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Preface

Ryser’s Conjecture from the year 1971 is that the inequality τ(H) ≤ (r−1)ν(H)
holds for every r-partite r-uniform hypergraph H, where τ(H) and ν(H) rep-
resent the vertex cover number and the matching number, respectively. The
conjecture is still wide open, though advances in various directions have been
made by Aharoni, Berger, Füredi, Haxell, Lovász, Mansour, Scott, Song, Tuza,
Yuster, and Ziv, among others. In 1999, Aharoni gave a proof of the conjecture
for the case r = 3.

The main result of this thesis is the characterization of all 3-partite 3-uniform
hypergraphs H for which τ(H) = 2ν(H), in other words, the extremal hyper-
graphs for Ryser’s Conjecture for r = 3. These all have a special form, which we
call ”home-base” hypergraphs. They consist of ν(H) subhypergraphs, each with
τ = 2 and ν = 1, together with possibly some extra hyperedges that intersect
these parts in a very particular fashion. Along the way towards the proof of this
characterization, we also find a characterization of all bipartite graphs that are
extremal for a certain topological problem.

For both characterizations, we utilize knowledge about the topology of the
independence complex I of line graphs. For this reason, we next investigate
a lower bound on the connectedness of I(L(H)) with respect to τ(H). We
conjecture that this bound can be improved in the case of r-partite r-uniform
hypergraphs, and we verify the conjecture for the special cases r = 3 and τ(H) ≤
12.

A theorem of Meshulam that concerns the connectedness of the independence
complex of a graph plays an important role in our proofs. The proof of this
theorem that one finds in the literature is rather algebraic. We give a more
geometric proof using certain triangulation techniques. The correctness of these
methods, which were used for instance by Szabó and Tardos, has recently come
into question. In the last part of this thesis, we provide a thorough proof of
their correctness.
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I also wish to thank Jǐŕı Matoušek and the group of Emo Welzl for a won-
derful research stay in Zurich.

I am grateful also to Tillmann Miltzow and Peter Patzt for being good friends
and for sharing their math with me.

And of course I could not have done this without my parents’ loving support.
You guys are amazing.

v



ACKNOWLEDGEMENTS vi



Chapter 1

Introduction

1.1 Ryser’s Conjecture

A hypergraph H is a pair (V,E), where V = V (H) is the set of vertices, and
E = E(H) is a multiset of subsets of vertices called the edges of H. The
number of times a subset e ⊆ V appears in E is called the multiplicity of e.
If the cardinality of every edge is r, we call H an r-uniform hypergraph, or
r-graph for short. A 2-graph is called a graph. We mostly have no restriction
on the multiplicity of edges; whenever we want to assume that each multiplicity
is at most 1, we will explicitly say simple hypergraph, simple r-graph, or simple
graph. An edge e ∈ E is called parallel to an edge f ∈ E if their underlying
vertex subsets are the same. In particular, every edge is parallel to itself.

Let H be a hypergraph. A matching in H is a set of disjoint edges of H,
and the matching number, ν(H), is the size of the largest matching in H. If
ν(H) = 1, then H is called intersecting. A vertex cover of H is a set of vertices
which intersects every edge of H. The size of the smallest vertex cover is called
the vertex cover number of H and is denoted by τ(H). It is immediate to see
that if H is r-uniform, then the following bounds always hold:

ν(H) ≤ τ(H) ≤ rν(H).

Both inequalities are easily seen to be tight for general hypergraphs. Ryser’s
Conjecture (see e.g. [29]), which appeared first in the early 1970’s, states that
the upper bound can be lowered by considering only r-partite hypergraphs. (An
even stronger conjecture was made around the same time by Lovász [20].) An
r-graph is called r-partite if its vertices can be partitioned into r parts called
vertex classes such that every edge intersects each vertex class in exactly one
vertex.

Conjecture 1 (Ryser’s Conjecture). If H is an r-partite r-graph, then

τ(H) ≤ (r − 1)ν(H).

1
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This conjecture turned out to be extremely difficult to attack. It is solved
completely only for r = 2 and 3, and a few partial results exist for r = 4
and 5. The conjecture is wide open for r ≥ 6. In particular, when r = 2,
the conjecture is just the well known König’s Theorem. It has been proven
for intersecting hypergraphs when r ≤ 5 by Tuza ([28, 29]), with r ≥ 6 still
open. The general case of the conjecture for r = 3 was solved by Aharoni via
topological methods [2]. Fractional versions of the conjecture have also been
studied, and it was shown by Füredi [12] that τ∗ ≤ (r − 1)ν, and shown by
Lovász [20] that τ ≤ r

2ν
∗, where τ∗ and ν∗ are the fractional vertex cover

and matching numbers, respectively. Aharoni and Berger [3] also formulated a
generalization of the conjecture to matroids, which has been partially solved in
a special case by Berger and Ziv [8]. Mansour, Song, and Yuster [21] have found
bounds on the minimum number of edges for an intersecting r-partite r-graph
to be tight for Ryser’s conjecture, with exact numbers known only for the cases
r ≤ 5. Haxell and Scott [17] have proven that for r = 4, 5 there is an ε > 0 such
that τ(H) ≤ (r − ε)ν(H) for any r-partite r-graph H.

One plausible approach to Ryser’s Conjecture for 4-graphs is via studying
the 3-uniform link hypergraphs. Given three of the four vertex classes V1, V2,
V3 of a 4-partite 4-graph H, the link hypergraph of V4 in H is the multiset of
those 3-element sets which are the intersection of an edge of H with V1∪V2∪V3.
Having structural information on the links would be helpful in understanding the
situation for 4-graphs. Aharoni’s proof however does not provide information
on the 3-graphs which are extremal for his theorem. Our eventual aim is to give
a complete characterization of them.

We say that a 3-partite 3-graph H is Ryser-extremal if τ(H) = 2ν(H). There
are two types of intersecting Ryser-extremal 3-graphs. One is the truncated
Fano plane F , shown below:

Figure 1.1: The truncated Fano plane F .

One may remove any edge from F , and the resulting hypergraph is still Ryser-
extremal. Call this hypergraph H, and note that H has three vertices of degree
2. Note that every edge of H contains two of these three vertices. Adding edges
that intersect at least two of these three vertices yields another Ryser-extremal
3-graph, as pictured below:

Figure 1.2: The 3-graph H, with possible additional edges drawn in dashed
lines.
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The main result of the thesis is that all Ryser-extremal 3-partite 3-graphs
are built out of these two types of hypergraphs. This motivates the definition
of a home-base hypergraph:

Definition 1.1.1. A home-base hypergraph is a 3-partite 3-graph H consisting
of ν(H) disjoint copies of F and H, possibly together with some additional
edges, each of which contain two degree 2 vertices of some copy of H.

We call hypergraphs of this form home-base hypergraphs because every edge
has a unique copy of F or H that it can consider its “home.” In Chapter 3,
we will give a slightly different definition of home-base hypergraphs, which can
easily be seen to be equivalent to the one given here. The definition in Chapter 3
is designed to highlight the parts of the structure that are uniquely determined.
The main part of this thesis is devoted to proving the following theorem:

Theorem 1.1.2. Let H be a 3-partite 3-graph. Then τ(H) = 2ν(H) if and only
if H is a home-base hypergraph.

In Chapter 2 we develop the necessary knowledge about the link graphs of
Ryser-extremal 3-graphs. First we show that these link graphs are extremal with
respect to a natural extremal graph theoretic problem of topological nature,
namely the topological connectedness of the independence complexes of their
line graphs is lowest possible for their matching number (the topological terms
will be explained in Chapter 2). In Chapter 2, we characterize all those bipartite
graphs that are extremal for this problem (Theorem 2.1.4). The structure we
derive from this characterization theorem will be an integral part of our proof
of Theorem 1.1.2 in Chapter 3. Nevertheless, we find the extremal graph theory
problem interesting in its own right.

In Chapter 4 we discuss a related extremal problem of a topological nature,
which may possibly yield some insight into the case of 4-partite 4-graphs. In it,
we find a lower bound on the connectedness of the independence complex of line
graphs in terms of the vertex cover number of the hypergraph. The bound is
tight for general r-graphs, but there is hope to improve it for r-partite r-graphs.

Then, in Chapter 5 we give a solid foundation to certain proof techniques
involving triangulations of spheres, and give a triangulation proof of Meshulam’s
Theorem (Theorem 2.1.5), which relates the connectedness of the independence
complex of a graph to that of certain modifications of the graph.

1.1.1 Extremal Problems with Many Extremal Structures

Before beginning the main work of this thesis, we take a moment here to re-
flect on why it is that our task of characterizing Ryser-extremal hypergraphs
seems to require rather complex arguments. For many of the questions of ex-
tremal combinatorics that are solved, there is a unique example that provides
the extremal value. In such cases, a proof of optimality can be guided by the
properties and features of this extremal structure. The situation becomes more
complex for problems in which there there are two or more very different ex-
trema. Then a purely combinatorial argument is less and less likely to succeed,
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because the proof must eventually consider all the extremal structures. For our
characterization problem, the number of extremal structures is infinite for every
fixed value of the benchmark parameter. This is one of the few cases in which
the full characterization of the extremal structures of an extremal combinatorial
problem with infinitely many extrema is known.

On rare occasions, the difficulties posed by multiple extremal examples can
be mitigated by realizing that the combinatorial problem, or rather its extremal
structures, hide the features and concepts of another mathematical discipline in
the background. In such cases, the extremal structures can be described more
naturally in “another mathematical language,” making a translation back to
the language of combinatorics at least a possibility.

A simple example of a problem of this sort is the one described by the famous
Oddtown Theorem of Berlekamp [9]. The problem asks for the maximum size
of a family of subsets of odd cardinality in an n-element base set, such that the
intersection of any two members of the family has even cardinality. It turns out
that this problem can easily be solved by a simple application of linear algebra,
even though there are superexponentially many extremal structures [7, Exercise
1.1.14]. A combinatorial characterization of the extremal families however is
still outstanding, and it is questionable whether it is feasible at all.

Another prominent example is the extremal problem known as Sidorenko’s
Conjecture [25, 24]. Roughly speaking, Sidorenko’s Conjecture asks for the min-
imum number of copies of a fixed bipartite graph H in a “large” graph on n
vertices with m = Θ(n2) edges. The conjecture states that for every bipartite
graph H the minimum is essentially taken by quasirandom graphs. Sidorenko’s
conjecture is known to hold for many bipartite graphs, for example trees, even
cycles, the hypercube, complete bipartite graphs, but wide open in general;
see [19] and its references. Since the random graph G(n,m) is conjectured to
be essentially extremal for the problem, it is then also plausible to expect that
there are many combinatorially different extremal or close to extremal construc-
tions and hence a combinatorial characterization of the extremal examples seems
out of reach. However, in the analytic language of graph limits, where graphs
are interpreted as symmetric measurable functions on the unit square (called
graphons), the asymptotically equivalent formulation of Sidorenko’s Conjecture
is conjectured to have a unique extremal graphon (for every bipartite graph H
with a cycle): the constant function 2m/n2. This stronger uniqueness state-
ment, called the forcing conjecture, is also known to hold for all cases when
Sidorenko’s Conjecture is known to be true [19]. So it seems that the concept of
graph limits provide the proper, now analytic, language for Sidorenko’s Conjec-
ture and it would probably be futile to try to give a combinatorial description
of the various (almost) extremal structures, because they are unique only in the
language of analysis.

Aharoni [2] invoked topological considerations to prove Ryser’s Conjecture
for 3-graphs and hence overcame the combinatorial difficulty of having infinitely
many extremal structures. Our main tasks, the characterization of the extremal
3-graphs for Ryser’s Conjecture (in Chapter 3) and their link-graphs (in Chap-
ter 2), go a step further in this direction: they show that the extremal structures
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naturally live in the field of topology and hence it is not unexpected that their
combinatorial characterization is complicated.



CHAPTER 1: Introduction 6



Chapter 2

Connectedness of Line
Graphs of Bipartite Graphs

Joint work with Penny Haxell and Tibor Szabó.

2.1 Introduction

2.1.1 Connectedness of Line Graphs of Bipartite Graphs

The connectedness of the independence complex will be our main parameter to
describe the line graphs of the link graphs of Ryser-extremal 3-graphs.

Let k ≥ −1 be an integer. A topological space X is said to be k-connected if
for any integer j with −1 ≤ j ≤ k, any continuous map from the j-dimensional
sphere Sj into the space X can be extended to a continuous map from the
(j+ 1)-dimensional ball Bj+1 to X. The connectedness of X, denoted conn(X)
is the largest k for which X is k-connected.

A simplicial complex K is a family of simplices in RN such that (1) if τ is
a face of a simplex σ ∈ K then τ ∈ K and (2) if σ, σ′ ∈ K then σ ∩ σ′ is a
face of both σ and σ′. The connectedness of a simplicial complex K is just the
connectedness of its body ‖K‖ (the union of its simplices).

An abstract simplicial complex C is a simple hypergraph that is closed under
taking subsets. The simple hypergraph consisting of the vertex sets of simplices
of a simplicial complex K (called the vertex scheme of K) is an abstract simplicial
complex. Every abstract simplicial complex C has a geometric realization, that
is a simplicial complex whose vertex scheme is C. The geometric realization
is unique up to homeomorphism. The connectedness of an abstract simplicial
complex is just the connectedness of its geometric realization.

For a graph G, we define the independence complex I(G) to be the abstract
simplicial complex on the vertices of G whose simplices are the independent sets
of G. We will simply write conn(G) for conn(I(G)), and refer to this as the
connectedness of G.

7
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One of the basic parameters of a simplicial complex is its dimension, that
is, the largest dimension that occurs among its simplices. The connectedness of
an arbitrary simplicial complex, or even of an arbitrary graph’s independence
complex can be arbitrarily small while its dimension is large: just consider
the complete bipartite graph Kd+1,d+1, having an independence complex with
dimension d and connectedness −1.

Comparing dimension and connectedness becomes more interesting if we
introduce restrictions on the graphs we consider. For line graphs for example,
a lower bound on the connectedness in terms of the dimension is implicit in
the work of Aharoni and Haxell [6]. The line graph L(H) of a hypergraph H is
the simple graph L(H) on the vertex set E(H) with e, f ∈ V (L(H)) adjacent
if e ∩ f 6= ∅. With foresight, we state the lower bound of [6] in a more general
format, which will be necessary for our investigations. Note that the dimension
of the independence complex of a line graph of a hypergraph is just its matching
number minus 1.

Theorem 2.1.1. Let G be an r-graph, and let J ⊆ L(G) be a subgraph of the
line graph of G. Let M ⊆ V (J) be a matching in G. Then

conn(J) ≥ |M |
r
− 2.

In particular, for any graph G we have conn(L(G)) ≥ ν(G)
2 − 2.

Aharoni and Haxell [6] essentially proved that the connectedness of the line
graph is at least the so called independent set domination number iγ of the
line graph minus 2 (where iγ(G) is the smallest number x, such that every
independent set of G can be dominated with x vertices.) Theorem 2.1.1 then

follows from iγ(L(H)) ≥ ν(H)
r , which is immediate from the definitions.

We begin our study of Ryser-extremal 3-graphs with their link graphs.

Definition 2.1.2. Let H be a 3-partite 3-graph with parts V1, V2, and V3. Let
S ⊆ Vi for some i = 1, 2, 3. Then the link graph lkH(S) is the bipartite graph
with vertex classes Vj and Vk (where {i, j, k} = {1, 2, 3}) whose edge multiset
is {e \ Vi : e ∈ E(H), e ∩ Vi ⊆ S}.

Note that a pair of vertices appears as an edge in lkH(S) with the same
multiplicity as the number of edges in H that contain it together with a vertex
from S.

First we will show that the link graphs of Ryser-extremal 3-graphs attest
that Theorem 2.1.1 is optimal for r = 2, that is, among bipartite graphs they
minimize the connectedness of the independence complex of the line graph.

Theorem 2.1.3. If H is a 3-partite 3-graph with vertex classes V1, V2, and V3,
such that τ(H) = 2ν(H), then for each i we have

(i) conn(L(lkH(Vi))) = ν(H)− 2.

(ii) ν(lkH(Vi)) = τ(H).
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In particular

conn(L(lkH(Vi))) =
ν(lkH(Vi))

2
− 2. (2.1.1)

We prove Theorem 2.1.3 in Section 2.3. On the way, we also give a proof of
Aharoni’s Theorem [2], that is somewhat different from the original argument.
We also mention here that in Chapter 3 we derive, as a consequence of Theo-
rem 1.1.2, a sort of converse of Theorem 2.1.3: every bipartite graph which is
optimal for Theorem 2.1.1 is the link of some Ryser-extremal 3-graph.

In the main theorem of this chapter, proven in Section 2.4, we characterize
those bipartite graphs which are extremal for Theorem 2.1.1 and hence we also
obtain valuable structural information about the link graphs of Ryser-extremal
3-graphs.

Theorem 2.1.4. Let G be a bipartite graph. Then conn(L(G)) = ν(G)
2 − 2 if

and only if G has a collection of ν(G)/2 pairwise vertex-disjoint subgraphs, each
of them a C4 or a P4, such that every edge of G is parallel to an edge of one of
the C4’s or is incident to an interior vertex of one of the P4’s.

To be precise, in this chapter, we will in fact only prove the “only if” direction
of this theorem. While it is possible to prove the “if” direction directly by
finding some generalized octahedra in the independence complex that cannot
be filled, we will make use of the easy direction of Theorem 1.1.2. Thus, the
other direction will be proven in Chapter 3.

2.1.2 Topological Tools

The proofs of Theorems 2.1.3 and 2.1.4, as well as the proof of Theorem 1.1.2
(given in Chapter 3) use two tools to bound the topological connectedness of
graphs.

The first one is a non-homological version of a theorem of Meshulam [22],
which is particularly well-suited for inductive arguments. Let G be a graph,
and let e be an edge of G. We denote by G − e the graph G with the edge e
deleted. We denote by G > e the graph G with both endpoints of e and their
neighbors deleted. G> e is called G with e exploded. We will often write edges
with endpoints x and y as xy.

Theorem 2.1.5. Let G be a graph and let e ∈ E(G). Then we have

conn(G) ≥ min {conn(G− e), conn(G> e) + 1} . (2.1.2)

Meshulam proved a homological version of this theorem, where everywhere
in the statement conn is replaced by the homological connectedness connH .
As connH(G) could be strictly larger than conn(G), these two statements do
not immediately imply each other. In Section 2.2 we indicate how to extend
Meshulam’s argument using the approach of Adamaszek and Barmak [1] and
obtain (2.1.2). It is also possible to give a homology-free proof of Theorem 2.1.5
via triangulations along the lines of [27] (see Chapter 5). Theorem 2.1.5 in this
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formulation but with a modified (non-topological) definition of conn was also
stated in [14] and proved without direct reference to topology.

Our second tool makes a direct connection between the size of the largest
hypergraph matching and the connectedness of the link.

Theorem 2.1.6. Let d ≥ 0 be an integer and let H be a 3-uniform 3-graph with
vertex classes V1, V2, and V3. If we have that conn(L(lkH(S))) ≥ |S| − d − 2
for every S ⊆ Vi, then ν(H) ≥ |Vi| − d.

For d = 0 this theorem is implicit in [6] and was stated explicitly in [3]. For
our application we will need the deficiency version with d ≥ 0. We prove it by
constructing a special colored triangulation of the simplex and using Sperner’s
Lemma. The argument works naturally in the following more general setup
about colored simplicial complexes.

A coloring of the vertices of a simplicial complex C by colors from a set X
is a function χ : V (C) → X. For a subset S ⊆ X of colors, denote by C|S the
subcomplex of C induced by the vertices which have colors from S: that is, let
V (C|S) = χ−1(S) and C|S = {σ ∈ C : χ(σ) ⊆ S}.

Theorem 2.1.7. Let C be a simplicial complex whose vertices are colored with
colors from a set X, and let d ≥ 0 be an integer. If for every S ⊆ X we have
that conn(C|S) ≥ |S|−d−2, then C has a rainbow simplex with |X|−d vertices.

For the proof of Theorem 2.1.6 the crucial thing to note is that if for each
hyperedge xyz ∈ E(H) we color the corresponding edge xy of the link graph
lkH(Vi) with the third vertex z ∈ Vi, then a matching in the hypergraph H cor-
responds to a rainbow matching (a matching with edges having pairwise distinct
colors) in the link graph lkH(Vi). Then Theorem 2.1.6 is an immediate conse-
quence of Theorem 2.1.7 applied with the independence complex I(L(lkH(Vi)))
of the link graph. Indeed, I(L(lkH(Vi)))|S = I(L(lkH(S))) and the vertices of
a rainbow simplex in the independence complex of L(lkH(Vi)) correspond to
pairwise disjoint edges in the link lkH(Vi)), which extend to pairwise distinct
vertices in Vi, and hence form a hypergraph matching.

2.1.3 The Structure of the Chapter

In Section 2.2, we prove Theorem 2.1.7 using triangulations. As we have seen
above, Theorem 2.1.6 is a corollary. We also discuss here the proof of Theo-
rem 2.1.5 and include an argument to derive Theorem 2.1.1 from it.

In Section 2.3 we go on to prove Theorem 2.1.3, and on the way we reprove
Aharoni’s Theorem for the 3-partite case of Ryser’s Conjecture.

In Section 2.4 we prove the main theorem of the chapter, Theorem 2.1.4. We
show that those bipartite graphs whose line graphs are optimal for Theorem 2.1.1
must have a certain form, which we call a CP-decomposition. We show a slightly
more general statement involving any subgraph of the line graph of a bipartite
graph. The precise definition of CP-decomposition in this general setup is given
in Section 2.4.
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In Section 2.5 we prove a theorem that will be crucial for our proof of The-
orem 1.1.2 in Chapter 3. We define the notion of good sets. Good sets will
turn out to be very useful to have in one of the link graphs of a Ryser-extremal
3-graph. In the main theorem of Section 2.5 we show that the lack of good
sets in a bipartite graph imposes very strong restrictions on its structure. The
proof of this theorem is included in this chapter because it uses several of the
technical definitions and lemmas introduced for the proof of our main theorem
in Section 2.4.

In the final section we collect several remarks and open problems.

2.2 Topological Preliminaries

2.2.1 Rainbow Simplices

We now briefly introduce a couple of topological notions which we need for the
proof of Theorem 2.1.7.

The join of two abstract simplicial complexes C and D is the abstract sim-
plicial complex C ∗ D = {(σ × {0}) ∪ (τ × {1}) : σ ∈ C, τ ∈ D}. A useful fact
relating connectedness to joins is the following:

Proposition 2.2.1 (Lemma 2.3 in [23]). If C and D are abstract simplicial
complexes, then

conn(C ∗ D) ≥ conn(C) + conn(D) + 2.

A map f : V (C)→ V (D) is a simplicial map if the image of each simplex of
C is a simplex of D.

If K is a simplicial complex, then a subdivision of K is a simplicial complex
K′ with ‖K′‖ = ‖K‖ such that every simplex in K′ is contained in a simplex in
K.

To determine the connectedness of a simplicial complex, it is sufficient to
consider simplicial maps into subdivisions of the simplex.

Proposition 2.2.2 ([27, Proposition 2.8]). A given simplicial complex C is k-
connected if and only if for every j with −1 ≤ j ≤ k and for every simplicial
map f : V (S) → V (C), where S is a subdivision of the boundary of a (j + 1)-
simplex, there is a subdivision B of a (j + 1)-simplex with S as its boundary,

and a simplicial map f̂ : V (B)→ V (C) extending f .

We prove Theorem 2.1.7 by constructing an appropriate colored triangula-
tion of the simplex and then using Sperner’s Lemma. This type of approach
was introduced in [6].

Lemma 2.2.3 (Sperner’s Lemma [26]). Let T be a subdivision of a simplex ∆
of dimension n. Let c : V (T )→ A be a coloring of the vertices of the subdivision
such that

(1) Each vertex of ∆ receives a different color,
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(2) The vertices of T on a face σ of ∆ are colored by the colors of the vertices
of σ.

Then there is an n-dimensional rainbow simplex in T .

Proof of Theorem 2.1.7. We will prove the statement by induction on d. Let
first d = 0.

Let C be a simplicial complex with a coloring c : V (C) → X of its vertices
satisfying the conditions of the theorem and let ∆ be an (|X| − 1)-dimensional
simplex (so with |X| vertices). The k-skeleton of ∆ is the subcomplex contain-
ing all faces of dimension up to k. By induction on k, we construct a subdivision
Tk of the k-skeleton of ∆ for every k = 0, 1, . . . , |X| − 1, together with a sim-
plicial map fk : V (Tk) → V (C) so that coloring each vertex v ∈ V (Tk) of the
subdivision by the color c(fk(v)) produces a coloring which has property (1) of
Sperner’s Lemma, as well as property (2) for each face σ of ∆ up to dimension
k. (Such a coloring of will be called a Sperner coloring.)

We start with the 0-skeleton T0 = ∆(0), which consists of just the vertices
of ∆. We choose a simplicial map f0 : V (T0) → V (C) so that every vertex is
sent to a vertex with a different color. This is possible because we have as many
vertices as there are colors and, most importantly, because the assumption on
the connectedness requires that there is a vertex of every color in C. Indeed, for
any x ∈ X, we have conn(C|{x}) ≥ |{x}| − 2 = −1, hence the subcomplex C|{x}
is nonempty.

Now suppose that we have already defined a subdivision Tk of the k-skeleton
of ∆ and a simplicial map fk : V (Tk)→ V (C) such that if one colors the vertices
of the subdivision by the colors of their images under fk, we get a Sperner
coloring. We will extend Tk and fk to the (k + 1)-skeleton of ∆ by defining
the extensions independently for each (k + 1)-face σ of ∆. The boundary ∂σ
of σ is contained in the k-skeleton, so Tk contains a subdivision D of ∂σ. Let
S = c(fk(V (σ))) ⊆ X be the set of colors of the images of the vertices of σ
under fk. Because fk induces a Sperner coloring, we must have that |S| = k+ 2
and fk(V (D)) ⊆ C|S . By assumption, conn(C|S) ≥ |S| − 2 = k, and since
D is a subdivision of the boundary of a (k + 1)-simplex, by Proposition 2.2.2
there is a subdivision E of σ with D as its boundary, and a simplicial map
fσ : V (E) → V (C|S) extending fk. Doing this for each (k + 1)-simplex one
after another, we obtain a subdivision Tk+1 of the (k + 1)-skeleton and a map
fk+1 : V (Tk+1)→ V (C) defined as the union of all the maps fσ with σ ranging
over the (k + 1)-faces of ∆. Since each fσ agrees with fk on the boundary, the
union agrees with fk on the k-skeleton and it is well-defined. Also, fk+1 induces
a Sperner coloring by construction.

Continuing in this manner, we end up with a subdivision T|X|−1 = T of the
entire simplex ∆ and a simplicial map f : V (T ) → V (C) inducing a Sperner
coloring. Hence, by Sperner’s Lemma, there is a rainbow simplex τ in T with
|X| vertices. The colors of V (τ) were defined as the colors of its image via f ,
hence the simplex of C with vertices f(V (τ)) must also have |X| vertices with
all different colors. So we found our rainbow simplex, which concludes the proof
for d = 0.
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Let now d ≥ 1 and let C be a simplicial complex with a coloring c : V (C)→ X
of its vertices such that for every S ⊆ X we have that conn(C|S) ≥ |S| − d− 2.
Our strategy is to add some new vertices and new simplices to C to get a
complex Ĉ and extend the coloring c to Ĉ such that Ĉ satisfies the conditions
of the theorem with dĈ = d − 1. We will then apply the induction hypothesis

to find a rainbow simplex in Ĉ, and since it will turn out that it may contain
at most one new vertex, removing it will yield a rainbow simplex in C with at
least |X| − d vertices.

For each x ∈ X, let v(x) be a new vertex which we color by x. Let M be
the simplicial complex consisting of the isolated vertices

{
v(x) : x ∈ X

}
, and let

Ĉ = C∗M. We claim that Ĉ fulfills the conditions of the theorem with dĈ = d−1.

Indeed, applying Proposition 2.2.1 we get that conn(Ĉ|S) ≥ (|S|−d−2)−1+2 =
|S| − (d − 1) − 2 for every S ⊆ X. Here we used that Ĉ|S = C|S ∗ M|S and
that conn(M|S) = −1, as each color is represented among the new vertices, so
M|S is non-empty. Thus, by induction, Ĉ contains a rainbow simplex τ with
|X|−d+1 vertices. To complete the proof of the theorem we just need to recall
that no two vertices of M form a simplex, hence τ can contain at most one of
the new vertices. Thus there is a face of τ spanned by at least |X| − d vertices
from C, providing the rainbow simplex we were looking for.

2.2.2 The Independence Complex

Meshulam [22] proved a homological version of Theorem 2.1.5, where everywhere
in the statement conn is replaced by the homological connectedness connH . He
used the Mayer-Vietoris sequence and the observation that, providedG is simple,
I(G − e) = I(G) ∪ (e ∗ I(G > e)) and I(G) ∩ (e ∗ I(G > e)) is the suspension
of I(G > e). (Once proved for simple graphs, Theorem 2.1.5 follows easily for
arbitrary G.) Adamaszek and Barmak [1], mostly concerned with a question of
Aharoni, Berger, and Ziv [4], proved that the conn on the right hand side of
inequality (2.1.2) can be replaced with the following function ψ:

ψ(G) =

 −2 G = ∅
+∞ V (G) 6= ∅, E(G) = ∅
maxe∈E(G) min {ψ(G− e), ψ(G> e) + 1} otherwise.

It can be easily seen by induction on |E(G)| that Theorem 2.1.5 implies the
theorem of Adamaszek and Barmak [1], but there seems to be no direct way
to derive the implication in the other direction. However, the proof in [1] can
easily be modified to give Theorem 2.1.5. One simply takes e to be an arbitrary
edge, defines k = min(conn(G− e), conn(G> e) + 1), and proceeds as in [1] to
show that the homological connectedness of G is at least k. To conclude that
conn(G) ≥ k, one only needs to show that k ≥ 1 implies that I(G) is simply
connected and then appeal to the Hurewicz Theorem. This can be done in an
argument identical to the one in [1].

One can apply Theorem 2.1.5 to prove Theorem 2.1.1.
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Proof of Theorem 2.1.1. We proceed by induction on |E(J)|. If J contains an
isolated vertex, the lemma is trivially true, since then conn(J) = ∞. Thus
we may assume that every vertex of J has a neighbor. If M = ∅, the lemma
is trivially true, since the connectedness of anything is at least −2, so assume
|M | ≥ 1. Now consider an edge m ∈ M ⊆ V (J). This edge (vertex of J) has a
neighbor e in J . Since M ⊆ V (J −me), by induction we have conn(J −me) ≥
|M | /r− 2. Now consider what happens when we explode me. We remove from
V (J) all neighbors of m and e. Since m ∈ M , none of the neighbors of m are
in M , and since e has size at most r, it intersects at most r edges of M (one of
them being m). Therefore, V (J >me) still contains a matching of size at least
|M |−r. By induction, we then have conn(J>me) ≥ (|M |−r)/r−2 = |M | /r−3.
Applying Theorem 2.1.5, we obtain

conn(J) ≥ min {conn(J −me), conn(J >me) + 1} ≥ |M |
r
− 2,

which is what was wanted.

2.3 Connectedness of the Link Graph

In this section we prove Theorem 2.1.3, which states that the link graph of
any Ryser-extremal 3-graph minimizes the connectedness of the independence
complex of its line graph. On the way we also give a proof of Aharoni’s Theorem,
which is somewhat different from the original argument.

Let H be a 3-partite 3-graph with vertex classes V1, V2, and V3. We aim to
show that τ(H) ≤ 2ν(H). To do this, we will consider the link graph (recall
Definition 2.1.2). An important thing to note is that if each edge of a matching
in the link graph lkH(Vi) extends to a different vertex of Vi, then the extended
edges form a matching in H. Thus, we can color each edge of the link graph
by the vertex to which it extends (since we are considering the link graph as a
multigraph, that vertex is uniquely determined for each edge) so that a rainbow
matching (a matching with each edge of a different color) in the link graph
corresponds to a matching in the hypergraph H. Now we will use the vertex
cover number of H to find a lower bound on the connectedness of the line graphs
of the link graphs, and we will use the matching number of H to find an upper
bound for at least one link. Combining these bounds will yield the desired
inequality τ(H) ≤ 2ν(H). So let’s calculate.

Proposition 2.3.1. Let H be a 3-partite 3-graph with vertex classes V1, V2,
and V3. Then for each i ∈ {1, 2, 3} we have the following:

(i) For all S ⊆ Vi we have

conn(L(lkH(S))) ≥ τ(H)− (|Vi| − |S|)
2

− 2.

(ii) There is some S ⊆ Vi such that

conn(L(lkH(S))) ≤ ν(H)− (|Vi| − |S|)− 2.



