
Map Construction Targeted

Trajectory Anonymization

Sebastian Müller, 2016

M
a
p
 C

o
n
st

ru
ct

io
n
 T

a
rg

et
ed

 T
ra

je
ct

o
ry

 A
n
o
n
y
m

iz
a
ti

o
n

2
0
1
6

Map Construction Targeted

Trajectory Anonymization

Dissertation zur Erlangung des Grades

eines Doktors der Naturwissenschaften (Dr. rer. nat.)

am Fachbereich Mathematik und Informatik

der Freien Universität Berlin

von

Sebastian Müller

Berlin

eingereichtes Exemplar vom 29.06.2015

mit Änderungen vom 16.03.2016

2

3

• Die Betreuerin der Arbeit ist Professorin Agnès Voisard1.

• Die Gutachter der Arbeit sind Professorin Agnès Voisard und Professor

Dieter Pfoser2.

• Die Disputation fand am 21. Oktober 2015 am Institut für Informatik der

Freien Universität statt.

1Agnès Voisard, Ph.D.
Institut für Informatik
Takustr. 9
14195 Berlin
Germany

2Dieter Pfoser, Ph.D.
Department of Geography and Geoinformation Science
George Mason University
Exploratory Hall, Room 2203
4400 University Drive
Fairfax, VA, 22032
United States of America

4

Acknowledgements

While declaring this thesis as solely my own work, I have to admit, it wasn’t

done alone in a basement abandoned from the rest of the world. Without the

help of others this thesis would have been very different from what it is at

present. As I am proud of its current status, I feel I have to thank the following

people for their involvement during the time of writing this thesis.

First, I would like to thank my advisor Prof. Agnès Voisard. She gave me

the honor and opportunity of being her first employee at the working group

for database systems and information systems. With regards to this thesis, she

always ensured that I had enough time and freedom to work on my Ph.D. I

appreciate her contribution in terms of constructive feedback and ideas very

much. I also want to thank her for being my 1st reviewer and part of the

committee of my Ph.D. defense.

My 2nd reviewer is Prof. Dieter Pfoser who generously accepted my request

for reviewing. I very much appreciate his contributions to geographical infor-

mation systems and more particularly, I very much liked his moderation of the

Geocrowd workshop at ACM GIS 2013.

I would like to thank the members of the defense committee, including Prof.

Heinz Schweppe, Prof. Wolfgang Mulzer, and Dr. Frank Hoffmann. Prof.

Heinz Schweppe, predecessor of Prof. Agnès Voisard as the working group

leader, showed interest in my Ph.D. research and gave me very helpful advices

for teaching. Prof. Wolfgang Mulzer has conducted important work on the

computation of the Fréchet distance. I am using implementations of his co-

author Prof. Wouter Meulemans in my work.

Prof. Oliver Günther offered me my first job in academia which I very much

appreciate. I consider accepting this job offer as one of my best decisions. I

would also like to thank Dr. habil. Benjamin Fabian for being my supervisor

during that time and for sharing his insights and helping me at the start of my

research career.

I would like to thank my colleagues at Freie Universität Berlin and Humboldt-

Universität zu Berlin. In Particularl, I would like to mention Steffen Kunz,

5

6

Franziska Brecht and Paras Mehta with whom I successfully worked and pub-

lished my first research papers.

I would like to thank all students who contributed to the Agg2Graph project.

They are in chronological order Jens Fischer, Franz Gatzke, Johannes Mitlmeier,

Marc Simons, Manuel Kotlarski, Sebastian Barthel, Ferhat Beyaz, Damla Dur-

maz, Martinus Dipobagio, Serdar Tosun, Christian Windolf, Martin Liesenberg,

and Daniel Neumann. Out of all these wonderful contributions, a special thanks

goes to Johannes Mitlmeier whose components have had the strongest impact.

Lastly I wish to thank my parents, Renate and Jürgen Müller, my girlfriend,

Paula Schmieder, and close friends, whose enthusiasm, interest and support in

this project have given me the motivation to realize this achievement.

Contents

Acknowledgements 5

List of Figures 11

List of Tables 17

1 Introduction 19

1.1 Aim . 19

1.2 Motivation . 20

1.2.1 Environment . 20

1.2.2 Demand . 22

1.3 Definitions . 24

1.4 Organization . 26

2 Background 27

2.1 Related Work . 27

2.1.1 Work on Trajectory Anonymization 27

2.1.2 Work on Map Construction 29

2.1.3 Applied Methods . 29

2.2 Aggregation Process . 35

2.2.1 Network Architecture: Client-Server and Peer to Peer . . 35

2.2.2 Iterative Process . 37

2.2.3 Privacy Threats . 37

2.2.4 Privacy Measures . 38

2.2.5 Security Measures . 38

2.2.6 Data Cleaning . 39

2.2.7 Functional Architecture 40

3 Matching of Trajectories 43

3.1 Point-Based Distances . 43

3.2 Edge-Based Distances . 44

7

8 CONTENTS

3.3 Trajectory-Based Distances . 48

3.4 Angle Components . 51

3.5 Iterative Matching . 55

3.6 Global Matching . 57

3.7 Conclusion . 58

4 Merging of Trajectories 63

4.1 Point-based Merging . 64

4.2 Edge-based Merging . 66

4.3 Trajectory-based Merging . 70

4.3.1 Merging with Normalization 70

4.3.2 Sweep Algorithm . 72

4.4 Merging: Finalization Steps . 74

4.5 Conclusion . 76

5 Privacy Preservation 77

5.1 k-Anonymity for Trajectories . 78

5.2 Integration in Matching and Merging 80

5.2.1 k-Anonymity and weight 80

5.2.2 Finding Subtrajectories 82

5.3 Differential Privacy for Trajectories 84

5.4 Conclusion . 84

6 Evaluation 87

6.1 Synthetic Cases . 87

6.1.1 Introduction to the Cases 87

6.1.2 Results with Edge-Based Algorithm 89

6.1.3 Results with Subtrajectory-Based Algorithm 95

6.2 Demo Scenarios . 98

6.2.1 Introduction to the Cases 98

6.2.2 Results with Edge-Based Algorithm 101

6.2.3 Results with Subtrajectory-Based Algorithm 105

6.3 Conclusion . 107

7 Conclusion 111

7.1 Limitations . 112

7.2 Lessons Learned . 112

7.3 Future Work . 114

8 Bibliography 117

CONTENTS 9

A Graphical User Interface 125

A.1 Installation and Start . 125

A.2 Import . 128

A.3 Filter . 128

A.4 Cleaning . 128

A.5 Aggregation . 131

A.6 Road Generation . 135

A.7 Export . 136

B Zusammenfassung 137

C Abstract 139

D Selbstständigkeitserklärung 141

10 CONTENTS

List of Figures

2.1 Trajectory generalization by Voronoi tessellation [54] 28

2.2 Trajectory generalization via point matching [8] 29

2.3 Road map construction from trajectories [17] 29

2.4 Comparing Hausdorff distance with Fréchet distance [67] 30

2.5 TRACLUS distance function elements [43] 32

2.6 TRACLUS sweep function for representative trajectories [43] . . 32

2.7 Client-Server Network Structure 36

2.8 Peer-To-Peer Network Structure 37

2.9 Functional Architecture of Agg2Graph 41

3.1 Two directed edges with extension and perpendiculars marking

the crossings of perpendicular and edges or their extension in-

cluding the angle between the two edges 46

3.2 Comparison between measuring the distance between start and

end points or between points and crossings of the perpendicular[55] 47

(a) Difference in length . 47

(b) Difference in angle . 47

(c) Low difference in start points 47

(d) High difference in start points 47

3.3 Two parallel edges with extension and perpendiculars marking

the crossings of perpendicular and edges or their extension with

a high shift to each other . 49

3.4 Two GPS traces and their free-space diagram [27] 51

(a) GPS traces . 51

(b) Free-space diagram . 51

3.5 A difference in angle at a highway departure 52

3.6 The aggregation represents a highway and the individual trace

represents a departure from the highway 53

3.7 Iterative matching of trajectories 55

3.8 Matching of two edges to one edge 56

11

12 LIST OF FIGURES

3.9 Partial matching of edges to the aggregation 57

3.10 Marking the affected area by using a bounding box with threshold 58

3.11 Global edge-based matching process 59

4.1 Point-based merging example with two trajectories 64

4.2 Point-based merging example with one new point for sets of points 65

4.3 Point-based merging example with one new point for each itera-

tion of the aggregation . 66

4.4 Edge-based merging example with iteration of the aggregation

and averaging of start and end nodes 67

4.5 Edge-based merging example with iteration of the aggregation

and averaging of start and end nodes and additional merging of

displaced nodes . 67

4.6 Edge-based merging example with iteration of the aggregation

and finding new nodes along the perpendicular 68

4.7 Increasing the granularity of the trajectory aggregation by creat-

ing new points at the crossings of the perpendiculars of the edge

of the single trajectory with the trajectory aggregation 69

4.8 Merging trajectories by merging points found by distance thresholds 72

4.9 Merging trajectories by generating points when the sweep-line

detects changes . 73

4.10 Adjusting the sweep-line backwards to prevent leaving out nodes 74

4.11 Increasing the granularity of the trajectory aggregation by creat-

ing new points at the crossings of the perpendiculars of the edge

of the single trajectory with the trajectory aggregation 75

5.1 Obfuscation methods for location-based data[13] 79

(a) Deletion . 79

(b) Randomizing . 79

(c) Discretizing . 79

(d) Subsampling . 79

(e) Mixing . 79

5.2 Using the edge weight to match edges according to k as threshold 81

5.3 Iterative matching of trajectories within a filter step 83

5.4 The identification of characteristic points of the single trajectory

next to the trajectory aggregation 84

(a) Single trajectory with GPS errors inducing characteristic

points . 84

(b) Single trajectory leaving trajectory aggregation 84

6.1 Synthetic cases of GPS traces for aggregation 90

LIST OF FIGURES 13

(a) Converging and diverging traces 90

(b) Converging two times . 90

(c) Shorter and longer traces 90

(d) Traces with imprecision . 90

(e) Converging, cCrossing and diverging 90

(f) Crossing . 90

(g) Converging, crossing and diverging in opposite direction . . 90

(h) Crossing with a curve . 90

6.2 Synthetic cases of GPS trace aggregation with edge-based match-

ing and merging . 94

(a) Converging and diverging traces 94

(b) Converging two times . 94

(c) Shorter and longer traces 94

(d) Traces with imprecision . 94

(e) Converging, crossing and diverging 94

(f) Crossing . 94

(g) Converging, crossing and diverging in opposite direction . . 94

(h) Crossing with a curve . 94

6.3 Two possible crossings with the perpendicular 95

6.4 Possible results with iterative matching and a subtrajectory dis-

tance . 97

(a) Iterative matching result 1 97

(b) Iterative matching result 2 97

(c) Iterative matching result 3 97

(d) Iterative matching result 4 97

6.5 Synthetic cases of GPS trace aggregation with subtrajectory-

based matching and merging . 99

(a) Converging and diverging traces 99

(b) Converging two times . 99

(c) Shorter and longer traces 99

(d) Traces with imprecision . 99

(e) Converging, crossing and diverging 99

(f) Crossing . 99

(g) Converging, crossing and diverging in opposite direction . . 99

(h) Crossing with a curve . 99

6.6 Real cases (in Berlin) of GPS trace aggregation 102

(a) Street crossing . 102

(b) T-crossing . 102

(c) Highway drive up . 102

(d) Highway departure . 102

14 LIST OF FIGURES

(e) Entering and leaving of a circle 102

(f) Highway below street . 102

(g) Circle traffic . 102

(h) A place amid lanes . 102

6.7 Real cases (in Berlin) of GPS trace aggregation with edge-based

matching and merging . 106

(a) Street crossing . 106

(b) T-crossing . 106

(c) Highway drive up . 106

(d) Highway departure . 106

(e) Entering and leaving of a circle 106

(f) Highway below street . 106

(g) Circle traffic . 106

(h) A place amid lanes . 106

6.8 Real cases (in Berlin) of GPS trace aggregation with subtrajectory-

based matching and merging . 108

(a) Street crossing . 108

(b) T-crossing . 108

(c) Highway drive up . 108

(d) Highway departure . 108

(e) Entering and leaving of a circle 108

(f) Highway below street . 108

(g) Circle traffic . 108

(h) A place amid lanes . 108

6.9 Expansion at connections . 109

7.1 Street crossing (in Berlin) GPS trace aggregation with edge-based

matching and merging . 113

(a) All improvements included 113

(b) Without edge length limitation 113

(c) Without merging of near connections 113

(d) Without checking for existing connections 113

7.2 Place (in Berlin) GPS trace aggregation with subtrajectory-based

matching and merging . 114

(a) All improvements included 114

(b) Without perpendicular angle and length restriction 114

A.1 GUI start screen . 127

A.2 GUI screen after input . 129

A.3 GUI screen after filter . 130

LIST OF FIGURES 15

A.4 GUI screen after cleaning . 132

A.5 GUI screen after aggregation . 134

A.6 GUI screen after road generation 136

16 LIST OF FIGURES

List of Tables

2.1 Patient records, raw data . 33

2.2 Patient records, 2-anonymized data 33

3.1 Execution times of point-based distances 45

3.2 Distance execution times . 61

6.1 Location information for real-world scenarios 100

17

18 LIST OF TABLES

Chapter 1

Introduction

This thesis reports on research conducted in the field of applied computer sci-

ence. More precisely, it can be categorized to data privacy on the one hand

and to computational geometry on the other hand. The kind of science falls

into the category design science [39]. I write about a design and a prototypical

implementation which solve a defined problem in a certain way. The degree to

which the problem is solved and the effectiveness of the solution can only be

estimated and not proven. I evaluate my work with qualitative and quantitative

measures that indicate the quality of the solution. Whenever possible, there is a

comparison to a state-of-the-art solution. In the following sections I describe the

aim of the thesis, its motivation and necessary definitions which are repeatedly

used throughout the thesis.

This chapter is organized as follows: Section 1.1 describes the aim of this

thesis and Section 1.2 the motivation, including the environment and the de-

mand. Section 1.3 gives defintions which are used throughout the thesis and the

last section of this chapter deals with the organization of the following chapters.

1.1 Aim

The aim of this thesis is to anonymize trajectory data with the goal of con-

structing a map in a consecutive step. Trajectory data, even without direct

identifiers, can directly be linked to a person if it is comprehensive enough

[48, 3, 41]. Hence, trajectory data is personal data and should be treated ac-

cordingly. Therefore, to distribute and analyze the data it should be anonymized

in a way that no personal link is possible afterwards. This is also a claim of the

European data protection directive [36]. Specializing anonymization for map

construction can provide many benefits in providing both privacy (anonymity)

and information utility. Map construction from trajectory data can be used to

19

20 CHAPTER 1. INTRODUCTION

create maps for territories where no manually created maps are available, e.g.,

company campuses[17] and rural areas. It also can be used to create maps for

special transportation modes, e.g., inline skating and sailing.

1.2 Motivation

To automatically construct a road network, the amount of available data is

important. If everything else is constant, the higher the amount of data, the

better the expected result. For example Karagiorgou and Pfoser[42] state in

their summary “Visual inspection shows that the generated road network closely

resembles the actual road network if sufficient tracking data that provides re-

dundant coverage of the road network is available”. According to Biagioni and

Eriksson[5], Niehofer et al.[59] show that the relative position error of a road

segment rapidly decreases with increasing amounts of data. Internet users tend

to prefer anonymized communication and are willing to accept disadvantages,

including latency, to a certain degree [10, 11]. This is also true for trajectory

data: people are more willing to contribute their individual trajectories if they

are anonymized or obfuscated [13]. Conclusively, more anonymity will attract

more users, more users generate more data, and more data will lead to better

results in map construction. Nevertheless, anonymization methods lead to an

information loss, which increases with stricter measures [12]. One argument is

that the loss of information might outweigh the information gain by having a

higher amount of data available. However, anonymization does not necessarily

need to be applied to all the data, it can be an option for users who are more

privacy-aware and would not contribute their data unanonymized.

Automatic map construction from GPS traces (trajectory data) is feasible

and inexpensive [17]. It is more up-to-date than other approaches and contrib-

utors do not need to have expert knowledge. OpenStreetMap[37], for example,

uses a manual approach where the input are GPS traces and satellite images

and often a volunteer contributes by editing the map. Automatic map construc-

tion can help navigation systems to detect road changes over time and creating

maps where manual map construction is not cost-effective, e.g., for sports-map

creation and for having maps available for special purposes or special campi.

1.2.1 Environment

This section concerns the environment that on the one hand enables the pro-

posed work and on the other hand shows a demand for this work. Particularly

important are advances in technologies to retrieve one’s location and to share

data in a timely manner.

1.2. MOTIVATION 21

Satellite navigation

Satellite navigation provides geo-spatial positioning. Nowadays, the main sys-

tems for satellite navigation available for private use are GPS (Global Position-

ing System, United States of America) and GLONASS (Globalnaya navigatsion-

naya sputnikovaya sistema, int.: Global Navigation Satellite System, Russia).

GPS and GLONASS use two different reference ellipsoids, WGS-84 and PZ-90

[9]. For combined usage the GPS/GLONASS receiver has to calculate trans-

formations to use a higher coverage of satellites offered by both of the systems.

Exemplary practical tests show the advantage of the combined use of both sys-

tems, particularly for areas with obstacles [61]. Nevertheless, as for now, the

data of concern for this work are practically data from GPS (Global Position-

ing System) which are positional data calculated by a GPS receiver with the

help of time delays of satellite data. The result of the calculation is a point in

3-dimensional space and time described by latitude, longitude, altitude and a

timestamp. These data can be collected over time by the GPS receiver. For

the purpose of this work, it is not relevant by which satellites the data was

retrieved. Therefore, future use of more satellites would only enhance preci-

sion and results. Particularly interesting, for the improvement of the precision,

might be the launch of the Galileo (Europe) with a claimed error of less than

one meter for civilian use [20].

Mobile Phones

For the purpose of this work we are interested in smartphones, which provide

mobile Internet access and global positioning. According to Ericsson[26] there is

an estimation of 1.9 billion smartphone subscriptions in 2013 and an estimation

of 5.6 billion smartphone subscriptions in 2019. The estimation is based on a

current level of mobile phone subscriptions and a replacement rate of mobile

phones with smartphones. This indicates a high amount of users and potential

use of this work. Furthermore, not only the availability is increasing, but also

the actual usage. This is indicated by an estimated increase of high-bandwidth

subscriptions. Ericsson[26] estimates 2.6 billion LTE (Long Term Evaluation)

subscriptions in 2019.

Users

There is no typical smartphone user and the use of smartphones is highly individ-

ual. For our purposes it is important to know, how many users use applications

based on maps, how many use their smartphone for supporting their sports-

activities, how many contribute in which way to map providers. Additionally,

22 CHAPTER 1. INTRODUCTION

important is, how privacy-aware users are and how much their willingness to

contribute depends on privacy-measures.

According to GlobalWebIndex[30] Google Maps[33] is at the time of writing

the most common used mobile application with a percentage share of 54 of all

mobile users. Ovi Maps (now Here[60]) is a popular map based application,

ranking 11th with a 9% share. BBBike[63], a more specialized map application,

for bicyclists in Berlin and Brandenburg, has 10.000 to 50.000 installations on

Android[31] according to Rezic[32]. Runtastic[64], a popular sports application

has 5.000.000 to 10.000.000 installations on Android[34]. Conclusively, there

is a high interest in mobile map applications in general, but also for sport

applications which use maps or navigation applications for bikes or other sporty

vehicles.

1.2.2 Demand

This section discusses the demand for applications which make use of automatic

map construction. We can categorize these demands in applications based on

maps which can be automatically created, the use of additional information in

existing maps which can automatically be added, and the creation and update

of existing maps.

Applications based on Maps

Maps that can be automatically constructed can be used for any application

where manual map construction is too expensive. Special purpose maps for

which, for example, one person collects all the traces for one campus can be used

for company purposes in navigation applications. Many navigation applications

are thinkable, including campus navigation for employees, routing for supply

robots or process optimization by optimal route planning. Navigation is also

an application for bike maps or maps for inline skates which can be constructed

from bike and inline skate traces. Besides navigation, applications for planning

are also important to look at. Automatically constructed maps can be used in

planning, e.g., when choosing the location for a store for inline skates or a café.

Also, for city or traffic planners these maps might be useful to detect weaknesses

in the traffic system, e.g., when average speed on a certain connection road drops

for bicycles.

1.2. MOTIVATION 23

Use of Additional Information

Based on GPS traces additional information can be added to existing maps.

Additional information can be the:

• average velocity,

• average velocity for separate transportation modes, e.g., with a bike 15

km/h,

• usage split per transportation mode, e.g., this road has a usage share of

cars of 50%,

• usage of transportation modes, e.g., if bikes use this road at all,

• velocity variation. This might be a quality indicator for a road. Roads

with low velocity variation should be preferred.

The additional information can be used in applications. Based on this infor-

mation, more demand-oriented routing is possible. It is also important for city

planning to detect weaknesses in the road network and possibilities to reroute

traffic to less occupied streets. Additionally, this information can be used by

trip planners, who are creating a trip based on this information, e.g., one is able

to spot routes which are especially suitable for bikes.

Creation and Update of Maps

Existing maps may need updates due to road changes. Road changes not only

influence the course of the road, but also properties, like the aforementioned

additional information, of the road. For example, a change of traffic light be-

havior does not change the course of the road, but it can change average speeds

or velocity variation due to better traffic flow. Additionally, a new company in

a certain area can influence the occupancy of nearby roads which would also

affect road properties. The preferred way to detect these changes is an auto-

matic processing of GPS traces, which can be done in a cost-effective and timely

manner.

Another important aspect is the creation of maps which would not be created

because there is not enough financial interest to create them manually. This is

of concern for rural areas where map creation is only useful for a few people and

these people are not willing to pay particularly for the coverage of the missing

area. Another important idea is to create specialized sports maps for different

transportation modes, e.g., an inline skating map. In comparison to the bike

community, inline skating is interesting for fewer people, so there does not exist

a good coverage of maps for inline skating. GPS traces can be automatically

24 CHAPTER 1. INTRODUCTION

filtered for transportation mode and a road map can be constructed only taking

the filtered traces into account.

Privacy

Privacy can also be seen as a demand of individuals. Obfuscation methods which

ensure a certain level of privacy can increase the willingness to contribute trajec-

tory data [13]. Also, monetary incentives increase the willingness to contribute

trajectory data [13, 19, 2]. Privacy is a strong concern in modern societies and

an important personal right that people are willing to protest for. Conclusively,

ensuring privacy can replace monetary incentives and create higher acceptance

for contribution.

1.3 Definitions

This section covers essential definitions regarding the objects used in this work.

The objects in this work are mainly data gathered from mobile positional data

and spatial objects to represent these data. Please note that the definitions are

not generic and might only be valid in the context of this work.

• Point : A point is a unique location in the Euclidean space, described by

an ordered set of numbers. In this work we will only need two-dimensional

points which are described by an ordered pair of numbers:1

p := (x, y), x ∈ R, y ∈ R.

• Coordinate: A coordinate is a unique location in WGS84[57] (World Geode-

tic System Revision 84) described by an ordered triple with latitude, lon-

gitude and altitude:

c := (lat, lon, alt), lat ∈ R, lon ∈ R, alt ∈ R
or, as in this thesis, an ordered pair with latitude and longitude:

c := (lat, lon), lat ∈ R, lon ∈ R.

• Coordinate Reference System: the coordinate reference system used for

this work is the WGS84[57] which defines the a reference ellipsoid and

uses the EGM96 geoid[44].

• Trajectory : A trajectory is the path that a moving object follows through

space and time. As a more general term a trajectory can be described

by a function or a log. We define a trajectory as an ordered sequence of

points:

t := (p1, p2, ..., pn), n ∈ N.

1We use the () notation to represent ordered sets, as it is common in mathematics.

