LOW DISTORTION SURFACE PARAMETERIZATION

DISSERTATIONSSCHRIFT

vorgelegt von
Dipl.-Math. Felix Kéalberer

am Fachbereich
Mathematik und Informatik
der Freien Universitat Berlin

zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften

Gutachter: Prof. Dr. Konrad Polthier
Prof. Dr. Craig Gotsman

Einreichung: 29. August 2013
Disputation: 17. Dezember 2013

ACKNOWLEDGMENTS

I am grateful to my advisor Konrad Polthier for his continuous support and encourage-
ment over many years, and for providing an excellent research environment in Berlin.
I thank my friend and colleague Matthias Nieser for thousands of joyful and productive
hours we have worked together, and for his ideas and endless energy in our common
research and recreational activities.

I thank Ulrich Reitebuch for his continuous help and I thank Christoph von Tycowicz
for driving forward our joint publications. My thanks also go to Klaus Hildebrandt,
Carsten Lange and Isabella Thiesen, for helpful discussions and their support for this
work, and all other dear colleagues who made me enjoy my research. I am still thankful
to Max Wardetzky for his insights and for being a role model.

I deeply thank my soon-to-be wife Kerstin for her infinite love and patience in
the recent years. My thanks are similarly due to my mother and my family for their
continuous support.

This work was supported by mental images GmbH (now NVIDIA ARC GmbH) and
the DFG Research Center MATHEON “Mathematics for key technologies” in Berlin.

CONTENTS

Introduction

1 Foundations

1.1

1.2

1.3

1.4

Piecewise Linear Surfaces L.
1.1.1 Abstract Simplicial Complexes
1.1.2 Simplicial Surfaces
Finite Element Spaces
1.2.1 Dirichlet Energy and the Laplace Operator
1.2.2 Divergence and Curl L.
1.2.3 Discrete Hodge Decomposition
1.2.4 Computation of the Hodge Decomposition
1.25 Basesof P,C,and H
1.2.6 Computinga Baseof H
Cut Graphs and Systems of Loops
1.3.1 Finding a Shortest Cut Graph
Vector Field Indices Lo

2 QuadCover Parameterization, Part I

2.1
2.2
2.3
24

Good Parameterizations
Related Work
Direction Fields
The QuadCover Algorithm
2.4.1 Finding an Initial Parameterization
2.4.2 Global Continuity oL

11
11
12
13
17
19
21
23
24
25
29
31
31
32

3 Frame Fields and Coverings

3.1 Frame Fields
3.1.1 Matchings and Frame Fields
3.1.2 Curvature and Indices L.

3.2 Covering Spaces o e
3.2.1 Introduction
3.2.2 A Covering Surface for QuadCover
3.2.3 Caleuluson M

QuadCover Parameterization, Part 11

4.1 QuadCover on Coverings i

4.2 Cut Graphs on Coverings
4.2.1 Global Continuity
4.2.2 Pure Quadrilateral Meshes

Frame Field Generation

5.1 Principal Curvature Fields
5.1.1 Computing Principal Curvature Directions
5.1.2 Regions of Stable Curvature Directions

5.2 Smoothing Frame Fields
5.2.1 Minimizing Ego e
5.2.2 Branch Point Relocation

Minimizing Distortion

6.1 Branch Point Placement oL
6.1.1 A Distortion Measure,

6.2 Curl Minimization Lo
6.2.1 Computing the Curl
6.2.2 A Curl Minimization Heuristic

6.3 The Minimization of Rounding Errors
6.3.1 Minimizing (c —b)TP(c—b)
6.3.2 Computation of the Period Matrix
6.3.3 Comparison

43
43
44
45
46
46
48
ol

55
25
26
29
60

63
63
63
64
65
66
67

6.4 Balancing Curl and Rounding Errors 83

7 Results and Conclusions 89

Bibliography 95

List of Symbols 101

Zusammenfassung 103
VERFASSERERKLARUNG

Geméf §7 (4) der Promotionsordnung versichere ich hiermit, diese Arbeit selbstandig
verfasst zu haben. Ich habe alle bei der Erstellung dieser Arbeit benutzten Hilfsmittel
und Hilfen angegeben.

Felix Kélberer

INTRODUCTION

ol

-

——
i
FIGURE 1: The unfolding of the Max Planck head model into the plane.

SURFACE PARAMETERIZATION

Surface parameterization is the process of mapping a surface into the Euclidean plane.
The inverse process maps a region of the plane onto the surface, and along with
it, much of the structure of the Euclidean plane is transferred to the surface. For
example, surface parameterization induces a coordinate system on the surface, which
has applications in texture mapping, scattered data fitting, reverse engineering, and
modeling.

By considering all points with at least one integral coordinate, we can define a unit
grid on the parameterized surface. The unit grid divides the surface into quadrilateral
patches and so has its own applications, such as the remeshing of surfaces into regular
quadrilaterals. Moreover, the unit grid also lends itself for an intuitive visualization
of the parameterization map, in which the parameterization’s quality can be quickly
captured. The requirements on the quality differ from application to application, but
most often, a low distortion—measured in angle, length and area distortion—is among
the main requirements.

8 INTRODUCTION

While angle-preserving, length-preserving and area-preserving parameterizations
exist, the three properties can generally not be achieved at the same time. The exact
preservation of one of these measures often leads to large distortions of the other two,
and thus, a tradeoff between them is often preferred.

Next to distortion, the alignment of the parameterization is crucial for many
applications. Consider texture synthesis, remeshing, or architectural designs: there
are generally application dependent reasons to guide the unit grid lines in certain
directions due to numerical, structural, or aesthetic reasons. The central algorithm of
this work is the QuadCover algorithm, which I developed with Matthias Nieser under
the supervision of Konrad Polthier. It is tailored to satisfy the directional requirements
and it finds a best-fitting parameterization to given input directions.

The QuadCover algorithm, as published in 2007 [KNP07], sets up a clean mathe-
matical concept that shows how piecewise linear direction fields with fractional indices
can be regarded as vector fields on branched covering surfaces. This enables to apply
the wealth of well known vector field concepts to direction fields, such as the notion of
harmonicity and Hodge-Helmholtz decomposition. With this concept, QuadCover was
the first automatic parameterization method to create clean quadrilateral mesh layouts
from direction fields.

A wealth of applications makes high demands on parameterizations. The require-
ments include layout constraints, interactivity, quality and speed, and so, many improve-
ments were developed for QuadCover and other parameterization methods. Together
with Matthias Nieser, I have intensively developed the algorithm since the original pub-
lication: We have extended QuadCover to other symmetry orders [KNP10, NPPZ12],
forced parameter lines exactly to surface features (Matthias Nieser |[Niel2]), and devel-
oped additional applications for QuadCover in compression together with Christoph
von Tycowicz [vTKP11|. Furthermore, I developed optimizations to generate extremely
regular QuadCover parameterizations. These extensions are not published yet. Most
notably, I have contributed the following:

Development of QuadCover With QuadCover [KNPO07|, we developed the first
parameterization algorithm to automatically produce regular, feature-aligned
quad layouts. Joint work with Matthias Nieser.

Generation of smooth direction fields A robust construction method for smooth
direction fields and a framework to naturally edit the branch point positions
while maintaining its smoothness. Joint work with Matthias Nieser.

Extremely regular parameterizations I have developed new methods to drasti-
cally reduce the parameterization’s distortion. Significant reduction of distortion
is made during the enforcement of both local and global continuity and the

INTRODUCTION 9

distortion of the two is optimally balanced by choosing the right number of branch
points. The key ingredients are:

— Curl minimizing branch points. Local distortion is due to the curl of the
guiding field and is mainly influenced by the positions of branch points. Their
optimization is often a game of trial and error, which makes the quick evaluation
of curl essential. The very fast energy evaluation via complex sparse Cholesky
updates, paired with an intelligent choice of promising candidates in the search
space makes brute force search finally feasible. The distortion is well below
that of recent state-of-the-art methods [MZ13].

— Thorough global rounding A thorough and practical heuristic for the NP-
hard problem of optimally connecting parameter lines. Our heuristic includes
the computation of a shortest basis of homology generators on the covering
in [KNP10| and a fast method to compute the covering surface’s period matrix.
The latter allows to speed up the search for good solutions by several orders of
magnitude.

— The optimal number of branch points. While the minimization of curl favors
many branch points, a high number of branch points increases the artifacts of
global continuity enforcement. Thus, there is an optimal number of branch
points, which depends on the parameter line density. By giving an empirical
estimate of the expected error, the right number of branch points can be chosen
for each parameterization automatically.

This thesis is structured as follows. In Chapter 1, we give an in-depth introduction
the mathematical basics of discrete surfaces, vector fields calculus, and some algebraic
topology. We are taking a non-standard route to piecewise linear surfaces, extending
common definitions, to avoid deficiencies when dealing with self-intersecting branched
covering surfaces.

The QuadCover algorithm itself is explained in Chapters 2 to 5. We put an
emphasis on the completeness of the description, including many details that influence
QuadCover’s performance or ease of implementation.

Chapter 6 contains the extensions to optimize the position and number of branch
points for low-distortion parameterizations, and Chapter 7 summarizes the results and
compares them to competing methods.

10

INTRODUCTION

CHAPTER 1

FOUNDATIONS

FIGURE 1.1: Vertices, edges, and triangles of a simplicial complex.

In this chapter we will introduce all major mathematical objects that we need for the
QuadCover parameterization. This includes the parameterization domain—piecewise
linear surfaces—along with the discrete objects living on these surfaces: piecewise linear
functions together with the operators acting on them, as well as piecewise constant
vector fields, whose calculus then bridges the gap to the Hodge-Helmholtz theorem and
algebraic topology.

1.1 PIECEWISE LINEAR SURFACES

Most of the mathematical objects in this thesis live on triangle meshes—or simplicial
surfaces. In the description of simplicial surfaces we differentiate between their abstract
combinatorial structure and their geometric immersion in Euclidean space. This accords
to the clearly distinguished treatment of connectivity and geometry in practical mesh
processing. Compared to a purely geometric description of simplicial complexes found in
many textbooks such as Ziegler |Zie98|, our approach allows a larger variety of shapes

12 1. FOUNDATIONS

including self-intersecting surfaces and degenerated triangles. This generalization
is necessary, because our construction of branched covering surfaces in Section 3.2
will inevitably lead to self-intersecting surfaces, which makes any standard definition
inappropriate.

1.1.1 ABSTRACT SIMPLICIAL COMPLEXES

We will begin with the definition of a (finite) abstract simplicial complex, which gener-
alizes abstract points, line segments, triangles, and tetrahedra to arbitrary dimensions.
Our definitions adhere closely to Polthier and Munkres [Pol02, Mun84| where possible.

Definition 1.1 Let U be a finite set of abstract points. An abstract simplicial
complex R is a set of non-empty subsets of U such that if o is an element of K, so is
every non-empty subset of o.

An element o € R is called a simplex of & and its dimension is |¢| — 1. Each
non-empty (proper) subset of o is called a (proper) face of . The dimension of the
complex R is given by the largest dimension of any simplex of K. A simplex is called
vertex, edge, or triangle if it has dimension zero, one, or two, respectively. The
boundary of £ is formed by any simplex 7 that is a proper face of exactly one simplex
of R, together with the faces of 7. An abstract simplicial complex is closed if its
boundary is empty.

The concept of complexes allows an immediate definition of neighborhood relations
among the simplices. Two simplices of different dimension of a simplicial complex &
are called incident, if one of them is a face of the other. We will write o € 7 if ¢
is a face of 7. One calls two distinct d-dimensional simplices o; and o, adjacent,
denoted oy ~ 04, if they either share a common d — 1-dimensional face, or if they
are both face of a common d + 1-dimensional simplex of K. Two abstract simplicial
complexes U and 2 are said to be isomorphic, if there is a bijective map f taking
the abstract points of U to those of 27, such that {vy,...,0,,,1} € U if and only if

{f(o1), ..., f(opy1)} €20

The star of a simplex ¢ is the smallest subcomplex containing all simplices that
contain o. The link of o is the subset of simplices of star ¢ that do not contain any
faces of . For example, if ¢ is an interior vertex of K, the link of ¢ is the boundary of
the star of o. The neighborhood relations allow the definition of a topological surface,
compare [Haz93|.

Definition 1.2 An abstract simplicial surface M is a simplicial complex consisting
of a finite set of triangles (and their faces) such that

1.1 PIECEWISE LINEAR SURFACES 13

1. each edge is incident to either one or two triangles.

2. around each vertex v of M the faces incident to v form a cycle of faces sequentially
adjacent to one another.

The cycle around a vertex is closed, if and only if the vertex does not lie on the
boundary. Definition 1.2 (2.) implies that every boundary vertex is incident to exactly
two boundary edges: one edge is contained in the first triangle of the cycle of faces,
the other one is contained in the last face. Thus, the boundary of a surface must form
one or several closed loops, the boundary components.

It is possible to equip each triangle with an orientation by ordering its edges, such
that they form a closed loop. Two adjacent triangles have the same orientation, if their
common incident edge inherits different orientations from both triangles. A simplicial
surface is orientable, if it is possible to orient its triangles such that any two adjacent
triangles have the same orientation.

The valence or degree of a vertex refers to the number of its incident edges. The
sets of all vertices, edges, and faces of a simplicial surface will be denoted with V, E, F,
and their respective cardinalities will be denoted v, e, and f. The Euler characteristic
of a simplicial surface M is defined by

X(M) =v—e+f. (1.1)

We use the Euler characteristic to define the genus g of a closed abstract simplicial
surface through the relation

2 — 2g(M) = x(M). (1.2)
1.1.2 SIMPLICIAL SURFACES

So far, we have focused only on the connectivity of simplicial complexes, ignoring any
geometric associativity. We now move our focus to geometric realizations of simplicial
complexes. To account for practical applications, where self-intersecting simplicial
surfaces are commonplace, we will consider simplicial complexes in a sufficiently high-
dimensional Euclidean space R" and later map the geometry from this embedding
to R®. This allows us to carry over the induced topology from R”, in which the
simplicial complex always has a self-intersection free embedding, which is later required
for a proper construction of the topology.

First, let {v1,...,vms1} be a set of geometric independent points in RY, i. e.,
points for which the vectors

Vg — V1, V3 — V1, ..., Uny1 — V1

are linearly independent.

14 1. FOUNDATIONS

Definition 1.3 The (geometric) m-simplex A™ spanned by vy, ..., Vi1 S the con-
vex hull of {v1, ..., vmy1}, formally,

m—+1
i=1

m—+1
0< N <1, ZAZ-:1}.
i=1

For each x € A™, the numbers \; are uniquely determined and are called the barycen-
tric coordinates of the point x with respect to vy, ..., v,,11. A face of A™ is any
simplex spanned by a non-empty subset of {vy, ..., v,41}. Multiple simplices are
structured in a simplicial complex:

Definition 1.4 A (geometric) simplicial complex K is a collection of simplices
in RN, such that

1. every face of a simplex in K is in K.

2. the intersection of any two simplices in K is a face of each of them.

The abstract and geometric simplicial complexes are related in the following sense.
Let K be a geometric simplicial complex, and V' be the set of vertices of K. Let K be
the collection of all subsets {v;,,...,v; } of V such that v, ,...,v;, span a simplex
of K. Then R is an abstract simplicial complex and is called the vertex scheme of

K.

Vice versa, if the vertex scheme of a simplicial complex K is isomorphic to a given
abstract simplicial complex R, we call K a geometric realization of K. There is
always a standard realization for an abstract simplicial complex K:

Definition 1.5 (Standard realization) Let 8 be an abstract simplicial complex with
vertices vq,...,0,. Then the assignment v; +— e; of the abstract vertices to the
standard basis vectors {ey,...,e,} of RV and the assignment of each abstract simplex
{0i,...,0;, } to a geometric simplex spanned by {e;,,...,e; } yields a geometric
simplicial complex whose vertex scheme is isomorphic to K. It is called the standard
realization of R.

The surfaces that we consider in this thesis are living in R*. The following definition
will relate the high-dimensional standard realization to the triangle meshes as they are
known from computational geometry. In this thesis, we will always assume that the
dimension n of the ambient space is 3, although this restriction is not necessary.

Definition 1.6 (Triangle mesh) Let 8 be an abstract simplicial surface with v vertices
and let K be the standard realization of & (with vertices {vy = ey, ..., v, = e,} C RY).

1.1 PIECEWISE LINEAR SURFACES 15

A triangle mesh M = (R, P) is a an abstract simplicial surface K together with a
set of points P = {p1,...,p,} C R" and the (unique) linear map ¢ : RY — R" so that

1. piy,...,pi, are geometrically independent if {v,;,...,0; } € R
2. p(vi) = pi
The linear map ¢ maps the vertices of K to positions p; € R", but also maps the

interior points of simplices of K into simplices in R". The uniqueness of ¢ (and its
one-to-one correspondence with P) is obvious when written in matrix form:

90:<p1 '--pv);

where the vectors pq, ..., p, constitute the columns of the matrix . Barycentric
coordinates are preserved by ¢, although they are not necessarily unique in ¢(K).

The terminology triangle mesh is used in computer graphics and computational
geometry practice, where the connectivity of triangles are treated distinctively from
the vertex positions. This distinction in practice allows arbitrary vertex positions and
intersections of non-adjacent simplices, so this possibility should be taken into account
when working with surfaces. Due to self-intersections of ¢(K) in R?, K might lose
its property of being a simplicial complex under the application of ¢. Thus, being
finicky at this point, we will induce the surface’s topology from the self-intersection-free
embedding K in the higher-dimensional space RY, but stick to the surface’s intuitive
metric induced from its point positions in R? as explained below.

Let the underlying space | K| C RY denote the union of all simplices in K. We
define a topology on |K| as the subspace topology inherited from the surrounding
space R". Following Gromov and Wardetzky [Gro99, War(6] we define a distance
metric g on |K| via the specification of the length of curves in |K|, and measure
distances of points of | K| via g:

If v : [a,b] — | K| is a continuous curve, then the length of ~ (with respect to) is
the supremum over all admissible partitions Z = {tg = a < t; < --- <ty = b} of
la, b]:

() := sgp Z drr (@ 0 v(tim1), o v(¢;)).

A partition is admissible if (¢;_1) and v(¢;) lie in the same triangle T' of K
(possibly on the boundary of T'). Here dg~ denotes the Euclidean distance in R". The
distance between two points z,y € |K| is defined as

d(z,y) = infi(y),

the infimum taken over all continuous curves v : [a, b] — | K| connecting = and y. We
set d(z,y) = oo if there is no path of finite length from z to y. The distance d also
induces a metric tensor gx| on | K|, arising as the derivative of d.

16 1. FOUNDATIONS

This metric tensor necessarily agrees with the FEuclidean metric tensor on the interior
of triangles, as the triangles themselves are flat. Indeed g|x| also coincides with the
Euclidean metric across the interior of edges, as each edge star can be flattened into
the plane without changing the intrinsic length.

If (|K|) C R" is a simplicial complex (i. e., it has no self intersections), then
we do not need to take the detour and define the topology and metric on |K| C R".
Instead, we can induce the same topology and metric on ¢(|K|) directly from R". If
this is the case, or if there is no risk of confusion, we will drop the distinction between
a triangle mesh as defined above, stick to the much simpler definition of a geometric
simplicial surface:

Definition 1.7 A (geometric) simplicial surface is a geometric simplicial complex
with vertices in R™, whose vertex scheme is an abstract simplicial surface.

For the rest of this thesis, we will use M to denote either a simplicial surface or a
triangle mesh. The distinction between the two definitions becomes irrelevant, as both
describe surfaces with the same essential structures that we need in this thesis: the
discrete structure of a simplicial complex, outfitted with a topology and a metric that
is flat everywhere but at the vertices.

To differentiate between abstract and geometric simplices, we will use italic letters
p,q,... € Vye, f,... € Eand s,t,... € F to denote abstract simplices, and use
bold face letters to denote their geometric realizations, for example p,q € R?, and
sometimes e = p — q € R®. When in doubt, please also check the general notes in the
List of Symbols at the end of this thesis.

Various measures of curvature have been examined in differential geometry, and
many curvature concepts have their discrete counter-part. For example, the Gauss
curvature is defined in Polthier [Pol02] as follows:

CURVATURE

Definition 1.8 (Gauss curvature). Let M be a simplicial surface and p € M a vertex.
Let {tq, ..., tx} be the set of faces of star(p) and a; be the vertex angle of the triangle
t; at the vertex p as in Figure 1.2. Then the discrete Gauss curvature K (p) of an
interior vertex p on a simplicial surface M is defined as the vertex angle excess

k
K(p) =21 — Zai.
i=1

Interior points p of a face or of an open edge have a neighborhood which is isometric
to a planar Euclidean domain, and we define K(p) = 0 in these cases.

1.2 FINITE ELEMENT SPACES 17

S
B

FIGURE 1.2: The star of a vertex p and its isometric unfolding into the plane. The
angle by which vertex angles «; fail to sum to 27 defines the Gauss curvature at p.

The shape operator or Weingarten map of a smooth manifold applied to a
tangent vector v is defined in differential geometry as k,(p) = — D, N. It describes the

change of the normal vector field in direction of v. A discrete shape operator, defined
at an edge e, is defined by Hildebrandt and Polthier [HP04| as

S(e) = 2|e| cos % (e xn.)(e xn,)"

where «. is the dihedral angle at the edge e and n, is the unit vector which bisects the
adjacent triangle normals. Hildebrandt and Polthier [HP04| also define a vertex-based
shape operator, by properly summing up the edge-based operators.

