
 Introduction tomicroarray data

. Outline

We start by introducing the basics of microarray experiments, which provide the
data underlying this thesis. e raw data output of microarray experiments needs
several adjustments, the so called preprocessing steps. In Section . we describe
the successive steps that were applied to the data sets within the thesis. Aer pre-
processing, Section . formally describes the derivation of the fundamental in-
gredients formicroarray analysis: scores and p-values. e p-values form the basis
for further analysis of significance, in particular for the estimation of the global
and local false discovery rate, which we will review in Chapter .

. Microarray data

Microarrays provide snapshots of cell activity. With a microarray device it
is possible to observe the signal transduction between the genes, which store the
building plan for the assembly of proteins, and the cell compartments where pro-
teins are built. e signalling device is calledmRNA, amolecule, which resembles
the information stored in a gene. e more copies of a protein are needed by the
cell, the more copies of the corresponding mRNA molecule are built. In princi-
ple, the amount of specific mRNA copies refers to the activity of the associated
gene. e more copies there are, the higher the gene is expressed, and the more
of its corresponding protein will be assembled. Genes with high abundance of
mRNA copies are called up-regulated with respect to some commonly observed
abundance. If there are no or only a few specific mRNA copies present, the asso-
ciated gene is called down-regulated. Up- and down-regulation is summarized in
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 Introduction tomicroarray data

the term induction: induced genes are either up- or down-regulated. Genes that
are not induced are called consistently expressed.

Microarrays are micro chips measuring gene expression. e array surface
is divided into small areas called probes. Each probe holds one type of mRNA
molecule—or rather oneuniquely characterized subunit of thatmRNAmolecule.
e probe contains molecules complementary to the mRNA molecule. If one
copyof ourmRNAsample reaches its complementon the array, the twomolecules
bindwith each other and themRNAcopy stays fixed at this probe. is procedure
is called hybridization. A microarray allows to measure the expression of genes
simultaneously. To this end, all mRNAmolecules are extracted from the cells in a
given tissue sample and, aer additional amplification steps, washed over the array
surface. e mRNA molecules hybridize with the complements on their specific
probes.

Prior to hybridization, each of the amplifiedmRNA fragments was labeled with a
dye molecule. e dye molecules are excited by laser light such that every mRNA
fragment, which hybridized to a probe, emits a light signal. Each probe contains
several millions of complement copies to allow for a quantitative measurement:
probes containing many hybridized mRNA molecules emit more light and are
thus brighter than probes with less hybridizations. Bright probes correspond to
highmRNA abundance and dark probes correspond to low abundance. e light
emission is read out by a scanning device. To this end, the array surface is divided
into pixels and the intensity values are measured per pixel. An example of a scan-
ner read-out is shown in Figure .. e raw intensity data need several prepro-
cessing steps before we can analyze the final expression values. e preprocessing
procedureswill be introduced in Section.. So long, we assume for simplicity the
data to be preprocessed such that we are given one expression value per gene.

e result of one microarray experiment are expression values of one individual
tissue sample. To explore a second tissue sample, a new chip has to be used. us
a microarray data set consists of data from several single microarrays. A data set
might comprise measurements of independent tissue samples or repeated mea-
surements of the same sample like in a time-series experiment. In the following,
we restrict the analysis to samples derived from independent patients. Each pa-
tient can be clearly categorized with respect to a disease status. For simplicity, we
assume that we only observe patients of two distinct disease classes. Each patient
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. Preprocessingmicroarray data

Figure.: Intensity valuesmeasuredonamicroarray. The intensity valuesper pixel are readoutby a laser
scanner. Aprobeof high intensity provides evidence for ahighly expressedgene. Light colors correspond
to high abundance, dark colors to low abundance. Single probes appear as rectangular subunits. Image
courtesy of Affymetrix®.

belongs to one of these two classes. e classical use of microarrays is to com-
pare the gene expression of two disease classes and we will introduce several two-
class data sets in Chapter , which serve as illustrative examples of the introduced
methods. e goal is to identify genes showing different expression between the
two disease classes. is might lead to a better understanding of the disease and
to possible conclusions regarding progression or even cure of the disease.

