99(vw); \ 981,49(w); \ 988,24(w);$ $1012,35(m); \ 1039,35(vw); \ 1165,67(vw); \ 1187,85(vw); \ 1421,21(w);$ $1470,39(vw); \ 1562,96(vw); \ 1582,25(vw); \ 1642,03(vw); \ 3076,90(vw);$ 3125,12(vw)

6.13.2 Kristall- und Strukturdaten für Ph₂IF₂⁺Tfa⁻

Liste 56	Kristalldaten	und Angabe zur	Kristallstrukturbestimmung.
		0	0

Summenformel Molmasse [g / mol] Kristallsystem Raumgruppe Gitterkonstanten [pm; °]	$C_{14} H_{10} F_5 I O_2$ 432,12 monoklin C2/c a = 2253,5(9) b = 1010,3(4) a = 1200,3(5)	$\alpha = 90$ $\beta = 91,555(8)$ $\alpha = 90$
Zellvolumen [nm ³] Formeleinheiten pro Zelle	2,94(1) 8	<i>γ</i> – 90
Kristallabmessungen [mm ³] Farbe und Kristallform Wellenlänge [pm] Messtemperatur [K] Messbereich [°]	0,4 x 0,4 x 0,2 farblose Plättchen 71,073 173(2) 1,81 < θ < 30,61 22 < θ < 30,61	1 10 -1 - 10
F(000) Dichte (berechnet) $[g/cm^3]$ Absorptionskoeffizient $[mm^{-1}]$	-32<=n<=32, -14<=K<=12 1664 1,955 2,239	4, -18<=1<=18
Gemessene Reflexe Unabhängige Reflexe Vollständigkeit zu $\theta = 30,61^{\circ}$ Methode der Strukturverfeinerung	17429 4518 [R(int) = 0,0646] 99,6 % Vollmatrix-kleinste Fehler	rquadrate gegen F ²
Reflexe / restraints / Parameter Goodness-of-fit gegen F ² R mit [I>2sigma(I)] R (alle Daten) Restelektonendichte max/min [e/ Å ⁻³]	4518 / 0 / 210 1,054 R1 = 0,0579, wR2 = 0,147 R1 = 0,0717, wR2 = 0,155 1,559 / -2,356	76 57

	Х	у	Z	U(eq)	
I(1)	1901(1)	7879(1)	1530(1)	25(1)	
I(2)	1910(1)	7123(6)	1569(2)	38(1)	
F(1)	2021(2)	6014(4)	1335(3)	51(1)	
F(2)	1706(2)	9700(4)	1843(4)	61(1)	
C(11)	1869(2)	7497(5)	3135(3)	21(1)	
C(12)	1908(3)	6190(6)	3445(4)	36(1)	
C(13)	1851(3)	5917(8)	4482(5)	49(2)	
C(14)	1753(3)	6899(7)	5171(5)	43(1)	
C(15)	1726(3)	8198(8)	4869(5)	52(2)	
C(16)	1781(3)	8528(6)	3796(5)	42(1)	
C(21)	973(2)	7524(7)	1301(4)	38(1)	
C(22)	619(3)	8608(10)	1174(6)	59(2)	
C(23)	2(4)	8335(13)	1042(7)	80(3)	
C(24)	-198(4)	7058(13)	1050(6)	81(4)	

Liste 57 Atomkoordinaten (x 10⁴) und äquivalente isotrope Temperaturfaktoren (pm² x 10⁻¹) für $Ph_2IF_2^{+}Tfa^{-}U(eq)$ ist definiert als 1/3 des orthogonalisierten U_{ij}^{-} Tensors.

Experimenteller Teil		Syntheseve	Synthesevorschriften und Kristallstrukturanalysen		
C(25)	174(4)	6023(12)	1167(6)	75(3)	
C(26)	782(3)	6226(9)	1303(5)	56(2)	
O(1)	3039(2)	7962(5)	2153(3)	43(1)	
O(2)	3242(2)	7014(6)	630(4)	56(1)	
C(31)	3365(2)	7474(6)	1506(4)	31(1)	
C(32)	4028(2)	7410(7)	1819(5)	37(1)	
F(31A)	4127(2)	7431(9)	2820(4)	107(3)	
F(32A)	4284(3)	6337(8)	1494(6)	112(3)	
F(33A)	4322(3)	8324(9)	1401(8)	140(4)	

Liste 58 Anisotrope Temperaturfaktoren (pm² x 10⁻¹) für Ph₂IF₂⁺Tfa⁻. Der anisotrope Temperaturfaktor hat die Form: $-2\pi^2$ [h²a⁺²U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂].

