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SUMMARY OF PUBLICATION-BASED THESIS 

1. TITLE 

Glucose-dependent Insulinotropic Peptide: A Link between Nutrition and Metabolism 

 

2. AUTHOR 

Farnaz Keyhani-Nejad 

 

3. ABSTRACT  

Non-alcoholic fatty liver disease, insulin resistance and chronic low-grade inflammation are 

major risk factors for the metabolic syndrome, which is a consequence of multiple factors, 

particularly hormonal and nutritional imbalances. The gut hormone glucose-dependent 

insulinotropic peptide (GIP) is secreted in response to nutrient ingestion and regulates glucose 

and energy homeostasis through enhancing postprandial insulin secretion and anabolic effects in 

adipose and other tissues. Genetic ablation of GIP receptors and even chronic reduction of GIP 

secretion alleviates obesity and insulin resistance under high fat diet (HFD) conditions. Multiple 

evidence suggests that adipokines, secreted bioactive substances from adipose tissue, trigger 

chronic low-grade inflammation and are implicated in the regulation of insulin resistance. 

We examined the importance of endogenous GIP secretion and the function of GIP receptors for 

the control of fatty liver and energy metabolism through analysis of GIP receptor knockout 

(Gipr
-/-

) mice and by examining carbohydrates with different potential to stimulate GIP 

secretion. In one study, animals were fed diets containing sucrose (resorbed proximally) and its 

isomer Palatinose (resorbed distally) to investigate glucose metabolism and fatty liver. In a 

separate experiment, C57Bl/6J mice were exposed to a HFD to evaluate the expression of a 

novel adipokine belonging to WNT signaling which regulates adiposity and low-grade 

inflammation. 

Compared with sucrose, Palatinose intake resulted in slower glucose absorption and reduced 

postprandial insulin and GIP levels. Following 22 weeks of Palatinose containing diets, mice 

exhibited reduced hepatic triacylglycerol content (48.5%) and preserved glucose tolerance, 

without differences in body composition and food intake. Ablation of GIP signaling in Gipr
-/-

 

mice completely prevented the deleterious metabolic effects of sucrose feeding. 

Moreover, we observed that mice fed a HFD showed increased body weight and fat mass. Wisp1 

gene expression was significantly up-regulated in the epididymal adipose tissue of HFD-fed 

mice. Stimulation of human macrophages with WISP1 resulted in pro-inflammatory responses. 
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WISP1 expression in adipose tissue was associated with markers of insulin resistance and 

inflammation. 

Taken together, our data indicate that the site of glucose absorption and the GIP response 

determine liver fat accumulation and insulin resistance. Palatinose, as a food ingredient, 

attenuates postprandial GIP release. Additionally, our findings point to WISP1 as a novel 

adipokine linking obesity to inflammation and insulin resistance which could be considered as a 

novel target for obesity treatment. 

 

4. ZUSAMMENFASSUNG 

Nicht-alkoholische Fettleber, Insulinresistenz und chronische low-grade inflammation sind 

hauptsächliche Risikofaktoren für das Metabolische Syndrom, einem komplexen Krankheitsbild, 

welches vornehmlich durch hormonelle und nutritive Imbalancen gekennzeichnet ist. Das 

Darmhormon glucose-dependent insulinotropic peptide (GIP) wird nach Nahrungsaufnahme von 

enteroendokrinen K-Zellen ausgeschüttet. GIP verstärkt die postprandiale, pankreatische 

Insulinsekretion, sowie die anabolen Effekte im Fettgewebe und reguliert somit die Glukose- und 

Energiehomöostase. Die genetische Ablation des GIP-Rezeptors und die chronische Reduktion 

der GIP-Sekretion verringert das Auftreten von Adipositas und Insulinresistenz unter einer 

Hochfettdiät (HFD). Adipokine, sezernierte bioaktive Substanzen von Fettzellen, begünstigen 

nachweislich eine chronische low-grade inflammation und sind darüber hinaus an der Regulation 

der Insulinresistenz beteiligt. 

Wir haben die Bedeutung der endogenen GIP-Sekretion und die Funktion des GIP-Rezeptors 

bezüglich der Entstehung der Fettleber und die Regulation des Energiestoffwechsels erforscht. 

