
Chapter 1

Preparation

Throughout this chapter let κ be an infinite regular cardinal.

1.1 κ-embeddings

1.1.1. Definition. A partially ordered structure (P,≤) is an algebraic struc-

ture P together with a partial order ≤. Of course, P itself may have no

functions or relations. In this case (P,≤) is just a partial order. Typically, I

will omit ≤ and write P instead of (P,≤). Likewise, I will rarely distinguish

between an algebraic structure and its underlying set. As a subset X of a

partially ordered structure P is cofinal in P iff it contains an upper bound of

every element of P , X is coinitial in P iff it contains a lower bound of every

element of P . The cofinality of P is the minimal cardinality of a cofinal

subset of P and is denoted by cf(P ). Similarly, the coinitiality of P is the

minimal size of a coinitial subset of P and is denoted by ci(P ).

Let P and Q be partially ordered structures such that P ≤ Q, i.e. such

that P is a substructure of Q. Then for x ∈ Q the initial segment {a ∈
P : a ≤ x} is denoted by P ↓ x and the final segment {a ∈ P : a ≥ x} by

P ↑ x. P is called a κ-substructure of Q iff for each x ∈ Q the initial segment

P ↓ x and the final segment P ↑ x have cofinality respectively coinitiality

< κ. In this case I write P ≤κ Q. P ≤σ Q means P ≤ℵ1 Q. The word

‘substructure’ can be replaced by ‘suborder’ or ‘subalgebra’, depending on

the type of objects I am dealing with. An isomorphism between a partially
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12 1. Preparation

ordered structure P and a κ-substructure P ′ of a partially ordered structure

Q is called a κ-embedding.

Now let A and B be Boolean algebras such that A is a subalgebra of B

and let x ∈ B. I write A � x instead of A ↓ x. A � x can be regarded as

an ideal of A or, if x is an element of A, as a Boolean algebra, namely the

relative algebra of A with respect to x. The intended meaning will always be

clear from the context. A is a relatively complete subalgebra of B iff A ≤ℵ0 B.

In this case I write A ≤rc B. Note that A ≤rc B iff for every x ∈ B the ideal

A � x is generated by a single element. The mapping lprB
A assigning to x ∈ B

the generator of A � x is called the lower projection from B to A.

In the following the letters A, B, and C will refer to Boolean algebras

unless stated differently. Thus A ≤ B means that A is a subalgebra of B.

Note that A ≤κ B iff A ≤ B and for every x ∈ B the ideal A � x has

cofinality < κ. Also note that A ≤κ B iff A ≤ B and for every ideal I of B

which has cofinality < κ the ideal I ∩ A also has cofinality < κ.

The following two lemmas collect some frequently used facts on ≤κ.

1.1.2. Lemma. Let A and B be Boolean algebras such that A ≤ B and

x ∈ B. Then A ≤κ A(x) iff A � x and A � −x both have cofinality < κ.

Proof. The direction from the left to the right is trivial. For the other direc-

tion let E ⊆ A and F ⊆ A be sets of size < κ which are cofinal in A � x and

A � −x respectively. Suppose y ∈ A(x). Then there are v, w ∈ A such that

y = (v + x) · (w + (−x)). Let z ∈ A be such that z ≤ y. Then z − v ≤ x

and z − w ≤ −x. Hence z − v ≤ a and z − w ≤ b for some a ∈ E and some

b ∈ F . It follows that z ≤ (v + a) · (w + b). Clearly, (v + a) · (w + b) ≤ y for

every a ∈ E and every b ∈ F . Hence {(v + a) · (w + b) : a ∈ E ∧ b ∈ F} is

cofinal in A � y.