1.3. DEFINITIONS 25

• Subtrajectory : A subtrajectory is a part of an original trajectory which

was splitted for a certain purpose, e.g., matching of trajectories:

s := (p1, p2, ..., pn), n ∈ N, s ⊂ t.

• Trace: A trace or GPS trace is a more general description of a point or

coordinate log over time.

• Track : A track or GPS track is an ordered set of coordinates over time.

In this work the term track is mainly used in line with the GPX (GPS

eXchange) format.

• Node: A node is a point or coordinate which represents a connection

between edges or the start or final point or coordinate of a trace. A node

has one or more connections. We can define it as an ordered set:

n := (p, c, e1, e2, ..., en), n ∈ N.

• Edge: An edge is a connection between nodes or formally an ordered pair

of nodes:

e := (n1, n2).

• Angle: An angle is a synonym for the term course in navigation. Since

in this work the context is not navigation we avoid the term course and

substitute it with angle. An angle is measured in degrees, ranging from

0°to 360°where 0°is north, 90°is east, 180°is south and 270°is west. An

angle is a (derived) property of an edge.

• Slope: A slope describes the direction and steepness of a line. In two-

dimensional Euclidean space it is calculated by

m = y2−y1

x2−x1
.

• Microdata: Microdata is data at the level of individuals. For example for

patient records it is the detail level per patient. For navigation systems it

is, for example, one trajectory recorded by an individual.

For performance analysis it is important to know about the hardware of

the test system. If not specified in the test directly, all performance tests were

executed on a terminal server with 4 cores (2 x Intel(R) Xeon(R) CPU X5450 @

3.00GHz) and 16 GB RAM. Since, it is a multi user system, tests were repeated

to exclude load variance due to high usage by other users.

If the complexity of an algorithm is stated, the computational model Real

RAM [65] is assumed. In Real RAM, arithmetic operations, comparisons, and

trigonometric functions are available at unit cost.

26 CHAPTER 1. INTRODUCTION

1.4 Organization

The rest of this thesis is organized as follows: Chapter 2 discusses the related

work and the implemented aggregation process. Chapter 3 discusses the match-

ing methods and Chapter 4 the merging methods which are used for the ag-

gregation process. Means for privacy preservation are discussed in Chapter 5.

Chapter 6 shows the results of the evaluation of the proposed methods. The

work is concluded in Chapter 7.

Chapter 2

Background

The background for this thesis concerns the related work and the conceptual

design. The related work includes a differentiation of this work from other

works, but also related work which was used within the extent of this thesis

as a part or a module. Another important background for this thesis is the

conceptual view for the components which were developed for this thesis.

This chapter is organized as follows: Section 2.1 describes realated work on

trajectory anonymization, map construction, and applied methods. Section 2.2

reports on new work which was carried out within the extent of this thesis,

including an achitectural and process view and additional measures taken into

account.

2.1 Related Work

Relevant work can be divided trajectory anonymization, map construction, and

applied methods.

2.1.1 Work on Trajectory Anonymization

[58] describes an aggregation approach to anonymize trajectory data based on

k-anonymity. The approach includes basically 3 steps: a grouping of trajec-

tory, the anonymization (basically finding a trajectory’s representation) and a

randomized reconstruction. The approach is straight-forward and efficient. For

map construction purposes this approach would need an extension on how to

split trajectories beforehand to represent streets or parts of streets, but not

complete trajectories. Also, it remains unclear how trajectories with different

time or distance intervals are handled.

[54] has a similar approach as in this work. Basically both approaches want

27

28 CHAPTER 2. BACKGROUND

Figure 2.1: Trajectory generalization by Voronoi tessellation [54]

to achieve anonymity of GPS traces by generalization. Nevertheless, [54] has

a different application in mind. More important for the clustering later on are

here start and destination of a trajectory. Subtrajectories themselves are not

considered, but are important for map construction, which this work has as its

application. Figure 2.1 shows the process of the trajectory generalization. (A)

shows the set of trajectories which should be generalized. First, for each trajec-

tory characteristic points are extracted. This is shown for a single trajectory (B)

and (C) shows the characteristic points for all trajectories. These characteristic

points are clustered. The cluster centers are shown as yellow rhombi in (C) and

(D). Based on these cluster centers a Voronoi tessellation is done. And based

on this tessellation the generalized traces are represented as movements within

these Voronoi areas. You can see that the focus are movements from one area

to another. Nevertheless, in this work the focus are the movements on a more

fine-grained level which can represent the characteristics of streets.

[8] discusses several possibilities to anonymize trajectory data. One anonymiza-

tion it discusses is also based on generalization. Figure 2.2 shows the general-

ization approach via point matching. Points are matched to points on other tra-

jectories. Around the matched points a bounding box is created. This bounding

box is being stored and the individual trajectories are deleted. After that, the

paper shows a reconstruction approach to generate synthetic individual traces

based on these bounding boxes. Nevertheless, the approach doesn’t cover a step

to split trajectories and create subtrajectories which have similar properties.

Avoiding this step it is most likely that the result of applying it to a whole set

of trajectories covering a road network would not lead to a satisfying result.

2.1. RELATED WORK 29

Figure 2.2: Trajectory generalization via point matching [8]

Figure 2.3: Road map construction from trajectories [17]

2.1.2 Work on Map Construction

[17] shows how to create a routable road map from a set of trajectories. Simu-

lated potential energy is used to group trajectories together. Figure 2.3 depicts

a satellite image of an area, the belonging raw GPS traces, the result after clari-

fication, and the result after road map creation. The main steps are clarification

and road map creation. In the clarification step, attraction forces are used to

move single nodes of a GPS trace. The nodes are moved towards other points

on traces which are calculated via an orthogonal cut with nearer points having a

higher attraction force. The result shows traces which were pulled to each other.

The direction of the traces was taken into account. Hence, traces in opposite

directions had a negative attraction force. This is the reason that one road is

usually represented as two thick lines of GPS traces after the clarification step.

In the graph generation step the traces are considered iteratively. The graph

first includes the first trace and after that the second trace is merged with the

graph. After merging all traces into the graph, refinement is considered, e.g., at

crossroads.

2.1.3 Applied Methods

This section is about methods which are used within this work or related work

of the methods applied, e.g., a newer improvement or an application exam-

ple. The applied methods can be categorized in distance measures, methods

for subtrajectory clustering (often applying distance measures), and anonymity

30 CHAPTER 2. BACKGROUND

Figure 2.4: Comparing Hausdorff distance with Fréchet distance [67]

measures.

Distance Measures

For spatial objects, in particular, points, the Euclidean distance[21] is consid-

ered. In a two-dimensional metric system the calculation is

d(p, q) =
√

(p1 − q1)2 + (p2 − q2)2. Nevertheless, to calculate a metric distance

in Geodesic space, e.g., using the WGS84[57] ellipsoid, you need to take into

account the shape of the reference ellipsoid. One way to calculate the distance

is shown in [76]. This method is also used in the Google API for Android[73].

The direct distance can be useful to find similar trajectories based on point-to-

point or edge-to-edge comparisons. Nevertheless, for trajectories exist special

measures which can cope with the fact that a trajectory is not limited in the

number of points which describe the trajectory. The Hausdorff distance[78]

which is defined over sets can be applied for geometric objects and also tra-

jectories. For trajectories it will search for every point on one trajectory the

closest point on the other trajectory and vice versa. The upper bound then is

the Hausdorff distance. Nevertheless, for trajectories which are near together

but follow completely other directions and do not resemble each other, the Haus-

dorff distance seems too close. For that reason, when comparing trajectories,

the Fréchet distance[1] is often used. Figure 2.4 displays two curves (trajecto-

ries) which are used for the illustration of the difference between the Hausdorff

distance and the Fréchet distance. While for parallel curves the Hausdorff dis-

tance and the Fréchet distance have the same value, for curves like the ones

depicted in Figure 2.4 the difference is high. To cope with geodesic data, [40]

presents a calculation of the Fréchet distance in logarithmic time with geodesic

distances.

Subtrajectory Clustering

[75] contains definitions of trajectory similarity and their computation. It takes

into account a difference in time of the trajectories. Distance measures like the

Fréchet distance have no time component. A time component might be helpful

2.1. RELATED WORK 31

to filter according to travel times or speed difference. Nevertheless, I suppose

in my work it has no direct use and a direct filtering according to time might

be better placed as a preprocessing step than in the actual comparison of GPS

traces. The three case distinctions (fixed duration and no time shift, non-fixed

duration and no time shift, and fixed duration with time shift) are reasonable,

but I wonder about which application might fall in which case, except for the

hurricane scenario. Altogether, the paper focuses more on computational com-

plexity than on applications.

[35] proposes a clustering approach for trajectories. A major difference to my

approach is the classification of trajectories in direction categories like short right

turn or long straight segment. The following steps are based on this classification

and therefore not directly comparable. The next step is motif discovery which

asks for often occurring substrings where the direction categories are represented

as characters.

In [43] a method for subtrajectory clustering is proposed. It is called TRA-

CLUS and uses a minimum description length (MDL) principle. It is designed to

find common sub-trajectories which is also what I try to accomplish. The used

distance function consists also of multiple elements. These are namely 3 dis-

tances: the perpendicular distance, the parallel distance and the angle distance.

Figure 2.5 shows the three distances comparing two edges. The first phase of the

TRACLUS algorithm is to find characteristic points. Thereby, some preciseness

is traded for conciseness, by weighing according to the MDL principle. After

that line segments (or edges, not a complete trajectory) are clustered according

to their distance function with DBSCAN. The representative trajectory is found

by a sweeping algorithm which sweeps according to the main direction and sets

average points each time the number of sweep crossings changes and MinLns is

met. Figure 2.6 shows an illustration of the sweeping algorithm. This algorithm

can also be used for map construction even though the evaluation was done with

hurricane data. Maybe only parts of the algorithm like the distance function or

the sweeping algorithm will turn out to be useful. There is a python implemen-

tation available at http://code.google.com/p/zhouyunlib/source/browse/

trunk/UOM/VR-Preprocess/src/Traclus.py?r=266. The functionality is also

used in MoveMine[47] which is a Moving Object Mining Tool. A demo is avail-

able at http://dm.cs.uiuc.edu/movemine/. An implementation is available at

http://web.engr.illinois.edu/~klei2/movemine/. [46] gives a more com-

prehensive overview of MoveMine.

[14] is also a work which describes a subtrajectory clustering to detect com-

muting patterns. As distance the Fréchet distance is used. The main contri-

bution of the work is an optimized approach in using the Fréchet distance for

subtrajectory clustering. Proofs of hardness and simplification are shown, which

32 CHAPTER 2. BACKGROUND

Figure 2.5: TRACLUS distance function elements [43]

Figure 2.6: TRACLUS sweep function for representative trajectories [43]

give a strong insight in possible calculation efforts.

[80] describes an adaptive clipping algorithm based on the Fréchet distance

to match curves which addresses just the matching phase and has to be extended

for clustering or merging purposes. Nevertheless, it also provides deep analysis

of performance improvements in matching algorithms.

[83] proposes a subtrajectory clustering based on meshing grids and the

Fréchet distance. The method uses a fixed grid structures which is defined in

advance. A hierarchical clustering is applied. After the clustering, an inter-grid

concatenation is done.

Another preprocessing step that might be promising for this work is trajec-

tory calibration [69]. It can enhance the data quality of trajectories and might

therefore used as a preprocessing step.

Anonymity Measures

In microdata anonymization k-Anonymity[72] is often displayed as introductory

example of anonymity measures. The most exhaustive and fundamental research

in microdata anonymization is about relational data though it is not limited

to relational data[56]. In relational data microdata anonymization looks at

attribute which can be categorized into quasi-identifiers and sensitive attributes.

Quasi-identifiers can be used in combination to identify a person and sensitive

attributes are the attributes which should not be linkable to a person. The

approach of k-Anonymity is to generalize within the quasi-identifiers until there

are at least k entities of a unique combination of quasi-identifiers. An often

referred example are patient records. Table 2.1 shows a simplified example of

2.1. RELATED WORK 33

age gender postal code disease

41 male 10178 lung cancer
73 female 10117 arthritis
23 male 10245 Pfeiffer’s disease
21 male 10243 influenza
30 female 13357 breast cancer
39 female 10243 breast cancer

Table 2.1: Patient records, raw data

age gender postal code disease

40-79 * 101** lung cancer
40-79 * 101** arthritis
20-29 male 102** Pfeiffer’s disease
20-29 male 102** influenza
30-39 * 1**** breast cancer
30-39 * 1**** breast cancer

Table 2.2: Patient records, 2-anonymized data

patient records. The attributes age, gender, and postal code are quasi identifiers.

In this example already the age or the postal code are sufficient to identify a

person. Nevertheless, in a real world example those quasi-identifiers can be used

in combination for identification. The sensitive attribute in this example is the

disease. For illustration we choose k = 2 as privacy requirement. Next, theory

provides several algorithms to generalize up to the security requirement[70, 71,

4]. In our example it is easy to create 2-anonymized data manually. In table 2.2

the raw data was anonymized. The different ages were grouped together in age

ranges, the gender was either kept or completely removed and the digits of the

postal code were partly suppressed. Now, it should be impossible to directly

link one person to a disease. Nevertheless, this example was also chosen to show

one shortcoming of the k-anonymity approach. The problem with this data

is the distribution of sensitive attributes within one block of the same quasi-

identifiers. In this example you can link any 30-39 year old female in Berlin

(1****) to breast cancer if you know she is part of the data set because there is

no distribution at all in the sensitive attributes block. Therefore, extension to k-

anonymity evolved which also take the distribution of sensitive attributes into

account, namely l-diversity[50] and t-closeness[45] for example. Nevertheless,

for trajectory anonymization these extensions are not considered because the

trajectories are categorized as quasi-identifiers without a sensitive attribute.

Another approach or measure is differential privacy[24]. The method to

34 CHAPTER 2. BACKGROUND

anonymize here is randomization. Differential privacy is a guarantee of the

strength of the anonymization by randomization. The randomization is chosen

as strong as it is necessary to fulfill a certain differential privacy level, e.g., using

ε-differential privacy, ε is the guarantee level. A certain ε ensures a certain level

of indistinguishability whether a data set is generated with or without a certain

person in it. The claim is that it shouldn’t be able to distinguish between a

data set where one individual participated or not. To randomize a LaPlace

distribution is used because it can create a more randomized outcome in the

same range than , e.g., a Gaussian distribution can. Using differential privacy

for trajectory anonymization might be promising in some applications [18]. In

particular, if the trajectory data can be represented as a tree or a graph, this

can be a strong approach.

Transportation Mode Detection

In this work transportation mode detection is used as a method to categorize

GPS traces. Transportation mode detection is mainly based on information

retrieved on smartphones. The main source of information is the GPS receiver.

Based on these data important features like velocity, acceleration, but also GPS

error are calculated. Works in transportation mode detection can be categorized

via the transportation modes they take into account. There are works concen-

trating on basic mobility states, like standing still, walking, bicycle riding, and

motorized travel [62]. Other publications extend this classification with several

motorized transportation modes, e.g., car, bus, train, and underground [68, 7].

The feature set also varies between different works. A standard feature set con-

tains the velocity and acceleration [62]. [7] uses additionally features of time

difference between points and the distance between the available points which

can be derived from the same raw data. GIS data like the average distance

to bus stops can also be used as background information which improves the

overall precision[68]. Furthermore, the related research can can be distinguished

according to the classifiers used. [68] and [62] use multiple classifiers, including

Naive Bayes from WEKA[38] as their classification algorithms. [7] uses Support

Vector Machines which is also used in [68]. Apart from these, other promising

techniques for identification of transportation modes also exist [74]. For the

purpose of this work an approach which is easy to implement and does not

need very accurate data from multiple sensors is preferred. Nevertheless, for

this work background information about bus stops and more is available. The

implementation in this work is comparable to the one in [68].

2.2. AGGREGATION PROCESS 35

2.2 Aggregation Process

Following a K-anonymity[72] paradigm, a major issue is the aggregation of tra-

jectory data. The aggregation can be divided into a matching phase and a

merging phase. Trajectories are matched to belong together and then merged

into a representative trajectory. In the literature this is also discussed as sub-

trajectory clustering.

An important aspect of the aggregation is the architecture which describes

the communication between the participating stakeholders. Important issues

are the type of distribution of data and responsibilities, the classification in

trustworthy and non-trustworthy actors, and the organization of this distribu-

tion. The data to be stored is the aggregation of the GPS traces which were

contributed in the past. This data can be distributed among self-coordinating

partners or centrally organized. The main task to fulfill is the integration of new

traces to the existing aggregation, respectively the update of the aggregation.

This task can be done on a client or on a trustworthy actor in the network. The

distribution of tasks is influenced by the selection of which actors are or are not

trustworthy. This is important to choose beforehand because it influences the

design of the network in a high degree. If the data is distributed there needs to

be a concept of organization which defines how to retrieve and process the data

of concern.

2.2.1 Network Architecture: Client-Server and Peer to

Peer

From the communication perspective there are two different approaches to dis-

tribute data and responsibilities, namely a client-server approach and a peer-to-

peer approach. These are two different approaches for distribution, a centralized

and a decentralized approach. It is important that peer-to-peer networks are

more prone to attacks because of their openness and autonomous nature [79].

It is more likely that peers are regarded as non-trustworthy participants than a

central server. Nevertheless, the amount of data that can be misused is higher

in a centralized approach. In a peer-to-peer network methods to organize rep-

utation and trust can be implemented [79]. Overall, the decision for a specific

network structure is highly influenced by the assumptions of the participants.

Figure 2.7 displays the network structure in a client-server approach. The

server is the centralization point and participates in all network traffic. It serves

a central trajectory aggregation and is the only participant which makes direct

changes to this data set. The process of adding an individual trajectory to the

aggregation can include the following exemplary steps:

36 CHAPTER 2. BACKGROUND

Central Server
Client

Trajectory Aggregation

Client

Client

Client

Client

providing parts of the aggregation

providing the updated parts

Figure 2.7: Client-Server Network Structure

• The client asks the server for a certain part of the aggregation which it

wishes to add the individual trajectory to.

• The server provides the requested part.

• The client adds he trajectory to the aggregation. In this step the client

first matches the trajectory to the aggregation, decides within privacy

restrictions which trajectories or subtrajectories to add, and finally adds

them to the aggregation (merging).

• The client provides the modified parts to the server.

• The server checks for plausibility and if possible for reputation and trust

of the client and updates the aggregation based on the received modified

parts.

Generally, the client-server approach causes less network traffic and is easier

to maintain. Nevertheless, the central server has to deal with high load and

is the bottleneck of the system. This is another reason why the calculation of

the new aggregation should be on the client side. A central server can also be

replaced by a distributed system which can overcome shortcomings. A natural

distribution for this system can be geographical one [23].

Figure 2.8 depicts the network structure in a peer-to-peer approach. Multiple

peers replace the central server. The detailed communication is not depicted

here. Nevertheless, this should be the same as in the client-server approach.

A peer-to-peer approach has more aspects to take into account. If the data

(aggregation) is not strictly separated, e.g. geographically, then a revision con-

trol and a data exchange between peers is needed. Nevertheless, if the data

is strictly separated an important advantage of a peer-to-peer network is lost,

namely the fault-tolerance against the breakdown of a single peer. Therefore,

there is a strong advantage which comes along using revision control and data

2.2. AGGREGATION PROCESS 37

Peer

Aggregation
Part

Client

ClientClient

Client

Peer

Aggregation
Part

Peer

Aggregation
Part

Peer

Aggregation
Part

Peer

Aggregation
Part

Client

Client

Client

Figure 2.8: Peer-To-Peer Network Structure

exchange between peers. Nevertheless, these considerations are not application

specific and thus there are already solutions proposed and implemented, e.g.,

Mercurial[51], Git[29], BitKeeper[6] and Bazaar[16].

2.2.2 Iterative Process

One important design decision for this work is that the collection of GPS traces

is iterative. This means that the aggregation of the trajectories has to be ad-

justed every time a new single trajectory is added to the collection. This is

necessary because the aggregation should always be able to represent the cur-

rent number of trajectories which were added to a specific node or subtrajectory.

Additionally, it should always be possible to anonymize an individual trajectory

via the generalization process of adding the trajectory to the aggregated tra-

jectories. This implies that depending on the aggregation method the adding

sequence can influence the result. It is important to distinguish between algo-

rithms which can ensure the same result independent from the adding sequence

and algorithms which do not ensure the same result.

From the architectural point of view, having an iterative process means that

the calculation (aggregation) has to be done as a transaction in real-time and

cannot be processed in batch mode which is possible if the data (trajectories)

can be collected beforehand.

2.2.3 Privacy Threats

Privacy threats can evolve through non-trustworthy participants in the network.

In a client-server network the server might reveal information about clients

which are not supposed to be revealed. Generally, a direct link to a client

38 CHAPTER 2. BACKGROUND

should be avoided. Clients or users in the network can be identified by their IP

(Internet Protocol) address. This fact can be misused by a server to combine

information from different requests and merge data which the client intentionally

separated to preserve privacy. Another measure to combine different requests

is the possibility to match geographically close data. If the server receives

requests which can be merged usefully from only one certain area then there

is an assumption with high probability that all requests are from one client.

Additionally, security measures for trust and reputation can be misused for

unique identification.

2.2.4 Privacy Measures

It can be assumed that anonymous access is possible to a certain degree, e.g.,

with onion routing[22]. The main concern is the identification via the con-

tributed trajectories. To ensure privacy according to the user’s preference, it

has to be decided which trajectories or subtrajectories will be added to the

global trajectory aggregation. Seen from a networking privacy perspective, this

decision should be made on the client side. Otherwise, many attacks are pos-

sible if the server is not trustworthy. Furthermore, it is preferable to send

changes based on individual trajectories distributed over multiple requests, to

avoid re-sampling of the complete trajectories. These multiple requests should

be randomized in order and time. Following these recommendations does not

ensure absolute privacy if the server is not trustworthy, but these recommenda-

tions are necessary to be able to ensure privacy if other circumstances cannot be

exploited by the server. An example might be that someone is the only contrib-

utor and it does not matter is he or she sends multiple randomized requests, the

server will still be able to reconstruct the original trajectory. Nevertheless, if

there is a critical mass of users and they share common area in their trajectories,

a simple reconstruction will fail.

2.2.5 Security Measures

Besides secure Internet connection also the data provider needs protection from

attacks from clients. The most important case to look at from the perspective

of this work is the protection against receiving a critical amount of wrong or

synthetic trajectories which do not represent natural movements. In areas where

already a certain amount of data exists, implausible trajectories might be able to

detect and can be used to create a system of reputation. This can be done using

anonymous credentials [49] which can also be used in a decentralized network

[28].

2.2. AGGREGATION PROCESS 39

2.2.6 Data Cleaning

Data cleaning can be useful for GPS trajectories to prevent mistakes in the fol-

lowing aggregation of the trajectories. When recording GPS trajectories, effects

can occur which can have an unwanted effect on the aggregation of the data.

The GPS signal has different qualities depending on multiple factors. For ex-

ample, one has to expect a lower quality inside a car than on top of the car and

in an area with many mountains the signal should also be worse than on a flat

landscape. This variation of the signal quality can induce errors. A demonstra-

tive example is a car stopping at a traffic light. Before stopping the movement

can be detected well because the GPS imprecision was marginal compared to

the movement. Nevertheless, when the car stands still the imprecision is not

marginal and determines completely the movement of the recorded trajectory.

Due to the GPS error the recorded movement has no relation to the street net-

work the car is on and includes any direction. There a multiple measures which

can be taken to filter out GPS errors and ease the aggregation process.

One measure is to filter for a heading change. A strong heading change can,

for example, be induced by the aforementioned stop at a traffic light. When

filtering for the heading change one has to set an upper limit for the difference

between the angle of the edge before and the angle of the edge to be filtered. If

the difference is too high then the current point (end point of the current edge)

will be omitted and only the next point will be added. This filter can help with

GPS imprecision while standing still. Nevertheless, one has to be aware that

pedestrians can actually have a fast heading change. The filter should be used

if transportation modes with a high possible heading change can be excluded.

