
Chapter 3

The Weak Freese-Nation Property

While in the last chapter I considered tightly κ-filtered Boolean algebras, in

this chapter I will drop ‘tightly’. Moreover, I will only consider σ-filtered

partial orders, mostly complete Boolean algebras. This chapter will be much

more set-theoretic than the last one.

3.1 WFN(P(ω)) in forcing extensions

In this section I will show that WFN(P(ω)) is very fragile in the sense that

in typical forcing extensions which have a larger continuum than the ground

model and which are not Cohen extensions, WFN(P(ω)) fails. The following

notions are crucial.

3.1.1. Definition. A notion of forcing P yields a σ-extension of P(ω) iff


P P(ω) ∩ V̌ ≤σ P(ω). Similarly, P yields a non-σ-extension of P(ω) iff


P P(ω) ∩ V̌ 6≤σ P(ω).

Typically, when enlarging the continuum by forcing, one uses some kind

of long iteration of rather small forcings which add new reals. Very popular

examples are countable support iterations of length ω2 of proper forcings of

size ℵ1 over a model of CH or finite support iterations of length > 2ℵ0 of

forcings satisfying c.c.c. These examples can be treated using

3.1.2. Lemma. Let A be a partial order such that for every A-generic filter

G over the ground model M every countable set of ordinals in M [G] is covered
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54 3. The Weak Freese-Nation Property

by some countable set in M . Assume that forcing with A does not collapse

cardinals. Suppose λ :=|A | is regular. Let S ⊆ λ be a stationary set of

ordinals of uncountable cofinality. Suppose A is the union of an increasing

chain (Aα)α<λ of completely embedded suborders which is continuous at limit

ordinals in S. Assume for each α < λ, 
Aα 2ℵ0 < λ. Suppose for each α ∈ S,


Aα+1 P(ω) ∩ V̌ [Ġ ∩ Ǎα] 6≤σ P(ω). Then 
A ¬WFN(P(ω)).

Proof. Let G be A generic over M . I argue in M [G]. For α < λ let Pα :=

P(ω) ∩ M [G ∩ Aα] and let Pλ := P(ω). For convenience, let Aλ := A.

By Lemma 2.5.11, (Pα)α≤λ is continuous at limit ordinals in S and at λ.

Note that the continuum is at least λ since |S |= λ and Pα+1 \ Pα 6= ∅ for

α ∈ S. By assumption, |Pα|< λ for each α < λ. Therefore 2ℵ0 = λ. For each

α < λ let Qα+1 := Pα+1 and for every limit ordinal δ < λ let Qδ :=
⋃

α<δ Pα.

Now (Qα)α<λ is continuously increasing and agrees with (Pα)α<λ on S. Let

f : P(ω) → [P(ω)]ℵ0 be any function. Since S is stationary, there is α ∈ S

such that Qα is closed under f . Now Qα = Pα and

M [G ∩ Aα+1] |= P(ω) ∩ M [G ∩ Aα] 6≤σ P(ω).

Therefore there is x ∈ Pα+1 ⊆ P(ω) such that no in M [G ∩ Aα+1] countable

set includes a cofinal subset of Qα � x. Since [2ℵ0 ]ℵ0 ∩M is cofinal in [2ℵ0 ]ℵ0,

Qα � x really has uncountable cofinality. Thus f is not a WFN-function for

P(ω). Since f was arbitrary, WFN(P(ω)) fails.

A characterization of the forcings that yield σ-extensions of

P(ω)

The following lemma characterizes those proper notions of forcing which yield

σ-extensions of P(ω). I am not going to introduce properness, since I will

only use the following property of proper forcing extensions:

Every countable set of ordinals in the extension is included in a countable

set in the ground model.

In particular, ℵ1 of the ground model remains a cardinal in the extension.

Note that all c.c.c. forcings as well as many other forcing notions, especially
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the standard forcing notions used for manipulating the cardinal invariants of

the continuum, are proper.

It is convenient to introduce some additional notions first.

3.1.3. Definition. Let P be a partial order and C be a subset of P . Then

S(C) denotes the set of all greatest upper bounds of subsets of C that exist

in P . A subset Q of P is predense below p ∈ P iff for each r ≤ p there is

q ∈ Q such that q ≤ p and q is compatible with r.

3.1.4. Lemma. Let M be a transitive model of ZFC∗ . Let A ∈ M be a

complete Boolean algebra such that for each A-generic filter over M every

countable set of ordinals in M [G] is included in a countable set of ordinals

which is an element of M . Then the following are equivalent:

(i) For each A-generic filter G, M [G] |= P(ω) ∩ M ≤σ P(ω).

(ii) In M : For every countable subset C of A there is a dense set of a ∈ A

such that (a · S(C))+ has a countable subset B which is in A predense

below each element of (a · S(C))+. Here a · S(C) means {a · s : s ∈
S(C)}.

The formulation in (ii) sounds exceedingly strange. The problem is that

the algebra generated by S(C) does not have to be a regular subalgebra of

A. I wanted a formulation that does not use generic filters. The property

of the countable set B can be described as follows: For any generic filter G

containing a · c for some c ∈ S(C) there is b ∈ B such that b ≤ a · c and

b ∈ G. In particular, B is dense in (a · S(C))+.

Proof of the lemma. Suppose (i) holds for A. Let C be any countable subset

of A and b ∈ A. I have to show that there is a ∈ A+ with a ≤ b such

that (a · S(C))+ has a countable subset which is in A predense below every

element of (a · S(C))+.

Let σ : ω → C be onto. I regard σ as a name for a subset of ω. Let G be

an A-generic filter over M containing b. By (i), there is a countable set D

of subsets of ω such that I := (P(ω) ∩ M) � σG is generated by a subset of

D. By the properties of the extension, I may assume that D is an element
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of M . Now there is a ∈ G such that a forces that I is generated by a subset

of D. Since G is a filter, I can choose a below b. I may assume that for each

d ∈ D there is a non-zero ad ≤ a such that ad 
 ď ⊆ σ since only these d’s

are interesting. Let [[ď ⊆ σ]] denote the truth value of the statement ‘ď ⊆ σ’.

Claim 1. [[ď ⊆ σ]] =
∏{σ(n) : n ∈ d}.

This is easily seen. In particular, [[ď ⊆ σ]] ∈ S(C). By enlarging the ad’s

if necessary, I may assume that for each d ∈ D, ad is the product of a and

[[ď ⊆ σ]]. Now ad ∈ (a · S(C))+ for every d ∈ D.

Claim 2. {ad : d ∈ D} is predense below each c ∈ (a · S(C))+.

Proof of Claim 2: Let C ′ be a subset of C such that c := a ·∏C ′ > 0. Let

c′ ≤ c be such that c′ > 0. Let e := {n ∈ ω : σ(n) ≥ c′}. Now c′ forces that

I is generated by a subset of D and e ⊆ σ. Let H be generic containing c′.

Then there is d ∈ D such that e ⊆ d and ad ∈ H . Since ad ≤ σ(n) for each

n ∈ e, ad ≤ c. Since ad and c′ both are elements of H , they are compatible.

This proves Claim 2 and hence one direction of the equivalence.

For the other direction suppose (ii) holds. Let G be A-generic over M

and let σ be a name for a subset of ω. I may assume that σ is a function

from ω to A. Let C := Im σ. By (ii), there is a ∈ G such that (a · S(C))+

has a countable subset B which is predense below every non-zero element of

a ·S(C). For each b ∈ B let db := {n ∈ ω : σ(n) ≥ b}. Let D := {db : b ∈ B}.
Claim 3. I := (P(ω) ∩ M) � σG is generated by a subset of D.

Proof of Claim 3: Let e ∈ I. Then there is c ≤ a with c ∈ G such that

c 
 ě ⊆ σ. By Claim 1, c 
 ě ⊆ σ holds precisely if for each n ∈ e, σ(n) ≥ c.

Hence a ·∏{σ(n) : n ∈ e} also forces ě ⊆ σ and is an element of G. Since B

is predense below a ·∏{σ(n) : n ∈ e}, there is b ∈ B∩G such that b 
 ě ⊆ σ.

But now e ⊆ db ⊆ σG. This shows Claim 3 and therefore finishes the proof

the lemma.

This lemma is quite abstract and technical, but it has interesting conse-

quences. For example, it follows that any proper ωω-bounding forcing notion

which adds a new real gives a non-σ-extension of P(ω). This can be seen as

follows: For complete Boolean algebras ωω-boundingness is the same as weak

(ω, ω)-distributivity. Let A be a proper complete weakly (ω, ω)-distributive
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Boolean algebra and let C ≤ A be countable such that an enumeration of C

is a name for a new real. Suppose A yields a σ-extension of P(ω). Then by

(ii) of the preceding lemma, there is a dense set of a ∈ A such that (S(C)·a)+

has a countable dense subset Da. I may assume that Da contains C · a. Let

Ba := 〈Da〉A�a. Then Da is dense in Ba and Ba is atomless. Let {bn : n ∈ ω}
be a maximal antichain in Da. Since Da is dense in Ba, this antichain is a

maximal antichain in Ba. For each n ∈ ω pick {cm
n : m ∈ ω} ⊆ C such that

bn =
∏{cm

n : m ∈ ω}. Now

b := a −
∑

{bn : n ∈ ω} = a ·
∏
n∈ω

∑
m∈ω

−cm
n

= a ·
∑

f :ω→ω

∏
n∈ω

∑
m<f(n)

−cm
n .

Since C is a subalgebra of A,
∏

n∈ω

∑
m<f(n) −cm

n ∈ S(C) for every f : ω → ω.

Thus b is zero or else there is some element of Da below b, contradicting the

maximality of the antichain. Therefore Ba is a regular subalgebra of A � a.

But this contradicts weak (ω, ω)-distributivity.

However, later I will prove a much more general result. But the argument

above is still useful, as it leads to

3.1.5. Remark. Let A be a weakly (ω, ω)-distributive complete c.c.c. Boole-

an algebra and let C be a subalgebra of A which completely generates A.

Then S(C) is dense in A.

Proof. First assume that C is countable. Let B be the subalgebra of A that

is generated by S(C) (using only finite operations). Since C is a subalgebra

of A, S(C) is dense in B. Let K be a maximal antichain in B. By c.c.c., K

is countable. By the same argument as above, it follows that K is already

maximal in A. Thus B is a regular subalgebra of A. This means that B is

dense in the complete subalgebra of A generated by B. But B completely

generates A and thus B is dense in A. Therefore S(C) is dense in A.

Now let C be arbitrary. Let a ∈ A+. I have to show that there is b ∈ S(C)

such that 0 < b ≤ a. By c.c.c., there is a countable subalgebra C ′ of C such

that a is contained in the complete subalgebra of A generated by C ′. By
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the first part of the proof, there is b ∈ S(C ′) such that 0 < b ≤ a. Clearly,

b ∈ S(C).