CHAPTER 2: Connectedness of Line Graphs of Bipartite Graphs 15

(iii) For every S ⊆ Vi for which the inequality in (ii) holds we have

|S| ≥ |Vi| − (2ν(H)− τ(H)).

Proof. Let S ⊆ Vi. We want to show that the line graph L(lkH(S)) has suf-
ficiently high connectedness. We construct a vertex cover TS of H by taking
the vertices in Vi \ S and a minimum vertex cover of lkH(S). This is clearly a
vertex cover of H because any edge not incident to S intersects Vi \ S and any
edge incident to S induces an edge in the link of S, and hence intersects the
vertex cover of the link. We have |TS | = |Vi| − |S| + τ(lkH(S)), and since this
is a vertex cover, we thus have

|Vi| − |S|+ τ(lkH(S)) ≥ τ(H) (2.3.1)

for all subsets S ⊆ Vi. By König’s Theorem, we have τ(lkH(S)) = ν(lkH(S)).
We therefore have a lower bound on the matching number of the link graph,
and so by Theorem 2.1.1, we have

conn(L(lkH(S)) ≥ ν(lkH(S))

2
− 2 ≥ τ(H)− (|Vi| − |S|)

2
− 2,

which is the inequality in statement (i).
Now we want to show that the inequality in statement (ii) holds for some

S. Suppose to the contrary that for every S ⊆ Vi we had conn(L(lkH(S))) ≥
ν(H) − (|Vi| − |S|) − 1. We will aim to apply Theorem 2.1.7 with X = Vi and
C = I(L(lkH(Vi))) to find a large rainbow matching in lkH(Vi) and hence a large
matching in H. By our supposition, for each S ⊆ Vi we have conn(L(lkH(S))) ≥
|S| − (|Vi| − ν(H) − 1) − 2, and hence we can apply Theorem 2.1.7 with d =
|Vi|−ν(H)−1 to get a rainbow matching of size |Vi|−(|Vi|−ν(H)−1) = ν(H)+1,
which is a contradiction. Thus some S ⊆ Vi must indeed satisfy the inequality
in (ii).

Now consider such an S. Combining the inequalities in (i) and (ii), we get

τ(H)− (|Vi| − |S|)
2

− 2 ≤ ν(H)− (|Vi| − |S|)− 2,

from which the inequality in (iii) follows after some rearranging.

Now Aharoni’s Theorem follows in one line from the above proposition: there
is an S ⊆ Vi such that |S| ≥ |Vi| − (2ν(H)− τ(H)), and hence

τ(H) + |Vi| − |S| ≤ 2ν(H).

Since |Vi| ≥ |S|, we thus have τ(H) ≤ 2ν(H) as desired.
We also use Proposition 2.3.1 to derive the main theorem of this section.

Proof of Theorem 2.1.3. Applying Proposition 2.3.1 to H, we see by (iii) that
in (ii) equality holds if and only if S = Vi for some i. Combining the inequalities
in (i) and (ii) for S = Vi with the fact that τ(H) = 2ν(H) immediately gives
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that conn(L(lkH(Vi))) = ν(H) − 2, showing part (i) of Theorem 2.1.3. This
gives the following chain of inequalities:

τ(H)

2
− 2 = ν(H)− 2 = conn(L(lkH(Vi)))

≥ ν(lkH(Vi))

2
− 2 =

τ(lkH(Vi))

2
− 2

≥ τ(H)

2
− 2,

where the first inequality is valid because of Theorem 2.1.1, the equality fol-
lowing it is König’s Theorem, and the last inequality is just equation (2.3.1)
for S = Vi. It follows that every inequality is actually an equality, from which
part (ii) of Theorem 2.1.3 follows.

From parts (i), (ii), and the fact that ν(H) = τ(H)
2 , it follows that the

link graphs lkH(Vi) of a Ryser-extremal 3-graph H must be extremal for Theo-
rem 2.1.1:

conn(L(lkH(Vi))) =
ν(lkH(Vi))

2
− 2.

2.4 The Link Characterization Theorem

In the main theorem of this section we fully characterize those bipartite graphs
for which the connectedness of the line graph is as small as possible, that is, it
is equal to two less than half its matching number.

For the proof we need to choose our definitions very subtly and in order
to make the induction work, we need to consider a carefully formulated more
general statement involving arbitrary subgraphs of the line graphs.

Definition 2.4.1. Let G be a bipartite graph, and let J ⊆ L(G) be a subgraph
of its line graph. Two edges of G are called J-adjacent if they are connected by
an edge in J , and otherwise J-nonadjacent. An edge e ∈ V (J) is at home in a
subgraph T ⊆ G if T is a path on 4 vertices, e intersects T in an interior vertex,
and e is J-adjacent to some edge of T .

Definition 2.4.2. Let k ∈ N, let G be a bipartite graph, let J ⊆ L(G) be a
subgraph of its line graph, and let M ⊆ V (J) be a matching in G of size 2k. A
CP-decomposition of J with respect to M is a set of k vertex-disjoint subgraphs
S1, . . . , Ss, T1, . . . , Tt of G such that

(1) Each Si is isomorphic to C4 (a cycle on 4 vertices), contains two edges of
M , and every two intersecting edges are J-adjacent.

(2) Each Tj is isomorphic to P4 (a path on 4 vertices), contains two edges of
M , and every two intersecting edges are J-adjacent.
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(3) Every edge in V (J) is equal to or parallel to an edge of some Si, or is at
home in some Tj .

We call k = |M | /2 the order of the CP-decomposition. Observe for prop-
erty (3) that the edges of any of the subgraphs Tj are themselves at home in Tj
by definition.

Theorem 2.4.3 (CP-Decomposition Theorem). Let G be a bipartite graph, let
J ⊆ L(G) be a subgraph of its line graph, and let M ⊆ V (J) be a matching in

G. If conn(J) ≤ |M |2 − 2, then J has a CP-decomposition with respect to M .

Note that by Theorem 2.1.1 we must have that conn(J) = |M |
2 − 2, so |M |

is even and V (J) does not contain a larger matching than M .
First we spell out the special case when J is the entire line graph and prove

Theorem 2.1.4. This will provide a characterization of those bipartite graphs
G whose line graphs have connectedness as small as possible in terms of the
matching number of G.

Proof of Theorem 2.1.4. Suppose that conn(L(G)) = ν(G)
2 − 2. Then by Theo-

rem 2.4.3, L(G) has a CP-decomposition, which is a collection of ν(G)/2 pairwise
vertex-disjoint subgraphs, each of them a C4 or a P4, such that every edge of G
is either an edge of one of the C4’s or is incident to an interior vertex of one of
the P4’s.

As was mentioned in the introduction, the converse of this statement is not
used at all in our argument. We include it only to provide a full characterization
of the extremal graphs. It will be proven in Chapter 3, since the proof uses the
concept of home-base hypergraph which is the central concept of that chapter.

The proof of Theorem 2.4.3 is quite involved and will take up the next two
subsections. We start with some auxiliary lemmas.

2.4.1 Lemmas on M-reduced Subgraphs

For the proof of Theorem 2.4.3 and later we will often use Theorem 2.1.5 in its
contrapositive form, which we state here as a corollary.

Corollary 2.4.4. Let H be a graph, let e ∈ E(H), and let k ∈ N. If conn(H) ≤
k, then either conn(H − e) ≤ k or conn(H > e) ≤ k − 1.

In light of Corollary 2.4.4, the following definitions will be useful.

Definition 2.4.5. An edge e ∈ E(H) is called decouplable if conn(H − e) ≤
conn(H), and explodable if conn(H > e) ≤ conn(H)− 1.

By Corollary 2.4.4 every edge is either decouplable or explodable (or both).
In the grand plan of our proof of the CP-decomposition theorem we intend to
delete edges of J ⊆ L(G) iteratively until there are no decouplable edges left
and hence all edges are explodable (and then we explode one, hence decreasing
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the connectedness). Crucially, deleting decouplable edges does not increase the
connectedness. This explains the following key definition of this subsection.

Definition 2.4.6. Let G be a bipartite graph and let M ⊆ E(G) be a matching
of it. A subgraph J ⊆ L(G) of the line graph is called M -reduced if

(1) M ⊆ V (J),

(2) conn(J) ≤ |M |2 − 2, and

(3) no edge ef ∈ E(J) is decouplable.

Again, note that by Theorem 2.1.1, if J isM -reduced, then conn(J) = |M |
2 −2

and hence M must have an even number of edges.
It will be important to note that if J is M -reduced, then J is also M ′-reduced

for any matching M ′ ⊆ V (J) with |M ′| = |M |. In particular, if we replace edges
of M by parallel edges in V (J), these must share any properties we can deduce
for the original edges.

Assumptions. For the remainder of the section let G be a bipartite graph, let
M ⊆ E(G) be a matching of size 2k in G, and let J ⊆ L(G) be an M -reduced
subgraph of the line graph.

Lemma 2.4.7 (Degree Lemma). For every edge e ∈ V (J) \M either no edge
of M is J-adjacent to e or two edges of M are J-adjacent to e. In particular,
if e is parallel to an edge of M , then it is not J-adjacent to that edge.

Proof. Since J is M -reduced, we have conn(J) ≤ k − 2. Clearly an edge can
be J-adjacent to at most two edges of M because M is a matching in G and
J ⊆ L(G). Suppose for the sake of contradiction that some edge e ∈ V (J)
is J-adjacent to m ∈ M , but not J-adjacent to any other edge of M . Since
me ∈ E(J) and J is M -reduced, by Corollary 2.4.4, upon exploding me we
have conn(J ′) ≤ k − 3 for J ′ = J >me. Since e is J-adjacent to only one edge
from M , the explosion keeps M \ {m} in J ′, so J ′ still contains a matching of
size 2k−1. Then by Theorem 2.1.1 we have conn(J ′) ≥ 2k−1

2 −2 > k−3, which
is a contradiction. Thus every edge in V (J) is J-adjacent to either two edges of
M or no edge of M .

Corollary 2.4.8. Let x, y, x′, and y′ ∈ V (G) be the vertices of a C4 such
that xy, x′y′ ∈ M , and xy′, x′y ∈ V (J). Then for every zy ∈ V (J) with z ∈
V (G)\{x, x′} we have that zy is J-adjacent to xy if and only if it is J-adjacent
to x′y.

Proof. Suppose z ∈ V (G) \ {x, x′} with zy ∈ V (J), and zy is J-adjacent to xy.
Then by the Degree Lemma there is an edge zw ∈ M which is J-adjacent to
zy. Now consider the matching M× = M ∪ {xy′, x′y} \ {xy, x′y′}. Note that
|M×| = |M | and M× ⊆ V (J). Applying the Degree Lemma to M×, we have
that since zw ∈ M× is J-adjacent to zy, also x′y ∈ M× must be J-adjacent
to zy. The reverse inclusion can be shown by exchanging the roles of M and
M×.
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If M is a matching in a graph, then an M -exposed vertex is one not in any
edge of M . A path or cycle is M -alternating if for every pair of consecutive
edges, exactly one of them is in M .

Lemma 2.4.9 (Alternating Lemma). Let J be M -reduced, and let e1, . . . , eq ∈
V (J) be the edges of an M -alternating path in G starting at an M -exposed vertex
or the edges of an M -alternating cycle in G with eqe1 /∈ E(J). Then in both
cases eiei+1 /∈ E(J) for all i = 1, . . . , q − 1.

Proof. Case 1. e1, e2, . . . , eq ∈ V (J) are the edges of an M -alternating path
starting at an M -exposed vertex.

Suppose the lemma did not hold and let j = min {i : eiei+1 ∈ E(J)}. If j is
odd, then ej /∈ M . Since ejej+1 ∈ E(J), by the Degree Lemma there must be
another edge of M which is J-adjacent to ej . However, e1 has an M -exposed
vertex, so j 6= 1, from which it follows that ej−1ej ∈ E(J), which contradicts
the minimality of j.

Therefore j is even and ej ∈ M . Since by assumption J is M -reduced,
ejej+1 is explodable, hence J ′ = J > ejej+1 satisfies conn(J ′) ≤ k − 3. Note
that since ej−1ej /∈ E(J), the explosion does not delete ej−1. Thus M ′ =
M ∪{e1, e3, . . . , ej−1}\{e2, e4, . . . , ej , ej+2} ⊆ V (J ′) is a matching of size 2k−1
(if j+ 2 > q, let ej+2 be the second edge of M that is J-adjacent to ej+1, which
exists by the Degree Lemma). This means that by Theorem 2.1.1, conn(J ′) ≥
2k−1

2 − 2 > k − 3, which is a contradiction. Thus the lemma holds for paths.
Case 2. e1, e2, . . . , eq ∈ V (J) are the edges of an M -alternating cycle with
eqe1 /∈ E(J).

Since we can reverse the direction of the cycle if necessary, we can assume
without loss of generality that eq ∈M and e1 /∈M . If the lemma does not hold,
then let j = min {i : eiei+1 ∈ E(J)}. If j is odd, then a reasoning identical to
the one in Case 1 yields a contradiction.

Therefore j is even and ej ∈ M . By assumption, ejej+1 is explodable,
hence J ′ = J > ejej+1 satisfies conn(J ′) ≤ k − 3. We have a matching M ′ =
M ∪{e1, e3, . . . , ej−1, ej+3, . . . , eq−1} \ {e2, e4, . . . , eq} ⊆ V (J ′) of size 2k− 1, so
by Theorem 2.1.1, conn(J ′) ≥ 2k−1

2 − 2 > k− 3, which is a contradiction. Thus
the lemma also holds for cycles.

Given two incident non-parallel edges m ∈ M and e ∈ V (J) \M , we define
PM (m, e) to be the set of edges of M which participate in some M -alternating
path in G starting with m, continuing with e, and using only edges from V (J).
Note that we do not require the edges of the path to be J-adjacent. Also note
that m ∈ PM (m, e), and if me ∈ E(J), then PM (m, e) contains at least one
more edge of M , namely the other one J-adjacent to e, which exists by the
Degree Lemma.

Lemma 2.4.10. Let m ∈ M , e ∈ V (J) \M with me ∈ E(J), and let m′ ∈ M
be the other M -edge J-adjacent to e. Let W1 and W2 be the vertex classes of the
bipartite graph G, and let m∩e ⊆Wi. Then for every m∗ ∈ PM (m, e)\{m,m′},
there is an edge g ∈ V (J) for which the following hold:
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(i) g is J-adjacent to m∗,

(ii) g ∩m∗ ⊆W3−i,

(iii) If m̂ ∈ M is the other M -edge (besides m∗) J-adjacent to g, then m̂ /∈
PM (m, e).

Proof. Suppose not. Then fix m∗ ∈ PM (m, e) \ {m,m′} for which the lemma
fails. Let Q = {g ∈ V (J) : gm∗ ∈ E(J), g ∩m∗ ⊆W3−i}. If Q is not empty,
then by assumption every edge g ∈ Q fails property (iii).

Since J is M -reduced, we have conn(J) ≤ k − 2 and when we explode me,
we get conn(J >me) ≤ k − 3. We then iteratively delete decouplable edges of
J >me in an arbitrary order until no edge is decouplable. This results in an
M ′-reduced J ′ ⊆ J>me, where M ′ = M \{m,m′} and conn(J ′) ≤ k−3 (recall
that deleting a decouplable edge does not increase the connectedness). Let a be
the vertex in m′ \ e.

Note that if a is not the endpoint of any edge contained in V (J ′), we are
done, since then PM (m, e) = {m,m′}, so there is no m∗ to choose, and the
statement is vacuously true. Thus, assume this is not the case.

We will arrive at a contradiction by showing that m∗ is isolated in J ′, which
implies conn(J ′) =∞.

First, we show that m∗ has no J ′-neighbors incident to it in W3−i. Take an
arbitrary edge g which intersectsm∗ inW3−i. Ifm∗g /∈ E(J), thenm∗g /∈ E(J ′),
so we are done. Thus assume m∗g ∈ E(J), which implies g ∈ Q, and this means
that m̂, the other M -edge J-adjacent to g (which exists by the Degree Lemma
for M and J), is in PM (m, e) by our assumption on m∗. If m̂ ∈ {m,m′}, then
m∗g /∈ E(J ′) by the Degree Lemma applied to J ′ (because m,m′ /∈ V (J ′)).
Otherwise, there is an M -alternating path e1, . . . , eq = m̂ starting at the vertex
a ∈ e1. This is clearly also an M ′-alternating path, and since a is an M ′-exposed
vertex in J ′, the Alternating Lemma (Lemma 2.4.9) applied to M ′ and J ′ gives
that none of the pairs ei, ei+1 are J ′-adjacent; in particular, eq−1m̂ /∈ E(J ′).
Now there are two cases.
Case 1. m∗ is on this path.

Then the segment of the path starting at m∗ and ending with m̂, together
with g, forms an M ′-alternating cycle. Since eq−1m̂ /∈ E(J ′), the Alternating
Lemma tells us that m∗ and g are not J ′-adjacent.
Case 2. m∗ is not on the path.

Then e1, . . . , eq, g,m
∗ is an M ′-alternating path, and the Alternating Lemma

again tells us that m∗ and g are not J ′-adjacent.
This proves that m∗ has no J ′-neighbor which intersects it in W3−i.
We now show that it also has no J ′-neighbor intersecting it in Wi. Take

an arbitrary edge g which intersects m∗ in Wi. We may again assume g is
J-adjacent to m∗, and hence there is an m̂ ∈ M , which is the other M -edge
J-adjacent to g. Again, if m̂ ∈ {m,m′}, then m∗g /∈ E(J ′) because then
m̂ /∈ V (J ′) and the Degree Lemma for J ′ gives that g is not J ′-adjacent to any
edge of M ′ = M ∩ V (J ′). There is an M ′-alternating path e1, . . . , eq = m∗

starting at the vertex a ∈ e1. Because the path starts at an M ′-exposed vertex,
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no two consecutive edges are J ′-adjacent by the Alternating Lemma. Again
there are two cases.
Case 1. m̂ is on this path.

Then the segment of the path starting at m̂ and ending with m∗, together
with g, forms an M ′-alternating cycle. Since eq−1m

∗ /∈ E(J ′), the Alternating
Lemma tells us that m∗ and g are not J ′-adjacent.
Case 2. m̂ is not on the path.

Then e1, . . . , eq, g is an M ′-alternating path, and the Alternating Lemma
will again tell us that m∗ = eq and g are not J ′-adjacent.

In conclusion, we have shown that m∗ does not have any neighbor in J ′,
which was our desired contradiction. Hence no such m∗ exists and the proof is
complete.

Lemma 2.4.11. Let m, e,m′, f ∈ V (J) be the edges of an M -alternating C4

with m,m′ ∈ M . Let M× = M ∪ {e, f} \ {m,m′}. Then PM×(e,m) =
PM (m, e) ∪ {e, f} \ {m,m′}; in particular, |PM×(e,m)| = |PM (m, e)|.

Proof. Let a be the vertex in m′∩f . Any M -alternating path starting with m, e
must continue with m′ and then a path starting at a and never again intersect
the vertices of the C4. Similarly, any M×-alternating path starting with e,m
must continue with f and a path starting at a and never again intersect the
vertices of the C4. Thus the edges outside of the C4 which are reached will be
the same, because the matchings are the same outside the C4.

Lemma 2.4.12. Let m, e,m′, f ∈ V (J) be the edges of an M -alternating C4

with m,m′ ∈ M , and let M× = M ∪ {e, f} \ {m,m′}. Then J has a CP-
decomposition with respect to M× if and only if J has a CP-decomposition with
respect to M .

Proof. Suppose J has a CP-decomposition with respect to M . We will show
that it has a CP-decomposition with respect to M×. Since the roles of M and
M× are symmetric, the reverse implication is analogous. Note also that J is
M -reduced if and only if it is M×-reduced. There are two cases.
Case 1. mem′f is a C4 in the CP-decomposition with respect to M .

Then mem′f is still an M×-alternating 4-cycle and incident edges are J-
adjacent, so the same CP-decomposition is also a CP-decomposition with re-
spect to M×.
Case 2. mem′f is not a C4 in the CP-decomposition with respect to M .

Thenm andm′ must be in either a C4 or a P4 in this decomposition. Suppose
first that m ∈ S1, where S1 is a C4 in the CP-decomposition. Then m′ /∈ S1,
and hence e, f /∈ S1. It follows that e and f are neither equal to nor parallel
to edges of any C4 in the CP-decomposition, and thus by property (3) of the
CP-decomposition, they are each at home in some P4 of the CP-decomposition.
This means that both endpoints of m′ must be interior vertices of some P4.
However this is impossible, since M -edges are the ending edges of the P4’s of
the decomposition, so only one endpoint could be interior. So m is not in a C4

of the decomposition and by symmetry, neither is m′.
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From now on we assume that m and m′ are in two distinct P4’s (they are
not in the same P4 because then either e or f would not be at home in any P4).
Call these P4’s T1 and T2 with edges mgh and m′g′h′, respectively. Note that
m∩ g contains an interior vertex, as does m′ ∩ g′, and since e and f must be at
home somewhere, one of them, say e, is at home in m ∩ g and the other (f) in
m′ ∩ g′ (since e and f are disjoint).

We claim now that replacing T1 and T2 by egh and fg′h′ gives us a CP-
decomposition with respect to M×. To check this, we must show that egh and
fg′h′ are both P4’s whose incident edges are J-adjacent, and that every edge
which was at home in T1 or T2 is still at home in either egh or fg′h′. Both
are straightforward consequences of Corollary 2.4.8, which states that the J-
neighbors of e and of m at e∩m, which are outside of the 4-cycle are the same
(and likewise for f and m′). Thus, e is J-adjacent to g and f is J-adjacent
to g′. And any edge which was at home in T1 because it was J-adjacent to
m is J-adjacent also to e, and so still at home in egh (and likewise for T2 and
fg′h′). The only edges left to check are m and m′ and edges parallel to m, m′,
e, or f . Here m and m′ are at home in egh and fg′h′, respectively, because
they are J-adjacent to g and g′, respectively. Edges parallel to m or m′ are
J-adjacent to g or g′, respectively, since they needed to be at home in some P4

of the original CP-decomposition and those are the only possibilities (they are
not J-adjacent to m or m′ by the Degree Lemma, because J is M -reduced).
Thus they are at home in the new P4’s. All e-parallel edges are also J-adjacent
to g, and f -parallel ones to g′ because of Corollary 2.4.8. This means that this
is indeed a CP-decomposition with respect to M×, and it is clearly of the same
order. This completes the proof.

2.4.2 Proof of the CP-Decomposition Theorem

We are now ready to start the proof of Theorem 2.4.3.

Proof of Theorem 2.4.3. We prove this by induction on |M |. Recall that |M |
must be even, so write |M | = 2k and proceed by induction on k.

For k = 0, we have conn(J) = −2, which means V (J) is empty. Thus, it
has a CP-decomposition of order 0, which is an empty collection of cycles and
paths.

For k = 1, we get conn(J) = −1, so I(J) must have at least two components.
Thus there exist two disjoint non-empty subsets E1, E2 ⊆ V (J) with V (J) =
E1 ∪ E2 such that for all e1 ∈ E1 and e2 ∈ E2, we have e1e2 ∈ E(J). By
assumption there is a matching M = {m1,m2} ⊆ V (J). Since m1 and m2 are
not J-adjacent (as they are disjoint), they must be in the same component of
I(J), and so assume without loss of generality that m1,m2 ∈ E1. Then every
edge in E2 is J-adjacent to both m1 and m2, and since G is bipartite, every
such edge must intersect m1 in one vertex class of G and m2 in the other. Thus
the graph formed by the edges in E2 together with m1 and m2 is either a C4

or a P4 together with possibly some parallel edges. If it forms a C4, then the
rest of E1 must consist of edges parallel to m1 and m2 because they must be
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J-adjacent to both of the non-M edges of the C4. If the graph is a P4, then the
rest of the edges in E1 must be J-adjacent to all of the middle edges, and hence
are at home in that P4. Therefore, J has a CP-decomposition consisting of a
single C4 or P4. This completes the proof for k = 1.

Now assume k ≥ 2. If |E(J)| = 0, then conn(J) = ∞, so the statement
is vacuously true. So assume |E(J)| ≥ 1. We may assume J is M -reduced so
that all edges of J are explodable. (If J is not M -reduced, iteratively delete
decouplable edges of J until the subgraph is M -reduced. A CP-decomposition
for the subgraph of J will also be a CP-decomposition of J .)
Case 1. There is an edge m = ab ∈M with no J-neighbor incident to a.

Then there must be a J-neighbor e of m incident to b, otherwise m is isolated,
and conn(J) = ∞, which is a contradiction. Since J is M -reduced, when we
explode me ∈ E(J), we have that J ′ = J >me satisfies conn(J ′) ≤ k − 3. By
the Degree Lemma for J , there is another edge m′ ∈ M which is J-adjacent
to e. Since M ′ = M \ {m,m′} ⊆ V (J ′) is a matching of size 2k − 2, we have
that J ′ together with M ′ satisfy the conditions of the theorem for k′ = k − 1,
so by induction, there is a CP-decomposition of J ′ with respect to M ′, say
S1, . . . , Ss, T1, . . . Tt with s+ t = k − 1, where each Si ∼= C4 and each Tj ∼= P4.

Define Tt+1 to be a P4 consisting of the edges m, e, and m′. We claim that
S1, . . . , Ss, T1, . . . , Tt+1 is a CP-decomposition of J with respect to M . Since
J ′ ⊆ J and M ′ ⊆ M , the subgraphs Si form C4’s with two M -edges, with
intersecting edges J-adjacent to each other, and the subgraphs Tj with j < t+1
form P4’s also with this property. The new path Tt+1 of course satisfies this as
well, so the only thing we still need to check is that the remaining edges are
parallel to edges of some Si or at home in some Tj . Clearly, this is already true
of the edges in V (J ′), so consider an edge f ∈ V (J) \ V (J ′). Then f ∈ NJ(m)
or f ∈ NJ(e). If f ∈ NJ(e), then f is at home in Tt+1, because both endpoints
of e are interior in Tt+1. If f ∈ NJ(m), then f is also at home in Tt+1 because
m did not have a J-neighbor incident to a, so f must be adjacent to m at b,
which is an interior vertex of Tt+1. This completes the proof of Case 1.
Case 2. Every edge in M has a J-neighbor on both sides.

Recall that given two incident non-parallel edges m ∈M and e ∈ V (J) \M ,
we define PM (m, e) to be the set of edges of M which participate in some
M -alternating path in G starting with m, e using edges in V (J). Note that
m ∈ PM (m, e), and if me ∈ E(J), then PM (m, e) contains at least one more
edge of M , namely the other one J-adjacent to e (which exists by the Degree
Lemma).

Let M =M(M,J) be the smallest family of all matchings M̂ ⊆ V (J) with
the properties that

(1) M ∈M

(2) For every M̂ ∈ M and for every C4 with edges m̂, ê, m̂′, f̂ ∈ V (J), where

m̂, m̂′ ∈ M̂ , we have M̂ ∪
{
ê, f̂
}
\ {m̂, m̂′} ∈ M.

Obviously, each member of M can be obtained from M by a finite sequence of



CHAPTER 2: Connectedness of Line Graphs of Bipartite Graphs 24

the above “C4-switch” operation. Observe also that J is M̂ -reduced for every
matching M̂ ∈M.

Let (M1,m, e) be chosen such that |PM1
(m, e)| is maximum among{

(M̂, m̂, ê) : M̂ ∈M, m̂ ∈ M̂, ê ∈ NJ(m̂)
}
.

Note that the set we are maximizing over is non-empty because we are in Case
2, so M ∈M has an edge J-adjacent to another edge. Our plan is to find a CP-
decomposition with respect to M1. This will be enough to prove our theorem
because we can then “undo” the switches to arrive at our original matching M
by repeatedly applying Lemma 2.4.12. For convenience we denote the vertex
classes of G by A and B, with m ∩ e ⊆ A.

Let m′ ∈M1 be the other M1-edge J-adjacent to e. If m has no J-neighbor
intersecting it in B, we may proceed as in Case 1, and thereby have a CP-
decomposition with respect to M1. Otherwise, m has a J-neighbor on both
sides, so let f be a J-neighbor of m with m ∩ f ⊆ B. By the Degree Lemma,
f is J-adjacent to another edge m∗ ∈M1. We claim that in fact m∗ = m′, and
hence the edges m, e,m′, f form a C4.

Suppose m∗ 6= m′. If m∗ /∈ PM1
(m, e), we immediately arrive at a contradic-

tion, because PM1
(m∗, f) would then properly contain PM1

(m, e) (just prepend
m∗, f onto any M1-alternating path starting with m, e), which contradicts the
maximality of |PM1(m, e)|. Thus we must have m∗ ∈ PM1(m, e) \ {m,m′}.
By Lemma 2.4.10, there is an edge g ∈ V (J) \M1 which is J-adjacent to m∗

with m∗ ∩ g ⊆ B so that its other J-adjacent matching edge, m̂ ∈ M1, is not
in PM1

(m, e). Then we claim PM1
(m̂, g) properly contains PM1

(m, e), which
would again be a contradiction.

To see that this is the case, take any matching edge m̃ ∈ PM1
(m, e), and

we will show that m̃ ∈ PM1(m̂, g). If an M1-alternating path starting with m, e
reaching m̃ contains m∗, then we can start with m̂, g and continue along the
segment of this path starting at m∗, since neither m̂ nor g could be used in
this path (otherwise m̂ ∈ PM1

(m, e)). If, on the other hand, m̃ is reachable
from m, e without touching m∗, then we may reach m̃ by a path starting with
m̂, g,m∗, f,m, e. Thus, PM1(m, e) ⊆ PM1(m̂, g), and since the latter contains
m̂, while the former does not, we have the contradictory proper containment we
were hoping for. Therefore m∗ = m′.

Thus m has only f and edges parallel to f as J-neighbors at B. We will
show now that similarly, m′ has only e-parallel edges as J-neighbors at B.

By Lemma 2.4.11 applied to mem′f , we have
∣∣∣PM×1 (e,m)

∣∣∣ = |PM1
(m, e)|, so

(M×1 , e,m) is also a maximizing triple, where M×1 = M1 ∪ {e, f} \ {m,m′}.
Thus, the argument of the previous two paragraphs can be applied to show
that e only has m′-parallel edges as J-neighbors at B. By Corollary 2.4.8, this
implies that m′ also has only e-parallel edges as J-neighbors on that side.

We claim that among m, e, m′, f , and all parallel edges we have that every
parallel pair is non-J-adjacent and every pair of intersecting non-parallel edges
is J-adjacent. To see that two parallel edges are not J-adjacent to each other,
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one must simply apply the Degree Lemma to M1, M×1 , or one of these with a
matching edge switched out for a parallel edge. Now suppose on the contrary
that edges g parallel to m and h parallel to e are not J-adjacent. Then the
Alternating Lemma for M1 ∪ {g} \ {m} would imply that m′ and f are not
J-adjacent, which would be a contradiction.

Now we distinguish two further cases.
Case 2(a). mem′f and parallel edges form a connected component of J .

Then we explode me to yield J ′ = J > me with conn(J ′) ≤ k − 3. Since
J ′ contains the matching M ′ = M1 \ {m,m′} of size 2k − 2, J ′ and M ′ satisfy
the conditions of the theorem with k′ = k − 1, so by induction, there is a CP-
decomposition with respect to M ′, say S1, . . . , Ss, T1, . . . Tt with s+ t = k − 1.

Define Ss+1 to be the C4 given by mem′f . It is clear, that adding Ss+1

to this CP-decomposition yields a CP-decomposition of J . This completes the
proof of Case 2(a).
Case 2(b). mem′f and parallel edges do not form a component of J .

Suppose without loss of generality that there is an edge g ∈ V (J) not parallel
to any of mem′f which is J-adjacent to m. Note that we must have m∩g = m∩e
because all the J-neighbors of m intersecting it in m∩f are parallel to f . Then
we explode mg and iteratively delete all decouplable edges to yield an M ′1-
reduced J ′ ⊆ J >mg with conn(J ′) ≤ k − 3, where M ′1 = M1 \ {m,m1} with
m1 the other M1-edge J-adjacent to g. Since all J-neighbors of m′ are parallel
to e, and they are all J-adjacent to m, no J-neighbors of m′ are present in J ′.
So m′ has no J ′-neighbor at m′ ∩ e. Thus it must have some J ′-neighbor g′

at m′ ∩ f , otherwise m′ would be isolated and conn(J ′) = ∞, a contradiction.
Thus we explode m′g′ and get J ′′ = J ′ > m′g′ with conn(J ′′) ≤ k − 4. Let
m2 ∈ M1 be the other matching edge J-adjacent to g′ by the Degree Lemma.
Then the matching M ′′ = M1\{m,m′,m1,m2} of size 2k−4 is contained in J ′′.
Therefore, J ′′ and M ′′ satisfy the conditions of the theorem for k′′ = k − 2, so
J ′′ has a CP-decomposition with respect to M ′′, say S1, . . . , Ss, T1, . . . , Tt with
s+ t = k − 2.