. Preprocessingmicroarray data

We proceed with a technical description of the applied preprocessing steps for
microarray data leading from the raw scanner read-out as shown in Figure . to
the expression data matrix X, on which we base our analysis. In Chapter , we
introduce six data sets all measured on the same microarray platform. Here we
describe the platform and the preprocessing methods we used.

A closer look at Affymetrix® arrays. e microarray used for the six data sets
in Chapter  is the Affymetrix GeneChip®HGUAv array. e HGUAv
measures the mRNA of  genes in total. e array surface of about  cm2 is
divided into probes, each one contains more than  million copies of its spe-
cific mRNA molecule. More precisely, each probe is specific to a agment of its
gene’s mRNA and each gene is measured not only by one probe but by a set of
– probes. Each of these probes is specific to a different fragment of the gene’s
mRNA. e summary expression over these probes gives a reliable measurement
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of gene expression. e molecules on the probes are exact complements to the
mRNA fragments and are thus called perfect match probes. Along with the perfect
match probes comes the same number of mismatch probes. A mismatch probe is
almost identical to its perfect match probe. However, the specific mRNA frag-
ment does not hybridize on the mismatch probe. Mismatch probes are assumed
to reflect nonspecific hybridization and are used tomodel the background expres-
sion. e set of perfect andmismatch probes encoding for one gene is called probe
set. eprobes belonging to one probe set are randomly distributed on the surface
grid to avoid loss of a complete set due to regional hybridization errors.

Image analysis. e initial steps of preprocessing, that is image analysis and
background correction, are done similar as given in the Affymetrix® soware Mi-
croarray Suite . (MAS .) specifications (Affymetrix, , ). e read-
out scanner image of a microarray consists of a pixel representation of the light
intensities on the chip surface, see Figure .. e first preprocessing step is the
recognition of the original grid on which the probes were arranged. Each probe
is then represented by a squared area of pixels. e following steps are applied
to reduce the different values to one intensity value per probe: first the framing
pixels of each probe are omitted as the border between two neighboring probes
is oen hard to define. e remaining pixels are then averaged into one value per
probe.

Background correction. Each microarray emits a certain background inten-
sity. is intensity offset must be subtracted from the probe intensities. For cal-
culating the background intensities, the array surface is divided into a grid of4× 4

squares. In each square, the average of the lowest % probe intensities is taken as
background measure. Next we compute an individual background value for each
probe in each square: for a single probe, the distance of the probe to the center of
each of the  squares is calculated. e probe’s background is then computed as
a weighted average of the squares’ background values with weights being propor-
tional to the reciprocal squared distances. e distances are illustrated as arrows
in Figure .. e individual background is then subtracted from the probe’s in-
tensity. Note that the original procedure of the Affymetrix®MAS . soware
includes more adjustments to avoid negative intensities aer background correc-
tion. We do not use these corrections as the successive methods are capable of
dealing with negative intensities.
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. Preprocessingmicroarray data

Figure.: Affymetrix®MAS.backgroundcorrection. The array surface is divided into  squaredareas.
An averaged background value is assigned to the center of each square. For each probe, the distances
of the probe to the area centers are computed. The local background value is then computed as the
weighted average of the squares’ background values with weights being proportional to the reciprocal
squared distances. The weights are indicated by color strength. Image courtesy of Affymetrix®.

Normalization. So far, we corrected each array individually. e next prepro-
cessing step is to normalize between arrays. Although they are background cor-
rected, the mean intensity of the arrays can still vary due to different laser calibra-
tions or different experimental conditions. To compare several arrays, the inten-
sities have to be normalized to remove unwanted confounders. We used a vari-
ance-stabilizing procedure of Huber et al. () implemented in package vsn by
W. Huber. Besides normalization between arrays, variance-stabilization removes
the unwanted effect that high intensity values show larger variation across arrays
than low values. Variance-stabilization returns intensity values with variation be-
ing independent of mean intensity. We briefly review the procedure as given in
Huber et al. (, ). LetY be thematrix ofmeasured probe intensity values
with ykj being the intensity of the kth probe and the jth array (patient). Standard-
izing the intensity values by a patient offset aj and a patient scale factor bj results
in (ykj − aj)/bj. A variance-stabilizing transformation is obtained by choosing
the inverse hyperbolic sine function

arsinh(x) = log
(
x +

√
x2 + 1

)
. (.)