1.1.3. Lemma. Let P , Q, and R be partial orders.

a) P ≤κ Q ≤κ R ⇒ P ≤κ R.

b) If Q is the union of a family Q of suborders of Q and P ≤κ Q′ for

every Q′ ∈ Q, then P ≤κ Q.

c) If (Pα)α<λ is an ascending chain of κ-suborders of Q and cf(λ) < κ,

then
⋃

α≤λ Pα ≤κ Q.
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Now let A, B, and C be Boolean algebras.

d) A ≤κ B, X ∈ [B]<κ ⇒ A(X) ≤κ B.

e) A ≤rc B, C ≤ B, and lprB
A [C] ⊆ C ⇒ A ∩ C ≤rc C.

Proof. a), b), and e) are easy. For c) let R :=
⋃

α<λ Pα. Fix a cofinal set

X ⊆ λ of size < κ. For q ∈ Q and α ∈ X let Y q
α be a cofinal subset of Pα ↓ q

of size < κ. Then
⋃

α∈X Y q
α is cofinal in R ↓ q and has size < κ by regularity

of κ. By the same argument, R ↑ q has coinitiality < κ.

d) was shown by Koppelberg for κ ≤ ℵ1 ([29]). The proof for the general

case is the same. Let C be the subalgebra of B generated by X. Suppose

b ∈ B. For each c ∈ C fix a set Yc ∈ [A]<κ which is cofinal in A � −c + b.

I claim that the algebra D ≤ A(X) generated by C ∪
⋃

c∈C Yc contains a

cofinal subset of A(X) � b.

Let a ∈ A(X) � b. There are n ∈ ω, a0, . . . , an+1 ∈ A, and c0, . . . , cn−1 ∈
C such that a =

∑
i<n aici. Since a ≤ b, ai ≤ −ci + b for each i < n.

Hence, for each i < n there is a′
i ∈ Yci

such that ai ≤ a′
i ≤ −ci + b. Now

a ≤
∑

i<n a′
ici ≤ b and

∑
i<n a′

ici ∈ D. This proves the claim. By regularity

of κ, |D|< κ.

1.2 κ-filtrations

A partial order is κ-filtered iff it has many κ-suborders. In order to give a

precise formulation of ‘many’, I introduce various notions of skeletons.

1.2.1. Definition. Let S be a family of suborders of a partial order P . S
is called a < κ-skeleton of P iff the following conditions hold:

(i) S is closed under unions of subchains.

(ii) For every suborder Q of P there are µ < κ and R ∈ S such that Q ⊆ R

and |R|≤|Q| +µ.

S is called a κ-skeleton of P iff S satisfies (i) as above and instead of (ii) the

following holds:
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(ii)′ Every suborder Q of P is included in a member R of S such that

|R|=|Q| +κ.

S is called a skeleton iff it is an ℵ0-skeleton.

The exact definition of κ-filteredness is the following:

1.2.2. Definition. A partial order P is κ-filtered iff it has a κ-skeleton S
consisting of κ-suborders. P is σ-filtered iff it is ℵ1-filtered. A Boolean

algebra A is rc-filtered iff it is ℵ0-filtered.

Note that if S is a κ-skeleton of a Boolean algebra A, then it includes a

κ-skeleton S ′ of A consisting of subalgebras of A. Thus a Boolean algebra

A is κ-filtered iff it has a κ-skeleton consisting of κ-subalgebras. If κ is

uncountable, then every < κ-skeleton of a Boolean algebra A contains a < κ-

skeleton consisting of subalgebras of A. However, the latter is not true for

κ = ℵ0 since every infinite Boolean algebra A has a < ℵ0-skeleton which

contains no finite subalgebra of A.

The other notion, apart from κ-filteredness, that will be investigated in

this thesis is tight κ-filteredness. At least using the definition given below,

this notion only makes sense for Boolean algebras. While κ-filteredness and

tight κ-filteredness seem to be unrelated at first sight, it will turn out later

that tight κ-filteredness is stronger than κ-filteredness.

1.2.3. Definition. Let A be a Boolean algebra and δ an ordinal. A contin-

uous ascending chain (Aα)α<δ of subalgebras of A is called a (wellordered)

filtration of A.