We define Tt+1 to be the P4 with edges {m, g,m1}, and Tt+2 to be the
P4 with edges {m′, g′,m2}. Then we claim S1, . . . , Ss, T1, . . . , Tt+2 is a CP-
decomposition of J with respect to M1. To see this, we must verify that every
edge not in an Si and not parallel to an edge of an Si is at home in some Tj .
This is already true for all edges in V (J ′′) (since J ′′ ⊆ J), so we only need to
consider the edges we have removed by exploding mg and m′g′. However, all of
these edges were by definition J-adjacent (or even J ′-adjacent) to m, g, m′, or
g′. The edges J-adjacent to g and g′ are automatically at home in Tt+1 or Tt+2

because the vertices of g and g′ are the interior vertices of the respective P4’s.
However, the only edges J-adjacent to m or m′ but not at m ∩ g or m′ ∩ g′ are
parallel to e and f . However, e-parallel edges are J-adjacent to g and f -parallel
edges are J-adjacent to g′ by Corollary 2.4.8, so they are also at home in Tt+1

or Tt+2. Thus we have a CP-decomposition with respect to M1.
All we need now is to use this CP-decomposition to get a CP-decomposition

with respect to our original M . This is possible by several applications of
Lemma 2.4.12 because M1 is obtainable from M by a sequence of C4-switches.
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2.5 Good Sets

This section introduces the concept of good sets, which (as we will later see in
Chapter 3) will help us find the substructure we need in our Ryser-extremal
hypergraph in order to prove our characterization theorem by induction. The
main result of this section implies that we can find good sets inside our link
graphs in several cases, and hence if there are no good sets, we will know that
the link graphs must have a certain form.

We start with a graph-theoretic definition, which will form the backbone of
the definition of a good set.

Definition 2.5.1. Let G be a bipartite graph with vertex classes A and B. A
subset X ⊆ B is called decent if it satisfies the following conditions:

(1) ν(G) = |N(X)|+ |B \X|,

(2) For every x ∈ X and y ∈ N(x) the edge xy participates in a maximum
matching of G.

Note that if X is decent, then (1) implies that |N(X)| ≤ |X|.

Lemma 2.5.2. Let G be a bipartite graph with vertex classes A and B, and
let M be a maximum matching in G. Let X0 ⊆ B be the set of M -unsaturated
vertices in B, and let X be the set of vertices in B reachable on an M -alternating
path from X0 (including X0). Then X is decent, and |N(X)| = |X| − |X0|.

Proof. Let Y = N(X). Then Y is the set of vertices in A reachable on an M -
alternating path from X0. To see this, consider a vertex x ∈ X and a neighbor
y ∈ N(x). Either x is unsaturated, in which case x ∈ X0, so xy is an M -
alternating path from X0 to y, or there is an M -alternating path from X0 to
x, which must end with a matching edge. If y is on this path, we are done.
Otherwise, xy is not a matching edge, and hence we can extend our path by the
edge xy.

We claim that M saturates Y with (X,Y )-edges. This is because M is
maximum, and thus every M -alternating path starting from an unsaturated
vertex must end in a saturated vertex, and therefore every vertex of Y is incident
to an edge of M . Extending the path by such a matching edge must land us in
X by definition. Thus this matching edge is an (X,Y )-edge. Since X contains
all M -unsaturated vertices, M saturates Y and B \X with distinct edges, and
these are clearly all the edges of M . Thus ν(G) = |Y |+ |B \X|, so X satisfies
property (1).

We now show that X satisfies (2). Take an edge e ∈ E(G) between X and
Y . If e ∈ M , then we are done. If it has an M -unsaturated vertex, then it is
only adjacent to one matching edge m ∈M , and so M∪{e}\{m} is a maximum
matching containing e.
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Otherwise, e is adjacent to two matching edges m,m′ ∈ M . Since e goes
between X and Y , the vertices of m and m′ are reachable by an M -alternating
path starting from X0. Without loss of generality, the vertex in m ∩ e is in X.
So consider an M -alternating path from X0 which ends at that vertex. Note
that its last edge is m. If m′ is not in this path, then we can extend the path by
e and m′. Switching along this extended path will create a maximum matching
containing e (since the path starts at an M -unsaturated vertex). If, however,
m′ was in the original path, then adding e to the path forms an M -alternating
cycle. Switching the matching along the cycle produces the desired matching.
Therefore X is decent, as desired.

Definition 2.5.3. Let G be a bipartite graph. A subset X of a vertex class of
G is called equineighbored if X is nonempty and |N(X)| = |X|.

Note that if G has a perfect matching, then each vertex class is an equineigh-
bored set (unless G is the empty graph).

Lemma 2.5.4. Let G be a bipartite graph with vertex classes A and B and let
M be a perfect matching in G. Let X0 ⊆ B, and let X be the set of vertices in
B reachable on an M -alternating path from X0 (including X0) starting with a
non-matching edge. Then X is equineighbored.

Proof. Let Y = N(X). Since M is a perfect matching, every y ∈ Y has a
partner x ∈ B matched to it by M . If there is an M -alternating path from X0

to y starting with an edge not in M , then x ∈ X because either x ∈ X0 ⊆ X
or the path can be extended by the matching edge xy. If this holds for every
y ∈ Y , then there is a matching from Y to X, so that |Y | ≤ |X|, from which
|Y | = |X| follows by Hall’s Theorem.

Therefore, we need to show that every y ∈ Y can be reached from X0 by an
M -alternating path starting with a non-matching edge. Since y ∈ N(X), it has
a neighbor x ∈ X. By the definition of X, there is such an M -alternating path
ending in x. If y is on that path, we are done. Otherwise, xy is not an edge of
M (because the path to x ends with the matching edge incident to x), and so
the path could be extended by xy, and thus y is on such a path. This concludes
the proof.

Lemma 2.5.5. Let G be a bipartite graph with vertex classes A and B, and let
M be a perfect matching in G. Let X ⊆ B be a minimal equineighbored set in
B. Then X is decent.

Proof. Since G has a perfect matching, there is a matching saturating B, and
since |X| = |N(X)|, we have ν(G) = |B| = |N(X)|+ |B \X|, so X satisfies (1).

We now show that X satisfies (2). Let Y = N(X). Let x ∈ X, y ∈ Y , and
let xy ∈ E(G). Fix a perfect matching M . Because N(X) = Y , it must match
X to Y . If xy ∈ M , we are done. Otherwise there exist edges xy′, x′y ∈ M
adjacent to xy. We claim that these edges participate in an M -alternating cycle
with xy, and thus by switching along the cycle we get a new perfect matching
which does include xy. To show that this happens, consider all M -alternating
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paths starting at x′ with a non-matching edge. If there is such a path which hits
y′, then we can extend the path by y′x and xy to give an M -alternating cycle in
which xy participates. So assume that no such path hits y′. Let X ′ be the set
of X-vertices which we can hit on such a path. Then X ′ is a proper (x /∈ X ′)
non-empty (x′ ∈ X ′) equineighbored subset of X by Lemma 2.5.4 applied with
X0 = {x′}. This is a contradiction because X was chosen to be minimal.

Definition 2.5.6. Let G be a bipartite graph with vertex classes A and B. A
subset X ⊆ B is called good if it is decent, and if for all y ∈ N(X) we have
conn (L (G− {yz ∈ E(G) : z ∈ B \X})) > conn(L(G)).

Note in particular that if X is good, then {yz ∈ E(G) : z ∈ B \X} 6= ∅ for
all y ∈ N(X).

Lemma 2.5.7. Let G be a bipartite graph with vertex classes A and B. Suppose
ν(G) = 2k for some integer k and conn(L(G)) = k− 2. If G has no good set in
A nor in B, then the following hold:

(i) G has a perfect matching

(ii) For every minimal equineighbored subset X ⊆ A or X ⊆ B we have |X| =
2. In particular, G[X ∪N(X)] is a C4 (possibly with parallel edges).

Note that the minimality requirement in (ii) is well-defined because by (i)
both A and B are equineighbored.

Proof. Assume that G has no good sets. First, we show that (i) holds. Suppose
G does not have a perfect matching. Let M be a maximum matching in G. By
assumption, there are some M -unsaturated vertices in A ∪ B. Without loss of
generality assume that at least one of them is in B. Let X0 be the set of M -
unsaturated vertices in B. Consider all the M -alternating paths in G starting
from X0. Let X be the set of vertices in B reachable on an M -alternating path
from X0 (including X0), and let Y = N(X). We claim that X is a good subset.
By Lemma 2.5.2 X is decent, so we must simply check that for all y ∈ Y we
have conn (L (G− {yz ∈ E(G) : z ∈ B \X})) > conn(L(G)).

Let y ∈ Y . Let Gy = G − {yz ∈ E(G) : z ∈ B \X}. Clearly M is still a
maximum matching in Gy and X0 remains the set of M -unsaturated vertices.
All of the (X,Y )-edges have been preserved in Gy, so X and Y are still the sets
of vertices reachable by an M -alternating path from X0. Suppose for the sake of
contradiction that we had conn(L(Gy)) = k−2. Then we pass to an M -reduced
subgraph J ⊆ L(Gy) of the line graph by iteratively deleting all decouplable
edges (see Definition 2.4.6). This means conn(J) = k−2, but conn(J−e) ≥ k−1
for all e ∈ E(J)).

Claim. The edges between X and Y form an independent set in J .

Proof of claim. First, by the Degree Lemma (Lemma 2.4.7), any edge e parallel
to an edge of M is not J-adjacent to any edge of M . Next, by the Alternating
Lemma (Lemma 2.4.9) any two edges which are together in an M -alternating
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path from X0 are not J-adjacent. Now consider a matching edge m ∈ M and
an (X,Y )-edge e which intersects it in a vertex v. Because m hits X, there is
an M -alternating path starting at X0 which has m as its last edge. If this path
ends in v, then we can add e to that path to obtain either a longer M -alternating
path or to obtain an M -alternating cycle. Either way, the Alternating Lemma
gives that e and m are not J-adjacent.

If v is not at the end of this path, then consider the other M -edge m′ which
intersects e (if this does not exist, then e is not J-adjacent to m by the Degree
Lemma (Lemma 2.4.7)). There is an M -alternating path starting at X0 which
has m′ as its last edge. This path ends in the intersection of m′ and e, so by
the previous argument, e and m′ cannot be J-adjacent, and so by the Degree
Lemma, e and m are not J-adjacent either. Thus we have shown that none of
the (X,Y )-edges are J-adjacent to the edges of M .

Now consider two intersecting non-matching edges e and f between X and
Y . If they were J-adjacent, then they would be explodable, but because e and
f are not J-adjacent to any M -edges, M ⊆ V (J > ef), so by Lemma 2.1.1,
conn(J > ef) ≥ |M | /2−2 = k−2. This contradicts explodability, so they must
not be J-adjacent.

Now consider the matching edge m ∈ M containing y. It is isolated in
J , because all of the edges intersecting m at all are (X,Y )-edges. This is a
contradiction, because m is then an isolated vertex of J , which means conn(J) =
∞, a contradiction. Thus we must have conn(L(Gy)) ≥ k − 1 as desired. Thus
X is good. This contradicts the assumption that there were no good sets, so G
must in fact have a perfect matching, proving (i).

Now we will show (ii) holds. Let X ⊆ B be a minimal equineighbored
set. We want to show that |X| = 2, from which easily follows that the edges
incident to X form a C4 (possibly with parallel edges). Indeed, if X is a minimal
equineighbored set of size 2, then its vertices must both have two neighbors (a
vertex with only one neighbor would be a proper equineighbored subset, a vertex
with more than two neighbors is ruled out by the fact that |N(X)| = 2, and an
isolated vertex is ruled out by the fact that we have a perfect matching), which
means they both connect to both neighbors of X, which forms a C4.

So suppose that |X| 6= 2. We will show that X is good. By Lemma 2.5.5, X
is decent, so we must simply check that for all y ∈ N(X), the graph Gy formed
by erasing from G all edges incident to y and not incident to X has the property
that conn(L(Gy)) ≥ k − 1.

Indeed suppose it did not. We could then apply Theorem 2.4.3 to get a CP-
decomposition of L(Gy). Note that X is still a minimal equineighbored subset
of B in Gy.

Claim. X does not contain any interior vertex of a P4 in any CP-decomposition
of L(Gy) with respect to any perfect matching.

Proof of claim. Fix a perfect matching M of Gy, and fix a CP-decomposition
S1, . . . , Ss, T1, . . . , Tt of L(Gy) with respect to M . Let X0 be the set of interior
vertices of the paths Tj in X. Then X \X0 is also equineighbored because the
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endpoints of the paths Tj which are partnered with the vertices of X0 in the
matching M are not in the neighborhood of X \X0 since all edges incident to
them must connect to interior vertices of the paths. Since there are |X0| end-
points in X, we have removed at least as many vertices from the neighborhood
as we have removed from X. Note that X \ X0 cannot be empty as X could
not have consisted entirely of interior vertices of the paths, since those have at
least two distinct neighbors each. It follows that X0 must have been empty and
the claim follows.

Claim. X does not contain any vertices of a C4 in any CP-decomposition of
L(Gy) with respect to any perfect matching.

Proof of claim. Fix a perfect matching M of Gy, and fix a CP-decomposition
S1, . . . , Ss, T1, . . . , Tt of L(Gy) with respect to M . Let X0 be the vertices of
some 4-cycle Si which are contained in X. Then X \X0 is also equineighbored
because the two vertices of that Si which are adjacent to X0 are not in the
neighborhood of X \X0 as X does not contain any interior vertices of any Tj by
the previous claim, and the only neighbors of the vertices of Si are other vertices
of Si and interior vertices of paths Tj by the definition of a CP-decomposition.
Therefore we would remove at least as many vertices from the neighborhood
of X as we would remove from X. It follows that if X0 is nonempty, then
|X0| = 2, because if |X0| = 1, then we would have |N(X \X0)| < |X \X0|,
which contradicts the fact that Gy has a perfect matching. Since |X| 6= 2, we
cannot have X \ X0 = ∅, so X \ X0 is a proper equineighbored subset of X,
which is a contradiction to the minimality of X.

Thus we have shown that X consists entirely of endpoints of P4’s (there are
no other types of vertices, since we have a perfect matching). Then y is an
interior vertex of some P4. However, y only has neighbors in X, so this cannot
be the case (since every interior vertex of a path is adjacent to another interior
vertex). Since we have reached a contradiction, it follows that we must have
conn(L(Gy)) ≥ k − 1. Thus X is a good set, which is a contradiction to the
conditions of the lemma. Therefore, we must have |X| = 2 and G[X ∪N(X)] is
a C4, which is (ii). This proves the lemma.

2.6 Remarks and Open Problems

Concerning the tightness of Theorem 2.1.1 several interesting questions remain
open. In the main result of this chapter we characterized those bipartite graphs
for which the theorem is tight when r = 2.

What happens with this characterization if one leaves out the restriction
of bipartiteness? The graph G consisting of a triangle and a hanging edge is
an example of a non-bipartite graph which is tight for Theorem 2.1.1. Indeed,
ν(G) = 2 while the line graph is K4 minus an edge, having a disconnected inde-
pendence complex. It would be very interesting to obtain a full characterizations
of those graphs G which are tight for Theorem 2.1.1.



CHAPTER 2: Connectedness of Line Graphs of Bipartite Graphs 31

Another natural direction is to consider hypergraphs with uniformity higher
than 2. It is not difficult to see that Theorem 2.1.1 is also best possible for
every r > 2. Just take a matching of size mr and add m edges that intersect
r different matching edges each. However, a characterization of those r-graphs

for which conn(H) = ν(H)
r − 2 is still outstanding; the case of r-partite r-graphs

already being very interesting.
A related question concerns the relationship of Theorem 2.1.1 to Ryser’s

Conjecture for r > 2. We mentioned already that in [16] we complete the proof
that a graph is tight for Theorem 2.1.1 if and only if it is the link graph of a
Ryser-extremal 3-graph. Is this equivalence or at least one of its directions true
for r > 2?

Finally, Theorem 2.1.1 has a chance to be best possible only for graphs whose
matching number is even. It would be interesting to prove a characterization
of 2-graphs with an odd matching number and having a line graph with con-
nectedness as small as possible (in terms of the matching number). Is there is a
CP-decomposition-type characterization of all (bipartite) graphs with matching
number 2k + 1 and connectedness k − 1?



CHAPTER 2: Connectedness of Line Graphs of Bipartite Graphs 32



Chapter 3

Home-Base Hypergraphs

Joint work with Penny Haxell and Tibor Szabó.

3.1 Introduction

Our aim in this chapter is to prove Theorem 1.1.2, which we repeat here for
convenience:

Theorem 1.1.2. Let H be a 3-partite 3-graph. Then τ(H) = 2ν(H) if and only
if H is a home-base hypergraph.

Home-base hypergraphs have a restricted structure, but are far from being
unique: for any given positive integer k ∈ N there are infinitely many home-base
hypergraphs with matching number k. The precise description is given in the
following subsection.

3.1.1 Home-Base Hypergraphs

To motivate our definition of home-base hypergraphs, let us start with some
examples of 3-graphs H with τ(H) = 2 = 2ν(H). A general example of an
r-graph, which is tight for Ryser’s Conjecture is the truncated projective plane
F (r). Its vertex set is constructed by taking the projective plane over the (r−1)-
element field and removing one point from it. The lines of the plane which were
incident to this point become the vertex classes of the r-graph, and the rest of
the lines become the edges. Since any two lines of the projective plane intersect,
we have ν(F (r)) = 1. It is also not difficult to see that the smallest vertex covers
are the vertex classes and hence τ(F (r)) = r − 1. Truncated projective planes
exist whenever r is one greater than a prime power. Luckily, 3 is such a number,
and thus we have the truncated Fano plane. Concretely, the truncted Fano-plane
is the 3-graph F (3) = F with vertex set {a, b, c, x, y, z} and edges abc, ayz, xbz,
and xyc (here the vertex classes are {a, x}, {b, y}, and {c, z}).

33
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Adding parallel edges to any hypergraph does not affect the vertex cover
number or the matching number. We call any 3-graph a truncated multi-Fano
plane, if it is obtained from the truncated Fano-plane by adding an arbitrary
number of parallel edges.

a b c

x y z

Figure 3.1: The truncated Fano plane.

However, the truncated Fano-plane is not minimal, since removing any edge
from it yields another example of an intersecting hypergraph which cannot be
covered by a single vertex. To be concrete, let H be the hypergraph on the
vertex set {a, b, c, x, y, z} and edges ayz, xbz, and xyc. Three of the vertices
have degree 2 and three have degree 1. One can extend H by adding edges
(perhaps containing new vertices) which contain two of the degree 2 vertices and
still obtain an intersecting hypergraph (and obviously the vertex cover number
does not decrease). This creates a family of edges which is intersecting simply
because they all contain two of the vertices x, y, and z. Thus this family is
determined by the set R = {x, y, z}.

x y z

Figure 3.2: The truncated Fano plane minus one edge, with possible addi-
tional edges drawn in dashed lines.

We say that a 3-partite 3-graph H is Ryser-extremal, if τ(H) = 2ν(H).
Our hope would be that every Ryser-extremal 3-graph is made up of such R-
families and truncated multi-Fano-planes. This is indeed the case, but the edges
of these substructures can intersect in various intricate ways. How exactly, is
made precise in the following series of definitions.

Definition 3.1.1. Let H be a 3-partite 3-graph. An FR-partition of H is a
triple (F ,R,W ) with F ,R ⊆ 2V (H) and W ⊆ V (H) which satisfies the following
conditions:

(1) F ∪R ∪ {W} is a partition of the vertices of H,

(2) For each F ∈ F , the induced hypergraph H|F is isomorphic to a truncated
multi-Fano plane,
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(3) Each R ∈ R is a three-vertex set with one vertex from each vertex class
of H,

(4) |F ∪ R| = ν(H).

Note that F is a 6-graph and R is a 3-graph.

Definition 3.1.2. Let H be a 3-partite 3-graph with vertex classes V1, V2, and
V3, and let (F ,R,W ) be an FR-partition of H. For each vertex class Vi, we
define a bipartite graph Bi with vertex classes R and W ∩ Vi and with an edge
between R ∈ R and w ∈W ∩Vi precisely when there is an edge of H containing
w and two vertices of R. The partition (F ,R,W ) is called matchable if each Bi
has a matching saturating R.

An example of a non-matchable FR-partition is given in the following pic-
ture, where the boxes correspond to two R’s and the unboxed vertices are in
W :

Figure 3.3: An unmatchable FR-partition.

Definition 3.1.3. An FR-partition (F ,R,W ) of H is said to have the edge-
home property if every edge of H is either in H|F for some F ∈ F or contains
two vertices from some R ∈ R.

Definition 3.1.4. A matchable FR-partition with the edge-home property is
called a home-base partition. H is called a home-base hypergraph if it has a
home-base partition.

Notation. For each F ∈ F , we call an edge an F -edge if it is in H|F . For each
R ∈ R, we call an edge an R-edge if it contains two vertices from R. We call an
edge an F-edge if it is an F -edge for some F ∈ F , and call an edge an R-edge
if it is an R-edge for some R ∈ R.

Here follows an example of a home-base hypergraph. The boxes correspond
to members of F or R, and the unboxed vertices are in W . The bolded edges
are the edges of H|F for some F ∈ F or the edges corresponding to the edges of
arbitrarily chosen matchings saturating R in the auxiliary bipartite graphs Bi.
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Figure 3.4: A home-base hypergraph with its home-base partitition.

We can easily see one direction of Theorem 1.1.2:

Proposition 3.1.5. If H has a home-base partition (F ,R,W ), then τ(H) =
2ν(H).

Proof. Let T ⊆ V (H) be a vertex cover. We aim to show that it has size at
least 2ν(H) = 2 |F ∪ R|. Since the partition is matchable, each of the auxiliary
bipartite graphs B1, B2, and B3 have matchings saturating R, say M1, M2,
and M3, respectively. Then each R = {r1, r2, r3} ∈ R has three W -vertices,
wRi ∈ Vi assigned to it, so that RwRi ∈Mi, which means that wRi rjrk are edges
for each choice of {i, j, k} = {1, 2, 3}. So consider only the edges of this form
together with the edges of H|F for each F ∈ F . Each set of edges for each
R ∈ R and F ∈ F is disjoint from the other sets, so any vertex cover must
cover each set with different vertices. Since each such set forms an intersecting
3-partite 3-graph with vertex cover number 2, T must have at least two vertices
for each R ∈ R and each F ∈ F , giving a total of at least 2 |R ∪ F| = 2ν(H)
vertices as required. This shows τ(H) ≥ 2ν(H). Since Ryser’s Conjecture is
true for 3-partite 3-graphs, we have τ(H) = 2ν(H).

Note that we did not make use of the edge-home property in this proof. This
property is necessary however to ensure that if a home-base partition exists, then
it is unique. Uniqueness is not necessary for our proof of the main theorem, but
we include it here out of interest.

Proposition 3.1.6. Let H be a 3-partite 3-graph with home-base partitions
(F ,R,W ) and (F ′,R′,W ′). Then F = F ′, R = R′, and W = W ′.

Proof. Consider F ∈ F . Call its vertices {a, b, c, x, y, z} so that abc, ayz, xbz,
and xyc are edges of H. Note that no other edge of H intersects F in more
than one vertex by the edge-home property of (F ,R,W ). If F /∈ F ′, then at
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least one of these edges is not an F ′-edge. By the symmetries of the truncated
Fano plane, we may assume without loss of generality that edge is abc. Because
(F ′,R′,W ′) has the edge-home property, abc must be an R′-edge. Without
loss of generality, let a, b ∈ R ∈ R′. Now the edge ayz has one vertex in R,
so it cannot be an F ′-edge either. There are two possibilities: either it is an
R-edge, or it is an R′-edge for some other R′ ∈ R′. If it is an R-edge, then
R = {a, b, z}. Because (F ′,R′,W ′) is matchable, there must be W ′-vertices on
each side which are in an R-edge. But as we have noted, no edge outside of
abc, ayz, xbz, and xyc intersects R in two vertices. Thus it must be the case
that x, y, c ∈ W ′. But then xyc is an edge which is neither an F ′-edge nor
an R′-edge — a contradiction. Therefore ayz must have been an R′-edge with
y, z ∈ R′. But again by matchability, there must be a vertex w ∈W ′ such that
wyz ∈ E(H). Since a /∈W ′, we must have w 6= a, which cannot happen for the
same reason as before. Thus F ∈ F ′, and by symmetry, we thus have F = F ′.

Consider now R ∈ R. Call its vertices {x, y, z}, and let a, b, c ∈ W such
that ayz, xbz, xyc ∈ E(H) (these edges exist because (F ,R,W ) is matchable.
In (F ′,R′,W ′) these are all R′-edges, because if there were an F ′-edge among
them, this would contradict the fact that F = F ′. Thus if R /∈ R′, then at
least one of the vertices a, b, or c must be in some R′ ∈ R′ such that one of
these edges is an R′-edge (otherwise we would quickly conclude that one of the
edges is neither an F ′-edge nor an R′-edge). By symmetry, we may assume
without loss of generality that a, y ∈ R′. Now consider the edge xyc. Again
there are two possibilites: either it is an R′-edge, or it is an R′′-edge for some
other R′′ ∈ R′. If it is an R′-edge, then R′ = {a, y, c} and by the matchability
of (F ′,R′,W ′), there would need to be an edge awc for some w ∈W ′. But this
edge cannot exist, because it contains two vertices of W (namely a and c), and
hence is neither an F-edge nor an R-edge, which cannot be the case because
(F ,R,W ) has the edge-home property. Thus, xyc must be an R′′-edge with
x, c ∈ R′′. But then again by matchability, there must be an edge xwc for some
w ∈W ′ (and hence w 6= y). This edge cannot exist if (F ,R,W ) is a home-base
partition because it contains one R-vertex, one W -vertex and one third vertex
which is not in R. This is a contradiction, and thus R ∈ R′. By symmetry, we
then have R = R′.

Since W = V (H)\(
⋃

(F ∪R)) = V (H)\(
⋃

(F ′ ∪R′)) = W ′, we have shown
that these are in fact the same home-base partitions.

It is clear that given the characterization in Theorem 1.1.2, we can easily
enumerate all Ryser-extremal 3-graphs.

3.1.2 Proof Outline

The main topic of this chapter is the proof of Theorem 1.1.2. We have just
seen that home-base hypergraphs are Ryser-extremal. The proof of the reverse
implication will be done by induction on ν(H).

The case ν(H) = 0 is trivial, and even the case ν(H) = 1 is not difficult
to check. Much of the work involved in proving the cases ν(H) ≥ 2 consists
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of finding an appropriate structure to which we can apply induction. That
means a subhypergraph H0 ⊆ H which also satisfies τ(H0) = 2ν(H0) and has
ν(H0) < ν(H). By induction, this will have a home-base partition, but in order
to be able to extend this partition to a home-base partition of the whole of H
we will also need the edges outside of H0 to behave nicely.

A more precise description of the structure of the proof is given by the flow
chart in Figure 3.5. Please note that it is intended as a guide to be referred to
throughout the proof, and many of the terms will only be introduced in later
sections.

In Section 3.2, we collect theorems we have shown in Chapter 2 about the
connectedness of the line graphs of the link graphs of Ryser-extremal 3-graphs.
Among others, this involves a structural characterization of the link graphs,
which we call a CP-decomposition, as well as a theorem about bipartite graphs
without so-called good sets. Good sets will turn out to be very useful to have in
one of the link graphs of a Ryser-extremal 3-graph, while the lack of good sets
in a bipartite graph imposes very strong restrictions on its structure, which will
eventually help us to show that we are dealing with a home-base hypergraph.

In Section 3.3, we prove some important properties of home-base hyper-
graphs, which will be essential for several parts of the rest of the proof.

In Section 3.4, we define and study cromulent and perfectly cromulent triples.
A perfectly cromulent triple is a set of vertices such that the rest is a home-base
hypergraph that interacts with the rest of the edges in a controlled fashion.
This turns out to be precisely the substructure we need so that we can extend
the home-base partition given by induction to a home-base partition of the
whole hypergraph. Cromulent triples are apparently weaker versions of perfectly
cromulent triples, but careful considerations will show that no cromulent triple
can actually fail to be perfectly cromulent under the assumption that τ = 2ν.
Therefore, it will be enough to find just a cromulent triple in order to show that
we have a home-base hypergraph.

In Section 3.5, we show how to use a good set to find a perfectly cromulent
triple and hence conclude that we are dealing with a home-base hypergraph.
The rest of Section 3.5 is devoted to exploring how the edges of the link graphs
extend to hyperedges under the assumption that there are no good sets and no
cromulent triples.

In Section 3.6, we use the information on how the links extend, together with
the fact that the links have CP-decompositions to show that the hypergraph
must contain a truncated multi-Fano plane that interacts minimally with the
rest of the hypergraph, which by induction will have a home-base partition. It
is then easy to show that adding the lone F results in a home-base partition of
the whole hypergraph.

The proof of Theorem 1.1.2 is assembled from all of the theorems and lemmas
of the preceeding four sections in Section 3.7.

In Section 3.8 we prove a couple of facts related to our main theorem, some
of them leading to interesting open questions.
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Topology

τ(H) = 2ν(H)

2.5.7
CP-Decom-

position

∃ good set?

Links have perf.
matchings and all

min. equinbrd.
sets have size 2

3.6.1

3.5.1

∃ min.
equinbrd. X with 2

disj. edges?
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3.4.3 3.5.2 3.6.2
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triple
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∃ min. equinbrd.
set X with

X = N(N(X))

3.4.2

H is a
home-base
hypergraph

YES

NO

YES

NO

Figure 3.5: A flow-chart describing the logic of the proof with relevant
lemmas shown.
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3.2 Theorems about the link graph

In this section we collect theorems that will be used in our arguments. For
proofs, see Chapter 2.

The line graph L(H) of a hypergraph H is the simple graph L(H) on the
vertex set E(H) with e, f ∈ V (L(H)) adjacent if e ∩ f 6= ∅.

Recall that the connectedness of a graph G, denoted conn(G), is the largest
k such that the independence complex of the graph G is k-connected.

Theorem 2.1.1. Let G be an r-graph. Then

conn(L(G)) ≥ ν(G)

r
− 2.

Definition 2.1.2. Let H be a 3-partite 3-graph with parts V1, V2, and V3. Let
S ⊆ Vi for some i = 1, 2, 3. Then the link graph lkH(S) is the bipartite graph
with vertex classes Vj and Vk (where {i, j, k} = {1, 2, 3}) whose edge multiset
is {e \ Vi : e ∈ E(H), e ∩ Vi ⊆ S}.

Proposition 2.3.1. Let H be a 3-partite 3-graph with vertex classes V1, V2,
and V3. Then for each i ∈ {1, 2, 3} we have the following:

(i) For all S ⊆ Vi we have

conn(L(lkH(S))) ≥ τ(H)− (|Vi| − |S|)
2

− 2.

(ii) There is some S ⊆ Vi such that

conn(L(lkH(S))) ≤ ν(H)− (|Vi| − |S|)− 2.

(iii) For every S ⊆ Vi for which the inequality in (ii) holds we have

|S| ≥ |Vi| − (2ν(H)− τ(H)).

Theorem 2.1.3. If H is a 3-partite 3-graph with vertex classes V1, V2, and V3,
such that τ(H) = 2ν(H), then for each i we have

(i) conn(L(lkH(Vi))) = ν(H)− 2.

(ii) ν(lkH(Vi)) = τ(H).

In particular

conn(L(lkH(Vi))) =
ν(lkH(Vi))

2
− 2. (3.2.1)
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Theorem 2.4.3. Let G be a bipartite graph. Then we have conn(L(G)) =
ν(G)
2 − 2 if and only if G has a collection of ν(G)/2 pairwise vertex-disjoint

subgraphs, each of them a C4 or a P4, such that every edge of G is parallel to an
edge of one of the C4’s or is incident to an interior vertex of one of the P4’s.

We refer to such a collection as a CP-decomposition. Note that this is just
a specialization of the concept of CP-decomposition in Chapter 2 for the entire
line graph, which is the only case we will need in this part. As promised in
Chapter 2, the “if” direction of this theorem will be proved here. We will
postpone the proof until Section 3.8, as it is not necessary for the proof of the
main theorem.

For a subset X of the vertices of a graph, we denote the neighborhood of X
by N(X), meaning the set of vertices adjacent to some vertex in X.

Definition 2.5.1. Let G be a bipartite graph with vertex classes A and B. A
subset X ⊆ B is called decent if it satisfies the following conditions:

(1) ν(G) = |N(X)|+ |B \X|,

(2) For every x ∈ X and y ∈ N(x) the edge xy participates in a maximum
matching of G.