In order to show that certain forcing notions yield non-σ-extensions of

P(ω), it is usually sufficient to apply the following version of the preceding

lemma:

3.1.6. Lemma. Let M be a transitive model of a sufficiently large part of

ZFC. Let A ∈ M be a complete atomless Boolean algebra such that for each

A-generic filter G over M every countable set of ordinals in M [G] is included

in a countable set of ordinals which is an element of M . Suppose A has a

countable subset C such that S(C) is dense in A. Assume that for no a ∈ A

the algebra A � a has a countable dense subset. (Note that this holds in

particular if forcing extensions obtained using A cannot be obtained by just

adding one Cohen real.) Then for every A-generic filter G over M ,

M [G] |= P(ω) ∩ M 6≤σ P(ω).

Proof. W.l.o.g. I may assume that C is a subalgebra of A. It is easy to show

that (ii) of the lemma above does not hold for A:

Suppose it does. Let a be such that (a · S(C))+ has a countable subset

B which is predense below every non-zero element of a ·S(C). In particular,

such a set B is dense in the set (a ·S(C))+. Since S(C) is dense in A, a ·S(C)

is dense below a. Hence B is dense below a. But now A � a has a countable

dense subset. A contradiction.

Many examples

In this section I show that many forcing notions meet the conditions in

Lemma 3.1.6. It follows that they yield non-σ-extensions of P(ω). For most

of these forcings it will turn out later that it is not necessary to apply Lemma

3.1.6 to show that they yield non-σ-extensions of P(ω). In the section 3.2

I will collect some purely combinatorial criteria for when an extension N of

some model M yields a non-σ-extension of P(ω). These criteria work even if

the extensions are not obtained by forcing. However, for forcing extensions,
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this section provides a more uniform approach and some of the results of this

section do not follow from the combinatorial criteria mentioned above.

3.1.7. Definition. A forcing notion P meets the conditions in Lemma 3.1.6

iff ro(P ) has a countable subset C such that S(C) is dense in ro(P ) and for

every P -generic filter G over the ground model M every in M [G] countable

set of ordinals is covered by some set in M which is countable in M and there

is no Cohen real x ∈ M [G] over M such that M [G] = M [x].

I need some additional forcing theoretic notions.

3.1.8. Definition. For every partial order (P,≤) and all p, q ∈ P let p ≤∗ q

iff there is no r ≤ p such that r ⊥ q. A subset D of P is *dense iff D is dense

in P with respect to ≤∗. Similarly, D ⊆ P is *dense below p ∈ P iff D is

dense below p in P with respect to ≤∗.

Clearly, ≤∗ extends ≤. Note that p ≤∗ q iff the image of p in ro(P )

under the canonical mapping is smaller or equal to the image of q under this

mapping. Using ≤∗, I can argue in P itself rather than in ro(P ).

3.1.9. Lemma. Let (P,≤) be a partial order and let e : P → ro(P ) be the

canonical mapping. Let C ⊆ P . If

∀p, q ∈ P (∀c ∈ C(p ≤ c ⇒ q ≤ c) ⇒ q ≤∗ p),

then S(e[C]) is dense in ro(P ). In particular, if S(C) is dense in P , then

S(e[C]) is dense in ro(P ).

Proof. Easy, using the fact that e[P ] is dense in ro(P ).

In the following, I will sometimes use this lemma without referring to it.

I first consider the measure algebra of the Cantor space and Sacks forcing.

3.1.10. Definition. Random forcing is the measure algebra R(ω) of the

Cantor space ω2 which already has been introduced. Sacks forcing is the

partial order S consisting of all perfect subsets of the unit interval ordered

by inclusion.
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Note that the generic objects for these forcings can be coded by single

reals. A Sacks real is the unique element of the intersection of all elements

of an S-generic filter. The real coding an R(ω)-generic filter is obtained in a

similar way and is called a random real.

3.1.11. Lemma. R(ω) and S meet the conditions in Lemma 3.1.6.

Proof. Random forcing and Sacks forcing are both proper and ωω-bounding.

As mentioned above, for complete Boolean algebras the latter property is

equivalent to weak (ω, ω)-distributivity, which is hereditary with respect to

regular subalgebras and relative algebras. Cohen forcing does not share this

property. Hence random forcing and Sacks forcing both do not add Cohen

reals. Let CR(ω) be the subset of R(ω) that consists of equivalence classes

of clopen sets. Then S(CR(ω)) consists of the equivalence classes of closed

subsets of ω2. Since every subset of ω2 of positive measure includes a closed

set of positive measure, the set S(CR(ω)) is dense in R(ω).

For Sacks forcing let CS be the set of finite unions of infinite closed inter-

vals with rational endpoints. Clearly, this set is countable. Also, it is easy to

see that S(CS) is dense. Hence random forcing and Sacks forcing both meet

the conditions in Lemma 3.1.6.

Similarly, Lemma 3.1.6 applies to amoeba forcing.

3.1.12. Definition. Amoeba forcing is the partial order A consisting of all

open subsets of ω2 of measure < 1
2

ordered by reverse inclusion.

Amoeba forcing is σ-linked and thus proper. Another notion of forcing is

connected with amoeba forcing, localization forcing LO C .

3.1.13. Definition. Localization forcing is the partial order LO C consisting

of all s ∈ ω([ω]<ℵ0) such that ∀n ∈ ω(|s(n)|≤ n) and ∃k ∈ ω∀∞n(|s(n)|≤ k).

The order is componentwise inclusion.

LO C is also proper and A completely embeds into LO C . Both forcings

are treated in [1]. Again the respective generic filters can be coded by a

single real.



3.1. WFN(P(ω)) in forcing extensions 61

3.1.14. Lemma. A and LO C both meet the conditions in Lemma 3.1.6.

Proof. Consider A first. It is easy to see that for the set CA of clopen subsets

of the Cantor space with measure < 1
2

the set S(CA ) is dense in A . Thus it

remains to show that for no p ∈ A there is a countable set *dense below p.

Let p ∈ A and suppose D = {dn : n ∈ ω} is a countable set of conditions in A .

Let ε > 0 be such that ε < 1
2
−µ(p). For each n ∈ ω pick an open set pn ⊆ ω2

which is disjoint from dn such that µ(pn) < ε
2n+17 . Now q := p∪⋃

n∈ω pn is a

condition below p such that for no n ∈ ω, dn ≤∗ q. Hence D is not *dense

below p.

Now consider LO C . Since A completely embeds into LO C , a generic

extension obtained by adding an LO C -generic filter cannot be obtained by

adding a Cohen real. The set CLOC of sequences in LO C that are eventually

constant with value ∅ is countable and S(CLOC ) is easily seen to be dense in

LO C .

Next I consider Hechler forcing and eventually different forcing.

3.1.15. Definition. Hechler forcing is the partial order D consisting of all

conditions p = (fp, Fp) where fp is a finite sequence of natural numbers and Fp

is a finite set of (total) functions from ω to ω. The order is defined as follows:

For all p, q ∈ P , p ≤ q iff fq ⊆ fp, Fq ⊆ Fp, and for all n ∈ dom(fp \ fq) and

all f ∈ Fq, fp(n) ≥ f(n).

Eventually different forcing is the the partial order E having the same

conditions as D and the following order: For all p, q ∈ E , p ≤ q iff fq ⊆ fp,

Fq ⊆ Fp, and for all n ∈ dom(fp \ fq) and all f ∈ Fq, fp(n) 6= f(n).

D is frequently called dominating forcing since it adds a function from ω

to ω which dominates all the functions from the ground model. In order to

avoid confusion, in the following by a dominating real I mean an element of
ωω that eventually dominates all functions from ω to ω in the ground model.

The dominating real added by Hechler forcing is a Hechler real.

E adds a real which is eventually different from all functions from ω to ω

in the ground model. The generic filter is coded by such a real. E behaves

similarly to D . Like D , it is σ-centered and adds Cohen reals. But it does
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not add a dominating real. An elegant proof of the latter fact can be found

in [1]. An element of ωω that is eventually different from all functions from

ω to ω in the ground model is an eventually different real. I will not use a

special name for the eventually different real added by E .

3.1.16. Lemma. D and E both meet the conditions in Lemma 3.1.6.

Proof. I have to struggle with the fact that neither D nor E is separative.

This means that certain conditions will be identified when passing to the com-

pletion of the respective partial order. Call two conditions p and q equivalent

if p ≤∗ q and q ≤∗ p and write p ∼ q in this case. With this definition, two

conditions are equivalent iff they will be identified in the completion of the

respective partial order. For p ∈ D or p ∈ E (well, actually the underlying

sets of both partial orders are the same) such that p = (f, F ) write fp for f

and Fp for F .

Claim 1. Two conditions p and q are equivalent in D iff fp = fq and

∀n ∈ ω \ dom fp(max{g(n) : g ∈ Fp} = max{g(n) : g ∈ Fq}).

Proof of Claim 1: Note that p and q are equivalent iff {r ∈ D : r ⊥
p} = {r ∈ D : r ⊥ q}. Now the claim follows from the fact that r, s ∈ D

are compatible iff fr ⊆ fs or fs ⊆ fr and the condition with the larger first

coordinate, say r, satisfies

∀n ∈ dom(fr \ fs)∀g ∈ Fs(fr(n) ≥ g(n)).

Almost the same argument works for E , only the ≥ in the last line has

to be replaced by 6=. Thus the followings holds:

Claim 2. Two conditions p and q are equivalent in E if fp = fq and

∀n ∈ ω \ dom fp({g(n) : g ∈ Fp} = {g(n) : g ∈ Fq}).

For P = D or P = E consider the countable set CP consisting of those

conditions p ∈ P for which Fp = {g} for some g that is eventually constant

with value 0.
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Claim 3. For P = D , E the set S(e[CP ]) is dense in ro(P ), where e : P →
ro(P ) is the canonical mapping.

Proof of Claim 3: First let p ∈ D . For m, n ∈ ω define

gn
p (m) :=




max{g(m) : g ∈ Fp} for m < n,

0 otherwise.

Having the proof of Claim 1 in mind, it is not difficult to see that p is the

greatest lower bound of the set {(fp, {gn
p}) : n ∈ ω} in ro(D ).

Now let p ∈ E . For n ∈ ω let

F n
p := {g ∈ ωω : ∃h ∈ Fp(h � n = g � n) ∧ ∀m ≥ n(g(m) = 0)}.

Let z : ω → ω be the function which is constant with value 0. Using the

arguments from the proof of Claim 2, it is not difficult to see that (fp, Fp ∪
{z}) ≤ p is the greatest lower bound of the set {(fp, F

n
p ) : n ∈ ω} in ro(E ),

which proves Claim 3.