e transformation is applied to the standardized values and the result is further
decomposed into

arsinh
(
ykj − aj

bj

)
= µkj + εkj, (.)
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with µkj being the non-confounded intensity on transformed scale and εkj being
a normally distributed error term for which εkj

iid∼ N (0, σ2). e transforma-
tion parameters are estimated using a robust version of maximum likelihood esti-
mation. e procedure returns variance-stabilized intensity values on the arsinh
scale. is scale is additive in the sense that for highly expressed genes differences
in normalized values correspond to fold changes in original values. For highly ex-
pressed genes the inverse hyperbolic sine approximates the logarithm plus a con-
stant. For lower expressed genes, log and arsinh differ substantially as the arsinh
behaves linearly in the lower range. Most statistical applications assume additiv-
ity and hence the mapping onto an additive scale is necessary to proceed with the
analysis.

Summarization. e final preprocessing step is the conversion of the normal-
ized probe intensity matrix Y into the gene expression matrix X. We need to
summarize the – probes with perfect match values associated to the same
gene into one final expression value. To this end we apply a robust median-polish
method introduced by Irizarry et al. (a). Let yijl be the normalized inten-
sity of the lth probe belonging to the probe set of the ith gene for patient j. For
each probe set, the values are decomposed into overall offset µ, probe effect αi and
patient effect β j yielding

yijl = µ + αi + β j + ε ijl, (.)

with error terms ε ijl
iid∼ N (0, σ2). e model is fitted using a median-polish ap-

proach. e final summarized expression values are then given as the estimated
offset plus patient effect. For a review and comparison of preprocessing meth-
ods and quality control of microarray data we refer to Bolstad et al. () and
Irizarry et al. (b).

. Assessing differential gene expression

We assume the preprocessed gene expression data to be stored in a matrix X with
entry xij being the expression value of the ith gene and the jth patient. Gene ex-
pression was measured for m genes and a panel of n independent patients such
that matrix X is of dimension m× n. Each patient belongs to one of two distinct





. Assessing differential gene expression

disease classes. e class labels are stored in a vector c0 = (c1, . . . , cn)with cj being
the label of the jth patient. Our goal is to compare the two disease classes, which
relates to finding differences in gene expression. For each gene wemight ask: does
the expression differ between the two classes? If it does, the gene is called differ-
entially expressed. In general we assume genes not to be differentially expressed.
In statistical terms, we introduce a null hypothesis H0:

H0: e gene is not differentially expressed between the two classes.

e null hypothesis states that there is no significant difference in the expression
values with respect to the classes. If we reject the null hypothesis, the gene is said
to be induced. Induction is further distinguished into up- and down-regulation,
that is we observe either an increase or a decrease of gene expression. Up- and
down-regulation is always given with respect to one of the two classes: if gene i is
up-regulated in the first class, it is down-regulated in the second class. We further
refine the null hypothesis above into a simpler version, that is we reduce the term
“differentially expressed” to “difference in mean expression”:

H0: e gene has equal mean expression in the two classes.

A score for differential expression. efirst step in the significance analysis of
gene expression data is to provide a ranking of the genes with respect to differen-
tial expression. For each gene i, i = 1, . . . ,m, we compute a score si0 quantifying
its differential expression. We assume that a high positive score corresponds to
up-regulation and a high negative score to down-regulation. A simple score that
complies with this assumption is the log ratio score, which is the difference in ex-
pression means of the two classes. e term log ratio refers to the popular fold
change measure: microarray data are originally on a multiplicative scale, that is a
gene is said to be differentially expressed if itsmean expression is for example twice
as high in the first class than it is in the second class. As most statistical methods
work on additive scale, one preprocessing step is the log-transformation of the
data. en the difference between values on logarithmic scale corresponds to the
fold change ratio on original scale and is thus called log ratio. Our preprocessed
data complies with the additive scale requirement as the variance-stabilization in-
troduced in the previous section returns values on additive scale.