A filtration (Aα)α<δ is called tight iff A0 = 2 and there is a sequence

(xα)α<δ in A such that Aα+1 = Aα(xα) holds for all α < δ.

A filtration (Aα)α<δ is called a κ-filtration (rc-filtration, σ-filtration) iff

Aα ≤κ Aα+1 (Aα ≤rc Aα+1, Aα ≤σ Aα+1) holds for all α < δ. A is tightly

κ-filtered iff it has a tight κ-filtration.
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1.3 Universal properties

This section will not really be needed for the rest of this thesis, but it pro-

vides some motivation for studying tight κ-filteredness. Tightly κ-filtered

Boolean algebras have properties similar to projectivity. While no infinite

complete Boolean algebra is projective, in some models of set theory inter-

esting complete Boolean algebras are for example tightly σ-filtered. This has

nice applications concerning the existence of certain homomorphisms.

1.3.1. Definition. A Boolean algebra A is projective iff for any two Boolean

algebras B and C, every epimorphism g : C → B, and every homomorphism

f : A → B there is a homomorphism h : A → C such that

A

f

h
C

g

B

commutes.

While this definition works in every category, the following characteriza-

tion provides more insight into the structure of projective Boolean algebras.

1.3.2. Definition and Lemma. A is a retract of B iff there are homomor-

phisms e : A → B and p : B → A such that p ◦ e = idA. A Boolean algebra

A is projective iff it is a retract of a free Boolean algebra.

Proof. Abstract nonsense.

This lemma is true in every category with sufficiently many free objects.

However, there are categories in which this lemma does not hold since there

are non-trivial projective objects, but no non-trivial free objects. (See [20]

for an example.)

By theorems by Haydon, Koppelberg, and Ščepin, the tightly rc-filtered

Boolean algebras are exactly the projective Boolean algebras. (See [29] or

[23].) The following theorem generalizes one direction of this to tightly κ-

filtered Boolean algebras and was proved by Koppelberg ([28]) for κ = ℵ1.
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Her proof works for uncountable κ as well. Let me introduce some additional

notions first.

1.3.3. Definition. A Boolean algebra A has the κ-separation property (κ-

s.p. for short) iff for any two subsets S and T of A of size < κ with S · T :=

{s · t : s ∈ S ∧ t ∈ T} = {0} there is a ∈ A such that s ≤ a for all s ∈ S and

t ≤ −a for all t ∈ T . An ideal I of a Boolean algebra A is κ-directed iff every

subset of I of size < κ has an upper bound in I.

In particular, every κ-complete Boolean algebra has the κ-s.p. Simi-

larly, every κ-ideal, i.e. every ideal which is closed under sums of less than κ

elements, is κ-directed.

1.3.4. Theorem. Let A be a tightly κ-filtered Boolean algebra. If B and C

are Boolean algebras, C has the κ-s.p., g : C → B is an epimorphism such

that the kernel of g is κ-directed, and f : A → B is a homomorphism, then

there is a homomorphism h : A → C such that g ◦ h = f .

The proof needs

1.3.5. Lemma. Let A and A′ be Boolean algebras such that A′ is a simple

extension of A, i.e. A′ = A(x) for some x ∈ A′. Assume that A ≤κ A(x), B

and C are Boolean algebras, C has the κ-s.p., g : C → B is an epimorphism

with κ-directed kernel, f : A′ → B is a homomorphism, and h : A → C

is a homomorphism such that g ◦ h = f � A. Then there is an extension

h′ : A′ → C of h such that g ◦ h′ = f , i.e.

A

≤κ

h
C

g

A(x)
f

h′

B

commutes.