The eigenvectors of the shape operator point in direction of the minimal and
maximal normal curvature of the surface and are called the principal curvature
directions. They will be of interest for the creation of guiding fields in Chapter 5.

1.2 FINITE ELEMENT SPACES

Our QuadCover algorithm is based on functions which are linear on each triangle. This
is motivated by their simple handling and the widespread use of piecewise linear (PL)
texture maps.

We consider two spaces of PL functions. The definitions match those in [Dzi88,
Pol02, War06| up to the fact that the first two references allow multi-dimensional
functions on M. The first finite element space S} is the space of continuous, PL
functions, formally

Sp = {u € C°(M) | u is linear in each simplex of M } .

The function f is uniquely determined by its values on the vertices, due to the fact that
linear interpolation determines linear functions on each triangle. The vector space Sy, is

18 1. FOUNDATIONS

spanned by the Lagrange basis functions (y,) that are defined at each vertex p € V.
Each basis function ¢, is a linear function on the mesh triangles with the property

op(p) =1 and ¢,(q) =0 for each vertex q # p. (1.3)
The other finite element space S; is defined as

;::{U:M—)R

u is linear in each triangle of M and
continuous at all edge midpoints '

The corresponding Crouzeix-Raviart basis functions are based on the edges of
the mesh and are denoted by (¢.) for e € E. Each basis function is linear on triangles
and satisfies

ve(e) =1 and (f) =0 for each edge e # f.

Here, ¢(f) denotes the values of 1. at the midpoint of edge f. Note that the space of
Crouzeix-Raviart elements includes the space spanned by linear Lagrange elements,
i.e., S, C Sy, since

oy =5 e (1.4)
e~p
when summing over all edges e incident to p. Unlike Lagrange basis functions, the
Crouzeix-Raviart basis functions are generally discontinuous. The functions in the
Crouzeix-Raviart space are continuous at the edge midpoints and can be discontinuous
on the rest of the edge. Therefore, the linear elements of S; are called nonconforming,
while the elements of S;, are called conforming.

Let X(M) denote the space of tangential vector fields on M, which are piecewise
constant on each triangle of M. Particular elements of X(M) are the gradient fields
of the aforementioned PL functions. For example, the gradient of a Lagrange basis
function ¢, on triangle t is given by

1
V@p‘t = 2—141;1167

where A; is the area of triangle ¢, e is the positively oriented edge of ¢ that does not
contain p, and J is the 90 degrees rotation of tangent vectors in their respective tangent
plane, see Figure 1.3, left. (Notice that J is also well defined on the interior of edges,
because each pair of adjacent edges is intrinsically flat.)

Similarly, the gradient of the Crouzeix-Raviart basis function v, based at the
midpoint of edge e (cf. Figure 1.3, right) is
1
Vipey = ——Je.
(G [t A, €
The gradient of a function u € Sy, (and analogously, u € S}) in a triangle t is then

determined by the sum of gradients of the three basis functions contributing to wuy,
weighted by the values of u at the vertices.

1.2 FINITE ELEMENT SPACES 19

FIGURE 1.3: Labelings of Je, ay,q, pq and Z(e, f).

1.2.1 DIRICHLET ENERGY AND THE LAPLACE OPERATOR

The Dirichlet energy measures how variable a function is. It plays a central role due to
the fact that its gradient defines the Laplace-Beltrami operator and its minimizers are
the harmonic functions.

Definition 1.9 The Dirichlet energy Ep of a piecewise linear function u € Sy
(possibly u € Sy) is

1
Ep(u) = §/M|\VuH2dA.

The well-known cotangent formulas [PP93] are commonly used to explicitly compute
the Dirichlet energy. For u € S;, we have

1 2
ED(U) = _5 Z Lpq (u(p) - u(Q))
{a.r}eE
where (£,,) is the conforming stiffness matrix of M, with entries

—%(cot Qg + Ot Byy) ifp~gq
Lpg = /M<V‘Pp’ Vi) dA = _erp Lpr ifp=gq

0 otherwise.

The angles o, and [3,, are depicted in Figure 1.3. Likewise, if u € S}, then

1 . 2
Ep(u) = =5 > Ly (ule) —u(f))
e,f €E
e~ f
Recall that edges e and f are incident, e ~ f, if they share exactly one vertex
and that u(e) denotes the value of u at the midpoint of edge e. The corresponding

20 1. FOUNDATIONS

nonconforming stiffness matrix (£;;) has the following form:

—2cot L(e,f) ife~f
ZfZ/M<Vwe,wa>dA ==Ly ife=f (1.5)

0 otherwise

where angle Z(e, f) is measured in the interval [0, 7] as in Figure 1.3, independently of
the orientation of e and f.

Analogously to the smooth case, the Laplace-Beltrami operator can defined as
the negative gradient of the Dirichlet energy, and we get again a conforming and a
nonconforming version of the Laplace-Beltrami operator, depending on whether it is
evaluated at the vertices or the edge midpoints.

Definition 1.10 Let u € Sy,. Then the conforming discrete Laplace-Beltrami
operator A is defined on the vertices of M as

Au(p) = —/M<Vu,Vg0p>dA.

Similarly, forw € Sy, the nonconforming discrete Laplace-Beltrami operator A’
is defined at the edge midpoints as

Aule) = — /M (Vu, Vipo)dA.

The Laplace-Beltrami operator has its analogous representation in terms of the stiffness
matrix. For u € S), we have

Au(p) =) Ly (u(p) —u(q)),

q~p
and for u € S},
Xufe) =Y 8 (u(e) —u())
fre
A conforming PL function u € S}, is called harmonic if it satisfies Au(p) = 0 at all

vertices p € V. Analogously, a nonconforming function v € S; is called harmonic, if
AXu(e) =0 at all edge midpoints.

Unfortunately, the so-defined Laplace-Beltrami operators fail to satisfy the mazimum
principle that is inherent to its smooth counterpart: harmonic functions have no local
maxima (or minima) at interior points. There exist several other discretizations of the
Laplace-Beltrami operator, but all of them fall short of satisfying all natural properties
of the smooth Laplacian operator. As we showed in our no free lunch paper [WMKGO07],
there exist meshes which do not admit any discrete Laplacian operator—defined by its
linear action on vertex based functions—that satisfy all of the following four properties:

1.2 FINITE ELEMENT SPACES 21

Symmetry £;; = £
Locality £;; =0 if v; and v; do not share an edge

Linear precision Awu; = 0 at each interior vertex v; if M is a planar mesh and u
is a linear function on M, point sampled on the vertices of M

Positive weights £;; > 0 unless ¢ = j and for each 4, there exists at least one
vertex j ~ ¢ such that £;; > 0.

The positive weights property, which is a sufficient condition to fulfill the maximum
principle, is violated by the so called cotan-Laplacian of [PP93| as defined above.
However, since the cotan Laplacian possesses the other three desirable properties above,
it is widely used in computational geometry.

MATRIX NOTATION

Let w € S,. Then the coefficients u,,,...,u,, in the basis function representation
u =73 cyUppp are completely determined by the values at the mesh vertices (re-
spectively edge midpoints for v = »° ¢ vetbe). Thus it makes sense to express the

function coefficients of u € S;, and v € S} as vectors u = (up,,...,u,) € R’ and
V = (Veys .-,V) € R® where v and e, as always, denote the number of vertices and
edges.

With this convention, the Dirichlet energy and the Laplace-Beltrami operator have
particularly simple representations using the stiffness matrices £ and £*:
Ep(u) = Lu'gu, Au(p) = (Cu),
Ep(v) = iv'g*, AXv(e) = (£*V)e
The two stiffness matrices £ and £* are closely related via the incidence matrix
C € {0,1}¥*¢ of the edge graph of M, whose entries C,. are 1 exactly if p € e:

£=1C7¢*C.

=1
1.2.2 DIVERGENCE AND CURL

Like the Laplace operator, curl and divergence of tangential vector fields are commonly
discretized in a conforming and a nonconforming version.

Definition 1.11 (discrete divergence and curl). Let X € X. The conforming dis-
crete divergence of X, divX, is a function on the vertices of M defined as

1
divX(p) := 5]({9 ()gM(X, v) ds.
Ostar(p

22 1. FOUNDATIONS

The nonconforming discrete divergence of X, div’' X, is a function on the edges
of M defined as

div' X (e) :=]{ gu (X, v) ds.
Ostar(e)

Here, v is the outward normal at the boundaries, Ostar(p) and Ostar(e). Similarly, the
conforming discrete curl of X, curl X, is a function on the vertices of M defined as

1

curl X (p) := 5]2 ()gM(X, 7) ds,
star(p

Likewise, the nonconforming discrete curl, curl* X, is a function on the edges of
M defined as

curl* X (e) :=]{ gu (X, 7) ds.
Ostar(e)

Here, T is the unit tangent vector at the boundaries, Ostar(p) and Jstar(e).

Note that the definitions also make sense if M has boundary. The integral notation
conceals the fact that the discrete divergence and curl can be easily computed by
simple sums, since the integrands are piecewise constant, and g,; coincides with the
Euclidean metric outside the vertices. Using the notation of Figure 1.4 and a fixed
edge orientation, the discrete divergence and curl of interior vertices and edges can be
computed by

) 1
divX(p) = 5 Z(th Je;)
tidp

diviX(e) = (X,, Je) — (X,, Je)

1 .
CurlX(p) = 5 ;<Xtia ei> = —div JX(p>
curl* X (e) = (X, e) — (Xy, e) = —div'IX(e) (1.6)
If p or ¢ happen to lie on the boundary, then the terms which reference missing triangles

just vanish.
If the triangles s and t at edge e are flattened into one plane, the formulas of div* X
and curl* X simplify to
diviX(e) = (Xs—X;, Je)
curl"X(e) = (X, — Xy, e),

The conforming and nonconforming versions of the curl and divergence are related by
the the following averaging property:

div X (p) = % Z div* X (e), curl X (p) = % Z curl* X (e).

esp esdp

1.2 FINITE ELEMENT SPACES 23

FIGURE 1.4: Labelings around a vertex p and an edge e.

When we interpret the values of div X (p) as entries of a vector divX € R" and interpret
curl X € RY, div' X € R®, and curl"X € R® as vectors in the same manner, then the
averaging property has the following, simple form using the incidence matrix C:

divX = C'div'X, curl X = 1 Ccurl*X. (1.7)

1.2.3 DISCRETE HODGE DECOMPOSITION

A key step of our QuadCover algorithm in Chapter 2 is to find the integrable parts of
vector fields via the discrete Hodge decomposition of vector fields, as formulated in its
discrete version in [PP03]. We use the notation of Wardetzky [War06|:

Theorem and Definition 1.12 (Discrete Hodge decomposition) Let M be closed.
The space X of piecewise constant vector fields on M can be decomposed according to
the following (conforming and nonconforming) L?-orthogonal splittings

X = imV, & imJVs: & ker curl* N ker div
= ImJVis, ® iImV|g: & ker div* N ker curl

for which wee use the following notation:

P :=imVg, C :==imJVs: H := ker curl* N ker div
P*:=1im Vs C*:=imJVg, H*:= ker div* N ker curl.

In each of the two versions of the Hodge decomposition (conforming and non-
conforming), the decomposition identifies three orthogonal vector field classes, compare
Figure 1.5. Vector fields Xp in P possess a continuous potential v such that Xp = Vu.
Vector fields Xp+ € P* have a edge midpoint continuous potential with the analogous
property, P* = Vuv. Since curlXp is zero, these fields are free of turbulence, can be
viewed as a flow from sources (divXp(u) > 0) to sinks (divXp(u) < 0). Vector fields

24 1. FOUNDATIONS

Xc € C and X¢« € C* contain the rotational part of the field and may have vortices, but
they are divergence free (i. e., they correspond to incompressible flows). These fields
are expressed by their co-potentials, X¢ = JVv and X¢e» = JVu. The remaining vector
fields in H and H* are called harmonic vector fields. They are both divergence
free as well as curl free in their respective conforming or non-conforming versions. On
closed surfaces, harmonic vector fields correspond to the flow around handles of the
surface.

Of the two dual decompositions P & C & P and P* @ C* & P* of X we will use the
former, because the vertex-based, piecewise linear representation of functions accords
to the actual usage in geometry processing.

1.2.4 COMPUTATION OF THE HODGE DECOMPOSITION

The components of the Hodge decomposition are orthogonal. Thus, the individual
contributions of the subspaces P, C, and H to a vector field X € X can be found by
finding the element in the corresponding subspace that is L?-closest to X. Let X be the
orthogonal projection of a vector field X € X to a subspace S € {P,C, H,P*,C*, H*}
of X. Then Xs can be computed via the following minimization problems [PP03]:

Xp = Vu, where u = argmin/ | X — Vul*dA
M

uESH

Xe = JVv, where v:argmin/ |X — IVy|*dA
M

veSy

Xy = X —Xp—Xe

Xp- = Vo, where v = argmin/ X — Vo*dA
veSy M

Xex = JVu, where u= argmin/ | X — IVul/*dA
M

u€SH

X = X — Xpr — X

The energies that appear in the formulas above are all quadratic, so their minimizers
can be found by solving a linear system. For example, to minimize the energy

Ep(u) = /M IX — VP dA = /M IXI + [Vl - 2(X, Va) dA,

1.2 FINITE ELEMENT SPACES 25

we require that its partial derivative with repect to u(p) at any vertex p is zero:

diEP(U) _ i(ED(u)_Q/M<X, >, UgVeg) dA)

Up du,

= Au(p) — 2/1\/1 (X, Vi) dA

®) Au(p) + divX(p) = 0.

The identity () follows from the definition of divX and Gauss’s theorem,

. of 1
aX(p) < qu (X ds = - / au (X, Vo,)dA.
star(p

star(p)

In matrix notation, the potential function u appearing in Ep(u) can be found by solving
Lu=—divX, (1.8)

and the respective potential functions in the minimization problems for Xgs, Xp«,
and Xe« can be found analogously via

£'v = —curl" X, £'u=—-div'X, and £v=-—curlX. (1.9)

Note that the linear systems of (1.8) and (1.9) do not have unique solutions as the
Laplacian operator has constant functions in its kernel. To remove the ambiguity, the
solutions can be normalized by requiring

/udAzO and /vdA:O (1.10)

M M

Computationally, the solutions of (1.8) and (1.9) are usually found by computing the
sparse Cholesky factorization of £ and £*. The Cholesky factor of a symmetric, positive
definite matrix A is an upper triangular matrix L satisfying A = L'L. The matrices £
and £* are indeed symmetric, but only positive semidefinite. This deficit is usually
avoided by adding a small positive constant to the diagonal. Once the factor L is
known, the solution of Ax = b can be quickly found by consecutively solving L'y = b
and then Lx =y row by row. The quick solvability of systems involving the triangular
matrix L makes the Cholesky factorization particularly attractive if the system Ax = b
needs to be solved for multiple right-hand sides b.

1.2.5 BASES OF P, C, AND H

Let M be closed. The two spaces P and C have canonical bases, composed of the
gradients of the respective basis functions ¢, € Sj, and 1. € S;. Since £ and £

26

1. FOUNDATIONS

(b) Potential u of Xp (¢) Co-potential v of X¢

(d) Harmonic part Xy (e) Integrable part X¢=Vu (f) Curl part Xp = JVu

FIGURE 1.5: Hodge Decomposition: A vector field X is decomposed into its harmonic,
potential, and curl part.

1.2 FINITE ELEMENT SPACES 27

have a one-dimensional kernel consisting of the constant functions, we eliminate that
additional degree of freedom by normalization via Equation (1.10). Thus, we have
dimP =v—1 and dimC = e—1. Since X has two degrees of freedom per triangle, we
can see that

dimH =dimX —dimP — dimC = 2f — (v—1) — (e—1) = 2g.

The last equality uses Equations (1.1) and (1.2) and the fact that counting the edge-face
incidences yields 2e = 3f.

Choosing a basis for the 2g-dimensional space H of harmonic fields is less obvious.
To construct a basis for H, we need to recap some more definitions from algebraic
topology.

CURVES, HoMOTOPY, AND HOMOLOGY

One calls two curves on M with common start and end points homotopic if they
can be continuously deformed into each other on M. A closed curve, i. e., a curve
that starts and ends in the same point, is contractible or null homotopic if it is
homotopic to the constant loop, that is, a point. A closed curve is also called a cycle
or loop. An open (closed) curve is simple if it is homeomorphic to a line segment (a
circle).

Let p be a fixed point on M. If one calls two loops equivalent whenever they are
homotopic, then homotopy defines an equivalence relation on the set of all loops that
start and end in p. Together with the concatenation operation, the equivalence classes
of loops on M form a group, the fundamental group (M, p). A homotopy basis
is a set I' of loops such that every loop with endpoints in p can be constructed (up to
homotopy and orientation) by concatenating paths of I'. The number of loops in all
homotopy bases is always 2g.

Following the definition of Erickson and Whittlesey [EWO05], a homology cycle is
a formal linear combination of oriented cycles with coefficients in a ring R, constituting
the homology group H;(M, R) of M. The identity element of the homology group is
the equivalence class of separating cycles, that is, cycles whose removal disconnects the
surface. Two homology cycles are in the same homology class if one can be continuously
deformed into the other via a deformation that may include splitting cycles at self-
intersection points, merging intersecting pairs of cycles, or adding or deleting separating
cycles. We define a homology basis for M to be any set of 2g linearly independent
cycles. Any homotopy basis is also a homology basis, but not vice versa, since the
cycles in a homology basis generally do not have a common point.

28 1. FOUNDATIONS

VECTOR FIELD INTEGRATION
Let X € X(M). By the assignment
X — wWx = gM(X,)

there is a unique 1-form wy associated with X, which gives rise to integration of vector
fields. Let 7 : [a,b] — M be a differentiable curve, then the integral of X along 7 is
defined as

[ox= | o (X3 (1)). (1))

A vector field is called integrable, if there is a function u € S}, that satisfies X = Vu
in the interior of all triangles. A vector field is called locally integrable, if each point
p € M possesses a (simply connected) neighborhood in which X is integrable.

Lemma 1.13 The following are equivalent:

1. curl’X = 0.

2. X 1s locally integrable.

3. f,y wx =0 for all null homotopic curves 7.

There is a direct consequence of Lemma 1.13. If X is locally integrable, then the

value of f7 wyx depends only on the endpoints of v as long as v stays within the same
homotopy class. Therefore, if M is simply connected, the function

1) = /pfwx

is well defined for a fixed point py € M, and is called the anti-derivative of wx or
potential function of X. If X = Vu is (globally) integrable, then f = u up to a
constant summand due to

10 = o= [auurias= [0 —up)—up) 01)

where 7 is a path from py to p. To explicitly compute the integrand on piecewise linear
surfaces, we fix the value of u at an arbitrary start vertex, and successively calculate
the function values of u at adjacent vertices. When the value of u at vertex p is known,
one can use

ug = upt < e, Xy > (1.12)

1.2 FINITE ELEMENT SPACES 29

to compute the value of u at an adjacent vertex g, where t is either triangle at the edge
e = (p,q). By Equation (1.6), the value of u, is independent of the choice of ¢.

The fact that integrals of wyx always vanish along null homotopic curves raises
the question what happens if v is not null homotopic. The integrals along the non-
contractible cycles on M define the periods of X.

Definition 1.14 The period b} of a locally integrable vector field X € ker curl® with
respect to a cycle v, € I' of the homotopy basis is the curve integral

bi(X) = /%WX.

From Lemma 1.13 it is clear why we have to require the local integrability of X for a
reasonable definition of periods: Two homotopic curves 71, v, with the same basepoint
differ by a null homotopic curve that first runs along +; and then backwards along v,.
Therefore, the periods of X are equal for all curves within the same homotopy class.
This makes the definition reasonably well defined. Nevertheless, the Definition 1.14
depends on the choice of the homotopy basis.

Equation (1.11) implies that fv wyy = 0 for all closed curves 7. This leads to the
following corollary:

Corollary 1.15 Periods of (globally) integrable fields vanish.

Therefore, periods of a locally integrable vector field are solely a characteristic of its
harmonic part. Even more, the periods fully characterize a piecewise constant harmonic
vector field, resembling the results in the smooth case, compare [Hod52]. For given
periods, there is exactly one conforming harmonic vector field. In the following section
we will give an explicit construction method, similar to that of Gu et al. [GWYO03].

1.2.6 COMPUTING A BASE OF H

Let I'={m, ..., 72¢} be a homotopy basis of M composed of edge-based paths (an
explicit construction of a homotopy basis is given by Algorithm 1.16). Choose any
fixed orientation on each loop 7,. This orientation defines a left side and right side in
the local neighborhood of each curve v, (assuming no degenerate cases, which can be
resolved by local subdivision). We now define for each path 7, a vector field ¥; € X
on the triangles ¢t of M as follows:

> V() if t is on the left side of
Yp(t) =< petnm (1.13)

0 otherwise,

30 1. FOUNDATIONS

where ¢, is the basis function at vertex p as defined in (1.3). If we were to cut the
surface along v, and assign the function value 1 to all vertices on the ’left’ boundary
component created by the cut at 7, and 0 at all other vertices, then ¥, would be
exactly the gradient of that function. In contrast to the potential function, the vector
field ¥ can be expressed in the standard PL setting without cutting.

It is easy to check that each field X, is curl® free, i. e., that curl*¥; vanishes on
every edge e = sNt. If e ¢ v, then X looks locally like a potential field on s U ¢,
which are always curl free. Otherwise, X, is perpendicular to e on one side of e and
zero on the other, so ¥ has the same projection to e from both sides. Thus, the curl
on e vanishes in both cases.