If we assume the class labels to be binary, the log ratio score si0 for gene i is given
as

si0 = x̄i{c=1} − x̄i{c=0}, (.)
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where x̄i{c=1} and x̄i{c=0} are the mean expression values for class  and , respec-
tively, that is

x̄i{c=1} =
1

n1

n

∑
j=1

xij I{cj = 1} and (.)

x̄i{c=0} =
1

n0

n

∑
j=1

xij I{cj = 0}, (.)

with I{y} being an indicator function that returns  if y is true and 0 otherwise.
e factors n1 and n0 denote the numbers of samples per class:

n1 =
n

∑
j=1

I{cj = 1} and n0 =
n

∑
j=1

I{cj = 0}. (.)

A gene with a high average expression in class  and lower average expression in
class  has a high log ratio score. However, the log ratio score assesses the dif-
ference in mean expression but does not incorporate how closely the values are
spread around theirmean values. A classical score combiningmean difference and
variation is Student’s t-test. e t-score relates to the log ratio score divided by an
estimate of the pooled standard deviation �si of gene i assuming equal variances in
the two classes. e t-score is defined as

si0 =
x̄i{c=1} − x̄i{c=0}

�si
. (.)

e pooled standard deviation is derived from the two within-class standard de-
viations:

�si =

√(
1

n1

+
1

n0

) ∑n
j=1 I{cj = 1}(xij − x̄i{c=1})2 + ∑n

j=1 I{cj = 0}(xij − x̄i{c=0})2

n1 + n0 − 2
. (.)

Genes get high t-scores if their values differ on average between the classes but
do not show much variation in each class. is is the natural behavior of the t-
score, yet it might result in misleading rankings of the genes. Consider a gene
with expression values being almost constant in each class with a small difference
between the classes. Since we divide themean difference by a very small estimated
standard deviation �si, the gene will receive a high score. is leads to problems
since the variance of the estimated standard deviation is higher than the variance
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. Assessing differential gene expression

of the estimatedmean difference. Wemight substantially underestimate the stan-
dard deviation of a gene, thus yielding a mixed up ranking. To safeguard against
the effect of underestimated standard deviation, Efron et al. () introduced a
regulated t-score, called z-score, where the denominator is enlarged by a value s⋆
called the fudge factor such that

si0 =
x̄i{c=1} − x̄i{c=0}

�si + s⋆
. (.)

e fudge factor is the same for all genes i = 1, . . . ,m and is commonly chosen
from the set of pooled standard deviations �s1, . . . , �sm. Efron et al. () chose s⋆
as a quantile of �s1, . . . , �sm. e z-score is situated between the log ratio score and
the t-score: in contrast to the log ratio score, the z-score puts less weight on the
mean difference by considering the variance as well but does not suffer from small
variances like the t-score.

roughout the thesis, we will use the z-score for assessing differential expres-
sion. e fudge factor is set to the median of �s1, . . . , �sm. Yet there exist many
other scoring methods and we will briefly review them in the following. Besides
the original work of Efron et al. (), Tusher et al. () implemented a pro-
cedure to choose the fudge factor automatically. e soware is called SAM for
Significance Analysis ofMicroarrays. Smyth () “borrows information across
genes” by introducing another version of a regulated t-score, the moderated t-
score, where small variances are raised and large variances are shrunken towards
a common value. e intention to protect against small variances is adapted by
other authors such as Cui et al. (), Jain et al. (), or Wu (). Be-
sides these methods where distributional assumptions are needed, scores based
on ranked expression values are popular as well. e Wilcoxon ranksum score is
the classical rank-based equivalent of the t-score. It assesses the difference in me-
dian expression while protecting against outlying values. In the context of gene
expressiondata, there exists a variety of rank-based scores such as those introduced
in Lee et al. (), Martin et al. (), Neuhäuser and Lam (), or Zhao
and Pan (). Another rank-based approach for microarray data is the pAUC-
score, which does not evaluate the difference of single location parameters like
mean or median but the separability, which is the amount of overlap of the two
expression distributions (Pepe et al., ). Comparative reviews on the use of
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the above scores formicroarray data can be found in Broberg (), Kooperberg
et al. (), or Pan ().