Definition 2.5.3. Let G be a bipartite graph. A subset X of a vertex class of
G is called equineighbored if X is nonempty and |N(X)| = |X|.

Definition 2.5.6. Let G be a bipartite graph with vertex classes A and B. A
subset X ⊆ B is called good if it is decent, and if for all y ∈ N(X) we have
conn (L (G− {yz ∈ E(G) : z ∈ B \X})) > conn(L(G)).

Note in particular that if X is good, then {yz ∈ E(G) : z ∈ B \X} 6= ∅ for
all y ∈ N(X).

Lemma 2.5.7. Let G be a bipartite graph with vertex classes A and B. Suppose
ν(G) = 2k for some integer k and conn(L(G)) = k− 2. If G has no good set in
A nor in B, then the following hold:

(i) G has a perfect matching

(ii) For every minimal equineighbored subset X ⊆ A or X ⊆ B we have |X| =
2. In particular, G[X ∪N(X)] is a C4 (possibly with parallel edges).

Note that the minimality requirement in (ii) is well-defined because by (i)
both A and B are equineighbored.

3.3 Properties of Home-Base Hypergraphs

The next couple of sections will establish some basic properties of home-base
hypergraphs that we will need in the proof of Theorem 1.1.2.
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First is the so-called “monster lemma,” which states under which conditions
a monster can eat some vertices of a home-base hypergraph without reducing
the matching number.

But before we can prove it, we shall need some definitions.

3.3.1 Essential and Superfluous Vertices

Definition 3.3.1. Let G be a bipartite graph with vertex classes X1 and X2.
A subset C ⊆ Xi is called essential if there is a subset U ⊆ X3−i with |U | = |C|
and C = N(U).

We remark briefly that non-empty essential subsets are precisely the neigh-
borhoods of equineighbored subsets. We will of course apply this concept to the
bipartite graphs Bi from the matchability criterion of FR-partitions.

Let H be a 3-partite 3-graph on vertex classes V1, V2, and V3 with a match-
able FR-partition (F ,R,W ). We call a vertex v in Vi essential if v ∈ W and
{v} ⊆ W ∩ Vi is essential in Bi. If R ∈ R has only v ∈ W ∩ Vi as its neighbor
in Bi, then we say v is essential for R.

Lemma 3.3.2. Let B be a bipartite graph with vertex classes R and W , which
has a matching saturating R. Then W contains a unique maximal essential
subset.

Proof. Let C1, C2 ⊆ W be essential. Then we claim C1 ∪ C2 is also essential.
Consider U1,U2 ⊆ R such that C1 = NB(U1), C2 = NB(U2), |U1| = |C1| and
|U2| = |C2|. Then NB(U1 ∪ U2) = C1 ∪ C2 and by Hall’s Theorem, |C1 ∪ C2| ≥
|U1 ∪ U2|. But of course NB(U1 ∩ U2) ⊆ C1 ∩ C2 and thus again by Hall’s
Theorem, |C1 ∩ C2| ≥ |U1 ∩ U2|. By the inclusion-exclusion principle, we thus
have |C1|+ |C2| − |C1 ∪ C2| ≥ |U1|+ |U2| − |U1 ∪ U2|, and since |U1| = |C1| and
|U2| = |C2|, we find that |C1 ∪ C2| ≤ |U1 ∪ U2|, so that in fact there is equality.
This proves that C1 ∪ C2 is essential. Therefore the union over all essential
subsets of W gives the unique maximal essential set.

A vertex of W which is not in the maximal essential set is called superflu-
ous. Note that any one superfluous vertex can be removed, and the rest of the
bipartite graph will still have a matching saturating R. Again, we will apply
this to the bipartite graphs Bi from the matchability criterion of FR-partitions.

Let H be a home-base hypergraph on vertex classes V1, V2, and V3 with a
home-base partition (F ,R,W ). Then the auxiliary bipartite graphs Bi have
vertex classes R and W ∩ Vi and a matching saturating R. Therefore, each
W ∩ Vi contains a unique maximum essential subset Ci, and we may call a
vertex of Vi superfluous if it is in W ∩ Vi \ Ci. Clearly superfluous vertices
are non-essential W -vertices in a stronger form. We can make the following
observation:

Observation 3.3.3. Let H be a 3-partite 3-graph with a matchable FR-partition
(F ,R,W ), and let S ⊆W be a set of superfluous vertices with at most one vertex
in each vertex class. Then (F ,R,W \S) is a matchable FR-partition of H−S.
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Proof. Since removing any single superfluous vertex s from any of the bipartite
graphs Bi leaves a matching saturating R, (F ,R,W \ {s}) is a matchable FR-
partition. Since removing s from one does not change the other graphs Bj at
all, we can do this for each vertex class independently.

We will need the following simple lemma about removing superfluous vertices
later in Section 3.5.

Lemma 3.3.4. Let B be a bipartite graph with vertex classes R and W that
has a matching saturating R, and let C ⊆ W be the maximal essential subset.
If p ∈ C and s ∈W \C, then p is essential in B if and only if it is essential in
B − s.

Proof. If p is essential in B, then it clearly is essential in B − s.
Conversely, assume p is essential in B−s. Let U ⊆ R be such that NB(U) =

C and |U| = |C|, which exists by the definition of essential subsets. Since p is
essential, there is a unique R ∈ R such that NB−s(R) = {p}. We claim that
R ∈ U . Suppose not. Then NB(R) ⊆ {s, p}, and hence NB(U ∪{R}) ⊆ C ∪{s}.
Since |U ∪ {R}| = |U|+ 1 = |C ∪ {s}|, this would make C ∪ {s} an essential set
in B, a contradiction, since C is maximal. Hence R ∈ U , from which follows
that s /∈ NB(R), and thus NB(R) = {p}, so p is essential in B.

3.3.2 The Monster Lemma

Lemma 3.3.5. Let H be a 3-partite 3-graph that has a matchable FR-partition
(F ,R,W ). Let a, b, c ∈ V (H) be in different vertex classes. Suppose that the
following two conditions hold:

(1) For every F ∈ F , there is an F -edge avoiding {a, b, c},

(2) For every R ∈ R, there is an R-edge avoiding {a, b, c}.

Then ν(H− {a, b, c}) = ν(H).

Proof. Let V1, V2, and V3 be the vertex classes of H, where a ∈ V1, b ∈ V2, and
c ∈ V3. We will select a matching M⊆ E(H) of size ν(H) avoiding {a, b, c}.

First, for each F ∈ F we choose an arbitrary edge fromH|F avoiding {a, b, c}
and include it in M. This can be done by condition (1). These edges are all
pairwise disjoint, since the members of F are pairwise disjoint. Furthermore,
we will describe a procedure that selects pairwise disjoint R-edges, one for each
R ∈ R, each containing a W -vertex and avoiding {a, b, c}. Because they contain
a W -vertex, these R-edges will all be disjoint from the F-edges we already put
intoM (since both W and V (R) are disjoint from V (F)). If successful, we will
have constructed the required matching M, since |M| = |F|+ |R| = ν(H).

How we choose the R-edges will fall into several cases. We introduce the
following convenient notation for talking about R-edges. An R-edge xyz of H
is called a WRR-edge if x ∈ W ∩ V1. Analogously, xyz is called an RWR-edge
or an RRW-edge if y ∈W ∩ V2 or z ∈W ∩ V3, respectively.
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Case 1. At least one of the vertices a, b, or c is in V (R).
We may assume without loss of generality that a ∈ V (R). First we choose a

matching M1 saturating R in the auxiliary bipartite graph B1. Such a matching
exists by the matchability of the FR-partition. Each edge Rw ∈ M1, with
R ∈ R and w ∈ W ∩ V1 corresponds to a WRR-edge of H consisting of w and
two vertices of R. These edges form a matchingM′ of R-edges in H. Each edge
in M′ contains a W -vertex in V1 and hence avoids a ∈ V (R) ∩ V1. The only
problem might be that b or c appear in some of these edges, rendering those
edges unsuitable. If b is contained in the R-edge e1 ∈M′ for some R ∈ R, then
replace e1 in M′ with an arbitrary RWR-edge e2 for R. Such an edge exists
because B2 has a matching saturating R, and it is disjoint from all other edges
inM′ because these are WRR-edges. The vertex of e2 in V1 cannot be a, since
then all R-edges would intersect {a, b}, contradicting condition (2). Similarly,
the vertex of e2 in V3 cannot be c, since then all R-edges would intersect {b, c}.
Finally, if c is contained in the R′-edge e3 ∈ M′ for some R′ ∈ R, then replace
e3 in M′ with an arbitrary RRW-edge e4 for R′. Such an edge exists because
B3 has a matching saturating R, and it is disjoint from all other edges of M′
because they are all WRR- and RWR-edges. The edge e4 cannot contain a,
otherwise all R′-edges would intersect {a, c}, contradicting (2). The edge e4
also does not contain b, since otherwise every R′-edge would intersect {b, c},
again contradicting (2).

Now the vertices of the matchingM′ avoid {a, b, c} and Case 1 is complete.
Let us assume from now on that none of the vertices a, b, and c are in V (R).

Case 2. None of the vertices a, b, and c are essential.
First we choose a matching M1 in B1 saturating R, which exists by the

matchability of the FR-partition. This corresponds to a matching M′ in H
consisting of WRR-edges. Clearly, b and c are avoided by the edges of M′
because b, c /∈ V (R). If a is contained in an R-edge e1 ∈ M′ for some R ∈ R,
then replace e1 in M′ by an arbitrary RWR-edge e2 for R that avoids b. This
can be done, since b is not essential. The edge e2 also avoids a and c because
a, c /∈ V (R), and it is disjoint from all other edges of M′ because they are all
WRR-edges.

Hence we have the required matching M′ avoiding {a, b, c} and Case 2 is
complete.
Case 3. Not all of the vertices a, b, and c are essential W -vertices for the same
R ∈ R.

We may assume without loss of generality that a is essential for R ∈ R (If
no vertex is essential, we are in Case 2). By assumption, not both b and c are
essential for R as well, so assume without loss of generality that b is not essential
for R. We choose a matching M1 ⊆ E(B1) saturating R. This corresponds to
a matching M′ in H consisting of WRR-edges. Clearly, b and c are avoided
by the edges of M′ because b, c /∈ V (R). Since a is essential for R, it must be
that Ra ∈ M1 because a is the only neighbor of R in W ∩ V1. Let e1 ∈ M′
be the edge corresponding to Ra ∈ M1. We replace e1 in M′ by an arbitrary
RWR-edge e2 for R that avoids b. This can be done, since b is not essential for
R. The edge e2 also avoids a and c because a, c /∈ V (R), and it is disjoint from
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all other edges of M′ because they are all WRR-edges.
This means that M′ avoids {a, b, c}, and so Case 3 is complete.

Case 4. The vertices a, b, and c are all essential W -vertices for R ∈ R.
By condition (2), there must be an R-edge e avoiding a, b, and c. At least

two of its vertices must be in R, so assume without loss of generality that
e∩V2, e∩V3 ⊆ R. We choose a matching M1 in B1 saturating R. It corresponds
to a matching M′ of WRR-edges in H. Because a is essential for R, it follows
that there is an edge of M′ containing a and two vertices of R. Replace it by
e, which avoids a, b, and c and is disjoint from the other edges of M′ because
its V1-vertex is not in W (because a is the only W -vertex in a WRR-edge of R)
and its other vertices are in R. The rest of the edges of M′ clearly avoid a, b,
and c, since the one edge of M′ containing a has already been replaced, and
b, c /∈ V (R).

We must be careful because in this case, one of the edges of M′, namely e,
is not necessarily contained in V (R) ∪W , as has been true in all other cases.
Thus, the V1-vertex of e may be in some F ∈ F , and hence could potentially
intersect the F -edge which we added to M in the beginning. However, since
H|F is a truncated multi-Fano plane, it cannot be covered by one vertex, so
there is an F -edge disjoint from e with which we can replace our original choice
of edge forM. Note that we do not need to worry about avoiding {a, b, c} with
this edge, as these are all in W .

Adding the edges in M′ to M gives us our desired matching avoiding
{a, b, c}. This concludes Case 4.

These cases exhaust all possibilities, so the proof is complete.

In order to facilitate the use of this lemma, we prove in some specific cases
that the conditions are fulfilled.

Corollary 3.3.6. Let H be a 3-partite 3-graph with a matchable FR-partition
(F ,R,W ). Let a, b, c ∈ V (H) be in different vertex classes, and let S ⊆ W be
a set of superfluous vertices with at most one vertex in each vertex class. Then
in any of the following cases we have ν(H− ({a, b, c} ∪ S)) = ν(H):

(1) a ∈ V (F), b ∈W , and c is arbitrary,

(2) a ∈ R ∈ R, b /∈ R, and c /∈ V (R),

(3) a ∈ W is essential for R ∈ R, b is not essential for R in H − S, and
c /∈ V (R),

(4) a ∈W is not essential in H− S, b /∈ V (R), and c is arbitrary.

Proof. Let V1, V2, and V3 be the vertex classes of H, where a ∈ V1, b ∈ V2, and
c ∈ V3. Let S′ = S\{a, b, c}. By Observation 3.3.3, the hypergraph H′ = H−S′
has the matchable FR-partition (F ,R,W \ S′), and hence ν(H′) = ν(H). We
will apply Lemma 3.3.5 to H′ to find a matching in H′ of size ν(H′) avoiding
{a, b, c}. This constitutes a matching in H − ({a, b, c} ∪ S) of size ν(H), as
desired. We must simply check that the two conditions of Lemma 3.3.5 hold.
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Case 1. a ∈ V (F), b ∈W , and c is arbitrary.
For any F ∈ F , there is an F -edge avoiding {a, b, c}, because b ∈ W , and

a and c, being in different vertex classes, do not cover every edge of H′|F (a
truncated multi-Fano plane).

Let R = {r1, r2, r3} ∈ R (where ri ∈ Vi). We will find an R-edge avoiding
{a, b, c}. If c ∈ R, then there is an R-edge avoiding {a, b, c} because the match-
ability of B3 ensures that there is an R-edge r1r2w with w ∈ W ∩ V3, which
clearly avoids {a, b, c}, because a, b /∈ V (R), and c ∈ R. Suppose c /∈ R. By
the matchability of B1, there is an R-edge w′r2r3, where w′ ∈W ∩ V1, and this
edge avoids {a, b, c} because a ∈ V (F), b ∈W , and c /∈ R.

Therefore Lemma 3.3.5 applies, and we have ν(H′ − {a, b, c}) = ν(H).
Case 2. a ∈ R ∈ R, b /∈ R, and c /∈ V (R).

For any F ∈ F , there is an F -edge avoiding {a, b, c}, because a ∈ V (R), and
b and c do not cover every edge of H′|F (a truncated multi-Fano plane).

Let R′ = {r1, r2, r3} ∈ R (where ri ∈ Vi). We will find an R′-edge avoiding
{a, b, c}. If b ∈ R′, then R′ 6= R, so a /∈ R′. There is an R′-edge r1wr3 with
w ∈ W ∩ V2 by matchability applied to B2. This edge avoids {a, b, c} because
a /∈ R′, b ∈ R′, and c /∈ V (R). Suppose b /∈ R′. By the matchability of B1,
there is an R′-edge w′r2r3, where w′ ∈ W ∩ V1, and this edge avoids {a, b, c}
because a ∈ V (R), b /∈ R′, and c /∈ V (R).

Therefore Lemma 3.3.5 applies, and we have ν(H′ − {a, b, c}) = ν(H).
Case 3. a ∈ W is essential for R ∈ R, b is not essential for R in H − S, and
c /∈ V (R).

Note that if a is essential for R in H, then it is still essential for R in H′, a
subgraph of H. Similarly, if b is not essential for R in H− S, then it certainly
is not essential for R in H′, since H− S is a subhypergraph of H′.

For any F ∈ F , there is an F -edge avoiding {a, b, c}, because a ∈ W , and b
and c do not cover every edge of H′|F (a truncated multi-Fano plane).

Let R′ = {r1, r2, r3} ∈ R (where ri ∈ Vi). We will find an R′-edge avoiding
{a, b, c}. If b is not essential for R′, then R′ has a neighbor w ∈ W ∩ V1 in B2

with w 6= b. The R′ edge r1wr3 then avoids {a, b, c} because a ∈W , b 6= w, and
c /∈ V (R). If b is essential for R′, then b ∈ W and R′ 6= R, so a is not essential
for R′ (because no vertex can be essential for two different members of R by
matchability). Thus R′ has a neighbor w′ ∈ W ∩ V1 in B1 with w′ 6= a. The
R′-edge w′r2r3 then avoids {a, b, c} because w′ 6= a and b, c /∈ V (R).

Therefore Lemma 3.3.5 applies, and we have ν(H′ − {a, b, c}) = ν(H).
Case 4. a ∈W is not essential in H− S, b /∈ V (R), and c is arbitrary.

Note that if a is not essential in H − S, then it certainly is not essential in
H′, since H− S is a subhypergraph of H′.

For any F ∈ F , there is an F -edge avoiding {a, b, c}, because a ∈ W , and b
and c do not cover every edge of H′|F (a truncated multi-Fano plane).

Let R = {r1, r2, r3} ∈ R (where ri ∈ Vi). We will find an R-edge avoiding
{a, b, c}. If c ∈ R, then there is an R-edge avoiding {a, b, c} because the match-
ability of B3 ensures that there is an R-edge r1r2w with w ∈ W ∩ V3, which
clearly avoids {a, b, c}, since a, b /∈ V (R), and c ∈ R. Suppose c /∈ R. Since a
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is not essential, R has a neighbor w′ ∈ W ∩ V1 in B1 with w′ 6= a. The R-edge
w′r2r3 then avoids {a, b, c} because w′ 6= a, b /∈ V (R), and c /∈ R.

Therefore Lemma 3.3.5 applies, and we have ν(H′ − {a, b, c}) = ν(H).

It is unfortunately necessary in Cases 3 and 4 to make sure that the non-
essentialW -vertex remains non-essential after removing the superfluous vertices.
However, this condition is often very easy to check, since removing superfluous
vertices from the hypergraph only affects the status of those W -vertices in their
vertex class. This leads to the following observation:

Observation 3.3.7. Let H be a 3-partite 3-graph with a matchable FR-partition
(F ,R,W ), and let s ∈ W be a superfluous vertex. Then if w ∈ W is in a
different vertex class from s, it holds that w is non-essential in H if and only if
it is non-essential in H− s.

3.3.3 Matchability and the Edge-Home Property

One nice consequence of the monster lemma is the following proposition, which
will be key to our proof.

Definition 3.3.8. An FR-partition (F ,R,W ) is proper if there is no R ∈ R and
an edge of H consisting of three vertices of W which together induce a truncated
Fano plane. Being proper just means that we have not called anything an R if
it could have been part of an F .

Clearly home-base partitions are proper, because they do not contain any
edges consisting of W -vertices. It turns out that a converse to this fact is also
true.

Proposition 3.3.9. A proper matchable FR-partition of a 3-partite 3-graph has
the edge-home property.

Proof. Let H be a 3-partite 3-graph with vertex classes V1, V2, V3, and let
(F ,R,W ) be a proper matchable FR-partition of H. Let abc be an edge of H.
We aim to show that it is either an F-edge or an R-edge. Suppose it is not. We
will aim for a contradiction by applying Lemma 3.3.5 to show H− {a, b, c} has
a matching of size ν(H).

By assumption, abc is not in H|F for any F ∈ F , which means that every
F ∈ F has an F -edge avoiding {a, b, c}, since the only way to cover a truncated
Fano plane with vertices from different vertex classes is if they form one of its
edges. We want to show that it also cannot cover every R-edge for any R ∈ R.

Since the partition is matchable, each of the auxiliary bipartite graphs B1,
B2, and B3 have matchings saturating R, say M1, M2, and M3, respectively.
Then each R = {r1, r2, r3} ∈ R has three W -vertices, wRi ∈ Vi assigned to
it, so that RwRi ∈ Mi, which means that wRi rjrk are edges for each choice
of {i, j, k} = {1, 2, 3}. By assumption, abc intersects R in at most one vertex
(otherwise, it is an R-edge). If abc intersects R in one vertex, without loss
of generality in V1, then wR1 r2r3 is an R-edge disjoint from abc. If abc does
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not intersect R in any vertex, then it intersects all the R-edges wRi rjrk for
{i, j, k} = {1, 2, 3} only if abc = wR1 w

R
2 w

R
3 , which would mean that abc, wR1 r2r3,

r1w
R
2 r3, and r1r2w

R
3 form a truncated Fano plane. If this is the case, then we

claim that these are in fact the only edges on {a, b, c, r1, r2, r3}, which would
contradict the assumption that (F ,R,W ) is proper.

Suppose these are not the only edges on {a, b, c, r1, r2, r3}. Then there are
two disjoint edges on {a, b, c, r1, r2, r3}. Now pick one F -edge for each F ∈ F ,
and take the edges wR

′

1 r′2r
′
3 for each R′ ∈ R\{R}. These edges form a matching

of size |F| + |R| − 1, and they do not intersect {a, b, c, r1, r2, r3}. Together
with the two disjoint edges on {a, b, c, r1, r2, r3}, we find a matching of size
|F|+ |R|+ 1 = ν(H) + 1, a contradiction.

Hence a, b, and c fulfill the conditions of Lemma 3.3.5, and H\{a, b, c} would
have a matching of size ν(H), which together with abc would be a matching of
size ν(H)+1 inH, a contradiction. ThereforeH has the edge-home property.

3.4 Cromulent Triples

The aim of this section is to define the appropriate substructure which will
facilitate the inductive proof of our main theorem (Theorem 1.1.2). The key
definition is that of a cromulent triple.

Definition 3.4.1. Let H be a 3-partite 3-graph with vertex classes V1, V2, and
V3. A triple of nonempty sets (Y1, Y2, X) with Y1 ⊆ Vi, Y2 ⊆ Vj and X ⊆ Vk,
where {i, j, k} = {1, 2, 3} is called a cromulent triple if it fulfills the following
conditions:

(1) |Y1| = |Y2| ≤ |X|,

(2) NlkH(Vi)(X) = Y2,

(3) There is a hypergraph matching in H|Y1∪Y2∪X of size |Y1|,

(4) The hypergraph H0 = H− (Y1 ∪ Y2 ∪X) is a home-base hypergraph with
ν(H0) = ν(H)− |Y1|,

(5) Given any home-base partition (F ,R,W ) of H0, we have NlkH(Vj)(X) ⊆
Y1 ∪ V (R) ∪ V (F).

Such a triple is called perfectly cromulent if it fulfills the following stronger
version of condition (5):

(5*) NlkH(Vj)(X) = Y1.

The first lemma of this section states that perfectly cromulent triples are the
kind of substructure we should look for in order to prove our main theorem.

Lemma 3.4.2. Let H be a 3-partite 3-graph with τ(H) = 2ν(H). If H has a
perfectly cromulent triple, then H is a home-base hypergraph.



CHAPTER 3: Home-Base Hypergraphs 49

Unfortunately, it is sometimes hard to ensure property (5*), and it will be
easier to find just cromulent triples instead. Fortunately, we will be able to
prove that this suffices.

Lemma 3.4.3. If H is a 3-partite 3-graph with τ(H) = 2ν(H), then every
cromulent triple of H is perfectly cromulent.

These two lemmas combine to give the main result of this section as an
immediate corollary:

Corollary 3.4.4. Let H be a 3-partite 3-graph with τ(H) = 2ν(H). If H has a
cromulent triple, then H is a home-base hypergraph.

The proofs of the two lemmas follow similar lines, and so they will be handled
in parallel. The basic idea is outlined below. We start with Lemma 3.4.2.

Let (Y1, Y2, X) be a perfectly cromulent triple, and letH0 = H−(Y1∪Y2∪X)
be the hypergraph from the definition of cromulent triples. Let (F ,R,W ) be
a home-base partition of H0. Our goal will be to extend this partition into a
home-base partition (F ′,R′,W ′) of H. Fix a maximum hypergraph matching
M in H|Y1∪Y2∪X . Each pair y ∈ Y1, y′ ∈ Y2 that are together in an edge
of M will participate in a new R ∈ R′ together with a uniquely determined
member of W ∩ V3. The vertices in X will be vertices of W ′, and by virtue
of the matching saturating Y1 and Y2, they will ensure a matching saturating
R′ exists in the bipartite graph B′3. The rest of the section will be devoted
to finding the member of W ∩ V3 we can include in our new R’s and proving
that the resulting partition (F ′,R′,W ′) is indeed a home-base partition. Our
fundamental tool in this proof will be Corollary 3.3.6, and we will finish by using
Proposition 3.3.9.

If (Y1, Y2, X) was simply a cromulent triple, then much of the same proof
as above still goes through in a more restricted form, and eventually we will
be able to find a contradiction if (Y1, Y2, X) violated condition (5*), which will
show Lemma 3.4.3.

We first introduce a notion which will be helpful for our upcoming proofs.

3.4.1 Heavy Vertex Covers

Recall the definition of essential subsets and superfluous vertices from Sec-
tion 3.3.

The following is a particular type of vertex cover for home-base hypergraphs,
which will be useful for the proofs in this and the next section.

Definition 3.4.5. Let H be a home-base hypergraph on vertex classes V1, V2,
and V3 with a home-base partition (F ,R,W ), and let i, j ∈ {1, 2, 3} with i 6= j.
Let Ci ⊆ W ∩ Vi be the maximal essential set in Bi and let Ui ⊆ R be the set
with |Ui| = |Ci| and NBi(Ui) = Ci. Then the union of the sets

• Ci ∪ ((V (F) ∪ V (R)) ∩ Vi)

•
(⋃

R∈R\Ui R
)
∩ Vj
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is called the i-heavy (i, j)-cover of H.

Observation 3.4.6. Every vertex in Vi which is not in the i-heavy (i, j)-cover
is a superfluous vertex in W ∩ Vi.

Proposition 3.4.7. If H is a home-base hypergraph on vertex classes V1, V2,
and V3 with a home-base partition (F ,R,W ), then for every pair i, j ∈ {1, 2, 3}
with i 6= j, the i-heavy (i, j)-cover is a minimal vertex cover of H0.

Proof. Let T be the i-heavy (i, j)-cover of H. Let e ∈ E(H). Then by the
edge-home property, e is at home in some F ∈ F or some R ∈ R. If it is at
home in F , then it contains some vertex in F ∩Vi, and so it intersects T . If it is
at home in R ∈ R\Ui, then it contains some vertex in R∩ (Vi ∪ Vj), and hence
intersects T . The only remaining case is that e is at home in some R′ ∈ Ui. Let
Vi ∩ e = {v}. If v ∈ V (F) ∪ V (R), then e intersects T . If v ∈ W ∩ Vi, then
vR′ is an edge of Bi, and hence v ∈ NBi

(Ui) = Ci, which shows that e again
intersects T . Thus T is a vertex cover of H.

We now calculate the size of T . By the definition of the i-heavy (i, j)-
cover, we get |T | = 2 |F| + |R| + |Ci| + |R| − |Ui|. Since |Ci| = |Ui|, we get
|T | = 2 |F| + 2 |R| = 2 |F ∪ R| = 2ν(H), and because home-base hypergraphs
are tight for Ryser’s Conjecture by Proposition 3.1.5, we get |T | = τ(H) as
desired.

3.4.2 Facts About Cromulent Triples

We start with some lemmas about cromulent and perfectly cromulent triples.
Note that properties (2) and (5*) make the roles of Y1 and Y2 symmetric in
perfectly cromulent triples. This gives us the following observation:

Observation 3.4.8. (Y1, Y2, X) is a perfectly cromulent triple if and only if
(Y1, Y2, X) and (Y2, Y1, X) are both cromulent triples.

Most of the proofs in this section work for cromulent triples, and can be
strengthened for perfectly cromulent triples by using Observation 3.4.8.

Assumptions. For the rest of this section, let H be a 3-partite 3-uniform
hypergraph with vertex classes V1, V2, and V3 such that τ(H) = 2ν(H), and
assume it has a cromulent triple (Y1, Y2, X). We will assume without loss of
generality that Y1 ⊆ V1, Y2 ⊆ V2, and X ⊆ V3. We also fix a hypergraph
matching M ⊆ E(H|Y1∪Y2∪X) of size |Y1|. Let H0 = H− (Y1 ∪ Y2 ∪X) be the
corresponding home-base hypergraph, and fix a home-base partition (F ,R,W )
of H0.

Lemma 3.4.9. For every pair (i, j) ∈ {(1, 2), (1, 3), (2, 1)} we have that for
every y ∈ Yi there is an edge ywu, where w ∈ W ∩ Vj, and u ∈ V (H0) \ V (R).
If (Y1, Y2, X) is perfectly cromulent, then this holds also for (i, j) = (2, 3).

Proof. We will construct a vertex set T of size τ(H) − 1 which intersects all
edges of H except for the edges of the form in question. Since T cannot be
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a vertex cover by virtue of its small size, some such edge must exist. Let T
be the union of the sets Y1 ∪ Y2 \ {y}, (V (F) ∪ V (R)) ∩ Vj , and V (R) ∩ Vk,
where k ∈ {1, 2, 3} \ {i, j}. Since we have taken two vertices from each F ∈ F
and two vertices from each R ∈ R, and 2 |Y1| − 1 additional vertices, we get
|T | = 2 |F ∪ R|+ 2 |Y1|−1 = 2ν(H0) + 2 |Y1|−1 = 2ν(H)−1 = τ(H)−1, hence
T is not a vertex cover of H.

It is clear that T includes a cover of all edges of H0, so any uncovered edge
must contain y or intersect X. It turns out that any edge e intersecting X is
also covered by T . If i = 1, then e is covered by NlkH(V1)(X) = Y2 ⊆ T . If i = 2,
then j = 1 and e is covered by NlkH(V2)(X) ⊆ Y1 ∪ (V (F) ∪ V (R)) ∩ V1 ⊆ T .
Therefore, any edge not covered by T must contain y and two vertices of H0.
The Vj-vertex must be a W -vertex because (V (F) ∪ V (R)) ∩ Vj ⊆ T , and the
Vk-vertex cannot be in V (R) because V (R) ∩ Vk ⊆ T .

Lemma 3.4.10. For every pair (i, j) ∈ {(1, 2), (1, 3), (2, 1)} we have that for
every y ∈ Yi there is an edge ysu, where s ∈ W ∩ Vj is superfluous, and u ∈
V (H0). If (Y1, Y2, X) is perfectly cromulent, then this holds also for (i, j) =
(2, 3).

Proof. We will construct a vertex set T of size τ(H) − 1 which intersects all
edges of H except for the edges of the form in question. Since T cannot be
a vertex cover by virtue of its small size, some such edge must exist. Let T
be the union of Y1 ∪ Y2 \ {y} and the j-heavy (j, i)-cover of H0. Since we
have taken τ(H0) vertices from H0 and 2 |Y1| − 1 additional vertices, we get
|T | = 2 |F ∪ R| + 2 |Y1| − 1 = τ(H) − 1 (as calculated before). As in the
proof of Lemma 3.4.9, the Vi-vertex of any uncovered edge must be y, and the
other vertices are in V (H0). The Vj-vertex of an uncovered edge must be a
superfluous vertex because besides (V (F) ∪ V (R)) ∩ Vj , the maximal essential
subset Cj ⊆W ∩ Vj of Bj is also included in T (and every W -vertex outside of
the maximal essential subset is by definition superfluous).

Lemma 3.4.11. For i = 1 and j = 3 we have that for every y ∈ Yi, if yvs is
an edge of H with v ∈ V (H0) and s ∈ Vj a superfluous vertex, then there is an
edge yv′s with v′ ∈ V (H0) \ V (R). If (Y1, Y2, X) is perfectly cromulent, then
this holds also for (i, j) = (2, 3).

Proof. We may assume v ∈ V (R), otherwise we are done. Let y′ ∈ Y2 be the
V2-vertex of the edge of M containing y.

By Lemma 3.4.9 (with (i, j) = (2, 1) for y′ ∈ Y2), there is an edge wy′u with
w ∈W ∩ V1 and u ∈ V (H0) \ V (R). We claim s = u.

Suppose not. Then yvs and wy′u are disjoint edges. We can apply Case (2)
of Corollary 3.3.6 with a = v, b = w, c = u, and S = {s} to find a matching
of size ν(H0) in H0 − {s, u, v, w}. This matching together with the edges yvs,
wy′u, and the rest ofM (besides the edge containing y and y′) forms a matching
of size ν(H0) + 2 + |Yi| − 1 = ν(H) + 1, a contradiction. Hence s = u.