It remains to show that forcing extensions obtained using D or E cannot

be obtained by adding one Cohen real. This is immediate for D since it is

well known that Cohen forcing does not add a dominating real. For E I only

have to show that adding a Cohen real does not add an eventually different

real. Note that the fact that Cohen forcing does not add a dominating real

follows from this since a dominating real is eventually different.

Let (pn)n∈ω be an enumeration of a countable dense subset of the Cohen

algebra such that every condition is listed infinitely often. Let σ be a name for

a function from ω to ω. For each n ∈ ω let Un := {m ∈ ω : p 
 σ(n) 6= m}.
Pick a function g : ω → ω such that g(n) 6∈ Un for all n. Let G be a Cohen-

generic filter. I show that σG is not eventually different from g. Suppose it

is. Then there are n ∈ ω and m ≥ n such that pm 
 ∀k ≥ n(σ(k) 6= g(k)).

But now g(m) ∈ Um, a contradiction.

I will quickly sketch how to prove similar results for some other notions

of forcing.

3.1.17. Definition. The underlying set of Miller forcing M is the set of
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superperfect trees, i.e. subtrees of <ωω in which beyond every node there is

one with infinitely many immediate successors. The order is inclusion.

Miller forcing is proper. A Miller-generic filter can be coded by a single

real. Note that Sacks forcing can also be considered as a partial order made

up from trees, namely the set of perfect trees. That is, subtrees of <ωω in

which beyond every node there is one with at least two immediate successors.

3.1.18. Lemma. Miller forcing meets the conditions in Lemma 3.1.6.

Proof. For a tree T ⊆ <ωω and s ∈ T let succT (s) := {n ∈ ω : s_(n) ∈ T}.
Consider the set C of trees T in which up to some finite level only finite

or cofinite sets occur as succT (s) and beyond that level only ω occurs as

succT (s). Clearly, C is countable. It is easy to see that every superperfect

tree is the greatest lower bound of some subset of C. For a given superperfect

tree T and a countable set D of superperfect trees below T one can inductively

thin out T in order to obtain a superperfect tree T ′ ⊆ T such that no tree

from D lies below T ′. Thus Lemma 3.1.6 applies to Miller forcing as well.

3.1.19. Definition. Grigorieff reals. A filter F on ω is called a p-filter if

for every countable set G ⊆ F there is a set a ∈ F which is almost included

in every element of G. A filter F on ω is called unbounded if the set of

monotone enumerations of elements of F is unbounded in ωω. Note that

every ultrafilter is unbounded and that CH (as well as MA) implies that

there are p-ultrafilters, i.e. p-points. For an unbounded p-filter F containing

all cofinite sets let Grigorieff forcing G F be the set of partial functions f from

ω to 2 such that ω \dom f ∈ F . The order is reverse inclusion. G F is proper

and ωω-bounding.

Prikry-Silver reals. Priky-Silver forcing is the set of partial functions from

ω to 2 with co-infinite domains ordered by reverse inclusion. Prikry-Silver

forcing is proper.

Infinitely equal forcing. The conditions of infinitely equal forcing EE are

partial functions p from ω to <ω2 such that for all n ∈ ω the sequence p(n)

is an element of n2 and ω \ dom(p) is infinite. The order is reverse inclusion.

EE is proper and ωω-bounding.
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3.1.20. Lemma. Let P be either Grigorieff forcing, Prikry-Silver forcing,

or EE . Then P meets the conditions in Lemma 3.1.6.

Proof. P is proper. For each condition p ∈ P there is a condition q ∈ P

such that p ⊆ q and dom(q \ p) is infinite. In fact, there is an uncountable

antichain below p. In particular, there is no countable set dense below p.

Thus it only remains to construct a suitable subset CP of P in order to show

that P meets the conditions in Lemma 3.1.6. Let CP consist of all conditions

in P that have finite domain. Clearly, CP is countable. Clearly, every p ∈ P

is the greatest lower bound of some subset of CP .

Finally, Lemma 3.1.6 also applies to the countable support iteration of

Cohen forcing of length ω.

3.1.21. Lemma. Let P := (Fn(ω, 2))ω be ordered componentwise. Then P

meets the conditions in Lemma 3.1.6.

Proof. Since Cohen forcing is absolute, P is equivalent to the countable sup-

port iteration of Cohen forcing of length ω. Thus P is proper. Let CP be the

set of all conditions with finite support. Clearly, CP is countable. It is easily

seen that S(CP ) is dense in P . However, below every element of P there is

an uncountable antichain. Thus a generic extension obtained by adding a

P -generic filter cannot be obtained by adding a Cohen real. This proves the

lemma.

It follows that Lemma 3.1.6 applies to all notions of forcing mentioned so

far, except for Cohen forcing, of course.

3.1.22. Corollary. Random forcing, Sacks forcing, amoeba forcing, local-

ization forcing, Hechler forcing, eventually different forcing, Miller forc-

ing, Grigorieff forcing, Prikry-Silver forcing, infinitely equal forcing and the

countable support iteration of Cohen forcing of length ω yield non-σ-exten-

sions of P(ω).

It follows from this corollary together with Lemma 3.1.2 that P(ω) does

not have the WFN in many popular models of set theory. I only mention

one example.
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3.1.23. Corollary. Let M be a model of ZFC∗ +CH. In M let P be the

measure algebra on ω22. Suppose G is P -generic over M . Then

M [G] |= ¬WFN(P(ω)).

Proof. For α < ω2 let Pα be the measure algebra on ω·α2. Pα can be consid-

ered as a complete subalgebra of P in a natural way. The sequence (Pα)α<ω2

is continuous at limit ordinal of uncountable cofinality. For α < ω2 and a

Pα+1-generic filter G, M [G] = M [G ∩ Pα][r] where r is a random real over

M [G ∩ Pα]. Thus it follows from the last corollary that

M [G] |= P(ω) ∩ M [G ∩ Pα] 6≤σ P(ω).

Therefore Lemma 3.1.2 applies. Thus 
P ¬WFN(P(ω)).

Note that if N is a proper forcing extension of the ground model M , then

in N , R(ω)M still meets the conditions in Lemma 3.1.6. It follows that even

forcing with a side-by-side product of ℵ2 copies of random forcing over a

model of CH gives a model of ¬WFN(P(ω)).

The latter model is especially interesting since Fuchino has recently ob-

served that for every regular κ > ℵ1 a combinatorial principle called CS(κ)

holds in this model ([8]). This principle was introduced in [25] and implies

among other things that there is no increasing chain with respect to ⊆∗ in

P(ω) of ordertype ω2 and that there is no socalled ℵ2-Luzin gap. It was

shown in [16] respectively in [19] that under WFN(P(ω)), there is no in-

creasing chain with respect to ⊆∗ in P(ω) of ordertype ω2 and there is no

ℵ2-Luzin gap. Fuchino and Soukup asked whether the latter two statements

imply WFN(P(ω)). They do not.

It should also be noted that Corollary 3.1.23 can be obtained in a differ-

ent way. After forcing with P over a model of CH, the covering number of

the ideal of measure zero subsets of the Cantor space, cov(N ), is ℵ2. But

WFN(P(ω)) implies that cov(N ) is ℵ1. This can be seen as follows. As-

sume WFN(P(ω)). Let M be some Vℵ1-like elementary submodel of Hχ for

sufficiently large χ. M has size ℵ1. If cov(N ) is larger than ℵ1, then the
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measure zero subsets of the Cantor space which are in M do not cover the

whole space. By Solovay’s characterization of random reals, there is a ran-

dom real x over M . Now M [x] |= P(ω) ∩ M 6≤σ P(ω). By Vℵ1-likeness of

M , every countable subset of M is covered by a countable element of M .

It follows that in the real world, P(ω) ∩ M 6≤σ P(ω). But this contradicts

WFN(P(ω)). However, Section 3.2 on cardinal invariants of the continuum

contains a stronger result, due to Soukup. He showed that even non(M), the

smallest cardinality of a non-meager subset of the Cantor space, is ℵ1 under

WFN(P(ω)). It is well-known that non(M) is larger or equal to cov(N ).

Adding a Hechler real over ω2 Cohen reals to a model of CH

gives a model of ¬WFN(P(ω))

Soukup pointed out to me that forcing with Fn(ω, 2) preserves WFN(P(ω)),

but cannot introduce it. Koppelberg and Shelah ([31]) constructed a com-

plete subalgebra A of C (ℵ2) which is not a Cohen algebra. Soukup also

pointed out to me that forcing with A introduces an ℵ2-Luzin gap. As I have

mentioned earlier, he and Fuchino have shown in [19] that WFN(P(ω)) fails

if there is an ℵ2-Luzin gap. It follows that forcing with A over a model of CH

gives a model of ¬WFN(P(ω)), but WFN(P(ω)) can be introduced by some

cardinal preserving notion of forcing, namely the quotient forcing C (ℵ2) : A.

Of course, collapsing the continuum to ℵ1 always introduces WFN(P(ω)).

This is the reason why only cardinal preserving notions of forcing are inter-

esting here.

It is clear from the results in the previous section that adding many reals

can destroy WFN(P(ω)). In [37] Shelah proved that 0] is needed in order to

destroy CH by adding a single real without collapsing ℵ1. This means that

typically, adding only one real to a model of CH preserves WFN(P(ω)), sim-

ply because it preserves CH. Soukup asked me whether adding only one real

by some proper, c.c.c., or even σ-centered forcing can destroy WFN(P(ω)). It

can. A Hechler real is sufficient. It would be nice to know some cardinal pre-

serving generic reals, apart from Cohen reals, which preserve WFN(P(ω)).

But I guess these are hard to find. (Provided they exist at all.) Note that
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adding a Hechler real gives a model where the popular cardinal invariants of

the continuum have the same values as in a model with the same size of the

continuum that is obtained by adding Cohen reals to a model of CH. This

was shown by Brendle, Judah, and Shelah ([7]).

The strategy to show that adding a Hechler real over ω2 Cohen reals gives

a model in which WFN(P(ω)) fails is the following:

First decompose the forcing for first adding ω2 Cohen reals and then

adding a Hechler real into a chain of small forcings indexed by ω2 instead of

ω2 + 1. Now this iteration can be handled using the techniques developed in

the last sections.

I will use an alternative definition of Hechler forcing now, which yields

a partial order that is forcing equivalent to the Hechler forcing D defined

before. The definition above was chosen in order to make the similarity

between Hechler forcing and eventually different forcing apparent.

3.1.24. Definition. For two partial functions f, g ⊆ ω × ω let f ≤ g iff for

every n ∈ dom(f) ∩ dom(g), f(n) ≤ g(n).