Another measure is to normalize the length of edges. To normalize the length

of edges one can set a lower and an upper value for the length of an edge. If

the current point creates an edge which is shorter than the lower value then

the point is omitted. If the current point creates an edge which is longer than

the upper value then there are inserted as many points in-between as the factor

by which the edge is longer (minus 1). This measure can also help with the

imprecision of GPS. Furthermore, the calculation time can be reduced if there

are a many points near together which have no significance for a road network.

Nevertheless, also the calculation time can be increased when there are long

episodes of steady driving like on a highway. Another important issue is that a

normalization of the edge length can help to adjust to a fixed distance threshold.

Depending on the used distance the distance can vary according to the length

of the edges within the trajectory. This is in most cases an unwanted effect

and can be handled either in adjusting the distance or in a normalization step

beforehand.

40 CHAPTER 2. BACKGROUND

2.2.7 Functional Architecture

In this section the functional architecture of the Agg2Graph software is intro-

duced. Agg2Graph is a prototypical implementation of methods for trajectory

aggregation with additional functionality for data cleaning and road map con-

struction. The software is organized in process steps: import, cleaning, aggre-

gation and road network generation.

Figure 2.9 shows the functional architecture of Agg2Graph. The main pro-

cess can be controlled via a command line interface or a graphical user interface.

The functions of the command line interface can additionally be automated via

test configuration files. In the import step the GPX files are read and cached as

trajectories in main memory. In the cleaning step cleaning methods are applied

to the trajectories. The cleaning methods can be distinguished as normaliza-

tion and simplification. All the methods described in Section 2.2.6 can be used.

However, this is not a necessary step. The aggregation can be either based on

the imported or the cleaned trajectories. If the cleaning step was used then

the aggregation is based on the cleaned data. The aggregation has two man

components: the matching component and the merging component. The dis-

tance is a subcomponent of the matching component. These components can be

exchanged, e.g., the Fréchet distance can be replaced by the Hausdorff distance.

However, this is limited to components of the same type and one has to dis-

tinguish between components for points, edges, and subtrajectories. The result

of the aggregation step is one trajectory aggregation. Based on this trajectory

aggregation the road network construction step can produce an OpenStreetMap

file which describes the road network.

2.2. AGGREGATION PROCESS 41

C
om

m
an

d
Li

ne
 I

nt
er

fa
ce

GPX

OSM

G
ra

ph
ic

al
 U

se
r

In
te

rf
ac

e

Import

Cleaning

Normalization Simplification

Aggregation

Road Network Generation

Matching

Distance Merging

Trajectory
Aggregation

Individual
Trajectory

Trajectory
Aggregation

Trajectory
Aggregation

Individual
Trajectory

Figure 2.9: Functional Architecture of Agg2Graph

42 CHAPTER 2. BACKGROUND

Chapter 3

Matching of Trajectories

This chapter gives an overview of different methods to match trajectories.

Matching trajectories is the prerequisite of merging trajectories. Before trajec-

tories are merged, it has to be ensured that they match together. The matching

can also include a splitting of trajectories into subtrajectories. We will first

take a look at distances which can express a match, e.g., fulfillment of a certain

distance. Next, matching and splitting procedures are on display. Conclusively,

the last part is the global view on the matching process.

This chapter is organized as follows: Section 3.1 describes point-based dis-

tances, Section 3.2 edge-based distances, and Section 3.3 trajectory-based dis-

tances. The extension with an angle component is described in Section 3.4.

Section 3.5 discusses an iterative matching approach and Section 3.6 discusses

the global matching perspective. Section 3.7 concludes this chapter.

3.1 Point-Based Distances

Point-based Distances compare two points to each other. The most important

geometric distance is the Euclidean Distance. The Euclidean Distance can be

calculated for multiple dimensions. Relevant for this work is the two-dimensional

calculation:

d =
√

(x1 − x2)2 + (y1 − y2)2

The Euclidean distance can be calculated in linear time. For this work the

execution time on standard hardware (see Section 1.3) was measured. The mea-

surement is based on 5 trajectories. Each point on every trajectory was com-

pared to every other point of every other trajectory. In total the execution time

for 184212 calculations was 178 ms. In geometry there are many more distances

which cover specific aspects, such as the Manhattan distance, the Chebyshev

distance, the Mahalanobis distance, the Minkowski distance and more. Since

43

44 CHAPTER 3. MATCHING OF TRAJECTORIES

we are interested in spatial distances, all these distances seem less appropriate

than the Euclidean distance. For example the Manhattan distance seems use-

ful when streets are organized block-wise and the direction of the streets are

represented by the axes represent the direction of the streets. Nevertheless, we

are not able to ensure that we can take advantage of the specific advantage of

the Manhattan distance. For the other distances the argument is the same:

they all cover specific circumstances which cannot be ensured within this work.

The execution time for the Manhattan distance was measured under the same

conditions as the Euclidean distance with 87 ms, which is a plausible result.

To calculate a metric distance in with coordinates (latitude, longitude) one

has to take the earth ellipsoid into account. For the purpose of this work it is

feasible to use the WGS84[57] ellipsoid via the Android Location[73] implemen-

tation which calculate the distance based on Vincenty’s formulae[76]. By using

a jar build provided by Robolectric[81] it is possible to directly access Android

functionality in normal Java code. The execution time for the calculation (same

conditions as for the other point based distances tests) was 3090 ms which is

more than 17 times higher than for the Euclidean distance. If execution time

is critical it might be feasible to refrain from using a precise spherical calcula-

tion and calculate distances only geometrically, ignoring the spherical property

of the earth. This is particularly the case when we take a look at the match-

ing of near trajectories which have distances of less than 100 meters. Another

implementation[53] of Vincenty’s formulae had an execution time of 2163 ms.

Applying the Euclidean Distance to coordinates implies the conversion from co-

ordinates in distances in meters. The distance between two circles of latitude

is 111.3 km and the distance between two circles of longitude is 111.3 ∗ cos(lat)
km where lat is the angle which is in the middle between both latitude values.

Taking this into account the execution time insignificantly increases to 230 ms

which is less than 1frac13 of the time the Euclidean distance itself can be cal-

culated. The Haversine[66] distance approximates a great circle and has more

precise results than the adjusted Euclidean distance, but less precise results than

the calculation based on Vincenty’s formulae[76] and the WGS84[57] ellipsoid.

The execution time is 598 ms.

Table 3.1 summarizes the execution times of the evaluated point-based dis-

tances.

3.2 Edge-Based Distances

An edge of a trajectory includes much more information than a point or co-

ordinate. Additionally to the two locations given by the points, an edge has

information about direction, slope, distance, and if time is given, speed. This

3.2. EDGE-BASED DISTANCES 45

distance reference execution time factor

Manhattan Distance 87 ms 0.49
Euclidean Distance 178 ms 1
coordinate adjusted 230 ms 1.29
Haversine distance [66] 598 ms 3.36
Vincenty’s formulae [53] 2163 ms 12.15
Vincenty’s formulae [73] 3090 ms 17.36

Table 3.1: Execution times of point-based distances

information can all be taken into account for an edge-based distance. The

TRACLUS[43] distance function shown in Section 2.1.3 and Figure 2.5 is an

example for an edge-based distance. This distance function was developed to

cover important aspects when comparing two edges. Nevertheless, based on the

application and the favorable outcome of a clustering or aggregation process,

much more edge-based distance can be developed. Figure 3.1 depicts the most

important aspects which can be taken into account for edge-based distances. To

formalize we set the following:

• et is the edge in comparison of the single trajectory, depicted as trace in

Figure 3.1

• ea is the edge in comparison of the trajectory of the aggregation, depicted

as agg in Figure 3.1

• pa1 is the first point of the edge of the aggregation

• pa2 is the second point of the edge of the aggregation

• pt1 is the first point of the edge of the single trajectory

• pt2 is the second point of the edge of the single trajectory

• xa1 is the crossing of the perpendicular of the first point of the edge of the

aggregation with the edge of the single trajectory or its extension

• xa2 is the crossing of the perpendicular of the second point of the edge of

the aggregation with the edge of the single trajectory or its extension

• xt1 is the crossing of the perpendicular of the first point of the edge of the

single trajectory with the edge of the aggregation or its extension

• xt2 is the crossing of the perpendicular of the second point of the edge of

the single trajectory with the edge of the aggregation or its extension

46 CHAPTER 3. MATCHING OF TRAJECTORIES

y

x

agg

trace

x
pa1

x
pa2

x
pt1 x

pt2

x
xt1

x
xt2

xxa1
xxa2

α

Figure 3.1: Two directed edges with extension and perpendiculars marking
the crossings of perpendicular and edges or their extension including the angle
between the two edges

• α is angle between the parallel edge of the single trajectory which is moved

so that both first points have the same position and the edge of the aggre-

gation or vice versa. It is given as absolute positive value and the smaller

of the both possible values is chosen, e.g., if 350° and 10° are possible, 10°
is chosen.

Figure 3.1 displays start and end points of an edge, their perpendiculars

and the crossing point of the perpendicular and the other edge. Using the per-

pendiculars to measure the distance between the two edges is favorable to just

measuring the distance between start and end points. Figure 3.2 shows the

deficiency of just comparing the start and end points. The two cases depicted

in Figure 3.2a and Figure 3.2b show the same measured distance if only the

distance between start and end points is measured. Nevertheless, in Figure 3.2a

the difference resulted out of a difference in length of the two edges which means

a high probability that both edges were recorded following the same course of

the road. Contrary, in Figure 3.2b the same measured distance is caused by a

difference in the angle of the edges which means a significant probability that

the edges were recorded following another course of the road, e.g., turning at

a crossing. On the other hand, the two cases depicted in Figure 3.2c and Fig-

ure 3.2d display the same distance that was measured using the perpendicular

and the crossings between the perpendicular and the other edge. In Figure 3.2c

both edges are likely to follow the same course of the road, there is just a small

gap between the two edges (in this case the distance measured with start and

3.2. EDGE-BASED DISTANCES 47

y

x
agg

trace

(a) Difference in length

y

x
agg

trace

(b) Difference in angle

y

x
agg
trace

(c) Low difference in start points

y

x
agg

trace

(d) High difference in start points

Figure 3.2: Comparison between measuring the distance between start and end
points or between points and crossings of the perpendicular[55]

end points is equal). Nevertheless, Figure 3.2d shows two edges which also fol-

low the same, but have quite different start and end points because these are

shifted. Conclusively, in this case, the distance via the perpendicular is the

same as in the case where the edges are not shifted and the distance measured

with start and end points is much higher which does not represent the favorable

difference which should be small.

As we have seen, the distance measured via the crossings of the perpendicu-

lars is more significant for similarity measurement than the distance measured

directly between both start and end points. There are in total 4 distances that

can be measured via the crossings of the perpendiculars. If the two edges to

be compared are parallel, all these 4 distances are the same. If these are not

the same, they can point out a difference in the angle of the two edges. Never-

theless, this difference has to be set in relation to the length of the edges, and

furthermore if the edges point in opposite directions then the difference of the 4

distances shrinks again and the distances are the same if they point to opposite

directions and are parallel. As final distance the higher one of the measured

distances should be taken for comparison because it includes the highest differ-

ence and a high difference at one point is already enough to exclude edges from

matching.

The execution time for the distances using the crossings of the perpendiculars

was measured for this work. The test environment was the same as for the point-

based distances (see Section 1.3 and Section 3.1). The test data set is also the

48 CHAPTER 3. MATCHING OF TRAJECTORIES

same as for the point-based distances. Nevertheless, within each GPS trace file

the first point cannot be used because there is no point pair for comparison.

This means that instead of 184212 comparisons for the edge-based test there

were 66528 comparisons. The execution time for all comparisons was 413 ms.

Setting this in relation with the lower amount of comparisons this means a factor

of 6.4. This factor is reasonable since the calculation includes 4 calculations

of the Euclidean distance plus 4 calculations of slopes plus 4 calculations of

interceptions of lines.

Nevertheless, including only the distances of the crossings via the perpendic-

ular can also lead to non-significant matches when edges are parallel but have

a high shift to each other. Figure 3.3 depicts two edges which are parallel and

have a short distance when the distance is calculated via the crossings of the

perpendiculars. This is a realistic scenario on straight lanes. The problem is

that there is a high probability that a better match with approximately the same

distance exists. Comparing this scenario to the edges depicted in Figure 3.2c

and Figure 3.2d the probability for a better match with the same distance in-

creases the higher the shift is. If the shift is half the length of one edge, then the

probability increases rapidly. The solution is to include the shift, but to weigh

it according to its length relative to the length of the edge. For each crossing

a shift can be calculated. To reduce complexity only the shift for the crossing

with the highest distance can be calculated. The following formula combines

the previously calculated distance with the shift:

dw = dh + w × (2×s
l)4

where dw is the weighted distance, dh is the highest distance that was mea-

sured beforehand via the crossing of the perpendiculars, w is the weight, s is

the shift of the crossing which was used to calculate dh and l the length of the

edge which was used to calculate dh and s.

The complexity does not increase significantly when the shift is combined

with the distance via the crossings of the perpendiculars. The execution time for

66528 calculations is 471 ms which is a factor of 1.14 compared to the calculation

without the shift.

3.3 Trajectory-Based Distances

Trajectory-based distances measure distances between trajectories. This means,

contrary to the point-based and edge-based distances, that the comparison is

based on multiple points or sets of points. Furthermore, this influences the

complexity of the calculation which is based on the number of points in the

sets.

Informally, the Hausdorff distance or Hausdorff metric is the highest distance

3.3. TRAJECTORY-BASED DISTANCES 49

y

x

agg
trace x

pa1

x
pa2

x
pt1

x
pt2

x xt1

x xt2

x xa1

x xa2

Figure 3.3: Two parallel edges with extension and perpendiculars marking the
crossings of perpendicular and edges or their extension with a high shift to each
other

from a set to another set where the distance of one element to the other set is

the distance to the nearest element of this set. It is helpful to first define the

distance between a point and a set of points (the lower bound):

D(x,K) := min{d(x, k)|k ∈ K}

where x is an element, K is a set and d(x, k is a distance function which

for the purpose of this work is a point-based distance (any distance, including

edge-based distances, is possible). Next, we can define the Hausdorff distance

(the upper bound of all the possible before mentioned distances):

δ(A,B) := max{max{D(a,B)|a ∈ A},max{D(b, A)|b ∈ B}}

where A and B are the input sets for the calculation and a and b points

within the particular set. The complexity of a simple calculation of this formula

(requiring the distance between each point of the set with each point of the other

set) is O(n(A)×n(B)) where n(A) is the number of elements in set A and n(B)

is the number of elements in set B. The test environment for the trajectory-

based distances is the same as for the point- and edge-based distances, but for

trajectory-based distances the number of points in the trajectory varies. For

the purpose of this work 2 scenarios were used for runtime testing. The first

scenario ensured calculations with trajectories with the size of at most 5 points

while the second scenario was open and the size of points varies within the size

of each trajectory. For the first scenario there were 17550 calculations possible

with an execution time of 159 ms. For the second scenario 184212 calculations

were possible with an execution time of 1728 ms. 5 trajectories with 34,2,9,43

50 CHAPTER 3. MATCHING OF TRAJECTORIES

and 7 points were evaluated. In the first scenario sizes do not vary, they were

5,2,5,5 and 5 and in the second scenario sizes vary between 1-34,1-2,1-9,1-43 and

1-7. Since the complexity of one distance measurement varies with the number

of points of the trajectory, the most expensive distance is between point size 34

and point size 43 which includes 1462 calculations of the point-based distance

(Euclidean distance).

Contrary to the Hausdorff distance which compares sets in metric space and

can be used to compare trajectories, the Fréchet distance has the comparison

of trajectories as main purpose. As Figure 2.4 points out the Fréchet distance

better describes the distance of curves which are close to each other, but follow

different directions and the minimal distance cannot be kept when the curves

are followed sequentially. This is often illustrated with a dog-owner, a dog and

a leash. The Fréchet distance is the length of the minimum required leash

between the dog-owner and the dog when the dog-owner follows one curve and

the dog the other from start to end. This is not yet a precise definition. The

calculated distance can still vary depending of restrictions like the dog-owner

and the dog are allowed to move back and forth or if they have to walk the

curves without being able to step back. If they can move back and forth this is

called the weak Fréchet distance. The weak Fréchet distance can be calculated

in polynomial time (O(p× qlog(p× q)) where p and q are the number of edges

of the curves P and Q) [1]. Another variation of the Fréchet distance is the

discrete Fréchet distance where only the vertices of the curves are taken into

account for calculation. The calculation of the discrete Fréchet distance is also

possible in polynomial time [25].

For the calculation of the Fréchet distance in [1] a free-space diagram is used.

This is not only important for calculation, but it can also serve for illustrative

purposes. Figure 3.4 shows an example of two GPS traces and their respective

free-space diagram. The free-space diagram is calculated by comparing each

point on one trace with every point on the other trace. If the distance between

those two points is below ε then this combination is marked as free, if not it is

marked dark shaded. If there is a possibility to draw a line from bottom-left to

top-right in the free-space diagram while monotonously moving up and right,

then the two traces fulfill a Fréchet distance equal to or below ε.

For performance measurements multiple implementations for the Fréchet

distance were considered. The first implementation[82] is an extension for the

JTS Topology Suite[77]. To use this implementation minor bug fixes had to

be done within this source code. For all Fréchet distance implementations all

trajectories with a length of only 1 point had to be rejected. Therefore, only

the first test scenario, like for the Hausdorff distance, was taken into account.

For evaluation purposes a break was used if the calculation exceeded 5000 ms

3.4. ANGLE COMPONENTS 51

lat

lon

map

Trace

ε

(a) GPS traces (b) Free-space diagram

Figure 3.4: Two GPS traces and their free-space diagram [27]

which it did for this evaluation. Out of 17550 possible calculations only 114 were

possible within 5057 ms. In [15] various possibilities of calculating the Fréchet

distance are displayed. There is also an implementation[52] available for the

methods described in the paper. In this work the displayed examples on the web

page were first considered for performance evaluation. The 1.1-approximation of

Euclidean (in 2 dimensions) can calculate 8052 distances in 5002 ms, the L-1 in 2

dimensions all 17550 distances in 2319 ms and the L-infinity in 2 dimensions can

also calculate all 17550 distances in 3346 ms. Conclusively, the Fréchet distance

has a significant longer calculation time than the Hausdorff distance, but has

also a stronger predication about the similarity of two trajectories. Additionally,

implementations of the Fréchet distance have a high variance in execution time.

3.4 Angle Components

The distance mentioned for points, edges, and trajectories do not directly give

information about the similarity regarding the direction. Indirectly, one can

infer an information about the difference in direction when comparing different

distance measurements, e.g., see Section 3.2 and Figure 3.2b. Nevertheless, the

information about the direction is important and should be added as a direct

52 CHAPTER 3. MATCHING OF TRAJECTORIES

Figure 3.5: A difference in angle at a highway departure

component to the distance measure. For example, the “zick zack” lines depicted

in Figure 2.4 show the semantic difference between the Hausdorff and the Fréchet

distance. The main difference one can spot directly is that the two curves always

follow different directions, and therefore they should have higher distance which

can be expressed by the Fréchet distance to a certain degree. Nevertheless, just

adding the angles or slopes of the two curves as additional information also

helps to find out that the two curves should have a higher distance than their

Hausdorff distance. Hence, in this case the Hausdorff distance and additional

information about the angle can replace the Fréchet distance, but also vice versa.

The question remains if there are scenarios which cannot be expressed by the

Fréchet distance, but via a combination of a distance measure and a difference in

angle or slope. Figure 3.5 displays the highway departure “Detmolder Straße”

of the highway “A 100” in Berlin, Germany. This is a typical departure of a

highway where the cars leave on the right hand side of the highway, but then are

directed to an exit on the left of the highway. Figure 3.6 depicts two idealized

trajectories according to the real world model and shows the difference in angle

which arises on a highway departure. In this case the angle is 60°and marks a

strong difference between both trajectories. If the ε for the Fréchet distance is

set to the value depicted in the figure, the trajectories are matched regardless

of the strong difference in angle and the different course of roads.

As we have seen, it is important to directly measure the angle of the tra-

jectories and use it for the matching of trajectories. Next, there are several

alternatives to combine the angle difference with the previously presented dis-

3.4. ANGLE COMPONENTS 53

y

x

agg

trace

α
ε

Figure 3.6: The aggregation represents a highway and the individual trace rep-
resents a departure from the highway

tance measures. First, it has to be noted that for calculating the angle, two

points are necessary. This means that point-based comparisons also have to

take into account the edge after or before the point or both which destroys sim-

plifications that were possible with point-based distances, e.g., the iteration has

to take the successor or predecessor into account. One approach is to integrate

the angle as third dimension. Therefore, the angle has to be weighted to nor-

malize the dimensions or in other words to fit to the other two metric values.

This weighting can also be adjusted according to the preference for the angle.

For a point-based approach with Euclidean distance the calculation is:

d =
√

(xa − xb)2 + (ya − yb)2 + w × (αa − αb)2

where point a is compared to point b. Nevertheless, if w is static, this

calculation does not normalize the angle. A difference in angle is independent

from the length of the edges. The angle can be normalized according to the

distance of the edges, but this has to take into account all points of the edges:

da =
√

(xa1− xa2)2 + (ya1− ya2)2 + w × (αa1− αa2)2

w = ω × da+db

2

where distance da is the distance of an edge at point a and w is then dynami-

cally adjusted to the mean length of the edges of the points which are compared.

The Euclidean distance with angle as third dimension has a higher calculation

complexity than without the angle. Additionally, the edge distances have to be

calculated to normalize the angle and the angle itself has to be calculated for

two edges plus the calculation of the Euclidean distance is more complex for

3 dimensions than for 2. Within this work the execution time was evaluated

for the Euclidean distance with angle “add-on” with all the same circumstances

as the tests for the edge-based distances (although it is a point-based distance,

the edges are needed for the angle calculations). The execution time for 66528

calculations was 705 ms which is a factor of 10.9 compared to only calculating

54 CHAPTER 3. MATCHING OF TRAJECTORIES

the Euclidean distance of two points.

For edge-based distances, adding the angle seems straightforward since al-

ready the edges are taken into account and no more additional data is needed.

As mentioned in Section 3.2 the higher distance of the possible ones is taken for

comparison. This distance can be adjusted with the angle as Euclidean distance

with a third dimension:

d =
√
d2h + w × (αa − αb)2

The execution time (same environment as before) for the distance via the

perpendicular with the angle added was 768 ms for 66528 calculations which is

a factor of 1.86 compared to the calculation without angle and a factor of 11.9

compared to the calculation of the Euclidean distance.

Furthermore, the angle can be integrated in the trajectory-based distances.

For calculating the angle, the edges have to be taken into account for the calcu-

lation of the trajectory-based distances. Therefore, instead of points, the edges

have to be made available to trajectory-based distances and for a trajectory

with n points only n − 1 points can be compared because the additional point

is needed for the calculation of the angle of the point before or after. The test

scenario for the execution time evaluation for the trajectory-based distances

including the angle is similar to the first test scenario of the trajectory-based

distances with the difference that fewer calculations are done because of less

available data. Due to the short length one trajectory had to be removed to

ensure execution of all trajectory-based distances with angle extension. Ex-

cept for one trajectory, in this scenario the same trajectories are evaluated and

they include a combination of the following length of edges (not points) of the

available trajectories: 5,5,5 and 5 without variation of length. The possible

calculations in this scenario are 8816. For the Hausdorff distance with angle

calculation the execution time is 412 ms which is a factor of 5.16 compared

to the calculation of the Hausdorff distance without angle and a factor of 43.4

compared to the calculation of the Euclidean distance. The integration into the

Fréchet distance is similar to the Hausdorff distance. The angle is seen as third

dimension. Only two implementations of the 4 presented in Section 3.3 can

be adjusted to use the angle extension because they can calculate the Fréchet

distance for multiple dimensions. The implementation that were omitted only

support 2-dimensional calculation. The L-1 implementation[52] with angle as

third dimension can calculate 8816 combinations in 2639 ms with a factor of 6.4

compared to the Hausdorff distance with angle extension, a factor of 2.27 com-

pared to the L-1 implementation without angle and a factor of 278.0 compared

to the calculation of the Euclidean distance. The L-Infinity implementation[52]

with angle as third dimension can calculate 8816 combinations in 1747 ms with a

factor of 4.24 compared to the Hausdorff distance with angle extension, a factor

3.5. ITERATIVE MATCHING 55

y

x

agg

trace

ε

Figure 3.7: Iterative matching of trajectories

of 1.04 compared to the L-Infinity implementation without angle and a factor

of 184.0 compared to the calculation of the Euclidean distance. Remarkably,

the L-Infinity implementation is not significantly slower with angle extension

than without even though the angle has to be calculated. This means that the

calculation of the angle is of marginal complexity compared to the remainder of

the calculation.