e p-value quantifies the significance of a score. e significance of an ob-
served score is assessed by transforming it into a p-value. e p-value is defined as
the probability of observing even higher scores simply by chance, that is the null
hypothesis is true and there is no difference in means, yet the score is high due to
random fluctuation. With score S being a random variable, the p-value pi of the
ith gene is defined as

pi := Pr
[
|S| ≥ |si0|

∣∣ H = 0
]
, (.)

where H is a Bernoulli random variable that is  if the null hypothesis is true and
 otherwise.

From single genes to many genes. e p-value of an observed score is com-
puted from the null distribution of the scoring method. For a t-score, the null
distribution is the t-distribution with appropriate degrees of freedom. However,
the null distribution is not known for every scoringmethod. us it is commonly
recommended to use a permutation approach (Dudoit et al., ). e permuta-
tion approach offers an important advantage. So far, we assessed the significance
of a single score. In a microarray experiment, the significance of thousands of
scores has to be assessed in parallel. As genes are co-regulated and act together in
pathways, the expression data is highly correlated and the underlying correlation
structure is unknown. e permutation approach preserves the correlation struc-
ture and returns an empirical, that is data-driven, p-value. In the following, we
review the permutation approach to compute p-values empirically.

Recall from the beginning of this section that c0 is the vector of observed class
labels and si0 the score of the ith gene with respect to c0. Let s0 denote the vector
of scores with entries (si0)i=1,...,m. Let c be a random permutation of the entries of
vector c0. Note that we shuffle the class labels but keep the order of genes within
patients fixed to preserve the correlation structure between genes. We recompute
the score of each gene based on c and derive a set of scores s. Nowwe permute the
labels in c0 B times, which results in B random label vectors c1, . . . , cB. From those
we yield B random score vectors s1, . . . , sB. We join the original and the random
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. Assessing differential gene expression

scores into the m× (B + 1) score matrix S defined as

S := (s0 s1 · · · sB) = (sib) with i = 1, . . . ,m and b = 0, . . . , B. (.)

To compute the empirical p-value for score si0, we counthowoen a randomscore
exceeds the observed score of the gene of interest, that is

pi =
1

m(B + 1)

m

∑
k=1

B

∑
b=0

I{|skb| ≥ |si0|}. (.)

For simplicity of notation, we summarize the whole process in a function UC ,
which maps a fixed vector of class labels c0 to the vector p

0
= (pi)i=1,...,m of asso-

ciate p-values, that is
UC(c0) = p

0
, (.)

where C = {c0, c1, . . . , cB} is the set of permutations on which we assess the sig-
nificance of the scores. Equation (.) serves as a simplified description of how
to compute empirical p-values.

A remark on pooled p-values. e p-values in Equation (.) are pooled p-
values since we pool across genes thus assuming that all genes follow the same
null distribution of scores. A second way of computing p-values is to use gene-
wise p-values. Here the p-value of gene i is only based on the null distribution
estimated from its permutation scores (sib)b=0,...,B. e gene-wise p-value p⋆

i of
gene i is defined as:

p⋆
i =

1

B + 1

B

∑
b=0

I{|sib| ≥ |si0|}, (.)