Proof. Let S, T ∈ [A]<κ be such that S is cofinal in A � x and T is cofinal

in A � −x. Fix some z ∈ C such that g(z) = f(x). Since the kernel of g is

κ-directed, there is i ∈ g−1(0) such that for all s ∈ S, h(s) ≤ z + i and for
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all t ∈ T , h(t) ≤ −z + i. Note that {i, z − i,−z − i} is a partition of unity

in C. By the κ-s.p. of C, there is j ∈ C such that j ≤ i, h(s) · i ≤ j for

all s ∈ S, and h(t) · i ≤ −j for all t ∈ T . Let z′ := (z − i) + j. Now it is

a straightforward consequence of Sikorski’s extension theorem that there is

an extension h′ : A′ → C of h such that h′(x) = z′. Since A′ = A(x), this

extension is unique. It is easy to see that h′ works for the lemma.

Proof of the theorem. Fix a tight κ-filtration of A and construct h by trans-

finite induction along this filtration, using Lemma 1.3.5 at the successor

stages.

In particular, this theorem gives that if A has the κ-s.p., f : A → B is an

epimorphism with κ-directed kernel, and B is tightly κ-filtered, then there is

an homomorphism h : B → A such that f ◦ h = idB. h is called a lifting for

f . Note that h is injective.

1.3.6. Definition. Let M be the ideal of meager subsets of the Cantor

space ω2 and let N be the ideal of subsets of ω2 of measure zero. Here

the measure on ω2 is just the product measure induced by the measure on 2

mapping the singletons to 1
2
. Let Bor(ω2) be the σ-algebra of Borel subsets of

ω2 and let C (ω) := Bor(ω2)/M and R(ω) := Bor(ω2)/N . C (ω) is the Cohen

algebra or category algebra and R(ω) is the measure algebra or random algebra.

Let p : Bor(ω2) → R(ω) and q : Bor(ω2) → C (ω) be the quotient mappings.

A lifting for p is a Borel lifting for measure and a lifting for q is a Borel lifting

for category.

Using her version of Theorem 1.3.4, Koppelberg gave uniform proofs of

several mostly known results about the existence of certain homomorphism

into Boolean algebras with the countable separation property. Among other

things, she observed that under CH and after adding ℵ2 Cohen reals to a

model of CH, C (ω) and R(ω) are tightly σ-filtered. This implies the existence

of Borel liftings for measure and category in the respective models. (See [28].)

Originally, the results on Borel liftings in these models were obtained by von

Neumann, Stone, Carlson, Frankiewicz, and Zbierski.
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One may ask whether the existence of a Borel lifting implies the existence

of a tight σ-filtration of the respective algebra. At least for measure, this it

not the case. According to Burke ([9]), Veličkovič has shown that after adding

ℵ2 random reals to a model of CH, there is a Borel lifting for measure. It

will turn out later that in that model R is not tightly σ-filtered.

I do not know whether tight κ-filteredness can be characterized by some

property like the one in Theorem 1.3.4. However, there will be several internal

characterizations of tight κ-filteredness in the second chapter.

1.4 The κ-Freese-Nation property

1.4.1. Definition. A partial order (P,≤) has the κ-Freese-Nation property

(κ-FN for short) iff there is a function f : P → [P ]<κ such that for all a, b ∈ P

with a ≤ b there is c ∈ f(a) ∩ f(b) such that a ≤ c ≤ b. f is called a κ-

FN-function for P . The ℵ0-FN is the original Freese-Nation property (FN),

which was used by Freese and Nation to characterize projective lattices ([13]).

The ℵ1-FN is called weak Freese-Nation property (WFN for short) and was

introduced by Heindorf and Shapiro ([23]). WFN(P ) denotes the statement

‘P has the WFN’.

It is easily seen that small partial orders have the κ-FN.

1.4.2. Lemma. ([16]) Every partial order P of size ≤ κ has the κ-FN.

By a result by Heindorf ([23]), a Boolean algebra is rc-filtered iff it has the

FN. Similarly, in [23] it is proved that for Boolean algebras the WFN is the

same as σ-filteredness. Fuchino, Koppelberg, and Shelah ([16]) have shown

that for all regular infinite κ a partial order P has the κ-FN iff it is κ-filtered.

However, they formulated κ-filteredness in terms of elementary submodels of

some Hχ rather than in terms of skeletons. But these two formulation are

easily seen to be equivalent.