Let D ′ := {(σ, f) : σ ∈ <ωω ∧ f ∈ ωω}. For (σ, f), (τ, g) ∈ D ′ let

(σ, f) ≤ (τ, g) iff σ ⊇ τ , f ≥ g, and σ \ τ ≥ g.

For a set F ∈ [ωω]<ℵ0 let max(F ) : ω → ω; n 7→ max{f(n) : f ∈ F}.
The mapping ϕ : D → D ′ ; (σ, F ) 7→ (σ, max(F )) is easily seen to induce

an isomorphism between ro(D ) and ro(D ′). This justifies calling D ′ Hechler

forcing as well.

3.1.25. Definition. Let

Ḋ := {(σ, ḟ) : σ ∈ <ωω and ḟ is an Fn(ω, 2)-name

for a function from ω to ω}.

Ḋ can be regarded as an Fn(ω, 2)-name for Hechler forcing in a straight-

forward way.

3.1.26. Definition. Let P := Fn(ω, 2) ∗ Ḋ and let

Q := {(1Fn(ω,2), (σ, f̌)) : σ ∈ <ωω ∧ f ∈ ωω} ⊆ P.
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Q is equivalent to ordinary Hechler forcing. When analyzing the relation

between P and Q , it will be necessary to approximate functions in ωω in a

generic extension by ground model functions.

3.1.27. Definition. Let P be any notion of forcing. Suppose ḟ is a P -name

for an element of ωω and p ∈ P . Then a function g ∈ ωω is possible for ḟ and

p iff for all n ∈ ω, p 6
 ḟ � n 6= ǧ � n.

Note that for any name ḟ for a function from ω to ω and any condition

q ∈ Q there is a possible function g ∈ ωω for ḟ . Using this notion, one can

show that Q behaves reasonably well with respect to P.

3.1.28. Lemma. Q is completely embedded into P.

Proof. According to Kunen’s book ([32]), the following points have to be

checked:

(i) ∀p, q ∈ Q (p ⊥Q q ⇔ p ⊥P q)

(ii) ∀p ∈ P∃q ∈ Q∀r ∈ Q (r ≤ q ⇒ r 6⊥P p)

(i) is easily seen. Therefore in the following I will omit the subscripts on

⊥. For (ii) let p ∈ P, say p = (s, (σ, ḟ)) for s ∈ Fn(ω, 2), σ ∈ <ωω, and an

Fn(ω, 2)-name ḟ for a function from ω to ω. Let g be a possible function for

ḟ and s. q := (∅, (σ, ǧ)) works for (ii):

Let r ∈ Q be such that r ≤ q, say r = (∅, (τ, ḣ)). Let v ≤ s be a condition

in Fn(ω, 2) which forces that ḟ and g are equal on dom(τ). This is possible

since g is possible for ḟ and s. Let max(ḟ , ḣ) be an Fn(ω, 2)-name for a

function such that for all n ∈ ω, 
 max(ḟ , ḣ)(n) = max(ḟ(n), ḣ(n)). Since r

extends q, for all n ∈ dom(τ \ σ), τ(n) ≥ g(n). Thus (v, (τ, max(ḟ , ḣ))) is a

common extension of r and p.

Since Q is completely embedded into P, it makes sense to consider the

quotient P : Q .

3.1.29. Definition. Let Ḣ be the canonical Q -name for the Q -generic filter

and let P : Q be a Q -name for a subset of P s.t.


Q P : Q = {p ∈ P̌ : ∀q ∈ Ḣ(p and q are compatible)}.
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If H is a Q -generic filter, let P : H := (P : Q)H .

It is well-known that forcing with Q ∗ (P : Q) is equivalent to forcing with

P. The proof of this fact really gives the following:

3.1.30. Lemma. Let H be Q -generic over the ground model M . If G is

P : H-generic over M [H ], then G as a subset of P is P-generic over M and

contains H.

Proof. Let H be Q -generic over M and let G be P : H-generic over M [H ].

For every q ∈ H , q ∈ P : H and q is compatible with every element of G.

The P : H-genericity of G implies q ∈ G. Thus H ⊆ G. It is clear that G is

a filter.

Consider A := ro(P) and B := ro(Q ). The complete embedding from Q

into P induces a complete embedding from B into A. Thus I may think of

B as a complete subalgebra of A. Clearly, forcing with B is equivalent to

forcing with Q . Let H ′ ⊆ B be the B-generic filter induced by H and let

A : H := {a ∈ A : ∀b ∈ H ′(a · b 6= 0)}. For each a ∈ A let π(a) :=
∏

(B ↑ a).

Note that for every a ∈ A, a ∈ A : H iff π(a) ∈ H ′. Let f : P → A be

the canonical mapping. Now f [P : H ] ⊆ A : H and f−1[A : H ] = P : H .

Suppose D ∈ M is a dense subset of P.

Claim. D ∩ (P : H) is dense in P : H .

Let p ∈ P : H . Then π(f(p)) ∈ H ′. Let b ∈ B be such that b ≤ π(f(p)).

By the definition of π, b·f(p) 6= 0. Since D is dense in P and by the properties

of f , {f(p′) : p′ ∈ D ∧ p′ ≤ p)} is dense below f(p) in A. Therefore there is

p′ ≤ p such that f(p′) ≤ b and p′ ∈ D. Clearly, π(f(p′)) ≤ b. It follows that

the set {π(f(p′)) : p′ ∈ D ∧ p′ ≤ p} is dense below π(f(p)) in B. Therefore

there is p′ ∈ D such that p′ ≤ p and π(f(p′)) ∈ H ′. Now f(p′) ∈ A : H and

thus p′ ∈ P : H . This proves the claim.

Since G is P : H generic, the claim implies that G intersects D. Since D

was arbitrary, it follows that G is P-generic over M .

ro(P : H) is generated by a name for a real in a nice way.

3.1.31. Lemma. If H is Q -generic, then in M [H ], ro(P : H) has a count-

able subset C such that S(C) is dense in ro(P : H).
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Proof. For a function f : ω → ω and a condition p ∈ Fn(ω, 2) let ḟp be an

Fn(ω, 2)-name for a function such that p 
 (ḟp = f̌) and for each q ∈ Fn(ω, 2)

such that q ⊥ p, q 
Fn(ω,2) (ḟp is constant with value 0). Let

C ′ := {(p, (σ, ḟq)) ∈ P : H : p, q ∈ Fn(ω, 2), σ ∈ <ωω

and f ∈ ωω is eventually constant}.

Clearly, C ′ is countable. The image C of C ′ under the embedding of P : H

into ro(P : H) works for the lemma:

Let (q, (τ, ġ)) ∈ P : H . Let (r, (ρ, ḣ)) ∈ P : H be such that for all c ∈ C ′

with (q, (τ, ġ)) ≤ c, (r, (ρ, ḣ)) ≤ c holds. Now r ≤ q and ρ ⊇ τ . I will be

done if I can show

r 
Fn(ω,2) ∀n ∈ ω(ḣ(n) ≥ ġ(n)) ∧ ∀n ∈ dom(ρ \ τ)(ρ(n) ≥ ġ(n)).

But here it is sufficient to prove

(∗) ∀n ∈ ω(r 
Fn(ω,2) ḣ(n) ≥ ġ(n))

and

(∗∗) ∀n ∈ dom(ρ \ τ)(r 
Fn(ω,2) ρ(n) ≥ ġ(n)).

Let n ∈ ω and let s ∈ Fn(ω, 2) be such that s ≤ r and s 
 (ġ(n) = m) for

some m ∈ ω. Let f : ω → ω be the function that has the value m at the place

n and is 0 everywhere else. Then (q, (τ, ġ)) ≤ (q, (τ, ḟs)) and (q, (τ, ḟs)) ∈ C.

Thus r 
Fn(ω,2) (ḣ(n) ≥ ġ(n)) since (r, (ρ, ḣ)) ≤ (q, (τ, ḟs)) for a set of s’s

dense below r. This shows (∗). The proof of (∗∗) is practically the same.

Next I am going to show that for no q ∈ ro(P : H) there is a countable

subset of ro(P : H) that is dense below q. This needs some combinatorial

preparation.

3.1.32. Lemma. Let n ∈ ω. Then ωn ordered componentwise is wellfounded

and every set A ⊆ ωn consisting of pairwise incomparable elements is finite.

In particular, every subset of ωn has only finitely many minimal elements.
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Proof. For wellfoundedness let S ⊆ ωn. For each b ∈ ωn and every i < n let

bi be the i-th coordinate of b. Inductively for i < n pick ai ∈ ω minimal with

the property ∃b ∈ S∀j ≤ i(bj = aj). (ai)i<n is minimal in S.

Now let A ⊆ ωn consist of pairwise incomparable elements and assume

for contradiction that A is infinite. Let (ak)k∈ω be an one-one-enumeration

of A. Thinning out this sequence in n steps using the wellfoundedness of ω,

one can find an infinite subset S of ω such that for each i ∈ n the sequence

(ak
i )k∈S is strictly increasing or constant. Since the enumeration of A was

chosen to be one-one, {ak : k ∈ S} is an infinite linearly ordered subset of A.

A contradiction.

Note that this proof works for any other wellordered set instead of ω as

well. However, I am not going to use this.

Let me collect some additional facts on P : H .

3.1.33. Lemma. a) Let H be Q -generic. The dominating real added by H

is d :=
⋃{τ : ∃g((∅, (τ, ǧ)) ∈ H)}. For all (p, (σ, ḟ)) ∈ P, (p, (σ, ḟ)) ∈ P : H

iff σ ⊆ d and for no n ∈ ω, p 
 ḟ 6≤ d � n \ dom(σ).

b) Let (∅, (τ, ǧ)) ∈ Q and (p, (σ, ḟ)) ∈ P. If σ ⊆ τ and

p 6
 ḟ � ω \ dom(σ) 6≤ τ ∨ ḟ � ω \ dom(τ) 6≤ ǧ,

then (∅, (τ, ǧ)) 
Q (p, (σ, ḟ)) ∈ P : Q .

If (∅, (τ, ǧ)) 
Q (p, (σ, ḟ)) ∈ P : Q , then σ ⊆ τ .

c) Let H be Q -generic and (p, (σ, ḟ)) ∈ P : H. Let ġ be an Fn(ω, 2)-name

in the ground model for an element of ωω. Then there is (q, (τ, ḣ)) ∈ P : H

such that (q, (τ, ḣ)) ≤ (p, (σ, ḟ)) and 
 ġ ≤ ḣ.