Hierzu haben wir GIP-Rezeptor knockout (Gipr
-/-

) Mäuse und Kohlenhydrate mit 

unterschiedlichen Potentialen zur Stimualtion der GIP-Sekretion untersucht. In der ersten Studie 

erhielten die Mäuse ein saccharosereiches (proximal resorbiert) bzw. ein palatinosereiches (distal 

resorbiert) Futter, um den Effekt der Diäten auf den Glukosestoffwechsel und die Fettleber zu 

untersuchen. In einer zweiten Studie erhielten die C57Bl/6J Mäuse eine HFD, um die Expression 

eines neu identifizierten Adipokins zu evaluieren, welches dem WNT Signalweg angehört und 

sowohl Adipositas als auch chronische low-grade inflammation reguliert. 

Im Vergleich zu Saccharose, führte die Aufnahme von Palatinose zu einer langsameren 

Glukoseabsorption und zu niedrigeren postprandialen Insulin- und GIP-Spiegeln. Nach 22 

Wochen des palatinosereichen Futters, zeigten die Mäuse eine konservierte Glukosetoleranz und 

reduzierte Triazylglyzerin-Spiegel (48,5%) bei unveränderter Körperzusammensetzung und 
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Nahrungsaufnahme. Die Ablation des GIP-Signals in Gipr
-/- 

Mäusen konnte die schädlichen 

metabolischen Effekte einer saccharosebetonten Fütterung gänzlich vermeiden. 

Wir konnten ferner beobachten, dass Mäuse, die eine HFD erhielten, ein erhöhtes Körpergewicht 

und eine vermehrte Körperfettmasse aufwiesen. Bei HFD-gefütterten Mäusen konnte eine 

signifikante Hochregulation der Genexpression von Wisp1 im epididymalen Fettgwebe 

beobachtet werden. Eine Stimulation von humanen Makrophagen mit WISP1 resultierte in einer 

pro-inflammatorischen Antwort. Die WISP1-Expression im Fettgewebe war mit Insulinresistenz 

und Inflammation assoziiert.  

Unsere Daten zeigen, dass der Ort der Glukoseabsorption (distal/proximal) und die GIP-Antwort 

maßgeblich an der Entstehung von Insulinresistenz sowie einer Fettakkumulation beteiligt sind. 

Der Lebensmittelinhaltsstoff Palatinose verringert die postprandiale GIP-Sezernierung. 

Zusätzlich konnten wir zeigen, dass WISP1, welches Adipositas mit Inflammation und 

Insulinresistenz assoziiert, ein neu entdecktes Adipokin ist. WISP1 könnte zukünftig als ‘‘Novel 

target“ für die Etablierung neuer Therapien gegen Adipositas eingesetzt werden. 

 

5.  INTRODUCTION 

Metabolic syndrome is a grave public health problem and associated with obesity and a variety 

of metabolic disorders such as type 2 diabetes, non-alcoholic fatty liver disease (NAFLD) and 

insulin resistance. For instance, the prevalence of overweight and obesity rose worldwide by 

27.5% for adults and 47.1% for children between 1980 and 2013, which means that around 2.1 

billion individuals are overweight or obese and at risk for metabolic disorders [1; 2]. Both 

genetic and environmental factors including nutritional and hormonal aspects contribute to the 

development of metabolic syndrome. In order to develop successful therapies, we need to 

consider the interaction between these factors. Accumulating evidence suggests that ectopic 

deposition of triacylglycerol (TG), influenced by nutrition, is as an important contributor to 

NAFLD which encompasses a broad spectrum of liver diseases from simple, benign fatty liver to 

steatohepatitis (NASH) [3].  

Gut hormones secreted in response to nutrient ingestion play essential roles in the regulation of 

energy homeostasis [4; 5]. Gastrointestinal peptides like glucose-dependent insulinotropic 

peptide (GIP) and glucagon-like peptide-1 (GLP-1) function as incretin hormones to convey the 

insulinotropic signals from the gut to the pancreatic islets in the postprandial state, with GIP 

having a predominant role [5; 6]. GIP is a 42-amino acid peptide [7] that is synthesized in and 

secreted from enteroendocrine K-cells in the proximal intestine in response to glucose and fat, 
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whereas GLP-1 is secreted from L-cells in the distal small intestine and colon [8; 9]. Following 

secretion, GIP exerts its effects through specific G protein coupled receptors and its activation 

leads to cyclic AMP (cAMP) generation and insulin secretion from pancreatic β-cells. GIP 

receptors are also widely expressed in non-islet cells, including the gastrointestinal tract, heart, 

adipose tissue, adrenal cortex and brain [9; 10]. In addition to its major action in glucose-

dependent stimulation of insulin secretion, GIP elicits extra-pancreatic effects and is implicated 

in metabolic control [11; 12]. GIP links overnutrition to obesity [13]. A growing body of 

evidence supports a role for GIP in the regulation of fat metabolism and its anabolic 

characteristics [14]. In adipocytes, GIP stimulates adipogenesis and enhanced activity of 

lipoprotein lipase (LPL) activity [15-17]. 