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂	
I(1)	20(1)	40(1)	15(1)	7(1)	0(1)	-4(1)	
I(2)	31(2)	59(2)	24(1)	-16(2)	-14(1)	10(2)	
$\dot{F(1)}$	54(2)	61(2)	38(2)	-28(2)	1(2)	14(2)	
F(2)	69(3)	38(2)	76(3)	33(2)	-11(2)	-14(2)	
C(11)	19(2)	27(2)	16(2)	1(2)	0(1)	2(2)	
C(12)	44(3)	35(3)	27(2)	7(2)	-3(2)	2(2)	
C(13)	50(4)	65(4)	32(3)	20(3)	-5(2)	-4(3)	
C(14)	32(3)	71(4)	24(2)	4(2)	2(2)	-3(3)	
C(15)	37(3)	82(5)	36(3)	-30(3)	1(2)	9(3)	
C(16)	49(3)	40(3)	36(3)	-16(2)	-6(2)	8(3)	
C(21)	24(2)	71(4)	19(2)	2(2)	-2(2)	-4(2)	
C(22)	38(3)	84(6)	56(4)	15(4)	3(3)	4(4)	
C(23)	38(4)	138(9)	62(5)	17(6)	-2(3)	27(5)	
C(24)	31(3)	172(12)	40(4)	6(5)	-6(3)	-23(5)	
C(25)	50(4)	127(9)	49(4)	-3(5)	6(3)	-44(5)	
C(26)	48(4)	83(5)	37(3)	0(3)	6(3)	-27(4)	
O(1)	31(2)	67(3)	31(2)	0(2)	-1(2)	5(2)	
O(2)	42(2)	100(4)	26(2)	-3(2)	0(2)	-5(2)	
C(31)	22(2)	50(3)	22(2)	2(2)	-2(2)	0(2)	
C(32)	27(2)	51(3)	33(3)	1(2)	-1(2)	-5(2)	
F(31A)	38(2)	238(8)	44(3)	-6(4)	-17(2)	21(4)	
F(32A)	60(3)	147(6)	129(6)	-61(5)	-15(3)	46(4)	
F(33A)	55(3)	171(7)	191(9)	102(7)	-30(4)	-59(4)	

Liste 59 Bindungslängen [pm] und -winkel [°] für $Ph_2IF_2^+Tfa^-$.

I(1)-I(2)	76,6(5)	C(12)-H(12)	95,00	
I(1)-F(1)	192,1(4)	C(13)-C(14)	135,4(10)	
I(1)-F(2)	193,7(5)	C(13)-H(13)	95,00	
I(1)-C(11)	211,0(4)	C(14)-C(15)	136,9(11)	
I(1)-C(21)	213,3(5)	C(14)-H(14)	95,00	
I(2)-F(1)	118,9(7)	C(15)-C(16)	143,4(10)	
I(2)-C(11)	206,0(5)	C(15)-H(15)	95,00	
I(2)-C(21)	216,7(6)	C(16)-H(16)	95,00	
I(2)-C(12)	259,7(7)	C(21)-C(22)	136,3(11)	
C(11)-C(16)	136,4(7)	C(21)-C(26)	138,0(11)	
C(11)-C(12)	138,1(7)	C(22)-C(23)	142,2(11)	
C(12)-C(13)	137,6(8)	C(22)-H(22)	95,00	