We say a cycle v; is dual to a cycle v, of the homology basis I, if 7} crosses 74
exactly once, but crosses no other cycle of I'. The set of dual cycles of I" also forms a
basis of the homology group. The explicit construction of paths with Algorithm 1.16
assures that a dual path does indeed exist for each ~; € I' (although generally not
in I'). The construction of ¥ and Equation (1.11) immediately imply

b](Ek) = / wgk = 5jk7
v

where 0 is the Kronecker delta.

Periods do not depend on the integrable part of a vector field, so we can subtract
the integrable part from 3, and get a divergence free (and thus harmonic) field
Hy = ¥ — (Xk)p with the same periods b;(Hy) = b;(X;). Together, the fields
{H., ..., Hy} form a basis of H, which we call the standard basis of harmonic fields
(with respect to the homotopy basis 71, ..., 75).-

To construct the basis fields Hy, ..., Hag explicitly, we compute each harmonic field
of the basis via Hy = ¥ — Vu, where u is the potential of (3;)p found by

Lu = —divXy.

Note that the Cholesky factorization of £ must be computed only once to solve the
linear system for all k.

If a harmonic field Hy, with desired periods b is to be constructed, there is no need
to compute a basis of H. The field Hy, can be directly computed by Hyp = ¥, — Vu
where >y, = Zzgzl b.>; and w is the solution of

Lu = —div . (1.14)

The solution of this system is one of the major steps for QuadCover, and will be referred
to again in Section 2.4.2.

1.3 Cut GRAPHS AND SYSTEMS OF LOoOPS 31

1.3 CuUuT GRAPHS AND SYSTEMS OF LOOPS

Our construction of a basis of harmonic functions requires the knowledge of a homotopy
basis. We review some more definitions before we give an explicit construction.

Let G = (V, E) be a graph with some node set V' and an edge set £ C V x V.
An embedding X)/(G) of a graph G in M is a map which takes the nodes of G to
distinct points on M and maps each edge e = (v, w) to a curve on M which connects
the images of v and w. A cut graph is an embedding X);(G) of a graph in M, such
that M\ Xy (G) is a topological disk. A system of loops is a cut graph with only one
node, i. e., all edges of of the cut graph are loops that start and end at the same node.
In particular, each system of loops is a homotopy basis.

1.3.1 FINDING A SHORTEST CUT GRAPH

An often posed problem is to find the shortest graph with particular properties, where
the length of a graph is the sum of the lengths of its edges. The edge lengths can
be Euclidean lengths (which we assume unless otherwise stated), unit lengths, or any
other arbitrary positive weights assigned to the edges.

The problem of finding a shortest cut graph of a triangulated manifold is NP-
hard [EHPO04]. Erickson and Whittlesey [EWO05] describe an algorithm to find a
shortest system of loops with a fixed base vertex b, which runs in O(vlogv) time (or
linear in v, if the genus is regarded as a constant). The algorithm makes use of the
edge graph of G = (V,E) of M, as well as of the dual graph G* of M, whose vertices
are the faces of M with an edge e* between any pair of faces that share an edge e in G.
The proposed algorithm of Erickson and Whittlesey works as following:

Algorithm 1.16 (Shortest System of Loops)

1. Construct a tree of shortest paths T from the base point b to every other vertex
in G (using Dijkstra’s algorithm).

2. For each edge e € G\ T, let o(e) denote the shortest loop that contains e, that is,
the edge e plus the direct paths in T from the endpoints of e to the root b.
Construct the maximum spanning tree T* of (G \ T)* with respect to the weight
lo(e)| for any dual edge e* € (G\ T)* (using Prim’s or Kruskal’s algorithm).

3. Output loop o(e) for every edge e that is neither crossed by T nor T*. Together
these loops constitute a shortest system of loops with respect to the base point b.

In [KNP10], we proposed an extension to this method for a set B of fixed base vertices
of the cut graph, as well as for the existence of boundaries: Simply identify all base

32 1. FOUNDATIONS

vertices and all vertices on the boundaries to a single point, and undo the identification
after the cut graph is found. This extension reduces the search for the shortest cut
graph to finding an optimal number and position of base vertices. In this case, the
algorithm outputs a list of paths whose endpoints are in B, that is, each end point
is either a singularity or a boundary vertex. Since there may be more than one base
point, the output is generally not a system of loops (but still a cut graph).

Independently, Eric Colin de Verdiére [dV10] proposed to start the shortest path
tree from the base vertex set B, which has the same effect as our identification to a
single point. Colin de Verdiére succeeded in providing a simple proof for the correctness
of the method, but did not mention the fact that surfaces with boundaries can be
handled with his method as well.

1.4 VECTOR FIELD INDICES

SMOOTH VECTOR FIELDS

Vector field indices and their generalizations play a major role for parameterization.
We will first have a look at the definition of indices of smooth vector fields, before
looking at discrete ones. Let M be a differentiable 2-manifold, possibly with boundary,
and let X be a continuous vector field with isolated zeros, and let p € M be such a
zero. In |Ebe01], the index of the vector field X at p is defined as follows.

Definition 1.17 Index of a vector field. Let ¢ : U — Q C R? be a chart around p
with o(p) = 0, where U is chosen so small, that U contains no further zeros of X. We
constder the map

g=DpoXogpl:Q—R?

that transfers the vector field from M to S via the differential Dy. Let S} C € be a
small circle of radius € around 0 in R?. Since p is the only zero of X on U, we have
g(S}) c R*\{0}. Let § be the map given by

f]:SEl — St
g9(z)
lg()]I"

Let x € S} be a reqular point of g. Then T,g : T,,S! — Ty)S" is a linear isomorphism.
We define sign T,g as +1 or —1 as the determinant of the map T,g is positive or
negative. Let y € S* be a reqular value of §. We define

T —

ind,(X):= Y sign T,g.

zeg 1 (y)

1.4 VECTOR FIELD INDICES 33

The number ind,(X) is called the index of the vector field X at p. One can show
that the index is independent of the reqular value y € S' and the chosen chart U,
compare [Mil65], §5 and §6.

Simply speaking, the vector field index at a point p is the signed number of
rotations that the direction of a vector field performs when tracing it once around an
infinitesimally small circle around p.

DISCRETE VECTOR FIELDS

For our applications on discrete surfaces we need a comparable concept of vector field
indices for discrete vector fields. The above definition is not directly transferable to
discrete fields. For instance, the fact that all the Gauss curvature of simplicial surfaces
is concentrated in the vertices has to be considered for the measure of the index.

Instead of looking at a small smooth circle mapped around a point p € M, we
consider the cycle of faces around a vertex. To define the index of a vector field at a
vertex, we examine how the vector field changes with respect to a vector that is parallel
transported along this cycle.

Following Ray et al. [RVLLO0S§|, let X € X a piecewise constant tangential vector
field on M. Let s and ¢ be two adjacent triangles (flattened to lie in the same plane, if
necessary). We define the (signed) curvature 6 of the vector field X along the edge
between s and t as the (signed) angle of rotation that brings X, to X;. In contrast
to the angle function Z(Xj, X;) that returns values in the interval [—m, 7], we allow
04 to take any values in R, so 0 also includes information about the number of full
rotations, denoted mg;, that we had to carry out if we were to interpolate the direction
of X in triangle s into that of X; in triangle ¢.

The number 6 ; has a unique decomposition
9575 = A(Xsa Xt) + 2mmg

where mg; is an integer, provided that in the ambiguous case when Z(X;, X;) = +,
mg and (X, X;) are chosen so that my has the smaller absolute value. This will
assure the consistency condition

Qst - _ets and Mgt = —Mys

making both € and m discrete 1-forms on the edges of M.

When we think of a piecewise constant vector field X as a smooth vector field
X which is sampled at the triangle midpoints, then the knowledge of X alone is not
enough to determine the vector field indices of X', as no information of the behavior
of the vector field between the sample points is given. The angles Z(X,, X;) can be

34 1. FOUNDATIONS

measured, but only with the specification of either mg; or 6, the topology of the vector
field between two adjacent triangles is fully defined, and so is the index at the vertices
by the following definition. We call the number m,; the matching between triangles s
and t.

Definition 1.18 (Discrete vector field index). Let {t1,...,tx} be the set of faces of
star(p) and formally let tyo1 = t;. The index of a piecewise constant, tangential vector
field X € X at an interior vertex p is given by

k
ind,,(X) = <K(p) +> Hmm) /2.
i=1
A vertex p with ind,(X) # 0 is called singular, and it is called regular otherwise.

Notice that the index ind,(X) is always an integer: if we were to group all terms
contributed by the Gauss curvature K (p) and 6 by their triangle index, then each
triangle ¢; would contribute (— Z(e,f) + Z(e, X;,) + £(X,,f)) /27 + muy,,, € Z, where
e and f are the two edges incident to p and t;.

CHAPTER 2

QUADCOVER PARAMETERIZATION, PART I

FIGURE 2.1: A parameterized head model in front of its domain.

2.1 GOOD PARAMETERIZATIONS

By the parameterization of a surface M we understand the process of finding an
atlas of M, that is, a set of charts ¢; = (9, ¢}) : Uy = R? ~ C from subsets U; C M
so that the sets U; cover M. Each parameterization defines a set of parameter lines
given by {p € M | ©°(p) € ZV ¢'(p) € Z}. The triangles of simplicial surfaces give rise
to a natural chart layout, where each triangle corresponds to a chart.

This chapter will cover the requirements of a good parameterization from a practical
viewpoint and introduce our QuadCover algorithm to find such a parameterization.
We have mentioned several applications for mesh parameterization in the introduction,
and as different as these applications are, so are the requirements that characterize
good parameterization. The following non-conclusive list contains the most important

36 2. QUADCOVER PARAMETERIZATION, PART I

requirements with regard to remeshing to quadrilateral meshes, surface texturing, and
the creation of a coarse subdivision surface control mesh.

1. Computability: Most current mesh processing and rendering hard- and software
uses linear interpolation of mesh properties like positions and texture coordinates.
Thus, ¢ should be piecewise linear on M.

2. Non-degeneracy: The parameterization ¢ function should have positive orien-
tation in every triangle, 7. e., det Dy > 0.

3. Partition into quads: For remeshing applications and creation of patch layouts,
the parameter lines should partition the surface into quadrilaterals. Formally,
the set of parameter lines must be the embedding of a graph whose interior faces
have constant degree 4 and whose interior vertices have valence 2 or greater.

4. Direction control: In practice, the direction of parameter lines is often pre-
scribed, for example, to follow the principal curvature directions of M, because
curvature aligned meshes minimize wrinkles in remeshing applications. This
might be a local requirement, for example restricted to sharp bends and surface
features.

5. Density control: The parameter line density should be adaptive, for example,
to create anisotropic meshes, which deliver superior approximations to curved
surfaces.

6. Regularity: Remeshing and design applications often require the parameteriza-
tion to be as regular as possible in some metric, for example in the sense that
parameter lines

a) meet perpendicularly,
b) have equal distance,

c) are straight (i. e., geodesic).

The fact that many of the listed objectives are conflicting makes surface parame-
terization hard. In general, the objectives cannot be achieved at the same time. For
example, the reqularity requirement usually conflicts with partition into quads, direction
control, and density control. Even more, the requirements 6a, 6b, and 6¢ are generally
pairwise conflicting, so balancing the requirements is always necessary and highly
application dependent.

Notice that we require a constant face degree of 4 in Item 3, but we cannot require
a constant vertex degree at the same time (unless M happens to have a genus of 1),
which can be shown by counting vertices, faces, and edge-face incidences. This implies

2.2 RELATED WORK 37

the existence of irregular vertices, which has a fundamental impact on the structure of
the parameterization. In particular we can achieve the regular structure of a planar
quadrilateral grid only locally, and we generally will have to deal with irregular vertices
that break with the regular structure of the Euclidean plane.

2.2 RELATED WORK

There exists an abundance of different approaches to surface parameterization and,
more general, the generation of quad and quad dominant meshes from given triangle
meshes.

CONFORMAL PARAMETERIZATION

Gu and Yau [GYO03] were first to construct global quasi-conformal parameterizations
of surfaces with arbitrary genus. The resulting parameter lines minimize angle distor-
tion but may have a extremely large length distortion. Kharevych, Springborn, and
Schroder [KSS06] used circle patterns to find quasi-conformal parameterizations. In
contrast to Gu and Yau, they use cone singularities to increase the flexibility of purely
conformal mappings, and can so reduce the length distortion.

The hard problem of finding good positions for cone singularities was tackled by
Ben-Chen, Gotsman, and Bunin in [BCGBO08|. The authors showed that the length
distortion of a conformal metric can be quickly computed to yield prescribed Gauss
curvature at the mesh vertices. By the iterative placement of cone vertices, at which
the Gauss curvature is concentrated, they could then minimize the length distortion
of the conformal parameterization. By leaving the space of piecewise linear functions,
Springborn, Schréder, and Pinkall [SSP08| managed to create truly conformal mappings
between PL surfaces, and they could also improve the cone placement of Ben-Chen et
al. by iterative re-positioning.

While global conformal parameterizations minimize angular distortion, the space of
conformal parameterizations does not have enough degrees of freedom to allow the local
alignment of the parameter lines at given surface features. In other words, conformal
parameterizations can excel in the reqularity category, but they fail the requirements
direction control and density control.

QUADRILATERAL PATCH LAYOUTS

The method of Boier-Martin, Rushmeier, and Jin [BMRJO04| clusters the surface
into quadrilateral macro-patches and parameterizes each surface patch separately.
Tong, Alliez, Cohen-Steiner, and Desbrun [TACSDO06]| also use quadrilateral macro-
patches, but use global harmonic one-forms surface parameterization functions. Dong

38 2. QUADCOVER PARAMETERIZATION, PART I

et al. [DBG106] compute the Morse-Smale complex of eigenfunctions of the mesh
Laplacian to automatically compute a respective patch layout.

The irregular vertices of the quadrilateral meta-layouts become the cone singu-
larities of the parameterization. As detailed in Chapters 3 and 4, the use of cone
singularities enlarges the space of harmonic functions on the surface. The presence of
cone singularities increases the size of the homology group and thus the dimension of
the space of harmonic one-forms on the surface. Still, similar to conformal parameteri-
zations, the approach is constrained by the global nature of harmonic one-forms, and
lacks the ability to fulfill requirements direction control and density control. Huang et
al. [HZM™08] could eliminate these deficits for the spectral method of Dong et al.

DIRECTION FIELD DRIVEN PARAMETERIZATION

Alliez et al. [ACSDT03| where first to create quadrangular meshes guided by principal
curvature directions. Their approach was extended by Marinov and Kobbelt [MKO04],
and is based on the integration of curvature lines on the surface. Dong, Kircher,
and Garland [DKGO05| presented an algorithm which traces isolines in two conjugate
harmonic vector fields. Marinov and Kobbelt focus on creating coarse quad-dominant
meshes in [MKO06| by approximating the surface with very few patches, which are then
individually subdivided into quads.

Ray et al. [RLLT06] parameterize surfaces of arbitrary genus with periodic potential
functions guided by two orthogonal input vector fields. This leads to a continuous
parameterization outside the vicinity of cone points on the surface. These singular
regions are detected and reparameterized afterwards.

Inspired by this work of Ray et al., our QuadCover parameterization [KNPOQ7]| first
creates a direction field from the surface’s principal curvature directions and then finds
a parameterization function whose parameter lines align as much as possible with the
given input directions. By regarding the parameterization function as a single-valued
function on a branched covering of M, we provide a clean mathematical foundation of
how to project direction fields onto the space of parameterization functions via Hodge
decomposition.

2.3 DIRECTION FIELDS

In the list of requirements for parameterizations, Item 4 (controllable direction) implies
application or user defined direction of parameter lines (possibly only in specific regions
of the surface) and Item 6 (Regularity) implies perpendicularity of the desired parameter
lines. Technically, these two requirements can be described by a set of two mutually
perpendicular, tangential vector fields on the surface, whose vectors define the required

2.4 THE QUADCOVER ALGORITHM 39

directions of the surface. Since we assume that this guiding field doesn’t need to
be more fine grained that the surface mesh itself, we assume all guiding fields to be
piecewise constant on the triangles of the mesh. The idea to use such guiding fields
first spawned in the Periodic Global Parameterization method [RLL*06], and was well
received in the parameterization community.

The term cross field commonly describes a set of two tangential, orthogonal vector
fields, while the term n-RoSy fields (abbreviatory for Rotationally Symmetric fields)
refers to a set of n tangential vector fields, which are mutually rotated by 27“ Therefore,
the first two vectors of a 4-RoSy-field constitute a cross field. In [KNP07], we termed the
name frame field to denote a set of four tangential vector fields, whose third and fourth
vector fields match the first and second field, in reversed direction, compare Section 3.1.
Thus, a frame field is a 4-RoSy field without the requirements of perpendicularity and
constant length.

The Poincaré-Hopf index theorem states that the sum of vector field indices of a
closed surface is equal to the surface’s Euler characteristic. One implication of the
index theorem is that vector field singularities are unavoidable for surface genuses other
than 1. According to Ray et al. [RVLLO0S|, a corresponding index theorem holds also
for RoSy fields, so we must always reckon on the existence of singularities.

Singularities have the property to make the two vector components of a frame
field indistinguishable, in the sense that it is generally possible to 'continuously’ trace
one frame field component along a closed curve and end up in the other component.
Nevertheless, we will assume for a moment the simple case of no singularities and
will formulate our QuadCover algorithm here in a simplified version. In this case,
a frame field is nothing more than a pair (X,Y") of vector fields. We will continue
with frame fields in the next chapter and give more thorough definitions there. The
complete QuadCover algorithm which respects the presence of singularities is covered
in Chapter 4.

2.4 THE QUADCOVER ALGORITHM

The QuadCover parameterization picks up the idea of Periodic Global Parameteri-
zation [RLLT06] to first find a global guiding field on the surface, and then seek a
parameterization function that yields parameter lines in the direction of the guiding field.
We first show how we construct a parameterization function from the given guiding field.
The generation of suitable frame fields is discussed in Chapter 5. Section 2.4.2 will
discuss how the handling of other necessary criteria, such as the continuity of parameter
lines, is required to guarantee that they form a partition into quads (Requirement 3).

In this chapter, we assume that the guiding field is a frame field (X,Y’) without
singularities, whose two components X and Y are piecewise constant vector fields on

40 2. QUADCOVER PARAMETERIZATION, PART I

M. Our task is to find a parameterization function ¢ = (¢°, ') : M — R? such that
Ve = X and Vel =Y,

if possible. In this case, the parameter lines, i. e., the integer-isolines of ¢° and ¢!,
point in directions perpendicular to X and Y. If we are interested in isolines along X
and Y, we only have to rotate X and Y by 7 in the tangent plane.

2.4.1 FINDING AN INITIAL PARAMETERIZATION

We consider only the first component X € X of the input frame field, because the second
component is handled identically. By the Hodge-Helmholtz theorem (Theorem 1.12) X
can be split into its mutually orthogonal parts,

X =Xp® XecDd Xy
and there is a potential function v € Sj, and a co-potential function v € S; that satisty
Xp=Vu and Xe =JVu.

Because the curl part X¢ of the vector field is the only part that is non-integrable, the
sum Xp @ Xy is the best L?-approximation to the given guiding field among all vector
fields that are gradients of a local parameterization. One key idea of QuadCover is to
drop the curl part of the input field to obtain the locally integrable vector field that is
L?-closest to the input field.

Computationally, the first step of the QuadCover is to identify the non-integrable
part of X by solving

£'v = —curl" X, (2.1)

compare Section 1.2.4. If we subtract JVv from X, then the remainder X:=X—-JVv
is locally integrable, i. e., we can find an integrand ¢ with V¢ = X on simply connected
areas. We take advantage of that fact and cut the surface M along a cut graph I'
(found via Algorithm 1.16) into a topological disk M. The local parameterization
function then arises by integrating X over M via Equation (1.12) and is unique up to
an additive constant.

2.4.2 GLOBAL CONTINUITY

We now have constructed a continuous parameterization ¢ on the simply connected
surface M. When we compare the isolines belonging to ¢ on both sides of the cut loops
of I, the lines will generally not join together continuously. They match up if and only

2.4 THE QUADCOVER ALGORITHM 41

FIGURE 2.2: Once the curl free field X is found by Hodge decomposition, an initial
parameterization can be computed by integrating X. However, parameter lines are
discontinuous unless integral periods of the two dual cycles are assured.

if the parameter values at both sides differ by an integer wherever a parameter line
meets the cut. In other words, the parameter lines match if and only if all periods by,
of Vo with respect to the dual cycles 71, ..., 75, are integers (Figure 2.2).

To achieve that situation, we modify the parameterization ¢, but we do it with the
smallest possible impact on Vi to stay as close to the guiding directions as possible.
By Corollary 1.15, adding some potential function of S, (M) to ¢ will not alter the
periods. Since modifying the curl part would destroy the integrability, this leaves us
only with the harmonic functions that we can add to ¢ to repair the discontinuities.

Let b € R?% with by, = fv; wy be the period vector of X with respect to V7, ..., Y3
We have to modify X such that all of its periods are integers. A straightforward
solution is to round the numbers by, ..., by, to their closest integer value and then
find a field X, that has exactly those periods. We let d;, := [bx] — by denote the offset
to the integer [by] that is closest to by, and let Hq be the unique harmonic vector
field that has periods dy, . .., dag, found via (1.14). Then the vector field X = X + Hy
has integer periods [by], ..., [bag], and thus its integrand ¢ with V@ = X satisfies the
required conditions which make the parameter lines match across the cut loops.