Recently, genetic reduction of GIP secretion has been shown to alleviate obesity and insulin 

resistance under high fat diet (HFD) conditions [18]. Miyawaki, et al. demonstrated the 

inhibition of GIP signaling in the regulation of insulin resistance and fatty liver in mice. [19]. 

Consistent with these results, using a specific GIP receptor antagonist has been associated with 

enhanced insulin sensitivity [20]. Thus, GIP appears to play a different role in fat and glucose 

metabolism promoting effective assimilation and storage of food. Despite evidence for GIP 

effects in adipose tissue, the role of GIP has not been investigated in diet induced fatty liver. This 

challenge has fostered a research effort using animal models, especially GIP receptor knockout 

(Gipr
-/-

) mice to better understand the etiology and pathology of metabolic disorders like fatty 

liver and glucose intolerance.  

There is considerable interest in identifying extra-pancreatic and indirect actions of GIP. The 

role of GIP in the liver, presumably via an indirect mechanism, needs to be investigated. High 

intake of carbohydrates, particularly sucrose, in Western societies is associated with the 

development of NAFLD and type 2 diabetes mellitus. It is unclear whether this is related 

primarily to the carbohydrate quantity or to the hormonal responses, particularly GIP, which is 

released in the proximal intestine. To delineate the physiological importance of GIP action, we 

used different sugars, two glucose–fructose dimers, sucrose and Palatinose (isomaltulose), with 

dissimilar ability to release GIP and then studied the metabolic effects in experiments with Gipr
-

/-
 mice. 

The second focus of the current thesis is regarding insulin resistance. Obesity, as a major risk 

factor of both NAFLD and type 2 diabetes provides the common link through insulin resistance 

[21]. Interestingly, despite known alterations of insulin sensitivity by aging, genetics and 

environment, it may change circannually. Therefore, finding the putative times of insulin 

sensitivity is valuable for interpretation of cross-sectional and prospective studies. 
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Insulin resistance is likely mediated by adipose tissue inflammation and dysregulated adipokine 

production in obesity [21]. GIP induces the secretion of adipokines such as resistin and 

adiponectin [22]. Interestingly, gip gene expression and incretin production were also been 

shown to be stimulated by the Wingless type (WNT) signaling cascade. The canonical WNT 

signaling pathway is closely related to the production of incretin hormones, since the 

transcription factor TCF7L2 affects glucagon and GIP gene expression in L and K 

enteroendocrine cells [23]. WISP1 (Wnt1 inducible signaling pathway protein 1) is the target 

gene of WNT signaling pathway. The protein WISP1 is present in multiple organs throughout 

the body and is expressed in the epithelium, heart, kidney, lung, pancreas, placenta, ovaries, 

small intestine, spleen, and brain. WISP1 has multiple cellular functions that include skeletal 

system development, vascular repair, cellular survival and extracellular matrix growth [24]. 

Evidence shows that WNT signaling regulates adipogenesis and low-grade inflammation in 

obesity. Here, the aim was to validate WISP1 as a novel adipokine.   

In general, our aim was to investigate the effect of nutrition on stimulating GIP release and 

define divergent effects of GIP, beyond pancreatic roles, on liver and muscle and how 

endogenous GIP modulates fatty liver and glucose metabolism. In addition, we aimed to define 

WISP1 as a marker of HFD-induced obesity and to study its association with insulin resistance. 

 

 

6. MATERIAL AND METHODS 

6.1. Animals 

Experimental protocols were approved by the local governmental animal ethical committee in 

the State of Brandenburg, Germany. Animals were kept in accordance with the NIH guidelines 

for care and use of laboratory animals.  

Experiments were performed in male C57Bl/6J mice (Janvier Labs, Saint Berthevin, France), 

unless otherwise stated. Mice were housed in individual cages with free access to water and 

standard rodent chow, with a 12:12 h light–dark cycle and a temperature of 23±2°C. Mice were 

allowed a 1-week acclimatisation period before starting the experiments. Gipr
-/-

 mice
 
and wild-

type (WT) littermates on a C57Bl/6J strain background were generated as described [25] .In 

order to explant organs, overnight fasted mice were sedated using isoflurane (Baxter, 

Unterschleissheim, Germany) and killed by cervical dislocation. Organs were isolated rapidly, 

snap frozen in liquid nitrogen and kept at -80°C for RNA isolation. 
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6.2. Diets 

In study [26], animals were fed either a control diet with 10% of fat and energy density of 3.8 

kcal/g (catalog no. D12450B; Research Diets Inc., New Brunswick, NJ, USA) or a HFD with 

60% of fat and energy density of 5.2 kcal/g (catalog no. D12492; Research Diets Inc.) following 

to the experimental designs for 6 weeks.  