3.5 Iterative Matching

In the previous section the discussion was about the matching of whole objects:

points, edges, and trajectories. Nevertheless, when merging a trajectory into

an aggregation of trajectories, the decision whether it is matched or not should

not be based only on the complete trajectory, but also on its parts or possible

parts, also called subtrajectories. One approach to cope with the matching of

subtrajectories is iterative matching. When matching iteratively, first one point

or one edge is matched, then more points of the trajectory are added to the

match until a certain distance threshold is reached and the matching gives the

subtrajectory to be merged. Figure 3.7 depicts an iterative matching process

based on the Fréchet distance ε. The green arrow illustrates the iterative process

going in both directions. The green dashed edges show the matched part while

the red dashed edges show the part which cannot be matched.

The iterative matching can be based on combinations of distance function.

It can start with a point-based distance, then use an edge based distance and

with 3 or more points for each trajectory trajectory-based distances can be used.

Another important variation is if stepping back is allowed, comparable to the

weak Fréchet distance. The next point of the trajectory and the next point of

the aggregation might not fit, but the point before in the aggregation might fit

56 CHAPTER 3. MATCHING OF TRAJECTORIES

y

x

agg

trace

Figure 3.8: Matching of two edges to one edge

the current point in the trajectory to be matched. Figure 3.8 displays two edges

of an aggregation and two edges of a single trajectory. While the edges on the

left can be matched, the edges on the right cannot because of their high distance

of the points on the right. Nevertheless, using the perpendicular, the right edge

of the single trajectory can be matched to the left edge of the aggregation.

Hence, in this case the match is possible if stepping back or keeping the current

position is allowed.

Another aspect is the matching of parts of edges when edges are added to the

trajectory. This is of relevance when a complete edge cannot be added because

then the threshold is exceeded. In this case it is interesting to look at parts of

the edge to add. Figure 3.9 shows a similar scenario as in Figure 3.8 but with

aggregation and single trajectory switched. Here, the part of the single tra-

jectory which can be matched is dotted green. Additionally, the perpendicular

whose length is equal to the threshold is drawn in green and marks the end of

the match of the trajectory. To find the part of edge which can be added to

the matched trajectory, it is possible to search for a solution or to calculate the

solution directly. If the distance function is seen as a black box then a search

algorithm can find the part of the edge which should be added to the match.

For searching a binary search is suitable because the distance function will tell

if the threshold is exceeded or not. In a binary search the edge is splitted in two

edges of equal length, then the edge which is connected to the already matched

trajectory will be tested with the distance function. If the threshold was ex-

ceeded, the length will be reduced to one fourth and if the threshold was not

exceeded the length will be increased to three fourth. This will be repeated

until a certain precision is reached. Of course, the direct calculation of the part

of the edge which can be added to the trajectory has a lower complexity and

therefore the calculation is faster. Nevertheless, this has to be adjusted to the

distance calculation and is not a general solution.

3.6. GLOBAL MATCHING 57

y

x

trace

agg

ε

Figure 3.9: Partial matching of edges to the aggregation

Depending on the distance functions and the algorithm, the total complexity

has a high variance.

3.6 Global Matching

This section discusses the matching of trajectories as a whole process. The sce-

nario is to match a single trajectory to a trajectory aggregation where also a

partial match is allowed. Preceding steps to the previously introduced matching

methods can help to reduce the complexity of the global matching process. If

the matching is based on thresholds of distances then preceding steps can ex-

clude probes which are not necessary because they do not lead to a match. An

illustrative example of a preceding step which falls into this category is the use

of a bounding box to exclude elements which are not within this bounding box.

Figure 3.10 depicts a single trajectory which is going to be included in to tra-

jectory aggregation. Nevertheless, for matching with the threshold (or e.g. the

Fréchet distance) ε only the part of the network which is within the permanent

green bounding box (minimal bounding box plus threshold) needs to be taken

into account. All other parts of the trajectory aggregation are also not matched

if they are taken into account. To find the trajectories in the aggregation which

are in the bounding box, the use of a spatial index is beneficial. Conclusively,

the selection via the bounding box reduces distance calculations, but adds the

creation and the search within a spatial index. Altogether, the use of the bound-

ing box seems beneficial and is also able to limit the total calculation costs by

keeping the distance calculations approximately proportional to the size of the

single trajectory which is going to be added. The use of the bounding box can

be extended to not only reducing the trajectory aggregation for the whole single

trajectory, but also for its parts, e.g., its edges.

58 CHAPTER 3. MATCHING OF TRAJECTORIES

y

x

agg

trace

ε

Figure 3.10: Marking the affected area by using a bounding box with threshold

Another aspect is the sequence of the matching. Normally, the matching is

oriented on the single trajectory which is added to the aggregation. Based on

this trajectory, elements to match have to be searched within the aggregation.

For this purpose a spatial index is again advisable. Searching in a spatial index

is often based on a bounding box search based on a point or a rectangle. Hence,

this can be used to identify potential matches and after that a refinement step,

or in other words doing the actual matching, is necessary. Which spatial index

is used, does not need to be defined which means the spatial index is inter-

changeable. The interface to the spatial index needs to be defined beforehand,

e.g., if the distance search uses a bounding box or a point. Figure 3.11 depicts

a global matching process which is based on an edge-based distance compar-

ison. Based on the new single trajectory the complete trajectory aggregation

is reduced to a new reduced aggregation which is only used for processing the

new trajectory. The new trajectory is processed by iterating through all edges

(if not an edge-based distance is used then the global matching process might

be different). First a new edge is selected and used to search near edges in the

reduced aggregation. All near edges are taken into account for the actual match-

ing. In the matching process the edge-based distance is completely calculated

and the new merge candidates are determined. The process ends with the merge

candidates as result.

3.7 Conclusion

This chapter introduced distances and processes to match trajectories. Method-

ological shortcomings of naive approaches can be fixed using different (starting

the measurement from the crossing of the perpendicular) or additional mea-

surements (angle components). Another important factor for the final result is

3.7. CONCLUSION 59

reduce aggregation new trajectory

aggregation

select next edge

search near edges

matching

current edge

near edges

reduced aggregation

merge candidates

Figure 3.11: Global edge-based matching process

60 CHAPTER 3. MATCHING OF TRAJECTORIES

the process or the iteration strategy which is used to identify matchings based

on a certain distance. While the success of naive approaches is only limited

based on their methodological shortcomings, the success of more sophisticated

approaches cannot be estimated without an exemplary evaluation. Therefore,

it cannot be stated that more complex measurements like the Fréchet distance

will provide better results than simpler distance measures which can also be

enriched by angle components.

This chapter also provides performance measurements for the discussed dis-

tance measures. Within the point-based distances, the distances which are

more adjusted to the shape of the earth have the higher calculation costs. The

edge-based distances have calculation costs which are linear to the point-based

distances and are more complex by about the factor 4. The complexity of the

trajectory-based distances is highly dependent on the number of nodes of the

trajectories. The complexity varies along different implementations, but is lin-

ear within them. Furthermore, the exemplary tests showed that the integration

of the angle to edge-based distances increases the complexity by about the fac-

tor 2, but it increases the complexity of the trajectory-based distances by about

the factor 6. The reason behind this is that a whole new dimension has to be

added to the trajectory-based distances. Table 3.2 summarizes the execution

times for all distance types.

3.7. CONCLUSION 61

point-based distances - 184212 comparisons
distance reference execution time factor

Manhattan Distance 87 ms 0.49
Euclidean Distance 178 ms 1
coordinate adjusted 230 ms 1.29
Haversine distance [66] 598 ms 3.36
Vincenty’s formulae [53] 2163 ms 12.15
Vincenty’s formulae [73] 3090 ms 17.36

edge-based distances - 66528 comparisons
distance reference execution time factor

crossings of the perpendicular 413 ms 1
with angle component 705 ms 1.71

trajectory-based distances - 17550 comparisons
distance reference execution time factor

Hausdorff 159 ms 1
Fréchet JTS [82] +5057 ms +31.81
Fréchet 1.1 [52] +5002 ms +31.46
Fréchet L-Infinity [52] 3346 ms 21.04

Table 3.2: Distance execution times

62 CHAPTER 3. MATCHING OF TRAJECTORIES

Chapter 4

Merging of Trajectories

After the matching of points, edges or trajectories (objects), the matched can-

didates should be merged together. Depending on the global matching process

the outcome is either a match of a set of objects with a set of objects or directly

an object with an object. The outcome of the merging is a modified aggregation

where the objects of the single trajectory have been merged into.

An important aspect for the merging of trajectories is the evolution of the

aggregation over time. The more trajectories are used to build the aggregation

the more reliable the aggregation should be. Furthermore, the aggregation

should become more stable over time. To ensure a process after which the

aggregation becomes more stable after more mergings, an information about the

stableness of the aggregation has to be stored and linked to the object in the

aggregation. The most straightforward way to do this is to count the number of

objects which were already merged into the object of the aggregation. This count

can be added as attribute to the object of the aggregation. Additionally, this

count should be taken into account for the merging itself. Since a higher count

expresses a higher stableness, the object should be more inert when merging.

The following formula expresses the inertness of an aggregation through a weight

which can be realized as a count:

on = wa × oa + (1− wa)× ot
where on is the new object of the aggregation, wa is the weight of the old

object of the aggregation (can be expressed with a count c: w = c
c+1), oa is the

old object of the aggregation and ot is the object of the single trajectory. Of

course, the prerequisite is that objects are directly merged with each other, not

sets of objects and that the addition is defined for the objects.

This chapter is organized as follows: Section 4.1 discusses point-based merg-

ing approaches, Section 4.2 edge-based merging approaches, and Section 4.3

trajectory-based merging approaches. Section 4.4 discusses the global perspec-

63

64 CHAPTER 4. MERGING OF TRAJECTORIES

y

x
agg

trace

−w = 2
3 −w = 4

5

−w = 1
2

Figure 4.1: Point-based merging example with two trajectories

tive, including finalization steps to be taken into account. Section 4.5 concludes

this chapter.

4.1 Point-based Merging

The input for point-based merging are either two points or two sets of points.

Figure 4.1 show an example of a simple point-based merge with 3 different

weights. The green dotted line connects the two points which should be merged.

Depending on the weight the new point of the aggregation is set at a different

position along this line. The new modified aggregation with weight w = 1
2 is

displayed with dashed blue lines.

Normally, the merging process has to cope with multiple points to be merged

or sets of points should be merge with sets of points because they were all

matched together. There are different approaches, how multiple points can be

handled in the merging process. One approach is to create a new point as the

average of all points which are marked to be merged together:

pn = wa × pa + (1− wa)× pt
where pn is the new point of the aggregation, wa is the average weight of the

old set of points of the aggregation, pa is the average of the old points of the

aggregation and pt is the average of the set of points of the single trajectory.

First, the points in the set of points of the aggregation are used for an average

point of the aggregation (pa). Also for the single trajectory the average point

is calculated. After that, the new point of the aggregation is adjusted with the

weight. Figure 4.2 shows an example of merging 3 points in each set (aggregation

an single trajectory) to one point. The precondition is that the threshold is set

that all points can be matched with each other on the other trajectory. The

weight of the aggregation is 1
2 . This approach can reduce the number of points in

4.1. POINT-BASED MERGING 65

y

x
agg

trace

x

Figure 4.2: Point-based merging example with one new point for sets of points

the aggregation because many points are replaced with one point. Basically, the

granularity has a lower bound restricted by the threshold so that all matches

within the threshold are combined. One advantage might be the harmonic

frequency of points in the aggregation. A disadvantage is the restriction of

precision to the threshold. It seems advantageous to be able to have a higher

precision not restricted by the threshold and a moderate threshold that still

enables finding not very close but close matches. Hence, the threshold and the

possible precision should be independent.

Another approach is to iterate the points of the aggregation and sequentially

merge all matched points of the single trajectory with the one current point of

the aggregation:

pn = wa × pa + (1− wa)× pt
where pn is the new point of the aggregation, wa is the average weight of the

old point of the aggregation, pa is the average of the old point of the aggregation

and pt is the average of the set of points of the single trajectory. Figure 4.3 shows

an example with one new point for each old point of the trajectory aggregation

where the weight of the aggregation is 1
2 . Each old point is combined with every

matched point of the single trajectory. First, the points of the single trajectory

are averaged and then the weight is applied to the point of the aggregation and

the averaged point of the single trajectory. This process keeps the sampling rate

of the aggregation so that it can be defined independently from the threshold. In

a process where new trajectories are added to the aggregation without a previous

match, the sampling rate can be defined and this rate stays the same after each

merging of this type. Additionally, looking at a global merging perspective,

a process based on an iteration of the matched points of the aggregation is

straightforward to process because the order of the task is already defined by

the iteration through the aggregation.

66 CHAPTER 4. MERGING OF TRAJECTORIES

y

x
agg

trace

x x x

Figure 4.3: Point-based merging example with one new point for each iteration
of the aggregation

4.2 Edge-based Merging

As mentioned for the point-based merging, also for the edge-based merging the

input can be a set of edges of the trajectory aggregation and a set of edges of

single trajectory. Additionally to the possibilities of different scenarios, which

edges are mixed together, there are many possibilities to calculate an average

of two edges, not only by the arithmetic mean. Therefore, in the following the

scenario is restricted to an iteration of edges of the trajectory aggregation where

one edge of the aggregation has multiple matches in the single trajectory. Using

the arithmetic mean, one option to merge is to calculate the mean of start and

end nodes separately. Figure 4.4 shows the result of averaging start and end

nodes. Nevertheless, one problem emerges: The end node of one edge was in

the old aggregation the start node of the other edge. Nevertheless, in the new

aggregation this node is now moved onto two separate locations. This causes a

connection problem of the two nodes which cannot be solved by just connecting

them which can be seen in Figure 4.4. The connection has a completely different

direction than the edges that are connected. A straightforward solution is to

merge the nodes which previously had the same location. Figure 4.5 displays

the result with a merged node in the middle which was displaced due to the

previous merging step. Here, the connection can stay the same as in the old

aggregation.

For the merging of edges information about the direction is available which

means that using the perpendiculars in the merging is possible. Figure 4.6

shows a merging for the purple edge in the aggregation where crossings to the

single trajectory are found and according to these crossing and the weight of the

aggregation (in this case 1
2) the new merged points of the edge of the aggregation

are set. If the crossings are known then for the start and end node the new

4.2. EDGE-BASED MERGING 67

y

x
agg

trace

x x x x

Figure 4.4: Edge-based merging example with iteration of the aggregation and
averaging of start and end nodes

y

x
agg

trace

x o x o x

Figure 4.5: Edge-based merging example with iteration of the aggregation and
averaging of start and end nodes and additional merging of displaced nodes

68 CHAPTER 4. MERGING OF TRAJECTORIES

y

x
agg

trace

x

o

x

o

Figure 4.6: Edge-based merging example with iteration of the aggregation and
finding new nodes along the perpendicular

merged node is calculated with

pn,se = wa × pa,se + (1− wa)× pc,se
where pn,se is the new start or end node of the edge of the trajectory aggrega-

tion, pa,se is the old start or end node of the edge of the trajectory aggregation

and pc,se is the crossing of the perpendicular of the start or end node of the

trajectory aggregation with the matched edges of the single trajectory.

One feature of this method is that the points or edges of the trajectory ag-

gregation are only moved parallel. This keeps not only the number of edges

constant. Additionally, the distance between points in the trajectory aggrega-

tion stays nearly constant. Nevertheless, this property also has a strong disad-

vantage. If the single trajectory is more fine-grained and has a higher precision

which is favorable for some scenarios, a less fine-grained trajectory aggregation

does not adapt to the higher precision if the number of points and their distance

cannot be changed.

Nevertheless, also the perpendiculars of the single trajectory and their cross-

ings on the trajectory aggregation can be used additionally. They can be used

to increase the precision of the trajectory aggregation where the granularity of

the single trajectory is significantly higher. One possibility is that always a

new point is created in the trajectory aggregation is created when a crossing of

the perpendicular of the single trajectory and the trajectory aggregation has a

higher distance to a point of the trajectory aggregation than a certain threshold.

A constant factor multiplied by the length of the edge of the single trajectory

can be used as threshold. This is suitable because the length of the edge of the

single trajectory indicates the granularity of the single trajectory at this edge.

Figure 4.7 shows the crossings which were found and can be used as new points

in the trajectory aggregation. This increases the granularity and can be used

4.2. EDGE-BASED MERGING 69

y

x
agg

trace

x x

Figure 4.7: Increasing the granularity of the trajectory aggregation by creat-
ing new points at the crossings of the perpendiculars of the edge of the single
trajectory with the trajectory aggregation

as a preprocessing step for the previously introduced merging methods.

Matching and merging methods are fundamental parts of aggregating tra-

jectories. Nevertheless, the complete process of matching and merging and the

order of matchings and mergings are important for the final result. Algorithm 1

shows a pseudocode of a complete integration using the perpendicular distance

(Figure 3.3) and edge-based merging using the perpendicular from the aggre-

gation (Figure 4.6). The procedure Integrate calls the two main parts, the

procedures Match and PriorityMerge.

The procedureMatch fills the data structurematches which describes matches

with an edge of the individual trajectory edge, a connection (or edge) within

the aggregation con and the calculated perpendicular distance distance. In line

6 the connections in the aggregation are filtered before a perpendicular distance

is calculated. It is preferable to choose a data structure for the connection in

the aggregation which can filter the results in a way that everything within the

threshold using the perpendicular distance is included, but not many more con-

nections. After the results are filtered, the actual distance is calculated (line 8).

If the distance is less than the threshold the result is stored as a match within

the previously mentioned data structure matches.

The procedure PriorityMerge iterates the matches. The matches are iter-

ated according to their priority which means in ascending order sorted by their

distance. This ensures that first all the best matches are merged and only if a

node in the aggregation was not merged already it is available for merging in a

match with a little higher distance. Here, one can see that this order is impor-

tant for the final result. If the matches are iterated in a random order, nodes are

moved according to matches which are not considered to be the best match and

after that are not available for merging within a better match. Nevertheless,

70 CHAPTER 4. MERGING OF TRAJECTORIES

this is only one preferable approach. It is also possible to merge a node based

on all matches. This leads to a different result which can also be preferable. In

lines 14 and 17 it is checked if either the first node (from) or the second node

(to) of the aggregation was not already used in a merging. If this is true, then

the procedure MergeNode is called.

MergeNode calculates the perpendicular of the connection of the aggrega-

tion crossing the previously selected node of the connection of the aggregation.

After that the crossing of this perpendicular and the edge of the single tra-

jectory is calculated (line 22). After that it is checked whether the crossing

lies on the edge of the single trajectory. Only if that is the case the node of

the aggregation is moved along its perpendicular towards the edge of the single

trajectory. The procedure MoveConnection executes this movement. Finally,

if the return value of the MergeNode procedures indicates a successful merge

(true) the node is added to alreadyMergedNodes.

4.3 Trajectory-based Merging

Taking a whole trajectory into account when merging creates even more alter-

natives than taking points or edges into account. The trajectory-based merging

has as input two trajectories which can be subtrajectories that were matched

before. Though the matching was already exhaustive with two trajectories, it

is not necessary to take into account that there can be sets of trajectories as

input. Nevertheless, the two matched trajectories as input can be seen as two

sets of points or two sets of edges. This means that the previously discussed

point-based merging and edge-based merging can also be applied to trajectories.

This can either be done directly by regarding the two trajectories as two sets

which were matched. Nevertheless, an indirect way by iterating the matched

points or edges seems more appropriate because it can take into account the

closeness of the sub-items (points or edges).

4.3.1 Merging with Normalization

Having discussed the possibility of applying former merging methods, we will

now focus on methods that are only possible when the complete trajectory is

known. Figure 4.8 shows a merging process where the granularity is harmonized

throughout the complete trajectory. First, a distance threshold is defined. This

can be done, taking into account the average distances on each trajectory. It is

preferable to choose the smaller average distance of the two trajectories which

is in this example the single trajectory to increase the precision to the precision

of the more precise trajectory. Taking the average of the complete trajectory

4.3. TRAJECTORY-BASED MERGING 71

Algorithm 1 Integration of single trajectory in aggregation

1: procedure Integrate(individualTrajectory, aggregation)
2: matches←Match(individualTrajectory, aggregation)
3: PriorityMerge(matches)

4: procedure Match(individualTrajectory, aggregation)
5: for each edge in individualTrajectory do
6: nearCons← findNearConnections(edge, aggregation)
7: for each con in nearCons do
8: distance← getPerpendicularDistance(edge, con)
9: if distance < threshold then

10: matches← {edge, con, distance}
11: return matches
12: procedure PriorityMerge(matches)
13: for each match in matches do . assuming matches sorted by distance
14: if match.con.fromNode not in alreadyMergedNodes then
15: if mergeNode(match.con.fromNode,match.con,match.edge) then
16: alreadyMergedNodes← match.con.fromNode

17: if match.con.toNode not in alreadyMergedNodes then
18: if MergeNode(match.con.toNode,match.con,match.edge) then
19: alreadyMergedNodes← match.con.toNode

20: procedure MergeNode(node, con, edge)
21: perpendicular← getPerpendicular(node, con)
22: crossing← getCrossing(perpendicular, edge)
23: if crossingWithinEdge(crossing, edge) then
24: con←MoveConnection(crossing, node)
25: return true
26: return false

27: procedure MoveConnection(crossing, node)
28: node← node.weight×node+1×crossing

node.weight+1
29: node.weight← node.weight+ 1

72 CHAPTER 4. MERGING OF TRAJECTORIES

y

x
agg

trace

x x x x x x x x x x

x x x x x x x x x

Figure 4.8: Merging trajectories by merging points found by distance thresholds

avoids exceptions for the precision, for example when recording a trajectory

with a time interval and staying more time on traffic lights. After finding

the distance threshold, the perpendicular for every point at an interval of the

distance threshold is calculated and a crossing with the single trajectory is found.

The points within this distance threshold of the old trajectory aggregation are

than replaced by the new point of this distance threshold found via the points

on the perpendicular, adjusted with a weight (in this case 1
2). For the final point

of the trajectory aggregation there was no match via the perpendicular on the

single trajectory. Therefore, it was not replaced by another point and is still a

part of the new trajectory aggregation.

4.3.2 Sweep Algorithm

Another approach to merge a single trajectory with a trajectory aggregation

is to use a modified sweep-line algorithm from TRACLUS[43]as shown in Fig-

ure 2.5 in Section 2.1.3. In [43] the sweep-line algorithm is used to find a cluster

representation for multiple edges. Nevertheless, this scenario is different from

the scenario in this work. In this work, we want to find a representation for two

trajectories, not edges and furthermore, one trajectory can have another weight

than the other. In the original work, the algorithm uses a constant MinLns

which is set before and describes the minimal amount of edges that the sweep-

line has to cross to set a new point for the representative trajectory. The angle

of the sweep-line is the perpendicular to the average angle of all edges with

equal weight. The algorithm detects every change of the number of crossings

with the sweep-line and, if MinLns is fulfilled, sets a point. All the points that

were set are connected and the direction is given by the sweep direction.