Experimenteller Teil		Synthesevorschriften und Krist	tallstrukturanalysen
C(23)-C(24)	136,7(17)	C(25)-C(26)	139,4(10)
С(23)-Н(23)	95,00	C(25)-H(25)	95,00
C(24)-C(25)	134,6(15)	C(26)-H(26)	95,00
C(24)-H(24)	95,00		
O(1)-C(31)	123.0(7)	C(32)-F(33A)	126.6(8)
O(2)-C(31)	124,7(7)	C(32)-F(32A)	130,2(9)
C(31)-C(32)	153,8(7)	C(32)-F(31A)	130,5(8)
I(2)-I(1)-F(1)	13,3(3)	C(14)-C(13)-C(12)	120,8(6)
I(2)-I(1)-F(2)	160,0(3)	C(14)-C(13)-H(13)	119,6
F(1)-I(1)-F(2)	173,04(18)	C(12)-C(13)-H(13)	119,6
I(2)-I(1)-C(11)	75,8(3)	C(13)-C(14)-C(15)	121,5(6)
F(1)-I(1)-C(11)	87,58(18)	C(13)-C(14)-H(14)	119,2
F(2)-I(1)-C(11)	87,42(18)	C(15)-C(14)-H(14)	119,2
I(2)-I(1)-C(21)	82,3(3)	C(14)-C(15)-C(16)	119,6(6)
F(1)-I(1)-C(21)	87,6(2)	C(14)-C(15)-H(15)	120,2
F(2)-I(1)-C(21)	87,8(2)	C(16)-C(15)-H(15)	120,2
C(11)-I(1)-C(21)	92,64(18)	C(11)-C(16)-C(15)	116,3(6)
I(1)-I(2)-F(1)	158,2(5)	C(11)-C(16)-H(16)	121,8
I(1)-I(2)-C(11)	83,1(3)	C(15)-C(16)-H(16)	121,8
F(1)-I(2)-C(11)	115,9(4)	C(22)-C(21)-C(26)	125,5(6)
I(1)-I(2)-C(21)	77,2(3)	C(22)-C(21)-I(1)	116,8(5)
F(1)-I(2)-C(21)	110,3(4)	C(26)-C(21)-I(1)	117,6(5)
C(11)-I(2)-C(21)	93,0(2)	C(22)-C(21)-I(2)	137,3(6)
I(1)-I(2)-C(12)	115.0(3)	C(26)-C(21)-I(2)	97,1(5)
F(1)-I(2)-C(12)	84,3(4)	I(1)-C(21)-I(2)	20,49(15)
C(11)-I(2)-C(12)	31,93(19)	C(21)-C(22)-C(23)	115,3(9)
C(21)-I(2)-C(12)	101.0(2)	C(21)-C(22)-H(22)	122,4
I(2)-F(1)-I(1)	8.5(2)	C(23)-C(22)-H(22)	122.4
C(16)-C(11)-C(12)	123.9(5)	C(24)-C(23)-C(22)	120.2(9)
C(16)-C(11)-I(2)	139.8(4)	C(24)-C(23)-H(23)	119.9
C(12)-C(11)-I(2)	96.0(4)	C(22)-C(23)-H(23)	119.9
C(16)-C(11)-I(1)	118.9(4)	C(25)-C(24)-C(23)	122.0(8)
C(12)-C(11)-I(1)	117 1(4)	C(25)-C(24)-H(24)	119.0
I(2)-C(11)-I(1)	21 12(16)	C(23)-C(24)-H(24)	119.0
C(13)-C(12)-C(11)	117 8(6)	C(24)-C(25)-C(26)	120 5(9)
C(13)-C(12)-I(2)	169.0(5)	C(24)-C(25)-H(25)	119.8
C(11)-C(12)-I(2)	52,1(3)	C(26)-C(25)-H(25)	119,8
C(13)-C(12)-H(12)	121.1	C(21)-C(26)-C(25)	116 5(9)
C(11)-C(12)-H(12)	121,1	C(21) - C(26) - H(26)	121.8
I(2)-C(12)-H(12)	69.2	C(25)-C(26)-H(26)	121,8
O(1)-C(31)-O(2)	130 0(5)	F(32A)-C(32)-F(31A)	105 5(7)
$O(1)_{-}C(31)_{-}C(32)$	115 6(5)	$F(33\Delta) - C(32) - C(31)$	111 9(6)
$O(2)_{C(31)_{C(32)}}$	114 3(5)	F(32A) - C(32) - C(31)	112 7(5)
$F(33\Delta)_C(32) F(32\Delta)$	103.2(8)	F(31A) C(32) C(31)	112,7(3) 113 5(5)
$F(33\Delta) - C(32) - F(31\Delta)$	109,2(0) 109,5(7)	1(31A) - C(32) - C(31)	113,3(3)
(3311) - (32) - 1 (31A)	107,5(7)		