In experiment [27], mice were fed isoenergetic diets containing 40.5% (wt/wt) carbohydrate, 

41.5% (wt/wt) fat and 18% (wt/wt) protein. The diets differed in terms of the type of 

carbohydrate used, which was either palatinose or sucrose (table 1[27]). 

 

6.3. Feeding test  

In a cohort of animals, mice were trained for 4 days to consume either a Palatinose- or a sucrose-

containing diet as detailed previously [28]. Briefly, individually housed mice were given 500 mg 

of the experimental diets following an overnight fast. Blood samples from the tail vein were 

drawn at 0 (overnight fasted), 30, 60, 90 and 120 min of consuming the whole portion of test 

meals within 15 min. 

 

6.4. Dietary intervention 

Body weight matched mice were fed the above-mentioned diets of identical macro- and micro-

nutrient composition for 22 weeks [27]. 

To elucidate the role of GIP in mediating the sucrose induced hepatic fat accumulation, another 

long-term experiment was performed in Gipr
-/-

 and WT littermates. In order to receive 

comparable information, age and body weight matched Gipr
-/-

 and WT mice were placed on the 

aforementioned diets. All the experimental measurements are indicated below. 

 

6.5. Body composition and food intake 

Body weight and cumulative food intake were measured weekly for individually housed mice. 

Body fat and lean mass were determined at indicated times using nuclear magnetic resonance 

spectroscopy (Mini Spect MQ10 NMR Analyser Bruker, Karlsruhe, Germany) in conscious 

mice. 

 

6.6. Glucose tolerance test  
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A glucose tolerance test (GTT) was performed by i.p. glucose (2 g/kg BW) injection after 

overnight fasting. Blood samples were taken from the submandibular vein plexus for glucose and 

insulin measurements before and at 10, 30, 60 and 120 min after the glucose challenge. 

 

6.7. Incretin measurement  

Plasma GIP levels were quantified using a rat/mouse total GIP ELISA kit (EMD Millipore). 

Blood samples were collected in tubes containing heparin lithium (Sigma-Aldrich Co, St Louis, 

MO, USA). Rat/Mouse GIP standard with the concentration of 2000 pg/ml was used for the 

assay. Levels of plasma GLP-1 were determined by the GLP-1 (active) ELISA kit (Shibayagi 

Co, Gunma, Japan). Recombinant GLP-1 (7-36) was used as the standard. Blood samples were 

collected in tubes containing EDTA-Na
2+

 (Sigma-Aldrich) and aprotinin (Carl Roth Co, 

Karlsruhe, Germany) with the final concentration of 1mg/ml and 500 KIU/ml, respectively. To 

avoid the degradation of GLP-1, a DPP-IV inhibitor (EMD Millipore) was added to the plasma 

samples. All samples were stored at -80°C until performing the assay. 

 

6.8. Quantification of liver TG 

Frozen liver samples were powdered in liquid nitrogen. 2.5 ml of 10mM sodium phosphate 

buffer containing 1mM EDTA and 1% polyoxyethylene 10 tridecylethan was added to 50 mg of 

the samples. They were homogenized and centrifuged (10 min, 20,000 x g). Then the supernatant 

was incubated at 70°C for 5 min. TG (triacylglycerol reagent, Sigma-Aldrich) and protein (DC 

protein assay, Bio-Rad, Hercules, CA, USA) levels were quantified in duplicate.   

 

6.9. RNA extraction and quantitative RT-PCR  

Total RNA was purified and quantified from liver, gastrocnemius muscle, hypothalamus and 

epididymal white adipose tissue samples as described [28]. Quantitative RT-PCR was performed 

using ABI Prism 7900 HT Real-Time PCR system (Applied Biosystems, Foster City, CA, USA). 

The quantity of target and the housekeeping gene (Hprt) were calculated according to a standard 

curve. Primer sequences are listed in the supplementary data [26; 27]. 

 

6.10. Microarray analysis  

Total RNA (300 ng), quantified and qualified by Agilent 2100 Bioanalyser, was amplified using 

the Illumina TotalPrep RNA Amplification kit (Ambion, Carlsbad, CA, USA). Amplified cRNA 

was hybridised to Mouse Ref-8 v2.0 Expression BeadChips (Illumina, San Diego, CA, USA). 
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Staining and scanning were done according to the Illumina expression protocol. Transcriptome 

analyses were performed by the statistical programming environment R implemented in 

CARMAweb [29]. Genewise testing for differential expression was done using the Limma t test 

and Benjamini–Hochberg multiple testing corrections (FDR < 10%) and significant terms 

(p<0.01) were determined. Pathway enrichment analyses were done with the Ingenuity pathway 

software (Qiagen, Hilden, Germany).  