To use the sweep-line algorithm within this work, it has to be extended,

but can also be restricted. First, the parameter MinLns can be set to 2 and

4.3. TRAJECTORY-BASED MERGING 73

y

x
agg

trace

Figure 4.9: Merging trajectories by generating points when the sweep-line de-
tects changes

does not need to be adjusted. Furthermore, the trajectories can also be seen

as multiple edges. Nevertheless, it has to be defined, what happens when an

end of an edge is also the start of another edge at exactly the same location.

In this case it makes sense to cope with this as a change of the number of

crossing with the sweep-line to adjust the new trajectory to every change in

the original trajectories. Another issue is the weighting. The weight of the

trajectory aggregation can be used when setting the new point as the average

of the crossings of the sweep-line. When calculating this average (which is

restricted to 2 points), The crossing with the trajectory aggregation and the

crossing with the single trajectory can be averaged with respect to their weight.

Another issue is the direction of the edges of the trajectory. In the matching

process, trajectories which change their direction will be matched if this change

is made by both trajectories. The problem arises that the sweep-line will only

follow one direction and can cause unwanted mergings or even sweep along

the wrong direction for some edges. One way to prevent this behavior is to

introduce multiple sweep-lines. If the directions of the edges differ more from

each other than a certain threshold to the current sweep-line then a new sweep-

line is introduced or the sweep-line is adjusted to the directions of the current

edges. Figure 4.9 illustrates a changing sweep-line while “sweeping” along both

trajectories. The sweep-line is adjusted to the direction of every new edge it

passes by. This adjustment can be done as an exponential moving average:

αs,c = β × αe,c + (1 − β) × αs,c−1, where αs,c is the direction of sweep-line at

the current position, β is a weighting factor which is set as a parameter before,

αe,c is the direction of the edge, the sweep-line passes by, and αs,c−1 is the

direction of the sweep-line before the adjustment. When the sweep-line is newly

adjusted, it is important that it does not pass by at already passed nodes, which

74 CHAPTER 4. MERGING OF TRAJECTORIES

y

x
agg

trace

Figure 4.10: Adjusting the sweep-line backwards to prevent leaving out nodes

can be caused by a direction change. To prevent this, already passed nodes have

to be marked. Furthermore, it is important to ensure, that, due to a direction

change, no nodes are left out. This can be done by adjusting the direction of the

sweep-line always backwards as Figure 4.10 displays. The two green arrows show

the adjustment of the sweep-line. The sweep-line with the previous direction

crosses the single trajectory and the trajectory aggregation. The crossing which

the new sweep-line will still cross is chosen that the other crossing is on the side

of the direction of the sweep when the area is splitted by the sweep line as a

half-plane.

4.4 Merging: Finalization Steps

Additionally to the adjustment of the aggregation there exist cases where an

individual trajectory which should be integrated adds new topological informa-

tion to the aggregation network. Figure 4.11 shows an example of a T-crossing

where the aggregation (blue) exists out of two traces where one is leaving the

main road (top left to bottom middle) and one is entering the main road (bot-

tom middle to top right) and the individual trajectory (black) follows the main

road. After the normal merging step, the aggregation is adjusted towards the

individual trajectory (dashed blue). Nevertheless, we get information from the

individual trajectory which is the information that both existing trajectories of

the aggregation are actually connected (red arrow). To detect this circumstance

one can make use of the parts of the aggregation which were merged with the

individual trajectory and look at the individual trajectory if these parts are

more or less (one has to set a threshold in meters or points) directly connected.

Taking this into account the individual trajectory cannot only contribute to the

precision of the aggregation but also to their topology.

4.4. MERGING: FINALIZATION STEPS 75

y

x

agg agg

trace

Figure 4.11: Increasing the granularity of the trajectory aggregation by creat-
ing new points at the crossings of the perpendiculars of the edge of the single
trajectory with the trajectory aggregation

To improve the aggregation results the following rules were used for the

connection of parts of the aggregation with the help of the individual trajectory:

1. Thresholds for the connections were introduced:

(a) a threshold for the angle which is checked for the connection to be

created in comparison to the last connection of the previous part and

in comparison to the first connection of the following part.

(b) a threshold for the distance of the connection

2. It is checked that the parts are not already connected via a slightly differ-

ent trajectory. Therefore, a threshold for the steps which are used for the

search is set.

3. If there is no direct connection it is checked if there is already a connection

by first going back and then forward. If this applies then the last node of

the previous part of the aggregation is merged with the node before until

there is only a path in direction forward left. This can prevent doubled

connections which are in all checked cases redundant.

4. The blocks which contain consecutive matchings are ordered by their min-

imal distance to each other and also sorted in consecutive order. For ex-

ample, if the outgoing node of a connection is closer to an incoming node

of a connection of another part than the incoming node to the outgoing

then this part is ordered before the other part.

76 CHAPTER 4. MERGING OF TRAJECTORIES

4.5 Conclusion

This chapter discussed different merging approaches including point-based, edge-

based, trajectory-based, and sweep line approaches. For each approach possible

deficiencies with plausible corrections were shown. Altogether, the overall re-

sult is not only dependent on local merging methods, but also how the global

process is defined and how it is integrated within the global matching approach.

Finalization steps can be added to the process to minimize effects which may oc-

cur when adding multiple trajectories to the trajectory aggregation. The main

goal of these steps is to normalize the in-between results to prevent degenerat-

ing effects. The most important example is the creation of connections. Once

a connection is set it should be checked if a new connection which is close is

not already represented by this existent connection. The result quality of the

approaches can only be verified by a scenario-based evaluation. All presented

approaches are methodologically suited to produce good and consistent results.

Chapter 5

Privacy Preservation

One aim of this work is to provide a collection process of GPS trajectories which

preserves the privacy of a user of the system. Privacy issues of the collection

itself have already been discussed in Section 2.2.3. In this section the focus is

on securing that the stored data does not violate anyones privacy. On a more

detailed level that means that the trajectory aggregation does not reveal facts

about an individual which the subject does not want to be revealed.

[13] discusses obfuscation methods for location-based data and the accord-

ing user acceptance. Figure 5.1 displays the discussed obfuscation methods.

The method of deletion is shown in Figure 5.1a. Deletion means the deletion of

points in the trajectory which can violate someones privacy. This can be applied

for the home and work location and for additional sensible locations which are

often visited by the subject. For each location a radius can be set which will be

used to remove all close points. Nevertheless, an attacker can assume a location

within the radius when the points are cut away when entering and leaving this

circle. Additionally, the combination of a home and work location, even obfus-

cated by deletion, can be unique for a subject. Figure 5.1b shows obfuscation by

randomization. Randomization moves every location randomly from the orig-

inal location the new location. The movement is randomized and also limited

to a certain radius. Nevertheless, as one can observe in the three displayed sce-

narios, the original route is easy to reconstruct if the points can still be linked

with the complete trajectory. Even the highest displayed level of randomization

still provides much information for reconstruction, but destroys much precise

information. Discretizing, shown in Figure 5.1c, replaces precise points with an

information in which cell in a grid the location is. This is similar to random-

ization, but avoids reconstruction via distribution analysis. It has the effect

that the position of the location afterwards is less fine-grained than the original

data. Figure 5.1d depicts subsampling. Subsampling removes points from the

77

78 CHAPTER 5. PRIVACY PRESERVATION

trajectory to increase the time window of the recorded trajectory. The result

is less precision of movements in between, but precise points when available.

The reconstruction of the trajectory can be done with a map as background

information and a routing algorithm to connect the available points. Mixing,

displayed in Figure 5.1e, mixes the location of one user with the location of

other users. A radius for the location is chosen to mix the location with at least

a certain amount of other locations of other users. This is the only presented

obfuscation method which takes the identifiability of one user into account. If

the location is mixed then the user cannot be distinguished within this group

of users. Mixing was the most accepted method discussed in [13]. Basically, it

generalizes by varying a radius until a certain anonymity, or k-anonymity[72], is

fulfilled. Additionally, other generalizations (instead of adjusting the radius) are

thinkable. Nevertheless, this generalization is described for one single location.

Taking a complete trajectory into account, the generalization has to be based

on the complete trajectory.

This chapter is organized as follows: Section 5.1 discusses the k-anonymity

anonymization metric for trajectories and Section 5.2 discusses the integration

of k-anonymity in the matching and merging approach. The use of differential

privacy as anonymization metric for trajectories is considered in Section 5.3.

Section 5.4 concludes this chapter.

5.1 k-Anonymity for Trajectories

According to [13], it is likely that a generalization approach with respect to

k-anonymity[72] (see mixing) can be a favorable choice for users who want to

obfuscate their location or trajectory information. k-Anonymity is a privacy

measurement and does not imply a certain algorithm. Nevertheless, to make

data records indistinguishable from each other, one has to generalize the data.

This can be done automatically using heuristics[4] or manually. Normally, the

generalization is based on quasi-identifiers (attributes which can be used in com-

bination with other quasi-identifiers to uniquely identify a person) and sensitive

attributes (attributes that reveal information that should not be revealed about

a person). Therefore, the sensitive attributes are not included in the general-

ization process because they do not provide information to identify someone.

Nevertheless, taking trajectories into account, any information, the trajectory

provides (nodes, edges, connections), can be used as quasi-identifier. Addition-

ally, any information can be a potential sensitive attribute which the user does

not want to be revealed. Nevertheless, this can be ignored since all information

is already seen as quasi-identifier and therefore needs to be generalized. Con-

clusively, the result of generalizing trajectories is no individual attribute and

5.1. K-ANONYMITY FOR TRAJECTORIES 79

(a) Deletion

(b) Randomizing

(c) Discretizing

(d) Subsampling

(e) Mixing

Figure 5.1: Obfuscation methods for location-based data[13]

80 CHAPTER 5. PRIVACY PRESERVATION

additionally no distribution over individual attributes, but completely general-

ized trajectories.

The generalization of one-dimensional attributes can be done via hierarchies,

the creation of ranges, or the suppression of digits. In some cases also an

average function can be taken into account. Nevertheless, this can increase the

difficulty of the clear distinction between value ranges. The generalization of

trajectories is more complex because the data is multi-dimensional. Related

work has already been discussed in Section 2.1.1, see Figures 2.1 and 2.2. While

the presented methods in Figure 2.1 describe an approach where the focus is

on a more general movement basis (a crowd moves somehow from A to B), the

method displayed in Figure 2.2 has a focus on the movement itself (the crowd

moves from A to B and takes this estimated path). Since this is preferable

for a map construction after the anonymization it will also be the focus of this

work to describe as exactly as possible how the movement happens. In [54] the

courses of the road are removed from the data set. Nevertheless, in this work

the focus are on the courses of the road and how they build a road network.

Both approaches can be combined without restricting each other. If someone

knows that a group of people went from A to B, there is no additional sensitive

information revealed if he or she additionally knows how the exact path was.

5.2 Integration in Matching and Merging

k-Anonymity can be ensured by generalization and generalization is what was

already described by the matching and merging processes. The new object

(node, edge, trajectory) of the trajectory aggregation is a generalization of the

old object of the trajectory aggregation and the single trajectory that was added.

The level of k-Anonymity which can be fulfilled can be guaranteed specifically

for every object. The guaranteed fulfillment of a combination of object is equal

to the participating object with the lowest fulfillment.

5.2.1 k-Anonymity and weight

We can use the weight to see how many individual trajectories were already

added to a certain object in the trajectory aggregation. The weight can easily

be converted to a value of k and vice versa: w = k
k+1 . To ensure k-Anonymity

for a user who adds a new single trajectory, k-Anonymity can be checked in the

matching phase. In the matching phase only objects with an asserted k that

is just one below the requested k or higher are allowed to be matched. This

ensures that during the merging phase only objects with a k that is equal to the

requested k will be created.

5.2. INTEGRATION IN MATCHING AND MERGING 81

y

x

k = 5

w = 11 w = 11

w = 3

w = 8w = 9w = 8

w = 11

w = 3

w = 8 w = 9

w = 2w = 2w = 3w = 3w = 3w = 2

agg
trace(matched)

trace

ε

Figure 5.2: Using the edge weight to match edges according to k as threshold

The generalized object is a representative of the merged objects. Neverthe-

less, it is an average representation. Normally, one would anonymize according

to ranges. A range can be created with the average object by just adding the

threshold that was used to generate the object. This can be either static or

dynamic. If it is dynamic, it needs to be linked to the object. Another pos-

sibility is the calculation of a variance of a object. A variance can be stored

as an attribute of the object and adjusted with every merge. In this case, the

merging has to identify the variance between the object of the single trajectory

and the object of the trajectory aggregation. A variance can be the calculated

distance between the two objects according to the applied distance measure in

relation to the length of the object of the trajectory aggregation or, if no length

is available, the absolute value. This variance can be adjusted in every merge:

vn = vo×n+vc
n+1 , where vn is the new variance, vc is the current variance, vo is the

old variance, and n is the count for the already merged objects (equal to k).

Figure 5.2 illustrates an exemplary scenario with edges which are matched

against each other under the condition of the fulfillment of a given k. In this

example k is set to 5 and each edge of the aggregation has a specific weight (w).

If k is equal or more than w then the edge can be matched otherwise it is filtered

out due to privacy resctrictions. Furthermore, the distance has to be fulfilled.

In this scenario, one can imagine a main road in both directions (from left to

right and from right to left where alread more individual trajectories were added

and therefore with edges with a higher weight. However, on the side road less

individual trajectories were added and therefore the edges have a lower weight.

Hence, edges from the individual trajectory to be added (trace) are matched on

the main road, but not on the side road.

82 CHAPTER 5. PRIVACY PRESERVATION

5.2.2 Finding Subtrajectories

To be able to match and merge trajectories, they have to be partitioned if

they do not match completely. One way to partition is to iteratively match

trajectories (see Section 3.5). Nevertheless, this matching process has to be

adjusted if we want to preserve privacy with k-Anonymity. Since it is a good

heuristic to continue the search with the neighbors of already matched objects,

the search for matches should not be restricted by objects with invalid matches

(matches with a k lesser than the required k). However, after the unmodified

matching, there is a need for a filter step. The filter step has to reduce the

matched input by the invalidly matched objects. For point-based matches and

edge-based matches it is sufficient, to just remove the objects of the trajectory

aggregation with a lower k. If in the matched set all objects of the trajectory

aggregation do not fulfill the required k, then the complete match is obsolete.

If the matched set can be reduced because all other matched objects are still

matched without the removed object. Nevertheless, with trajectories this is

not true. It distorts the result if one edge of the trajectory aggregation in

the match is removed, but the counterparts in the single trajectory are kept.

Hence, it is necessary to partition the match on the basis of the parts of the

matched trajectory aggregation with a sufficient k and repeat the matching for

these parts, taking only the matched trajectory of the single trajectory into

account. Figure 5.3 illustrates the matching within a filter step. It is based on

the match displayed in Figure 3.7. After the match the filter step detects an edge

with insufficient k (displayed in continuous red) and partitions the trajectory

in the trajectory aggregation into two subtrajectories (one dashed in green and

one dashed in yellow). After the partitioning the filter step runs an iterative

matching with a static subtrajectory of the trajectory aggregation and continued

matches on the matched single trajectory. In this case, all matched parts can

be matched again and are not intersected. Nevertheless, it is also possible to

leave out previously matched parts and to continue the merging with intersected

subtrajectories of the previously matched single trajectory.

In [54] subtrajectories are created by using characteristic points. These char-

acteristic points are determined by user-specified thresholds of properties of the

point. These properties include the minimum angle of a turn, the minimum

duration of a stop, and the maximum distance between two extracted points.

These are more static properties and do not include the context of the analyzed

point. A dynamic approach is described in [43]. In this approach the costs of a

loss in precision are calculated for a specific point. If the costs are low, the point

is removed (not a characteristic point) and if the costs are high then the point

is kept (characteristic point). Overall, this is a weighting of preciseness against

5.2. INTEGRATION IN MATCHING AND MERGING 83

y

x

agg

trace

ε

Figure 5.3: Iterative matching of trajectories within a filter step

conciseness. In this work it is also possible to create subtrajectories according

to characteristic points. Both approaches are suitable for this work. Never-

theless, it is important that characteristic points of the trajectory aggregation

and the single trajectory are chosen on similar locations (matchable distance

in between). This should be true for parts of the trajectory aggregation and

the single trajectory that can be matched to each other. The before mentioned

static approach (by thresholds) and the dynamic approach (weighting) can be

adjusted to foster this requirement. For the static approach, the distance to

characteristic points of the trajectory aggregation can be included as an ad-

ditional condition. The presented thresholds were used as a disjunction. The

distance to characteristic points of the aggregation can be added as a conjunc-

tion to ensure that every characteristic point of the single trajectory is near a

characteristic point of the trajectory aggregation. Nevertheless, this will also

prevent the creation of characteristic points that cannot find a match in the

trajectory aggregation and prevent the creation of new trajectories in the tra-

jectory aggregation. Therefore, it should be possible to identify characteristic

points if the single trajectory leaves the trajectory aggregation at this point.

Figure 5.4 displays two cases for the identification of characteristic points. In

the case of a GPS error at a traffic light (Figure 5.4a), characteristic points can

be created because angle thresholds are exceeded. In this case, the creation can

be prevented, which is preferable, because the distance to characteristic points

of the trajectory aggregation is too high. In the other case (Figure 5.4b), when

characteristic points are created and the single trajectory actually leaves the

trajectory aggregation, the creation is also stopped which is not the desired

result. In this case, this prevention of the creation of a characteristic point is

not leading to a good result. Therefore, it needs to be checked if after the ques-

tionable characteristic point, the single trajectory actually leaves the trajectory

aggregation. This is best checked by the decreasing distance to one characteris-

84 CHAPTER 5. PRIVACY PRESERVATION

y

x
agg
trace

xx
xx

x

(a) Single trajectory with GPS errors inducing
characteristic points

y

x
agg
trace

xx
xx

(b) Single trajectory leaving trajectory aggre-
gation

Figure 5.4: The identification of characteristic points of the single trajectory
next to the trajectory aggregation

tic point of the aggregation. If the distance to any characteristic point decreases

steadily, then it can be assumed that the single trajectory does not leave the

trajectory aggregation. This can be checked for a threshold in points or meters.

5.3 Differential Privacy for Trajectories

For relational data, differential privacy[24] is an accepted approach to anonymize

data. For trajectory data, the focus is on a coarse-grained level[18] and not on a

detailed level which looks at the exact course of the road (see also related work in

Section 2.1.3). As already discussed in sections 2.2.3 and 2.2.4, in a centralized

client-server approach, the server might be able to recalculate changes that were

sent by the client and therefore reconstruct the single trajectory that was sent.

To prevent this, the client can obfuscate the single trajectory by modifying the

sequence of subtrajectories that are merged with the trajectory aggregation. A

differential privacy approach can help to quantify the degree of modification or

randomization.

5.4 Conclusion

This chapter discussed anonymization methods for location and trajectory data.

k-Anonymity is an appropriate metric for location and trajectory data. Further-

more, it is suitable for a subsequent map construction because a generalization

is necessary for achieving k-Anonymity but also for map construction. Con-

clusively, the methods used in this work do not resolve a conflict but provide

a solution for two problems. While it is straight-forward to match points and

edges which fulfill a certain k the matching of subtrajectories is more complex

to ensure the overall fulfillment of k. The additional steps to be taken into

account are described in this chapter. Differential privacy for trajectory data

5.4. CONCLUSION 85

seems not suitable (no approach available) for fine-grained trajectory data. It

can, however, be used within the global setup of the anonymization process.

86 CHAPTER 5. PRIVACY PRESERVATION

Chapter 6

Evaluation

In this chapter the methods for matching and merging are evaluated. Synthetic

cases and demo scenarios are chosen which represent best the requirements of

a trajectory aggregation. For both evaluation scenarios the aggregation algo-

rithms are evaluated and if necessary optimized. The aggregations were calcu-

lated using Java 1.7 on Ubuntu 14.04 LTS with 16 GB memory and an Intel®
Core™ i7-4600U CPU @ 2.10GHz quad core processor.

This chapter is organized as follows: Section 6.1 discusses the evaluation of

the synthetic cases and Section 6.2 the evaluation of the demo scenarios. Both

sections include an introduction to the cases, an evaluation with the edge-based

approach and an evaluation with the trajectory-based approach. Section 6.3

concludes this chapter.

6.1 Synthetic Cases

Synthetic Cases are used to evaluate the behavior of an algorithm under ideal

circumstances. For synthetic cases one has a clear expectation what the result

may be, depending on the algorithm. One has the possibility to create cases

where the result can determine the underlying algorithm or at least the type of

underlying algorithm. Synthetic cases are also used to determine the correctness

of an algorithm. In this case a certain result is expected and an algorithm which

creates the expected result is correct while an algorithm, which does not, is

incorrect.

6.1.1 Introduction to the Cases

The synthetic cases are created to check for certain properties of an algorithm

for matching and merging. They differ intentionally from cases in the real

87

88 CHAPTER 6. EVALUATION

world to test properties which cannot be tested in real world examples. They

include only one track for the aggregation and one track for the individual to

be independent from effects which might appear in repeated aggregation.

Figure 6.1 shows all synthetic cases. Figure 6.1a shows two converging and

diverging traces. This case is created to test if a simple matching and merging

works. All algorithms should be able to match the inner parts and not the outer

parts, depending on the threshold of the distance which is used. There should

not be any gaps within the match and the merging should only create merged

parts which are amidst both traces. Increasing the threshold should result in

the same or a higher amount of matchings and decreasing the threshold should

result in the same or a lower amount of matchings. A threshold of 0 should lead

to no matchings and a threshold of infinity or the maximum value of a data

type should lead to a complete matching set (for edge-based algorithms every

edge of one trace with every edge of the other trace).

Figure 6.1b shows a similar scenario but this time the tracks are diverging

and converging two times. This scenario can evaluate that the algorithm is able

to match and merge multiple parts of the trajectory independent from each

other. The algorithm should be able to create exactly two blocks which are

matched and merged. Moreover, all the properties tested in the previous case

(Figure 6.1a) are also demanded in this scenario. Nevertheless, it is a good

distinction to evaluate these properties also independently from the property of

matching at multiple parts.

Figure 6.1c shows a scenario where one trace is shorter than the other while

the shorter trace is very near and with a normal value for the threshold for the

distance there should be matchings along the complete length of the shorter

trace. This scenario can evaluate the ability of the algorithm to merge without

gaps along the matching and to connect the merged part properly to the not

matched part and in this way show a growth of the aggregation along a certain

path.

Figure 6.1d shows a scenario where two traces cross each other multiple times

due to a possible imprecision of the GPS signal. This scenario can evaluate

the ability of the algorithm to create an aggregation which averages the two

traces and by averaging creates an aggregation which is more stable than each

of the input traces. A good aggregation should have the following properties.

The aggregation should be shorter than the input traces. This expresses a

more stable aggregation. Additionally, most (at least half) of the parts of the

aggregation should be inside the area spanned with the two input traces. The

shorter the aggregation and the more parts of the aggregation are within the

spanned area the better the evaluated properties are fulfilled.

Figure 6.1e shows a scenario similar to the first scenario (Figure 6.1a). Nev-

6.1. SYNTHETIC CASES 89

ertheless, in this scenario the traces cross each other after the converging of the

trajectories. The traces cross a second time before they converge. The expected

result should also be similar to the first scenario and also the properties should

hold. Additionally, an optional quality criteria is the position of the start and

end of the merged part of the aggregation. The start of the merged part should

be before the first crossing and the end of the merged part after the second

crossing. Nevertheless, a strong influence of the angle within the distance mea-

sure can prevent this property. In this case one cannot state a lower quality

based on a non expression of this property.

Figure 6.1f shows a crossing. Two traces cross each other without any in-

dication of having a two streets crossing each other. In a real world example

this can be two independent streets (separated by elevation with a bridge or a

tunnel) or it can be two crossing streets. Based on only these two trajectories

an algorithm should not merge the trajectories. Nevertheless, this is strongly

dependent on the threshold of the distance and the influence of the angle in the

distance measure. Hence, the property can only be formulated in a way that

there should be a distance threshold where there are no matchings. A stronger

property can only be formulated taking another case into account. For exam-

ple a property might be that there exists a distance threshold where there are

matchings for the scenario in Figure 6.1a but not for the scenario in Figure 6.1f.