By Lemma 3.4.10 (with (i, j) = (1, 2) for y ∈ Y1), there is an edge yv′u′

with v′ a superfluous vertex in W ∩ V2. If u′ 6= s, then yv′u′ and wy′s are
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disjoint edges. We can apply Case (4) of Corollary 3.3.6 with a = v′, b = w,
c = u′, and S = {s} to find a matching of size ν(H0) in H0−{s, v′, w, u′}. This
matching together with the edges yv′u′, wy′s, and the rest of M (besides the
edge containing y and y′) forms a matching of size ν(H0)+2+|Yi|−1 = ν(H)+1,
a contradiction.

Therefore u′ = s, and thus yv′s is the edge we are looking for.

The next lemma is a strengthening of Lemma 3.4.11 in two ways: we can
require more of our third vertex, and we can apply it to more combinations of
i and j.

Lemma 3.4.12. For i = 1 and for every j ∈ {2, 3} we have that for every
y ∈ Yi, if yvs is an edge of H with v ∈ V (H0) and s ∈ Vj a superfluous vertex,
then there is an edge ys′s with s′ also superfluous. If (Y1, Y2, X) is perfectly
cromulent, then this holds also for i = 2 and j ∈ {1, 3}.

Proof. Let yvs be an edge with v ∈ V (H0) and s ∈ Vj superfluous. Let y′ ∈ Y2
be the V2-vertex of the edge of M containing y. There are two cases.
Case 1. i = 1, j = 3.

By Lemma 3.4.11 (with (i, j) = (1, 3)), we may assume v ∈ V (H0) \ V (R).
By Lemma 3.4.10 (with (i, j) = (2, 1) for y′ ∈ Y2), there is an edge s′′y′u with
s′′ ∈ Vi a superfluous vertex. If s 6= u, then yvs and s′′y′u are disjoint edges,
and we will reach a contradiction as in the previous lemma. We can apply
Case (4) of Corollary 3.3.6 with a = s′′, b = v, c = u, and S = {s} to find a
matching of size ν(H0) in H0 − {s, s′′, u, v}. This matching together with the
edges yvs, s′′y′u, and the rest ofM (besides the edge containing y and y′) forms
a matching of size ν(H0) + 2 + |Yi| − 1 = ν(H) + 1, a contradiction.

It follows that s = u. Lemma 3.4.10 (with (i, j) = (1, 2) for y ∈ Y1) tells
us that there is an edge ys′u′ with s′ ∈ V2 superfluous. It must be the case
that s = u′ because otherwise ys′u′ and s′′y′s are disjoint edges, and we would
reach a similar contradiction. We can apply Case (4) of Corollary 3.3.6 with
a = s′′, b = s′, c = u′, and S = {s} to find a matching of size ν(H0) in
H0 − {s, s′, s′′, u′}. This matching together with the edges ys′u′, s′′y′s, and
the rest of M (besides the edge containing y and y′) forms a matching of size
ν(H0) + 2 + |Yi| − 1 = ν(H) + 1, a contradiction.

Therefore there is an edge ys′s, as required.
Case 2. i = 1, j = 2.

By Lemma 3.4.10) (with (i, j) = (1, 3) for y ∈ Y1) there is an edge yr′s′ with
s′ ∈ V3 superfluous, and then by Case 1, above, there is an edge yrs′ with r ∈ V2
and s′ ∈ V3 both superfluous. By Lemma 3.4.10 (with (i, j) = (2, 1) for y′ ∈ Y2),
there is an edge qy′u with q ∈ V1 a superfluous vertex and u ∈ V (H0). If u 6= s′,
then we will again reach a contradiction. Suppose yrs′ and qy′u are disjoint.
We can apply Case (4) of Corollary 3.3.6 with a = q, b = r, c = u, and S = {s′}
to find a matching of size ν(H0) in H0 − {q, r, s′, u}. This matching together
with the edges yrs′, qy′u, and the rest ofM (besides the edge containing y and
y′) forms a matching of size ν(H0) + 2 + |Yi| − 1 = ν(H) + 1, a contradiction.
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Therefore u = s′. A similar contradiction is reached by ysv and qy′s′ if
v 6= s′, so that cannot be the case either. Suppose ysv and qy′s′ are disjoint.
We can apply Case (4) of Corollary 3.3.6 with a = q, b = s, c = v, and S = {s′}
to find a matching of size ν(H0) in H0 − {q, s, s′, v}. This matching together
with the edges ysv, qy′s′, and the rest ofM (besides the edge containing y and
y′) forms a matching of size ν(H0) + 2 + |Yi| − 1 = ν(H) + 1, a contradiction.

Therefore we have found our edge yss′.

Lemma 3.4.13. Let y ∈ Y1 and y′ ∈ Y2 be in an edge of M together. Then
there is a unique superfluous vertex zy,y′ ∈ V3 such that

(i) There are edges yvzy,y′ and uy′zy,y′ for some vertices u, v ∈ V (H0),

(ii) If yv′s′ or u′y′s′ is an edge with s′ superfluous, then s′ = zy,y′ .

Proof. By Lemma 3.4.10 (with (i, j) = (1, 3) for y ∈ Y1) there is an edge yvs
with v ∈ V (H0) and s ∈ V3 superfluous. We claim that s satisfies (i) and (ii).

To see (i), we only need to find uy′s, since we have yvs. By Lemma 3.4.12
(with (i, j) = (1, 2)), we may assume v is superfluous as well. By Lemma 3.4.10
(with (i, j) = (2, 1) for y′ ∈ Y2), we have an edge s′y′u′ with s′ ∈ W ∩ V1
superfluous. Suppose u′ 6= s. Then yvs and s′y′u′ are disjoint edges. We can
apply Case (4) of Corollary 3.3.6 with a = v, b = s′, c = u′, and S = {s} to
find a matching of size ν(H0) in H0−{s, s′, u′, v}. This matching together with
the edges yvs, s′y′u′, and the rest of M (besides the edge containing y and y′)
forms a matching of size ν(H0) + 2 + |Yi| − 1 = ν(H) + 1, a contradiction.

Therefore u′ = s, and we have the desired edge s′y′s.
We now show (ii). Let yv′s′ and u′y′s′′ be edges of H with s′, s′′ ∈ V3 both

superfluous vertices. By Lemma 3.4.12 (with (i, j) = (1, 2)), we may assume v′

is superfluous as well. If s′ 6= s′′, then yv′s′ and u′y′s′′ are disjoint edges. This
leads to a contradiction as before. We can apply Case (4) of Corollary 3.3.6
with a = v′, b = s′, c = u′, and S = {s′′} to find a matching of size ν(H0) in
H0 − {s′, s′′, u′, v′}. This matching together with the edges yv′s′, u′y′s′′, and
the rest of M (besides the edge containing y and y′) forms a matching of size
ν(H0) + 2 + |Yi| − 1 = ν(H) + 1, a contradiction.

Therefore it must be the case that s′ = s′′, which in particular means that
s′ = s′′ = s, since we could have substituted yvs or uy′s for yv′s′ or u′y′s′′,
respectively.

Our aim is to make each set {y, y′, zy,y′} into an R for our home-base parti-
tion. We will first show that the zy,y′ ’s are all distinct, and then we will make
use of Lemma 3.3.9 to show that combining the new R’s with the home-base
partition of H0 forms a home-base partition of H.

Lemma 3.4.14. For each (y, y′)-pair, the associated zy,y′ is distinct, and there
is a matching saturating R in the subgraph of B3 induced by R∪ (V3 ∩W \Z),
where Z is the set of all zy,y′ ’s.
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Proof. Define the bipartite graph K with parts R∪Y1 and W ∩V3, where there
is an edge between R ∈ R and w ∈ W ∩ V3 precisely when there is an R-edge
containing w, and there is an edge between y ∈ Y1 and w ∈ W ∩ V3 precisely
when w = zy,y′ , where y′ is the partner of y in the pairing between Y1 and Y2.
We claim that K has a matching saturating R∪ Y1.

We will apply Hall’s theorem, so let R0 ⊆ R and Y0 ⊆ Y1. We construct a
vertex cover T of H. Let C3 be the maximal essential set in the subgraph of K
induced by R and W ∩ V3 (this is the graph B3 associated with H0), and let
U3 ⊆ R be such that NK(U3) = C3, which exists by the definition of essential.
Let T be the union of the sets (Y1∪Y2)\Y0, NK(R0∪Y0), (V (R)∪V (F))∩V3,
C3, and

⋃
R∈R\(U3∪R0)

(R∩V1). Note the similarities to the 3-heavy (3, 1)-cover
of H0.

We must show that T is indeed a vertex cover. Let e ∈ E(H0). Then e is
either an F-edge or anR-edge. If it is an F-edge, it is covered by V (F)∩V3 ⊆ T .
If it is an R-edge, then it is covered by (V (F) ∪ V (R) ∩ V3 ⊆ T , unless its V3-
vertex is in W , so assume that is the case. Let e be an R-edge. If R ∈ R0, then
e ∩ V3 ∈ NK(R) ⊆ T . If R ∈ U3, then e ∩ V3 ∈ C3 ⊆ T . If R ∈ R \ (U3 ∪ R0),
then e∩V1 = R∩V1 ⊆ T . This shows that T covers every edge of H0. All edges
incident to X intersect Y2, so any uncovered edge must be incident to Y0 and
two vertices of H0. All such edges whose V3-vertex is not superfluous intersect
T , since C3 ∪ (V (R) ∪ V (F)) ∩ V3 ⊆ T . Thus, the only edges we have to worry
about are those incident to some y ∈ Y0 and a superfluous vertex in V3. Then
by Lemma 3.4.13, the V3-vertices of those edges are the corresponding zy,y′ , and
hence those edges intersect NK(Y0) ⊆ T . This shows that T is a vertex cover.

We now calculate the size of T . By the definition of T , we calculate |T | =
|Y1|+ |Y2| − |Y0|+ |NK(R0 ∪ Y0)|+ 2 |F|+ |R|+ |C3| − |C3 ∩NK(R0)|+ |R| −
|U3 ∪R0|. Because it is a vertex cover, we must have |T | ≥ τ(H). Since ν(H) =
ν(H0) + |Y1| by the definition of cromulent triple, and since τ(H) = 2ν(H), we
have τ(H) = 2ν(H0) + 2 |Y1| = 2 |F ∪ R|+ |Y1|+ |Y2|. Combining this with the
fact that τ(H) ≤ |T | yields the inequality |Y0| + |U3 ∪R0| + |C3 ∩NK(R0)| ≤
|NK(R0 ∪ Y0)|+|C3|. By the inclusion-exclusion principle we can rewrite this as
|Y0|+|U3|+|R0|−|U3 ∩R0|+|C3 ∩NK(R0)| ≤ |NK(R0 ∪ Y0)|+|C3|. Since C3 =
NK(U3), we clearly have C3∩NK(R0) ⊇ NK(U3∩R0). Since B3 has a matching
saturating R, by Hall’s Theorem, we must have |U3 ∩R0| ≤ |NK(U3 ∩R0)|.
Combining this with our previous inequality, we then get |Y0| + |U3| + |R0| −
|U3 ∩R0|+ |U3 ∩R0| ≤ |NK(R0 ∪ Y0)|+ |C3|, which simplifies to |Y0|+ |R0| ≤
|NK(R0 ∪ Y0)|, since |U3| = |C3|. This last inequality shows that we can apply
Hall’s Theorem to find a matching in K saturating R ∪ Y0, which proves the
lemma.

Lemma 3.4.15. For i = 2, let Ki be the bipartite graph with parts R∪Y3−i and
W ∩ Vi, where there is an edge between R ∈ R and w ∈ W ∩ Vi precisely when
there is an R-edge containing w, and there is an edge between y ∈ Y3−i and
w ∈W ∩Vi precisely when there is an edge ywzy,y′ , where y′ is the partner of y
in the pairing between Y1 and Y2. Then Ki has a matching saturating R∪Y3−i.
If (Y1, Y2, X) is perfectly cromulent, then this holds also for i = 1.
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Proof. We will apply Hall’s theorem, so let R0 ⊆ R and Y0 ⊆ Y3−i. We con-
struct a vertex cover T ofH. Let Ci be the maximal essential set in the subgraph
of Ki induced by R and W ∩Vi (this is the graph Bi associated with H0), and let
Ui ⊆ R be such that NKi

(Ui) = Ci, which exists by the definition of essential.
Let T be the union of the sets (Y1∪Y2)\Y0, NKi

(R0∪Y0), (V (R)∪V (F))∩Vi,
Ci, and

⋃
R∈R\(Ui∪R0)

(R ∩ V3). Note the similarities to the i-heavy (i, 3)-cover
of H0.

We must show that T is indeed a vertex cover. Let e ∈ E(H0). Then e is
either an F-edge or anR-edge. If it is an F-edge, it is covered by V (F)∩Vi ⊆ T .
If it is an R-edge, then it is covered by (V (F) ∪ V (R) ∩ Vi ⊆ T , unless its Vi-
vertex is in W , so assume that is the case. Let e be an R-edge. If R ∈ R0, then
e ∩ Vi ∈ NK(R) ⊆ T . If R ∈ Ui, then e ∩ Vi ∈ Ci ⊆ T . If R ∈ R \ (Ui ∪ R0),
then e ∩ V3 = R ∩ V3 ⊆ T . This shows that T covers every edge of H0. All
edges incident to X intersect Y2, which if i = 2 is part of T , and if i = 1, then
(Y1, Y2, X) is assumed to be perfectly cromulent, in which case all edges incident
to X are incident to Y1 ⊆ T . Therefore, any uncovered edge must be incident
to Y0 and two vertices of H0. All such edges whose V3-vertex is not superfluous
intersect T , since Ci ∪ (V (R) ∪ V (F)) ∩ Vi ⊆ T . Thus, the only edges we have
to worry about are those incident to some y ∈ Y0 and a superfluous vertex
s ∈ Vi. By Lemma 3.4.12 (with (i, j) = (3 − i, i)), there is an edge containing
y and s, whose V3-vertex is also superfluous. By Lemma 3.4.13, the V3-vertices
of those edges are the corresponding zy,y′ , and hence their V2-vertices are in
NKi(Y0) ⊆ T by the definition of Ki. This shows that T is a vertex cover.

We now calculate the size of T . By the definition of T , we calculate |T | =
|Y1|+ |Y2| − |Y0|+ |NKi

(R0 ∪ Y0)|+ 2 |F|+ |R|+ |Ci| − |Ci ∩NKi
(R0)|+ |R| −

|Ui ∪R0|. Because it is a vertex cover, we must have |T | ≥ τ(H). Since ν(H) =
ν(H0) + |Y1| by the definition of cromulent triple, and since τ(H) = 2ν(H), we
have τ(H) = 2ν(H0) + 2 |Y1| = 2 |F ∪ R|+ |Y1|+ |Y2|. Combining this with the
fact that τ(H) ≤ |T | yields the inequality |Y0| + |Ui ∪R0| + |Ci ∩NKi(R0)| ≤
|NKi(R0 ∪ Y0)|+ |Ci|. By the inclusion-exclusion principle we can rewrite this
as |Y0| + |Ui| + |R0| − |Ui ∩R0| + |Ci ∩NKi

(R0)| ≤ |NKi
(R0 ∪ Y0)| + |Ci|.

Since Ci = NKi
(Ui), we clearly have Ci ∩ NKi

(R0) ⊇ NKi
(Ui ∩ R0). Since

Bi has a matching saturating R, by Hall’s Theorem, we must have |Ui ∩R0| ≤
|NKi(Ui ∩R0)|. Combining this with our previous inequality, we then get |Y0|+
|Ui|+ |R0| − |Ui ∩R0|+ |Ui ∩R0| ≤ |NKi(R0 ∪ Y0)|+ |Ci|, which simplifies to
|Y0|+ |R0| ≤ |NKi

(R0 ∪ Y0)|, since |Ui| = |Ci|. This last inequality shows that
we can apply Hall’s Theorem to find a matching in Ki saturating R∪Y0, which
proves the lemma.

3.4.3 The Proof of Corollary 3.4.4

It suffices to prove Lemmas 3.4.2 and 3.4.3.

Proof of Lemma 3.4.2. Let (Y1, Y2, X) be a perfectly cromulent triple. We set
R′ = R ∪ {{y, y′, zy,y′} : y ∈ Y1, y′ ∈ Y2 in an edge of M together with y}, and
W ′ = W ∪X \ {zy,y′ : y ∈ Y1, y′ ∈ Y2 in an edge of M together with y}, where
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zy,y′ is the superfluous vertex in V3 from Lemma 3.4.13. By the application
of Lemma 3.4.14, we find that (F ,R′,W ′) is an FR-partition, since ν(H) =
ν(H0) + |Y1| = |F ∪ R| + |Y1| = |F ∪ R′|. Applying 3.4.15 for i = 1, 2 we get
that (F ,R′,W ′) has a matching in B′1 and B′2. We can combine the partial
matching in B′3 that we get from Lemma 3.4.14 with the edges of M going to
X to complete it. Thus (F ,R′,W ′) is a matchable FR-partition. It is clearly
also proper, because there are no edges with three vertices in W ′ by virtue of
the fact that no such edge is in H0 and all edges going to X have their other
vertices in Y1 and Y2. Thus, by Proposition 3.3.9, we in fact have a home-base
partition.

Proof of Lemma 3.4.3. Let (Y1, Y2, X) be a cromulent triple. We now mean
to rule out the possibility that any edge incident to X is also incident to an
F- or R-vertex of H0. Lemma 3.4.15 means that we can find a hypergraph
matching M′ of size |Y1| in H consisting of edges of the form yss′ with y ∈ Y1,
and s, s′ superfluous vertices in H0. Suppose there were an edge uy′x for some
u ∈ (V (F) ∪ V (R)) ∩ V1, y′ ∈ Y2, and x ∈ X. By the matchability of B1, we
can choose a matching of WRR-edges for each R ∈ R, which avoids u, since
u /∈W . We can also clearly find a matching of F-edges avoiding u. Combining
these matchings with M′ yields a hypergraph matching of size ν(H) which is
disjoint from uy′x. This is impossible, so such an edge cannot exist. Therefore
(Y1, Y2, X) is a perfectly cromulent triple.

Therefore, we have shown that if we have a cromulent triple, we have a
home-base hypergraph. The next section is devoted to finding cromulent triples
under various assumptions.

3.5 Searching for Cromulent Triples

Let H be a 3-partite 3-graph with vertex classes V1, V2, and V3, and with
τ(H) = 2ν(H). We want to find a home-base partition of H. By Corollary 3.4.4,
we are done if H has a cromulent triple. Therefore, our goal will be to find a
cromulent triple inside our hypergraph. We will do this under a few assumptions,
and we will later show that if all of these assumptions fail to hold, then we can
prove H is a home-base hypergraph even without cromulent triples.

Finding cromulent triples will entail finding a subgraph which is a home-base
hypergraph. We do this by finding a subgraph which is tight for Ryser’s Conjec-
ture and has a smaller matching number than H, and then applying induction
on Theorem 1.1.2. We would like to pinpoint exactly where in the proof we
need to rely on induction. Therefore, we lay out the induction hypothesis here
precisely.

Induction Hypothesis (IH(k)). If H is a 3-partite 3-graph with ν(H) ≤ k
and τ(H) = 2ν(H), then H is a home-base hypergraph.

The first assumption under which we will find a cromulent triple is if we
have a good set (see Definition 2.5.6).



CHAPTER 3: Home-Base Hypergraphs 57

3.5.1 Good Subsets Lead to Cromulent Triples

Lemma 3.5.1. Suppose IH(k − 1) holds. Let H be a 3-partite 3-graph with
vertex classes V1, V2, and V3 such that τ(H) = 2ν(H) = 2k. If X ⊆ V3 is a
good set for lkH(V1), then the triple (Y1, Y2, X) is perfectly cromulent, where
Y1 = NlkH(V2)(X) and Y2 = NlkH(V1)(X).

Proof. Let X ⊆ V3 be a good set, and let Y2 = NlkH(V1)(X). Let y ∈ Y2,
and let Hy = H − {vyz ∈ E(H) : v ∈ V1, z ∈ V3 \X}. Since the deleted edges
can be covered by one vertex (y), we clearly have τ(Hy) ≥ τ(H) − 1, and
of course ν(Hy) ≤ ν(H) as Hy ⊆ H. It is easy to see that lkHy (V1) =
lkH(V1) − {yz ∈ E(lkH(V1)) : z ∈ V3 \X}. Therefore, because X is good, we
have conn(L(lkHy

(V1))) ≥ conn(L(lkH(V1)))+1. Recall that by Theorem 2.1.3,
we have conn(L(lkH(V1))) = ν(H) − 2. Thus, we have conn(L(lkHy

(V1))) ≥
ν(H) − 1. By Proposition 2.3.1, there is a subset S ⊆ V1 for which we have
conn(L(lkHy

(S))) ≤ ν(Hy)− (|V1|− |S|)− 2 and |S| ≥ |V1|− (2ν(Hy)− τ(Hy)).
Plugging in the inequalities for τ and ν, we get

conn(L(lkHy
(S))) ≤ ν(H)− (|V1| − |S|)− 2

and
|S| ≥ |V1| − (2ν(H)− τ(H) + 1) = |V1| − 1

since τ(H) = 2ν(H).
We have seen that V1 itself does not fulfil the first of these inequalities, so S

must be a proper subset of V1, and thus by the second inequality, S = V1 \ {a}
for some a ∈ V1. A priori, we do not know if this a is unique for each y ∈ Y2, so
denote by Ay the set of all V1-vertices a for which conn(L(lkHy

(V1 \ {a}))) ≤
ν(H)− 3.

Let a ∈ Ay and let S = V1 \ {a}. By Theorem 2.1.1, we have ν(lkHy
(S)) ≤

2 conn(L(lkHy (S)))+4 ≤ 2ν(H)−2 = τ(H)−2, which implies that ν(lkH(S)) ≤
τ(H)− 1 because at most one edge of each maximum matching has been erased
when passing from H to Hy in the link of S. We must have τ(Hy) = τ(H)− 1
because if τ(Hy) = τ(H), then by inequality (i) of Proposition 2.3.1, we would
have conn(L(lkHy

(S))) ≥ τ(Hy)/2 − 2 (since conn(L(lkHy
(S))) is an integer

and τ(Hy) = τ(H) is even), which is a contradiction. We can in fact show
ν(lkH(S)) = τ(H) − 1, from which ν(lkHy (S)) = τ(H) − 2 then follows, by
considering the vertex cover TS of H consisting of a and a minimum vertex
cover of lkH(S) (which, by König’s Theorem, has size ν(lkH(S))).

This means that every maximum matching in lkH(S) must contain an edge
which is not in lkHy

(S). Set Z = V3 \X and W = V2 \Y2. We get the following
structure for the maximum matchings:

Claim. For every y ∈ Y2 and for every a ∈ Ay every maximum matching in
lkH(V1 \ {a}) contains an edge yz for some z ∈ Z, and then saturates Y2 \ {y}
using (X,Y2)-edges and saturates Z \ {z} using (Z,W )-edges.

Proof. Let S = V1 \ {a}. As observed, every maximum matching in lkH(S)
contains an edge from y to Z. Since X is good (hence decent), it satisfies



CHAPTER 3: Home-Base Hypergraphs 58

property (1) of Definition 2.5.1, so ν(lkH(V1)) = |Y2| + |Z|. Then because
there are no edges between X and W , it follows that every maximum matching
in lkH(V1) saturates Y2 with edges incident to X and saturates Z with edges
incident to W . Since ν(lkH(S)) = τ(H) − 1 = ν(lkH(V1)) − 1, we cannot have
more than one matching edge between Y2 and Z. Thus the claim follows.

This structure immediately implies that the sets Ay are pairwise disjoint.

Claim. If y, y′ ∈ Y2 with y 6= y′, then Ay ∩Ay′ = ∅.

Proof. Let a ∈ Ay, and let S = V1 \ {a}. Then we know that a maximum
matching in lkH(S) contains a (y, Z)-edge and the rest of its edges are between
X and Y2 and between Z and W . Thus the only edge between Y2 and Z in
the matching is incident to y. For a′ ∈ Ay′ , the structure of the maximum
matchings in lkH(V1 \ {a′}) is different, and thus a 6= a′, hence the sets Ay and
A′y must be disjoint.

Since every Ay is non-empty, we thus clearly have
∣∣∣⋃y∈Y2

Ay

∣∣∣ ≥ |Y2|.
Claim. For every a ∈

⋃
y∈Y2

Ay, every maximum (X,Y2)-matching in lkH(V1)
must have one edge which extends only to a.

Proof. Suppose there were a maximum (X,Y2)-matching M ′ in lkH(V1) in which
every edge extended to an element of S = V1 \ {a}. Then we could take a
maximum (V2, V3)-matching in lkH(S) (which must contain a (y, Z)-edge) and
replace the part of the matching which hits Y2 with M ′. Because X has no
neighbors outside of Y2, this modified matching is a matching and is at least
as big as the original one and therefore also maximum. This does not use a
(y, Z)-edge, so we have a contradiction. Thus M ′ must contain an edge which
does not extend to S, and hence extends only to a.

From this claim, we see that
∣∣∣⋃y∈Y2

Ay

∣∣∣ = |Y2|, since there can be at most as

many vertices in
⋃
y∈Y2

Ay as edges in a maximum (X,Y2)-matching in lkH(V1),
of which there are precisely |Y2|.

Claim. Y1 =
⋃
y∈Y2

Ay and there is a hypergraph matching in HY1∪Y2∪X satu-
rating Y1 and Y2.

Proof. We clearly have Y1 ⊇
⋃
y∈Y2

Ay by the previous claim. We will show
the other inclusion as well. Consider any vertex x ∈ Y1. It follows from the
definitions of Y1 and Y2 that there is an (X,Y2)-edge e in lkH(V1) such that
e ∪ {x} ∈ E(H). Since X is good, e appears in a maximum matching M . For
every y ∈ Y2 and every a ∈ Ay, one edge of the matching between X and
Y2 must extend to a (recall that to be maximum, M must saturate Y2 using
(Y2, X)-edges and must saturate Z using (Z,W )-edges). Since the Ay’s are
all disjoint, the matching extends to a hypergraph matching saturating Y2 and⋃
y∈Y2

Ay. Since e extends to
⋃
y∈Y2

Ay, it follows that x ∈
⋃
y∈Y2

Ay and hence
Y1 =

⋃
y∈Y2

Ay. This proves the claim.
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Now we almost have that (Y1, Y2, X) is perfectly cromulent. We just need
to show that H0 = H \ (Y1 ∪ Y2 ∪X) is a home-base hypergraph with ν(H0) =
ν(H)− |Y1|.

Consider the graph H1 = H \ (Y1 ∪ Y2). Since we have removed only
2 |Y1| vertices from H, it follows that τ(H1) ≥ τ(H) − 2 |Y1|. We must have
ν(H1) ≤ ν(H)− |Y1| because to any matching in H1, we may add the matching
of size |Y1| we just showed exists to it to produce a matching in H (because
no matching edge in the original matching is incident to Y1 ∪ Y2 ∪ X). Be-
cause τ(H1) ≤ 2ν(H1), we must have equality in both cases, whence τ(H1) =
2ν(H1) = 2ν(H) − 2 |Y1|. Note however that X is a set of isolated vertices in
H1, and so removing them changes neither the matching size nor the covering
number. Hence H0 = H1 \ X also has τ(H0) = 2ν(H0) = 2ν(H) − 2 |Y1|. By
IH(k − 1), H0 is a home-base hypergraph. This proves that (Y1, Y2, X) is a
perfectly cromulent triple.

This lemma shows that if lkH(Vi) has a good set for any i, then we find a
perfectly cromulent triple.

3.5.2 No Good Sets

From now on we assume that lkH(V1) has no good set. Recall that by Theo-
rem 2.1.3, we know that conn(L(lkH(V1))) = ν(H)− 2, and so by Lemma 2.5.7
lkH(V1) has a perfect matching. Moreover for every minimal equineighbored
set X ⊆ V3 both it and its neighborhood NlkH(V1)(X) have size 2 and together
induce a C4 (possibly with parallel edges). Our next assumption will be that
there are two disjoint hyperedges incident to some minimal equineighbored set.

Lemma 3.5.2. Suppose IH(k − 1) holds. Let H be a 3-partite 3-graph with
vertex classes V1, V2, and V3 such that τ(H) = 2ν(H) = 2k, and let lkH(V1)
have no good sets. Suppose there is a minimal equineighbored set X ⊆ V3 in
lkH(V1) such that there are two disjoint hyperedges zyx and z′y′x′ of H with
x, x′ ∈ X. Let Y1 = {z, z′} ⊆ V1 and Y2 = {y, y′} ⊆ V2. Then (Y1, Y2, X) is a
cromulent triple.

Proof. For Condition (1) note that |Y1| = |Y2| = |X| = 2, since by Lemma 2.5.7
X has size 2.

Then X = {x, x′} and because X is equineighbored, the neighborhood of X
is also of size 2, that is, NlkH(V1)(X) = {y, y′}. So Condition (2) is satisfied.

For Condition (3) note that by assumption there are two disjoint hyperedges
zyx and z′y′x′ in H|Y1∪Y2∪X and that |Y1| = 2.

For Condition (4) we first prove that τ(H0) = 2ν(H0) = 2(ν(H) − |Y1|).
Then we can use IH(k − 1) to derive the existence of a home-base partition of
H0. First, consider the graph H1 = H \ (Y1 ∪ Y2). Since we have removed
only 2 |Y1| vertices from H, it follows that τ(H1) ≥ τ(H) − 2 |Y1|. We must
have ν(H1) ≤ ν(H) − |Y1| because X consists of isolated vertices in H1, so we
may add zyx and z′y′x′ to any matching in H1 to obtain a matching 2 larger
in H. Because τ(H1) ≤ 2ν(H1), we must have equality in both cases, whence
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τ(H1) = 2ν(H1) = 2ν(H) − 2 |Y1|. Note however that because X is a set of
isolated vertices inH1, removing them changes neither the matching size nor the
covering number. HenceH0 = H1\X also has τ(H0) = 2ν(H0) = 2ν(H)−2 |Y1|.
Thus H0 has a home-base partition (F ,R,W ).

The proof of Condition (5) is far more involved and will use a number of
internal lemmas, so we give a brief overview. Our goal will be to find a con-
tradiction by providing a larger matching than ν(H) if there is an edge of H
incident to X and a W -vertex of H0. This matching will consist of a maximum
matching in H0 and a few extra edges whose existence will be guaranteed by
the high vertex cover number of H. We utilize the fact that we are quite flexible
in choosing a matching for H0, so that we can usually avoid the vertices of the
extra edges when we choose our matching. Recall the definition of superfluous
vertices and i-heavy (i, j)-covers from Section 3.4.

Lemma 3.5.3. There is no edge wyx with w ∈W . Similarly there is no wy′x′.

Proof. Suppose wyx is an edge. Take the following partial cover of H: y, y′, and
z′ plus the 2-heavy (2, 3)-cover of H0. Since this set of vertices is one too small
to be a cover, this implies the existence of an edge zsp avoiding it, where s is
superfluous in H0, and p ∈ V (H0). Indeed, an edge not intersecting the partial
cover must avoid Y2, hence also X, is not in E(H0), and by Observation 3.4.6,
its V2-vertex is superfluous. By Case (4) of Corollary 3.3.6 applied to H0 with
a = s, b = w, c = p, and S = ∅, we can find a matching of size ν(H0) inside H0

avoiding {s, w, p}. This matching together with the edges z′y′x′, wyx, and zsp
gives a matching of size ν(H0) + 3 = ν(H) + 1, a contradiction.

Lemma 3.5.4. If there is an edge of H incident to X and a vertex of W ∩ V1,
then there are two disjoint edges of H whose V1-vertices are in W , at least one
being superfluous, whose V2-vertices are y and y′, and exactly one of whose
V3-vertices are in V (H0).

Proof. Suppose there is an edge incident to w ∈W ∩V1 and X. Without loss of
generality suppose it is incident to x. Then by Lemma 3.5.3, it is not incident
to y, so it must be the edge wy′x.

Suppose that w is superfluous in H0. Then we will show that wyx′ is also
an edge of H and that wy′x and wyx′ are the only edges extending y′x or yx′.

Since X is a minimal equineighbored of size 2, we have yx′ ∈ E(lkH(V1)),
and hence there is some edge vyx′ ∈ E(H). Suppose v 6= w. Take the partial
cover consisting of {y, y′} plus the 2-heavy (2, 3)-cover of H0. If v ∈ {z, z′}, then
add v to the partial cover. If v ∈ R1 ∈ R, then add instead the vertex in R1∩V3
to the partial cover. This leaves an edge of the form (z or z′)sp where s ∈ V2
is superfluous in H0 and p /∈ R1 (in case v ∈ V (R), hence R1 exists) which
is disjoint from vyx′. Indeed, an edge not intersecting the partial cover must
avoid Y2, hence also X, is not in E(H0), and by Observation 3.4.6, its V2-vertex
is superfluous. If v ∈ {z, z′}, then we can apply Case (4) of Corollary 3.3.6 to
H0 with a = w, b = s, c = p, and S = ∅. If v ∈ V (R), then we can apply
Case (2) of Corollary 3.3.6 to H0 with a = v, b = p, c = s, and S = {w}. And
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if v ∈ V (H0) \ V (R), then we can apply Case (4) of Corollary 3.3.6 to H0 with
a = s, b = v, c = p, and S = {w}. In any case, we find a matching in H0 of size
ν(H0) avoiding {w, v, s, p}. Then this matching together with wy′x, vyx′, and
(z or z′)sp gives a matching of size ν(H0) + 3 = ν(H) + 1, a contradiction.