6.14 Diphenyl-iod-trifluorid, Ph₂IF₃

6.14.1 Synthese und spektroskopische Daten

a) Neue Methode

1,68 g (5,3 mmol) Ph₂IOF werden in einen Autoklaven mit 50 ml Füllvolumen gefüllt. Hierzu werden bei -196 °C 20 ml F11 und 2,2 g (20 mmol) SF₄ kondensiert. Anschließend wird der Autoklav auf Raumtemperatur erwärmt und für 24 h gerührt. Alle flüchtigen Komponenten werden im Vakuum abgepumpt. Zurück bleibt ein farbloser, hydrolyseempfindlicher, kristalliner Feststoff.

Ausbeute: 1,2 g (3,6 mmol), 68% der Theorie

b) Modifizierte Vorschrift nach Yagupolskii [59c]:

In einem Autoklaven mit 50 ml Füllvolumen werden auf 2,05 g (5 mmol) PH_2IOTfa bei Stickstofftemperatur 20 ml CH_2Cl_2 und 3,1 g (28,7 mmol) SF_4 kondensiert. Nach 48 h Rühren bei 30 °C wird abgekühlt und werden langsam alle flüchtigen Bestandteile abgepumpt. Ausbeute: 0,98 g (2,9 mmol), 59% d. Theorie

¹⁹F-NMR (CH₂Cl₂):

 δ [ppm] = -82,9 (br. s, 3F, Ph₂IF₃)

Raman (krist., RT):

 $\overline{v} \quad [cm^{-1}] = 82,77(vs); \quad 180,16(w); \quad 241,88(m); \quad 306,48(w); \quad 352,77(vw); \quad 397,13(vw); \\ 464,63(vw); \quad 521,52(w); \quad 530,20(w); \quad 606,38(vw); \quad 653,63(w); \quad 992,10(w); \\ 1014,28(w); \quad 1044,17(vw); \quad 1164,71(vw); \quad 1180,13(vw); \quad 1562,00(vw); \\ 1581,28(vw); \quad 3069,19(vw); \quad 3128,97(vw)$

Die Kristallisation erfolgte in CH₃NO₂ beim Abkühlen von Raumtemperatur auf -35 °C.

6.14.2 Kristall- und Strukturdaten für Ph₂IF₃

Liste 60 Kristalldaten und Angabe zur Kristallstrukturbestimmung.

Summenformel	C ₁₂ H ₁₀ F ₃ I
Molmasse [g / mol]	338,03
Kristallsystem	tetragonal
Raumgruppe	$I4_1/a$
Gitterkonstanten [pm; °]	$a = 1660,35(10)$ $\alpha = 90$
	$b = 1660,35(10)$ $\beta = 90$
	$c = 2778, 6(2)$ $\gamma = 90$
Zellvolumen [nm ³]	7,6600(9)
Formeleinheiten pro Zelle	24

Rinstantionics stanger [min] $0,5 \times 0,5 \times 0,5 \times 0,2$ Farbe und KristallformfarblosWellenlänge [pm] $71,073$ Messtemperatur [K] $173(2)$ Messbereich [°] $1,43 < \theta < 30,51$ Indexbereich $-23 <= h <= 23, -23 <= k <= 23, -39 <= 16000000000000000000000000000000000000$)<=1<=39 drate gegen F ²
R (alle Datell) $R1 = 0,0831, WR2 = 0,1843$ Extinktionskoeffizient $0,00014(5)$ Restelektonendichte max./min [e/ Å ⁻³] $3,243 / -1,001$	

Liste 62 Atomkoordinaten (x 10^4) und äquivalente isotrope Temperaturfaktoren (pm² x 10^{-1}) für Ph₂IF₃ U(eq) ist definiert als 1/3 des orthogonalisierten U_{ij}-Tensors.