When dealing with elementary submodels of some Hχ, I will usually as-

sume that χ is ‘large enough’ or ‘sufficiently large’. This simply means that

χ is chosen so large that all the objects I am going to consider are contained
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in Hχ and all the properties of these objects I am going to use are absolute

over Hχ. In the context of forcing sometimes a class M is considered which is

a model of a ‘sufficiently large fragment of ZFC’. This means that M satisfies

enough of ZFC to carry out the arguments I am going to use. The problem

is that typically, one cannot get suitable set models for all of ZFC. See [32]

for these questions. I use ZFC∗ to abbreviate ‘sufficiently large fragment of

ZFC’.

The basic observations in order to get the desired characterization of

partial orders with the κ-FN are the following:

1.4.3. Lemma. a)([16]) If f is a κ-FN-function for a partial order P and

Q ⊆ P is closed under f , then Q ≤κ P .

b) If Q is a κ-suborder of a partial order P and P has the κ-FN, then Q

has the κ-FN, too.

c)([16]) Let δ be a limit ordinal and let (Pα)α≤δ be an increasing contin-

uous chain of partial orders such that Pα ≤κ Pδ for every α < δ. If Pα has

the κ-FN for every α < δ, then Pδ has the κ-FN as well.

Proof. Only b) has not been proved in [16]. Let f be a κ-FN-function for P .

For each p ∈ P fix Xp ∈ [Q]<κ such that Xp is cofinal in Q ↓ p. For each

q ∈ Q let g(q) :=
⋃

p∈f(q) Xp. g is a κ-FN-function for Q: By regularity of κ,

|g(q)|< κ for every q ∈ Q. Let q, r ∈ Q be such that q ≤ r. Now there is

p ∈ f(q) ∩ f(r) such that q ≤ p ≤ r. Let p′ ∈ Xp be such that q ≤ p′ ≤ p.

Now q ≤ p′ ≤ r and p′ ∈ g(q) ∩ g(r).

From Lemma 1.4.3 one can obtain the following charaterization of partial

orders with the κ-FN:

1.4.4. Theorem. (Implicitly in [16]) Let (P,≤) be a partial order and χ

large enough. The following are equivalent:

(i) P has the κ-FN.

(ii) For every elementary submodel M of Hχ such that (P,≤), κ ∈ M and

κ ⊆ M , P ∩ M ≤κ P holds.

(iii) P is κ-filtered.
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Proof. (i)⇒(ii) is proved in [16] for elementary submodels of size κ, but the

same argument works here as well. Since M knows that P has the κ-FN,

there is f ∈ M such that f : P → [P ]<κ is a κ-FN-function for P . For each

p ∈ P ∩ M , f(p) ∈ M . Since |f(p)|< κ and κ ⊆ M , f(p) ⊆ M . It follows

that P ∩ M is closed under f . By Lemma 1.4.3, P ∩ M ≤κ P .

Now assume (ii). Fix a wellorder E of Hχ. (iii) is then witnessed by

S := {P ∩ M : M - (Hχ,E) ∧ (P,≤), κ ∈ M ∧ κ ⊆ M} :

Clearly, every subset X of P is included in some Q ∈ S such that |Q|≤|X| +κ.

By (ii), every Q ∈ S is a κ-suborder of P . Let T ⊆ S be a chain. Since

E is a wellordering of Hχ, (Hχ,E) has definable Skolem functions. For each

Q ∈ T let MQ be the Skolem hull of Q in Hχ. By definition, every Q ∈ T
has the form P ∩M for some elementary submodel M of (Hχ,E). Therefore

MQ ∩ P = Q. It follows that {MQ : Q ∈ T } is a chain of elementary

submodels of Hχ. Thus N :=
⋃

Q∈T MQ - Hχ. Therefore
⋃

T = P ∩N ∈ S.