Therefore the only edge extending yx′ is wyx′, and because wyx′ is an edge,
a similar argument shows that wy′x is the only edge extending y′x.

Take a partial cover {z, z′, w} plus the 1-heavy (1, 2)-cover ofH0. This leaves
an edge w′(y or y′)p where w′ is superfluous and w′ 6= w. Indeed, an edge not
intersecting the partial cover is not in E(H0), and by Observation 3.4.6, its
V1-vertex is superfluous. Also p /∈ {x, x′}, since w′ 6= w. It is disjoint from one
of wyx′ and wy′x, so w′(y or y′)p together with whichever of wyx′ and wy′x it
is disjoint from are the two disjoint edges we are after.

Suppose on the other hand, that there is no edge incident to {x, x′} which
extends to a superfluous vertex in V1. Then in particular w is not superfluous in
H0. Take the partial cover {z, z′, y′} plus the 1-heavy (1, 3)-cover of H0. This
leaves an edge syp where s is superfluous in H0, and hence s 6= w. Indeed, an
edge not intersecting the partial cover is not in E(H0), and by Observation 3.4.6,
its V1-vertex is superfluous. Also p /∈ {x, x′}, since s is superfluous. Thus wy′x
and syp are the two disjoint edges we are after.

Thus we may suppose that there is an edge incident to W ∩ V1 and X.
By Lemma 3.5.4, there are two disjoint edges e and f whose vertices intersect
V (H0) in s, w ∈ W ∩ V1 and p ∈ V3. At least one of s and w is superfluous
in H0, so suppose without loss of generality that s is the superfluous one. We
consider several cases, depending on the location of p. In each case we will reach
a contradiction.
Case 1. p ∈ V (F).

Take the partial cover {y, y′, z}, plus the 3-heavy (3, 2)-cover of H0. This
gives an edge z′p′s′ where s′ is superfluous (hence s′ 6= p). Indeed, an edge
not intersecting the partial cover must avoid Y2, hence also X, is not in E(H0),
and by Observation 3.4.6, its V3-vertex is superfluous. We can apply Case (1)
of Corollary 3.3.6 with a = p, b = w, c = p′, and S = {s, s′} to obtain a
matching of size ν(H0) in H0 avoiding {s, s′, w, p′, p}. This matching together
with the edges e, f , and z′p′s′ gives a matching of size ν(H0) + 3 = ν(H) + 1,
a contradiction.
Case 2. p ∈ R1 ∈ R.

Take the partial cover {y, y′} together with the vertex in R1 ∩ V2 and the 3-
heavy (3, 2)-cover of H0. This gives an edge (z or z′)p′s′ where s′ is superfluous
(note s′ 6= p) and p′ is not in R1. Indeed, an edge not intersecting the partial
cover must avoid Y2, hence also X, is not in E(H0), and by Observation 3.4.6, its
V3-vertex is superfluous. We can apply Case (2) of Corollary 3.3.6 with a = p,
b = p′, c = w, and S = {s, s′} to obtain a matching of size ν(H0) in H0 avoiding
{s, s′, w, p′, p}. This matching together with the edges e, f , and (z or z′)p′s′

gives a matching of size ν(H0) + 3 = ν(H) + 1, a contradiction.
Case 3. p ∈W is essential for R1 ∈ R.
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Take the partial cover {y, y′}, the V2-vertex essential for R1 if it exists,
plus the 3-heavy (3, 2)-cover of H0. This gives an edge (z or z′)p′s′ where s′ is
superfluous (hence s′ 6= p) and p′ is not essential for R1. Indeed, an edge not
intersecting the partial cover must avoid Y2, hence also X, is not in E(H0), and
by Observation 3.4.6, its V3-vertex is superfluous. We can apply Case (3) of
Corollary 3.3.6 with a = p, b = p′, c = w, and S = {s, s′} to obtain a matching
of size ν(H0) in H0 avoiding {s, s′, w, p′, p}. This matching together with the
edges e, f , and (z or z′)p′s′ gives a matching of size ν(H0) + 3 = ν(H) + 1, a
contradiction.
Case 4. p ∈W is not essential but not superfluous.

Take the partial cover {y, y′} plus the 3-heavy (3, 2)-cover of H0. This gives
an edge (z or z′)p′s′ where s′ is superfluous, hence s′ 6= p. Indeed, an edge not
intersecting the partial cover must avoid Y2, hence also X, is not in E(H0),
and by Observation 3.4.6, its V3-vertex is superfluous. By Lemma 3.3.4, p
does not become essential after removing a superfluous vertex from V3. Then
we can apply Case (4) of Corollary 3.3.6 with a = p, b = w, c = p′, and
S = {s, s′} to obtain a matching of size ν(H0) in H0 avoiding {s, s′, w, p′, p}.
This matching together with the edges e, f , and (z or z′)p′s′ gives a matching
of size ν(H0) + 3 = ν(H) + 1, a contradiction.
Case 5. p ∈W is superfluous.

Take the partial cover {y, y′, p} plus the 2-heavy (2, 3)-cover of H0. This
gives an edge (z or z′)s′p′ where s′ is superfluous and p′ 6= p. Indeed, an edge
not intersecting the partial cover must avoid Y2, hence also X, is not in E(H0),
and by Observation 3.4.6, its V2-vertex is superfluous. We can apply Case (4) of
Corollary 3.3.6 with a = s′, b = w, c = p′, and S = {s, p} to obtain a matching
of size ν(H0) in H0 avoiding {s, s′, w, p′, p}. This matching together with the
edges e, f , and (z or z′)s′p′ gives a matching of size ν(H0) + 3 = ν(H) + 1, a
contradiction.

Thus we conclude that there can be no edge incident to W ∩ V1 and X, so
Condition (5) must hold, and hence (Y1, Y2, X) is a cromulent triple.

Thus, if we either have a good set, or if we have no good set and there are
two disjoint hyperedges incident to a minimal equineighbored subset of some
link graph, then we find a cromulent triple, and hence have found a home-
base partition by Corollary 3.4.4. Therefore, the only hypergraphs left to check
are those which have no good set and where the hyperedges incident to any
equineighbored subset of any link graph form intersecting hypergraphs. This
case is handled in the next section.

3.6 The End Game

We start with the following easy proposition which will be useful in what is to
come:

Proposition 3.6.1. Let H be a 3-partite 3-graph with vertex classes V1, V2,
and V3 such that each link lkH(Vi) has a perfect matching. Suppose X ⊆ Vj
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is a minimal equineighbored set of lkH(Vi) with |X| = 2, and suppose X is
not incident to two disjoint edges of H. Then the edges incident to X form a
truncated multi-Fano plane.

Proof. Since X is a minimal equineighbored set of size 2 and lkH(Vi) has no
isolated vertices, it follows easily that the edges of lkH(Vi) incident to X form a
C4 (possibly with parallel edges). By assumption, the edges incident to X form
an intersecting hypergraph. Since the hyperedges incident to X all intersect,
each pair of opposite edges in the C4 must extend to one vertex in Vi. If this
is the same vertex v for all pairs, then NlkH(Vk)(X) = {v}, where Vk is the
third vertex class besides Vi and Vj . This contradicts the fact that lkH(Vk) has
a perfect matching, so each pair extends to a different vertex, which gives the
truncated Fano plane. If there are parallel edges in the C4, this analysis shows
that they also have to extend to the same vertex as the edges to which they are
parallel, hence we have a truncated multi-Fano plane.

We aim to prove the following lemma, which is the missing ingredient in our
proof of Theorem 1.1.2.

Lemma 3.6.2. Suppose IH(k − 1) holds. Let H be a 3-partite 3-graph with
vertex classes V1, V2, and V3 such that τ(H) = 2ν(H) = 2k. Suppose that H
does not have a cromulent triple. Then there is an X ⊆ V3, which is a minimal
equineighbored set for lkH(V1) such that for its neighborhood Y = NlkH(V1)(X)
we also have NlkH(V1)(Y ) = X.

Proof. We have shown in Lemma 3.5.1 that we have a cromulent triple if there
is at least one good set, which means we are working under the assumption
that lkH(V1) has no good set. By Lemma 2.5.7, we then know that lkH(V1)
has a perfect matching and that every minimal equineighbored set is of size 2
and hence is incident to a C4. Therefore, it is clear that every edge incident
to a minimal equineighbored set participates in a perfect matching, so we have
shown that every minimal equineighbored set is still decent.

If X ⊆ V3 is a minimal equineighbored set, for y ∈ NlkH(V1)(X) define the
bipartite graph Gy = lkH(V1) − {yz ∈ E(lkH(V1)) : z ∈ V3 \X}. Since X is
decent but not good, it must be that for some y ∈ NlkH(V1)(X) we have

conn(L(Gy) ≤ conn(L(lkH(V1))).

A similar statement holds if X ⊆ V2.
Now suppose for the sake of contradiction to the statement of Lemma 3.6.2

that for every minimal equineighbored subset X in lkH(V1), its neighborhood Y
has neighbors outside of X. Again, Theorem 2.1.3 gives that lkH(V1) is extremal
for Theorem 2.1.1, and hence it has a CP-decomposition by Theorem 2.4.3. We
know that any CP-decomposition of lkH(V1) contains some P4’s, since otherwise
the graph would consist entirely of disjoint C4’s, which is not the case if there
are edges between Y and V3 \X.

Claim. The graph lkH(V1) contains a minimal equineighbored set X ⊆ V3 for
which both elements of N(X) have neighbors outside X in lkH(V1).
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Proof. Let Z be the set of endpoints of P4’s in V3 for some CP-decomposition
of lkH(V1) with respect to some perfect matching M . Then Z is equineighbored
because the edges incident to the endpoints in V3 all must contain an interior
vertex in V2 either of the same P4 or of some other one. The set of interior
vertices of P4’s in V2 is matched by M to the set of endpoints of P4’s in V3, so
these are the same size. Therefore |Z| = |N(Z)|. Since Z is equineighbored, it
contains a minimal equineighbored subset X.

Since X consists of endpoints of P4’s and N(X) consists of interior vertices
of P4’s, the vertices in N(X) all have neighbors outside X: the other interior
vertices of their respective P4’s.

Fix a perfect matching M of the link graph lkH(V1). Let X3 ⊆ V3 be a
minimal equineighbored set for which both elements of N(X3) have neighbors
outside X3, and let N(X3) = {y, y′}. Let X3 = {x, x′} so that yx, y′x′ ∈ M .
Without loss of generality, let y′ be a vertex of N(X3) that witnesses the failure
of X3 to be good; that is, we have

conn(L(Gy′)) ≤ conn(L(lkH(V1))).

Then by Theorem 2.4.3, Gy′ has a CP-decomposition with respect to M (since
no edges of M were erased, and hence Gy′ is still extremal for Theorem 2.1.1).
We claim that in every CP-decomposition of Gy′ , the two vertices of X3 are
together in one of the C4’s of the decomposition. The edge x′y′ is an edge of M ,
so it must be in some C4 or P4 of the CP-decomposition. Since NGy′ (y

′) = X,
and NGy′ (x

′) = NlkH(V1)(X3), this C4 or P4 must be contained in Gy′ [X3 ∪
N(X3)]. But we know the edges in Gy′ [X3 ∪N(X3)] form a C4, so x′y′ can’t be
contained in a P4 of the CP-decomposition (one of the edges xy′ and x′y would
not be at home anywhere).

Let Z2 be the set of vertices in V2 reachable by M -alternating paths in Gy′

starting at y with an edge not in M (including y itself). Note that Y ⊆ Z2.

We have
∣∣∣NGy′ (Z2)

∣∣∣ = |Z2| because every vertex of V3 we reach is matched to a

vertex of V2 which is included in Z2. Then Z2 contains a minimal equineighbored
setX2. Note thatX2 is disjoint from Y , sinceX2\Y must also be equineighbored
(because X3 is taken out of the neighborhood), and X2 \Y is not empty because∣∣∣NGy′ (Y )

∣∣∣ > 2. This means also that X2 has exactly the same neighborhood in

Gy′ and in lkH(V1), and so it is also a minimal equineighbored set for lkH(V1).
Therefore, |X2| = 2 and the edges incident to X2 form a C4.

Lemma 3.6.3. In any CP-decomposition of Gy′ all vertices of Z2 \N(X3) are
endpoints of P4’s, and all vertices of N(Z2 \ N(X3)) are interior vertices of
P4’s.

Proof. Since the (y′, V3 \ X3)-edges are erased, any CP-decomposition of Gy′

must have a C4 on X3 ∪ N(X3). So any M -alternating path going out from
y (not to X3) must go first to an interior vertex of a P4, which is matched to
an endpoint of that P4, and so on, alternating between interior vertices and
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endpoints. So the neighbors of Z2 \N(X3) are interior vertices and the vertices
of Z2 \N(X3) are endpoints.

This shows in particular that both vertices of X2 are endpoints of P4’s,
and both vertices of N(X2) are interior vertices of P4’s, and hence both have
neighbors outside of X2.

Lemma 3.6.4. If X ⊆ V3 and X ′ ⊆ V2 are minimal equineighbored subsets of
lkH(V1) with X ′ ∩ N(X) = ∅, and there is an M -alternating path from N(X)
to N(X ′) starting with a non-matching edge, then the edges incident to X and
the edges incident to X ′ extend to the same two vertices {z, z′} ⊆ V1.

Proof. We have seen that each link graph lkH(Vi) has a perfect matching, and
we know |X| = 2 and is not incident to two disjoint hyperedges, so by Proposi-
tion 3.6.1, the edges incident to X form a truncated Fano plane.

Let N(X) = {y, y′}, and let N(X ′) = {w,w′}, where without loss of gen-
erality y is the last vertex of N(X) visited on the M -alternating path, and w
is the first vertex of N(X ′) visited. Let Gy′,w′ be the graph formed by erasing
both the (y′, V3 \ X)-edges and the (w′, V2 \ X2)-edges from lkH(V1). We will
show that Gy′,w′ does not have a CP-decomposition. Suppose it did. Then fix
a CP-decomposition of Gy′,w′ . Both X and X ′ would need to consist of ver-
tices of a C4 in the CP-decomposition of Gy′,w′ , as previously observed for Gy′ .
However since there is an M -alternating path from y to w starting with a non-
matching edge, we will see that this leads to a contradiction. Consider the first
edge yv of this path. It is not an edge of a C4 or P4 of the CP-decomposition,
so it must be at home in some P4, and since y is not an interior vertex of a P4

of the CP-decomposition, it follows that v is. The next edge is an edge of M
which pairs the interior vertex v with an endpoint. The next edge must be at
home in some P4, hence its other vertex is again an interior vertex of that P4.
Continuing in this manner, one sees that the even vertices of the path (y being
the first vertex) are interior vertices of P4’s of the CP-decomposition. However,
since w is one of the even vertices, this contradicts the fact that w is a vertex
of a C4 of the CP-decomposition. Therefore no CP-decomposition is possible,
and hence by the contrapositive of Theorem 2.4.3, we must have

conn(L(Gy′,w′)) ≥
ν(Gy′,w′)

2
− 1 =

ν(lkH(V1))

2
− 1 = ν(H)− 1, (3.6.1)

where the last equality is by Theorem 2.1.3.
Consider the hypergraph Hy′,w′ that results by removing from H the edges

inducing the (y′, V3 \ X)-edges and the (w′, V2 \ X2)-edges in lkH(V1). Then
clearly lkHy′,w′ (V1) = Gy′,w′ . We have τ(Hy′,w′) ≥ τ(H)− 2, since we can cover
all of the deleted edges with two vertices, and we clearly have ν(Hy′,w′) ≤ ν(H).
Therefore by parts (ii) and (iii) of Proposition 2.3.1, there is some S ⊆ V1 such
that conn(L(lkHy′,w′ (S))) ≤ ν(H)− (|V1|− |S|)−2 and |S| ≥ |V1|−2. We know
S 6= V1 because the first inequality fails for V1, as we have just concluded in the
preceding paragraph.
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Combining the inequality for conn(L(lkHy′,w′ (S))) with the inequality in
Theorem 2.1.1 gives that ν(lkHy′,w′ (S)) ≤ 2ν(H)− 2(|V1| − |S|). Recalling the
vertex cover TS of H consisting of V1 \ S and a minimal vertex cover of lkH(S)
gives that ν(lkH(S)) ≥ τ(H)− (|V1|− |S|) (by König’s Theorem). Thus we have

ν(lkHy′,w′ (S)) ≤ ν(lkH(S))− (|V1| − |S|). (3.6.2)

Therefore, every maximum matching of lkH(S) has to contain an edge that
gets erased in Hy′,w′ . If xy and x′y′ are in lkH(S), then we can change any
maximum matching to avoid a (y′, V3\X)-edge without changing the cardinality
of the matching, and similarly for xy′ and x′y. Analogously, we can avoid a
(w′, V2 \ X ′)-edge if either pair of opposite edges of the C4 incident to X ′ is
contained in lkH(S). Therefore for one of the C4’s, no pair of opposite edges is
contained in lkH(S). This implies that the two vertices of V1 to which the edges
of the C4 extend are not in S, and hence in fact |S| = |V1| − 2.

This of course means that every maximum matching of lkH(S) has to contain
two edges that get erased in Hy′,w′ , so no pair of opposite edges of either C4

is contained in lkH(S), and hence the vertices of V1 to which the edges extend
are not in S. But each C4 extends to exactly two vertices, as observed in
Lemma 3.6.1, and since |S| = |V1| − 2, they must be the same two vertices for
X and X ′, as claimed.

Lemma 3.6.4 applied to X2 and X3 shows that H has two truncated Fano
planes intersecting in two vertices {z, z′} ⊆ V1. We will see that this leads to a
contradiction.

Let X2 = {v, v′}, and let N(X2) = {w,w′}. Assume without loss of general-
ity that the truncated Fano planes consist of the edges {zyx, zy′x′, z′yx′, z′y′x}
and {zvw, zv′w′, z′vw′, z′v′w}. Consider the hypergraph H′ = H−{y, w, z, z′},
and note that X3 and X2 consist of isolated vertices in H′, since all edges inci-
dent to them are incident to {z, z′}. Because we have deleted only four vertices,
we clearly have τ(H′) ≥ τ(H)− 4. To any matching in H′ we may add zyx and
z′vw to get a matching two larger inH, so we must have ν(H′) ≤ ν(H)−2. Com-
bining this with the assumption that τ(H) = 2ν(H) and the fact that Ryser’s
Conjecture is true for 3-partite hypergraphs we get the following sequence of
inequalities:

τ(H′) ≤ 2ν(H′) ≤ 2ν(H)− 4 = τ(H)− 4 ≤ τ(H′).

Since the first and last expressions are the same, all inequalities are actually
equalities, and hence H′ is also extremal for Ryser’s Conjecture, with ν(H′) =
k − 2. Therefore, by the inductive hypothesis IH(k − 1), H′ has a home-base
partition (F ,R,W ).

We will find either a vertex cover of size τ(H) − 1, or a matching of size
ν(H) + 1 in H, either of which gives our desired contradiction.

Consider the minimal vertex cover of H′ consisting of V (F)∩V1 and V (R)∩
(V1 ∪ V3). If adding the three vertices z, z′, and w to this set would form a
vertex cover T of H, we would have a contradiction and be done, so we may
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assume that there is some edge e ∈ E(H) which avoids T . Its V1-vertex must
be in W , since (V (F) ∪ V (R)) ∩ V1 ∪ {z, z′} ⊆ T . Its V3-vertex must be in
V (F) ∪W , since V (R) ∩ V3 ∪ {w} ⊆ T and any edge incident to X3 intersects
T in {z, z′}. Its V2-vertex cannot be in V (H′), since otherwise e would be an
edge of H′ and hence intersect T , and its V2-vertex also cannot be in X2, since
all edges incident to X2 intersect T in {z, z′}. Therefore e must go through y,
so it is of the form ayb for some vertices a ∈W ∩ V1 and b ∈ (V (F) ∪W ) ∩ V3.

Suppose we can find a maximum matching in H′ avoiding a, y′, and b. Then
this matching plus the three disjoint edges zy′x′, z′v′w, and ayb would form a
matching of size ν(H) + 1 in H, a contradiction.

By the monster lemma (Lemma 3.3.5), we can find a matching of size ν(H′)
in H′ − {a, y′, b} if there is an F -edge avoiding {a, y′, b} for each F ∈ F , and
an R-edge avoiding {a, y′, b} for each R ∈ R. Since a ∈ W , and y′ and b are
in different vertex classes, we do not cover all F -edges for any F ∈ F . Since
a, b /∈ V (R), we could pick an RWR-edge for any R ∈ R avoiding {a, y′, b}
unless y′ is a W -vertex essential for some R ∈ R. This means that if y′ /∈ W ,
we have the desired contradictory matching, and hence we may assume y′ ∈W .

Consider the 1-heavy (1, 3)-cover of H′ (see Section 3.4 for the definition),
which is a minimal vertex cover ofH′. If adding the three vertices z, z′, and w to
this set would form a vertex cover T ′ of H, we would again have a contradiction,
so we may assume that some edge e′ ∈ E(H) avoids T ′. Its V1-vertex must be
a superfluous W -vertex, since all other V1-vertices are in T ′. Its V3-vertex must
be in V (H′), since w ∈ T ′ and any edge incident to X3 intersects T ′ in {z, z′}.
Its V2-vertex cannot be in V (H′), since otherwise e′ would be an edge of H′
and hence intersect T ′, and its V2-vertex also cannot be in X2, since all edges
incident to X2 intersect T ′ in {z, z′}. Therefore e′ must go through y, so it
is of the form a′yb′ for some superfluous vertex a′ ∈ W ∩ V1 and some vertex
b′ ∈ V (H′) ∩ V3.

By part (4) of Corollary 3.3.6 of the monster lemma applied to H′ with
a = a′, b = y′, and c = b′, there is a matching of size ν(H′) in H′ avoiding a′,
y′, and b′. Combining this matching with the three disjoint edges zy′x′, z′v′w,
and a′yb′ yields a matching of size ν(H) + 1, a contradiction.

Therefore, in all cases we have found a contradiction, and since we have
assumed the negation of the statement of Lemma 3.6.2, we have proven the
lemma.

3.7 The Proof of Theorem 1.1.2

Proof of Theorem 1.1.2. The proof is by induction. IH(0) holds trivially: Let H
be a 3-partite 3-graph with ν(H) = 0. Then H has no edges, so (∅, ∅, V (H)) is
a home-base partition of H as can easily be seen. Now assume IH(k− 1) holds.
We will show IH(k).

Let H be a 3-partite 3-graph with vertex classes V1, V2, and V3 such that
τ(H) = 2ν(H) = 2k. If it has a cromulent triple, then by Corollary 3.4.4, it is
a home-base hypergraph, and we are done.
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Therefore, assume there is no cromulent triple. Then by Lemma 3.6.2 there
is a minimal equineighbored X ⊆ V3 such that for Y = NlkH(V1)(X) we also
have NlkH(V1)(Y ) = X. By Proposition 3.6.1, the edges incident to X form a
truncated Fano plane F . Let A be the set of V1-vertices of the hyperedges of F .
Set H1 = H\A. Since we have removed two vertices, we have τ(H1) ≥ τ(H)−2,
and since any matching in H1 can be enlarged by adding an edge of F (as no
edge of H1 is incident to X or Y ), we have ν(H1) ≤ ν(H)− 1. Combining these
inequalities with the fact that τ(H1) ≤ 2ν(H1) yields that all three inequalities
are actually equalities. Since X and Y consist of isolated vertices, the same
holds true for H0 = H1 \ (Y ∪X). Thus, we can apply induction to get a home-
base partition of H0 and add the F to it to get a proper matchable FR-partition
of H, which by Lemma 3.3.9 is a home-base partition.

Thus in all cases, H is a home-base hypergraph, so IH(k) holds.
Therefore Theorem 1.1.2 holds by induction.

For interest, we can directly show also that IH(1) holds.

Proposition 3.7.1. Let H be a 3-partite 3-graph with ν(H) = 1 and τ(H) = 2.
Then H is a home-base hypergraph.

Proof. Suppose H is an intersecting 3-partite 3-graph with τ(H) = 2. If every
pair of edges intersect in two vertices, then it is easy to see that there must
then be two vertices which are in every edge, and thus H would in fact have a
vertex cover of size 1 (pick any one of the two vertices). Therefore there must be
two edges which intersect in one vertex. Label these edges abc and ade. Since
a alone does not form a vertex cover, there must be an edge which misses a,
but it must intersect both of these edges, each in a different vertex class of H.
Thus WLOG, we have the edge fbe. If fdc is also an edge of H, then we have
an F . In this case, no further edge can be present unless it is parallel to one
of the existing edges, since no other edge can intersect all four of these edges.
Therefore in this case, H is indeed a home-base hypergraph which consists of a
single F .

If fdc is not an edge of H, then we let R = {a, b, e}, and we claim that
every edge of H contains at least two of the vertices a, b, or e. If an edge misses
any two of these vertices, then its third vertex must be the vertex outside of
R of the edge among abc, ade, and fbe that contains those two vertices (since
H is intersecting). Since this vertex is not in R either, by symmetry the same
is true of each of the other edges we have given. Thus the edge must in fact
be fdc, which is not the case by assumption. Thus (∅, {R} , V (H) \ R) forms
an FR-partition of H with the edge-home property. It is matchable because
the graphs B1, B2, and B3 contain edges Rf , Rd, and Rc, respectively, which
obviously form matchings saturating {R}. Thus in this case, H is a home-base
hypergraph consisting of a single R and at least three W -vertices. This proves
the case ν(H) = 1.
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3.8 Concluding Remarks and Open Questions

3.8.1 Proof of the Reverse Implication for Theorem 2.4.3

As promised, we prove here the “if” direction of Theorem 2.4.3.

Proof of Theorem 2.4.3, (⇐). Let G be a bipartite graph with a collection of
ν(G)/2 pairwise vertex-disjoint subgraphs, each of them a C4 or a P4, such that
every edge of G is either an edge of one of the C4’s or is incident to an interior
vertex of one of the P4’s. We will construct a home-base hypergraph H with G
as one of its links.

Let V1 and V2 be the vertex classes of G. Let V3 be a set of sufficiently many
new vertices (ν(G) suffice). Let H be the empty 3-graph. Then (F ,R,W ) =
(∅, ∅, ∅) is a home-base partition of H. We will add edges to H, maintaining a
home-base partition (F ,R,W ).

For each C4 in the collection we do the following. Let {a, b, c, d} be the
vertices of the C4, so that a, c ∈ V1, b, d ∈ V2, and ab, bc, cd, da ∈ E(G). Take
two unused vertices e, f ∈ V3 \ V (H), and add the edges abe, adf , cbf , and
cde to H. These edges form a truncated Fano plane. For each edge parallel
to an edge of the C4, add an edge parallel to the corresponding one of these
edges to H, forming a truncated multi-Fano plane. We can then add the set
F = {a, b, c, d, e, f} to F , maintaining that (F ,R,W ) is a home-base partition
of H. Clearly, the C4 is now present in the link lkH(V3) together with all its
parallel edges.

Then, for each P4 in the collection we do the following. Let {a, b, c, d} be
the vertices of the P4, so that a, c ∈ V1, b, d ∈ V2, and ab, bc, cd ∈ E(G). Take
two unused vertices e, f ∈ V3 \ V (H), and add the edges abe, cbf , and cde to
H. For each edge parallel to an edge of the P4, add an edge parallel to the
corresponding one of these edges to H. Add the set R = {b, c, e} to R, and add
the vertices a, d, and f to W . The edges abe, cbf , and cde are R-edges with a
W -vertex in V1, V3, and V2, respectively. Thus a, d, and f can be matched to
R in B1, B3, and B2, respectively, without disturbing matchability, since the
W -vertices are new. Clearly the P4 is now present in the link lkH(V3) along
with all parallel edges, and note especially that its interior vertices are members
of R.

Once we’ve processed all the C4’s and P4’s, any edges of G not yet present
in the link lkH(V3) are incident to an interior vertex of one of the P4’s. Let
xy ∈ E(G) be such an edge, and suppose y is an interior vertex of one of the
P4’s. Then y ∈ R for some R ∈ R. Let z ∈ R ∩ V3. Then, we add the edge
xyz to H. If x was not previously a vertex of H, we add it to W , otherwise, we
leave it where it is. Since xyz is an R-edge, H is still a home-base hypergraph
with home-base partition (F ,R,W ). After this addition, xy is present in the
link lkH(V3). We process every remaining edge this way.

If G has any isolated vertices, we add them to H, putting them in W (these
clearly do not disturb the home-base partition of H). Now H is a home-base
hypergraph with lkH(V3) = G. We know H satisfies τ(H) = 2ν(H) by Propo-
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sition 3.1.5, and hence by equation (3.2.1) we have conn(L(G)) = ν(G)
2 − 2, as

desired.

3.8.2 The Connectedness of the Line Graphs of Home-
Base Hypergraphs

For 3-graphs H, Theorem 2.1.1 gives

conn(L(H)) ≥ ν(H)

3
− 2.

Using our characterization, we can show that the Ryser-extremal 3-graphs are
far from tight for this theorem. For a Ryser-extremal 3-partite 3-graph we can
improve the bound to the following:

Proposition 3.8.1. If H is a home-base hypergraph, then

conn(L(H)) ≥ 2

3
ν(H)− 2.

Proof. Let H be a home-base hypergraph with vertex classes V1, V2, and V3,
and let (F ,R,W ) be the home-base partition of H. For each auxiliary bipartite
graph Bi, let Mi be a matching saturating R. For each R ∈ R, let R+ be the
three edges corresponding to it in the respective matchings Mi. For an edge
e ∈ E(H), let home(e) be the member of F ∪ R where e is at home. Call an
edge e ∈ E(H) crossing if home(e) ∈ R but e /∈ home(e)+, and call it a home-
edge otherwise. We will prove a slightly stronger statement, so that we can use
induction.

Claim. Let k ∈ N, and let J ⊆ L(H) such that V (J) contains all the home-edges
of at least k members of F ∪R. Then

conn(J) ≥ 2k

3
− 2.

Proof of claim. We prove this by induction on |E(J)|. If no home-edge is adja-
cent in J to any crossing edge, then J contains at least k connected components,
and so conn(J) ≥ k−2, since in this case I(J) is the join of at least k complexes
that are (−1)-connected.

Thus, we may assume we have a crossing edge e which is J-adjacent to a
home-edge f . We know e is J-adjacent to home-edges of at most two members
of F ∪R. If e is not J-adjacent to home-edges of both, or one of those members
is not among the k, then we are done, since by induction conn(J−ef) ≥ 2k/3−2
and conn(J > ef) ≥ 2(k− 1)/3− 2 > 2k/3− 3 (because J > ef contains all the
home-edges of the k−1 members of F ∪R which J contained, except home(f)),
and thus by Theorem 2.1.5, conn(J) ≥ 2k/3− 2.

Thus assume e is J-adjacent to a home-edge f with home(e) = home(f).
Again, by induction we have conn(J−ef) ≥ 2k/3−2, so we just need conn(J>
ef) ≥ 2k/3− 3 in order to be able to finish the proof using Theorem 2.1.5.
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We can assume e is also J-adjacent to a home-edge f ′ with home(f ′) 6=
home(e). Unfortunately, since J > ef therefore does not contain all the home-
edges of at least k − 1 members of F ∪ R, we cannot directly use induction to
show the bound we need. Consider the other home-edges with home home(f ′)
remaining in J ′ = J > ef . We know this set is non-empty because there is at
least one home(f ′)-edge disjoint from e.