Rounding each by to the closest integer is only one reasonable way of rounding.
Finding integers such that the norm of the correction field Hgy is minimal helps to
remain as close as possible to the input directions. However, since this problem is more
involved, we postpone it to Chapter 6.3. We end this chapter with a summary of the
simplified QuadCover algorithm:

Algorithm 2.1 (simplified QuadCover parameterization)
1. Construct a guiding frame field X (Chapter 5).

2. Project X to the space P @& H of integrable fields by subtracting Xc¢ from X.

42

2. QUADCOVER PARAMETERIZATION, PART |

3. Assure global continuity of parameter lines by adding a harmonic field Hq so that
all periods by, + dy are integers.

4. Integration of the resulting field yields the parameterization function .

CHAPTER 3

FRAME FIELDS AND COVERINGS

1

3.1 FRAME FIELDS

Vector fields are often given in pairs, or more general, n vector fields are given at
each point of the surface. The entirety of vector fields often inherits an additional
structure: For example, the eigenvectors of symmetric tensor fields—such as the
principal curvature tensors—are always perpendicular wherever they are defined. If
two vector fields that could be the eigenvectors of a tensor field were to be designed,
additional constraints had to be met to control the relationship between them. The
notion of n-way Rotational Symmetry fields (n-RoSy-fields) as defined by Palacios and
Zhang [PZ07| specifies exactly these relationships: at each point p of M there exist n
unit length vectors xg, ..., x,_; in the tangent space, and each vector x;, differs from
Xo by a rotation of k- 2Z. A 4-RoSy field is often called a cross field [HZ0O0|.

RoSy fields have the property of rotational invariance. Thus, a “cross” determined
by a single vector, together with a rotation by %TW? which generates the three remaining
vectors. For QuadCover, we also start with orthogonal frames, but we must loosen the
definition of cross fields: to define a Hodge decomposition for cross fields, we cannot

44 3. FRAME FIELDS AND COVERINGS

hold the orthogonality and unit length requirements. Therefore, our definition of frame
fields [KNPO7| generalizes the definition of cross fields by dropping these requirements.

Let p € M be a point that does not lie on an edge. A frame (x,y) at a point p is
defined by two tangential vectors and the following map R, which adopts the role of
the rotation that we had for cross fields. Formally, we define the map

R:T,M* — T,M*
R(X7Y) = <_Y7X>'

If x and y are orthogonal, then R corresponds to the Z-rotation J. The fact that R is
a linear automorphism on a real vector space that satisfies

R? = —id (3.1)

makes R a so-called complex structure on 7),M. In fact, the notation is often simpler
in complex coordinates. If we define z := x + ¢y, then we have

RF(x,y) = i*z.

Thus, a frame can also be expressed as a complex vector whose real and imaginary
parts are tangential vectors of M.

3.1.1 MATCHINGS AND FRAME FIELDS

We have seen for vector fields that the discrete set of samples is not enough to compute
the index of a vector field, and we need additional information about the transition of
a vector towards the vectors in neighboring triangles, and that information is given by
the matching.

The transition from vectors to frames introduces a new kind of ambiguity for the
comparison of two adjacent objects: It is unclear which of the four individual vectors
X, Y, — Xy, =Y, must be compared to X, when computing angles and differences
of two adjacent frames (X, Y;) and (X, Y;). To resolve that ambiguity, we let the
matching specify how the individual vectors in the two triangles are paired together,
making it essential to determine the field’s topology.

Definition 3.1 A matching m : E — Z is a map that assigns an integer number to
each edge e = (s,t) (directed from s to t) and satisfies mg = —mys. The number mg
specifies that Xy is matched to the first component of R™*(Xy,Y5), and Yy is matched to
the second component of R™(Xs,Ys) when evaluating edge based vector field operators
at e.

3.1 FRAME FIELDS 45

We call the union of two piecewise constant vector fields X,Y € X together with a
matching a frame field and let § denote the space of piecewise constant frame fields
on M.

Finally, the curl and divergence of a frame field (X,Y’) at an edge e = (s,t) can be
computed using the matching. The simplest way is to write them in complex notation,
using Z := X +1Y:

div'Z(e) = (Z;, Je) — (i"™Z,, Je) € C (3.2)
curl*Z(e) = (Zy, e) — (i Z,, e) € C. (3.3)

3.1.2 CURVATURE AND INDICES

CRross FIELDS

The matching carries two parts of information: mg determines which vectors are
matched together, but since R* = id this information depends only on m, mod 4. For
orthogonal frames, mg corresponds to a quarter rotation, so in this case, we interpret
mg as the number of quarter rotations to be carried out from triangle s to ¢.

The curvature 6, is the (signed) angle of rotation that rotates X, to the direction
of its matching vector in ¢, that is,

2
0, = Z(X,, X,) + WT“. (3.4)

The curvature can be interpreted as the sum of three parts: First, a rotation by
(X5, Xy) € [—m,m] which brings X to Xy, second, a number mg mod 4 of quarter
turns that turn X; to X;"**, and finally a number of L%J additional full turns which
account for possible vortices. The latter two parts give rise to an index that is solely
dependent on the matching:

Definition 3.2 The wndex ind, of a matching m on a simplicial surface M at an
interior vertex p is defined as

ind,(m) = 1 Z Mist,

where the edges eg are consistently oriented around p. We call a the index at vertex p
even if ind,(m) € Z+ 5, and odd if ind,(m) € Z+ 1. If p is a boundary vertex of M,
then we set ind,(m) = 0.

For consistency, we require as in the vector field case that mg and Z(X;, X;) are
to be chosen so that Z(X;, X;) € [—m, 7| and mg has the smaller absolute value in the
ambiguous case when /(X, X;) = £x. This will also assure that 65 = —6;5. Next, we
define the index of cross fields analogously to the index of vector fields:

46 3. FRAME FIELDS AND COVERINGS

Definition 3.3 (Cross field index). The index of a piecewise constant, tangential cross
field F' at an interior vertex p is given by

ind<ro(F) = (> 0+ K(p)) Jor.

€estIp

If p is a boundary vertex, then ind;**(F') is 0.

In contrast to the index of vector fields, the frame field index is not an integer, but an
integer multiple of }l.

For non-orthogonal frame fields, one could define the curvature and the index
as a tuples of two numbers, because the two vector field components could behave
independently of each other. Since a complicated, two-componented notion of curvature
is not necessary in our applications, we just use above notion of cross field curvature
for frame fields by constructing a cross field from an arbitrary frame field. For that
purpose, we let

(X, V)" = %(X— JY, JX+Y)

be the orthogonalized frame of (X,Y). Since the two components (X,Y)L are
perpendicular, we only need to normalize it to make (X,Y)* a cross field. We then
define the index of a frame field as the index of the corresponding cross field:

: cross L cross 1
ind;**(X,Y) := ind;** (X, Y)~.

3.2 COVERING SPACES

3.2.1 INTRODUCTION

In his study of complex functions, Bernhard Riemann regarded multi-valued functions
on surfaces as single-valued functions on multi-layered surfaces, and so established the
study of branched covering surfaces. Our interest in covering surfaces is caused by the
fact that parameterization also creates a multi-valued coordinate function on a surface.

We follow Riemann’s idea analogously to the description of Stillwell [Sti80]. A
complex function w(z) = z? on the unit disk can be viewed as map of the disk onto
itself. The map is not one-to-one, but in a natural sense, w(z) = z? maps the disk twice
onto itself except at 0, since any other point of the w-disk is the square of two distinct
values ++/w and —/w. In fact, if we were to divide the z-disk into two half-disks (for
example, at the real axis), then squaring would map both half-disks onto the whole
w-disk, as shown in the left and middle image in Figure 3.1.

3.2 COVERING SPACES 47

FIGURE 3.1: Left: The 2-disk, slit along the real axis. Middle: Squaring the half-disks
results in two disks with a cut from 0 to 1. Right: The two-layered w-disk, after
re-identifying those points that were slit apart. The boundary of each neighborhood
of the branch point at 0 (in particular, the boundary of the w-disk itself) is composed
of two circuits around 0.

Deforming the z-disk so that each point lays above its image on the w-disk results
in what we call a 2-sheeted cover of the w-disk with branch point 0. The cover of the
w-disk can be seen as two disks, each slit along the line segment [0, 1] and identified at
the edges labeled with Re and -Re as shown in Figure 3.1. The two disks are the sheets.
A small circuit around the origin has the property that it is not closed: it starts on one
sheet and ends on the other. Nevertheless the point 0 has a disk neighborhood whose
boundary is formed by joining two circuits around the branch point (Figure 3.1). Thus,
the covering surface is a genuine manifold from the topological point of view, even
though this fact is obscured, because our intuition often tries to identify the surface
points at the line of self-intersection.

The “two-valued function” z = y/w can be viewed as a single-valued function if its
domain is taken to be the covering surface instead of the w-disk, which is the general
purpose of Riemann surfaces in function theory: to provide domains on which all
algebraic functions become single-valued.

In contrast to classic Riemannian geometry, we do not consider algebraic or holo-
morphic functions, but we are interested in the covering surface’s topology. Surprisingly,
topologists seem to generally avoid branched coverings and stick to the unbranched
case. To put it in William Massey’s words [Mas64|: “In general, there does not seem
to be much known about branched covering spaces”, which he observed in 1967, more
than a hundred years after Riemann’s publication. Even though Massey’s observation
is dated itself, the absence of branched coverings from topology textbooks seems not to
have changed. We use a topological definition of branched covering spaces found in
Pigkosz [Pig96] that does not rely on the Riemannian structure on the surfaces (but
nevertheless shares the same concept).

48 3. FRAME FIELDS AND COVERINGS

Definition 3.4 (Branched covermg) Let M be a topological space. A topological space
M together with a map 7 : M — M is called an (n-sheeted) covering of M if the
following property holds: For each point p € M, there exists a neighborhood U, whose
preimage 7~ *(U,) is the union of exactly n disjoint topological disks.

A pair M and 7 : M — M is called a branched covering if there exists a finite set of
points P = {p1,...pm} C M such that the set 7=*(P) is discrete and the restriction of
the map m to M\ P is a covering. A point p € P for which the cardinality of 7=1(p;)
1s smaller than n s called a branch point.

Riemann’s concept to investigate multi-valued objects on single-layered surfaces as
single-valued objects on multi-layered surfaces can be applied to vector fields as well.
Here, frame fields are our multi-valued objects, and they can be identified with vector
fields on covering surfaces by the following construction.

3.2.2 A COVERING SURFACE FOR QUADCOVER

As always, let M be a piecewise linear surface, and F' € §, together with its matching m,
a frame field on M. According to Riemann’s idea, we identify the four-valued frame
field F = (X,Y,—X,-Y) on M with a single-valued vector field on a four sheeted
covering M over M , where the four components of X,Y, —X, —Y are spread on the
four layers of M.

To define M, we first specify its faces and then their adjacency relations, i. e., the
edges of M in dependence of the matching m. The vertices of M are then unlquely
determined by that construction. Figure 3.2 shows the idea of the construction, which
we will now formally describe.

FACES

The face set F of M contains four copies of each triangle in M, that is, if the face set
of M is F = {t1,ts,...,ts}, then

ﬁ:{fa)?ﬂvﬁvﬁv 2?(2)7 - tfl? t ~2 53}

The upper index [= 0, 1,2,3 of a triangle # is the index of the sheet or layer of the
triangle. To simplify the notation when specifying the sheet number, we formally define

th=¢medd foralll e Z,

so that we can omit the ‘mod 4’ in the layer notation. For the same reason we let the
upper indices start with 0, in contrast to the indices of vertices, edges, and triangles,
which start at 1.

3.2 COVERING SPACES 49

el)
';:/ iBEE mmn

FIGURE 3.2: Construction of a covering surface: Each face (left) is copied four times
(center). Copies that arose from adjacent elements are then glued together according
to the matching. The vertex set of the covering is then unique and also the frame field
can be spread uniquely to a vector field on the covering surface.

EDGES

For each pair of adjacent triangles ¢; and ¢; in M and k € {0, 1,2, 3}, we let the triangles
t% and f?ij” be adjacent.

For formal reasons we assign a layer r to the edge (¢F, fé) so that r equals the layer
of the triangle with the smaller index,
E ifi<y
T_{l if i > ;. (3:5)
With that notation, each edge e € M gives rise to four well defined edges €°,...,é* € M

and it is assured that (¥,;) and its reversal (#,,#F) are in the same layer.

VERTICES
The vertex set V of M is less obvious. Recall from Definition 3.2 that the index ind,(mn)

is one fourth of the sum of matchings around an interior vertex p (which we called
layer shift in our QuadCover paper).

If tg,..., tq_1,tq = to is a closed cycle of pairwise adjacent triangles around p, then
the sequence of layers
l() = 0, ll = mtotl, lQ = ll + mtth, ey ld = sz:_(:)l mtiti+1 = 41ndp(m)

for which the triangles £/} and £% in M are adjacent is uniquely defined, and 4ind,(m)
is exactly the layer of the final element. Let us take a look at cases that can arise:

ind,(m) € Z: The cycle of faces

7k ~k+m01 ~k+indp(m)
g fhrmor

in M is closed for any k € {0,1,2,3}, since the first element equals the last one.

50 3. FRAME FIELDS AND COVERINGS

“k-+4ind
ind, is even: f, fitmor | ghrainde(m)

an offset of two layers, but

is not a closed cycle since we end up with

100, & gl glath o2l — 40 and
. , e

th, tntt gt t{d“l“, R

are closed cycles of 2d faces in M. Also, these two cycles are the only cycles

around p, since the ones starting at t2 and {3 coincide with the two cycles above:

the above cycles contain 3 = £ and 3 = #/*™" already.

ind, is odd: The cycle of faces starting at t9 has 4d elements and contains all triangles

\

thforall k =0,1,2,3and i = 0,1,...,d — 1.

The study of closed cycles on M suggests how the

vertex set V of M must look like. The definition of sim-
plicial surfaces requires that every vertex is surrounded
by a loop of pairwise adjacent faces, so if M is to be
a simplicial surface, V must contain exactly one vertex
for each of the mentioned cycle of faces in M. Thus,
each vertex p € M with odd index contributes one ver-
tex to M , each vertex with even index contributes two
vertices, and all other vertices contribute four vertices
each to M.

To assign a layer to vertices, we denote the vertex of M that is incident to the cycle
th ghtmor ik with p*. Note that this notation depends on the choice of the start
triangle of the cycle and that it is not unique. For example, p and p? denote the same
vertex if the index is even, since £ and #2 then lie in the same cycle. The simplest way
to resolve the dependence of the start triangle is to fix triangle ¢y as being the triangle
at vertex p with the lowest index in a global indexing of all triangles of M.

FiGURE 3.3: Face adjacencies
define the cycle of faces around
each branch point.

REMARK

The above construction conceals that the four layers of the covering surface coincide
geometrically, so a proper induction of a topology from the surrounding space is
not possible. To be technically precise, we would have to spec1fy M via its abstract
simplicial complex 9N, consisting of the abstract vertices U, edges &, and faces F, that
are constructed analogously to the sets V, E, and F. Finally, we would have to assign
the geometric position that belongs to v to each vertex v, which implies that edges
and triangles of M would also share the same geometry as their counterparts im M.

If O is constructed that way, the following properties of M follow directly from the
construction of QJ QE and 3

3.2 COVERING SPACES 51

Lemma 3.5
1. OM is an abstract simplicial surface.

2. The assignment of vertex positions b¥ — p(v;) to every vertex vf € U makes

M a triangle mesh, denoted by M (whev:g p B — R™ is the assignment of
vertex positions to the vertices of M). M 1is a triangle mesh in the spirit of
Definition 1.6, but it is not a simplicial complex due to its self-intersections.

3. Let K and K be the standard realizations ofg)vi and M, respectively (see Defini-
tion 1.5). Because || > ||, there is a unique linear map © : K — K that maps
the position of vertex of in K to the position of vertez v in K for every bk M.
The pair (l?,) is a 4-sheeted branched covering of K according to Definition 3.4,
and the (positions of) vertices {oF € B |ind,(m) ¢ Z} are branch points of (K,).

4. Let boyen and bygq be the num~bers branch points with an even agd odd indez,
respectively. If boqaq > 0, then I is connected and the genus g of M satisfies

g = 4g+%beven+%bodd_3~

This is a special case of the Riemann-Hurwitz formula and can easily be verified
using the definitions of the genus and FEuler characteristic in Equations (1.1)

and (1.2). In the case that boaq = 0 and beyen > 0, the surface m decomposes into
two connected components, each with a genus of 2g+%bev€n— 1. Ifboga = beyen = 0,

then M decomposes into four connected components of genus g.

3.2.3 CALCULUS ON M

So far we constructed a covering surface M from M, and it only remains to lift a
multi-valued frame field (X,Y’) € § or a function (wg, 1) : M — R? from M to the
layers of M.

Since the description is much simpler in complex notation, let us define 7 = X +2Y
(or Z = o + ¢, if we are looking at functions). We now define a real vector field (or
real function) Z on M by setting

Z(p') = Re(i7'Z(p))

for every p € M, where [is the layer of point p € M. The correspondence is one-to-one,
and so this assignment has an inverse via

Z(p) = Z(7") +iZ(p"). (3.6)

52 3. FRAME FIELDS AND COVERINGS

To compute a Hodge decomposition on M , we need the stiffness matrix of M. The
non-conforming stiffness matrix of M is according to Equation (1.5)

—2cot (e}, €l) if ef ~ €l

E:kjlz/MWxTzf,v@;)dA: =2 L iti=g (3.7)

m
€p ™€

0 otherwise,

where U is the Crouzeix-Raviart basis function at edge é¥. The stiffness matrix is a
block matrix containing e x e blocks of size 4 x 4. The non-zero values of a block at
position {7°,... 3} x {j°,..., 3} correspond up to the sign to £7;, since the geometry
of the individual triangles of M is the same as those of M. The sign and position
of the matrix entries within each block depends on how the individual triangles are

connected in the covering surface M.

The stiffness matrix of M can be written more elegantly as a complex matrix
£* € C**¢. Besides having a much cleaner notation, the complex matrices are advanta-
geous for Cholesky updates, as we discuss later in Section 6.2.1. If £* is the real-valued,
non-conforming stiffness matrix of M, then the Hermitian matrix

ilﬂz‘j if &l ~ é?

0 otherwise

acts on complex valued functions @ on M in the same way as the block matrix of
(3.7) acts on symmetric functions % on M. As an example, the Dirichlet energy of a
symmetric function @ € Sy (M) is

1 —
Ep(a) = EﬁT ga=1a £a (3.9)

where we have @; = Uy; + 204,11 when written in vector notation. Since £* is Hermitian,
its associated quadratic form @~ @' £* 4 is always real. The factor % stems from the
fact that we skipped layers 2 and 3 in the complex notation.

The adjacency &' ~ é? in Equation 3.8 implies that there is some triangle t* in

M that contains edges &' and é?. Note that by our definition of the layers of edges,
(Equation 3.5), [also depends on the indexing of the triangles containing & and é?.
Thus, the layer £ is not necessarily equal to 0 or [.

The conforming stiffness matrix is constructed equivalently: For each pair of vertices
Up, Vg, there is a unique layer [so that 171[, is adjacent to 172. This layer determines the

3.2 COVERING SPACES 53

entries £,, of the conforming complex stiffness matrix of M ,

0 if £,, =0 or p or ¢ is a branch point
Lpg = 8'Cpg T, ~ 0
Lop if p=gq.

Remember that the layer of the layers of the vertices of M , and thus also [, depends
on the global indexing of all elements touching v, or v,.

The problem of ambiguous layers at branch points is dealt with by setting rows
and columns corresponding to branch points to zero. Since a branch vertex v, always
appears in multiple layers, any symmetric function at p must satisfy @) = a2 as well
as the symmetry condition ﬂg = —ﬂ% at the same time, so ﬂ’; always vanishes in all
layers k. Therefore, omitting the stiffness matrix values at branch points is reasonable.
Reasonable non-zero function values at branch points can be realized by setting the
function value along a symmetric cycle through the branch points as explained in
Section 4.2.

HODGE DECOMPOSITION

Knowing the stiffness matrix of M, the Hodge decomposition X =P +C+H of frame
fields on M is straight forward using the equations of Section 1.2.4. The only difference
is that we now use the complex valued curl and divergence functions and stiffness
matrices £ and £* as described above.

As in the vector field case, finding a basis for the spaces] P and C is trivial, but
specifying a basis for the space H of harmonic functions on M is more involved. We
have already described how to find a homotopy basis that is needed for the construction
of bases of H and H in Section 1.3. In Section 4.2 we will show how the respective
bases look on the covering surface.

o4

3. FRAME FIELDS AND COVERINGS

CHAPTER 4

QUADCOVER PARAMETERIZATION, PART II

4.1 QUADCOVER ON COVERINGS

In Chapter 2 we assumed that we had given a frame field F' = (X,Y) without
considering the matching. We now consider the more general case of QuadCover, i. e.,
input fields F' endowed with a matching and the existence of singularities.

The simplified QuadCover algorithm in Chapter 2 came in two stages: Parameteri-
zation on a simply connected integrable field that is close to the input directions in the
first stage, and guaranteeing continuous parameter lines in the second step.

Following the idea of Chapter 3, we regard the frame field F' = (X,Y’) on the input

surface M as a vector field on the four-sheeted covering surface M. The four vectors
X,Y,—X,—Y are spread to the four layers of M, giving rise to a vector field X on M.