	Х	У	Z	U(eq)	sof
I(1)	5000	2500	2680(1)	32(1)	0,5
I(2)	3152(1)	2283(1)	3670(1)	26(1)	1,0
F(1)	3840(2)	2629(3)	2612(1)	39(1)	1,0
F(21)	2489(2)	2915(2)	3222(1)	33(1)	1,0
F(22)	4055(2)	3933(2)	3341(1)	32(1)	1,0
F(3)	4358(2)	1510(2)	3286(1)	36(1)	1,0
C(11)	4888(4)	1571(6)	2169(3)	49(2)	1,0
C(12)	4291(6)	1002(6)	2243(3)	62(2)	1,0
C(13)	4196(8)	385(7)	1908(4)	80(3)	1,0
C(14)	4716(8)	390(10)	1506(5)	115(6)	1,0
C(15)	5304(7)	964(10)	1450(5)	110(6)	1,0
C(16)	5406(5)	1557(9)	1783(3)	79(4)	1,0
C(21)	2240(4)	2572(4)	4168(2)	33(1)	1,0
C(22)	1879(13)	3276(9)	4139(6)	162(10)	1,0
C(23)	1292(13)	3487(10)	4470(6)	169(10)	1,0
C(24)	1045(5)	2968(6)	4814(4)	66(3)	1,0
C(25)	1383(13)	2295(11)	4798(8)	228(16)	1,0
C(26)	2014(10)	2089(9)	4500(7)	207(13)	1,0
C(31)	2600(4)	1254(4)	3365(3)	37(2)	1,0
C(32)	2435(4)	1293(4)	2882(3)	40(2)	1,0
C(33)	2105(5)	611(5)	2662(3)	56(2)	1,0
C(34)	1945(8)	-67(6)	2936(5)	89(4)	1,0
C(35)	2104(12)	-76(6)	3419(5)	143(9)	1,0
C(36)	2450(11)	591(6)	3640(5)	127(7)	1,0
F(4)	5414(11)	6676(11)	950(7)	47(4)	0,25
F(5)	-1397(10)	22(10)	5510(6)	43(4)	0,25

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
I(1)	27(1)	45(1)	23(1)	0	0	4(1)
I(2)	28(1)	26(1)	25(1)	0(1)	-4(1)	0(1)
F(1)	27(2)	57(2)	34(2)	-6(2)	5(2)	7(2)
F(21)	35(2)	35(2)	28(2)	6(1)	-2(1)	6(2)
F(22)	32(2)	38(2)	26(2)	-9(1)	-1(1)	-2(2)
F(3)	37(2)	40(2)	32(2)	-2(2)	-7(2)	0(2)
C(11)	27(3)	84(6)	35(3)	-28(4)	-8(3)	17(3)
C(12)	59(5)	74(6)	55(5)	-29(5)	9(4)	-8(4)
C(13)	95(8)	81(7)	65(7)	-36(6)	7(6)	-7(6)
C(14)	86(9)	169(14)	90(9)	-98(10)	-2(7)	24(9)
C(15)	51(6)	194(15)	85(9)	-95(10)	12(6)	-5(8)
C(16)	36(4)	153(11)	49(5)	-41(6)	7(4)	7(5)
C(21)	27(3)	35(3)	38(3)	1(3)	-2(2)	-1(2)
C(22)	280(20)	102(10)	104(11)	48(8)	132(14)	110(13)
C(23)	270(20)	113(12)	120(13)	32(9)	133(15)	118(14)
C(24)	36(4)	79(6)	83(7)	9(5)	18(4)	7(4)
C(25)	250(20)	140(14)	300(30)	164(17)	230(20)	132(16)
C(26)	200(16)	135(12)	290(20)	165(15)	216(18)	133(12)
C(31)	44(4)	27(3)	42(4)	3(3)	-18(3)	-3(2)
C(32)	44(4)	42(4)	33(3)	-7(3)	-9(3)	0(3)
C(33)	65(5)	48(4)	54(5)	-19(4)	-24(4)	1(4)
C(34)	120(10)	42(5)	106(9)	-11(5)	-70(8)	-10(5)
C(35)	280(20)	41(5)	113(11)	32(6)	-129(13)	-53(9)
C(36)	224(17)	52(6)	105(9)	44(6)	-124(11)	-70(8)

Liste 63 Anisotrope Temperaturfaktoren pm² x 10⁻¹) für Ph₂IF₃. Der anisotrope Temperaturfaktor hat die Form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2h k a^* b^* U_{12}]$.

