
Chapter 1

General Introduction

The phylogenetic position of the Bryozoa is subject to ongoing discussions. Bryozoa or 
Ectoprocta are a group of sessile, colonial invertebrates which occur, with probably 8,000 
recent species worldwide, in marine and limnetic habitats (introductory reviews in Ryland 
1970, 2005, Mukai et al. 1997, Nielsen 2001). Since Hatschek (1891), the predominant 
opinion was that they form, together with Brachipoda and Phoronida, the Tentaculata or 
Lophophorata (Hyman 1959). These were assigned either to protostomes or to deuteros-
tomes or were placed “intermediate”. Despite varying views about the monophyly of lopho-
phorates, most later approaches united them with Deuterostomia as Radialia (Jefferies 1986, 
Eernisse et al. 1992, Backeljau et al. 1993, Ax 1989, Brusca and Brusca 2003). This was 
based chiefl y on the coelomic organization and the apparent homology of the tentacular ap-
paratus to that of hemichordates and crinoid echinoderms. An alternative hypothesis, based 
mainly on larval morphology and similarities in metamorphosis, has been put forward by 
(Nielsen 1971, 1977, 2001, 2002), who agreed to the deuterostome affi nity of Brachiopoda 
and Phoronida, but suggested a sister-group relationship between Bryozoa and Kamptozoa, 
thus a protostome affi nity of bryozoans.

In a phylogenetic study using 18S rDNA data, Halanych et al. (1995) revealed evidence for 
a common ancestry of the lophophorate taxa, annelids and molluscs united in a clade named 
Lophotrochozoa. This new evidence challenged the long-held view of a deuterostome re-
lationship of all or some lophophorate groups and many of the ideas that supported this. 
Subsequent studies of more extensive datasets and further molecular markers almost consist-
enly corroborated Lophotrochozoa (see Halanych 2004 for review). Since at the same time 
many cladistic analyses of broad morphological datasets still supported deuterostome af-
fi nities (Zrzavy et al. 1998, 2003, Sorensen et al. 2000, Peterson and Eernisse 2001, Nielsen 
2001, Glenner et al. 2004),  a serious confl ict appeared. However, until presently molecular 
approaches either fail to resolve the exact position of Bryozoa (as well as that of several 
other lophotrochozoan taxa) or provide confl icting evidences. Bryozoa have, for example, 
been suggested to be basal Lophotrochozoans (Halanych et al. 1995,  Passamaneck and 
Halanych 2006), basal prostomes (Giribet et al. 2000), polyphyletic (Mackey et al. 1996,  
Passamaneck and Halanych 2006), polyphyletic with phoronid affi nities (Helmkampf et al. 
2008), sister to Brachiopoda (Waeschenbach et al. 2006), sister to Kamptozoa (Hausdorf et 
al. 2007).
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Concerning the molecular data, several sources of error have been suggested that could 
cause the current problems (Telford et al. 2005, e.g., Philippe and Telford 2006, Baurain et 
al. 2007). Although some authors (Scotland et al. 2003) question in principle the value of 
morphology for phylogenetic inference, most researchers agree that morphology represents 
a complex data set whose careful analysis can serve as an independent test for molecu-
lar based phylogenies (Wiens 2004, Jenner 2004). Morphology-based phylogenies depend 
heavily on the characters chosen and the accuracy of the used details (Jenner and Schram 
1999). Morphological data sets suffer chiefl y from two problems. One is that the number of 
phylogenetically informative characters is relatively low in comparison to DNA sequence 
data. Especially in “phylum-level” phylogenies of the metazoa only few characters are com-
parable across the different groups. Thus, a single character has potentially a relatively high 
impact on the result of the analysis. This poses the second problem: Many characters are only 
insuffi ciently investigated in certain groups, leading to a high degree of uncertainty, when 
coding character states in a data matrix. This also applies for Bryozoa: looking at  the most 
recent morphological data matrices that have been used for analyzing metazoan phylogeny 
(Zrzavy et al. 1998, 2003, Sorensen et al. 2000, Peterson and Eernisse 2001, Nielsen 2001, 
Glenner et al. 2004), it turns out that a majority of those characters that can be suspected to 
contain essential information, are scored “unknown” for Bryozoa. This is especially the case 
for characters of  embryogenesis, neural organization and mesodermal structures. In contrast 
to this situation, detailed comparable data from many other metazoa taxa have become avail-
able by a growing fi eld of comparative developmental biology and neuroanatomy during the 
last years (see e.g., Nielsen 2004, 2005, Minelli and Fusco 2008, Lichtneckert and Reichert 
2007). Hence, in this thesis, a selection of these characters have been investigated with the 
central aim to provide new phylogenetically signifi cant data.

Commonly the three bryozoan subtaxa Phylactolaemata, Stenolaemata, and Gymnolaemata, 
which differ in terms of both morphology and life-style, are distinguished. Gymnolaemata 
comprise Cheilostomata and Ctenostomata. In the traditional phylogenetic hypotheses, the 
morphology of Phylactolaemata has been regarded as especially signifi cant, because several 
similiarities to Phoronida had been recognized. Indeed, Phylactolaemata differ consider-
ably from Stenolaemata and Gymnolaemata, hindering assumptions about ancestral char-
acter states for Bryozoa. Chapter 2 Ganglion ultrastructure in phylactolaemate Bryozoa: 
Evidence for a neuroepithelium, addresses the question whether the cerebral ganglion in 
Phylactolaemata is, in contrast to that of Gymnolaemata, hollow and formed by an invagina-
tion process comparable to the vertebrate neurulation. Chapter 3: Ultrastructure of the body 
cavities in phylactolaemate Bryozoa aims to answer the question, whether the epistome, an 
upper-lip like organ contains an independent secondary body cavity, as implied by earlier 
morphologists.



1 General introduction 10

The evolution of larval types within Bryozoa is still elusive. Stenolaemata and Phylactolaemata 
exhibit larvae, which are hardly comparable to those of gymnolaemates as well as other 
metazoan groups (Reed 1991). In gymnolaemates, the planktotrophic cyphonautes, as well 
as several types of lecithotrophic larvae occur (Zimmer and Woollacott 1977). Chapter 4 
Muscular systems in gymnolaemate bryozoan larvae focuses on the phylogenetic signifi -
cance of larval musclature for the evolution of bryozoan larval types. During the last ten 
years, larval neural anatomy has regained much attention as complex character, of possibly 
high phylogenetic signifi cance. Only few results on bryozoan larvae exist, which do not 
provide a consistent picture by now. Thus, in chapter 5 Serotonergic and FMRFamidergic 
nervous systems in gymnolaemate bryozoan larvae, data on nervous system characters of 
different larvae are collected and a putative ancestral pattern is proposed.

Early embryology in Bryozoa has been studied by several earlier workers, but the origin of 
mesoderm is still essentially unknown. As data on mesoderm formation have been acquired 
in many metazoan taxa, namely candidate sister groups like Phoronida and Brachiopoda 
(Freeman 2000, 2003, Lüter 2000, Freeman and Martindale 2002), knowledge on this char-
acter in Bryozoa has the potential to contribute arguments for the phylogenetic position of 
Bryozoa. In chapter 6 Mesoderm origin in Membranipora membranacea, developmental 
stages of a species exhibiting a cyphonautes larva are examined on the ultrastructural level. 

Chapter 7 summarizes the most important results of this thesis and discusses their impact on 
the conceptions about phylogeny and position of the Bryozoa .
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