In the first step we seek a parameterization function ¢ : M — R? ~ C so that \%"%)
is close to X! in each triangle ¢; and each layer I. Following the steps of Chapter 2, we

56 4. QUADCOVER PARAMETERIZATION, PART II

solve the linear system

£v = —curl* X,

analogously to Equation 2.1, this time using the vector field and the stiffness matrix
with respect to the covering surface M. The solution vector v contains the value of the
co-potential ¥ of the curl*-part of X at the edge-midpoints of M. Subtracting JVv
from X then yields an integrable field X, and the potential function of X is our initial
parameterization .

What remains is to ensure the global continuity of ¢ . Again, the procedure is analog
to Chapter 2: With respect to the dual cycles of a homology basis 71, ..., 725 of M we
measure the periods by, ..., bgg of the vector field X. Next, we add a harmonic field
to X with periods [b;] — b;, so that the resulting field X has integer periods [b;]. The
integrand @ of X is the final parameterization function.

The next section will detail how to find a suitable homology basis on M and which
of these basis elements are essential for QuadCover parameterization. All other steps
of QuadCover are analogously to Chapter 2.

4.2 CUT GRAPHS ON COVERINGS

Algorithm 1.16 gives a construction method for a homotopy basis I" on a surface M.
We could of course apply Algorithm 1.16 to M to retrieve a homotopy basis on its
covering M, but it is also possible to construct a cut graph T of M directly, without
computing the explicit combinatorics of the covering surface M. Our construction will
also respect required symmetry properties of the homology basis.

We call a path 7 on M symmetric if the reversal of the path agrees with a
shift by two layers (in other words, 4 has a constant-velocity parameterization over
[—1,1] so that 4*(t) = 7%t2(—t)). The path 7 is called asymmetric otherwise. The
differentiation between symmetric and asymmetric paths is essential here: Since all
previous steps of the QuadCover algorithm respect the complex structure of vector
fields on the covering (in the sense that X'=-X ?), also the harmonic correction field
X in the last step should respect that symmetry. There are symmetric and asymmetric
homology generators, and only the symmetric ones yield harmonic vector fields when
constructing harmonic fields from cycles as explained in Section 1.2.5.

We will give construction rules to construct homologously independent sets of
symmetric and asymmetric paths. Since the total number of paths matches the genus
of M as given in Lemma 3.5, we conclude that the given paths constitute a homology
basis. However, we will only use the symmetric paths for QuadCover.

4.2 Cur GRAPHS ON COVERINGS 57

FIGURE 4.1: If v € T connects two vertices p,q € B then 7~ !(y) consists of four
paths connecting 7' (p) and 7=!(q) in M. Left: A cross section through two branch
points of the covering surface (top) reveals the topology of m~1(v) (bottom). Center
and right: The cases ind, = ind, = :I:% and ind, = —ind,; = :I:le. They show the
corresponding covering surfaces on top and the (topologically) same surfaces in an
untangled state below, so that their topology is revealed. Each boundary component
was given a distinct color. See Figure 4.2 for the remaining cases.

CONSTRUCTION

We first construct a system of cut paths I' = {7,...,7,} on M with a given set B of
base vertices consisting of all branch points and boundary vertices of M (using our
generalization of Algorithm 1.16). By construction, I' will cut the surface M to a disk,
and the total length of the paths in I' is minimal among all sets of cut paths based
at B. Furthermore, the construction assures that no path of I" will contain any vertices
of B aside from its end points.

Let 7 : M — M be the covering map of M, according to Definition 3.4. As a
covering map, 7 possesses the following lifting property [Mas64|: Every path in M has
its unique lift in M if a start point on M is given. Formally, if 7 : [0,1] — M is a path
in M and p € 77(7(0)) a point in M “lying over" 7(0), then there exists a unique
path 7 in M with starting point lying over v (i. e., 5(0) = p and w05 = 7). The
path 7 is called the lift of ~.

For a path ~; € T, consider the four lifts 7Y, ...,52 of 7; in M. Figures 4.1 and 4.2
list all cases that can arise. In each of the configurations, the paths [¥ := 4% U 45+2
constitute either a loop or a path with both endpoints on the boundary. We claim that

58 4. QUADCOVER PARAMETERIZATION, PART II

for a fixed k, the loops

70 711 70 71 70 71
lla ll? "'7ln—27 ln—?’ ln—l’ ln—l

are all non-homologous.

Note that we used only n — 1 paths of I': If we were to use all n paths of the cut
graph T, then the concatenation of 1%, ...,1) would bound the layers k and k + 2 of
71 (M \T), each of which is a topological disk, so the concatenation is separating.
The concatenation is therefore a non-trivial linear combination of the identity element

and thus l~(1’, ..., I} is not homologously independent.

Let again beye, and bygq be the numbers of branch points with even and ocid index,
respectively. The maximal number of homologously independent loops on M equals
twice the genus g of M, which is

2@ = 8g + beven + 3bodd —6

by Lemma 3.5. Note that if b,qq happens to be zero, we have to add 2 (if beyen > 0)
or 6 (if beyen = 0) to the above formula for 2g, but to not get lost in distinction of cases,
let us always assume the existence of branch points of odd index, i. e., bogq > 0.

Our above construction gives rise to

hsym = 4g -+ Q(beven -+ bodd) —4 (41)

symmetric loops so 4g + boqqa — 2 paths still remain. These remaining paths are all
asymmetric, and thus are not of interest for us. However, we briefly describe their
construction for completeness.

4g of these asymmetric paths are to be constructed from the loops in I' that arise
from the handles of M. The remaining paths correspond to branch points with odd
layer shift. In the preimage of 7'(v) of a path between two such branch points,
three independent loops can be constructed, compare Figure 4.1. Of those three loops,
we already used two symmetric ones, 7% U 752 and 7%*! U #%+3. There is one more
independent asymmetric loop in 7=1(y), for example 7% U 5+1.

The construction of a loop ¥ U 7¥*! fails if one of the branch points has an even
layer shift (cases (a) and (b) in Figure 4.2), but these cases can be avoided altogether
when using a different path layout, as we used in the original QuadCover paper. In the
original QuadCover path layout, all paths started in a single “base" branch point of
odd layer shift. So for each odd singularity except the base point we get an asymmetric
path. Of those bygq — 1 paths to branch points of odd index, there is one which linearly
depends on the others, resulting in the predicted total of 4g + bygq — 2 independent
asymmetric paths.

4.2 Cut GRAPHS ON COVERINGS 59

==
2

(b) ind,, = ind, = 3 (c) The three cases for g €OM:
indp::t%, indpzé, and pe oM

FIGURE 4.2: See Figure 4.1.

4.2.1 GLOBAL CONTINUITY

Let us get back to the symmetric cycles, which we need for the construction of symmetric
harmonic fields. We now repeat the same steps of Section 1.2.6, to compute harmonic
fields, but we compute them on the covering. First, we construct harmonic fields on M
by generating the vector fields 5 along the left side of a homology generator 5. We
then set H, := %, — (E)5 is a field with a period of 1 with respect to 4*. To generate
the harmonic correction field Hq for the global continuity as we did in Section 2.4.2 for
the unbranched case, we compute H d= Ed — (Zd)P, where Ed = Zd Z is chosen so
that X + 4 has integer periods. Figure 4.3 shows a harmonic vector field constructed
on the covering from one of the symmetric cycles.

To put the method in relation to the Cycles we just constructed, we let io and il
be the path that correspond to AU 4?2 and 7} U 72, respectively, via the construction
of (1.13). Note that X0 is not symmetric, because the support of X0 is different the
layers 0 and 2, due to a different ’left side’ under a reversal of 7;. Its harmonic part
H? := %0 — (£9)5 is harmonic, though: To show this claim we let %, be the vector

60 4. QUADCOVER PARAMETERIZATION, PART II

FIGURE 4.3: The harmonic basis field constructed from the cycle through layers 1
and 3, shown from two perspectives. One can see that the field flows perpendicular to
the paths in layers 1 and 3, but parallel to the paths in layers 0 and 2. (The paths
themselves is not displayed here, but shown in Figure 4.1, top left.)

field with respect to the cycle 70U42 with reversed orientation. Then X/ := %(i?)
has the same periods as i?, so they have the same harmonic part. Due to the symmetry
of 32/, the fields (X7)5 and thus, H;,=H, =% — (i;)ﬁ must be symmetric too, which
verifies the claim. The same reasoning applies of course to f]ll as well.

Again, complex notation can be convenient to denote the period vectors of the
vector fields on the covering. Hence, we use one complex number b; to denote the
periods of our vector field X, with respect to the paths 3 U452 and 5} U43. Finally,
after correcting the vector field to have integer periods on the covering, we can integrate
the field to yield our final parameterization @ = ©° + 4! : M — C. This completes
the essential parts of the QuadCover algorithm.

4.2.2 PURE QUADRILATERAL MESHES

Rounding the periods b; to complex integers (also called Gaussian integers, denoted
as Z[i] = {a+bi | a,b € Z}) ensures that all parameter lines are visually continuous.
However, this does not guarantee all-quadrilateral meshes, because parameter lines
could form, for example, a triangle or pentagon around branch points whose parameter
positions happen to lie at half-integers, see Figure 4.4, left.

During the rounding procedure, branch points are forced to positions in the param-
eter space which are fix points with respect to a rotation of the integer lattice. Branch
points of odd index are forced to either grid points or grid midpoints, as those point
remain grid (mid)points under rotations of 7 /2 of the parameter grid. Branch points
of even index may additionally lie on edge midpoints of the parameter grid, because
those point hold the rotational invariance with respect to half rotations but not with
respect to quarter rotations.

The algebraic explanation is the following: The value of the parameter function of
a branch point v is determined by the periods of the paths 4%, 31,...,3°, 4! joining v.

4.2 Cut GRAPHS ON COVERINGS 61

=]

(b) b € 2(Z x Z)ﬁsym (c) b is in the lattice generated
by {(17 1)a (_17 1)}h5ym

FIGURE 4.4: The figures show a parameterized ellipse and the surface unfolded to
the parameter space, using different rounding methods for the period vector b. The
shown lattice points mark the possible positions of branch point with odd index.

If their periods are set to z9,%1,...,2% %L, then the position of v in the complex

parameter space is given by

(@9 ta}) Fi(a9+a})) ifind, is odd

n
J=1

n
> 2(2d 4 dal) if ind, is even
=1

Thus, if all periods are integers and ind, is odd, then the real and imaginary coordinates
are not necessarily the same, but they are always have the same decimal fraction (which
is either 0 or 0.5). The coordinates of branch points of even index can take any values
in 1Z[3].

Now the easiest solution to guarantee integer coordinates is to round twice as coarse:
Instead of rounding the coordinates of the period vector b to values in Z[i], we round
them to values in 2Z[i], and so all branch points will have integer coordinates, see
Figure 4.4, center.

To round the vector b more accurately (in terms of smaller rounding errors) we
observe the following: If we round b to the regular Gaussian integer lattice Z[i]ﬁsym,
then all branch points of odd index will lie on a rotated and downscaled integer lattice
generated by the lattice vectors {(0.5, —0,5), (0.5,0.5)}. Thus, to reverse the effect, we
round b to entries in a rotated and upscaled lattice generated by {(1,1), (=1, 1)},
so all odd branch points end up on complex integer points, see Figure 4.4, right. The
lattice generated by {(1,1),(—1,1)} has a higher density of grid points than 27Z[%], so
the expected rounding artifacts will be smaller.

62 4. QUADCOVER PARAMETERIZATION, PART II

Branch points of even index (which usually make up a tiny fraction of branch
points) need extra attention since their positions may still end up on a grid midpoint
when rounding b to {(1,1), (-1, 1)}Esym. Properly adjusting the period of one path per
branch point of even index can properly move the respective branch points to integer
coordinates if this situation is observed.

CHAPTER 5

FRAME FIELD GENERATION

5.1 PRINCIPAL CURVATURE FIELDS

The Hodge decomposition in the QuadCover parameterization relies on the existence
of a frame field on the surface. For each frame field QuadCover delivers a surface
parameterization but of course, the quality of the result depends on the suitability of
the input frame field. By having a method to find the best-fitting parameterization
for a given input frame field, QuadCover reduces the parameterization problem to
finding a suitable input frame field. The latter problem is still far from trivial, given
the numerous conflicting objectives of good parameterizations listed in Section 2.1.

In our QuadCover paper [KNP07|, we chose to use principal curvature directions
as the input directions for QuadCover, as they naturally support the regularity and
alignment quality requirement, by being naturally perpendicular, normalized to unit
length, and aligned to provide good surface approximation. Furthermore, lines of
principal curvature look aesthetic, as they support the human perception of curved
shapes, which is why they are often used in arts, see Hertzmann and Zorin [HZ00|.

5.1.1 COMPUTING PRINCIPAL CURVATURE DIRECTIONS

Unlike in the smooth case, the PL setting does not provide a notion of the principal
curvature directions of a surface. There is a wealth of methods to estimate the principal
curvature directions, though, some of which converge to the smooth limit. In our
QuadCover implementation we used two methods to compute one principal curvature
frame per triangle:

The simpler method averages the three vertex-based shape operators of Hildebrandt
and Polthier [HP04] in each triangle to get a face-based tensor. The unit-length
eigendirections of this tensor then constitute the principal curvature frame field. The

64 5. FRAME FIELD GENERATION

FIGURE 5.1: Computing the matching: With an angle of ay := Z(X,, X;) of about
70 degrees we get a matching of 1 by Formula 5.1. This corresponds to the fact that
the frame (X;,Y;) is most parallel to R (X, Ys).

second algorithm is based on Restricted Delaunay Triangulations and Normal Cycle
by David Cohen-Steiner and Jean-Marie Morvan [CSM03]. Their method computes
the shape operator at a point by averaging the edge-based tensors within a disk of a
given radius. This is more complex to implement, but results are much better on noisy
surfaces.

Both methods yield a perpendicular, normalized cross field which needs to be
endowed with a matching. Initially, we choose each matching my via

my = round (2£(X,, X;) /7)) (5.1)
according to Section 3.1.2, so that the resulting curvatures 0y, = £(Xs, Xy) + Mt
have values between —% and 7. Remember that Z(X,, X;) € [—7, 7] is measured
intrinsically.

5.1.2 REGIONS OF STABLE CURVATURE DIRECTIONS

Principal curvature directions turned out to be a powerful choice for guiding frame fields,
but their usefulness is limited to regions in which the principal curvature directions
can be computed stably. Two obstructions prevent the robust computation of principal
curvature directions: noise and umbilic regions, i. e., flat regions or spherical caps, in
which the directions of minimal and maximal curvature are undefined.

To avoid that directions in stable regions get spoiled by those in unstable ones, we
use a triangle-based stability measure of curvature frames [KP10]. Our method is
similar to that of Bommes et al., with the difference that we use a continuous scale
instead of having only trusted and non-trusted triangles. Our stability weights are
defined by:

Wi (F) = [k = k| exp (=5 (16| + 0o | + 10c])) (5-2)

5.2 SMOOTHING FRAME FIELDS 65

FIGURE 5.2: Left: The frames from the dark stable regions were extended to the
light regions. The colors indicate from which dark elements the frames were extended.
Center: Smoothing is applied to the frames. Right: The resulting parameterization

The values Kpmax and ki, are the principal curvature values, so the left factor
measures how far the shape is from being umbilic. The edges e;, es, and ez are the
incident edges of t. High values of # at the edges reliably indicate surface noise, and so
affected triangles will have a low stability value. The second factor is maximal if the
principal curvature directions are parallel to those in the neighboring triangles.

With a characterization of stable curvature directions, we can stick with a user-
defined percentage of the most stable directions and ignore the other ones. Keeping
10-30% of the most stable curvature frames provides good results in our experience,
but this value depends on the particular surface model. To fill the rest of the triangles
with direction frames, we extend the frames from the stable regions in a breadth first
manner, parallel transporting the frames across the edges.

The parallel transported frames tend to be much less noisy (in the sense of lower
curvature across the edges) than pure principal curvature frames. As a result, the
matching determined via (5.1) vanishes more often and thus causes less singularities.
On the other hand, the parallel transport leads to “seams" when direction vectors that
are propagated form different regions meet together, as seen in Figure 5.2. That is one
of the reasons why we smooth the direction field by rotating each frame in its tangent
plane, as explained next.

5.2 SMOOTHING FRAME FIELDS

To avoid peaks of frame field curvature 6, we rotate the frames in the individual tangent
planes to distribute the rotational difference over larger areas. We use the smoothing
energy

lef”

A’

Eq = Zwe 93, with w, =

ecE

66 5. FRAME FIELD GENERATION

of the Mixed Integer Quadrangulation [BZK09] to define the total smoothness of a
frame field, but we add the factor w, to compensate the effects of varying triangle sizes
and shapes. The factor A, = %(AS + A) is the share of the surface area of an edge e
between s and t. Since

We 03 =4 Ae (Qe/heightstar 6)27

Es can be understood as curvature per length unit across e, integrated over the edge
star areas. We use this energy for two reasons. First, the reqularity requirement asks
for straight parameter lines, so we minimize the curvature of the guidance field in a
least squares sense.

Second, if the curl of the direction field is low, then QuadCover’s curl removal will
alter the input field much less. As shown by the following calculation, the curvature of
an orthogonal, direction field is a good approximation of the frame field curl. Consider
the squared length of the curl vector of the lift X the input field,

lcurl*X|? = Z 23: (Clll“l*)?(el)>2

ecE =0
4o z; lzo:z <cur1*)?(el)>2 + (div*)?(el)>2
ec =0,

~ 2 ~ 2
= 22 (curl*X(eO)> + (diV*X(eO))
ecE
Let 6. be the curvature of X at e and let o = Z(X,e) as depicted in Figure 5.3.

leurl* X2 = 2 (cos(a) — cos(a + 6.))°[le + (sin(a) — sin(a + 6.))°[le]

ecE

= 2) (2—2cos(be)) el
ecE

= 2> 62 |l +0(82)]ell.
ecE

Thus, up to the weighting factor, the smoothing energy is a third order polynomial
approximation to |[curl* X ||2, if curl* X is seen as a vector in R®. Interestingly, ||curl® X||
depends only on the curvature 6, and not on the angles between frames and edges.

5.2.1 MINIMIZING Ejg

To find the smoothest field with respect to Eg, we start with the frame field that we
gained from extending the principal curvature directions from the trust regions. For
each triangle t of M we let a; be our free variable that describes by how much we

5.2 SMOOTHING FRAME FIELDS 67

FIGURE 5.3: Angles « and 6.

rotate the frame in triangle t. We then minimize the following smoothing energy:
E(a) = AEs(a) 4+ (1 — N\ Ex(a). (5.3)

The smoothing term
Es(Oé) = Z wst(Qst — Qg + Oét)z
(s,t)€E

is as above, but takes the rotation of the input field by angles «; into account. The
additional alignment term

Ex(a) = Z wftableozfAt.

trusted
triangles ¢

makes sure that the frame field does not deviate too much from its original directions
in the trusted regions. Via the parameter A € [0, 1] the amount of smoothing can be
controlled from the complete ignorance of the original curvature directions to the other
extreme of fixed directions in trust regions.

Since the energy is quadratic, the minimizer can be found by solving the sparse
linear system A« = b, with a sparse matrix A € R™f,

A Z Wyt + (1 —)\)wstableAt ifs=t
Ay ={ t (5.4)
— AWt if s ~¢

and a right-hand side vector

bt =)\Zfﬂst . Hst-

s~t

5.2.2 BRANCH POINT RELOCATION

Since the position of branch points depends only on the matching, we can influence
the branch point positions by changing the matching on individual edges. However,

68 5. FRAME FIELD GENERATION

changing the matching without rotating the frames will violate the property that
vectors are matched in the straightest way. Re-computing the minimizer of E(«) will
adapt the frame field to the new matching.

If a matching mg between triangles s and t is changed by a value k to mg + k, we
must only update the right-hand side of the linear system:

bs < bs + gk/\wst bt — bt - gk)\wst.

The matrix A in Equation 5.4 does not depend on the matchings. Therefore, we
can store a Cholesky factorization of the matrix, making it extremely fast to solve
the system for multiple right hand sides. Once a matching is changed from its initial
choice via (5.1), it is not guaranteed that (5.1) holds again after smoothing is applied
(particularly, if the smoothing parameter \ is zero), so we compute it once in the
beginning, and update it as needed.

Moving a branch point from vertex p to vertex ¢ is accomplished by finding an
edge-based path from p to ¢ and adding 4 ind,,(p) to the matching of all the edges on
the path (if the edge orientation is from right to left when looking from p to ¢).

CHAPTER 6

MINIMIZING DISTORTION

6.1 BRANCH POINT PLACEMENT

Because the branch point placement substantially influences the characteristics of the
frame field, many methods have been proposed for branch point placement.

For example, the aforementioned method of Ben-Chen et al. [BCGBO0S] is looking
for the best branch point positions for quasi-conformal parameterizations. The length
distortion (the so-called conformal factor) is mainly determined by the branch point
positions. Ben-Chen et al. placed the branch points at the positions of the worst
length distortion, and could so keep the length distortion very low. They also inspired
Springborn et al. [SSP08] to further improve the branch point positioning by iterative re-
location, as well as Myles and Zorin [MZ12], who also aimed for a uniformly distributed
scale factor, but iteratively fixed vertices that may not become branch points, so that
the branch point candidates gradually concentrated at a small set of vertices.