Liste 64 Bindungslängen [pm] und -winkel [°] für Ph₂IF₃.

LISIC 04 Dinadings	angen [pin] and wink			
I(1)-F(1)	194,8(4)	C(21)-C(22)	131,6(14)	
I(1)-F(1)#1	194,8(4)	C(22)-C(23)	138,5(16)	
I(1)-C(11)	210,5(7)	C(22)-H(22)	95,00	
I(1)-C(11)#1	210,5(7)	C(23)-C(24)	135,0(17)	
I(2)-F(22)#2	194,6(3)	C(23)-H(23)	95,00	
I(2)-F(21)	196,4(3)	C(24)-C(25)	125,1(16)	
I(2)-C(21)	210,7(7)	C(24)-H(24)	95,00	
I(2)-C(31)	211,6(6)	C(25)-C(26)	137,8(16)	
F(22)-I(2)#3	194,6(3)	C(25)-H(25)	95,00	
C(11)-C(16)	137,5(11)	C(26)-H(26)	95,00	
C(11)-C(12)	138,5(13)	C(31)-C(36)	136,2(12)	
C(12)-C(13)	139,4(12)	C(31)-C(32)	137,2(9)	
C(12)-H(12)	95,00	C(32)-C(33)	139,8(10)	
C(13)-C(14)	141,3(17)	C(32)-H(32)	95,00	
C(13)-H(13)	95,00	C(33)-C(34)	138,7(15)	
C(14)-C(15)	137(2)	C(33)-H(33)	95,00	
C(14)-H(14)	95,00	C(34)-C(35)	136,6(17)	
C(15)-C(16)	136,2(14)	C(34)-H(34)	95,00	
C(15)-H(15)	95,00	C(35)-C(36)	139,0(13)	
C(16)-H(16)	95,00	C(35)-H(35)	95,00	
C(21)-C(26)	127,9(12)	C(36)-H(36)	95,00	
F(1)-I(1)-F(1)#1	168,7(2)	F(1)#1-I(1)-C(11)	86,6(2)	
F(1)-I(1)-C(11)	85,8(2)	F(1)-I(1)-C(11)#1	86,6(2)	