counting how oen a permutation score of gene i absolutely exceeded the ob-
served score si0. Using gene-wise p-values, we assume that genes do not have equal
null distributions of scores. Both p-value methods are used in microarray liter-
ature. For example, pooled p-values are used in Storey and Tibshirani (),
while Dudoit et al. () support gene-wise p-values. In a slightly different way,
pooling across genes is used to assess significance in Tusher et al. (). Here
random scores are pooled to estimate order statistics under randomization. In
Ge et al. (), the authors review various multiple testing procedures, which
provide control of global error rates like the false discovery rate. We will intro-
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duce two of these procedures in Section .. In his comment to Ge et al. (),
John D. Storey questions the assumption of non-equal null distributions. In the
light of error rate control Storey argues that certain multiple testing procedures
with pooling are equivalent to others without pooling. For example, if a proce-
dure is based on scores and a global cutoff is used for significance analysis, differ-
ences between individual null score distributions are neglected and the procedure
is similar to a procedure based on pooled p-values. A few proposals do not fol-
low the global-cutoff approach. For example, Pollard and van der Laan ()
base their procedure on observed scores and apply individual cutoffs to each of
them, which is similar to gene-wise p-values. In their rejoinder following Ge et al.
() the authors argue in favor of non-equal null distributions and resulting
assumptions, which are needed to show that a procedure provides control of an
error rate. Storey et al. () suggest that control might still be possible using
pooled p-values even if the scores do not follow the same null distribution.

As stated in the outline of this thesis we do not focus on control of error rates but
on their estimation. Pooled p-values offer certain advantages. First, their compu-
tation needs fewer permutations. When pooling, p-values are based on B times
the number of genes permutations. Gene-wise p-values are based on B permu-
tations only, thus the number of permutations B has to be large to achieve the
granularity of pooled p-values. Second, pooled p-values monotonically decrease
with increasing scores. us they directly mirror the estimated effect sizes—a fea-
ture, which made them popular among microarray experimenters.

e assumption of equal null distributionsmight be acceptable for the t-test score
in Equation (.), where the scores of each gene ideally follow a t-distribution
with certain degrees of freedom. In applications we observed little differences
between gene-wise and pooled p-values. Typically, both p-values agree well when
using t-scores. e situation is different for the z-score (.) or the log ratio score
(.). ese scores are not—or not properly—scaled for different variances thus
we do not expect equal null distributions. We will investigate the differences be-
tween pooled and gene-wise p-values in Section .. Although the two concepts
lead to different p-values the overall p-value distributions appear to be very simi-
lar. e p-value distribution forms the basis of the false discovery rate estimation
procedures introduced in Section . and of course of our own procedure intro-
duced in Chapter . For our purposes, we take advantage of the faster computa-
tion and higher granularity of pooled p-values.
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. Assessing differential gene expression

Inclusion of known covariates. InChapter  wewill turn to an inherent prob-
lem of permutation tests on biological data: in a typical experiment we observe a
variable of interest, probably one or more known covariates, and certainly many
unknown confounders. We can adjust for the known variables by including them
into a regression model or using them as block variables (Smyth, ). In per-
mutation tests, wemight permute within blocks or restrict the procedure to those
permutations that are balanced for the known variable. Including a covariate re-
duces the set of possible permutations but does not affect the general test proce-
dure.

While we can adjust for known confounders, we cannot adjust for unknown con-
founders. esehiddenvariables introduce signal into the test procedure: suppose
one random permutation correlates well with a hidden variable, which induces
differential expression inmany genes. us the distribution of scores derived from
the correlated permutation might have heavier tails than the null distribution. In
Chapter  we introduce an efficient procedure to discover and exclude these cor-
related permutations from the permutation test: if the permutation inducesmany
genes—thus accumulating random scores in the tails of the null distribution—it
is possible to identify this as a confounding signal.

However, the problem of confounding signal cannot be solved alone by using
gene-wise instead of pooled p-values. Still the respective permutation correlates
with the hidden variable and will lead to high scores for many genes. Within
each genes’ individual null distribution the respective random score of the cor-
related permutation might be in the tail and we would be able to identify this
as an accumulation of individual null distributions with respective scores in the
tails. As we will introduce in Chapter , we identify a confounding permutation
by transforming its random scores to p-values and checking for accumulation of
small p-values. It does not matter whether these p-values were derived by pooling
or in the gene-wise fashion. An accumulation of high random scores—or low p-
values—will be prominent in any case. Wewill explore the permutation approach
in more detail in Chapter . For now, z-scores and pooled p-values are the basic
ingredients for the methods introduced in the following chapters.
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