For (iii)⇒(i) let S be a κ-skeleton of P consisting of κ-suborders. Clearly

P ∈ S. Assume that P does not have the κ-FN. Let Q ∈ S be of minimal

size such that Q does not have the κ-FN. By Lemma 1.4.2, |Q|> κ. By the

properties of S, there is a strictly increasing continuous chain (Qα)α<|Q| in

S ∩ [P ]<|Q| such that Q ⊆
⋃

α<|Q| Qα. By the choice of Q, every Qα has the

κ-FN. By part c) of Lemma 1.4.3,
⋃

α<λ Qα has the κ-FN. This contradicts

part b) of Lemma 1.4.3.

A more advanced version of this theorem has been found by Fuchino

and Soukup. In this theorem only very nice submodels of Hχ have to be

considered.

1.4.5. Definition. Let χ be a cardinal such that κ < χ. M - Hχ is Vκ-like

iff M =
⋃

α<κ Mα for a continuously increasing chain (Mα)α<κ of elementary

submodels of M of size < κ such that for each α < κ, (Mβ)β≤α ∈ Mα+1.

It is easy to see that every subset of Hχ of size κ is a subset of some Vκ-like

elementary submodel of Hχ. Fuchino and Soukup proved the following:
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1.4.6. Theorem. ([19]) Let P be a partial order and let χ be large enough.

a) If 0] does not exist, then P has the κ-FN iff for every Vκ-like elementary

submodel M of Hχ such that P ∈ M , P ∩ M ≤κ P .

b) If |P |< ℵω, then P has the κ-FN iff for every Vκ-like elementary

submodel M of Hχ such that P ∈ M , P ∩ M ≤κ P .

Unfortunately, part a) of this theorem really needs some assumptions on

the non-existence of certain large cardinals, as was also shown by Fuchino

and Soukup ([19]). In the proof of this theorem, as well as in the proofs of of

similar theorems that will be stated later, ¬0] is used in the following way:

The proof uses some transfinite induction on cardinals. There occurs a

problem at uncountable cardinals of countable cofinality. In order to proceed

with the induction at a stage λ with cf(λ) = ℵ0, some weak form of the �-

principle as well as some assumption like cf([λ]ℵ0) = λ+ is needed.

The following lemma comes in handy when one wants to find out whether

or not certain complete Boolean algebras have the WFN. The κ-FN does not

reflect to suborders in general, but to suborders which are retracts.

1.4.7. Definition. Let (P,≤P ) and (Q,≤Q) be partial orders. A mapping

e : P → Q is an order embedding iff for all a, b ∈ P , a ≤P b iff e(a) ≤Q e(b).

P is an order retract of Q iff there are monotone mappings e : P → Q and

p : Q → P such that p ◦ e = idP .

1.4.8. Lemma. ([16]) Let P and Q be partial orders. If P is an order

retract of Q and Q has the κ-FN, then P has the κ-FN.

If P is order embeddable into Q and sufficiently complete, then P is an

order retract of Q.

1.4.9. Corollary. Let P and Q be partial orders and let e : P → Q be an

order embedding. If Q has the κ-FN and in P every subset has a least upper

bound, then P has the κ-FN.

Proof. For each q ∈ Q let p(q) := sup{p ∈ P : e(p) ≤ q}. p : Q → P is

monotone and p ◦ e = idP . Thus P is an order retract of Q and Lemma 1.4.8

applies.
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SinceP(ω) embeds into every infinite complete Boolean algebra,P(ω) has

the κ-FN iff any infinite complete Boolean algebra does. The most interesting

case seems to be κ = ℵ1. Fuchino, Koppelberg, and Shelah ([16]) noticed that

P(ℵ1) does not have the WFN, i.e. ¬WFN(P(ℵ1)) is provable from ZFC.