70 6. MINIMIZING DISTORTION

More closely related to our parameterization is the Mixed Integer Quadrangulation
(MIQ) by Bommes, Zimmer, and Kobbelt [BZK09|, who combined the problem of
choosing a suitable matching (and thus, the branch point positions) and smoothing the
field in a mixed integer problem. They start with a non-integer matching, and greedily
rounded the matching until they are all integral.

The very recent work of Myles and Zorin [MZ13| aims to combine the advantages of
their previous method [MZ12] and MIQ in a unified framework. They find a closed form
representation of smoothness-maximizing one forms, that allows to respect directional
constraints exactly. This approach is very elegant, as this eliminates the need the
need of a smoothing step to minimize ||#||* that we use in 5.2. Because the smoothing
respects only hard constraints, it is suited well for sharp-edged surfaces, rather than
for organic shapes, on which appropriate hard constraints difficult to define. Their
framework allows to directly measure the distortion inherent to a parameterization
similar to the size of the curl part that we use for optimization in [KP10, Niel2|. The
size of the curl part will also play a major role later in this Chapter

In QuadCover, we determine the branch points via the matching of the (parallel
transported) direction field. This method is very simple, and it respects the given input
directions for the branch point placement (of the above methods, only MIQ has this
property). We will use this simple branch point placement as a starting point, but
combine it with combination of powerful heuristics that incrementally improve their
number and positions. I consider the efficient and effective branch point optimization
is one of the main contributions of this thesis, next to the QuadCover method itself.
Together, this will lead to much lower distortion than that of existing methods.

6.1.1 A DISTORTION MEASURE

In Chapter 5, we discussed how to produce smooth, feature-aligned and noise-free
guiding frame fields X € §. If the guiding field should happen to be additionally curl
free, we could—at least locally—generate a perfect parameterization in the sense that
the isolines of the parameterization would exactly keep the guiding field’s directions,
because the curl removal part of the Hodge decomposition would not affect the field at
all. Moreover, if we started with a constant-length cross field, then the parameterization
map would be an isometry, so all of the requirements of Chapter 2 could be met in
this ideal case.

Of course, this ideal parameterization is not achievable in general. The size of the
curl part of X, || X¢||, measures how far X is away from being curl free, i. e., from being
ideal. At the same time, || X¢|| is the amount of modification that has to be made to
make X locally integrable, so we will speak of || Xc||? as the amount of distortion of

6.2 CURL MINIMIZATION 71

the first QuadCover step, which we denote by
1 2
Ep(X) = 3|1 Xcl

We have used the term Ep before to denote the Dirichlet energy of a function v, but

since Fp(X) equals the Dirichlet energy of the co-potential of X¢, this is consistent.
In particular, || X¢||? includes the as-rigid-as-possible energy (ARAP energy) used
in Liu et al. [LZXT08]. The ARAP energy measures the difference between the

parameterization Vi and the best-fitting unit-length cross in each triangle,

1
E == in ||Vy, — R|?A
ARAP = 5 : Rln Vo, — R A,

and so is always smaller than Ep, which does not allow the best-fit rotation in each
triangle individually.

The curl of a cross field X also coincides with the divergence of the field, up
to discretization: If the frame field is perpendicular, we have X = JX up to the
numbering of layers. Therefore, if v € S;Z(]\Zf) is the curl® co-potential, i. e., v minimizes
[IX = IVv|[*dA, then v is also a minimizer of [[|X — Vv|*dA among the non-
conforming basis functions, which makes v a div* potential of X. Thus, the minimizer
of Fp also reduces the (non-conforming) divergence. As a consequence, a unit-length
cross field that minimizes Ep, maximizes its harmonic part at the same time (again,
under the assumption that the discretization div*.X does not differ significantly from
divX).

After the curl removal in QuadCover’s first step, the next step is to assure global
continuity by adding a harmonic frame field Hq. This will necessarily introduce
additional distortion, which we denote by

1
By = §\|Hd\|2-

Together, the two introduced errors describe the discrepancy between and the ideal
guiding field and the final parameterization ¢, i. e., Ep + Ey = 1 [7 [|X — V| dA.

In the following sections, we will describe how each of the two components of the
distortion can be kept small, starting with the curl part, Ep.

6.2 CURL MINIMIZATION

For given trusted curvature directions and fixed matching, the smoothing method of
Section 5.2 smoothes a frame field, such that the curl is approximately minimized.

72 6. MINIMIZING DISTORTION

Since the curvature directions are fixed, it is the matching (and the resulting branch
point layout) which primarily determines the resulting parameterization.

It is taken for granted in the parameterization literature that finding an optimal
matching is NP-hard. Since any greedy algorithm can only find sub-optimal solutions,
it is natural to look for better ones by iteratively trying to improve the initial solution.

Our contribution to reduce Ep is two-fold: First, we show how to evaluate the
distortion Ep of alternate solutions quickly (below), and second, we propose an efficient
heuristic to steer the search for better solutions (Section 6.2.2).

We have already used the size of || X¢|| as a useful distortion measure for curl
reduction in [KP10, Niel2|, but the lack of a fast recomputation and a reasonable
evaluation order limited its usefulness to very small models. The key idea of the
speedup are updates of the Cholesky decomposition of the stiffness matrix. But to
get the updates up and running, two problems had to be solved: First, to avoid the
dependence on elaborate data structures as used in CHOLMOD |[CDHRO0S|, the sparsity
pattern of the matrix must be kept unchanged. Second, rank-k updates of Cholesky
factorizations must be carefully split into k£ rank-1 updates without causing the update
process to fail. Both problems are addressed below.

6.2.1 COMPUTING THE CURL

We start from an input field X that is computed as the as the minimizer of E(«a) as
in Section 5.2. The easiest way to determine the L?-norm of X¢ is to compute it via
the Dirichlet energy of the co-potential v € SZ(ZV[) (which we interpret as a complex
vector v € C” via (3.6)):

HXC”2 =2Fp(v) = v gy,
where v satisfies
£*v = —curl* X. (6.1)

In fact, it is not necessary to solve for v completely: When using the Cholesky
decomposition £* = LHL, the two systems

Lx = —curl’X and
H~
Lv = x
are solved successively in order to find v. However, since
2 H5 HoH H
HXCH =v £v=v L Lv=x x,

we only need to solve the first of the two linear systems for x and so one can save the
second one.

6.2 CURL MINIMIZATION 73

Now if we change the matching, we must first solve for the angles a which minimize
E(«) and then compute || X¢|| with respect to the field rotated by «. In comparison to
computing F(«), the repeated computation of the curl component requires a matrix
update whenever the matching changes, since £* depends on the matching. Updating
the Cholesky factorization instead of re-building the factorization from scratch is
therefore crucial to keep the computational cost low. Luckily, the zero pattern of the
stiffness matrix does not change if £* is expressed as a complex matrix instead of using
the real notation of Equation (3.7). In this case, the zero-pattern of the Cholesky
factors also stays the same, keeping the sparse Cholesky update comparatively simple.

SPARSE CHOLESKY UPDATES

If the matching at edge e; between triangles ¢; and ¢; is changed, four entries change in
the matrix: £ has only entries in row k that correspond to edges in ¢; and t; (where
we let i < j without loss of generality). Since (3.5) defined the layer of e, to equal
that of ¢;, the matrix entries that correspond to edge adjacencies in triangle ¢; do not
change. The layer difference to e, changes only for the two edges e, e,, that touch ey
in ¢;, so only the four matrix entries with matrix indices (k, 1), (k,m), (I, k), and (I, m)
change at all. Let D = (d;;) denote the difference between the state of £* before and
after the change of the matching. The four non-zero entries dg;, di,,, dip = d;;, and
d,;, = di,, of D have the form

o di dim
D=1 du
dkm

where d denotes the complex conjugate of d.

Cholesky updates only allow to track matrix changes of the form A < A + WWH,

where w is a complex vector of size e. As the matrix ww' has rank 1, these updates
are rank-one updates. In our case, the matrix D has higher rank, in which case we can
perform the update as a series of rank-one updates. Therefore, it is necessary to find

H
vectors w;, such that D = > oyw,w, with o; € {—1,1}.

When seeking such vectors w;, we have to be careful to avoid a difficulty of
Cholesky updates: When updating the Cholesky factors of a matrix A = Ag to
A=A)+ > oiwiw? in a series of single updates, A;;; = A, + iniwiH, it might
happen that some of the matrices A; are not positive semidefinite even if the first
and last matrices, A and A’, are themselves positive semidefinite. Since the Cholesky
decomposition exists only for positive semidefinite matrices, the update chain must fail.

H
To avoid this pitfall, we compute the eigendecomposition)~ a;v;v, of the matrix D,
as proposed by Deng [Denl0|. Performing the matrix updates in decreasing order of

4 6. MINIMIZING DISTORTION

the eigenvalues will assure that the updated matrix stays positive semidefinite at each
step of the update process. The eigendecomposition of the matrix D is given explicitly
by the two sparse eigenvectors and their respective eigenvalues,

vig = (& YL E i

dkm dkm
with the vector entries being at positions k, [, and m. All remaining eigenvectors have
vanishing eigenvalues, and thus do not contribute to the eigendecomposition. Setting
w; = /| \i|vi/||vi|| and o; = sign(\;) for ¢ = 1,2, gives us the explicit vectors for the
Cholesky updates.

) 1>, Ao = :l:\/|dlcl|2 + [dgm |2

1,2

If several matchings change at once, for instance, to move a branch point along a
path of edges, then the Cholesky updates have to be performed one edge at a time.

COMPARISON

The timings in Table 6.1 show the speedup of the Cholesky updates in comparison to
re-factorization of the matrix. To compute and update the Cholesky decompositions
we are using the CXSparseJ library [Lin|, a Java port of CSparse package by Tim
Davis [Dav06|, with support for complex matrices. The times were measured on an
Intel Core i5-3570K processor.

Average times to re-compute Ep from scratch

compute

min. | curl*X(e) | decompose solve
model f | E(@ | froma | &=L"L | Lx=Db | other total
bunny 3k | 0.1ms 0.2ms 15.5ms 0.1 ms 0.3 ms 16.3 ms
bunny 20k | 1.0ms 3.6 ms 208.6 ms 1.4 ms 0.7ms | 215.5ms
armadillo | 80k | 4.1ms 17.4ms 930.7 ms 8.8ms 3.7ms | 965.0ms

Average times to re-compute Ep via Cholesky updates
compute

min. curl* X (e) update solve
model f E(x) from o & —1'L | Lx=b | other total
bunny 3k 0.1ms 0.2ms 0.1 ms 0.1ms 0.2ms 1.0 ms
bunny 20k 0.9ms 3.7ms 0.7 ms 1.4 ms 1.7ms 8.7 ms
armadillo | 80k 4.1ms 17.4ms 2.1ms 8.8 ms 8.0ms | 40.5ms
armadillo | 346k | 26.8 ms 87.9ms 17.4ms 33.4ms | 62.5ms | 228.2ms

TABLE 6.1: Times to compute the size of the curl part of X, with and without
Cholesky updates.

The total computation time is sped up by a factor in the range around 20. To put it
differently: We can update Ep for the 346kf armadillo model via Cholesky updates as

6.2 CURL MINIMIZATION 75

fast as computing Ep for the 20kf bunny without the updates. When using Cholesky
updates, the majority of time not even spent with solving and updating the linear
systems, but with relatively trivial tasks like rotating the field by o and computing the
corresponding curl at the edges.

6.2.2 A CURL MINIMIZATION HEURISTIC

Now that we have a fast way to compute the Ep, we can improve the initial branch
point layout by changing the matching at an edge, and re-evaluate Ep in hope to find
an improvement. We start off with the smoothed frame field that we received from
the extension of directions in the trusted regions and its resulting matching, which is
computed as in Section 5.1.

We have experimented with many approaches to improve the branch point layout,
and we have found that the following ingredients are essential for successful optimization.

Cancellation. As noise might cause a lot of branch points, the first quick step is to
eliminate misplaced pairs of branch points, whenever this causes Ep to decrease. The
pairs are found by breadth first search from each branch point to some fixed number &
of nearby branch points with opposite sign of index. If the movement of p to one of
the k neighbors decreases Ep, the pair is eliminated.

Branch point movement and creation. As a main loop, we change one matching
at a time, to check if Fp is decreased. This action might eliminate or create a pair of
branch points, or, more often, move a branch point to an adjacent vertex (of course,
there are more operations involving branch point indices different from 41, but these
branch points appear rather rarely). It is very important to allow also the changes
of the matching, which lead to the creation of new branch points, as Ep can be
reduced significantly further, if new branch points are allowed. While the movement
of existing branch points has been discussed in the literature [Niel2, BZK09, MZ13|,
the importance of new branch points has not gotten much attention. However, if new
branch points are unwanted, we simply skip those changes which would increase the
branch point count.

Sorting. The number of edges on which we could change the matching is very high
(around v + f), so it is crucial to prioritize promising candidates for changes of the
matching. We found that the most promising candidates are those edges, who contribute
most to the total error Ep. As Ep = %VH Ly = —% >, Ve-curl” X (e), we can associate
the share of the total distortion to each edge. Sorting the edges is crucial. We give a
visual comparison how fast Ep is reduced with and without sorting in Figure 6.1. Note,
that we actually have to compute v via forward and back substitution in L'Lv = b,
whereas the computation of Ep = %XHX requires only the forward substitution Lx = b.

Balancing. While there is a lack of attention on the creation of branch points, there

76 6. MINIMIZING DISTORTION

is also a lack of focus on finding the right number of branch points. Section 6.4 is
dedicated to the right balance of the number of branch points, and we will propose a
method to eliminate excessive branch points there. We summarize our ingredients in
the following algorithm.

Algorithm 6.1 (Curl reduction)

1. (Cancellation) For each branch point p:
Mowe p to one of the k nearest branch points to p, if this decreases Ep.

2. (Sorting) Sort the edges by their share of the distortion, |v, - curl” X (e)|

3. (Curl reduction) For each edge e (in decreasing order of the edge’s distortion),
(a) Set me <— m.—sign(6.) if this decreases Ep.
(b) If more than 1%of matchings changed in this reduction loop, go to Step 2.

4. (Balancing) Cancel insignificant branch points:
(a) For each branch point, find the k nearest candidates for canceling.
(b) Measure the increase Ag, of Ep, that each cancelation in 4(a) would cause.

(¢) Cancel the branch point candidates in increasing order of Ag, if the impact
on Ep is below expected continuity error reduction Ag,, (see Section 6.4).

(d) If branch points were canceled in Step 4, go to Step 2, but disallow any new
branch points from now on.

Di1sCcuUsSION

We visualize the distortion reduction over time in Figure 6.1, using the casting model
with 10224 faces. Two results are shown there: First, the creation of branch points,
helps to push Ep significantly further down, and second, if new branch points are
allowed, then edge sorting is vital.

The effects of the branch point relocation is shown in Figures 6.7 and 6.8 in the
results section. We observed that changing the matching by —sign(f,) in Step 3(a)
works slightly better than trying both possible signs, even though the sign of 6, is only
a weak hint of the direction in which a change of the matching decreases Fp. The
constant k in steps 1 and 4 does not have to be very large. We usually use k = 3, as
higher values significantly slow down the process without contributing much to better
results.

The (local) minimizers of Ep involve a high number of branch points, much higher
than the numbers of branch points which are found by our frame field extension method
or by state-the-art algorithms for frame field generation. Especially those algorithm

6.2 CURL MINIMIZATION 77

N - /

N m% .
\K

300 ED 300 /

(- #branch V/

100 points 100

o T T T T T T T d o T T T T T T T 1
o 2000 4000 6000 8000 10000 12000 14000 16000 o 2000 4000 6000 8000 10000 12000 14000 16000

(a) Sorting: off, new branch points: off (b) Sorting: off, new branch points: on

600 600

o o -
o > VA
A .

=

S \
100 100
0 T T T T T T T 1 [s] T T T T T T T 1
o 2000 4000 6000 8000 10000 12000 14000 16000] 2000 4000 6000 8000 10000 12000 14000 16000
(c) Sorting: on, new branch points: off (d) Sorting: on, new branch points: on

FIGURE 6.1: The graphs show the development of the distortion Fp (red curves) and
the number of branch points (blue curves, y-axis) over the number of iterations, using
our heuristic with different settings: Sorting is turned off in the top row, and new
branch points are prohibited in the left column. The light gray curve in (a)-(c) is the
distortion curve of (d), for comparison. The first 230 iterations in all cases were spent
for cancellation. In (d), iterations 6000 to 11000 were spent for balancing.

which focus on minimizing the field’s smoothness (such as holonomy angles) create
rather few branch points, leading to sub-optimal parameterizations.

If we do allow new branch points, and test edges in arbitrary order, then the
convergence is unfeasibly slow and creates an excessive amount of branch points (the
branch point curve in Figure 6.1(b) continues to rise steeply!). The excess is much
lower if we sort the edges: The distortion tends to be concentrated around branch
points, and so it is very likely that a change of matching moves a branch point instead
of creating a branch point pair if we sort the edges by distortion. Besides the excessive
creation of branch points, also the error reduction speed is unfeasibly slow when edges
are not sorted by significance. Without sorting, the energy is reduced by 9.1% within
the first 10000 iterations. If the edges are sorted, the same reduction is achieved within
only 59 iterations!

The branch point curve Figure 6.1(d) shows that we let the number of branch points
rise significantly, and then we cancel out the insignificant ones. While this might seem

78 6. MINIMIZING DISTORTION

awkward (because we could immediately skip the creation of branch points that barely
reduce Ep), it is necessary in our heuristic: While branch point pairs might reduce Ep
only slightly when one edge apart, the two branch points might move further apart
during the optimization and gain significance. Another common scenario is that rows
of branch points of alternating index are created, and intermediate branch points are
later cancelled which were not created together as a pair.

It would of course be very helpful to be able to compute a gradient of Ep in terms
of the matching. Surprisingly, we observed rare cases in which the distortion Ep was
reduced by changing the matching at some edge e, no matter if m. was increased
or decreased by 1, in contradiction with the idea of a gradient, which should deliver
a direction of the energy’s descent. The cases in which this effect appeared always
involved extremely high distortion at e that caused the local parameterization function
to flip its orientation in one of the adjacent elements. Moreover, I believe that the
non-monotonicity effect at e is caused by the periodicity of the edge curl with respect
to the curvature 6, of the frame field at e.

COMPARISON

Just recently, Myles and Zorin [MZ13| showed that the as-rigid-as-possible (ARAP)
metric distortion (which is implicitly included in Ep) can be pushed arbitrary low, if
only the surface can be triangulated fine enough. They observed the appearance of
cone chains, similar to our results in Figures 6.7(d) and 6.8(d). However, Myles and
Zorin do not cover the creation of quadrilateral meshes under the existence of cone
chains, because they did not ensure the parameter line continuity condition.

In our examples, we show that these cone chains can be applied successfully to
generate low distortion meshes. The cone chains are not placed explicitly, but they
appear automatically during the minimization of curl in Algorithm 6.1. The balancing
phase in Algorithm 6.1 makes sure that the number of branch points in the cone
chains stays under control. With these measures, the total metric distortion in our
parameterization can be kept significantly below that of Myles and Zorin, compare
Figure 6.2.

6.3 THE MINIMIZATION OF ROUNDING ERRORS

Section 2.4.2 and Section 4.2.1 describe the rounding process to get a visually continuous
parameterization: From the computed periods b of the frame field X, we compute the
closest integer vector ¢ = [b] by rounding the entries of b.

Then we add the harmonic field Hq with periods d; = ¢; — b; to X. Because this
procedure alters our input field by Hg, the numbers d; should be chosen so that ||Hgql|o

6.3 THE MINIMIZATION OF ROUNDING ERRORS 79

50%

FIGURE 6.2: Our result (left) compared to the very recent work of Myles and
Zorin |[MZ13] (right, image source: Myles and Zorin). The histograms show the
distribution of the as-rigid-as-possible distortion over the individual triangles, as
used by Myles and Zorin. The average ARAP distortion per triangle of our (their)
parameterization is 0.110 (0.211), and 95% (86%) of the triangles have a distortion
below 0.3. Note that is is not quite an apples to apples comparison: While we do not
respect hard constraints to keep parameter lines exactly at sharp edges, we respect
more soft constraints than their parameterization (i. e., parameter also follow rounded
edges). Since our parameter lines are always very close to the sharp edges, I conjecture
that the impact of hard constrains would not be substantial.

is small, which turns out to be a fairly hard optimization problem. In this section,
we forego the complex notation for the period vectors, and use real-valued vectors,
b():b(), blz’l:b() S R, etc., instead.

Since Hgq is a linear combination) . d; H; of harmonic basis fields H;, we have
Ey = %||Hd||§ = %dTPd = %(c b)'P(c b),

with a real matrix P that contains the scalar products of the harmonic fields,

Pij Z:/ <HZ,HJ>dA
M

The dimension of the square matrix P equals the number of symmetric vector fields on
the covering surface, which is hgyy, = 48 + 2(beyen + boaa) 4, according to (4.1).

Finding a vector d which minimizes d"Pd is equivalent to the closest vector problem
(CVP), which asks, given a rational lattice matrix B and a rational target vector t, for
an integer vector x so that |[Bx t|| is minimized, see [MG02|. By setting B to the
Cholesky factor of P we get (¢ b)"P(c b) = ||Bc Bb||? so that the equivalence
of the two problem formulations becomes obvious. Even though CVP is NP-hard, it

80 6. MINIMIZING DISTORTION

does not necessarily mean that our optimization problem is NP-hard as well, because
our matrix B has not arbitrary form (in particular, B is a triangular matrix, and it
is not clear if the fact that P is a period matrix adds any restrictions to P besides
making it positive semidefinite). Nevertheless, we could not find any hint that the
restrictions simplify the problem.