 

6.11. Data analysis  

Data were analysed using IBM SPSS statistics 20 (SPSS, Chicago, IL, USA). Comparisons 

between two groups were performed using unpaired Student’s t test. Multiple comparisons were 

tested by one-way ANOVA, followed by post hoc Tukey or Games–Howell tests according to 

the homogeneity of variances (Levene’s test). To test longitudinal changes over time, ANOVA 

with repeated measurement was used. Statistically significant effects of genotype and diet were 

determined using two-way ANOVA. The area under the curve (AUC) was calculated by the 

trapezoid rule. Statistical significance was defined as p<0.05. Results are presented as mean ± 

SEM. 

 

 

7. RESULTS AND DISCUSSION 

7.1. Nutritional strategy to prevent fatty liver and insulin resistance independent of obesity by 

reducing GIP responses in mice 

The most common cause of NAFLD can likely be attributed to an exaggerated intake of dietary 

energy, especially carbohydrates, inducing a strong insulin response. Therefore, dietary 

components capable of decreasing postprandial glucose and insulin levels are promising 

approaches to reduce the development of NAFLD. Studies indicate that the intake of rapidly 

digestible sugars such as sucrose, known as high glycaemic index sugars, as compared with 

Palatinose, a slowly and completely resorbed sucrose analogue composed of α-1,6-linked 

glucose and fructose, has deleterious effects on postprandial glucose, insulin and TG levels, 

which are associated with the risk of obesity, insulin resistance and fatty liver [30; 31]. An 

inhibition of carbohydrate absorption by acarbose, an inhibitor of α glycosidase, was shown to 

reduce GIP release in humans [32]. Since genetic reduction of GIP secretion was shown to 

prevent HFD-induced obesity and insulin resistance [18], we decided to explore a dietary 

strategy to reduce GIP secretion to study the possible benefits of dietary lessened GIP release. 
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For this approach, we used sucrose and its isomer Palatinose. We speculated that Palatinose, 

composed of glucose and fructose, should also reduce GIP release and other consequences of 

high sucrose intake. To determine the role of GIP in diet-induced fatty liver and impaired 

glucose homeostasis, we performed a long-term diet intervention in Gipr
-/-

 mice and WT 

littermates. 

We first investigated the acute oral response of Palatinose and sucrose in glycaemic homeostasis 

and in the release of intestinal incretins. Sucrose caused an expected rapid increase in glucose 

accompanied by GIP and insulin release, while GLP-1 levels did not differ between groups. By 

contrast, Palatinose caused a more delayed increase in glucose, which resulted in little GIP 

secretion and, accordingly, much lower insulin secretion (supplement Fig. 1 [27]). Our next 

question was whether or not these differences might be maintained by diet. Therefore, we 

established isoenergetic diets based on Palatinose and sucrose.  

Indeed, the diet containing sucrose induced a rapid and strong increase in GIP and insulin, as 

shown by the AUC, (2.5- and 1.5-fold, respectively), whereas Palatinose was not associated with 

a major increase in GIP and, accordingly, resulted in a smaller increase in insulin (Fig. 1). We 

observed differences in oral and meal tests on plasma glucose levels, which are well-known [33], 

and relate to the content of fat and protein in the whole diet, which slows gastric emptying and 

thereby delays glucose absorption in the small intestine. The most likely explanation for the 

differences in GIP release refers to the more distal absorption of Palatinose, which bypasses the 

proximally located GIP-producing K-cells in the small intestine.  

In our study, plasma GLP-1 levels remained unchanged in mice administered sucrose or 

Palatinose (supplement Fig. 1 [27]), as reported earlier in models of GIP receptor antagonism 

and genetically reduced GIP secretion [18; 34], indicating that the reduction of GIP secretion 

does not affect GLP-1 secretion. 