F(1)#1-I(1)-C(11)#1	85,8(2)	C(12)-C(11)-I(1)	117,6(5)
C(11)-I(1)-C(11)#1	95,1(5)	C(11)-C(12)-C(13)	118,9(9)
F(22)#2-I(2)-F(21)	166,61(16)	C(11)-C(12)-H(12)	120,6
F(22)#2-I(2)-C(21)	86,4(2)	C(13)-C(12)-H(12)	120,6
F(21)-I(2)-C(21)	83,8(2)	C(12)-C(13)-C(14)	117,1(11)
F(22)#2-I(2)-C(31)	86,0(2)	C(12)-C(13)-H(13)	121,4
F(21)-I(2)-C(31)	86,3(2)	C(14)-C(13)-H(13)	121,4
C(21)-I(2)-C(31)	97,8(3)	C(15)-C(14)-C(13)	121,8(10)
C(16)-C(11)-C(12)	123,5(8)	C(15)-C(14)-H(14)	119,1
C(16)-C(11)-I(1)	118,9(7)	C(13)-C(14)-H(14)	119,1
C(16)-C(15)-C(14)	121,0(11)		
C(16)-C(15)-H(15)	119,5	C(21)-C(26)-H(26)	120,0
С(14)-С(15)-Н(15)	119,5	C(25)-C(26)-H(26)	120,0
C(15)-C(16)-C(11)	117,7(11)	C(36)-C(31)-C(32)	123,3(7)
C(15)-C(16)-H(16)	121,2	C(36)-C(31)-I(2)	120,5(6)
С(11)-С(16)-Н(16)	121,2	C(32)-C(31)-I(2)	116,1(5)
C(26)-C(21)-C(22)	117,9(9)	C(31)-C(32)-C(33)	117,9(7)
C(26)-C(21)-I(2)	122,8(6)	C(31)-C(32)-H(32)	121,0
C(22)-C(21)-I(2)	119,3(7)	C(33)-C(32)-H(32)	121,0
C(21)-C(22)-C(23)	120,3(12)	C(34)-C(33)-C(32)	119,5(8)
C(21)-C(22)-H(22)	119,9	C(34)-C(33)-H(33)	120,3
C(23)-C(22)-H(22)	119,9	C(32)-C(33)-H(33)	120,3
C(24)-C(23)-C(22)	121,5(12)	C(35)-C(34)-C(33)	120,7(8)
C(24)-C(23)-H(23)	119,3	C(35)-C(34)-H(34)	119,6
С(22)-С(23)-Н(23)	119,3	C(33)-C(34)-H(34)	119,6
C(25)-C(24)-C(23)	114,1(10)	C(34)-C(35)-C(36)	120,3(11)
C(25)-C(24)-H(24)	122,9	C(34)-C(35)-H(35)	119,8
C(23)-C(24)-H(24)	122,9	C(36)-C(35)-H(35)	119,8
C(24)-C(25)-C(26)	125,8(11)	C(31)-C(36)-C(35)	118,1(10)
C(24)-C(25)-H(25)	117,1	C(31)-C(36)-H(36)	120,9
C(26)-C(25)-H(25)	117,1	C(35)-C(36)-H(36)	120,9
C(21)-C(26)-C(25)	120,0(10)		

Verwendete Symmetrietransformationen für Generierung äquivalenter Atome: #1 -x+1,-y+1/2,z+0 #2 -y+3/4,x-1/4,-z+3/4 #3 y+1/4,-x+3/4,-z+3/4

6.15 Versuche zur Darstellung von Ph₃IO

1. Umsetzung von Triphenyliod Ph₃I mit Ozon:

Ca. 120 mg (0,36 mmol) Ph₃I wurden in einem PFA-Reaktionsrohr (12 mm Innendurchmesser) mit Rührkern bei -78 °C in 4 ml CH₂Cl₂ suspendiert. Zu dieser Suspension wurde bei -196 °C aus dem Ozonbereiter Ozon einkondensiert und unter Rühren auf -78 °C erwärmt. Es wurde eine Gasentwicklung beobachtet, wobei sich die gelbe Suspension unter Bildung eines farblosen Niederschlags leicht entfärbte. Diese Prozedur wurde so oft wiederholt, bis die Reaktion beendet war, erkennbar an der blauen Farbe des nicht umgesetzten Ozons. Anschließend wurden bei dieser Temperatur alle flüchtigen Bestandteile abgepumpt. Es blieb ein farbloser Niederschlag zurück, der sich oberhalb -25 °C zersetzte und sich aufgrund seiner Schwerlöslichkeit nicht näher charakterisieren ließ.

2. Umsetzung von Phenylioddifluoridoxid PhIOF₂ bzw. di-Phenyliodoxyfluorid Ph₂IOF mit PhLi:

Zu einer Aufschlämmung von 387 mg (1,5 mmol) $PhIOF_2$ bzw. 474 mg (1,5 mmol) Ph_2IOF in 12 ml CH_2Cl_2 bei -78 °C wurden 2 ml bzw. 1 ml einer 1,6 molaren PhLi-Lösung tropfenweise gegeben. Nach beendeter Zugabe wurde auf -30 °C erwärmt und für zwei Tage bei dieser Temperatur gerührt. Es wurden mit beiden Ausgangsverbindungen keine Umsetzungen beobachtet.