6.3.1 MINIMIZING (c — b)TP(c — b)

The fact that (¢ — b)"P(c — b) is hard to minimize does not reduce our need for a
good solution, but it suggests that brute-force search is a reasonable strategy. If we
modify the i-th entry of ¢ by o; = +1, the value of ||Hg||? changes by

§ =Py +20,P, (c —b),

where P; is the i-th column of P. If § is negative, we have improved our solution and
the modification of ¢ should be maintained. Thus, we iteratively check all indices of ¢
for improvement and stop if d is non-negative for all 7.

It is unlikely that the optimal vector c is found by changing one entry at a time.
Carrying the idea further, one can change r entries at a time and compute J via

0= Z (pu‘ +20; P} (c — b)) + Z 030 Pij)
;70 070;7#0
where 6 € {—1,0,1}"= has at most 7 non-zero entries. Of course, testing O(ﬁgym)
index combinations drives the computational complexity quickly up. However, if the
dot products PiT - (c —b) are pre-computed in the beginning, each computation of § can
be performed with very few operations, independent of the size of ﬁsym. For example, if
r = 3, then 20 basic operations are sufficient to compute §. Only if the current solution
is improved, the pre-computed dot products must be updated.

Testing a single configuration of c is so fast, that even billions of combinations can
be checked in short time. We found that using » = 3 is practical for up to several
hundreds of branch points.

Classical approximation algorithms of the CVP problem are usually based on
Lenstra-Lenstra-Lovasz lattice basis reduction. The LLL-algorithm [LLL82| finds a
nearly orthogonal lattice basis B, which increases the probability of finding good
vectors c. Even though the LLL-algorithm can be performed relatively quick on
triangular basis matrices B, we found that the basis reduction is not worth the effort.
The matrix B is already relatively well conditioned (which in parts due to the use of a
shortest cut graph through the branch points), and we could not observe that better
solutions are found with a reduced basis.

6.3 THE MINIMIZATION OF ROUNDING ERRORS 81

XS =

(d) By = 1.17% (e) By = 3.50%

FIGURE 6.3: The importance of good rounding increases with the number of branch
points and the coarseness of parameter lines. Top row: straightforward rounding.
Bottom row: optimized rounding according to Section 6.3.1. The amount of distortion,
Eg = L||Hql|/%, is given in relation to the size of the input field, 2[|X|[>. The error
reduction using r = 3 is 41 to 61% on these examples, and averages around 40%-45%
on larger data sets. It took less than 4 seconds to compute the period matrix and
check more than one hundred million rounding possibilities.

6.3.2 COMPUTATION OF THE PERIOD MATRIX

Formally, the matrix P = (f v Hi H j>dA)i,j is easy to describe, but its naive compu-
tation fails even for medium-sized models: Computing a harmonic field H; on the fly
for each of the F@ym entries of P is just as prohibitively expensive as storing all ﬁsym
harmonic fields in memory to save the recomputation. These two options either require
too much computation time or too much space in memory, even if all fields H; can be

found with the same Cholesky factorization.

Recall the vector field 3; from (1.13) which has local support to the left of the i-th
homotopy basis path ~;, and whose periods match those of H;. Because ¥, — H; € P
and P and H are mutually orthogonal, the scalar products (H;, H;) and (H;, ;)
coincide. (The value of (H;, ;) corresponds to the through flow of H; through ~;).

82 6. MINIMIZING DISTORTION

35
30

direct

25 —iterative (MIQ)

—our method, r=1

15

10

FiGURE 6.4: The performance of rounding strategies. The curves show the error
Egr over 100 instances of the rounding problem. Light green: direct rounding, Blue:
iterative rounding as used in MIQ, Red: our method using r = 1, Green: our method
using r = 3. Note that the y-axis is not zero-based.

Thanks to the local support of ¥;, it is no problem to store all ¥, in a sparse data
structure. Therefore, if the locally supported fields ¥, ..., Z,;Sym are pre-calculated,
only one harmonic field H; must be computed to fill the i-th column of P. All entries
in this column can be computed via (H;, ;). Still, solving for H; is then the most
time consuming part in the computation of P.

6.3.3 COMPARISON

Before we implemented the computation of the period matrix, we used to change one
entry of d at a time, and recompute and measure the harmonic field Hgq. The rounding
performance is then equivalent using a recursion depth of » = 1 in the above method,
however, our new method is faster, because every harmonic field is computed only once
per entry of d. Similarly, Springborn et al. also modify one entry at a time in their
Conformal Equivalence paper [SSP08], Section 6.1. However, since they did not specify
any geometric norm (i. e., P) to use, I suppose that they used a purely combinatorial
one (that depends only on the connectivity of the cut graph or meta polygon).

The Mixed Integer Quadrangulation (MIQ [BZK09]) method starts without any
integer constraints, and iteratively fixes one variable to to an integer value. In each
iteration, the variable is fixed which causes the smallest increase of their energy.
Although used in a slightly different context, the same concept can be also used for
our rounding problem.

To compare the methods with each other, we generated one hundred test instances
on the bunny model (as we will explain in Section 6.4, the characteristic of the period
matrix P does not change with the model, so we confine ourselves to one test model).
We compared the iterative rounding as used in MIQ to our method using » = 1 and

6.4 BALANCING CURL AND ROUNDING ERRORS 83

r = 3, and got the following average results, normalized to the non-optimized case.

direct e iterative greedy e our method e our method
rounding rounding (MIQ) r=1 r=3
100% 61.0% 63.8% 54.8%

The results of the individual test cases are shown graphically in Figure 6.4. The
comparison shows that it is crucial to have some rounding strategy, but also that our
proposed method, using r = 3, can push the error much further than the other methods.
While the difference of 10% and 14% smaller rounding errors versus MIQ and r = 1
are not ground shaking, they are noticeable and the benefits come essentially for free:
Just like for the MIQ and r = 1 case, one linear system has to be solved per variable,
which is the slow part (where MIQ fixes variables, and we solve pre-factorized systems).
Once that is accomplished, the evaluation Fy is so fast, that it would be wasteful not
to compute more rounding possibilities.

6.4 BALANCING CURL AND ROUNDING ERRORS

We have seen in Section 6.2 that the curl distortion Ep can be drastically reduced if
new branch points are introduced. In contrast, the global rounding problem has to
consider more constraints when the number of branch point rises, and so, the distortion
Ey grows with the number of branch points. In Figure 6.5 we plotted the two distortion
measures F'p and Ey over the number of branch points for two models whose line
density is as shown on the models. For every surface, the number of branch points
has a sweet spot which minimizes the total distortion EFy 4+ Ep, in dependence of the
parameter line density.

To find this sweet spot, we estimate Ey in dependence of the number of branch
points as explained below. With an estimate of Ey we are then able to predict if the
cancellation of two branch points—causing a certain increase of Ep—will lower the
total distortion Ep + Ey. The balance between the two errors Ep and Ey via the
estimation of Fy is the key to Step 4 of Algorithm 6.1, and that is why we called this
step balancing.

Note that if we scale the input field X by a factor a, then Ep will grow with
the square of a, whereas the distortion Fpy is expected to keep the same magnitude,
as the integer remainders which determine Ey always stay in the range [—0.5,0.5],
independently of the scale. Therefore, if the line density is high, 7. e., the factor a is
large, the sweet spot moves towards a high number of branch points. In turn, if the
line density is low, Ep + Ey will favor less branch points.

84 6. MINIMIZING DISTORTION

THE AVERAGE COST OF A BRANCH POINT: AN ESTIMATION OF Ey

For Step 4, we found that it is sufficiently accurate to assume that Epy rises linearly
with the number of rounding conditions, which is roughly twice the number of branch
points. The green curves in Figure 6.5 suggest that once we measure Ey at one point
of the curve, we can pretty well estimate the Ey for some other number of branch
points by linear extrapolation.

When having a closer look at the continuity distortion Ep, it is not surprising that
it rises linearly with the number of branch points. Recall that Fy = %dTPd. Without
any further knowledge about the surface geometry, the initial, unoptimized entries of d
are expected to be distributed independently, symmetrically and (almost) uniformly in
[—0.5,0.5]. The expected value, E[Ey], of Ey, is thus

1 1 1
6] i

since E[d;d;] = % for i = 5, and 0 otherwise, if d; is uniformly distributed. Only if the
input field is scaled extremely small, the entries of the period vector, b;, would cluster
around zero and so would d; = b; — [b;]. The only thing that changes in this case is
that the factor of -5 would have to be replaced by a smaller value of E[d?].

If we assume that tr(P) grows linearly with the size of P, it means that all diagonal
entries Py; = ||H;||* must be of similar magnitude. This is indeed to be expected:
The harmonic fields H; are mostly concentrated around the branch points which are
connected by their respective homology generator +; which goes from one branch point
to another. The area in which H; has meaningful size grows with the length of ~;,
but at the same time, the magnitude of H; shrinks with the length of 7;. Because the
two effects cancel each other out, ||H;||* does not depend directly on the length of ;.
Instead, the norm of H; is mainly influenced by the shape and discretization of M
around the branch points, and has mostly values around 2 to 3.

We measure the distortion error Ey after the curl reduction step, because at this
stage we have many branch points to level out the influence of random values. Once
we measured Fy, we use

En
AEH = —=
2y
to compute the expected continuity distortion per pair of (complex) rounding constraints
and use it as a fixed value.

BALANCING

With an estimate of the continuity distortion, we can be more detailed on the balancing
step of Algorithm 6.1. The curl reduction step usually creates a lot of new branch

6.4 BALANCING CURL AND ROUNDING ERRORS 85

0 50 100 150 200 250 300 as0 0 50 100 150 200

FIGURE 6.5: Each model has an optimal number of branch points with respect to a
given line density. While the distortion of the curl removal, Ep, can be lowered with
more branch points, additional branch points will increase the distortion enforced by
the global continuity conditions, EFy. The graphs show the distortion Ep in blue, Fy
in green as well as their sum in red over the number of branch points. The light green
curve represents Fp before optimization.

points and at the end of the curl reduction step, the expected continuity distortion
might dominate over the curl distortion, as seen on the right end of the graphs in
Figure 6.5.

If we were to cancel a pair p, ¢ of branch points of opposite index, we can quickly
compute the increase A, = Ag,(p,q) of Ep via the updates of the Cholesky factoriza-
tion, and decide if the cancelation of p and ¢ pays off by checking if Ag,, is smaller
than the estimated decrease Ag,,.

Ideally, we would compute the impact of Ep for all pairs p and ¢ worth considering,
and cancel the branch point pair which has the lowest value of Ag,,. Because this would
require the re-computation of Ag, for the cancelation of each single pair of branch
points, this is definitively too slow. Since most of the computed values of Ag, change
only marginally upon the cancelation of one branch point pair, we compute all the
cancelation costs only once in step 4(b) for sorting, and cancel all pair branch point pairs
for which Ag, < Apg, in this ordering. Before performing the cancelation, however,
we must check if the increase of Ep is still below Ag,,, because the matching—and
thus Fp—might have changed in the meantime, or one of the branch points might not
exist anymore, if it was canceled otherwise.

Once we looped through all cancelation candidates with Ag, < Ag,,, we return to
Step 2 of the algorithm to re-position the branch points which were influenced by the
branch point canceling. From now on, we disallow any new branch points, to avoid
repeated creation and canceling of the same branch points. As a side effect, the curl
reduction loop will be much faster now, because only edges at branch points have to
be checked for improvements.

86 6. MINIMIZING DISTORTION

o

467 branch points 153 branch points 28 branch points
Ep =574, Exg =5.11 FEp =7.08, Fg =6.53 Ep =930, g =5.22

FI1GURE 6.6: The head of Michelangelo’s David statue is parameterized with several
parameter line densities. To counter increasing continuity distortion with higher
coarseness of the grid, the algorithm cancelled significantly more branch points in the
balancing phase for the coarse parameterizations.

When returning to the balancing phase again, we update the list of canceling
candidates and re-measure Ag,, so that new candidates will again satisfy Ag, < Ag,,
and we iterate this process of branch point merging and relocation until no cancelation
with A, < Ag, is found. In the example of Figure 6.1, we can see six drops in
the branch point curve caused by the balancing step. Each drop in branch points is
accompanied by a small peak of Ep, which is then partly compensated by branch point
repositioning in the curl reduction step.

6.4 BALANCING CURL AND ROUNDING ERRORS

87

(a) Basic QuadCover, using principal cur-
vature directions and smoothing via Equa-
tion (5.3). Parameter lines on the top are
very dense and curved. Although its symme-
try looks very aesthetic, the distortion (4. e.,
deviation from isometry) is rather large.

(c) Algorithm 6.1 is applied to (b) to reduce
curl part of the frame field, but without al-
lowing it to create new branch point pairs.
One branch point moved to the lateral sur-
face. Alignment to curvature directions is
turned off.

]

(b) Branch points were relocated to reduce
the smoothness energy F(a). Parameter
lines on top of the cone are much straighter,
but horizontal parameter lines are highly dis-
torted by trying to stay equidistant through-
out the top and bottom. Length distortion
is still large.

(d) Algorithm 6.1 is allowed to create new
branch point pairs. This results in a large
patch of extremely low distortion, “sewn
together” at a lines of branch points. This
effect is also visible in Figure 6.8(d).

FIGURE 6.7: What is a regular parameterization of a truncated cone? Its shape requires
that alignment to curvature necessarily comes at the cost of high length distortion
(top row). The generation of unit size quads requires branch points on the lateral
surface (bottom row), or parameter lines would otherwise be either condensed at the
top or stretched at the bottom. The cone example shows that a best parameterization
can only be determined with respect to a certain application.

88

6. MINIMIZING DISTORTION

(a) Basic QuadCover, using principal cur-
vature directions and smoothing via Equa-
tion (5.3).

(c) Branch points of (b) are moved to reduce
curl distortion Ep (Section 6.2), but no new
branch points were permitted. The reduced
curl leads to very high angle and length regu-
larity, while lines follow the principal curva-
ture directions at the same time.

(b) Propagating curvature directions from re-
gions with high curvature stability leads to
fewer branch points and more regular param-
eterizations (Section 5.1.2).

! SeSest
0 “‘“““““‘
SRS S
a0 mestgusstiy
i dmaNaE

2

(d) Algorithm 6.1 is allowed to create new
branch point pairs, compare Figure 6.7(d), To
handle the high branch point count, the line
density is increased. Distortion is extremely
low while curvature directions are preserved.

FIGURE 6.8: The figure shows the effects of various frame field optimizations applied

to the Stanford bunny model.

CHAPTER 7

RESULTS AND CONCLUSIONS

QUADCOVER

With QuadCover, we have developed a well-received algorithm for surface parameteriza-
tion, and we could improve direction-guided surface parameterization and quadrilateral
remeshing over what was available at that time.

Even though I consider QuadCover as one of the main contributions of this thesis, I
confine myself to use only the comparison of results from the original paper in Figures 7.1
and 7.2. I tried to not repeat the QuadCover article here, but instead to emphasize its
details and extensions that did not appear in the original publication. The parts of
QuadCover that turned out to be very effective—such as the Hodge decomposition,
and the use of covering spaces as a theoretical support—are described in much greater
detail than in the original paper. Some QuadCover details, however, could be replaced
by newer, more effective ideas. This includes, for example, the smoothing of frame
fields in Section 5.2, or shorter cut paths that we optimized in [KNP10].

To show the performance of QuadCover and its improvements since its publication,
we include Table 7.1 that appeared in the QuadCover article. It expresses the regularity
of parameterizations by the relative standard deviation (RSD) of edge lengths and
vertex angles. We extended the table by our current results, using only branch point
relocation ("Relocation’) as well as full pipeline of branch point creation, relocation,
and balancing as in Algorithm 6.1 ("Balancing’).

[RLL*06] [TACSD06] |[DBGT06] QuadCover Relocation Balancing
vertices 6355 6576 7202 6535 6464 6506
branch points 314 34 26 37 59 93
RSD edge 25.0% 28.3% 30.8% 18.2% 9.0% 8.1%
RSD angle 10.7% 12.6% 7.8% 14.8% 8.0% 7.2%
ARAP energy ? ? ? 0.50 0.36 0.33

TABLE 7.1: Regularity metrics of the bunny models of Figure 7.1.

90

7. RESULTS AND CONCLUSIONS

006

135¢

003 006

90° 135¢

2
s

A2
222
SR
2R

i
5D
RS2
205
33

%,
2%

2
2
%}

%
20at
2
2%

%

%,
%

048
%%
o

oS

255,
SO
<<%

S,

35
35
SS%.

55

XS
S0S5558
25

%
“‘t
35

5

S
osss

3
<5

>

o5e
5
o5

o
95

!
S

<

S

S

o
S
e
SRS

!

S

S

S

sSelssts
o)
SRS

O
e
SRS
ST

S5

oS

ol
fos
S
S

S
oS

006

135¢

45° 90° 135

FIGURE 7.1: Comparison of remeshing results of the Stanford bunny. Models in the
top row were produced by [RLLT06|, [TACSDO06], and [DBG'06]. In the bottom row
we used QuadCover with different settings. Left: QuadCover as in [KNP07], middle:
branch point relocation to minimize Fp, right: branch point creation, relocation,
and balancing as in Algorithm 6.1. The histogram next to each model shows the
distribution of edge lengths, the lower histogram represents angle distribution.

Apart from the numbers of table 7.1, we refer to more than a dozen examples, in
this thesis which show that our method works well on various surfaces.

While some QuadCover improvements in this thesis, like the use of complex notation,
are of rather cosmetic nature, the suggested optimizations of Chapter 6 increase the
quality of QuadCover parameterizations significantly. The three main ingredients—curl
reduction, rounding error reduction, and balancing the number of branch points—act
independently and can be used individually in other parameterization systems.

Low CURL BRANCH POINTS

The relocation of branch points to improve the parameterization regularity has been
used before [BZK09, KP10, Niel2|, yet it has not been fast enough to make it practically
useful. With Cholesky updates, the relocation can be finally performed in reasonable
time. But even if one manages to circumvent the pitfalls of a speedup via sparse
Cholesky updates, we showed that brute force optimization is not practical until a

reasonable edge ordering is used.

91

Sa|

N
~.

>,
(L7
HL7

.
N7
N ...'

FIGURE 7.2: Comparison of our original QuadCover method (right) versus [TACSDOG6],
which was state-of-the-art at the time of publication. In contrast to the latter, Quad-
Cover needed no manual interaction besides setting setting preprocessing parameters.

We found that the branch point relocation works so well that many pre- and
post-processing steps in our software are made redundant. For example, we have used
two-step branch point relocation for a long time in our software: First relocate branch
points to minimize the smoothing energy (as we did in Figure 6.8(b)), and then relocate
branch points to minimize the curl (Figure 6.8(c)). This two-way minimization was
necessary because fast relocation was not available.

An common post-processing problem is heavy local distortion and foldovers around
branch points. By branch point relocation and branch point balancing, these artifacts
can are drastically reduced, so that counteractive measures, such as the local stiffening
of MIQ, are often unnecessary.

BETTER ROUNDING

We showed that by pre-computing the period matrix, the rounding error EFy can be
drastically reduced. Our method performs consistently better than existing rounding
strategies, and it can reduce the error by additional 10 to 14 percent.

Other distortion measures for parameterizations may be highly application depen-
dent, and one can argue whether misalignment, stretching, or bending of parameter
lines is worse. The rounding error Fy, however, introduces random disturbance to
the parameterization and one can simply say: lower is better, independently of the
application. Because the rounding error reduction comes at low computational cost,
the optimization is very worthwhile.

From the perspective of branch point balancing, lower rounding errors also mean
that branch points can be added at a lower distortion penalty, and so, also the curl
distortion can be further reduced.

92 7. RESULTS AND CONCLUSIONS

THE RIGHT NUMBER OF BRANCH POINTS

Many authors of parameterization algorithms have tried to avoid high numbers of
branch points instead of using their ability to positively influence the parameterization.
By developing an effective method to create distortion-minimizing branch points, we
demonstrated—independently of Myles and Zorin—that distortion can be significantly
reduced by allowing new branch points, which often happen to form branch point
chains.

With a precise estimation of the expected distortion introduced with each branch
point, we do not run the risk of creating too many of them. We let our the algorithm
decide which branch points should be kept to reduce the metric distortion, and which
ones should be eliminated to avoid the rounding penalty with respect to the given
parameter line density. A fundamental advantage of this approach is that the right
number of branch points is automatically found for each line density without being
dependent on any parameters. Many other methods (including our original QuadCover
implementation) have only indirect control over the number of branch points, for
example, by setting a smoothness parameters.

SPEED

For medium-sized models of about 20 000 faces, our combination of methods works very
well. For example, after 10000 iterations, the distortion is reduced considerably and is
within a few percent of what could be be achieved with more iterations. The whole
parameterization and optimization process is then finished within about a minute. The
numerics would be certainly faster if our code was implemented in C instead of Java,
where optimized BLAS routines, faster solvers and hardware trigonometric functions
are available.

While the cost of crucial computations grows just slightly worse than linear with
the mesh size, the number of possible branch point positions grows much faster, and
so our algorithms for branch point positioning and rounding need more iterations to
complete. More complex models of around 100000 triangles can take an hour to finish
completely, because hundreds of branch points may have to be positioned for optimal
results. This leads to a sheer endless number of possibilities to fine-tune the branch
points and rounding. Thus, one has the choice of either fixing the solutions more
greedily (and end up with sub-optimal results), or to take our route and try out a high
number of choices to obtain a solution that is assured to be at least a local energy
minimum. (So in essence, we blame the hardness of the problem for the rather slow
convergence to a local minimum, although there may be more efficient algorithms than
ours.) Nevertheless, large models, such as the bust example with 200000 triangles in
Figure 7.3 can be robustly parameterized, although in this case, the optimization took
100 CPU minutes to complete.