If there is a crossing edge e1 which is J ′-adjacent to a home-edge f1 with
home(f1) = home(f ′), then by induction

conn(J ′ > e1f1) ≥ 2(k − 3)

3
− 2 =

2k

3
− 4,

since J ′> e1f1 still contains all the home-edges of the members of F ∪R which
J contains except those of home(e), home(f ′), and home(e1) (so still at least
k − 3). Therefore we only need conn(J ′ − e1f1) ≥ 2k/3 − 3 in order to be
able to apply Thoerem 2.1.5. We can show this holds by iteratively deleting all
of the adjacencies between home-edges of home(f ′) and crossing edges so that
we get a sequence e1, f1, . . . , er, fr, where the ei are crossing edges, the fj are
home-edges of home(f ′), and ei is J ′-adjacent to fi for all i. Then we know by
induction that

conn(J ′ − e1f1 − · · · − eifi > ei+1fi+1) ≥ 2(k − 3)

3
− 2 =

2k

3
− 4

for every i < r. We claim that conn(J ′ − e1f1 − · · · − erfr) ≥ 2k/3 − 3,
since the home-edges of home(f ′) are separated from the rest of the graph,
so that I(J ′ − e1f1 − · · · − erfr) is the join of the independence complex of
those edges with the independence complex of the rest of J . Since the rest of
J has connectedness 2(k− 3)/3− 2 = 2k/3− 4 by induction, and since the join
with a non-empty complex increases the connectedness by at least one, we have
conn(J ′ − e1f1 − · · · − erfr) ≥ 2k/3− 3 as promised.

With this, we see that conn(J ′ − e1f1 − · · · − eifi) ≥ 2k/3 − 3 for every
i by Theorem 2.1.5, and so conn(J ′ − e1f1) ≥ 2k/3 − 3 as desired. Then by
Theorem 2.1.5, conn(J > ef) ≥ 2k/3− 3, and thus again by Theorem 2.1.5, we
have conn(J) ≥ 2k/3− 2.

Therefore, since for the whole line graph we have all of the home-edges of
ν(H) members of F ∪R, the inequality falls out of the claim.

It is also not difficult to show that this bound is tight. For instance, disjoint
copies of the following home-base hypergraph give tight examples:
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Figure 3.6: A 3-partite 3-graph H with τ(H) = 6, ν(H) = 3, and
conn(L(H)) = 0.

Since Proposition 3.8.1 is a strengthening of Theorem 2.1.1 when τ(H) =
2ν(H), one could ask for the best possible extension of it when the ratio τ/ν is
different from 2. To make this precise, let us define the function f : [1, 2] → R
by

f(x) = inf

{
conn(L(H)) + 2

ν(H)
: H is a 3-partite 3-graph, τ(H) ≥ xν(H)

}
.

We then have that for any 3-partite 3-graph H with τ(H) = xν(H) it holds that

conn(L(H)) ≥ f(x)ν(H)− 2.

Clearly f is monotone increasing and bounded below by 1/3, by Theo-
rem 2.1.1. Since Proposition 3.8.1 is tight, we have f(2) = 2/3, while there
are easy examples showing f(1) = 1/3. One could speculate whether there is a
linear lower bound on f interpolating these two extremes, so that f(x) ≥ x/3.
This would be very interesting, as it would imply Ryser’s Conjecture for 4-
partite 4-graphs by a straightforward generalization of Aharoni’s argument for
3-partite 3-graphs. Unfortunately, this does not turn out to be the case, as
there is a violation of this bound for x = 4/3, as we’ll see in detail in the next
chapter:

Figure 3.7: The 3-partite 3-graph F (3)
4 .



CHAPTER 3: Home-Base Hypergraphs 73

The 3-partite 3-graph F (3)
4 , pictured above, has τ(F (3)

4 ) = 4, ν(F (3)
4 ) = 3,

and conn(L(F (3)
4 )) = −1. This shows that f(x) = 1/3 for x ∈ [1, 4/3]. It can

also be shown that f(x) ≥ x/5 for every x ∈ [1, 2], but this only represents an
improvement when x ∈ ( 5

3 , 2) (see Chapter 4). We conjecture that f(x) ≥ x/4
for every x ∈ [1, 2].

To approach Ryser’s Conjecture for 4-graphs, we seem to need a much better
understanding of the potential link 3-graphs, in particular those with τ(H) >
ν(H). We believe the function f will be a useful tool for this purpose, even
though the extension of Aharoni’s argument, at least in its most straightforward
version, does not succeed due to the fact that f(4/3) = 1/3.
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Chapter 4

Tau and the Connectedness
of Line Graphs

4.1 Introduction

Combinatorial lower bounds on the connectedness of independence complexes
can be quite useful. For instance, recall the following bound from Chapter 2,
which relates the connectedness of line graphs to the matching number of their
underlying hypergraphs:

Theorem 2.1.1. If H is an r-graph, then

conn(L(H)) ≥ ν(H)

r
− 2.

This bound was sufficient to prove Ryser’s Conjecture for 3-partite 3-graphs,
and it played an integral role in our characterization of Ryser-extremal 3-graphs
in the previous two chapters. The aim of this chapter is to investigate bounds
on the connectedness of line graphs in terms of the vertex cover number of
their underlying hypergraphs. One such bound is the following one for general
hypergraphs, which may be proven via Meshulam’s Theorem (Theorem 2.1.5):

Theorem 4.1.1. If H is an r-graph, then

conn(L(H)) ≥ τ(H)

2r − 1
− 2.

This bound is tight for general r-graphs, but the extremal hypergraphs we
know of are not r-partite, so there is hope for an improved bound for r-partite
r-graphs. In this light, we offer the following conjecture:

Conjecture 2. If H is an r-partite r-graph, then

conn(L(H)) ≥ τ(H)

2r − 2
− 2.

75
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This conjecture, if true, would be tight. The main result of this chapter is
that Conjecture 2 holds for 3-partite 3-graphs with vertex cover number at most
12.

4.2 Theorem 4.1.1 and its Tightness

As mentioned, we will use Meshulam’s Theorem to prove Theorem 4.1.1, so we
quote it here for convenience.

Theorem 2.1.5. Let G be a graph and let e ∈ E(G). Then we have

conn(G) ≥ min {conn(G− e), conn(G> e) + 1} .

If J ⊆ L(H) is a subgraph of the line graph, let HJ ⊆ H denote the subhy-
pergraph whose vertices are the vertices of H, and whose edges are the vertices
of J .

Theorem 4.1.1 is a special case of the following more general theorem:

Theorem 4.2.1. If J ⊆ L(H) is a subgraph of the line graph of an r-graph H,
then

conn(J) ≥ τ(HJ)

2r − 1
− 2.

Proof. We prove this by induction on |E(J)|. Let J ⊆ L(H) be a subgraph of
the line graph. If J is empty, then τ(HJ) = 0, so the bound we want to prove
is conn(J) ≥ −2, which is always true. If J is not empty but has no edges, then
conn(J) =∞, so the bound is satisfied.

Otherwise, assume J has an edge ef , where e, f ∈ E(H). SinceHJ = HJ−ef ,
by induction we have

conn(J − ef) ≥ τ(HJ−ef )

2r − 1
− 2 =

τ(HJ)

2r − 1
− 2.

We will also need a bound on conn(J > ef). Taking a minimum vertex cover
of HJ>ef plus the vertices in e and f forms a vertex cover of HJ , since all of
the edges removed by exploding ef intersect e or f because they are neighbors
of one of these edges in the line graph of H. Since e and f must intersect by
virtue of the fact that ef ∈ E(L(H)), we have |e ∪ f | ≤ 2r − 1, so we have

τ(HJ>ef ) + 2r − 1 ≥ τ(HJ>ef ) + |e ∪ f | ≥ τ(HJ),

which we may rearrange to get τ(HJ>ef ) ≥ τ(HJ) − 2r + 1. By induction, we
then have

conn(J > ef) ≥ τ(HJ>ef )

2r − 1
− 2 ≥ τ(HJ)− 2r + 1

2r − 1
− 2 =

τ(HJ)

2r − 1
− 3.

Therefore, by Meshulam’s Theorem (Theorem 2.1.5), we have

conn(J) ≥ min(conn(J − ef), conn(J > ef) + 1) ≥ τ(HJ)

2r − 1
− 2.
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Thus by induction, the theorem holds.

This immediately implies Theorem 4.1.1, since HL(H) = H.
We note that together with Theorem 2.1.7, this theorem implies an old

theorem of Haxell[13, Theorem 3]:

Theorem 4.2.2 (Haxell). Let H be an r-graph whose vertices are partitioned
into two sets A and B, such that every edge of H has exactly one vertex
from A. If for every subset S ⊆ A the (r − 1)-graph HS on B with edges
{e ⊆ B : e ∪ s ∈ E(H) for some s ∈ S} satisfies τ(HS) > (2r−3)(|S|−1), then
ν(H) = |A|.

Proof. We plan to apply Theorem 2.1.7 with d = 0 to I(HA). Indeed, if we
color the edges of HA according to which member of A they extend, a rainbow
matching in HA corresponds to a matching in H. This induces a coloring on the
vertices of I(L(HA)) that we claim satisfies the conditions of Thoerem 2.1.7 for
d = 0. Clearly, for any subset S ⊆ A, we have I(L(HA))|S = I(L(HS)), and
since τ(HS) > (2r− 3)(|S| − 1) by assumption, we have by Theorem 4.1.1 that

conn(L(HS)) >
(2r − 3)(|S| − 1)

2r − 3
− 2 = |S| − 3,

as HS is an (r − 1)-graph. Since the connectedness is an integer, this implies
conn(L(HS)) ≥ |S|−2, which is the condition of Theorem 2.1.7 for d = 0. Thus,
HA has a rainbow matching of size |A|, so H has a matching of size |A|, and
since A is a cover forH, there clearly is no larger matching, meaning ν(H) = |A|,
as promised.

Next, we will show that Theorem 4.1.1 is tight. To be precise, we prove the
following:

Proposition 4.2.3. For every integer r ≥ 2, and every integer k ≥ 0, there is
an r-graph H with τ(H) = k and

conn(L(H)) =

⌈
τ(H)

2r − 1

⌉
− 2.

To show this we will need an easy lemma about the connectedness of joins,
which is an easy consequence of Proposition 2.2.1 and the Künneth formula for
joins [23]:

Lemma 4.2.4. If X1, . . . , Xn are topological spaces with conn(Xi) = −1 for all
i = 1, . . . , n, then

conn(X1 ∗ · · · ∗Xn) = n− 2.

Armed with this lemma, we need only show tightness for τ(H) ≤ 2r−1, and
then we can build larger tight examples out of disjoint unions.

For k = 1, . . . , 2r−1, we define the r-graph G(r)k to have vertex set V (G(r)k ) =
[r]2 and the following edge set:
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• If k ≤ r, we set E(G(r)k ) = {{(i, j) : j ∈ [r]} : i ∈ [k]} ∪ {{(i, 1) : i ∈ [r]}}.

• If k ≥ r + 1, we set

E(G(r)k ) = {{(i, j) : j ∈ [r]} : i ∈ [r]}
∪ {{(i, j) : i ∈ [r]} : j ∈ [k − r + 1]}
∪ {{(i, σ(i)) : i ∈ [r]} : σ ∈ Sr} ,

where Sr denotes the set of permutations of [r].

In words, the vertices of G(r)k form an r× r grid; for k ≤ r, the edges consist
of k rows and one column, while for k ≥ r + 1, the edges consist of r rows,
k − r + 1 columns, and all transversals.

In order to clear up any confusion in visualizing these hypergraphs, we note
here that our coordinates are laid out in the style of matrix indices, so that (i, j)
is the vertex in row i and column j, where the rows are numbered from top to
bottom, and the columns from left to right.

Proposition 4.2.5. For k = 1, . . . , 2r − 1 we have conn(L(G(r)k )) = −1.

Proof. We claim that the set of columns (edges of the form {(i, j) : i ∈ [r]} for

some j) forms a connected component of I(L(G(r)k )). Clearly, the columns are

all disjoint, so they form a simplex in I(L(G(r)k )), and every other edge intersects
all of the columns, so no other edge is in a simplex with a column. Hence they
form a path component. Since there is always at least one edge that is not a

column, I(L(G(r)k )) has at least two components, showing conn(L(G(r)k )) = −1,
as desired.

We now show that τ(G(r)k ) = k for k = 1, . . . 2r − 1. This is easy for k ≤ r,

since for these, G(r)k has a matching of size k and clearly has a vertex cover of
size k as well. For k ≥ r + 1, things get trickier. We start with a lemma:

Lemma 4.2.6. τ(G(r)2r−1) = 2r − 1.

Proof. Clearly, taking any row together with any column forms a vertex cover

of G(r)2r−1 of size 2r − 1, so we have τ(G(r)2r−1) ≤ 2r − 1. It remains only to see

that τ(G(r)2r−1) > 2r − 2. Suppose T ⊆ [r]2 is a vertex cover of size 2r − 2.

Rearranging the columns does not change G(r)2r−1, so we may assume that the
columns are sorted so that the number of elements of T in each column is
monotone decreasing. For j = 1, . . . , r, let tj be the number of elements of T in
column j, so that t1 ≥ · · · ≥ tr. Now in order to be a vertex cover, there must
be an element in each column, so tj ≥ 1 for all j. This means that for each k
we have

|T | =
r∑
j=1

tj ≥ k · tk + (r − k) · 1.
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Since |T | = 2r − 2, we get

tk ≤
r − 2

k
+ 1.

We claim that for 1 ≤ k ≤ r− 1, we have tk ≤ r−k. Indeed, for such k we have
that (k − 1)(k − r + 1) ≤ 0, hence by rearranging we get

r − k ≥ r − 1

k
.

From this it follows that

tk ≤
r − 2

k
+ 1 <

r − 1

k
+ 1 ≤ r − k + 1,

and since tk is an integer, this means that tk ≤ r − k. This means that for
k = 1, . . . , r − 1, we have at least k elements in column k that are not in T ,
which makes it easy to choose a partial transversal S avoiding T containing
one element from each of the first r − 1 columns: In the first column, there is
an element v1 not in T , and in general in the k-th column there is an element
vk not in T , which is in a different row from v1, . . . , vk−1. We can thus find
S = {v1, . . . , vr−1} avoiding T with one element from each of the first r − 1
columns and one element from each of r − 1 different rows. Consider now the
single row i that does not intersect S. If T does not contain the last element in
row i, then S together with that element would form a transversal avoiding T .
Thus we may assume that (i, r) ∈ T . Then this is the only element of the last
column in T , since tr < 2. There must be an element of (i, j) of row i that is not
in T , otherwise T must miss some other row, since |T | = 2r − 2. If vj = (`, j),
then S \ {vj} ∪ {(i, j), (`, r)} is a transversal avoiding T , concluding the proof

that τ(G(r)2r−1) > 2r − 2. Therefore τ(G(r)2r−1) = 2r − 1, as claimed.

This will allow us to find τ(G(r)k ).

Proposition 4.2.7. For k = 1, . . . , 2r − 1, we have τ(G(r)k ) = k.

Proof. For k = 1, . . . , r, we have already seen that τ(G(r)k ) = k. For k =
r + 1, . . . , 2r − 1, we must show that there is a vertex cover of size k and no
vertex cover of size k − 1.

Let k ∈ {r + 1, . . . , 2r − 1}. Then there is a vertex cover T of G(r)k given by

T = {(i, 1) : i ∈ [r]} ∪ {(1, j) : j ∈ [k − r + 1]} .

Indeed, every transversal and every row intersects {(i, 1) : i ∈ [r]}, and every

column in G(r)k intersects {(1, j) : j ∈ [k − r + 1]}. It is clear that |T | = k, so

τ(G(r)k ) ≤ k.
Now let T ⊆ [r]2 with |T | = k − 1. We claim that T is not a vertex cover.

Indeed, if it were, then T would cover every edge of G(r)2r−1 except possibly the
last 2r− 1− k columns. Adding one vertex of each of these columns to T yields
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a set of size k− 1 + 2r− 1− k = 2r− 2, which would cover every edge of G(r)2r−1,

a contradiction to Lemma 4.2.6. Thus T is not a vertex cover, so τ(G(r)k ) ≥ k.
This completes the proof.

Now we are ready to prove Proposition 4.2.3.

Proof of Proposition 4.2.3. If k = 0, the empty r-graph will do. Otherwise, let
k = q(2r− 1) + p with p and q integers, such that 1 ≤ p ≤ 2r− 1. We construct
H as follows:

For i = 1, . . . , q, let Hi be a copy of G(r)2r−1, and let Hq+1 be a copy of

G(r)p . Then let H be the disjoint union of the r-graphs H1, . . . ,Hq+1. We claim
conn(L(H)) = q − 1. Indeed conn(L(Hi)) = −1 by Proposition 4.2.5. Since
the independence complex of the disjoint union of graphs is the join of the
independence complexes of the graphs, we get by Lemma 4.2.4 that

conn(L(H)) = conn(I(L(H1)) ∗ · · · ∗ I(L(Hq+1))) = q − 1,

as promised. We have τ(H) = τ(H1) + · · · + τ(Hq+1) = q(2r − 1) + p = k by
Proposition 4.2.7, and since q − 1 = dk/(2r − 1)e − 2, we have constructed the
desired r-graph H.

4.3 Towards Conjecture 2

The tight examples we constructed to prove Proposition 4.2.3 are not r-partite,
so it leaves room to hope that this bound could be strengthened for r-partite
r-graphs, which leads us to Conjecture 2. Let us start by showing that it would
be tight.

Proposition 4.3.1. For every integer r ≥ 2, and every integer k ≥ 0, there is
an r-partite r-graph H with τ(H) = k and

conn(L(H)) =

⌈
τ(H)

2r − 2

⌉
− 2.

For k = 1, . . . , 2r − 2, we define the r-partite r-graph F (r)
k as follows:

• If k ≤ r − 1, we set V (F (r)
k ) = ([k]× [r]) ∪ {(i, i) : i ∈ [r]} and E(F (r)

k ) =
{{(i, j) : j ∈ [r]} : i ∈ [k]} ∪ {{(i, i) : i ∈ [r]}}.

• If k ≥ r, we set V (F (r)
k ) = ([r − 1] ∪ Sr−1)× [r] and

E(F (r)
k ) = {{(i, j) : j ∈ [r]} : i ∈ [k − r + 1]}

∪ {eσ,j : σ ∈ Sr−1, j ∈ [r]} ,

where Sr−1 denotes the set of permutations of [r − 1], and where for a
permutation σ ∈ Sr−1 and an integer j ∈ [r], the edge eσ,j is given by

eσ,j = {(σ, j)} ∪ {(σ(i), [i+ j]r) : i ∈ [r − 1]} ,

where [p]r is the remainder of p mod r that belongs to [r].
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In words, for k ≤ r−1, F (r)
k consists of a matching of size k and one diagonal

edge that crosses all edges of the matching, while for k ≥ r, F (r)
k lives on an

(r − 1) × r grid, plus (r − 1)! additional vertices in each vertex class, one for
each permutation of [r − 1]. The edges include k − r + 1 rows of the grid, plus
an edge for every vertex class (column) j and permutation σ, which restricts
to the transversal corresponding to σ on the (r − 1)× (r − 1) subgrid obtained
by removing the column j (and permuting the columns cyclically, so that the
j’th would be at the end) and passes through the vertex corresponding to σ in
column j (and being the only edge incident to that vertex).

We will prove that these hypergraphs combine to form tight examples for
every k in the same fashion as we did for Proposition 4.2.3 in the previous
section.

Proposition 4.3.2. For k = 1, . . . , 2r − 2 we have conn(L(F (r)
k )) = −1.

Proof. We claim that the set of rows (edges of the form {(i, j) : j ∈ [r]} for

some i) forms a connected component of I(L(F (r)
k )). Clearly, the rows are all

disjoint, so they form a simplex in I(L(F (r)
k )), and every other edge intersects all

of the rows, so no other edge is in a simplex with a row. Hence they form a path

component. Since there is always at least one edge that is not a row, I(L(F (r)
k ))

has at least two components, showing conn(L(G(r)k )) = −1, as desired.

We now show that τ(F (r)
k ) = k for k = 1, . . . , 2r − 2. This is easy for

k ≤ r− 1, since for these, F (r)
k has a matching of size k and clearly has a vertex

cover of size k as well. For k ≥ r, things get trickier. We start with a lemma:

Lemma 4.3.3. τ(F (r)
2r−2) = 2r − 2.

Proof. Clearly, taking any row together with one vertex from the remaining

rows forms a vertex cover of F (r)
2r−2 of size 2r− 2, so we have τ(F (r)

2r−2) ≤ 2r− 2.

It remains only to see that τ(F (r)
2r−2) > 2r − 3. Suppose T ⊆ V (F (r)

2r−2) is a
vertex cover of size 2r − 3. We may assume that T ⊆ [r − 1] × [r], since if T
contains any vertex outside this grid, that vertex only covers one edge, hence
we may substitute it by any other vertex of that edge, and all edges would still

be covered. Rearranging the rows does not change F (r)
2r−2, so we may assume

that the rows are sorted so that the number of elements of T in each row is
monotone decreasing. For i = 1, . . . , r − 1, let ti be the number of elements of
T in row i, so that t1 ≥ · · · ≥ tr−1. Now in order to be a vertex cover, there
must be an element in each row, so ti ≥ 1 for all i. This means that for each k
we have

|T | =
r∑
i=1

ti ≥ k · tk + (r − 1− k) · 1.

Since |T | = 2r − 3, we get

tk ≤
r − 2

k
+ 1.
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We claim that for 1 ≤ k ≤ r− 1, we have tk ≤ r−k. Indeed, for such k we have
that (k − 1)(k − r + 1) ≤ 0, hence by rearranging we get

r − k ≥ r − 1

k
.

From this it follows that

tk ≤
r − 2

k
+ 1 <

r − 1

k
+ 1 ≤ r − k + 1,

and since tk is an integer, this means that tk ≤ r − k. This means that for k =
1, . . . , r−1, we have at least k elements in row k that are not in T , which makes it
easy to choose a transversal S avoiding T containing one element from each row:
In the first row, there is an element v1 not in T , and in general in the k-th row
there is an element vk not in T , which is in a different column from v1, . . . , vk−1.
We can thus find S = {v1, . . . , vr−1} avoiding T with one element from each row
and one element from each of r − 1 different columns. Consider now the single

column j that does not intersect S. There is an edge of F (r)
2r−2 consisting of the

transversal S in the (r − 1) × (r − 1) subgrid obtained by removing column j,
and whose vertex in column j corresponds to the permutation corresponding to
S. This edge is disjoint from T , contradicting the fact that T is a vertex cover.

Thus τ(F (r)
2r−2) > 2r − 3, and so τ(F (r)

2r−2) = 2r − 2, as claimed.

This will allow us to find τ(F (r)
k ).

Proposition 4.3.4. For k = 1, . . . 2r − 2, we have τ(F (r)
k ) = k.

Proof. For k = 1, . . . , r − 1, we have already seen that τ(F (r)
k ) = k. For k =

r, . . . , 2r − 2, we must show that there is a vertex cover of size k and no vertex
cover of size k − 1.

Let k ∈ {r, . . . , 2r − 2}. Then there is a vertex cover T of F (r)
k given by

T = {(i, 1) : i ∈ [k − r + 1]} ∪ {(1, j) : j ∈ [r]} .

Indeed, every edge eσ,j intersects {(1, j) : j ∈ [r]}, and every row in F (r)
k inter-

sects {(i, 1) : i ∈ [k − r + 1]}. It is clear that |T | = k, so τ(F (r)
k ) ≤ k.

Now let T ⊆ V (F (r)
k ) with |T | = k − 1. We claim that T is not a vertex

cover. Indeed, if it were, then T would cover every edge of F (r)
2r−2 except possibly

that last 2r− 2− k rows. Adding one vertex of each of these rows to T yields a

set of size k − 1 + 2r − 2− k = 2r − 3, which would cover every edge of F (r)
2r−2,

a contradiction to Lemma 4.3.3. Thus T is not a vertex cover, so τ(F (r)
k ) ≥ k.

This completes the proof.

Now we are ready to prove Proposition 4.3.1.
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Proof of Proposition 4.3.1. If k = 0, the empty r-graph will do. Otherwise, let
k = q(2r− 2) + p with p and q integers, such that 1 ≤ p ≤ 2r− 2. We construct
H as follows:

For i = 1, . . . , q, let Hi be a copy of F (r)
2r−2, and let Hq+1 be a copy of F (r)

p .
Then let H be the disjoint union of the r-partite r-graphs H1, . . . ,Hq+1. We
claim conn(L(H)) = q − 1. Indeed conn(L(Hi)) = −1 by Proposition 4.3.2.
Since the independence complexes of the disjoint union of graphs is the join of
the independence complexes of the graphs, we get by Lemma 4.2.4 that

conn(L(H)) = conn(I(L(H1)) ∗ · · · ∗ I(L(Hq+1))) = q − 1,

as promised. We have τ(H) = τ(H1) + · · · + τ(Hq+1) = q(2r − 2) + p = k by
Proposition 4.3.4, and since q − 1 = dk/(2r − 2)e − 2, we have constructed the
desired r-graph H.

Theorem 2.1.1 shows that Conjecture 2 holds for r = 2, since in bipartite
graphs, τ = ν by König’s Theorem. The goal of the rest of the section is to
show that it holds for r = 3 when τ is small.

4.3.1 Conjecture 2 for r = 3

The first value for which Conjecture 2 offers an improvement over Theorem 4.1.1
is for τ = 5, where the conjecture states that the independence complex is path-
connected. We could show directly that this is the case, but in order to go
further, we will characterize the tight examples for τ = 4, which will imply the
bound for τ = 5.

Pictured below is the 3-partite 3-graph F (3)
4 , which was used to show the

tightness of Conjecture 2:

id

1

2

(12)

1 2 3

Figure 4.1: The 3-partite 3-graph F (3)
4 .

We will call the two black horizontal edges (the edges {(1, 1), (1, 2), (1, 3)}
and {(2, 1), (2, 2), (2, 3)}) the central edges of F (3)

4 . We then have the following

characterization theorem, which states that F (3)
4 is the unique minimal tight

example, and will lead us to easily be able to infer that Conjecture 2 is true for
r = 3 when τ ≤ 8:
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Theorem 4.3.5. If H is a 3-partite 3-graph and J ⊆ L(H) is a subgraph of its

line graph with τ(HJ) ≥ 4 and conn(J) ≤ −1, then HJ contains a copy of F (3)
4 ,

and every edge outside of that copy intersects both central edges of the copy.

To prove this, we will need the stronger formulation of Theorem 2.1.1 as given
in Chapter 2, as well as a similar formulation of Proposition 3.8.1 (which easily
follows from the proof given in Chapter 3). We state them here for convenience,
and for consistency of notation:

Lemma 4.3.6. If H is an r-graph and J ⊆ L(H) is a subgraph of its line graph,
then

conn(J) ≥ ν(HJ)

r
− 2.

Lemma 4.3.7. If H is a 3-partite 3-graph and J ⊆ L(H) is a subgraph of its
line graph with τ(HJ) = 2ν(HJ), then

conn(J) ≥ 2ν(HJ)

3
− 2.

With these lemmas in mind, we are ready to proceed with the proof.

Proof of Theorem 4.3.5. Let H be a 3-partite 3-graph with vertex classes V1,
V2, and V3; and let J ⊆ L(H) be a subgraph of its line graph with τ(HJ) ≥ 4
and conn(J) ≤ −1. We remark that τ(HJ) ≥ 4 implies J is not empty, hence
conn(J) > −2, so we in fact have conn(J) = −1.

As a first step, we show that ν(HJ) = 3. Suppose that ν(HJ) ≥ 4. Then
conn(J) ≥ d4/3e − 2 = 0 by Lemma 4.3.6, a contradiction. Now suppose that
ν(HJ) ≤ 2. Then since τ(HJ) ≥ 4, and since Ryser’s Conjecture holds for 3-
graphs, we must have τ(HJ) = 4 and ν(HJ) = 2. But then Lemma 4.3.7 implies
conn(J) ≥ d4/3e − 2 = 0, again a contradiction. Thus we have ν(HJ) = 3.

Fix a matching M ⊆ V (J) of size 3. It forms a simplex in the indepen-
dence complex I(J), so it is part of one connected component. By assumption,
conn(J) = −1, hence I(J) is not path-connected, and thus has more than
one connected component. Therefore there must be some other component
C ⊆ V (J) ⊆ E(H) not containing M . Since there are no simplices of I(J) with
vertices in both components, it must be that every element of C is adjacent in
J to every element of M . Since J is a subgraph of L(H), it follows that every
edge (of H) in C intersects every edge of M . Now consider the size of the largest
matching among edges in C. If this is 1, then any edge of C forms a vertex
cover of size 3, since every edge in C intersects it by assumption, and every edge
outside of C intersects it because the edges must be adjacent in J , a subgraph
of the line graph. Thus there is a matching of size at least 2 in C. If on the
other hand there were a matching of size 3 in C, then because every one of these
edges must intersect every edge of M , one in each vertex class, it follows that
the V1-vertices of these edges coincide with the V1-vertices of the edges in M ,
and would form a vertex cover of size 3. This is because every edge of C must
intersect every edge of M , at least one intersection occurring in V1, and every
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edge outside C must intersect every edge of the supposed matching in C, again
one intersection occurring in V1. Therefore the largest matching that can be
found among the edges of C is exactly 2. So let e and e′ be two disjoint edges

in C. These will be the central edges of the copy of F (3)
4 we are looking for.

We will now find an explicit isomorphism of a subhypergraph of HJ with

F (3)
4 . For j = 1, 2, 3, let mj ∈ M be the edge whose Vj-vertex is in neither

of e and e′. Without loss of generality, we may assume m1 intersects e in V2
and e′ in V3 (otherwise exchange the labels e and e′). Then label the vertices
of e by (1, 1), (1, 2), (1, 3), and the vertices of e′ by (2, 1), (2, 2), (2, 3), so that
every vertex (i, j) is in vertex class Vj . We now have that mj intersects e in
(1, j + 1) and e′ in (2, j + 2) (all arithmetic is done modulo 3). Let mj,j denote
the remaining vertex of mj (the one not listed above).

Now for each vertex class Vj we apply the following procedure:
Consider the set Tj consisting of the Vj-vertices of the edges in M . Since

this set is too small to be a vertex cover, there is an edge gj ∈ V (J) that
avoids Tj . Now gj cannot intersect every edge of M , so it must be in the same
component as M , in particular it intersects both e and e′, one in Vj+1 and
the other in Vj+2. If there is any edge g′j avoiding Tj which intersects e in
(1, j + 2), and e′ in (2, j + 1), then label its Vj-vertex by ((12), j), and mj,j

by (id, j), so that we have the edges mj = eid,j and g′j = e(12),j , and we can
proceed to the next vertex class. If on the other hand there is no such edge,
then consider the set Uj = {(1, j), (2, j), (1, j + 1)}, which is also too small to
be a vertex cover. Thus there is an edge hj ∈ V (J) that avoids it. If hj is in C,
then it must intersect every edge of M , and the only possibilities avoiding Uj
are hj = {mj,j ,mj+1,j+1,mj+2,j+2} and hj = {mj,j , (2, j + 1), (1, j + 2)}. The
first of these possibilities is impossible, since it would mean C would contain a
matching of size 3, which we have shown to be false. Thus the latter possibility
holds in this case. If hj is not in C, then it must intersect both e and e′, and
the only way to do this avoiding Uj is by containing (2, j + 1) and (1, j + 2).
By assumption, the Vj-vertex of hj must be mj,j , hence in all cases we have the
edge {mj,j , (2, j + 1), (1, j + 2)}. In this case, we label mj,j by ((12), j), and the
V1-vertex of gj by (id, j), so that we have the edges gj = eid,j and hj = e(12),j ,
and we can proceed to the next vertex class.

After each vertex class is processed, we will have found a subhypergraph of

HJ with an explicit isomorphism with F (3)
4 . Now we must show that every edge

of HJ outside of this copy intersects both e and e′. Every edge outside of the
component C has to intersect both e and e′, so the only edges we need to worry
about are in the component C. The edges of C must cross every edge in the
component of M , in particular, they must intersect eσ,j for every σ and every j,
and a simple case analysis shows that e and e′ are the only 3-sets that do this
(consult Figure 4.1). Hence C must consist solely of e and e′, and thus we have
proven the claim.

As a corollary we have the following:
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Corollary 4.3.8. If H is a 3-partite 3-graph and J ⊆ L(H) is a subgraph of its
line graph with τ(HJ) ≥ 5, then conn(J) ≥ 0.

Proof. Let H be a 3-partite 3-graph, and let J ⊆ L(H) be a subgraph of its
line graph with τ(HJ) ≥ 5. Now suppose that conn(J) ≤ −1. Then by The-

orem 4.3.5, HJ contains a copy of F (3)
4 and every edge outside of it intersects

both its central edges. Then the set T consisting of the vertices of one of the
central edges and the V1-vertex of the other is a vertex cover of HJ of size 4, a

contradiction. Indeed, T is a vertex cover of the copy of F (3)
4 , and since every

outside edge intersects both central edges, these also intersect T . Thus, we must
have conn(J) ≥ 0.

In particular, this shows that Conjecture 2 holds for r = 3 when τ = 5. Now
note that since the connectedness is an integer, Conjecture 2 is only stronger
than Theorem 4.1.1 for r = 3 when τ ∈ {5, 9, 10, 13, 14, 15} or if τ ≥ 17.
Therefore, Corollary 4.3.8 settles the conjecture up to τ = 8. Our next task is
to verify it for τ = 9, which will prove it for τ ≤ 12:

Theorem 4.3.9. If H is a 3-partite 3-graph and J ⊆ L(H) is a subgraph of its
line graph with τ(HJ) ≥ 9, then conn(J) ≥ 1.