Proof. For a) let (p, (σ, ḟ)) ∈ P : H . Suppose σ 6⊆ d. Then there is

(∅, (τ, ǧ)) ∈ H such that τ ∪ σ is not a function. Clearly, (∅, (τ, ǧ)) and

(p, (σ, ḟ)) are incompatible in P. A contradiction. Thus σ ⊆ d. Now suppose

for some n ∈ ω \ dom(σ), p 
 ḟ 6≤ d � n \ dom(σ). Let G be P generic

over the ground model such that H ⊆ G and (p, (σ, ḟ)) ∈ G. G exists by

Lemma 3.1.30. By genericity of G, there is q ∈ Fn(ω, 2) such that q ≤ p,

(q, (σ, ḟ)) ∈ G, and for some m ∈ n \ dom(σ), q 
 ḟ(m) > d(m). There
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is g : ω → ω in the ground model such that (∅, (d � n, ǧ)) ∈ H . Now

q 
 (σ, ḟ) ⊥Ḋ (d � n, ǧ) and thus (q, (σ, ḟ)) ⊥P (∅, (d � n, ǧ)). But this is

impossible since (∅, (d � n, ǧ)), (q, (σ, ḟ)) ∈ G.

For the other direction of a) let (p, (σ, ḟ)) ∈ P be as in the right-hand-side

of the statement. Let (∅, (τ, ǧ)) ∈ H . There is q ∈ Fn(ω, 2) such that q ≤ p

and q 
 ḟ � dom(τ \ σ) ≤ τ . Let max(ḟ , ǧ) be an Fn(ω, 2)-name for an

element of ωω such that for all n ∈ ω, 
 max(ḟ , ǧ)(n) = max(ḟ(n), ǧ(n)).

Since τ ⊆ d, σ ∪ τ is a function. Now (q, (τ ∪ σ, max(ḟ , ǧ))) is a common

extension of (p, (σ, ḟ)) and (∅, (τ, ǧ)). It follows that (p, (σ, ḟ)) is compatible

with all elements of H and therefore (p, (σ, ḟ)) ∈ P : H .

For b) note that (∅, (τ, ǧ)) forces that the dominating real added by the Q -

generic filter starts with τ and is larger or equal to g on ω\dom(τ). Together

with a) this implies the first part of b). The second part is straightforward

and uses arguments already given above.

Finally let H , (p, (σ, ḟ)), and ġ be as in c). Let G be a P-generic filter

extending H that contains (p, (σ, ḟ)). The set of conditions (q, (τ, ḣ)) ≤
(p, (σ, ḟ)) such that 
 ġ ≤ ḣ is dense below (p, (σ, ḟ)). Thus G contains

such a condition. This condition is compatible with all elements of H and

therefore lies in P : H .

By Lemma 3.1.31, a P : H-generic filter can be coded by a single real.

But it cannot be coded by a Cohen real.

3.1.34. Lemma. Let H be Q -generic. For no (p, (σ, ḟ)) ∈ P : H there is

a countable subset of P : H which is *dense below it. In particular, for no

a ∈ ro(P : H)+, ro(P : H) � a has a countable dense subset.

Proof. Assume on the contrary that (pn, (σn, ḟn))n∈ω enumerates a subset of

P which contains a subset of P : H that is dense below (p, (σ, ḟ)). Since

the formulation here is carefully chosen and P has c.c.c., I may assume that

(pn, (σn, ḟn))n∈ω is an element of the ground model. By part c) of Lemma

3.1.33, I may also assume that each ḟn is a name for a new function. Let
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(∅, (τ, ǧ)) be a condition in H such that

(∅, (τ, ǧ)) 
Q (p, (σ, ḟ)) ∈ P : Q and {(pn, (σn, ḟn)) : n ∈ ω}
contains a set *dense below (p, (σ, ḟ)) in P : Q .

By part b) of Lemma 3.1.33, τ ⊇ σ. By Lemma 3.1.32, for each n ∈ ω there

are only finitely many minimal restrictions of possible functions for ḟn and

pn to X := (n∪ dom(τ)) \ dom(σn). For each such restriction fix an element

of Fn(ω, 2) below pn deciding ḟn on X accordingly and let An be the set of

the chosen conditions. An is a finite antichain in Fn(ω, 2). For each a ∈ An

let pa
n,0 := a and let fa

n be a possible function for ḟn and a. Suppose pa
n,m has

been constructed for some m ∈ ω. Let qa
n,m, pa

n,m+1 ≤ pa
n,m be such that fa

n

is possible for ḟn and pa
n,m+1 and such that qa

n,m and pa
n,m+1 decide a larger

initial segment of ḟn than pa
n,m does, but the way pa

n,m+1 decides an initial

segment of ḟn is inconsistent with the way in which qa
n,m decides an initial

segment of ḟn. This can be done since ḟn is a name for a new function. Let

fa
n,m be possible for ḟn and qa

n,m. Now (qa
n,m)m∈ω is an antichain below a for

each a ∈ An.

Note that for all m ∈ ω and all k ≥ m, fa
n,k � m + 1 = fa

n � m + 1. Let

h ∈ ωω be defined as follows:

∀k ∈ ω(h(k) := max({fa
n,m(k) : n, m ≤ k ∧ a ∈ An} ∪ {g(k)}))

Clearly, (∅, (τ, ȟ)) ≤ (∅, (τ, ǧ)).

Claim. (∅, (τ, ȟ)) 6
Q {(pn, (σ, ḟn)) : n ∈ ω} contains a subset of P : Q

which is *dense below (p, (σ, ḟ)).

Proof of the claim: Pick q ≤ p such that q 
 ḟ � dom(τ \ σ) ≤ τ. This

is possible since (∅, (τ, ǧ)) and (p, (σ, ḟ)) are compatible. Fix a partition

(Xa
n)n∈ω of ω into infinite pieces. Define a Fn(ω, 2)-name ė for a function

from ω to ω in such a way that

∀n, m ∈ ω∀a ∈ An∀k ∈ Xa
n(qa

n,m 
Fn(ω,2) ė(k) ≥ m).
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By the choice of q, (q, (τ, ė)) ≤ (p, (σ, ḟ)). (q, (τ, ė)) and (∅, (τ, ḣ)) are com-

patible, so let G be a P-generic generic filter containing both conditions.

Let H ′ := G ∩ Q . Let n ∈ ω be such that the dominating real d added

by H ′ extends σn and pn ≤ q. For all n which do not satisfy these con-

ditions, (pn, (σn, ḟn)) 6∈ P : H ′ or (pn, (σn, ḟn)) 6≤∗ (q, (τ, ė)). Let a ∈ An

be such that a forces ḟn to be below τ on n \ dom(σn). This is possible

if (pn, (σn, ḟn)) ∈ P : H ′. Again, if the latter does not hold, this n is not

interesting.

Subclaim. For all m ∈ ω, (qa
n,m, (σn, ḟn)) ∈ P : H ′.

Proof of the subclaim: Let m ∈ ω. For k ≥ n, h(k) ≥ fa
n,m(k) since

fa
n,m(k) = fa

n(k) for m ≥ k. By construction, fa
n,m is possible for ḟn and qa

n,m.

By choice of a, fa
n,m � (dom(τ) ∪ n) \ dom(σn) ≤ d. By part b) of Lemma

3.1.33,

(∅, (τ, ȟ)) 
Q (qa
n,m, (σn, ḟn)) ∈ P : Q .

Now the subclaim follows from (∅, (τ, ȟ)) ∈ P : H ′.

Pick k ∈ Xa
n \ dom(τ). Then (qa

n,d(k)+1, (σn, ḟn)) ≤ (pn, (σn, ḟn)), but

(qa
n,d(k)+1, (τ, ė)) 6∈ P : H ′ since qa

n,d(k)+1 
 ė � ω \ dom(τ) 6≤ d. Thus

(qa
n,d(k)+1, (σn, ḟn)) ⊥P:H′ (q, (τ, ė)) and therefore (pn, (σn, ḟn)) 6≤∗ (q, (τ, ė)).

This proves the claim and the claim contradicts the choice of (∅, (τ, ǧ)).

Using Lemma 3.1.6 and Lemma 3.1.2, it is now easy to prove

3.1.35. Theorem. Adding a Hechler real over ω2 Cohen reals to a model of

CH gives a model of ¬WFN(P(ω)).

Proof. For X ⊆ ω2 let PX := Fn(X, 2) ∗ Ḋ X , where

Ḋ X := {(σ, ḟ) : σ ∈ ωω and ḟ is an Fn(X, 2)-name for an element of ωω}

is considered as an Fn(X, 2)-name for Hechler forcing. By the same argument

as in Lemma 3.1.28, for X ⊆ Y ⊆ ω2, PX is completely embedded into PY .

The sequence (Pω·α)α≤ω is increasing and continuous at limits of uncountable

cofinality. Each Pω·α is of size ≤ ℵ1 and satisfies c.c.c. Applying Lemma

3.1.6 together with Lemma 3.1.31 and Lemma 3.1.34, it follows that for each
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α < ω2,


Pω·(α+1)
P(ω) ∩ M [Ġ ∩ P̌α] 6≤σ P(ω).

Now the theorem follows from Lemma 3.1.2.

A characterization of Cohen forcing

In this section I consider σ-extensions of P(2ℵ0) since this will give a char-

acterization of Cohen forcing.

3.1.36. Theorem. Let M be a transitive model of ZFC∗ and let A be an

atomless complete c.c.c. Boolean algebra in M . Then the following are equi-

valent:

(i) For any A-generic filter G over M ,

M [G] |= (P(2ℵ0))M ≤σ P((2ℵ0)M).

(ii) A is isomorphic to C (ω).

For the proof of this theorem it is convenient to introduce the cardinal

invariant τ of complete Boolean algebras.

3.1.37. Definition. For a complete Boolean algebra A let τ(A) be the least

cardinal λ such that A is completely generated by a subset of size λ.

The first approximation of the theorem is

3.1.38. Lemma. Let M be a transitive model of ZFC∗ and let A be an atom-

less complete c.c.c. Boolean algebra in M . Then the following statements are

equivalent:

(i) For any A-generic filter G over M ,

M [G] |= (P(2ℵ0))M ≤σ P((2ℵ0)M).

(ii) For any A-generic filter G over M and any x ∈ M [G] \ M such that

x ⊆ (2ℵ0)M there is a Cohen real r over M such that x ∈ M [r].
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(iii) Any complete subalgebra B of A with τ(B) ≤ 2ℵ0 has a countable dense

subset.

Proof. (i) implies (iii): First note that any subalgebra of A which is com-

pletely generated by a set X of size at most 2ℵ0 has size at most 2ℵ0 . This

is because the closure of X under countable operations has size at most 2ℵ0

and is already complete since A satisfies c.c.c.

Claim. Let B be a complete subalgebra of A with τ(B) ≤ 2ℵ0 . Then

B has a dense subset of elements a such that B � a has a countable dense

subset.