We further analysed the long-term metabolic response of sugars in a hypercaloric diet. Ad 

libitum access to diets containing Palatinose and sucrose resulted in similar body weight, body 

fat and cumulative food intake between the two groups (Fig. 2). Energy content of the diets was 

quantified by calorimeter and was comparable between groups (Palatinose, 4.81 kcal/g; Sucrose, 

4.83 kcal/g). Digestibility of the diets was 89% with sucrose and 88.5% with palatinose and the 

digested energy between groups, as estimated over one week, was not significantly different 

(Table 2 [27]). However, the Palatinose-fed mice exhibited reduced hepatic TG and were 

protected from diet-induced impaired glucose tolerance (Fig. 3 [27]). A study in rats has reported 

that Palatinose-fed animals had higher hepatic insulin sensitivity [35], reduced hepatic TG, and 

lower postprandial insulin and glucose levels, which is consistent with our results, although that   
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study was confounded by differences in body weight. Indeed, liver fat is associated with and is 

likely to be a cause of hepatic insulin resistance [36]. The 2-fold increase in liver TG levels with 

increased levels of ALT, a key indicator of hepatotoxicity, supports the presence of liver damage 

in our sucrose-fed mice. Palatinose intake resulted in a modest reduction in postprandial glucose 

levels and a 40% reduction in glucose-stimulated insulin response. 

Fig. 1 Glycemic, insulinemic 

and GIP responses to sucrose 

(white circles and bars) and 

Palatinose (black circles and 

bars) intake. 

To characterize the impact of 

the sugars as an ingredient of 

dietary pattern, a meal test 

was performed. Plasma 

levels of (a) glucose, (c) 

insulin, (e) GIP over 120 min 

were evaluated after 

ingestion of 500 mg of 

experimental diets. AUC for 

(b) glucose, (d) insulin and 

(f) GIP shows that the diets 

containing sucrose induced 

rapid and large increases of 

GIP and insulin compared to 

the Palatinose diet, while the 

glucose levels were not 

overall different between two 

diets.  

Values are mean ± S.E.M of 

8 male mice in each group.  

* p<0.05, ** p<0.01 and  

*** p<0.001  
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The most compelling evidence in support of the contribution of GIP to fatty liver was the in vivo 

experiment in Gipr
-/-

 and WT mice. Gipr
-/-

 mice behaved similarly to WT mice fed Palatinose, 

and were protected from fatty liver. Remarkably, liver TG levels in Gipr
-/-

 mice fed sucrose and 

Palatinose were 2-fold and 3-fold less than those of the WT sucrose-fed mice, respectively. The 

levels of liver TG in WT mice fed sucrose were approximately twice those of Palatinose-fed 

mice (Fig. 2). In addition, during GTT, lower glucose levels in WT mice fed Palatinose and  

  

Gipr
-/-

 mice than WTs fed sucrose suggests that glucoregulation was similarly achieved in 

conditions of suppression of GIP signaling and reduced GIP production by Palatinose intake. At 

the same time, the circulating insulin levels were lower in Gipr
-/-

 mice and WTs fed Palatinose 

that those of WT mice on sucrose diet (Fig. 4 [27]). 

In our study, comparable body weight and food intake confirm similar energy intake and 

digestibility of diets; therefore, the observed metabolic and hormonal differences are related to 

absorption differences in the gut. Palatinose and sucrose were fully hydrolysed and absorbed in 

the small intestine, confirming finding from previous studies [37]. 

Although not significant, Palatinose feeding enhanced leptin release, which did occur 

independently of changes in fat mass and food intake most likely as a consequence of central 

regulation.  

To evaluate the mechanisms for the observed effects in liver TG without differences in body 

weight and digested energy, we assessed the mRNA expression of transcription factors and 

genes involved in metabolic pathways leading to the development of NAFLD, including de novo 

lipogenesis (Acca, Fas, Srebp1c and Chrebp), lipid beta-oxidation (Ppara and Cpt1a) and 

secretion from liver (ApoB100 and Mtp). However, the expression of these genes did not differ 

Fig. 2 Liver TG content in wild type 

(WT) and Gipr
-/-

 mice exposed to diets 

containing Palatinose or sucrose for 22 

weeks. Diets containing sucrose in WT 

mice induced significant higher levels of 

hepatic TG compared to WT Palatinose 

fed and Gipr
-/-

 mice. White circles and 

bars: WT, sucrose; black circles and bars: 

WT, Palatinose. White triangles and 

hatched bars: Gipr
-/-

, sucrose; black 

triangles and hatched bars: Gipr
-/-

, 

Palatinose. Values are mean ± S.E.M of 9 

WT and 11 Gipr
-/-

 mice in each group.  

. *p<0.05, **p<0.01 
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between Palatinose and sucrose-fed mice. This finding is in contrast to other reports that 

increased Ppara and hepatic fat oxidation were observed for attenuated liver fat in Palatinose 

feeding  [38]. However, in this study body weight differed between Palatinose and sucrose-fed 

mice. 