93

If faster results are required, the optimization processes can be stopped prematurely.
The quality loss is then bearable, because most significant error reduction of either of
our optimizations happens within the first few iterations.

STRENGTHS AND LIMITATIONS

Every algorithm has strength and weaknesses. QuadCover with its extensions excels on
models of rather organic shape, which are not dominated by sharp features and other
hard constraints. By the use of frame fields as a soft-constraint guidance, QuadCover
parameterizations can adapt well to bends and curved large-area features. On these
surfaces, branch points can be placed and moved rather freely, and thus are perfectly
suited for our optimizations. If isometric parameterization is the goal, then—in our
opinion—our extended QuadCover method places the branch points better than any
other existing method.

As a drawback, parameter lines do not hit sharp edges exactly, as they do hard-
constraint based methods like MIQ and the controlled distortion parameterization of
Myles and Zorin. The missing feature has been added to QuadCover by my former
colleague Matthias Nieser [Niel2|, but more work is needed to make it work hand in
hand with proper branch point placement and rounding optimization.

Our trial and error approach for branch point placement is not always efficient. If
the parameter line density is very coarse, then it makes little sense to create hundreds
of branch points if only a handful of them is kept in the end. However, with our
approach could show what to expect from good branch point placement, and there
might be interesting new ways to make it more efficient.

Concerning the efficiency of our method, there is also potential to simplify the work
flow of field creation, field smoothing, branch point movement, integer rounding, and
eventually the enforcement of hard constraints to fewer steps. With the combination
of individual steps into one, the dependencies between them can be respected much
better. Recent publications have achieved a lot of progress in this direction. On the
other hand, the individual operations of the QuadCover pipeline could point out the
clear distinction between curl distortion Ep and rounding distortion Fy and so enable
the valuable analysis for branch point balancing.

FURTHER ACKNOWLEDGMENTS

All of our algorithms were implemented using our JavaView geometry processing
software [PHK™|, using CXSparseJ [Lin| as the only external software. All images
of 3D models in this work are rendered using JavaView or POV-Ray, except those
in Figures 6.2, 7.1, and 7.2, which contain images of the respective authors. The 3D
models are courtesy of AIM@SHAPE, Stanford, and Max Planck Institute.

7. RESULTS AND CONCLUSIONS

94

FIGURE 7.3: More examples of QuadCover parameterizations.

BIBLIOGRAPHY

[ACSDT03] Pierre Alliez, David Cohen-Steiner, Olivier Devillers, Bruno Lévy, and Mathieu

[BCGBOS]

[BMR.JO04]

[BZK09]

[CDHROS]

[CSMO3)

[Dav06|
[DBG*06]

[Den10]

[DKGO5]

Desbrun. Anisotropic polygonal remeshing. ACM Trans. on Graphics, pages
485-493, 2003.

Mirela Ben-Chen, Craig Gotsman, and Guy Bunin. Conformal flattening by cur-
vature prescription and metric scaling. In Computer Graphics Forum, volume 27,
pages 449-458, 2008.

Ioana Boier-Martin, Holly Rushmeier, and Jingyi Jin. Parameterization of triangle
meshes over quadrilateral domains. In Eurographics Procedings/ACM Symposium
on Geometry Processing, pages 193-203, 2004.

David Bommes, Henrik Zimmer, and Leif Kobbelt. Mixed-integer quadrangulation.

ACM Transactions on Graphics, 28(3):77:1-77:10, July 20009.

Yanqging Chen, Timothy A. Davis, William W. Hager, and Sivasankaran Raja-
manickam. Algorithm 887: CHOLMOD, supernodal sparse cholesky factorization
and update/downdate. ACM Transactions on Mathematical Software, 35(3):22:1—
22:14, 2008.

David Cohen-Steiner and Jean-Marie Morvan. Restricted delaunay triangulations
and normal cycle. In Procedings of the Symposium on Computational Geometry,
pages 312-321. ACM Press, 2003.

Timothy A. Davis. Direct Methods for Sparse Linear Systems. STAM, 2006.

Shen Dong, Peer-Timo Bremer, Michael Garland, Valerio Pascucci, and John C.
Hart. Spectral surface quadrangulation. ACM SIGGRAPH, 2006.

Linzhong Deng. Multiple-rank updates to matrix factorizations for nonlinear
analysis and circuit design. PhD thesis, Stanford University, 2010.

Shen Dong, Scott Kircher, and Michael Garland. Harmonic functions for quadri-
lateral remeshing of arbitrary manifolds. Computer Aided Design, 22(4):392-423,
2005.

96

BIBLIOGRAPHY

[AV10]

[Dzi8s)]

[Ebe01]

[EHP04]

[EW05]

|Gro99|

[GWY03]

[GY03]

[Haz93]

[Hod52]

[HPO4|

[HZ00]

[HZM*08]

[KNPO7]

Eric Colin de Verdiére. Shortest cut graph of a surface with prescribed vertex
set. In Proceedings of the 18th annual Furopean conference on Algorithms: Part
1I, ESA’10, pages 100-111. Springer-Verlag, 2010.

Gerhard Dziuk. Finite elements for the Beltrami operator on arbitrary surfaces.
In Stefan Hildebrandt and Rolf Leis, editors, Partial Differential Equations and
Calculus of Variations. Springer-Verlag, 1988.

Wolfgang Ebeling. Funktionentheorie, Differentialtopologie und Singularititen.
Vieweg, 2001.

Jeff Erickson and Sariel Har-Peled. Optimally cutting a surface into a disk.
Discrete & Computational Geometry, 31(1):37-59, 2004.

Jeff Erickson and Kim Whittlesey. Greedy optimal homotopy and homology
generators. In Proc. 16th ACM-SIAM Symp. on Discrete Algorithms, pages
1038-1046, 2005.

Mikhail Gromov. Metric structures for Riemannian and non-Riemannian spaces,
volume 152 of Progress in Mathematics. Springer-Verlag, 1999.

Xianfeng Gu, Yalin Wang, and Shing-Tung Yau. Computing conformal invariants:
Period matrices. Communications in Information and Systems, 3(3):153-170,

2003.

Xianfeng Gu and Shing-Tung Yau. Global conformal surface parameterization.
In Symposium on Geometry Processing, pages 127-137, 2003.

Michiel Hazewinkel, editor. FEncyclopedia of Mathematics, volume 9, chapter
Two-Dimensional Manifold, pages 288-292. Kluwer Academic Publishers, 1993.

William V. D. Hodge. The Theory & Applications of Harmonic Integrals. Cam-
bridge University Press, 1952.

Klaus Hildebrandt and Konrad Polthier. Anisotropic filtering of non-linear surface
features. Computer Graphics Forum, 23(3):391-400, 2004.

Aaron Hertzmann and Denis Zorin. Illustrating smooth surfaces. In ACM
SIGGRAPH, pages 517-526, 2000.

Jin Huang, Muyang Zhang, Jin Ma, Xinguo Liu, Leif Kobbelt, and Hujun
Bao. Spectral quadrangulation with orientation and alignment control. In ACM
SIGGRAPH Asia papers, pages 147:1-147:9. ACM, 2008.

Felix Kélberer, Matthias Nieser, and Konrad Polthier. QuadCover—Surface
parameterization using branched coverings. Computer Graphics Forum, 26(3):375—

384, 2007.

BIBLIOGRAPHY 97

[KNP10]

[KP10]

[KSS06]

[Lin]

[LLL82|

[LZX*08|

[Mas64]

MG02]

[Mil65]

[MK04]

[MKO6]

[Mun84]

[MZ12]

[MZ13]

[Nie12]

Felix Kéalberer, Matthias Nieser, and Konrad Polthier. Stripe parameterization of
tubular surfaces. In V. Pascucci, H. Hagen, J. Tierny, and X. Tricoche, editors,
Topological Methods in Data Analysis and Visualization. Springer-Verlag, 2010.

Felix Kalberer and Konrad Polthier. Frame field generation for mesh parameteri-
zation. AIP Conference Proceedings, 1281(1):1031-1034, 2010.

Liliya Kharevych, Boris Springborn, and Peter Schréder. Discrete conformal
mappings via circle patterns. ACM Transactions on Graphics, 25(2), 2006.

Richard W. Lincoln. CXSparseJ: A Concise Sparse matrix package, Version 2.2.6.

Copyright 2006-2011, Timothy A. Davis, 2011-2012 Richard W. Lincoln. Available
at https://github.com/rwl/CXSparsel.

Arjen K. Lenstra, Willem H. Lenstra, Jr., and Lészlé Lovasz. Factoring polyno-
mials with rational coefficients. Mathematische Annalen, 261:515-534, 1982.

Ligang Liu, Lei Zhang, Yin Xu, Craig Gotsman, and Steven J. Gortler. A
local /global approach to mesh parameterization. Proceedings of the Eurographics
Symposium on Geometry Processing, 27(5):1495-1504, 2008.

William S. Massey. Algebraic Topology: An Introduction. Harbrace College
Mathematics Series, 1964.

Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: a
cryptographic perspective. Springer, 2002.

John Milnor. Topology from the Differentiable Viewpoint. Princeton University
Press, 1965.

Martin Marinov and Leif Kobbelt. Direct anisotropic quad-dominant remesh-
ing. In Proceedings of the 12th Pacific Conference on Computer Graphics and
Applications, pages 207-216, 2004.

Martin Marinov and Leif Kobbelt. A robust two-step procedure for quad-dominant
remeshing. Computer Graphics Forum, 25(3):537-546, 2006.

James R. Munkres. FElements of Algebraic Topology. Addison Wesley, 1984.

Ashish Myles and Denis Zorin. Global parametrization by incremental flattening.
ACM Transactions on Graphics, 31(4):109:1-109:11, July 2012.

Ashish Myles and Denis Zorin. Controlled-distortion constrained global
parametrization. ACM Transactions on Graphics, 32(4):105:1-105:14, 2013.

Matthias Nieser. Parameterization and Tiling of Polyhedral Surfaces. PhD thesis,
Freie Universitat Berlin, 2012.

https://github.com/rwl/CXSparseJ

98

BIBLIOGRAPHY

[NPPZ12]

[PHK™]

|Pic96]

[Pol02]

[PP93]

[PP03]

[PZ07]

[RLL*06]

[RVLLOS]

[SSPOS]

[Sti80]

[TACSDOG6|

[VIKP11]

[War06]

Matthias Nieser, Jonathan Palacios, Konrad Polthier, and Eugene Zhang. Hexag-
onal global parameterization of arbitrary surfaces. IEEE Transactions on Visual-
ization and Computer Graphics, 18(6):865-878, 2012.

Konrad Polthier, Klaus Hildebrandt, Felix Kélberer, Matthias Nieser, and Ulrich
Reitebuch. JavaView — interactive 3D geometry and visualization software.
Copyright 1999-2013. Available at http://javaview.de.

Artur Piekosz. Basic definitions and properties of topological branched coverings.
Topological Methods in Nonlinear Analysis, Journal of the Juliusz Schauder
Center, 1996.

Konrad Polthier. Polyhedral surfaces of constant mean curvature. Habilitation
Treatise, Technische Universitat Berlin, 2002.

Ulrich Pinkall and Konrad Polthier. Computing discrete minimal surfaces and
their conjugates. Experimental Mathematics, 2(1):15-36, 1993.

Konrad Polthier and Eike Preuss. Identifying vector field singularities using
a discrete Hodge decomposition. In Visualization and Mathematics 111, pages
113-134. Springer, 2003.

Jonathan Palacios and Eugene Zhang. Rotational symmetry field design on
surfaces. ACM Transactions on Graphics, 26(3), July 2007.

Nicolas Ray, Wan Chiu Li, Bruno Lévy, Alla Sheffer, and Pierre Alliez. Periodic
global parameterization. ACM Transactions on Graphics, 25(4):1460-1485, 2006.

Nicolas Ray, Bruno Vallet, Wan Chiu Li, and Bruno Lévy. N-symmetry direction
field design. ACM Transactions on Graphics, 27(2):1-13, 2008.

Boris Springborn, Peter Schréder, and Ulrich Pinkall. Conformal equivalence of
triangle meshes. In ACM SIGGRAPH 2008 papers, pages 77:1-77:11, 2008.

John Stillwell. Complex analysis and surface topology. In Classical Topology
and Combinatorial Group Theory, volume 72 of Graduate Texts in Mathematics,
pages 53-88. Springer, 1980.

Yiying Tong, Pierre Alliez, David Cohen-Steiner, and Mathieu Desbrun. Designing
quadrangulations with discrete harmonic forms. In Furographics Symposium on
Geometry Processing, 2006.

Christoph von Tycowicz, Felix Kélberer, and Konrad Polthier. Context-based cod-
ing of adaptive multiresolution meshes. In Computer Graphics Forum, volume 30,
pages 2231-2245. Wiley Online Library, 2011.

Max Wardetzky. Discrete Differential Operators on Polyhedral Surfaces—
Convergence and Approximation. PhD thesis, Freie Universitdt Berlin, 2006.

http://javaview.de

BIBLIOGRAPHY 99

[WMKGO07] Max Wardetzky, Saurabh Mathur, Felix Kélberer, and Eitan Grinspun. Discrete
Laplace operators: No free lunch. In SGP ’07: FEurographics Symposium on
Geometry Processing, pages 33-37, 2007.

[Zie98| Giinter M. Ziegler. Lectures on Polytopes. Springer-Verlag, 1998. 2nd edition.

100 BIBLIOGRAPHY

LIST OF SYMBOLS

GENERAL NOTES

To make the distinction between objects as clear as possible, we use different font styles
for different types of mathematical objects whenever possible. In particular we use the
following styles and marks:

bold face to denote vectors and matrices (exception: the stiffness matrix £),
and simplices when interpreted as objects in R" (e.g., the interior angle Z(e, f))

sans serif to denote quantities (e.g., the number of vertices, v)

italic font is used for indices of geometric objects and vectors (e.g., e = (s,1), £;;)

a tilde, - , to denote objects on coverings (e.g., the covering surface itself, M)

an asterisk, *, for non-conforming objects (e.g., non-conforming functions, S;)

a bar, , to denote objects in complex notation (e.g., a complex vector @)

V,E,F
v,e,f

Al A
Sh

*

h

L1sT OF FREQUENTLY USED SYMBOLS

A (geometric) simplicial surface or triangle mesh

An abstract simplicial complex

Adjacency: o ~ T < o is adjacent to T

Set of vertices, edges and faces of a (geometric) simplicial complex
Number of vertices, edges and faces of a simplicial complex
Genus of a simplicial surface

Transpose and conjugate transpose of a matrix or vector
Space of continuous PL functions (hat functions)

Space of PL functions with edge-midpoint continuity
Lagrange basis functions, basis functions of Sy,
Crouzeix-Raviart basis functions, basis functions of S}

12
12
12
13
13
13
17, 72
17
18
18
18

102

At7 Ae

even bodd

> O

sym
Ep(X)
En

AEH
Ap,(p,q)
P

r

Rotation by 7 in the tangent plane

Area of triangle ¢, area share of edge e = (s,t), Ac = %(As + Ap)
Gradient of a function

Dirichlet energy of a piecewise linear function u € Sj;
Conforming and nonconforming stiffness matrix

Discrete Laplace-Beltrami operator

Cholesky factor of £ or £*

Vertex-edge incidence matrix

Space of piecewise constant tangential vector fields

Norm of a vector field X, || X|| = ([}, ||Xt|]§§3dA)%

Space of conforming potential, non-conforming co-potential and
harmonic vector fields

Space of non-conforming potential, conforming co-potential and
harmonic vector fields (alternative discretization)

Projection of X to P,C, ..., i.e., the potential part, curl part, etc.

of X
Locally supported vector field with period 1 w.r.t. path 4

) 72%)
Period of a vector field X along a curve ~, of the homotopy basis

Integer offset of by (X), bp(X) —dp(X) € Z
Curvature of a vector field or frame field at edge e = (s, 1)

Harmonic vector field on M with periods b (w.r.t. 7o, ...

Matching of a vector field or frame field at edge e = (s,t)

Frame switching operator, conformal structure on frame fields
Space of piecewise constant tangential frame fields
Orthogonalized frame

Covering surface of M with respect to a given matching
Covering map 7 : M — M

Number of branch points with even and odd matching index
Number of independent symmetric harmonic fields on the covering
Amount of curl distortion, Ep(X) = || Xc||?

2
Size of harmonic correction field, Ey = 3||Hq|?

Expected reduction of Fy(X) per cancelled branch point pair.
Change of Fp when canceling two branch points p and ¢
Period Matrix

Recursion depth in the rounding optimization: r entries of c are
changed at a time.

18
18
18
19
19, 20
20
25, 72
21
23

23, 70
23

23

24

29, 59
30
29, 41
41
33
44
44
45
46
48
48
51
58
71
71
76, 84
76, 85
79
80

ZUSAMMENFASSUNG

Die vorliegende Arbeit befasst sich mit der Parametrisierung simplizialer Fldchen.
Darunter versteht man das Erzeugen einer Abbildung zwischen einer Flache und der
euklidische Ebene, um durch diese Korrespondenz die vorhandene Struktur der Ebene
auf der Flache nutzbar zu machen. Zum Beispiel besitzt die Ebene eine natiirliche
Rasterung in Einheitsquadrate, die mithilfe der Parametrisierungsfunktion auf die
Flédche tibertragen werden kann. Anwendungen hierfiir sind zum Beispiel die Neuver-
netzung und Texturierung von Flachen, und die Erstellung von Kontrollnetzen zur
Generierung von Subdivisions- oder NURBS-Fléchen.

Parametrisierungsfunktionen haben meist eine Reihe von Giitekriterien zu erfiillen,
wichtig ist zum Beispiel geringe Langen- und Winkelverzerrung. Oft ist zusatzlich
gefordert, dass die Gradienten der Abbildung mit der Ausrichtung von Flichenmerk-
malen — etwa von scharfen Kanten — iibereinstimmen.

Unser QuadCover-Verfahren, das die Grundlage dieser Arbeit bildet, erzeugt auto-
matisch aus einem Tensorfeld von Merkmalsrichtungen eine Parametrisierung. Das
Verfahren basiert auf der Grundlage, dass diese mehrdimensionalen Tensorfelder als ein-
dimensionale Vektorfelder auf einer verzweigten Uberlagerung der Fliche interpretiert
werden konnen. Auf diese Weise konnen bekannte Resultate iiber Vektorfelder, zum
Beispiel die Hodge-Zerlegung, angewendet werden. Auf dieser Basis findet QuadCover
die Parametrisierung, die einem gegebenen Richtungsfeld am néchsten kommt.

Fiir Parametrisierungen hochster Giite muss zusétzlich die Langen- und Winkelver-
zerrung minimiert werden. Hierfiir ist die Anzahl und Position von Verzweigungspunk-
ten im Richtungsfeld entscheidend. In dieser Arbeit setzen wir an drei unterschiedlichen
Punkten an: Erstens, zeigen wir mit einem neuen Verfahren, dass die Verzerrung durch
das Verschieben und vor allem durch das Erschaffen von Verzweigungspunkten drastisch
minimiert werden kann. Zweitens wird die Verzerrung, die durch die Existenz von
Verzweigungspunkten entsteht, durch ein neues Rundungsverfahren deutlich starker
verringert als mit bisherigen Methoden. Der dritte Ansatz stellt die unterschiedlichen
Arten von Verzerrung der zuvor genannten Verfahren gegeniiber, so dass daraus die
optimale Anzahl von Verzweigungspunkten bestimmt werden kann. Die Kombination
der Ansitze erlaubt es, auch neue Verfahren hinsichtlich der Verzerrung zu iibertreffen.

	Introduction
	Foundations
	Piecewise Linear Surfaces
	Abstract Simplicial Complexes
	Simplicial Surfaces

	Finite Element Spaces
	Dirichlet Energy and the Laplace Operator
	Divergence and Curl
	Discrete Hodge Decomposition
	Computation of the Hodge Decomposition
	Bases of mPmCmH
	Computing a Base of mH

	Cut Graphs and Systems of Loops
	Finding a Shortest Cut Graph

	Vector Field Indices

	QuadCover Parameterization, Part I
	Good Parameterizations
	Related Work
	Direction Fields
	The QuadCover Algorithm
	Finding an Initial Parameterization
	Global Continuity

	Frame Fields and Coverings
	Frame Fields
	Matchings and Frame Fields
	Curvature and Indices

	Covering Spaces
	Introduction
	A Covering Surface for QuadCover
	Calculus on tM

	QuadCover Parameterization, Part II
	QuadCover on Coverings
	Cut Graphs on Coverings
	Global Continuity
	Pure Quadrilateral Meshes

	Frame Field Generation
	Principal Curvature Fields
	Computing Principal Curvature Directions
	Regions of Stable Curvature Directions

	Smoothing Frame Fields
	Minimizing ES
	Branch Point Relocation

	Minimizing Distortion
	Branch Point Placement
	A Distortion Measure

	Curl Minimization
	Computing the Curl
	A Curl Minimization Heuristic

	The Minimization of Rounding Errors
	Minimizing bcPPbc
	Computation of the Period Matrix
	Comparison

	Balancing Curl and Rounding Errors

	Results and Conclusions
	Bibliography
	List of Symbols
	Zusammenfassung