First I show how (iii) follows from the claim: Take a maximal antichain

K consisting of elements a ∈ B such that B � a has a countable dense subset.

K is countable since B satisfies c.c.c. For each a ∈ K let Da be a countable

dense subset of B � a. Now
⋃{Da : a ∈ K} is a countable dense subset of

B.

Proof of the claim: I argue like in the proof of Lemma 3.1.6. Let σ : 2ℵ0 →
B be onto. Consider σ as a name for a subset of 2ℵ0. Let G be B-generic

over M . Since I := {x ∈ (P(2ℵ0))M : x ⊆ σG} is countably generated and B

satisfies c.c.c., there is a countable set C ∈ M such that C ∩ I is cofinal in I.

It is forced by some a ∈ G that C has this property. For each x ∈ C∩I there

is some bx ∈ B such that bx ≤ a and bx 
 x ⊆ σ. W.l.o.g. I may assume that

for each x ∈ C there exists bx ≤ a such that bx 
 x ⊆ σ. I may also assume

that bx = a · ∏{σ(α) : α ∈ x} and x = {α ∈ 2ℵ0 : σ(α) ≥ bx} hold for all

x ∈ C. Now suppose that {bx : x ∈ C} is not dense below a. Then there is

b ≤ a such that no element of {bx : x ∈ C} lies below b. Now b 
 σ−1(b) ⊆ σ,

but no x ∈ C includes σ−1(b). This contradicts the fact that a forces that

C ∩ I is cofinal in I. Hence B � a has a countable dense subset.

It follows that the set D of a ∈ B such that B � a has countable dense

subset is predense in B. But since every relative algebra of a Boolean algebra

with a countable dense subset has a countable dense subset as well, D is even

dense in B.

(iii) implies (ii): Let G be A-generic over M an let x ∈ M [G]\M such that

x ⊆ (2ℵ0)M . Let σ be a name for X. By c.c.c., I may assume that σ uses only

2ℵ0 conditions. Let B be the complete subalgebra of A that is completely
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generated by the conditions used by σ. Let a ∈ B be the complement of

the sum of all atoms in B. Since x is a new subset of (2ℵ0)M , G does not

contain an atom of B. Thus B is not atomic and therefore a 6= 0. By (iii),

the algebra B has a countable dense subset. Hence B � a has a countable

dense subset. Since B � a is atomless, G ∩ B � a is a Cohen-generic filter

which can be coded by a Cohen real r ∈ M [G]. Clearly, one can recover

G ∩ B from G ∩ B � a. Thus x ∈ M [G ∩ B] = M [r].

(ii) implies (i): Let G be A-generic over M and let x ∈ M [G] \ M such

that x ⊆ (2ℵ0)M . Pick a Cohen real r ∈ M [G] over M such that x ∈ M [r].

By the same argument as for P(ω) in the proof of Lemma 3.1.4 or in [16],

one can see that I := (P(2ℵ0))M � x is countably generated in M [r]. Hence

I is countably generated in M [G].

Koppelberg noticed that statement (iii) in Lemma 3.1.38 already charac-

terizes C (ℵ0). I give a slight generalization of her argument.

3.1.39. Definition. For a complete Boolean algebra A let

στ (A) := {τ(B) : B is a complete subalgebra of A}

be the τ -spectrum of A.

3.1.40. Lemma. Let A be a complete Boolean algebra and let κ be an un-

countable regular cardinal such that A satisfies the κ-c.c. Suppose there is

λ ∈ στ (A) such that κ ≤ λ. Then κ ∈ στ (A).

The proof of this lemma uses

3.1.41. Lemma. (Vladimirov, see [30].) Let A be complete and B a com-

plete subalgebra of A. Assume that for no b ∈ B+, B ∩ A � b is dense in

A � b. Then there is a ∈ A such that a is independent over B, i.e. for all

b ∈ B+, a · b 6= 0 and b − a 6= 0.

Proof of Lemma 3.1.40. By passing from A to a complete subalgebra of A

if necessary, I may assume λ := τ(A) ≥ κ. Note that τ is monotone in the

sense that τ(A � a) ≤ τ(A) for every a ∈ A+. Call a ∈ A+ τ -homogeneous iff
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for all b ∈ (A � a)+, τ(A � b) = τ(A � a). Since the cardinals are wellfounded,

the set of τ -homogeneous elements of A is dense in A. Let C be a maximal

antichain in A consisting of τ -homogeneous elements. By κ-c.c., |C|< κ. By

κ ≤ λ and since κ is regular, there is a ∈ C such that τ(A � a) ≥ κ. Define

a chain (Bα)α<κ of complete subalgebras of A � a as follows:

Let B0 := {0, a}. Let α < κ and assume for all β < α, Bβ has been

defined such that τ(Bβ) < κ. Let B′
α be the complete subalgebra of A � a

generated by
⋃

β<α Bβ. Since κ is regular, τ(B′
α) < κ. Now for all b ∈ (B′

α)+,

B′
α � b is not dense in A � b since τ(A � b) ≥ κ while τ(B′

α � b) ≤ τ(B′
α) < κ.

Therefore Vladimirov’s Lemma applies. Let aα ∈ A � a be such that aα is

independent over B′
α in A � a. Let Bα be the complete subalgebra of A � a

generated by B′
α and aα.

Let B :=
⋃

α<κ Bα. By κ-c.c., B is a complete subalgebra of A � a. Since

τ(Bα) < κ for every α < κ, τ(B) ≤ κ. Since every subset of B of size less

than κ is included in some Bα and Bα 6= B for all α < κ, τ(B) = κ. Let B′

be the complete subalgebra of A generated by B. Now τ(B′) = κ and thus

κ ∈ στ (A).

Using Lemma 3.1.40, it is now easy to finish the

Proof of Theorem 3.1.36. (ii)⇒(i) follows immediately from (iii)⇒(i) in Lem-

ma 3.1.38.

For (i)⇒(ii) it is sufficient to show that (iii) of Lemma 3.1.38 already

characterizes C (ω). Let A be a complete c.c.c. Boolean algebra as in (iii) of

Lemma 3.1.38. Suppose τ(A) > ℵ0. Then by c.c.c. and Lemma 3.1.40, A

has a complete subalgebra B with τ(B) = ℵ1. By the properties of A, B has

a countable dense subset and therefore τ(B) = ℵ0. A contradiction. Hence

τ(A) = ℵ0. Again by the properties of A, A itself has a countable dense

subset and thus A ∼= C (ω).
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3.2 WFN(P(ω)) and cardinal invariants of the continu-

um

The reason for studying the question whether certain forcing extensions yield

σ-extension or not is to provide an easy way to recognize those models of

ZFC in which WFN(P(ω)) fails. But this only works well for models which

have been obtained by adding reals to some model and thereby enlarging the

continuum. Another approach is to determine the values of cardinal invari-

ants of the continuum under the assumption WFN(P(ω)). The arguments

here often can be phrased in terms of σ-embeddedness of P(ω)∩M in P(ω)

for some model M of ZFC∗ . Here M will be either an elementary submodel

of Hχ for sufficiently large χ or a transitive class. In order to spare notation,

I take the following definition:

3.2.1. Definition. A pair (M, N) is convenient iff one of the following holds:

(i) N and M are transitive classes satisfying ZFC∗ such that M ⊆ N , M is

a definable class in N , M and N have the same ordinals, and every in

N countable set of ordinals is covered by a set in M which is countable

in M .

(ii) N is a (possibly class-) model of ZFC∗ and M is an elementary sub-

model of HN
χ for some sufficiently large χ such that M∩ [M ]ℵ0 is cofinal

in [M ]ℵ0 .

Cichoń’s diagram: The small cardinals

The first explicit result on the effect of WFN(P(ω)) on cardinal invariants

of the continuum was the result of Fuchino, Koppelberg, and Shelah ([16])

that the unboundedness number b is ℵ1 under WFN(P(ω)). This can also

be proved in the following way: Using the argument in the proof of Lemma

1.4.11, it is not difficult to see that if (M, N) is a convenient pair and (ωω)N

contains a function dominating (ωω)M , then N |= P(ω) ∩ M 6≤σ P(ω). Now

if M is a Vℵ1-like elementary submodel of Hχ for some sufficiently large χ

and b > ℵ1, then (M, V ) is convenient and there is a function f : ω → ω
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dominating ωω ∩ M . Thus P(ω) ∩ M 6≤σ P(ω) and therefore WFN(P(ω))

fails.

However, one can do better. Soukup proved the following ([14]):

3.2.2. Theorem. Assume WFN(P(ω)). Let M be a Vℵ1-like elementary

submodel of Hχ for some sufficiently large χ. Then ω2 ∩ M is not meager.

In particular, the minimal cardinality of a non-meager subset of ω2 is ℵ1.

Proof. I show that for every countable family I of dense ideals of clop(ω2),⋂{⋃ I : I ∈ I} intersects M . This implies that M ∩ ω2 is not meager. Let I
be a countable family of dense ideals. By WFN(P(ω)) and Theorem 1.4.4,

M∩P(clop(ω2)) ≤σ P(clop(ω2)). Thus for each I ∈ I, (P(clop(ω2))∩M) ↑ I

has a countable coinitial subset. By Vℵ1-likeness of M , there is a countable

family J ∈ M of dense open subsets of clop(ω2) such that for each I ∈ I
and each I ′ ∈ P(clop(ω2)) with I ⊆ I ′, there is J ∈ J such that I ⊆ J ⊆ I ′.

Since J ∈ M and by Baire’s Theorem,
⋂{⋃J : J ∈ J } ∩ M 6= ∅. Let

x ∈ M ∩ ⋂{⋃ J : J ∈ J } and assume x 6∈ ⋂{⋃ I : I ∈ I}. Let I ′ :=

{a ∈ clop(ω2) : x 6∈ a}. Clearly, I ′ ∈ M . Since x 6∈ ⋂{⋃ I : I ∈ I}, there

is I ∈ I such that I ⊆ I ′. By the choice of J , there is J ∈ J such that

I ⊆ J ⊆ I ′. This implies x 6∈ ⋂{⋃J : J ∈ J }, a contradiction. It follows

that
⋂{⋃ J : J ∈ J } ∩ M is non-empty.