Figure 6.1g shows two traces which converge, cross and diverge. Neverthe-

less, in this case the traces are in different directions and should not be matched

and merged. Again, the dependency to the distance threshold and the influence

of the angle is very high and a property can only be formulated in a way as it

is already described for Figure 6.1f. The same accounts for Figure 6.1h which

shows a scenario of two traces which cross each other while one trace is expressed

as a curve. The final distance of the traces is high enough that it should not be

confused with a trace merging into another as it occurs in a highway drive-up.

6.1.2 Results with Edge-Based Algorithm

For the evaluation an edge-based matching and merging algorithm is used. For

the distance calculation the distance along the perpendicular, a point-to-point

distance and the angle difference are taken into account. If the two edges have

actual crossings that can be created along some perpendicular (actual crossing

means that the crossing is with the boundaries of an edge) then the distance

between the point where the perpendicular starts and this crossing is used for

further calculation (see also Figure 3.1). The perpendiculars starting on the

start and end points of each edge are taken into account. If there is no actual

crossing then the higher distance of the distances between the start points or the

90 CHAPTER 6. EVALUATION

(a) Converging and diverging traces (b) Converging two times

(c) Shorter and longer traces (d) Traces with imprecision

(e) Converging, cCrossing and diverging (f) Crossing

(g) Converging, crossing and diverging in oppo-
site direction

(h) Crossing with a curve

Figure 6.1: Synthetic cases of GPS traces for aggregation

6.1. SYNTHETIC CASES 91

end points is used instead of the perpendicular distance. The resulting distance

is then combined with the angle difference of the two edges. The resulting

distance is first normalized by the averaged length of both edges to fit the angle

difference which does not depend on the length of the edges. Afterwards, the

angle is exponentiated by an exponent which can be given (here the default 2 is

used) and then weighted with a weighting factor which also considers that the

scales cannot be directly compared to each other (metrical scale vs. degrees).

In this case the weighting factor 0.00002 is used. If matched (distance below

threshold) the matches are stored as pairs of the edge of the aggregation and the

edge of the individual trajectory including their weighted distance. The matches

are stored in blocks where each block includes only subsequent matches.

In the merging step these blocks are iterated. For each match the aggrega-

tion is adjusted along its perpendicular towards the individual trajectory (see

Figure 4.6). Therefore, only actual crossings (see above) are taken into account.

This prevents a double movement of one node of the aggregation as well as it

prevents movement of nodes of the aggregation which are more at the border of

the matchings (which is a more secure merging in terms of preventing creating

strong angle differences within the aggregation).

If there were parts of the individual trajectory before or after the matched

blocks then these parts are connected to the nodes of the aggregation which were

moved in the merging before. Therefore, the nodes in the matched block are

ordered based on their connection to each other. Afterwards the non-matched

part of the individual trajectory before the matched block is connected to the

first node of the matched block and according to this the non-matched part of

the individual trajectory after the matched block is connected to the last node

of the matched block.

The algorithm used for this evaluation also takes finalization steps into ac-

count (see Figure 4.11).

Figure 6.2 shows the resulting aggregation using the described algorithm.

The input traces (blue) are still partly visible, but in the background. The

resulting aggregation is black, the edged which were actually used for merging

are highlighted red and the perpendiculars which were used for the movement are

shown in yellow. The more trajectories determined the edge of the aggregation,

the thicker the edge is painted. In all cases, except for Figure 6.2b, the thickness

is either 1 or 2. All scenarios in Figure 6.2 are in the same order as they are in

Figure 6.1.

Figure 6.2a shows the aggregation of two converging and diverging traces.

The result fulfills all the criteria that are demanded by this scenario. The inner

parts are matched while the outer parts are not matched (the matched parts are

not directly shown, but one can conclude that all visible input traces which did

92 CHAPTER 6. EVALUATION

not disappear in behind in the background were matched). Furthermore, the

merged part of the aggregation is completely amidst the two input trajectories

and the connections to the merged part are correctly identified.

Figure 6.2b shows the result of a similar scenario. Nevertheless, this sce-

nario is doubled in two points of view. First, the converging and diverging takes

places two times. And second, the input traces are two for each track (which

is not visible). In the result you can see that the aggregation has three differ-

ent thickness levels which represent different weights. The merged part amidst

the two tracks (merged with 4 trajectories in total) has the highest thickness.

Furthermore, all the other parts, except one edge, have a thickness which rep-

resents a weight of 2. Altogether, the result fulfills all the criteria which are

demanded. Particularly, the criteria of two separated inner mergings is fulfilled.

Nevertheless, one has to note the one edge which keeps the weight of 1 although

two 2 trajectories is not merged. The reason behind this is the change of the

angle due to the first merge. The second trajectory is not merged because the

edge was moved in a way such that it cannot find an actual crossing of the

perpendicular any more and thus this edge is not moved towards the individual

trajectory. This behavior cannot be finally evaluated as good or bad behavior

because judging just on the basis of the created track in the aggregation the

result looks convincing if one wants to create a road network afterwards.

Figure 6.2c shows the aggregation of two trajectories which are on the same

track and where one trajectory is shorter than the other. The edges were

matched without gaps and the connection to non-matched parts looks correct.

In this case one can observe the role of the ordering with which the trajectories

are inserted in the aggregation. Here, the trajectory above was inserted first.

This is the reason that as a result of the merging the start node and the node

just after the end of the trajectory below are not moved. The perpendicular of

the starting node finds no actual crossing on an edge of the trajectory below

and neither finds the node just after the end of trajectory below.

Figure 6.2d shows the aggregation of two imprecise tracks. The criteria that

most parts of the resulting aggregation are between the two input trajectories

is fulfilled, judging visually the amount should be over 95%. Here again, one

can see that it does matter in which order the trajectories are inserted. The

trajectory starting above and ending below was inserted first and therefore the

first track in the aggregation. This is the reason that the non-merged part

(start and end node of the first track in the aggregation) are used to connect

the merged part with. The trajectory inserted after is not connected because

all parts were matched (difference between matched and merged parts). This

behavior has to be considered good because the assumption is reasonable that

if all parts were matched then there is only one track.

6.1. SYNTHETIC CASES 93

Figure 6.2e shows the aggregation of converging, crossing and diverging tra-

jectories. The result fulfills all demanded criteria. Additionally, the start of the

merged part is before the first crossing and the end of the merged part is after

the second crossing. the condition that the merged part is completely amidst the

two trajectories is not necessarily fulfilled although one cannot judge otherwise

just by looking at the result. It is possible that parts that are near the crossing

are not precisely amidst. Nevertheless, this is not a bad indication since one has

to look at all the properties the algorithm looks for in the matching and merging

process. One can always reason that these properties are more important than

the fulfillment that the merged part is completely within both trajectories.

Figure 6.2f shows the aggregation of two crossing trajectories. Here, the main

criteria that there is no matching does not hold for the threshold settings. One

can see that the two trajectories are matched and merged with each other. As

already described in the introduction of the cases, this is not a wanted behavior

because there is a good possibility that these trajectories are independent from

each other (tunnel and bridge for example). This case has the same settings

for the distance threshold as the other cases. To change the behavior of this

case one has to change the threshold (or thresholds) for the distance. There are

basically four possibilities to change the unwanted behavior:

1. A decrease of the distance threshold (distance is the resulting distance

include normal distance and angle distance components) until there are

no more matchings within this scenario. Nevertheless, this also strongly

influences the result of the other scenarios and maybe prevent matchings

which are wanted.

2. An increase of the exponent of the angle difference increases the expo-

nential behavior of the weight which penalizes a higher angle difference

even more. It is likely that this change can have a good influence on this

scenario while preventing bad behavior in other scenarios.

3. An increase of the weight of the angle difference in comparison to the other

distance elements, particularly the distance with the use of the perpen-

dicular. This leads to a higher influence of the angle difference. It is also

likely that this can eliminate the matchings in this scenario and still keep

wanted matchings in other scenarios.

4. The introduction of an upper limit of the angle difference itself can also

have a positive effect.

Figures 6.2g and 6.2h show that there are no trajectories matched and

merged which is the demanded criteria for these scenarios.

94 CHAPTER 6. EVALUATION

(a) Converging and diverging traces (b) Converging two times

(c) Shorter and longer traces (d) Traces with imprecision

(e) Converging, crossing and diverging (f) Crossing

(g) Converging, crossing and diverging in oppo-
site direction

(h) Crossing with a curve

Figure 6.2: Synthetic cases of GPS trace aggregation with edge-based matching
and merging

6.1. SYNTHETIC CASES 95

y

x

agg

trace

Figure 6.3: Two possible crossings with the perpendicular

6.1.3 Results with Subtrajectory-Based Algorithm

The subtrajectory-based algorithm which is used for the evaluation uses the

Fréchet distance as distance metric with 3 dimensions: x, y and the angle be-

tween edges. For the following test cases, the L-Infinity implementation of the

Fréchet distance is used (see Section 3.3). The angle is weighted to fit to the

metric or Cartesian values. To find complete blocks for merging the iterative

matching shown in Figure 3.7 is used. The actual merging is comparable to the

merging approach of the edge-based algorithm used for the evaluation. Analo-

gous, the nodes of the trajectory aggregation are moved towards the crossings

of the perpendiculars. Nevertheless, in this case there is no underlying single

match of edges of input trajectory and trajectory aggregation. This is the rea-

son why in the merging process the crossings are searched within the matched

blocks with each edge of the input trajectory and each edge of the trajectory

aggregation. Figure 6.3 shows an example where there are two possible crossings

of the perpendicular outgoing from the starting node of the trajectory aggrega-

tion. The dotted green perpendicular leads to a near crossing which is favorable,

but the red perpendicular shows a crossing far away on a part of the input tra-

jectory which is far away. It should be noted that the complete input trajectory

is matched as one matched block with the complete trajectory aggregation in

this case. Because of this effect a threshold for the length of the perpendicular

is introduced.

Figure 6.5 shows the results of the subtrajectory-based algorithm on the

synthetic scenarios. The results are comparable to the results with the edge-

96 CHAPTER 6. EVALUATION

based algorithm. Nevertheless, there are some differences. One has to keep in

mind that the thresholds are not directly comparable and many differences can

be explained by different thresholds.

The aggregation shown in Figure 6.5a has less matched edges of the trajec-

tory aggregation (below) than the one shown in Figure 6.2a. This fact alone

can be explained with a sharper threshold. Nevertheless, one can also observe a

higher number of matches of the input trajectory (above) because the created

connections connect smaller parts of the input trajectory. There is an expla-

nation which is typical for the iterative matching. Figure 6.4 shows different

matching results which can result from the iterative matching approach. Ev-

ery result is created with the same distance. Conclusively, the result is highly

dependent on the expansion in the iterative process:

1. An expansion which starts at the beginning of the trajectory aggregation

and expands first on the input trajectory will lead to a result shown in

Figure 6.4a.

2. An expansion which starts at the beginning of the trajectory aggregation

and expands first on the trajectory aggregation will lead to a result shown

in Figure 6.4b.

3. An expansion which starts at the beginning of the input trajectory and

expands first on the input trajectory will lead to a result shown in Fig-

ure 6.4c.

4. An expansion which starts at the beginning of the input trajectory and

expands first on the trajectory aggregation will lead to a result shown in

Figure 6.4d.

The result on display in Figure 6.5a is mostly comparable to the result shown in

either Figure 6.4b or Figure 6.4b depending on which trajectory is seen as the

input trajectory and which as the trajectory aggregation. The same behavior

of the iterative matching approach applies to Figure 6.5b.

Figures 6.5c, 6.5d, 6.5g, and 6.5h show results with no identifiable qualitative

difference to the results of the edge-based algorithm.

Figure 6.5e shows a result where there are again comparably smaller parts

of the input trajectory (starting and ending below) which are not matched than

of the trajectory aggregation (starting and ending above). In this case this

also leads to a direction change (shortly before the created connection) in the

resulting trajectory aggregation which looks imprecise and lowers the fulfillment

of the demanded criteria in this scenario to create a resulting trajectory which

lies to a high amount inside the area which is enclosed by the two trajectories

crossing each other.

6.1. SYNTHETIC CASES 97

y

x

agg

trace

(a) Iterative matching result 1

y

x

agg

trace

(b) Iterative matching result 2

y

x

agg

trace

(c) Iterative matching result 3

y

x

agg

trace

(d) Iterative matching result 4

Figure 6.4: Possible results with iterative matching and a subtrajectory distance

98 CHAPTER 6. EVALUATION

The result shown in Figure 6.5f fulfills the criteria of this scenario while

the result shown in Figure 6.2f does not. Nevertheless, this can be explained

only taking distance threshold into account. Furthermore, the thresholds can

be adjusted in a way that the edge-based algorithm fulfills these criteria, too.

6.2 Demo Scenarios

Demo scenarios are real-world scenarios with trajectories captured with the

help of positioning systems (most popular: GPS). Real-world scenarios test an

algorithm for practical use. GPS traces are recorded in a more uncontrolled

manner than the synthetic cases are created. One has to take into account

GPS imprecision and maybe add cleaning steps before the aggregation of the

trajectories (see Section 2.2.6). For real-world scenarios the expected result is

that the scenario is correctly represented in the aggregation. The aggregation

should represent averaged tracks. It should not induce errors and for most of

the input trajectories one should be able to say that the aggregation is a better

representation for the actual track than the input trajectory.

6.2.1 Introduction to the Cases

To evaluate the practical use the real-world scenarios depict typical scenes from

a street network. All input trajectories are taken from the GPS trace collection

of OpenStreetMap and were tagged as recorded while driving in a car. There is

no information about the record frequency or the GPS signal quality. Neverthe-

less, all trajectories which obviously contained wrong information were removed

manually. All scenarios are near to or within the borders of the city Berlin,

Germany. Table 6.1 contains information about the locations of the scenarios.

Figure 6.6 shows the input trajectories for the real-world scenarios. Com-

pared to the synthetic cases the real-world scenarios have more input trajecto-

ries and the record frequency and quality varies. Often one can detect the main

roads just by the number of trajectories.

Figure 6.6a shows a street crossing. One challenge in this scenario is to

find all the possible connections of the crossing but to leave out the impossible

connection, particularly the connection which are not represented in the tra-

jectories. From right to left there is a one-way street so there should be no

connection from the right lane coming from the bottom to the right part of

the one-way street and no connection from the left lane coming from the top

to the right part. For the left part of the one-way street vice versa. All other

connections that are possible are also represented by the GPS traces. Another

challenge is an imprecision of the data. One can see a little gap at the bot-

6.2. DEMO SCENARIOS 99

(a) Converging and diverging traces (b) Converging two times

(c) Shorter and longer traces (d) Traces with imprecision

(e) Converging, crossing and diverging (f) Crossing

(g) Converging, crossing and diverging in oppo-
site direction

(h) Crossing with a curve

Figure 6.5: Synthetic cases of GPS trace aggregation with subtrajectory-based
matching and merging

100 CHAPTER 6. EVALUATION

case longitude latitude description

1
13.3831663 52.4395487

crossing at station Alt-Mariendorf
13.390314 52.4414339

2
13.3599312 52.4985748 crossing at station Kurfürstenstraße

(traces only represent a T-crossing)13.3637779 52.5006771

3
13.2419335 52.6457982 highway drive-up on A111 at Hohen

Neuendorf13.2440909 52.6480122

4
13.2408021 52.6365708 highway departure on A111 at Hohen

Neuendorf13.2421745 52.6375575

5
13.3480869 52.5131064 part of a circle at Siegessäule, Tier-

garten13.3511905 52.5146227

6
13.2808814 52.5052292 a highway below a street at Messe

Nord, ICC13.2846144 52.5076504

7
13.4252746 52.5165846

a circle at Strausberger Platz
13.4314731 52.5206277

8
13.2932016 52.5043006 a place amidst two one-way streets at

Amtsgericht Charlottenburg13.2969084 52.5066953

Table 6.1: Location information for real-world scenarios

tom between the two lanes. Nevertheless, due to GPS imprecision not all the

trajectories are on the correct lane in the right direction. Here, especially the

distance threshold is important to avoid creating multiple lanes in one way.

Figure 6.6b shows the input trajectories of a T-crossing. The challenges are

similar to the previous scenario. Even though it is likely that this connection

exists, there are no traces connecting the top with the left. Hence, the algorithm

should not create these. Nevertheless, there are connections from the left to the

bottom in both directions. Both streets have lanes in to directions and again

the trajectories are not always on the correct lane due to GPS imprecision.

Figure 6.6c shows the input trajectories of a highway drive-up. In this sce-

nario there is only one connection which should be identified. While the drive-

up has only one direction, the highway has two. Again, not all trajectories are

clearly distinguishable by their position in each direction.

Figure 6.6d shows the input trajectories of a departure from a highway.

The challenges for the aggregation algorithm are the same as for the highway

drive-up.

Figure 6.6e shows the input trajectories of a part of a circle. There are two

tracks (and two trajectories) entering the circle and one track (two trajectories)

leaving the circle. In this scenario there are multiple connections in multiple

areas which should be detected. This scenario can also be seen as a composition

of the previous scenarios. Therefore, it also contains the same challenges. Nev-

ertheless, it also tests the behavior of the algorithm aggregating a composition

6.2. DEMO SCENARIOS 101

of multiple different connections in different places.

The input trajectories shown in Figure 6.6f represent a two-way street (from

left to right) over a highway. This scenario is the real-world version of the

synthetic scenarios shown in the Figures 6.2f and 6.2h. Additionally to the

synthetic scenarios, this scenario includes multiple directions and a realistic

count of input trajectories. The expected result is that the trajectories are

merged in lanes going in different directions and, more important, that there is

no connection detected.

Figure 6.6g shows the input trajectories of a circle traffic. Compared to

Figure 6.6e it shows a smaller but complete circle traffic with more trajectories

to aggregate. All the possible connections that are possible in this standard

circle traffic are represented by the trajectories. Additionally, due to the higher

number of trajectories this scenario has also a higher variation of frequencies

and qualities. The expected result is that all represented connections are created

only once and no additional incorrect connections are created.

Figure 6.6h shows the input trajectories of a place which is enclosed by two

one-way streets. This can be seen as a rectangular circle traffic with only two

connected roads. Additionally to the circle scenarios, this scenario is a test for

a different shape with basically the same function.

6.2.2 Results with Edge-Based Algorithm

The edge-based algorithm for matching and merging is the same as described

in Section 6.1.2. Additionally, for the evaluation of the real-world scenarios in

combination with the edge-based algorithm a cleaning process is used before

to clean the input trajectories (see Section 2.2.6). In the cleaning process the

edges of the input trajectories are normalized, edges below 0.3 meters are filtered

out by omitting points and edges above 13.0 meters are partitioned in edges of

equal length by the factor that the edge is longer than the threshold of 13.0

meters. The points that would create edges creating a heading change with an

angle of more than 30.0 degrees are also omitted. Furthermore, these cleaning

thresholds as well as the distance thresholds are varied in different scenarios to

improve the result. Additionally to the cleaning of the GPS trajectories, the

finalization, particularly the connecting of parts of the aggregation, is important

for the real-world scenarios (see Section 4.4).

Figure 6.7 shows the results of the aggregation. The results of the cleaning

step are not shown, but are also an intermediate result. The only visual differ-

ence to the raw input trajectories is the partitioning of the longer edges. This

can be visually estimated by looking at the resulting aggregation. The length

of the edges of the aggregation is comparable to the length of the edges of the

102 CHAPTER 6. EVALUATION

(a) Street crossing (b) T-crossing

(c) Highway
drive up

(d) Highway depar-
ture

(e) Entering and leaving of a circle (f) Highway below street

(g) Circle traffic (h) A place amid
lanes

Figure 6.6: Real cases (in Berlin) of GPS trace aggregation

6.2. DEMO SCENARIOS 103

cleaned trajectories. The coloring of the different shown parts is described in

Section 6.1.2. Overall, the real-world cases have in most cases a thicker line be-

cause the thickness of the line represents the weight of the aggregation and in the

real-world scenarios the number of input trajectories is higher which increases

the weight of the aggregation.

Figure 6.7a shows the aggregation of the crossing scenario. All connections

which are represented by the input trajectories can be found in the aggrega-

tion. The connection from right to bottom is represented, too. Nevertheless,

this connection has moved significantly to the top. The reasons for this strong

movement are on the one hand the distance threshold which still allows a match-

ing between the input trajectory which is more at the bottom when changing

the direction and the trajectory aggregation more above and on the other hand

the rules for connecting which are shown in Section 4.4, particularly the rule

to merge previous parts keeps the connection as compact as possible. Another

issue which seems odd at first sight is the starting node of the aggregated tra-

jectory coming from the bottom. There exist trajectories which start directly at

the bottom, but this is not represented in the aggregation. There are again two

reasons behind this. One reason is again the distance threshold which allows a

matching of the parts below with the start of the aggregation which prevents a

connection of parts which cannot be matched. The other reason is the iterative

approach itself. The first trajectory on this track which was added to the tra-

jectory aggregation did not start directly at the bottom but more or less were

the resulting aggregation still starts. And because everything below was still

matched there was no part that was identified for adding to the aggregation.

The aggregation of the T-crossing scenario is on display in Figure 6.7b. In

this scenario every connection was found properly. There is one turn with the

street coming from top left and one turn from top left to the bottom. The other

trajectories are just straightly following their path. The trajectories coming

from top right going to the bottom were all merged together and also the ones

which were near or on the other lane were correctly identified as a match because

of the same direction. The scenario also shows the same phenomenon that the

aggregation going to the bottom seems cropped. The same explanation as before

holds. The first trajectory in the aggregation on this track stopped more or less

where the resulting aggregation stops. And there was no part added because

all parts below could be matched to the last part of the existing aggregation.

Figure 6.7c shows the aggregation of the highway drive-up. In this case there

is only one demanded connection (the one onto the highway) which can also be

found in the trajectory aggregation. The aggregation represents two indepen-

dent tracks where one is connected with another track. The average which was

calculated for the aggregation also has the impression that it represents more or

104 CHAPTER 6. EVALUATION

less the middle of the real street. The angle of the drive-up is realistic although

this is not necessary for the construction of a road network afterwards. More im-

portant is that no additional connections were found which are not represented

by the input trajectories which is ensured by the rules described in Section 4.4

and applied to the real-world scenarios. The part of the highway going to the

top a final edge which has a lower weight and a deviated angle. The explanation

is similar to the missing parts in the previous scenarios. The first part added on

this track to the aggregation was more right than then the average of all added

parts. After the insertion of the first trajectory on this track the other paral-

lel parts were matched, but all were merged with the previous edge which had

a better fitting angle and therefore the lower distance. Altogether, the slight

deviation to the real average at the borders of the scenario are caused by the

iterative nature of the overall algorithm, the order with which the trajectories

are inserted and do not occur when extending the scenario throughout these

borders.

Figure 6.7d shows the aggregation of the departure of a highway. This case

is similar to the previous case. The only difference is the direction of the connec-

tion from (before: to) the highway. Nevertheless, the result of the connection

of the departure of the highway does not look as smooth in comparison to the

previous scenario. Still, there is an explanation and there is no bad effect for

the creation of the road network afterwards. Again, this phenomenon is also

partly dependent on the iterative aggregation of the input trajectories. Here,

the connection was made relatively early in the process (within the first 25% of

the input trajectories). After the connection was created there were many tra-

jectories on the right lane of the highway which were added to the aggregation,

but only a few (one or two) which were on the departure of the highway. Due

to the merging, the aggregation was then moved more to the left because of the

high number of trajectories on the highway and the connection was moved, too.

The aggregation of a part of a circle traffic is shown in Figure 6.7e. This

is a more complex scenario, looking at the number of connections which the

input trajectories represent. The amount of input trajectories is lower than

in other scenarios. Nevertheless, different input trajectories are better to see

and the actions of the aggregation algorithm can be followed more easily. The

connections which are represented in the input trajectories are also created in the

trajectory aggregation and no connections are made which are not represented.

