Aus dem Zentralinstitut für Laboratoriumsmedizin und Pathobiochemie der Medizinischen Fakultät der Charité – Universitätsmedizin Berlin

DISSERTATION

Wirkung von Mikrowellen niedriger Intensität auf das Wachstumsverhalten von HL60- und BL70-Zellen

zur Erlangung des akademischen Grades Doctor medicinae (Dr. med.)

vorgelegt der Medizinischen Fakultät der Charité – Universitätsmedizin Berlin

von

Elisabeth Langer

aus Luckenwalde

Gutachter: 1. Prof. Dr. med. R. Tauber

2. Prof. Dr. G. Obe

3. Prof. Dr. med. G. Schönfelder

Datum der Promotion: 15.12.2006

Meinem Vater Alfred Wolf gewidmet

Für meinen Sohn Karl David

Abkürzungen und Einheiten

APC adenomatöse Polyposis coli

ATP Adenosintriphosphat

BImSchV Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes

BL70-Zellen humane Burkitt-Lymphom-Zellinie

CDK cyclin dependent kinase

CEM-Zellen T-Lymphozyten-Zell-Linie

c-fos zelluläres Homolog zum Onkogen des "FBJ osteosarcoma"-Virus der

Maus

c-jun zelluläres Homolog zum Onkogen des "avian sarcoma virus 17"

CPM counts per minute (radioaktive Zerfälle pro Minute)

DMSO Dimethylsulfoxid

DNA Desoxyribonukleinsäure

DSMZ Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

EBV Epstein-Barr-Virus

EGF epidermal growth factor
FGF fibroblast growth factor

g Erdbeschleunigung

GHz Gigahertz

g/l Gramm pro Liter

GTEM-Zelle Gigahertz-Transversal-Elektro-Magnetische Zelle

h Stunde

HF Hochfrequenz

HL60-Zellen humane Leukämie-Zellinie

Hz Hertz kV Kilovolt

kV/m Kilovolt pro Meter

log Logarithmus

λ Wellenlänge Lambda

M molar m Meter

min Minuten

 $\begin{array}{ccc} \mu g & Mikrogramm \\ \mu l & Mikroliter \\ MHz & Megahertz \\ ml & Milliliter \end{array}$

mW/kg Milliwatt pro Kilogramm

myc-Gen zelluläres Homolog zum Onkogen des "avian MC29 myelocytomatosis"-

Virus

n Anzahl

NGF nerve growth factor

p p-Wert

p16 p16 Protein p21 p21 Protein p27 p27 Protein

p53 Tumorsuppressorprotein p53

PBS Phosphat-gepufferte Salzlösung

PC12-Zellen Ratten-Phäochromocytom-Zellen

PDGF platelet derived growth faktor

PKC Proteinkinase C

PMA Phorbol-12-Myristat-13-Acetat

ras-Gen zelluläres Homolog zum Onkogen des "rat sarcoma"-Virus

rb Retinoblastom-Protein (Tumorsuppressorprotein)

REA Radio-Enzym-Assay

RNA Ribonukleinsäure

SAR spezifische Absorptionsrate

U/l Units pro Liter

TK Thymidinkinase

TPA 12-O-Tetradecanoylphorbol-13-Acetat

U Unit

UV ultraviolett

Inhaltsverzeichnis

		Seite
1	Einleitung	1
1.1	Vorkommen von elektromagnetischen Feldern in der Umwelt	1
1.2	Physikalische Wirkung von elektromagnetischen Feldern in	3
	Zellen und Geweben	
1.3	Biologische Wirkung von elektromagnetischen Feldern	4
1.3.1	Niederfrequente elektromagnetische Felder	4
1.3.2	Hochfrequente elektromagnetische Felder	6
1.4	Grenzwerte	6
1.5	Molekulare Mechanismen der Karzinogenese und des Zellzyklus	7
1.6	Thymidinkinase	9
1.7	Zellkulturen	11
2	Fragestellung	12
3	Material und Methoden	13
3.1	Zellkultivierung	13
3.2	Verdopplungszeit	15
3.3	Bestimmung der Thymidinkinase-Aktivität	15
3.3.1.	Prinzip des Radio-Enzym-Assays	16
3.3.2	Durchführung des Radio-Enzym-Assays	17
3.3.3	Qualitätskontrolle des Radio-Enzym-Assays	18
3.4	Statistik	19
3.5.	Technische Versuchseinrichtung	20
3.5.1	Versuchsaufbau	20
3.5.2	Ermittlung der Spezifischen Absorptionsrate (SAR)	22
3.6.	Expositionsbedingungen	25
4	Ergebnisse	26
4.1	Verdopplungszeiten	26
4.1.1	Untersuchungen von HL60-Zellen, ohne TPA	26
4.1.1.1	Untersuchungen bei 617 mW/kg, 24 Stunden Exposition	26
4.1.1.2	Untersuchungen bei 617 mW/kg, 48 Stunden Exposition	27

7	Literatur	61
6	Zusammenfassung	59
5.5	Bewertung	55
	Thymidinkinase-Aktivitäten	
5.4	Verdopplungszeiten im Zusammenhang mit den	54
5.3	Auswirkungen der TPA-Applikation	53
5.2	Aktivität der Thymidinkinase der Zellen ohne TPA-Applikation	52
5.1	Verdopplungszeiten der Zellen ohne TPA-Applikation	50
5	Diskussion	50
4.4	Zusammenfassung Thymidinkinase-Aktivitäten	47
	24 Stunden Exposition	
4.3.3	Untersuchungen von BL70-Zellen, mit und ohne TPA bei 1114 mW/kg,	45
	24 Stunden Exposition	
4.3.2	Untersuchungen von HL60-Zellen, mit und ohne TPA bei 1114 mW/kg,	43
4.3.1.4	Untersuchungen bei 1114 mW/kg, 24 Stunden Exposition	42
4.3.1.3	Untersuchungen bei 1336 mW/kg, 24 Stunden Exposition	41
4.3.1.2	Untersuchungen bei 617 mW/kg, 72 Stunden Exposition	40
4.3.1.1	Untersuchungen bei 617 mW/kg, 48 Stunden Exposition	39
4.3.1	Untersuchungen von HL60-Zellen, ohne TPA	39
4.3	Thymidinkinase intrazellulär	39
	bei 617 mW/kg, 24 Stunden Exposition	
4.2	Thymidinkinase extrazellulär, Untersuchungen von HL60-Zellen,	38
4.1.4	Zusammenfassung Verdopplungszeiten	36
	24 Stunden Exposition	
4.1.3	Untersuchungen von BL70-Zellen, mit und ohne TPA bei 1114 mW/kg,	33
	24 Stunden Exposition	
4.1.2	Untersuchungen von HL60-Zellen, mit und ohne TPA bei 1114 mW/kg,	32
4.1.1.5	Untersuchungen bei 1114 mW/kg, 24 Stunden Exposition	31
4.1.1.4	Untersuchungen bei 1336 mW/kg, 24 Stunden Exposition	30
4.1.1.3	Untersuchungen bei 617 mW/kg, 72 Stunden Exposition	28

8	Tabellarischer Anhang	69
9	Erklärung	92
10	Danksagung	93
11	Lebenslauf	94