Indeed, Palatinose improved glucose homeostasis and liver fat metabolism in the context of HFD 

in part by enhancing muscular fatty acid uptake and causing a shift towards fat oxidation instead 

of fat deposition in the liver, as indicated by increased expression of Cd36 and Ppara (Fig 5. 

[27]). 

For additional mechanisms we performed microarray analyses in liver and observed that 

Palatinose reduced 2.3-fold the mRNA expression of Socs2, suppressor of cytokine signaling 2. 

Studies have revealed changes in SOCS2 mRNA levels in human steatotic livers [39; 40]. 

Recently, it was shown that Socs2
-/-

 mice are protected from HFD-induced hepatic steatosis [41]. 

The reduced expression of Socs2 mRNA observed in the Palatinose-fed mice could be due to 

reduced plasma growth hormone (GH) levels. It is reported that the GIP receptor mediates an 

increase in GH after glucose challenge [42; 43]. Our results suggest that Palatinose might 

indirectly contribute to GH modulation by inhibiting postprandial GIP release and Socs2 

expression in the liver. However, pathway analysis of microarray data indicated upregulation of 

glycogen and nicotinamide adenine dinucleotide (NAD) biosynthesis pathways in the sucrose 

group (supplement Table 3). Liver NAD biosynthesis is controlled by a salvage pathway using 

nicotinamide as a precursor and a de novo pathway using tryptophan. Increased NAD in the liver 

may enhance gluconeogenesis [44]. 

In summary, the main finding of our study was that Palatinose feeding prevented the 

development of fatty liver and improved glucose metabolism in the setting of a HFD, without 

differences in energy intake and body weight between groups. The highly significant prevention 

of hepatic fat accumulation was mediated by a reduced GIP response, avoiding postprandial 

hyperinsulinaemia. The results in Gipr
-/-

 mice suggest that GIP may mediate the deleterious 

metabolic effects of sucrose induced insulin resistance and fatty liver. Therefore, Palatinose as a 

food ingredient reduces postprandial GIP secretion by evading upper intestinal absorption. By 

this mechanism, Palatinose feeding results in reduced postprandial glucose and insulin levels and 

represents a promising approach for the prevention and/or treatment of fatty liver and insulin 

resistance in humans. 
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7.2. WISP1 is a novel adipokine linked to inflammation in obesity 

Over the past decade, obesity as the major risk factor for metabolic syndrome has been 

associated with chronic low-grade inflammatory responses. Adipose tissue has a major endocrine 

function secreting multiple adipokines which are involved in energy homeostasis and 

inflammation. In obesity, the adipocyte is integral to the development of obesity-induced 

inflammation by increasing secretion of various pro-inflammatory cytokines which have been 

reported to promote insulin resistance [45]. Furthermore, evidence from animal studies links the 

Wingless-type (WNT) signaling pathway to the regulation of adipogenesis [46] and 

inflammation [47] in obesity. Members of the WNT-signaling family are secreted glycoproteins 

that are acting in both autocrine and paracrine fashions to regulate cell proliferation, cell fate, 

differentiation and organism development. The WNT signaling network is composed of several 

canonical and non-canonical pathways which are strongly controlling cell remodelling [24; 48].  

WNT-inducible signaling pathway protein-1 (WISP1 also known as FCCN4) belongs to the 

CCN family extracellular matrix proteins and is a downstream target gene of the canonical WNT 

signaling pathway [49]. WISP1 is expressed in various organs and tissues including heart, 

pancreas, lung, small intestine, spleen and brain. In some of these tissues it acts anti-apoptotic 

through PI3K and Akt pathways. WISP1 has a regulatory function in skeletal growth and bone 

repair [49]. Recent reports show that other members of CCN family are tightly related to 

adipogenesis. No data are currently available regarding the role of WISP1 on adiposity and its 

effects in insulin target tissues, including liver and fat. Therefore, we combined in vitro 

experiments with human studies accompanied by animal experiment to show that WISP1 is a 

novel marker of obesity regulated by HFD and validate its association with parameters of 

metabolic syndrome. 