Figure 6.7f shows the aggregation of the scenario with a highway which

is below a normal street. There is a gap between the two directions of the

highway, going from top to bottom. In this scenario no connections should

be made because every direction is independent from the other directions and

there are no turns possible. The resulting aggregation shows that there were no

6.2. DEMO SCENARIOS 105

connections created.

Figure 6.7g shows the aggregation of the circle traffic. In comparison to

the scenario shown in Figure 6.7e, this scenario represents the complete circle

traffic and includes more input trajectories. Nevertheless, the requirements are

similar and the qualitative result is the same. All connections are found and no

additional connections are created. As in the other scenario, all directions are

also clear and do not deviate from the input directions.

The aggregation of the place surrounded by two one-way street is shown in

Figure 6.7h. There is only one connection represented in the input trajectories

which has to be created within a finalization step which is the T-crossing at the

top. This was created. The results for this scenario are again clear and contain

all semantic informations as well as they represent all directions of the input

trajectories and more or less do not deviate from them.

6.2.3 Results with Subtrajectory-Based Algorithm

The subtrajectory-based algorithm for the demo scenarios uses the same data

cleaning methods as the edge-based algorithm for the demo scenarios, see de-

scription in sections 6.2.2 and 2.2.6. The algorithm is already summarized for

the synthetic scenarios (see Section 6.1.3). Figure 6.8 shows the resulting tra-

jectory aggregations using the subtrajectory-based algorithm. Altogether, the

results are again very good to compare with the results of the edge-based algo-

rithm. Nevertheless, there are some differences which can be pointed out.

Figure 6.8a shows the resulting aggregation of the crossing scenario. Un-

fortunately, the connections cannot be judged only visually. Nevertheless, it

appears that at least one connection is doubled or in the wrong direction. Still,

a doubled connection can be detected afterwards by a road construction mech-

anism. Additionally, this is highly dependent on the thresholds which were set

for the scenario. Overall, this result still fulfills the criteria for this scenario.

The result on display in Figure 6.8b shows the resulting aggregation of the

T-crossing scenario. Qualitatively, this result is equal to the result of the edge-

based algorithm in this scenario. The same can be said about the scenarios

shown in Figures 6.8c, 6.8d and 6.8f.

Figure 6.8e shows one difference between the result of the subtrajectory-

based algorithm and the edge-based algorithm. The track leaving the circle to

the middle bottom is merged based on two input trajectories in the result shown

in Figure 6.7e, but is not merged in the result shown in Figure 6.8e with the

subtrajectory-based algorithm. Figure 6.9 shows the challenge for the iterative

merging process. It shows trajectory aggregation with a connection. Starting

on the left a track can follow two path in the trajectory aggregation. While

106 CHAPTER 6. EVALUATION

(a) Street crossing (b) T-crossing

(c) Highway
drive up

(d) Highway depar-
ture

(e) Entering and leaving of a circle (f) Highway below street

(g) Circle traffic (h) A place amid
lanes

Figure 6.7: Real cases (in Berlin) of GPS trace aggregation with edge-based
matching and merging

6.3. CONCLUSION 107

matching iteratively, the algorithm has to decide at the connection which path

to expand. At the moment of the decision the complete matching is not available

and the resulting distance comparing the both next nodes to each other has no

relevant qualitative information. This is why the algorithm just decides for

the path which is first in the iteration. Contrary to the challenge illustrated in

Figure 6.4, this can be optimized. One way is to first extend on path completely

until the distance threshold allows no more extension. Nevertheless, this also

increases the algorithm’s complexity and, dealing with a high number of input

trajectories, this effect marginalizes because than the next input trajectory will

be expanded on the more promising path.

The resulting trajectory aggregation on display in Figure 6.8g has all con-

nections which are represented by the input trajectories. The course of the

tracks represents the input trajectories well. Nevertheless, some parts near the

connections are not influenced by as many input trajectories as the trajectory

aggregation shown in Figure 6.7g and according to this their weight is lower.

For example this can be seen on the left part of the circle (not the tracks towards

and from). The cause is the same as described for Figure 6.8e.

In Figure 6.8h one can see another effect of the same cause. The trajectory

aggregation on display misses one connection which was created for the tra-

jectory aggregation shown in Figure 6.7h. One can see the missing connection

coming from the place going to the top of the scenario. The connection was not

created because there were always matchings found at the existing track which

prevented the expansion in the other direction.

6.3 Conclusion

The evaluation showed the feasibility of the two tested approaches. The first

approach uses an edge-based distance measure and an edge-based merging while

the second approach uses a trajectory-based distance measure and a modified

edge-based merging. Both approaches use data cleaning and finalization steps.

Between the results of the two approaches there are no differences which can

be directly linked to the fact that one uses an edge-based distance measure

and the other one a trajectory-based distance measure. Both approaches are

feasible to provide good aggregation results. The errors that were revealed

during the evaluation could be fixed either by adjusting parameters for matching

and merging or by adding rules to the finalization steps and were independent

from the matching and merging approaches.

108 CHAPTER 6. EVALUATION

(a) Street crossing (b) T-crossing

(c) Highway
drive up

(d) Highway depar-
ture

(e) Entering and leaving of a circle (f) Highway below street

(g) Circle traffic (h) A place amid
lanes

Figure 6.8: Real cases (in Berlin) of GPS trace aggregation with subtrajectory-
based matching and merging

6.3. CONCLUSION 109

y

x

agg

trace

Figure 6.9: Expansion at connections

110 CHAPTER 6. EVALUATION

Chapter 7

Conclusion

In this thesis the anonymization of trajectories with the objective of creating a

map afterwards is discussed. The thesis focuses on k-anonymity and preserving

privacy through generalization. Chapter 2 introduced the related work and set

the foundation for the following chapters including an architectural discussion

of the software. In Chapter 3 different distances and processes to match tra-

jectories are discussed. Simple distances need extensions to be promising for

trajectory aggregation of a road network. With these extensions they seem as

promising as more complex distances. Chapter 4 discussed different merging

approaches for trajectories. To some merging approaches small extensions seem

reasonable. However, none of the presented approaches can be directly excluded

from evaluation because it is not promising. Privacy Preservation is discussed

in Chapter 5. Due to the nature of the trajectory aggregation being a gener-

alization approach, the appropriate metric for anonymization is k-anonymity.

The evaluation in Chapter 6 showed good and appropriate results for both ap-

proaches which were evaluated. However, it cannot be said that each approach

has distinctive properties which the other approach does not have.

An important new aspect concerns the creation of a road network. While

on other works detailed information on the course of the road is omitted, this

is preserved in this work. The main challenges of matching and merging are

discussed in an exploratory manner. While first describing possible methods,

the most promising ideas are used for the evaluation. The evaluation shows

no significant qualitative difference between an edge-based and a subtrajectory-

based algorithm.

The remaining of this chapter includes Section 7.1 for limitations, Section 7.2

for lessons learned, and Section 7.3 for future work.

111

112 CHAPTER 7. CONCLUSION

7.1 Limitations

The software developed as part of this work creates knowledge which was not

there before. The result of a trajectory aggregation is always correct in the sense

that it was computed as designed. However, it is not important that the cal-

culation is correct, it is important whether the result satisfies user expectations

and whether it is proximate to the actual road network. Therefore, the con-

clusion is limited by the selected algorithms and the selected experiments. The

observations made in the experiments can only show tendencies which might be

proven wrong extending the space of the observation. The quality of the results

is subject to the writer and cannot be proven. However, the selected evaluation

approach is targeted to provide objective evidence of the feasibility of the evalu-

ated approaches. It includes exhaustive synthetic cases and real-world examples

which should cover a majority of the application scenarios.

7.2 Lessons Learned

Because it is not possible to prove the quality of the results, subjective state-

ments and tendencies are important. The original aim of the thesis was to

compare different approaches to generalize trajectory data. With different ap-

proaches the main concerns were distances and merging methods. Nevertheless,

during the work many small improvements were made which had a significant

effect on the results. It was often the case that the result did not appear satis-

fying and according to a deficiency an improvement was made. Two tendencies

were remarkable:

1. Stepwise improvements based on deficiencies of the results influenced the

quality of the results much more than exchanging a distance or adjusting

the distance threshold.

2. The more complex the distance and the merging approach the more com-

plex the measures to fix errors in the results became.

Figure 7.1 shows different trajectory aggregations from the crossing sce-

nario. The scenario has many input trajectories and many connections with a

high area density (many connections per m²). For all results the edge-based

algorithm was used. While changing the distance has no significant effect on

the results (compare Figure 6.7a with Figure 6.8a), omitting small improve-

ments lead to a significantly worse result. Figure 7.1b shows a result without

limiting and normalizing the edge length. Because of a high difference in edge

length, also the distance increases. Resulting, one threshold does not fit multi-

ple edge lengths any more and with the same threshold parts are added to the

7.2. LESSONS LEARNED 113

(a) All improvements included (b) Without edge length limitation

(c) Without merging of near connections (d) Without checking for existing connections

Figure 7.1: Street crossing (in Berlin) GPS trace aggregation with edge-based
matching and merging

aggregation which with normalization would have been matched and merged.

Not only the total length of the aggregation increases, but also the number of

connections which are made and which are not necessary. Figure 7.1c shows

another trajectory aggregation with unnecessary connections. In this case the

merging of near connections while checking for new connections to be made was

omitted. Therefore, there are no means to remove connections and in some

cases connections are created on a different path but with the same function.

Here, one can see two connections coming from right and going to the left at

the crossing. This can be detected afterwards. Nevertheless, detecting this in

advance guarantees a steady improvement of the aggregation and prevents the

provocation of errors. The same can be said for the result shown in Figure 7.1d

where the check for existing connections is omitted. Therefore, every connection

which can be detected according to the input trajectory is created even though

there already exists a connection on a slightly different path. Already visually

one can see the chaos which is created omitting this simple refinement.

The subtrajectory-based algorithm requires corrections additionally to the

corrections which are required by the edge-based algorithm. Figure 7.2 shows

the effect of omitting angle and length restrictions for the perpendiculars which

are used in the merging process. In comparison to the edge-based algorithm, the

subtrajectory-based algorithm matches complete blocks together and does not

calculate distances between edges. Therefore, the complete matching block is

processed in the merging step and a perpendicular is created for each edge of the

matched part of the trajectory aggregation and each edge of the matched part

114 CHAPTER 7. CONCLUSION

(a) All improvements included (b) Without perpendicular angle and length re-
striction

Figure 7.2: Place (in Berlin) GPS trace aggregation with subtrajectory-based
matching and merging

of the input trajectory. If no additional measures are taken then the resulting

trajectory aggregation is the one on display in Figure 7.2b. To avoid these long

mergings there have to be restrictions introduced which in a way replace the

edge-based distance (angle and length).

7.3 Future Work

The major parts of the future work include extensions to this work. There are

many extensions possible. The evaluation can be extended to more distance

measure as well as more merging methods. Additionally, the finalization steps

and cleaning methods can be changed, extended, and improved. For example,

the thresholds for the finalization steps are currently static and independent

values. However, it can be assumed that they are at least partially dependent

on the values which are set as thresholds for the normalization. Searching for

already existent connections, the number of nodes is used as threshold. Instead

of the number the length in meters seems also plausible. The work can also

be extended as a system. The system is currently an application working on a

desktop system with graphical user interface. It would be beneficial to distribute

the system on a server and multiple devices with different roles as described in

Section 2.2 and to evaluate the performance within a real-world scenario.

To create a prototype that is able to process a huge amount of data the next

step can be parallelization. This is an important challenge because depending

on the distribution of the system the privacy standards which can be fulfilled

are different. Some possible distributions are already discussed in Section 2.2.

Nevertheless, to decide for a distribution quantitative experiments should be

done.

7.3. FUTURE WORK 115

Concerning the main generalization algorithm, the possible extensions looked

less promising than the discussed algorithms. Nevertheless, it is possible to

extend the test scenarios, change the distance and the merging approach and to

vary the parameters for finalization (Section 4.4) or to come up with another set

of rules. For example, the threshold in steps for the connections can be replaced

by a threshold in meters which might also produce good or even better results.

116 CHAPTER 7. CONCLUSION

Chapter 8

Bibliography

[1] H. Alt and M. Godau. Computing the Fréchet distance between two polyg-

onal curves. International Journal of Computational Geometry & Applica-

tions, 5:75–91, 1995.

[2] D. Anthony, T. Henderson, and D. Kotz. Privacy in location-aware com-

puting environments. IEEE Pervasive Computing, 6(4):64–72, 2007.

[3] D. Ashbrook and T. Starner. Using GPS to learn significant locations and

predict movement across multiple users. Personal Ubiquitous Computing,

7(5):275–286, Oct. 2003.

[4] R. J. Bayardo and R. Agrawal. Data privacy through optimal k-

Anonymization. In Proceedings of the 21st International Conference on

Data Engineering, ICDE ’05, pages 217–228, Washington, DC, USA, 2005.

IEEE Computer Society.

[5] J. Biagioni and J. Eriksson. Inferring road maps from global positioning

system traces. Transportation Research Record: Journal of the Transporta-

tion Research Board, 2291(-1):61–71, Dec. 2012.

[6] BitMover, Inc. BitKeeper - the scalable distributed software configuration

management system. http://www.bitkeeper.com/. Accessed: 2016-03-

16.

[7] A. Bolbol, T. Cheng, I. Tsapakis, and J. Haworth. Inferring hybrid trans-

portation modes from sparse GPS data using a moving window SVM clas-

sification. Computers, Environment and Urban Systems, 36(6):526–537,

2012. Special Issue: Advances in Geocomputation.

117

118 CHAPTER 8. BIBLIOGRAPHY

[8] F. Bonchi, L. V. Lakshmanan, and H. W. Wang. Trajectory anonymity

in publishing personal mobility data. SIGKDD Explorations Newsletter,

13(1):30–42, Aug. 2011.

[9] C. Boucher and Z. Altamimi. ITRS, PZ-90 and WGS 84: current real-

izations and the related transformation parameters. Journal of Geodesy,

75(11):613–619, 2001.

[10] F. Brecht, B. Fabian, S. Kunz, and S. Müller. Are you willing to wait longer

for internet privacy? In Proceedings of the 19th European Conference on

Information Systems (ECIS 2011), Helsinki, Finland, 2011.

[11] F. Brecht, B. Fabian, S. Kunz, and S. Müller. Communication anonymizers:

Personality, internet privacy literacy and their influence on technology ac-

ceptance. In Proceedings of the 20th European Conference on Information

Systems (ECIS 2012), Barcelona, Spain, page 214, 2012.

[12] J. Brickell and V. Shmatikov. The cost of privacy: Destruction of data-

mining utility in anonymized data publishing. In Proceedings of the 14th

ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, KDD ’08, pages 70–78, New York, NY, USA, 2008. ACM.

[13] A. B. Brush, J. Krumm, and J. Scott. Exploring end user preferences

for location obfuscation, location-based services, and the value of location.

In Proceedings of the 12th ACM International Conference on Ubiquitous

Computing, Ubicomp ’10, pages 95–104, New York, NY, USA, 2010. ACM.

[14] K. Buchin, M. Buchin, J. Gudmundsson, M. Löffler, and J. Luo. Detecting

commuting patterns by clustering subtrajectories. In S.-H. Hong, H. Nag-

amochi, and T. Fukunaga, editors, Algorithms and Computation, volume

5369 of Lecture Notes in Computer Science, pages 644–655. Springer Berlin

Heidelberg, 2008.

[15] K. Buchin, M. Buchin, R. Leusden, W. Meulemans, and W. Mulzer. Algo-

rithms – ESA 2013: 21st Annual European Symposium, Sophia Antipolis,

France, September 2-4, 2013. Proceedings, chapter Computing the Fréchet

Distance with a Retractable Leash, pages 241–252. Springer Berlin Heidel-

berg, Berlin, Heidelberg, 2013.

[16] Canonical Ltd. Bazaar. http://bazaar.canonical.com/en/. Accessed:

2016-03-16.

[17] L. Cao and J. Krumm. From GPS traces to a routable road map. In

Proceedings of the 17th ACM SIGSPATIAL International Conference on

119

Advances in Geographic Information Systems, GIS ’09, pages 3–12, New

York, NY, USA, 2009. ACM.

[18] R. Chen, B. C. M. Fung, and B. C. Desai. Differentially private trajectory

data publication. Technical report, 2011.

[19] D. Cvrcek, M. Kumpost, V. Matyas, and G. Danezis. A study on the value

of location privacy. In Proceedings of the 5th ACM Workshop on Privacy in

Electronic Society, WPES ’06, pages 109–118, New York, NY, USA, 2006.

ACM.

[20] Deutsches Zentrum für Luft- und Raumfahrt. Bis auf den Meter genau:

Navigation mit Galileo. http://www.dlr.de/next/desktopdefault.

aspx/tabid-6804/11164_read-25462/. Accessed: 2016-03-16.

[21] M. M. Deza and E. Deza. Encyclopedia of distances. http://www.uco.

es/users/ma1fegan/Comunes/asignaturas/vision/Encyclopedia-of-

distances-2009.pdf, 2009. Accessed: 2016-03-16.

[22] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation

onion router. In 13th USENIX Security Symposium, San Diego, California,

USA. Usenix, 2004.

[23] C. du Mouza, W. Litwin, and P. Rigaux. SDR-tree: a Scalable Distributed

Rtree. In International Conference on Data Engineering (ICDE’07),

France, pages 296–305. IEEE , 2007.

[24] C. Dwork. Differential privacy. In The 33rd International Colloquium on

Automata, Languages and Programming, pages 1–12. Springer, 2006.

[25] T. Eiter and H. Mannila. Computing discrete Fréchet distance. http://

www.kr.tuwien.ac.at/staff/eiter/et-archive/cdtr9464.pdf, 1994.

Christian Doppler Laboratory for Expert Systems, TU Vienna. Accessed

2016-03-16.

[26] Ericsson. Ericsson mobility report, November 2013. http:

//www.ericsson.com/res/docs/2013/ericsson-mobility-report-

november-2013.pdf, 2013. Accessed: 2016-03-16.

[27] J. Fischer. GPS track aggregation with use of Fréchet distance. Bachelor

thesis, Freie Universität Berlin, Arbeitsgruppe Datenbanken und Informa-

tionssysteme, 2012.

[28] C. Garman, M. Green, and I. Miers. Decentralized anonymous credentials.

https://eprint.iacr.org/2013/622.pdf, 2013. Accessed: 2016-03-16.

120 CHAPTER 8. BIBLIOGRAPHY

[29] Git Community. Git. http://git-scm.com/. Accessed: 2016-03-16.

[30] GlobalWebIndex. Global mobile application usage. http://blog.

globalwebindex.net/Top-global-smartphone-apps, 2013. Accessed:

2016-03-16.

[31] Google. Android. http://www.android.com. Accessed: 2016-03-16.

[32] Google. Bbbike android client. https://play.google.com/store/apps/

details?id=org.selfip.leinad.android.bbbike&hl=de. Accessed:

2016-03-16.

[33] Google. Maps. http://maps.google.com. Accessed: 2016-03-16.

[34] Google. Runtastic Laufen & Fitness - Android-Apps auf Google Play.

https://play.google.com/store/apps/details?id=com.runtastic.

android&hl=de. Accessed: 2016-03-16.

[35] J. Gudmundsson, A. Thom, and J. Vahrenhold. Of motifs and goals: Min-

ing trajectory data. In Proceedings of the 20th International Conference

on Advances in Geographic Information Systems, SIGSPATIAL ’12, pages

129–138, New York, NY, USA, 2012. ACM.

[36] K. Haensch. Directive 95/46/EC of the european parliament and of the

council of 24 october 1995 on the protection of individuals with regard to

the processing of personal data and on the free movement of such data,

EUR-Lex - 31995L0046 - EN. http://eur-lex.europa.eu/LexUriServ/

LexUriServ.do?uri=CELEX:31995L0046:EN:HTML, 1995. Accessed: 2016-

03-16.

[37] M. Haklay and P. Weber. OpenStreetMap: User-generated street maps.

Pervasive Computing, IEEE, 7(4):12–18, 2008.

[38] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Wit-

ten. The WEKA data mining software: an update. SIGKDD Explorations

Newsletter, 11(1):10–18, 2009.

[39] A. R. Hevner, S. T. March, J. Park, and S. Ram. Design science in infor-

mation systems research. MIS Quarterly, 28(1):75–105, 2004.

[40] A. F. C. IV and C. Wenk. Geodesic Fréchet distance with polygonal ob-

stacles. http://www.cs.utsa.edu/dmz/techrep/2008/CS-TR-2008-010.

pdf, 2008. University of Texas at San Antonio. Accessed: 2016-03-16.

121

[41] J. H. Kang, W. Welbourne, B. Stewart, and G. Borriello. Extracting

places from traces of locations. In Proceedings of the 2Nd ACM Interna-

tional Workshop on Wireless Mobile Applications and Services on WLAN

Hotspots, WMASH ’04, pages 110–118, New York, NY, USA, 2004. ACM.

[42] S. Karagiorgou and D. Pfoser. On vehicle tracking data-based road net-

work generation. In Proceedings of the 20th International Conference on

Advances in Geographic Information Systems, SIGSPATIAL ’12, pages 89–

98, New York, NY, USA, 2012. ACM.

[43] J.-G. Lee, J. Han, and K.-Y. Whang. Trajectory clustering: A partition-

and-group framework. In Proceedings of the 2007 ACM SIGMOD Interna-

tional Conference on Management of Data, SIGMOD ’07, pages 593–604,

New York, NY, USA, 2007. ACM.

[44] F. G. Lemoine, S. C. Kenyon, J. K. Factor, R. G. Trimmer, N. K. Pavlis,

D. S. Chinn, C. M. Cox, S. M. Klosko, S. B. Luthcke, M. H. Torrence,

Y. M. Wang, R. G. Williamson, E. C. Pavlis, R. H. Rapp, and T. R. Olson.

The development of the joint NASA GSFC and NIMA geopotential model

EGM96. Technical report, 1998. NASA/TP-1998-206861.

[45] N. Li, T. Li, and S. Venkatasubramanian. t-Closeness: Privacy beyond

k-Anonymity and l-Diversity. In 23rd International Conference on Data

Engineering (ICDE), pages 106–115. IEEE Computer Society, 2007.

[46] Z. Li, J. Han, M. Ji, L.-A. Tang, Y. Yu, B. Ding, J.-G. Lee, and R. Kays.

MoveMine: Mining moving object data for discovery of animal move-

ment patterns. ACM Transactions on Intelligent Systems and Technology,

2(4):37:1–37:32, 2011.

[47] Z. Li, M. Ji, J.-G. Lee, L.-A. Tang, Y. Yu, J. Han, and R. Kays. MoveMine:

Mining moving object databases. In Proceedings of the 2010 ACM SIGMOD

International Conference on Management of Data, SIGMOD ’10, pages

1203–1206, New York, NY, USA, 2010. ACM.

[48] M. Lv, L. Chen, and G. Chen. Discovering personally semantic places from

GPS trajectories. In Proceedings of the 21st ACM International Conference

on Information and Knowledge Management, CIKM ’12, pages 1552–1556,

New York, NY, USA, 2012. ACM.

[49] A. Lysyanskaya. Signature Schemes and Applications to Cryptographic Pro-

tocol Design. PhD thesis, Massachusetts Institute of Technology, 2002.

122 CHAPTER 8. BIBLIOGRAPHY

[50] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam.

L-diversity: Privacy beyond K-anonymity. Transactions on Knowledge

Discovery from Data, 1(1), 2007.

[51] Mercurial Community. Mercurial SCM. http://www.mercurial-scm.

org/. Accessed: 2016-03-16.

[52] W. Meulemans. Source code. https://www.win.tue.nl/~wmeulema/

code.html, 2014. Accessed: 2016-03-16.