It follows that WFN(P(ω)) implies that all cardinal invariants in the

left half of Cichoń’s diagram are ℵ1. Recall that ωω is homeomorphic to

the space of irrational numbers of the unit interval and the unit interval is

homeomorphic to ω2/ ∼, where ∼ identifies every sequence that is eventually,

but not everywhere 1 with its successor with respect to the lexicographical

order on ω2. Looking at these homeomorphisms more closely, it follows that
ωω is homeomorphic to ω2\X for a countable set X. Since there is a definable

homeomorphism proving this, ω2 ∩ M is meager iff ωω ∩ M is. Observing

that for a function f : ω → ω the set of functions in ωω which are eventually

different from f is meager in ωω and using Borel codes and the absoluteness

of their elementary properties, it turns out that the proof of Theorem 3.2.2

gives the following:
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If (M, N) is a convenient pair of models of ZFC∗ and (ωω)N contains

a function that is eventually different from every function in (ωω)M , then

N |= P(ω) ∩ M 6≤σ P(ω). This shows that adding an eventually different

real yields a non-σ-extension of P(ω).

Cichoń’s diagram: The big cardinals

On the other hand, WFN(P(ω)) implies that all cardinal invariants on the

right half of Cichoń’s diagram are large. My first argument along this line

only showed that WFN(P(ω)) implies that the dominating number is large

and was derived from the proof of Lemma 3.1.4. The argument used some

tree of closed subsets of ω2. Soukup noticed that this tree could be replaced

by a certain family of closed covers of ω2, simplifying my original proof, and

that his argument even gives that the eventually different number, which is

just cov(M), is large under WFN(P(ω)). The dual of an eventually different

real is an infinitely equal real.

3.2.3. Definition. Let M be a set or a class. f ∈ ωω is an infinitely equal

real over M iff for all g ∈ ωω ∩ M , {n ∈ ω : f(n) = g(n)} is infinite.

Using this notion, I can state the key lemma for determining cov(M)

under WFN(P(ω)).

3.2.4. Lemma. Let (M, N) be convenient. Suppose (ω2)N \M is non-empty

and N |= P(ω)∩M ≤σ P(ω). Then for every real x ∈ N there is an infinitely

equal real f over M such that M [x] = M [f ].

Note that one half of ‘M [x] = M [f ]’ is cheating since it is well-known

that an infinitely equal real can code every other real:

3.2.5. Lemma. Let M be either an elementary submodel of Hχ for some

sufficiently large χ or a transitive model of ZFC∗ . If there is an infinitely

equal real over M , then for every g ∈ ωω there is an infinitely equal real h

over M such that g ∈ M [h].

Proof. Let f be infinitely equal over M and g ∈ ωω. For every n ∈ ω let

h(2n) := f(n) and h(2n + 1) := g(n). Clearly, g ∈ M [h]. It remains to
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show that h is infinitely equal over M . Let e ∈ ωω ∩ M . For each n ∈ ω let

e′(n) := e(2n). By the choice of f , e′ and f agree on an infinite subset of

ω. By the definition of h, for every n ∈ ω, e′(n) = f(n) iff e(2n) = h(2n).

Therefore e and h agree on an infinite set. It follows that h is infinitely equal

over M .

Proof of Lemma 3.2.4. I argue in N and pretend that M is an elementary

submodel of HN
χ for some sufficiently large χ. But the whole argument can

be done using Borel codes instead of subsets of ω2 as well. Let x ∈ ω2 \ M .

By Lemma 3.2.5, it is sufficient to show that there is an infinitely equal real

f over M such that f ∈ M [x].

Consider Fx := {a ∈ clop(ω2) : x ∈ a}. Since P(ω) ∩ M ≤σ P(ω), also

P(clop(ω2)) ∩ M ≤σ P(clop(ω2)). By convenience, there is A ∈ M such

that A ⊆ P(clop(ω2)) and for all G ∈ M with G ⊆ Fx there is F ∈ A such

that G ⊆ F ⊆ Fx. W.l.o.g. I may assume that A consists of filters. Let

C := {⋂F : F ∈ A}. Then C ∈ M is a set of closed subsets of ω2 with the

following property:

(∗) Whenever a ∈ M is a closed subset of ω2 containing x, then there is

c ∈ C such that x ∈ b ⊆ c.

Since x 6∈ M , I may assume that all members of C are infinite. Let (cn)n∈ω

be an enumeration of C in M . For each n ∈ ω pick a family (Um
n )m∈ω of

pairwise disjoint open sets intersecting cn and covering ω2 except for one

point y ∈ M . (In fact, since cn is closed, y ∈ cn ∩ M .) This is possible by

infinity of cn. Now let f : ω → ω be the function such that for each n ∈ ω

the point x is contained in U
f(n)
n . This is possible since x 6∈ M . Clearly,

f ∈ M [x].

Suppose f is not infinitely equal over M . Let g ∈ ωω ∩ M be eventually

different from f . Since ωω ∩ M is closed under finite changes, I may even

assume that g is everywhere different from f . Thus a :=
⋂

n∈ω(ω2\U
g(n)
n ) is a

closed set in M containing x, but not including any c ∈ C. This contradicts

(∗).

Lemma 3.2.4 easily gives
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3.2.6. Theorem. Assume WFN(P(ω)).

a) If 0] does not exist, then cov(M) = 2ℵ0.

b) If κ < 2ℵ0 is such that cf([κ]ℵ0) = κ, then the cov(M) > κ. In

particular, if n ∈ ω is such that ℵn < 2ℵ0, then cov(M) > ℵn.

Proof. First note that by a result of Bartoszyński ([1]), cov(M) is the min-

imal cardinality of a family E ⊆ ωω such that for every function f : ω → ω

there is g ∈ E such that g is eventually different from f . The latter cardinal

invariant is the eventually different number. E is called an eventually differ-

ent family. a) and b) are handled by the same argument. Let κ < 2ℵ0 be

such that cf([κ]ℵ0) = κ. If 0] does not exist, then by Jensens covering lemma,

any κ with cf κ > ω has this property. Let χ be a sufficiently large cardinal.

For α < ω1 let Mα be an elementary submodel of Hχ of size κ including κ

such that Mα ∩ [
⋃

β<α Mβ ]ℵ0 is cofinal in [
⋃

β<α Mβ]ℵ0 . Let M :=
⋃

α<ω1
Mα.

Then (M, V ) is convenient. By WFN(P(ω)), P(ω) ∩ M ≤σ P(ω) and thus,

using Lemma 3.2.4, there is an infinitely equal real over M . Thus M ∩ ωω

is not an eventually different family. Assume cov(M) ≤ κ. By elementarity,

M contains an enumeration of an eventually different family. But since κ is a

subset of M , M includes an eventually different family. A contradiction.

It should be pointed out that the argument Bartoszyński used for showing

that the eventually different number equals cov(M) does not give a direct

correspondence between infinitely equal reals and Cohen reals. From a Cohen

real one can easily define an infinitely equal real, but according to Blass ([4]),

it is an open problem whether forcing notions adding an infinitely equal real

also add a Cohen real. However, it is known that if x is infinitely equal over

M and y is infinitely equal over M [x], then M [x][y] contains a real that is

Cohen over M . There seems to be no simple way to strengthen Lemma 3.2.4

by replacing the infinitely equal real by a Cohen real. But of course, a large

value of cov(M) implies that there are Cohen reals over small sets.

Modulo the assumption ¬0] used in the last theorem, this closes the book

on the effect of WFN(P(ω)) on cardinal invariants in Cichoń’s diagram.

Fuchino proved that the minimal size a of a maximal almost disjoint family

of subsets of ω is ℵ1 under WFN(P(ω)) ([14]). Investigating the various



3.2. WFN(P(ω)) and cardinal invariants 85

diagrams in Blass’ article ([4]), it turns out that there is one cardinal invariant

defined in that paper for which no bounds have been determined here yet,

and that is

The groupwise density number g

3.2.7. Definition. The standard topology on P(ω) is the topology P(ω)

inherits from ω2 when each subset of ω is identified with its characteristic

function. A family G ⊆ [ω]ℵ0 is called groupwise dense if G is non-meager with

respect to the standard topology on P(ω) and closed under taking almost

subsets. g is the smallest number of groupwise dense families with empty

intersection.

Actually, Blass uses a different definition of groupwise dense families, but

he proves that the two definitions are equivalent. He has shown that g is ℵ1

in the Cohen model ([5]). Thus it should be ℵ1 under WFN(P(ω)). And

indeed, this is true.

3.2.8. Theorem. WFN(P(ω)) implies that the groupwise density number g

is ℵ1.

Proof. Let M be an Vℵ1-like submodel of Hχ for some sufficiently large χ.

Let x ∈ [ω]ℵ0. By WFN(P(ω)), there is a countable set A ⊆ [ω]ℵ0 in M such

that for each y ∈ P(ω) ∩ M with x ⊆ y there is a ∈ A such that x ⊆ a ⊆ y.

I may assume that A is closed under finite changes. Let GA := {z ∈ [ω]ℵ0 :

∃c ∈ P(ω) ∩ M(z ⊆∗ c ∧ ∀a ∈ A(a 6⊆∗ c))}. Obviously, GA is closed under

taking almost subsets. GA does not contain x by the choice of A. From

Theorem 3.2.2 it follows that [ω]ω ∩ M is non-meager. For each a ∈ A let

Fa := {b ⊆ ω : a ⊆ b}. Each Fa is closed and nowhere dense by infinity of a.

Thus C := ([ω]ℵ0∩M)\⋃
a∈A Fa is non-meager. Since A is closed under finite

changes, C ⊆ GA. Hence GA is groupwise dense. Now
⋂

A∈[[ω]ℵ0 ]ℵ0∩M GA = ∅
and thus g = ℵ1.

Assuming ¬0], WFN(P(ω)) therefore implies that the values of all car-

dinal invariants of the continuum considered in [4] are the precisely as in
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the Cohen model, that is, 2ℵ0 for all invariants ≥ cov(M) and ℵ1 for all

invariants below non(M), a, or g.

3.3 More complete Boolean algebras with the WFN

This section contains some results which show that at least assuming ¬0],

WFN(P(ω)) implies the WFN of several complete c.c.c. Boolean algebras,

among them the measure algebras. However, Soukup ([14]) has shown that

if the existence of a supercompact cardinal is consistent with ZFC, then the

existence of a complete c.c.c. Boolean algebra without the WFN is consis-

tent with ZFC+GCH. Moreover, he proved that adding ℵ2 Cohen reals to

a model of CH gives a model where there is a complete c.c.c. Boolean al-

gebra of size 2ℵ0 without the WFN while WFN(P(ω)) holds. Lemma 3.3.2

below gives that in that model there is even a countably generated complete

c.c.c. Boolean algebra without the WFN. These examples show that it is not

possible to extend the results of this section very far.

The measure algebra of the reals

To commence, I show that WFN(P(ω)) implies WFN(R(ω)).

3.3.1. Lemma. The measure algebra R(ω) is an order retract of P(ω). In

particular, if WFN(P(ω)) holds, then so does WFN(R(ω)).

Proof. By Corollary 1.4.9, it is sufficient to construct an order embedding e

from R(ω) into P(ω).