Therefore, again by the corollary above, no complete Boolean algebra without

c.c.c. has the WFN. As mentioned earlier, for every partial order P of size

ℵ1, WFN(P ) holds. Thus CH implies WFN(P(ω)). It is possible to enlarge

the continuum by adding Cohen reals without destroying WFN(P(ω)). Here

adding κ Cohen reals means forcing with Fn(κ, 2). In [16] and [19] the

following facts about WFN(P(ω)) were established:

1.4.10. Theorem. a)([16]) Adding less than ℵω Cohen reals to a model of

CH gives a model of WFN(P(ω)).

b)([19]) Adding any number of Cohen reals to a model of CH+¬0] gives

a model of WFN(P(ω)).

c)([16]) WFN(P(ω)) implies that the unboundedness number b is ℵ1.

It follows that the question whether there are any infinite complete Boole-

an algebras having the WFN cannot be settled in ZFC. It will turn out that

the universe must be quite similar to a model obtained by adding Cohen

reals to a model of CH if WFN(P(ω)) holds, at least as far as the reals are

concerned. Note that the Cohen algebra C and P(ω) both are retracts of

each other. Therefore one of them has WFN iff the other one does. This was

noticed by Koppelberg ([28]).

The usual ways of refuting the κ-FN of some partial order P are either

showing that P has an order retract which does not have the κ-FN or giving

a counter-example to part a) of Lemma 1.4.3. Concerning WFN(P(ω)), I

will only use the second method. The following lemma has probably never

been stated explicitly, but it should be well-known.

1.4.11. Lemma. Suppose either that M and N are transitive models of

ZFC∗ and M ⊆ N such that M is a definable class in N , or that N = V

and M is an elementary submodel of some Hχ, where χ is a sufficiently large
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cardinal. Then for all P, Q ∈ {(ωω,≤), (ωω,≤∗),P(ω),P(ω)/fin},

N |= (P ∩ M ≤σ P ⇔ Q ∩ M ≤σ Q).

Proof. I argue in N . The equivalence for P(ω) and P(ω)/fin follows easily

from the fact that fin is a countable subset of M . Similarly, the equivalence

holds for (ωω,≤) and (ωω,≤∗) since for each f : ω → ω the set {g ∈ ωω :

g =∗ f} is a countable subset of M if f ∈ M .

Mapping each x ⊆ ω to its characteristic function gives an order embed-

ding from P(ω) into (ωω,≤). Since P(ω) is complete, it is an order retract

of (ωω,≤). The mappings proving this are elements of M if M is an ele-

mentary submodel of Hχ for some large χ. If M is a definable class, then

the restrictions of these mappings to M are in M . It is easy to see that this

implies

(ωω ∩ M,≤) ≤σ (ωω,≤) ⇒ P(ω) ∩ M ≤σ P(ω).

Now suppose P(ω) ∩ M ≤σ P(ω) and let f ∈ ωω. Let x := {(n, m) ∈
ω × ω : m ≤ f(n)} and let C be an at most countable cofinal subset of

(P(ω × ω) � x) ∩ M . For each c ∈ C and each n ∈ ω let fc(n) := max{m ∈
ω : (n, m) ∈ c}. Now for each c ∈ C, fc ∈ M . {fc : c ∈ C} is cofinal in

(ωω ∩ M,≤) ↓ f .

Assume (ωω ∩ M,≤) ↑ f is non-empty. Let D be a countable cofinal

subset of (P(ω × ω) � ω × ω \ x) ∩ M . I may assume that for all d ∈ D

and all n ∈ ω there is some m ∈ ω such that (n, m) ∈ d since there is

g ∈ ωω ∩ M such that f ≤ g by assumption. For each d ∈ D and each

n ∈ ω let gd(n) := min{m ∈ ω : (n, m) ∈ d}. Now for each d ∈ D, gd ∈ M .

{gd : d ∈ D} is coinitial in (ωω ∩ M,≤) ↑ f .

From this lemma together with Lemma 1.4.4 it follows that WFN(P(ω)),

WFN(P(ω)/fin), WFN(ωω,≤), and WFN(ωω,≤∗) are equivalent. This was

partially observed by Koppelberg in [28].
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