[53] J. Mitlmeier. Generierung von Straßengraphen aus aggregierten GPS-

Spuren. Master thesis, Freie Universität Berlin, Arbeitsgruppe Daten-

banken und Informationssysteme, 2012.

[54] A. Monreale, G. Andrienko, N. Andrienko, F. Giannotti, D. Pedreschi,

S. Rinzivillo, and S. Wrobel. Movement data anonymity through general-

ization. Trans. Data Privacy, 3(2):91–121, 2010.

[55] S. Müller, P. Mehta, and A. Voisard. Web and Wireless Geographical In-

formation Systems: 13th International Symposium, W2GIS 2014, Seoul,

South Korea, May 29-30, 2014. Proceedings, chapter Trajectory Aggrega-

tion for a Routable Map, pages 36–53. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2014.

[56] S. Müller, M. Janke, B. Fabian, and S. Kunz. Anonymisierung semantischer

Daten. In Statistische Woche, 2010.

[57] National Imagery and Mapping Agency. World Geodetic System 1984.

Technical Report TR 8350.2, 2000. http://earth-info.nga.mil/GandG/

publications/tr8350.2/wgs84fin.pdf. Accessed: 2016-03-16.

[58] M. E. Nergiz, M. Atzori, and Y. Saygin. Towards trajectory anonymization:

a generalization-based approach. In Proceedings of the SIGSPATIAL ACM

GIS 2008 International Workshop on Security and Privacy in GIS and

LBS, SPRINGL ’08, pages 52–61, New York, NY, USA, 2008. ACM.

[59] B. Niehofer, R. Burda, C. Wietfeld, F. Bauer, and O. Lueert. GPS commu-

nity map generation for enhanced routing methods based on trace-collection

by mobile phones. In Proceedings of the 2009 First International Confer-

ence on Advances in Satellite and Space Communications, SPACOMM ’09,

pages 156–161, Washington, DC, USA, 2009. IEEE Computer Society.

[60] Nokia. Here. http://here.com. Accessed: 2016-03-16.

123

[61] D. O’Shea. Real-world drive tests declare a verdict on GPS/-

GLONASS. http://electronicdesign.com/test-amp-measurement/

real-world-drive-tests-declare-verdict-gpsglonass. Accessed:

2016-03-16.

[62] S. Reddy, M. Mun, J. Burke, D. Estrin, M. Hansen, and M. Srivastava. Us-

ing mobile phones to determine transportation modes. ACM Transactions

on Sensor Networks, 6(2):13:1–13:27, 2010.

[63] S. Rezic. Bbbike. http://www.bbbike.de. Accessed: 2016-03-16.

[64] Runtastic GmbH. Runtastic. https://www.runtastic.com/. Accessed:

2016-03-16.

[65] M. I. Shamos. Computational geometry. PhD thesis, Yale University, 1978.

[66] R. W. Sinnott. Virtues of the Haversine. Sky and Telescope, 68(2):159+,

1984.

[67] I. Sivignon. DGtal: Fréchet shortcuts. http://libdgtal.org/doc/

nightly/moduleFrechetShortcut.html. Accessed: 2016-03-16.

[68] L. Stenneth, O. Wolfson, P. S. Yu, and B. Xu. Transportation mode detec-

tion using mobile phones and GIS information. In Proceedings of the 19th

ACM SIGSPATIAL International Conference on Advances in Geographic

Information Systems, GIS ’11, pages 54–63, New York, NY, USA, 2011.

ACM.

[69] H. Su, K. Zheng, H. Wang, J. Huang, and X. Zhou. Calibrating trajec-

tory data for similarity-based analysis. In Proceedings of the 2013 ACM

SIGMOD International Conference on Management of Data, SIGMOD ’13,

pages 833–844, New York, NY, USA, 2013. ACM.

[70] L. Sweeney. Guaranteeing anonymity when sharing medical data,

the Datafly system. http://dataprivacylab.org/datafly/paper4.pdf,

1997. Massachusetts Institute of Technology. Accessed: 2016-03-16.

[71] L. Sweeney. Achieving k-Anonymity privacy protection using generaliza-

tion and suppression. International Journal of Uncertainty, Fuzziness and

Knowledge-Based Systems, 10(5):571–588, 2002.

[72] L. Sweeney. k-Anonymity: A model for protecting privacy. Interna-

tional Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,

10(5):557–570, 2002.

124 CHAPTER 8. BIBLIOGRAPHY

[73] The Android Open Source Project. Location. https://developer.

android.com/reference/android/location/Location.html. Accessed:

2016-03-16.

[74] A. Thiagarajan, J. Biagioni, T. Gerlich, and J. Eriksson. Cooperative

transit tracking using smart-phones. In Proceedings of the 8th ACM Con-

ference on Embedded Networked Sensor Systems, SenSys ’10, pages 85–98,

New York, NY, USA, 2010. ACM.

[75] M. van Kreveld and J. Luo. The definition and computation of trajectory

and subtrajectory similarity. In Proceedings of the 15th Annual ACM In-

ternational Symposium on Advances in Geographic Information Systems,

GIS ’07, pages 44:1–44:4, New York, NY, USA, 2007. ACM.

[76] T. Vincenty. Direct and inverse solutions of geodesics on the ellipsoid with

application of nested equations. Technical Report 176. http://www.ngs.

noaa.gov/PUBS_LIB/inverse.pdf. Accessed: 2016-03-16.

[77] Vivid Solutions, Inc. JTS topology suite. http://www.vividsolutions.

com/jts/JTSHome.htm. Accessed: 2016-03-16.

[78] M. I. Voitsekhovskii. Hausdorff metric. https://www.

encyclopediaofmath.org/index.php/Hausdorff_metric, 2002. Ac-

cessed: 2016-03-16.

[79] Q. H. Vu, M. Lupu, and B. C. Ooi. Peer-to-Peer Computing - Principles

and Applications. Springer-Verlag Berlin Heidelberg, 2010.

[80] C. Wenk, R. Salas, and D. Pfoser. Addressing the need for map-matching

speed: Localizing global curve-matching algorithms. In 18th International

Conference on Scientific and Statistical Database Management, pages 379–

388, 2006.

[81] C. Williams. Robolectric: Unit test your android application. http://

robolectric.org/. Accessed: 2016-03-16.

[82] G. Xiaohui. FrechetDistance.java. http://mytraj.googlecode.com/svn-

history/r9/trunk/Frechet/src/geom/FrechetDistance.java. Ac-

cessed: 2016-03-16.

[83] H. Zhu, J. Luo, H. Yin, X. Zhou, J. Z. Huang, and F. B. Zhan. Mining tra-

jectory corridors using Fréchet distance and meshing grids. In Proceedings

of the 14th Pacific-Asia Conference on Advances in Knowledge Discovery

and Data Mining - Volume Part I, PAKDD’10, pages 228–237, Berlin, Hei-

delberg, 2010. Springer-Verlag.

Appendix A

Graphical User Interface

A.1 Installation and Start

Agg2Graph does not provide any packages for installation at the moment. In

order to be able to start the graphical user interface (GUI) one has to first

download the complete project from GIT:

git clone git@git.imp.fu-berlin.de:semu/agg2graph.git

After cloning the project one can enter the directory:

cd agg2graph

There one can start the GUI with java (tested version 1.7.0 75) including all

libraries in the classpath:

java -cp .:src:bin:libs/junit.jar:libs/org.hamcrest.core_1 .3.0.

v201303031735.jar:libs/jscience/jscience.jar:libs/sqlitejdbc -

v056.jar:libs/opencsv -2.3. jar:libs/jsi -1.0b8.jar:libs/trove

-2.0.2. jar:libs/dom4j -1.6.1. jar:libs/jaxen -1.1-beta -6.jar:libs/

weka.jar:libs/swingx -ws -1.0. jar:libs/jmapviewer/JMapViewer.jar:

libs/frechet.jar:libs/jts -1.8. jar:libs/swingx -all -1.6.4. jar:

libs/hamcrest -all -1.3. jar:libs/processing.jar:libs/jfreechart

-1.0.14. jar:libs/jcommon -1.0.17. jar:libs/jens.jar:libs/commons -

jxpath -1.3. jar:libs/frechet -0.0.1 - SNAPSHOT.jar:libs/apache -

mime4j -0.6. jar:libs/bsh -1.3.0. jar:libs/cglib -nodep -2.1_3.jar:

libs/commons -cli -1.2. jar:libs/commons -codec -1.6. jar:libs/

commons -collections -3.2.1. jar:libs/commons -compress -1.5. jar:

libs/commons -exec -1.1. jar:libs/commons -io -2.2. jar:libs/commons -

lang3 -3.1. jar:libs/commons -logging -1.1.1. jar:libs/cssparser

-0.9.9. jar:libs/gpx.jar:libs/gpxparser -20130603. jar:libs/

gpxparser -beta -0.3. jar:libs/guava -14.0. jar:libs/hamcrest -core

-1.3. jar:libs/hamcrest -library -1.3. jar:libs/htmlunit -2.12. jar:

libs/htmlunit -core -js -2.12. jar:libs/httpclient -4.2.1. jar:libs/

125

126 APPENDIX A. GRAPHICAL USER INTERFACE

httpcore -4.2.1. jar:libs/httpmime -4.2.1. jar:libs/ini4j -0.5.2. jar

:libs/jcommander -1.29. jar:libs/jetty -websocket -8.1.8. jar:libs/

jna -3.4.0. jar:libs/jna -platform -3.4.0. jar:libs/json -20080701.

jar:libs/junit -dep -4.11. jar:libs/log4j -1.2.16. jar:libs/nekohtml

-1.9.17. jar:libs/netty -3.5.7. Final.jar:libs/operadriver -1.3. jar

:libs/phantomjsdriver -1.0.3. jar:libs/protobuf -java -2.4.1. jar:

libs/sac -1.3. jar:libs/selenium -java -2.33.0. jar:libs/xml -apis.

jar:libs/serializer -2.7.1. jar:libs/testng -6.8. jar:libs/android -

all -4.4_r1 -robolectric -0.jar:libs/xercesImpl.jar:libs/xalan.jar

:libs/VectorGraphics2D -0.9.1 _proguard_base.jar:libs/

VectorGraphics2D -0.9.1 - javadoc.jar:libs/VectorGraphics2D -0.9.1 -

sources.jar:libs/VectorGraphics2D -0.9.1. jar de.fub.agg2graph.

Main testui GPXMergeAggregation

In the start command above the GPXMergeAggregation aggregation algo-

rithm was selected. For an overview for the command line parameters one can

execute the command without this parameter. The current available aggrega-

tion algorithms are:

- PathWCP

- PathFrechet

- PathAttraction

- PathIterative

- GPXMergeAggregation

- GPXFrechetAggregation

- EdgeAttraction

- EdgeIterative

- HausdorffWCP

- HausdorffFrechet

- HausdorffAttraction

- HausdorffIterative

- FrechetAttraction

- FrechetIterative

- ConformalAttraction

- ConformalIterative

- Original

- TraClus

- Others => PathWCP

The parameter testui tells the software to start in graphical user interface

mode.

The GUI is shown in Figure A.1. After starting the tool one should set

the aggregation algorithm if not already selected via command line parameters

before. The graphical user interface is divided in five areas. The areas from top

to bottom are:

1. the illustration of the part of the map which is currently on focus

2. the results of the intermediate steps shown in scrollable horizontal boxes

A.1. INSTALLATION AND START 127

Figure A.1: GUI start screen

128 APPENDIX A. GRAPHICAL USER INTERFACE

3. folders selected by tabs representing the parameters of the different steps

of the aggregation process

4. execute buttons for the different steps

5. the selection of the aggregation algorithm

Please keep in mind that different aggregation algorithms offer different pa-

rameters to configure. Therefore, changing the selection of the aggregation

algorithm will overwrite previously configured parameters.

A.2 Import

During the import step the files to be imported are selected and then imported.

The selection of source folders is limited to subdirectories of a fixed directory.

At the moment this is set to test/input starting from the root directory of the

software. The import settings are already visible on the start screen show in

Figure A.1 under the tab Input. Once the source folder is selected on can select

multiple files within this folder. All trajectories of the input files are imported

(one file might have one or more trajectories). To import the files the execute

button Input needs to be pressed. Figure A.2 shows the screen after the files

were imported. The map shows the two trajectories that were found in the

selected input file. The two trajectories can also be seen in the first box of the

intermediate step boxes.

A.3 Filter

After the cleaning finishes, the tab switches to the filter options. Currently, there

is only the option to restrict aggregations with a weight (or k) smaller than the

one which is set to be required. This is useful to test the anonymization for GPS

trajectories. After adjusting the value of kRequirement one needs to press the

button Filter to execute the filter.

A.4 Cleaning

Figure A.3 shows the screen after the filter options were applied. For cleaning

there are more options which can be set. They are shown in Figure A.3. The

options are:

1. filterBySegmentLength: A boolean value which enables the limitation

of the segment length if set to true. The segment is equal to a trajectory

A.4. CLEANING 129

Figure A.2: GUI screen after input

found in an input file. This can be used to filter out very short trajectories

which can be excluded already by their length as being useful for road

network generation.

2. minSegmentLength: The minimum length of a trajectory to be considered

if the option filterBySegmentLength is true.

3. maxSegmentLength: The maximum length of a trajectory to be considered

if the option filterBySegmentLength is true.

4. filterByEdgeLength: A boolean value which enables the limitation of the

edge or connection length if set to true. This is useful to normalize edges

within a trajectory. When calculating the distance between edges, the

length of the edges often influence the result and increase the difference of

edges with different lengths. This effect is unwanted and can be reduced

by normalization.

5. minEdgeLength: The minimum length of an edge if the option filterByEdgeLength

is true. If the value falls below the threshold, the point (or node) to be

inserted is omitted.

6. maxEdgeLength: The maximum length of an edge if the option filterByEdgeLength

130 APPENDIX A. GRAPHICAL USER INTERFACE

Figure A.3: GUI screen after filter

A.5. AGGREGATION 131

is true. If the value exceeds the threshold, the edge is divided in as many

parts which are necessary to fulfill the threshold.

7. filterByEdgeLengthIncrease: A boolean value which enables the par-

tition of segments (trajectories) if the thresholds are exceeded if set to

true. This option is useful for long absence of the GPS signal when a

very long edge is created, but the segments should be partitioned instead

because the edge created during the absence is not useful for road network

construction.

8. minEdgeLengthIncreaseFactor: The minimum factor which is necessary

for the partition to be applied. The factor calculates the current edge

length divided by the previous edge length.

9. minEdgeLengthAfterIncrease: The minimum edge length of the current

edge which is necessary for the partition to be applied.

10. filterZigzag: A boolean value which enables a filter for strong heading

change of sequential edges if set to true.

11. maxZigzagAngle: The maximum allowed heading change if filterZigzag

is true.

12. filterFakeCircle: A boolean value which enables a filter for sequential

heading changes near 180 degrees if set to true.

13. maxFakeCircleAngle: A fake circle is detected is for two sequential edges

the heading change is larger than 180 degrees. Setting the value for

maxFakeCircleAngle reduces this threshold by the given value.

Furthermore, there are the options for the Ramer-Douglas-Peucker Filter:

1. epsilon: This value expresses a tolerance for deviations to the given

route. The lower this value the nearer the filter output is to the original

trajectory. The higher this value the more simplified the result.

2. maxEdgeLength: This is a possibility to normalize edge length after the

filter is applied. The Ramer-Douglas-Peucker Filter will sum together

edges which were normalized before because this is a free simplification.

In order to keep the normalization it has to be normalized again.

A.5 Aggregation

Figure A.4 shows the GUI screen after the cleaning was applied. One can

see another result in the vertical boxes for the intermediate results. For the

132 APPENDIX A. GRAPHICAL USER INTERFACE

Figure A.4: GUI screen after cleaning

A.5. AGGREGATION 133

aggregation step settings for the matching, the distance and the merging can be

given. For every aggregation strategy thepossible settings are different. Here,

the settings for the GPXMergeAggregation are explained:

1. GpxmergeAggregationStrategy: This is the class which coordinates the

matching process.

(a) maxInitDistance: Before calculating the specialized distance func-

tion, this initial distance helps to filter candidates before applying

a more complex distance function. This value is the threshold for a

simple Euclidean distance for candidates to be considered.

(b) maxPathDifference: In the case of the GpxmergeAggregationStrategy

this is already the threshold for the applied distance function.

2. GpxmergeAnglePerpDistance: This is the class which represents the dis-

tance function.

(a) weight: This is the weight which is given to the angle function of

the distance in order to increase the importance of the difference in

angle.

(b) exponent: This is the exponent which is given to the value of the

angle difference to exponentially include the difference in angle for a

stronger effect of big differences.

3. GpxmergePriorityMerge: This is the class which coordinates the merging

process.

(a) onlyMoveToActualCrossings: When set to true matched nodes of

the aggregation are only moved towards the individual trajectory if

the perpendicular crosses an edge of the individual trajectory.

(b) pathDepth: This number controls the connection which are made in

the aggregation if the individual trajectory is along a track which is

not connected in the aggregation. If such a gap is found then existing

connections are searched within a path depth of this value.

(c) maxConnectEdge: This is the maximum length a connecting edge can

have. If this threshold is exceeded then the edge is partitioned in as

many parts such that no edge is longer than this threshold.

(d) connectThreshold: If this threshold is exceeded then no connection

is created although indicated.

(e) angleThreshold: If this threshold is exceeded then no connection is

created although indicated.

134 APPENDIX A. GRAPHICAL USER INTERFACE

Figure A.5: GUI screen after aggregation

(f) mergeConnections: If this value is set to true then after creating a

new connection it is checked whether it is possible to merge with an

existent, using the pathDepth as search space.

Pressing the button Aggregation start the aggregation. The screen after

the aggregation is shown in Figure A.5. The trajectory aggregation is shown

in black and the perpendiculars used for the movement in yellow and the edges

which took part in the merging process are marked red.

A.6. ROAD GENERATION 135

A.6 Road Generation

The settings for the road generation are shown in Figure A.5. The possible

settings are:

1. DefaultAggFilter: A filter for the trajectory aggregation as prepocessing

step before the road network generation.

(a) minEdgeWeight: The minimum weight that an edge of the trajectory

aggregation needs to have to be considered in the road generation

step.

2. Road Network: Setting for the road network generation itself

(a) DefaultRoadObjectMerger: Settings for the merging of connection

in the trajectory aggregation. The end of a trajectory also accounts

as a connection.

i. maxIntersectionMergeDistance: This threshold in which con-

nections of the trajectory aggregation are merged.

ii. maxRoadMergeDistance: This threshold in which edges inbe-

tween connections of the trajectory aggregation are merged.

(b) DefaultRoadTypeClassifier: Settings for the tags which can be

given a street in OpenStreetMap format to classify a street.

i. minWeightPrimary: A minimum weight a trajectory in the tra-

jectory aggregation has to have to be translated as primary

street.

ii. minWeightSecondary: A minimum weight a trajectory in the

trajectory aggregation has to have to be translated as secondary

street.

iii. minWidthPrimary: A minimum width (calculated by the vari-

ance of the aggregated trajectories) a trajectory in the trajectory

aggregation has to have to be translated as primary street.

iv. minWidthSecondary: A minimum width a trajectory in the tra-

jectory aggregation has to have to be translated as secondary

street.

(c) DefaultRoadNetworkFilter: The filter which is applied after the

road network generation to improve the road network.

i. removeBorderRoads: A boolean value which if set to true en-

ables a filter which deletes roads created at the border of the

bounding box of the trajectory aggregation.

136 APPENDIX A. GRAPHICAL USER INTERFACE

Figure A.6: GUI screen after road generation

ii. minBorderRoadLength: A minimum threshold for a road at the

border to be identified as border road and deleted.

iii. removeIsolatedRoads: A boolean value which if set to true

enables a filter which deletes roads without a connected crossing.

iv. minIsolatedRoadLength: A minimum threshold for a road to

be identified as isolated road and deleted.

Pressing the button Road Gen start the road network generation.

A.7 Export

The screen after the road network generation is shown in Figure A.6. The

setting for the export can also be seen in Figure A.6.

Appendix B

Zusammenfassung

Die vorliegende Arbeit beschreibt ein Verfahren zur Anonymisierung von Tra-

jektorien, welches auf eine nachgelagerte automatisierte Kartengenerierung aus-

gerichtet ist. Eine automatisierte Kartengenerierung ist in der Literatur schon

oftmals behandelt worden, vor allem seit die Verbreitung von Geräten mit

GPS und Internetzugang zunimmt. Weiterhin gibt es bereits Verfahren zur

Anonymisierung von GPS Spuren. Diese konzentrieren sich aber nicht auf

eine mögliche spätere Verwendung zur Erstellung von Kartenmaterial. Der

nachgelagerte Nutzen dieser anonymisierten Daten besteht vor allem in der

späteren Datenanalyse, z.B. der Beantwortung von folgenden Fragen: Was sind

hauptsächliche Verkehrsströme? Zwischen welchen Stadtgebieten gibt es die

meisten Verbindungen? Dabei werden Detaildaten vernichtet, da sie für die

Beantwortung nicht relevant sind. Diese Daten sind aber wichtig, um Aussagen

über eine Karte zu treffen: Durch den genauen Verlauf von GPS Spuren kann

auf den Straßenverlauf geschlossen werden, durch das Erkennen von Bewegun-

gen können Abbiegevorschriften erstellt werden und durch die Varianz von GPS

Spuren kann die Straßenbreite oder die Anzahl der Spuren ermittelt werden.

Mit einem speziell dafür ausgerichtetem Anonymisierungsverfahren, welches

in einen Datensammelprozess eingebunden werden kann, werden Detailinfor-

mationen erhalten und übergeordnete Informationen verworfen. Wichtige Be-

standteile sind die Erkennung von zusammengehörigen Trajektorien und die

Zusammenfassung und Repräsentation von Trajektorien.

Die Evaluation vergleicht das Zusammenführen von GPS Spuren zu Ag-

gregationen. Dabei werden insbesondere mehrere Distanzmaße und mehrere

Strategien zur Zusammenführung miteinander verglichen. Eine wesentliche Aus-

sage ist, dass kleinere Verbesserungen, welche darauf ausgerichtet sind, konkrete

Probleme zu lösen, einen größeren Beitrag zu der Ergebnisgüte leisten können

als die Anwendung unterschiedlicher Distanzmaße.

137

138 APPENDIX B. ZUSAMMENFASSUNG

Appendix C

Abstract

The present paper describes a method to anonymize trajectories which focuses

on a subsequent automated map construction. A process of automated map con-

struction is intensively discussed in related work, particularly since the availabil-

ity of devices with GPS and Internet access is increasing rapidly. Furthermore,

there are already means to anonymize trajectory data. However, these con-

centrate not on a subsequent map construction. The subsequent use of these

anonymized data is mostly data analysis which can, for example, answer the fol-

lowing questions: What are main traffic flows? Which districts have the highest

number of connections in-between? Within this process detailed data is de-

stroyed because it is not relevant to answer those questions. However, detailed

data is necessary to provide evidence about a map: With the help of the exact

course of the GPS traces, the exact course of the road can be deducted, with

the analysis of movements turn rules can be created, and with the variation of

the GPS traces the width of the road or the number of lanes can be determined.

With the help of a map construction targeted anonymization method, which

can be integrated in a data collection process, detailed data is preserved and

generic data is dismissed. Important elements are the identification of proximate

trajectories and the aggregation and representation of trajectories.

The evaluation compares the merging of GPS trajectories to trajectory ag-

gregations. Therefore, particularly multiple distance measures and multiple

merging strategies are compared to each other. An important conclusion is

that little improvements, which are targeted to solve practical problems, have

a stronger impact on the quality of the result than the application of different

distance measures.

139

140 APPENDIX C. ABSTRACT

Appendix D

Selbstständigkeitserklärung

Hiermit erkläre ich, die vorliegende Arbeit selbstständig und unter Angabe aller

verwendeten Hilfsmittel angefertigt zu haben. Die Arbeit wurde vorher nicht

schon einmal in einem früheren Promotionsvorhaben verwendet.

141