In order to construct e it is convenient to replace P(ω) by the isomorphic

algebra P(clop(ω2) × ω). As usual, I identify clop(ω2) with a subalgebra of

R(ω) in the obvious way. For a ∈ R(ω) let

e(a) := {(c, n) ∈ clop(ω2) × ω : µ(c − a) <
1

2n
}.

It is clear that e is monotone. Let a, b ∈ R(ω) such that a 6≤ b. Let n ∈
ω be such that 1

2n < µ(a − b). There is a clopen set c ⊆ ω2 such that
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µ((a−c)+(c−a)) < 1
2n+1 . In particular (c, n+1) ∈ e(a). But µ(c−b) > 1

2n+1

and thus (c, n + 1) 6∈ e(b). Therefore e(a) 6⊆ e(b). This shows that e is an

order embedding.

Getting the WFN from the WFN of small complete subalgebras

To extend the last result to larger measure algebras, I need the following

theorem which is already interesting at its own. The argument in the proof

of the ¬0]-case is basically the same as an argument used by Fuchino and

Soukup in an older, unpublished version of [19] that was kindly explained to

me by Soukup. However, the theorem stated here does not seem to follow

easily from their results.

3.3.2. Theorem. Let A be a complete c.c.c. Boolean algebra.

a) If A is completely generated by a set of less than ℵω generators, then A

has the WFN iff every countably generated complete subalgebra B of A does.

b) Assume 0] does not exist. Then A has the WFN iff every countably

generated complete subalgebra B of A does.

The proof of the ¬0]-part of the theorem uses

3.3.3. Lemma. Let µ be a singular cardinal of cofinality κ with cf([µ]κ) =

µ+. Let X be a set of size µ. Assume �µ holds. Then there is a matrix

(Xα,ν)α<µ+,ν<κ of subsets of X s.t.

(i) (Xα,ν)ν<κ is increasing for all α < µ+;

(ii) |Xα,ν|< µ for all α < µ+ and all ν < κ;

(iii) For α < µ+ let Xα :=
⋃

ν<κ[Xα,ν ]
≤κ. Then (Xα)α<µ+ is increasing and

continuous at limit ordinals with cofinality > κ;

(iv) Every Y ∈ [X]κ is included in some Xα,ν.

Proof. Let {Yα : α < µ+} be a cofinal subset of [X]κ. Let lim be the class

of limit ordinals. By �µ, there is a sequence (Cα)α<µ+,α∈lim such that the

following hold for all limit ordinals α < µ+:
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(1) Cα is club in α,

(2) otp(Cα) < µ,

(3) If β < α is a limit point of Cα, then Cβ = β ∩ Cα.

Note that (2) usually reads ‘cf(α) < µ ⇒ otp(Cα) < µ’, but this is not

necessary here, since µ is singular. Fix an increasing cofinal sequence (µν)ν<κ

of regular cardinals larger than κ in µ. Define (Xα,ν)α<µ+,ν<κ as follows:

For ν < κ let X0,ν := ∅. For α = β + 1 < µ+ and ν < κ let Xα,ν :=

Xβ,ν ∪ Yβ. For a limit ordinal α < µ+, ν < κ let Xα,ν := ∅ if µν <|Cα| and

Xα,ν :=
⋃

β∈Cα
Xβ,ν if µν ≥|Cα|.

It is clear from the construction that the matrix (Xα,ν)α<µ+,ν<κ satisfies

(iv).

Claim 1. |Xα,ν|≤ µν for all α < µ+ and ν < κ.

The proof proceeds by induction on α. For α = 0 the statement is true

since X0,ν is empty. Let α = β + 1. By the inductive hypothesis, |Xβ,ν|≤ µν.

By construction, Xα,ν = Xβ,ν ∪ Yβ and |Yβ|= κ. Since µν was chosen to be

larger than κ, it follows that |Xα,ν|≤ µν . Finally let α be a limit ordinal. If

|Cα|> µν, then Xα,ν is empty. If |Cα|≤ µν , then Xα,ν =
⋃

β∈Cα
Xβ,ν and thus,

by the inductive hypothesis, |Xα,ν|≤ µν .

This claim immediately gives (ii). (i) is easily seen by induction on α. In

order to show (iii), I need

Claim 2. For α ≤ β < µ+ and ν < κ there is ρ ∈ [ν, κ) such that

Xα,ρ ⊆ Xβ,ρ.

The proof proceeds by induction on β, parallel for all ν. For α = β there is

nothing to show. Suppose β > α and β = γ+1. By the inductive hypothesis,

there is ρ ∈ [ν, κ) such that Xα,ρ ⊆ Xγ,ρ. By construction, Xγ,ρ ⊆ Xβ,ρ. Now

suppose β is a limit ordinal and β > α. Pick γ ∈ Cβ such that α ≤ γ. By the

inductive hypothesis, there is ρ ∈ [ν, κ) such that Xα,ρ ⊆ Xγ,ρ and |Cγ|≤ µρ.

By construction, Xβ,ρ :=
⋃

δ∈Cβ
Xδ,ρ. Thus Xγ,ρ ⊆ Xβ,ρ.

Now let (Xα)α<µ+ be defined as in (iii). Suppose α ≤ β < µ+ and

Y ∈ Xα. Pick ν < κ with Y ⊆ Xα,ν . By Claim 2, there is ρ ∈ [ν, κ) such

that Xα,ρ ⊆ Xβ,ρ. By (i), Y ⊆ Xα,ρ ⊆ Xβ,ρ and thus Y ∈ Xβ . This shows

that (Xα)α<µ+ is increasing.
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Suppose α < µ+ is a limit ordinal of cofinality > κ and Y ∈ Xα. Fix

ν < κ such that Y ⊆ Xα,ν . Since Xα,ν is nonempty, Xα,ν =
⋃

β∈Cα
Xβ,ν

and | Cα |≤ µν . Since cf(α) > κ, there is a limit β < α of Cα such that

Y ⊆ ⋃
γ∈Cα∩β Xγ,ν . Now Cβ = Cα ∩ β and | Cβ |≤| Cα |≤ µν . Therefore

Y ⊆ ⋃
γ∈Cβ

Xγ,ν = Xβ,ν . Hence Y ∈ Xβ. This shows that (Xα)α<µ+ is

continuous at limit ordinals of cofinality > κ and thus establishes (iii).

Proof of the theorem. The proof of part b) does not use ¬0] unless A is not

completely generated by a subset of size less than ℵω. Therefore a) will follow

from the proof of b). Every complete subalgebra of A is a retract of A and

thus has the WFN if A does. This shows the easy direction of a) and b).

The proof of the other direction proceeds by induction on the size of a set

completely generating A. If A is countably generated, then there is nothing

to prove. Let A be completely generated by a subset X = {aα : α < µ}
for some uncountable cardinal µ and assume that for each subset Y of X of

size less than µ the subalgebra AY of A completely generated by Y has the

WFN. If cf µ > ω, then by c.c.c., A =
⋃

α<µ A{aβ :β<α}. Every A{aβ :β<α} is a

σ-subalgebra of A and WFN(A{aβ :β<α}) holds by the inductive hypothesis.

This implies WFN(A).

Now assume cf µ = ℵ0. By ¬0] and Jensen’s Covering Lemma, cf([µ]ℵ0) =

µ+ and �µ holds. (See [10] for these things.) So let (Xα,ν)α<µ+,ν<ω be the

matrix of subsets of X guaranteed by Lemma 3.3.3. For all α < µ+ and ν < ω

let Aα,ν := AXα,ν . For each α < µ+ let Aα :=
⋃

ν<ω Aα,ν . By property (i) of

the matrix, Aα is a subalgebra of A. Note that Aα is even a σ-subalgebra of

A, because it is a countable union of complete subalgebras. By property (ii)

of the matrix together with the inductive hypothesis, WFN(Aα,ν) holds for

all α and ν. Thus for every α, WFN(Aα) holds. By c.c.c., there is a function

supp : A → [X]ℵ0 such that for all a ∈ A, a ∈ Asupp(a). Since supp(a) is

included in some Xα,ν for each a ∈ A, A =
⋃

α≤µ+ Aα. By property (iii) of

the matrix, (Aα)α<µ is increasing and continuous at limit ordinals of cofinality

> ℵ0. This implies WFN(A).
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The larger measure algebras

Under ¬0] the last theorem together with Lemma 3.3.1 and Maharam’s The-

orem will give complete information on the WFN of measure algebras. Note

that it was already proved in [19] that under ¬0] every Cohen algebra has

the WFN iff WFN(P(ω)) holds. This also immediately follows from the last

theorem since every countably generated complete subalgebra of a Cohen

algebra is a complete subalgebra of a countably generated Cohen algebra.

3.3.4. Definition. A measure algebra is a complete Boolean algebra A to-

gether with a function µ : A → [0, 1] such that

(i) forall A ∈ A, µ(a) = 0 iff a = 0 and

(ii) for every countable antichain C ⊆ A, µ(
∑

C) =
∑{µ(a) : a ∈ C}.

A Boolean algebra A is called measurable iff there is a function µ : A →
[0, 1] such that (A, µ) is a measure algebra. By the usual abuse of notation,

I will write only ‘measure algebra’ when I mean ‘measurable algebra’.

Note that the measure algebras in the definition above are frequently

called totally finite measure algebras. For measure algebras usually µ is not

assumed to be bounded. However, since I will consider only totally finite

measure algebras, I call them just measure algebras.

3.3.5. Corollary. Let A be an infinite measure algebra.

a) If A is completely generated by strictly less than ℵω generators, then

WFN(A) holds iff WFN(P(ω)) does.

b) If 0] does not exist, then WFN(A) holds iff WFN(P(ω)) does.

Proof. The ‘only if’-part of a) and b) follows from the fact that P(ω) is a

retract of every infinity complete Boolean algebra. The proof of the ‘if’-part

is the almost same for a) and b), too. The only difference is that for a) part

a) of Theorem 3.3.2 is used, and for b) part b) of Theorem 3.3.2 is used. So

let B be a countably generated complete subalgebra of A. The restriction of

the measure on A to B is a measure on B. By Maharam’s Theorem, there are

ν ≤ ω and a sequence (Bn)n<ν of measure algebras such that B ∼= ∏
n<ν Bn,
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where Bn is isomorphic to the measure algebra R(ω) or trivial, i.e. = {0, 1}.
it follows that B trivial or isomorphic to a product C ×D where C is either

trivial or isomorphic to R(ω) and D is the powerset of an at most countable

set. Assume WFN(P(ω)). By Lemma 3.3.1, C has the WFN. Obviously, D

has the WFN. It follows that B has the WFN. Now WFN(A) follows from

Theorem 3.3.2