We could show that WISP1 gene expression and WISP1 protein production is up-regulated 

during human adipocyte differentiation. WISP1 was highly expressed in human visceral adipose 

tissue and moderately expressed in subcutaneous adipose tissue. In addition, WISP1 expression 

correlated negatively with insulin sensitivity, circulating adiponectin levels, and with visceral fat 

content as measured by MRI, suggesting that WISP1 may be a useful marker of visceral fat 

accumulation and insulin resistance. Interestingly, WISP1 increased pro-inflammatory cytokine 

production in cultured macrophages and had a positive correlation with macrophage infiltration 

in subcutaneous and visceral adipose tissue. Moreover, it induced macrophage polarization 

towards the inflammatory M1 phenotype. Since WISP1 modulates macrophage infiltration and 

polarization and is also released by differentiated adipocytes, it may be characterized as an 

adipokine that participates in the control of macrophage function.  
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Furthermore, to test the hypothesis whether WISP1 is regulated in diet-induced obesity, we 

studied male mice, which were randomized into either a control diet or HFD. After 6 weeks of 

diet intervention, the HFD-fed mice showed increased body weight, fat mass and lean mass 

compared with their control littermates (Fig. 4. [26]). Wisp1 gene expression was significantly 

up-regulated in the epididymal fat tissue and muscle of HFD-fed mice. However, in the HFD fed 

mice Wisp1 gene expression was not significantly increased in liver compared to mice on a 

control diet. Additionally, WISP1 expression in liver was moderate and was not up-regulated in 

the human subjects with NAFLD. Furthermore, we observed no association between different 

biochemical and anthropometrical markers of obesity and hepatic gene expression of WISP1, 

suggesting that WISP1 is not involved in hepatic fat accumulation. Thus, body weight gain 

resulted in changes in circulating WISP1 originated most likely from adipose tissue rather than 

from the liver or other organs. 

In conclusion, WISP1 is released by completely differentiated human adipocytes and stimulated 

macrophages. It is substantially expressed in adipose tissue in obesity and HFD feeding and 

reflects adipose tissue inflammation and insulin resistance. WISP1 as an adipokine plays a role 

in linking obesity to inflammation and insulin resistance. 

Fig. 2 (a) Changes of body weight, body composition and (b) Wisp1 mRNA 

expression in epididymal fat tissue, liver and muscle in mice after 6 weeks of control 

diet (white bar) or high fat diet (black bar). Values are mean ± S.E.M of 7 wild type 

mice in each group. *p<0.05, **p<0.01 
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7.3. Annual changes in insulin sensitivity 

The elevated incidence of type 2 diabetes mortality during winter [50] may indicate an annual 

periodic change in insulin sensitivity. We therefore analysed putative annual periodic changes of 

insulin sensitivity in a large cross-sectional human cohort. To address this, we applied HOMA-

%S, as an estimation of fasting glucose and insulin, and also Matsuda Sensitivity Index, as an 

index of glucose metabolism during glucose challenge. Calculations were performed within the 

Metabolic-Syndrome-Berlin-Potsdam (MeSyBePo) study group consisting of volunteers from 

the Berlin/Potsdam region in Germany enrolled during 2002-2009.  

The study cohort consisted of 2385 participants (mean age 51.9 ± 0.3 years, mean BMI 29.8 ± 

0.1 kg/m
2
, mean HOMA-%S 104.9 ± 1.9%, 1992 participants without diabetes). We found a 

significant periodic oscillation (β=0.08, P=0.02) for HOMA-%S with a period length of 9.1 

months. This corresponds throughout the year to a 1.08-fold increase of ln HOMA-%S, or a 

change of 8%. Restriction to the participants without diabetes (n=1992) confirmed the result and 

strengthened the model fit (β=0.07, P=0.009), again with a similar period length of 9.2 months 

(Fig 1 [51]).  

To further demonstrate the impact of this annual change we compared insulin sensitivity between 

subjects enrolled during the first half of the year and those enrolled during the second half 

(January to June vs. July to December). Insulin sensitivity was significantly improved in subjects 

enrolled during the second half of the year (HOMA-%S 112.0±3.0 % vs. 97.4±2.4 %, 

P=0.00003). Using Matsuda Index instead of HOMA-%S revealed comparable results. 

We here report annual changes of insulin sensitivity in a large cohort of more than 2000 

participants. Our data are in agreement with the observed annual changes in blood glucose [52]. 

However, although statistically significant, the here observed 8% annual oscillation of insulin 

sensitivity was only moderate and is unlikely to relevantly affect general interpretation of studies 

in this field although it may become relevant in case of small changes in insulin sensitivity. 

In principle, potential explanations for the periodic change in insulin sensitivity may be changes 

in vitamin-D metabolism known to be affected by annual changes and the exposure to sunlight 

[53; 54], and being discussed in the context of insulin sensitivity. Serum levels of 25-

hydroxyvitamin D were described highest in autumn and lowest after winter [55], which fits well 

with the annual change in insulin sensitivity observed here.  

In summary, we found a rather small annual periodicity in insulin sensitivity which is unlikely 

important for the general interpretation of studies but which may become relevant in case of 

small differences in insulin sensitivity. 
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