6.16 Triphenylioddifluorid, Ph₃IF₂

6.16.1 Synthese und spektroskopische Untersuchung

In einem Zweihalskolben werden 823 mg (2,3 mmol) (C_6H_5)₃I in 20 ml CH₂Cl₂ bei -78 °C suspendiert. Zu dieser gelben Suspension werden unter Rühren 450 mg (2,7 mmol) XeF₂ und 100 mg Et₄NCl zugegeben und langsam auf -60 °C erwärmt. Nach Einsetzen der Gasentwicklung wird solange bei dieser Temperatur gerührt, bis die Reaktion beendet ist. Die Suspension entfärbt sich dabei und es bildet sich ein farbloser Niederschlag. Der Reaktionsfortgang bzw. die Vollständigkeit der Umsetzung wird ¹⁹F-NMR-spektroskopisch verfolgt bzw. überprüft. Es bilden sich zwei Isomere (*cis:trans*) im Verhältnis von etwa 3:1.

¹⁹F (CH₂Cl₂, -60 °C):

 δ [ppm] = +45 (s, *trans*-Isomer), +69 (s, *cis*-Isomer)

6.17 Versuche zur Darstellung von Ph₅I

1. Reaktion von PhIF₄ mit PhLi:

In einem Zweihalskolben wurden 530 mg (1,9 mmol) frisch hergestelltes PhIF₄ in ca. 20 ml Diethylether bei -80 °C gelöst und auf -110 °C gekühlt Zu dieser Suspension wurden anschließend 4,7 ml einer 1,6 m PhLi-Lösung unter Rühren langsam tropfenweise zugegeben. Nach beendeter Zugabe wurde langsam auf -80 °C erwärmt und für 3 h weitergerührt. Es fiel ein farbloser Niederschlag aus. Nach Absitzen des Niederschlags über Nacht bei dieser Temperatur wurde die überstehende Lösung mittels eines dünnen Teflonschlauchs abgetrennt und der farblose Feststoff vorsichtig zweimal mit wenig kaltem Diethylether (ca. -90 °C) gewaschen. Dann wurde im Vakuum über Nacht bei -80 °C getrocknet. Die Bewegung des Kolbens bei -80 °C führte zu einer unerwartet heftigen explosionsartigen Zersetzung. Das Vorsichtige Kondensieren von Lösemitteln auf den noch feuchten Feststoff führte ebenfalls zu einer Explosion

Diese Instabilität des Feststoffes ließ es nicht zu, ihn näher zu charakterisieren.

2. Reaktion von PhIF₄ mit Ph₂Zn

Analog zu der oben beschriebenen Vorschrift wurden 560 mg (2 mmol) $PhIF_4$ mit 879 mg (4 mmol) Ph_2Zn umgesetzt. Auch hierbei entstand ein farbloser Niederschlag, der die gleichen Eigenschaften zeigte und sich im trockenen Zustand bei -80 °C sich explosionsartig zersetzte. Es handelt sich offenbar um die gleiche Verbindung.

3. Reaktionen mit anderen Phenylierungsreagenzien wie Ph₃B bzw. PhSiF₃

Analog zu den oben beschriebenen Vorschriften wurden $PhIF_4$ mit Ph_3B oder $PhSiF_3$ umgesetzt. Auch nach einem Tag rühren bei -80 °C konnten keine Gasentwicklungen von BF_3 bzw. SiF_4 und somit keine Umsetzungen beobachtet werden.

6.18 Versuche zur Darstellung von 2,2`-Biphenylenphenyliod

Zu 1,6 mmol einer frisch hergestellten 2,2'-Dilithiumbiphenyl-Lösung (aus 0,66 g 2,2'-Diiodbiphenyl und 3,25 mmol n-BuLi) in 12 ml Diethylether werden bei -90 °C 224 mg (0,8 mmol) PhIF₄ in 8 ml Diethylether mittels eines Teflonschlauches getropft. Nach beendeter Zugabe wurde langsam auf -60 °C erwärmt und für weitere 4 h gerührt. Die Reaktionsmischung entfärbte sich und ein weißer Niederschlag fiel aus. Nach Absitzen des Niederschlags bei dieser Temperatur wurde die überstehende Lösung mittels eines dünnen Teflonschlauchs abgetrennt und der farblose Feststoff zweimal mit wenig kaltem Diethylether (ca. -70 °C) gewaschen. Dann wurde im Vakuum über Nacht bei -80 °C getrocknet.