Proof. Our proof is via contradiction. As it is quite involved, let us give a short
overview to start. We suppose that we have a minimal counterexample, and aim
to use Meshulam’s Theorem together with Theorem 4.3.5 to find a contradiction.
We find that the explosion of any edge of J results in a hypergraph satisfying

the conditions of Theorem 4.3.5, hence contains a copy of F (3)
4 . We make use of

the high vertex cover number to prove the existence of various types of edges,
which we show must intersect in certain vertices. We use these vertices and
various covers to eventually construct a set of edges that cannot all intersect

both central edges of a copy of F (3)
4 , but yet must by Theorem 4.3.5, which will

be our contradiction.
Suppose there were a counterexample to the statement of the theorem. Then

we can choose one with a minimal number of edges. So let H be a 3-partite
3-graph with vertex classes V1, V2, and V3, and let J ⊆ L(H) be a subgraph of
its line graph with τ(HJ) ≥ 9 and conn(J) ≤ 0. We may assume that |E(J)| is
minimal among such graphs. Note that τ(HJ) ≥ 9 implies that J is not empty,
so if J has no edges, then conn(J) = ∞, a contradiction. Thus J must have
some edges. We start with some facts about these edges.

Claim. For all edges e, f ∈ V (J) with ef ∈ E(J), we have |e ∩ f | = 1,
τ(HJ>ef ) ≥ τ(HJ − (e ∪ f)) ≥ 4, and conn(J > ef) ≤ −1.

Proof of claim. Let e, f ∈ V (J) with ef ∈ E(J). Then e and f intersect, since J
is a subgraph of the line graph. Since HJ = HJ−ef , we have τ(HJ−ef ) ≥ 9, and
since |E(J − ef)| < |E(J)|, we have conn(J − ef) ≥ 1 because J was minimal.
If conn(J > ef) ≥ 0, then Meshulam’s Theorem would imply conn(J) ≥ 1, so
we must have conn(J > ef) ≤ −1.
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It is clear that any vertex cover of HJ − (e ∪ f) together with e ∪ f forms
a vertex cover of HJ , so we have τ(HJ − (e ∪ f)) + |e ∪ f | ≥ τ(HJ) ≥ 9. Since
|e ∪ f | = 6− |e ∩ f |, we have τ(HJ − (e ∪ f)) ≥ 3 + |e ∩ f | ≥ 4.

Since the set e∪ f intersects every edge we delete when passing from HJ to
HJ>ef , it follows that HJ−(e∪f) is a subhypergraph of HJ>ef , so τ(HJ>ef ) ≥
τ(HJ − (e ∪ f)).

Now if |e ∩ f | ≥ 2, then we would have τ(HJ>ef ) ≥ 5, and so by Corol-
lary 4.3.8 we would have conn(J >ef) ≥ 0, a contradiction. Thus we must have
|e ∩ f | = 1, as claimed.

Claim. For all edges e, f ∈ V (J) with ef ∈ E(J), we have that HJ − (e ∪ f)

contains a copy of F (3)
4 and every edge in HJ>ef is either a central edge of the

copy or intersects both central edges.

Proof of claim. By the previous claim, we know τ(HJ>ef ) ≥ 4 and conn(J >
ef) ≤ −1. By Theorem 4.3.5 we then have that HJ>ef contains a copy of F (3)

4

and every edge in HJ>ef is either a central edge of the copy or intersects both
central edges. Let c and c′ denote the central edges in question.

First, we claim that c and c′ are both disjoint from e and f . Indeed, suppose
c ∪ c′ and e ∪ f shared a vertex v. Without loss of generality, assume v ∈ c.
Then consider the set T ⊆ V (HJ) given by T = e ∪ f ∪ c′, which is of size at
most 8, since |e ∪ f | = 5. We claim T is a vertex cover of HJ . We know by
Theorem 4.3.5 that every edge of HJ>ef except c intersects c′, and c intersects
T in v ∈ e∪ f . Furthermore, every edge we removed in the explosion intersects
e ∪ f , hence T is a vertex cover. This is a contradiction, since τ(HJ) ≥ 9.
Therefore, c and c′ must indeed be disjoint from e and f .

Consider the subgraph J ∩ L(HJ − (e ∪ f)) of J > ef . Since {c, c′} forms a
path-component of I(J>ef), every edge between {c, c′} and the rest of V (J>ef)
is present in J > ef . Because we may obtain J ∩L(HJ − (e∪f)) by deleting the
vertices of J > ef that correspond to those edges of HJ>ef that intersect e∪ f ,
we have that every edge between {c, c′} and the rest of V (J ∩L(HJ−(e∪f))) is
present in J∩L(HJ−(e∪f)) as well. It only remains to be seen that c and c′ are
not the only edges present in HJ − (e ∪ f). This is easily seen to be true, since
τ(HJ−(e∪f)) ≥ 4 by the previous claim. Therefore, I(J ∩L(HJ−(e∪f))) has
at least two path-components, showing that conn(J ∩ L(HJ − (e ∪ f))) ≤ −1.

Therefore by Theorem 4.3.5, there is a copy of F (3)
4 in HJ − (e∪f). It is easy to

see that its central edges must be c and c′, since all other edges in HJ − (e∪ f)
are in a path-component of I(J ∩L(HJ − (e∪ f))) of size greater than 2. Thus
the claim holds.

Since J has an edge, let us fix e, f ∈ V (J) with ef ∈ E(J), and let c and c′

be the central edges of the copy of F (3)
4 in HJ − (e∪f). Let e and f intersect in

the vertex v ∈ Vj , and let i ∈ {1, 2}. Consider the sets Ei = (e∪f)\ (e∩Vj+i)∪
((c∪ c′)∩ (Vj ∪ Vj+3−i)) and Fi = (e∪ f) \ (f ∩ Vj+i)∪ ((c∪ c′)∩ (Vj ∪ Vj+3−i))
(all arithmetic is done modulo 3). These consist of a minimal vertex cover of
HJ>ef and all but one vertex of e ∪ f , hence are of size 8. Since these are too
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small to be vertex covers, there must be edges avoiding Ei and edges avoiding
Fi for i = 1, 2.

To help classify these edges, we will seek the help of the following lemma:

Lemma 4.3.10. For every edge g ∈ {e, f}, and every edge h ∈ V (J) with
gh ∈ E(J) that is disjoint from c and c′, there is no edge d ∈ V (J > gh) such
that d is disjoint from c and c′, and intersects at most one of e and f .

Proof of Lemma 4.3.10. Let g ∈ {e, f}, and let h ∈ V (J) with gh ∈ E(J) be
disjoint from c and c′. Suppose there were an edge d ∈ V (J > gh) such that d is
disjoint from c and c′, and intersects at most one of e and f . Since d is disjoint
from one of e and f , d does not intersect the other in Vj (since this is the class
of the common vertex of e and f). Since d is disjoint from c and c′, it is not in
V (J > ef), so it is adjacent in J to one of e and f . Thus, h intersects e or f in
one vertex, and let Vi be the vertex class of that vertex. Since gh ∈ E(J), we

have seen above that HJ>gh contains a copy of F (3)
4 and every edge in HJ>gh

is either a central edge of the copy or intersects both central edges. Let ĉ and
ĉ′ be the central edges of the copy.

By assumption, c, c′, and d form a matching of size 3 in HJ>gh. This implies
that none of them are central edges of HJ>gh, hence they all intersect ĉ and ĉ′.
There are two cases to consider.
Case 1. Neither ĉ nor ĉ′ intersect d in Vi.

In this case, consider the set S = g ∪ h ∪ ((c ∪ c′ ∪ d) ∩ Vj). This has size
at most 8, hence is not a vertex cover of HJ . Thus there is some edge m that
avoids S. Since m does not intersect either of g and h, we have m ∈ E(HJ>gh).
It thus must intersect ĉ and ĉ′, and clearly does not do so in Vj , since the Vj-
vertex of ĉ and ĉ′ are both in S. Without loss of generality, suppose it meets
ĉ in Vi. Let Vk be the third vertex class, besides Vj and Vi. Then m meets ĉ′

in Vk. We claim that m is disjoint from one of c and c′. Indeed, if it meets
both, it meets one of them in Vi, and the other in Vk. Since ĉ′ does not meet d
in Vi by assumption, and does not meet m in Vi either, it follows that ĉ′ must
meet the same member of {c, c′} in Vi as it does in Vk, which cannot be the
case. Therefore, m must be disjoint from one of c and c′. But m is also disjoint
from e and f , since its Vj vertex is not in g, and its Vi- and Vk-vertices are
in ĉ ∪ ĉ′, which are disjoint from e and f because we are in Case 1. This is a
contradiction, because every edge disjoint from e and f must intersect both c
and c′ (except c and c′ themselves). Therefore, this case is impossible.
Case 2. Without loss of generality, ĉ intersects d in Vi.

In this case, consider the set S = g ∪ h ∪ ((c ∪ c;∪d) ∩ Vi)). This has size at
most 8, hence is not a vertex cover of HJ . Thus there is some edge m that avoids
S. Since m does not intersect either of g and h, we have m ∈ E(HJ>gh). It thus
must intersect ĉ and ĉ′, and clearly does not do so in Vi, since the Vi-vertex of
ĉ and ĉ′ are both in S. Let Vk be the third vertex class, besides Vj and Vi. We
claim that again m is disjoint from one of c and c′. Indeed, if it meets both, it
meets one of them in Vj , and the other in Vk. But ĉ also meets one of c and c′

in Vj , and the other in Vk, so either ĉ misses m, which is a contradiction, or it
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hits m twice, which would mean m does not intersect ĉ′, also a contradiction.
Therefore, m must be disjoint from one of c and c′. But m is also disjoint
from e and f , since its Vj vertex is not in g, and its Vi- and Vk-vertices are
in ĉ ∪ ĉ′, which are disjoint from e and f because we are in Case 1. This is a
contradiction, because every edge disjoint from e and f must intersect both c
and c′ (except c and c′ themselves). Therefore, this case is also impossible.

Since these cases cover all of the possibilites, the existence of such an edge
d leads to a contradiction, thus proving the lemma.

Lemma 4.3.10 implies the following claim:

Claim. For i, k ∈ {1, 2} it holds that for every edge a ∈ V (J) avoiding Ei and
every edge b ∈ V (J) avoiding Fk we have ab ∈ E(J).

Proof of claim. Suppose there were edges a avoiding Ei and b avoiding Fk with
ab /∈ E(J). We must have ae ∈ E(J), since otherwise we would have a ∈
V (J>ef), which is a contradiction, as a is disjoint from the central edges c and
c′ of HJ>ef . But then Lemma 4.3.10 applied with g = e and h = a gives us a
contradiction, since b ∈ V (J > ae) is disjoint from c and c′, intersects only f ,
and does so in only one vertex. Hence we must have ab ∈ E(J).

This immediately implies the following:

Claim. There is a vertex x1 ∈ Vj such that every edge avoiding E1 and every
edge avoiding F2 contain it, and similarly there is a vertex x2 ∈ Vj such that
every edge avoiding E2 and every edge avoiding F1 contain it.

Proof of claim. For i = 1, 2 we have that any edge avoiding Ei has its Vj+i-
vertex in e and its Vj+3−i-vertex outside e ∪ f , while any edge avoiding F3−i
has its Vj+i-vertex outside e ∪ f and its Vj+3−i-vertex in f . But since any two
such edges are adjacent in J , they must intersect, and they can do so only in
Vj . The existance of edges avoiding Ei as well as edges avoiding F3−i together
with transitivity implies the existence of a vertex xi ∈ Vj contained in all such
edges.

We then also have the following:

Claim. Either x1 = x2, or there are vertices y1 ∈ Vj+1 and y2 ∈ Vj+2 such that
every edge avoiding E1 and every edge avoiding F1 contain y2, and similarly
every edge avoiding E2 and every edge avoiding F2 contain y1.

Proof of claim. Suppose x1 6= x2. For i = 1, 2 we have that any edge avoiding
Ei has its Vj-vertex equal to xi and its Vj+i-vertex in e, while any edge avoiding
Fi has its Vj-vertex equal to x3−i and its Vj+i-vertex in f . But since any two
such edges are adjacent in J , they must intersect, and they can do so only in
Vj+3−i. The existance of edges avoiding Ei as well as edges avoiding Fi together
with transitivity implies the existence of a vertex y3−i ∈ Vj+3−i contained in all
such edges.
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Claim. We have x1 6= x2.

Proof of claim. Suppose x1 = x2. We claim that the set T = {v, x1} ∪ c ∪ c′ is
a vertex cover of HJ of size 8. Indeed, suppose there were an edge m ∈ V (J)
avoiding T . We must have em ∈ E(J) or fm ∈ E(J), since otherwise we would
have m ∈ V (J > ef), which is a contradiction, since m is disjoint from the two
central edges c and c′ of HJ>ef . If m intersects e ∪ f in only one vertex, then
m avoids one of the sets Ei or Fi for some i ∈ {1, 2}. But this cannot be the
case, since m does not contain x1 = x2. Thus m intersects e∪ f in two vertices
(it does not intersect in 3 vertices, since it does not contain v). It does not
intersect either of them in two vertices because it is adjacent to one of them in
J . Thus m intersects e in Vj+i and f in Vj+3−i for some i ∈ {1, 2}.

If em ∈ E(J), then let b ∈ V (J) be an edge avoiding Fi. Now b is disjoint
from e and m, so b ∈ V (J > em), and as b is disjoint from c and c′, we will get
a contradiction by applying Lemma 4.3.10 with g = e and h = m. Similarly, if
fm ∈ E(J), we will get a contradiction in the same way from any edge a ∈ V (J)
avoiding E3−i by applying Lemma 4.3.10 with g = f and h = m. Thus, there is
no such edge m, hence T is a vertex cover of HJ . This is a contradiction, since
τ(HJ) ≥ 9 by assumption. Thus, we must have x1 6= x2.

Therefore the previous claim gives the existence of the vertices y1 ∈ Vj+1

and y2 ∈ Vj+2 satisfying the conditions laid out in the claim.

Consider the copy H′ ⊆ HJ − (e ∪ f) of F (3)
4 with central edges c and c′.

There is an edge g ∈ E(H′) whose Vj+1-vertex is not in c∪c′ and is not y1. There
are also distinct edges h, h′ ∈ E(H′) whose Vj+2-vertices are not in c ∪ c′. One
of these edges is disjoint from g, and we may assume without loss of generality
that this edge is h. Now h intersects one of c and c′ in Vj+1, and since the roles
of c and c′ have been entirely symmetrical so far, we may assume without loss
of generality that h intersects c in Vj+1.

Now consider the set S = {v, x1, x2} ∪ c ∪ (c′ \ Vj+1). This is a set of size
8, so it is too small to be a vertex cover of HJ . Thus there exists an edge
m ∈ V (J) avoiding S. Clearly m must be adjacent in J to one of e and f ,
since it fails to intersect c (thus it is not in V (J > ef)). If m contains two
vertices of e ∪ f , we may proceed as in the proof of the claim showing x1 6= x2
to reach a contradiction. Also, if m avoids both c and c′, then it avoids E1 or
F1, which would mean that it contains x1 or x2, also a contradiction. Thus, we
may assume that m ∩ Vj+1 = c′ ∩ Vj+1.

Now if m intersects e, then let b ∈ V (J) be an edge avoiding F2 and set
H∗ = HJ − (b∪f). If on the other hand m intersects f , then let a ∈ V (J) be an
edge avoiding E2 and set H∗ = HJ − (a∪ e). Now both a and b have y1 as their
Vj+1-vertex, and have x1 or x2 as their Vj-vertex, and thus g, h, h′, c, and c′

are disjoint from them. Thus these edges along with m are in H∗. We know by

an earlier claim that H∗ contains a copy of F (3)
4 , such that every edge of H∗ is

a central edge of the copy or intersects both central edges of the copy. Now m,
g, and h form a matching of size 3 in H∗, so none of these can be a central edge
in the copy. Also, m and c are disjoint, so c cannot be a central edge, which
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implies c′ is not a central edge either, since it is disjoint from c. Similarly, h′

cannot be a central edge, since it is disjoint from the non-central edge h. Now a
simple case analysis shows that there is no way to find two disjoint edges, each
intersecting all of m, g, h, h′, c and c′. Thus, we have reached a contradiction.
This means that there can be no J ⊆ L(H) with τ(HJ) ≥ 9 and conn(J) ≤ 0,
proving the proposition.
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Chapter 5

Triangulations

5.1 Introduction

In this chapter, we aim to provide a solid foundation for the topological ma-
chinery we used in the previous chapters. It may be seen as a sort of appendix.
Along the way, we fix an oversight that was recently discovered in certain proofs
involving triangulations.

Triangulations of spheres and balls have been an object of study for a long
time. Specifically relevant to the topic of this thesis was the paper of Aharoni
and Haxell [6], from which we implicitly get Theorem 2.1.6. Aharoni, Chud-
novsky, and Kotlov [5] gave techniques for extending triangulations of spheres
to special triangulations of balls. Szabó and Tardos [27] expanded on these tech-
niques in order to prove some degree conditions on the existence of transversals
with various properties. Both of these latter papers relied on the supposed fact
that the links of simplices in the interior of triangulated balls are triangulations
of spheres, which, as we will come to see, is not necessarily true for general
triangulations. One way to guarantee that this fact holds is by considering so-
called PL-triangulations. To be fair, Szabó and Tardos do mention this in [27],
but one of their construction involves iteratively replacing parts of the ball with
a different triangulation, hence one must check that this replacement preserves
the PL property.

In the first part of this chapter, we will provide the necessary definitions
and known results regarding triangulations of spheres and balls, culminating in
the proof that the replacement technique of Szabó and Tardos is sound. In the
second part, we will use this same technique to give a triangulation proof of
Meshulam’s Theorem (Theorem 2.1.5), which is one of the most heavily used
tool in the previous chapters of this thesis.
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5.2 Topological Definitions and Theorems

Simplicial complexes give discrete descriptions of topological spaces. Indeed, a
triangulation of a topological space is a simplicial complex whose polyhedron
is homeomorphic to the space. In applications, we often deal with abstract
simplicial complexes, which encode only combinatorial information about which
simplices are incident to which simplices. However, in order to define such
things as subdivisions and PL-triangulations, we will need to deal with geometric
simplicial complexes, which come with a concrete embedding of its simplices into
Rd. Both concepts have infinite versions, but here we shall only consider finite
simplicial complexes.

Note that many of the definitions that follow were given in Chapter 2. They
are repeated here for the convenience of the reader.

For a general reference, we refer the reader to [10] and [18].

5.2.1 Abstract Simplicial Complexes

Definition 5.2.1. An abstract simplicial complex C is a finite collection of
finite sets that is closed under taking subsets. The set of vertices of C is V (C) =⋃
σ∈C σ. The elements σ ∈ C are called simplices, and the subsets of a simplex

are called its faces.

Definition 5.2.2. If σ is a simplex of an abstract simplicial complex, then
the dimension of σ is one less than the number of elements in σ and is denoted
dim(σ) = |σ|−1. The dimension of an abstract simplicial complex C is dim(C) =
maxσ∈C dim(σ).

Definition 5.2.3. A simplicial map between abstract simplicial complexes C
and D is a map f : V (C)→ V (D) such that f(σ) ∈ D for every simplex σ ∈ C.

Definition 5.2.4. An isomorphism between abstract simplicial complexes C
and D is a simplicial bijection f : V (C) → V (D) whose inverse is simplicial. If
an isomorphism between C and D exists, we say C and D are isomorphic, and
we write C ∼= D.

Definition 5.2.5. The join of two abstract simplicial complexes C and D is the
abstract simplicial complex C ∗ D = {(σ × {0}) ∪ (τ × {1}) : σ ∈ C, τ ∈ D}.

Definition 5.2.6. Let C be an abstract simplicial complex, and let σ ∈ C.
The open star of σ is starC(σ) = {τ ∈ C : σ ⊆ τ}.
The link of σ is lkC(σ) = {τ ∈ C : τ ∪ σ ∈ C and τ ∩ σ = ∅}.

5.2.2 Geometric Simplicial Complexes

Definition 5.2.7. A geometric simplex σ ⊆ Rd is the convex hull of a set of
affinely independent points. These points are its vertices, denoted by V (σ).

Definition 5.2.8. A face of a geometric simplex is the convex hull of a subset
of its vertices.
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Definition 5.2.9. A geometric simplicial complex K is a finite collection of
geometric simplices such that for any geometric simplex σ ∈ K every face of σ
is also in K, and if σ, τ ∈ K, then σ∩ τ is a common face of σ and τ . The vertex
set of K, is the set V (K) =

⋃
σ∈K V (σ).

Definition 5.2.10. The polyhedron of a geometric simplicial complex ∆ is the
space ‖K‖ =

⋃
σ∈K σ.

Definition 5.2.11. The boundary of a geometric simplex σ is the geometric
simplicial complex ∂σ = {conv(U) : U ( V (σ)}.

Definition 5.2.12. The interior of a geometric simplex σ is the convex set
int(σ) = σ \ ‖∂σ‖.

Note that a geometric simplex K is the disjoint union of the interiors of
its faces. In particular, for any x ∈ ‖K‖, there is a unique σx ∈ K such that
x ∈ int(σx).

Definition 5.2.13. A simplicial map between geometric simplicial complexes
K and L is a map f : V (K) → V (L) such that conv(f(V (σ))) ∈ L for every
simplex σ ∈ K.

Definition 5.2.14. Let K and L be geometric simplicial complexes, and let
f : V (K) → V (L) be a simplicial map. Then the polyhedron of f is the map
‖f‖ : ‖K‖ → ‖L‖ given by linear extension of f on each of the simplices of K.
Concretely, if x ∈ int(σ) for some σ ∈ K, then x =

∑
v∈V (σ) λvv for uniquely

determined λv, and we define ‖f‖ (x) =
∑
v∈V (σ) λvf(v).

It is clear that if f : V (K) → V (L) is simplicial, then ‖f‖ : ‖K‖ → ‖L‖ is
continuous.

Definition 5.2.15. An isomorphism between geometric simplicial complexes
K and L is a simplicial bijection f : V (K) → V (L) whose inverse is simplicial.
If an isomorphism between K and L exists, we say K and L are isomorphic, and
we write K ∼= L.

Definition 5.2.16. Two geometric simplices σ and τ in Rd are called joinable
if they are disjoint and the union of their vertex sets is affinely independent. If σ
and τ are joinable, then their join is the geometric simplex σ∗τ = conv(σ∪τ) =
conv(V (σ) ∪ V (τ)).

Definition 5.2.17. Two geometric simplicial complexes K and L are called
joinable if for every pair of simplices σ ∈ K and τ ∈ L we have the following:

(1) σ and τ are joinable,

(2) If σ′ ∈ K and τ ′ ∈ L, then (σ ∗ τ)∩ (σ′ ∗ τ ′) is a common face of σ ∗ τ and
σ′ ∗ τ ′.

If K and L are joinable, then their join is the geometric simplicial complex
K ∗ L = {σ ∗ τ : σ ∈ K, τ ∈ L}.
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Definition 5.2.18. Let K be a geometric simplicial complex, and let σ ∈ K.
The open star of σ is starK(σ) = {τ ∈ K : σ ⊆ τ}.
The link of σ is lkK(σ) = {τ ∈ K : σ ∗ τ ∈ K and τ ∩ σ = ∅}.

Note that the link of a simplex is a geometric simplicial complex, while the
open star is not necessarily one.

In the case when σ is 0-dimensional, i.e. consists of a single vertex v, we
usually write star(v) instead of star({v}), and similarly for the the link.

Definition 5.2.19. If K is a geometric simplicial complex, then a subdivision
of K is a geometric simplicial complex K′ with ‖K′‖ = ‖K‖ such that every
simplex in K′ is contained in a simplex in K.

5.2.3 Vertex Schemes and Realizations

Of course one can translate between abstract and geometric simplicial com-
plexes.

Definition 5.2.20. If K is a geometric simplicial complex, then the vertex
scheme of K is the abstract complex vs(K) = {U ⊆ V (K) : conv(U) ∈ K}.

It is clear that this does in fact produce an abstract simplicial complex, since
the faces of simplices in a geometric simplicial complex are themselves in the
complex. Thus every geometric simplicial complex corresponds to an abstract
simplicial complex. The correspondence also goes the other way.

Definition 5.2.21. If C is an abstract simplicial complex, then a geometric
realization of C, also called an embedding, is a geometric simplicial complex K
such that vs(K) ∼= C.

It is not at first glance clear that every abstract simplicial complex has a
geometric realization. The next theorem of Menger and Nöbeling gives us such
a result.

Theorem 5.2.22. If C is a d-dimensional abstract simplicial complex, then C
has a geometric realization in R2d+1.

In this way, we can carry over definitions and constructions from one type of
simplicial complex to the other. For instance, the definitions of joins, stars, and
links in geometric and abstract simplicial complexes translate into each other in
this way. More fundamentally, the notion of isomorphism translates between the
abstract and geometric setting, so any two geometric realizations of isomorphic
abstract simplicial complexes are isomorphic.

We can use this correspondence to define subdivisions of abstract simplicial
complexes.

Definition 5.2.23. If C is an abstract simplicial complex, then an (abstract)
subdivision of C is an abstract simplicial complex C′ such that there are geometric
realizations K of C and K′ of C′ with K′ a subdivision of K.
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A related observation is that subdivisions can be carried over between iso-
morphic geometric simplicial complexes. Let K and L be isomorphic geometric
simplicial complexes, with φ : V (K) → V (L) a simplicial isomorphism. Now
suppose K′ is a subdivision of K. Then φ induces an isomorphic subdivision
L′ = ‖φ‖ (K′) of L by mapping a simplex σ ∈ K′ to the simplex ‖φ‖ (σ). Since
‖φ‖ is linear on each simplex of K and every simplex of K′ is contained in a
simplex of K, this clearly produces a subdivision of L.

Another useful definition is that of the k-skeleton, which also applies to both
abstract and geometric complexes.

Definition 5.2.24. If C is a simplicial complex, then the k-skeleton C(k) of C
is the subcomplex of C consisting of all simplices of dimension at most k.

5.2.4 Connectedness

We define the d-sphere concretely by Sd =
{
x ∈ Rd+1 : |x| = 1

}
, and the d-ball

by Bd =
{
x ∈ Rd : |x| ≤ 1

}
.

Definition 5.2.25. Let k ≥ −1 be an integer. A topological space X is said to
be k-connected if for any integer j with −1 ≤ j ≤ k, any continuous map from
the j-dimensional sphere Sj into the space X can be extended to a continuous
map from the (j + 1)-dimensional ball Bj+1 to X. The connectedness of X,
denoted conn(X) is the largest k for which X is k-connected. Note that this
may be ∞, which is the case if the space is contractible, i.e. can be shrunk
continuously to a single point.

The −1-sphere is the empty set and the 0-ball is a single point, so a space is
−1-connected if and only if it is non-empty. 0-connected means path-connected,
and 1-connected means simply connected.

A geometric simplicial complex is said to be k-connected if its polyhedron
is, and an abstract simplicial complex is k-connected if its geometric realization
is (and observe that this does not depend on the choice of geometric realization,
as the geometric realizations are all homeomorphic).

A useful fact relating connectedness to joins is the following:

Proposition 5.2.26 (Lemma 2.3 in [23]). If C and D are abstract simplicial
complexes, then

conn(C ∗ D) ≥ conn(C) + conn(D) + 2

5.2.5 Triangulations

Definition 5.2.27. A triangulation of a topological space X is an abstract
simplicial complex C for which the polyhedron of its geometric realization is
homeomorphic to X.

We are interested in triangulations of balls and spheres. One important fact
about balls is that their boundaries are spheres. To translate this notion to the
setting of triangulations, note that in a triangulation of a d-ball, there are two
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kinds of (d − 1)-dimensional simplices: those which are in two d-dimensional
simplices, and those which are in only one.

Definition 5.2.28. If B is a triangulation of a ball Bd, then the boundary of B
is the subcomplex whose maximal simplices are the (d−1)-dimensional simplices
of B which are in only one d-simplex of B.

This gives that the boundary of a triangulated d-ball B is a triangulated
(d − 1)-sphere S, and in fact for any homeomorphism between a geometric
realization of B and Bd, the image of the boundary is Sd−1.

As the notion of connectedness calls for extending maps from spheres to the
ball they are the boundary of, we will want a simplicial version for triangulations
of spheres. In order to be able to freely apply certain gluing procedures, we will
require a bit more of our “filling” than one might initially expect.

Definition 5.2.29. If S is a triangulation of a sphere Sd, then a filling of S is
a triangulation B of the ball Bd+1 whose boundary is S, and such that if σ ∈ B
with σ ⊆ V (S), then σ ∈ S.

The more restricted definition of filling ensures us that if we have a triangu-
lation of a ball and we remove a triangulated ball from the interior, leaving a
shell, then adding any filling of the interior boundary of the shell again results
in a ball (as long as we avoid using vertices from the shell in the filling, apart
from the inner boundary). We will always assume that any filling uses its own
distinct set of vertices in the interior, so that there are never any unfortunate
coincidences with vertices from other complexes. The following lemma makes
this gluing precise.

Lemma 5.2.30. Let C, D and D′ be abstract simplicial complexes with C ∩D =
C∩D′ and with D homeomorphic to D′ via a homeomorphism that is the identity
on C ∩ D. Then C ∪ D is homeomorphic to C ∪ D′.

Proof. Let φ : ‖D‖ → ‖D′‖ be a homeomorphism that is the identity on C ∩ D.
Then define ψ : ‖C ∪ D‖ → ‖C ∪ D′‖ to be the identity on ‖C‖ and to be φ on
‖D‖. Since the pieces agree on the intersection, and both ‖C‖ and ‖D‖ are closed
subsets of ‖C ∪ D‖, it follows that ψ is continuous. Its inverse is continuous by
the same reasoning, hence ψ is a homeomorphism.

In order to apply certain proof techniques, we will need our triangulations
of spheres and balls to be “piecewise linear,” or “PL” for short.

Definition 5.2.31. A triangulated d-ball or (d − 1)-sphere is called a PL-
ball or PL-sphere, respectively, if it has a subdivision which is isomorphic to a
subdivision of the abstract d-simplex or its boundary, respectively.

A geometric PL-ball or PL-sphere is a geometric realization of a PL-ball or
PL-sphere.

This technical property is needed to ensure the following:
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Proposition 5.2.32 (Corollary 1.16 in [18]). If B is a PL-d-ball, and σ is
a k-dimensional simplex not contained in its boundary, then lkB(σ) is a PL-
(d− k − 1)-sphere.

This nice property of PL-balls is unfortunately not true in general. The
classic counterexample is the double-suspension of a homology sphere, which by
the double-suspension theorem [11] is homeomorphic to a sphere. Removing a
maximal simplex of a triangulation creates a ball that fails the conclusion of
Proposition 5.2.32.

5.2.6 Simplicial Approximation

A useful fact is that we can check for connectedness using fillings of PL-spheres:

Proposition 5.2.33. A simplicial complex C is k-connected if and only if for
every j with −1 ≤ j ≤ k and for every simplicial map f : V (S)→ V (C), where
S is a PL-j-sphere, there is a filling of S by a PL-(j+1)-ball B, and a simplicial

map f̂ : V (B)→ V (C) extending f .

It will also be important that we can do this even with subdivisions of
simplices:

Proposition 5.2.34. A simplicial complex C is k-connected if and only if for
every j with −1 ≤ j ≤ k and for every simplicial map f : V (S)→ V (C), where
S is a subdivision of the boundary of a (j+1)-simplex, there is a subdivision B of

a (j+1)-simplex with S as its boundary, and a simplicial map f̂ : V (B)→ V (C)
extending f .

The proof of these follows along the lines of Proposition 2.8 in [27], using
the simplicial approximation theorem. We give a more explicit proof.

Definition 5.2.35. If f : ‖K‖ → ‖L‖ is a continuous map, then a simplicial
approximation of f is a simplicial map g : V (K)→ V (L) such that f(starK(v)) ⊆
starL(g(v)) for every vertex v ∈ V (K).

In order to cover both cases, we will just refer to a triangulated sphere and
a filling of it. One must take these to be the appropriate type for the particular
lemma. We note that both classes of spheres and balls are closed under taking
subdivisions and under taking cones.

Proof of Lemmas 5.2.33 and 5.2.34. We prove both directions.
(⇐) Suppose that for every integer j with −1 ≤ j ≤ k and every triangulated

j-sphere S, every simplicial map f : V (S) → V (C) has a simplicial extension

f̂ : V (B)→ V (C), where B is a filling of S.
Let −1 ≤ j ≤ k, and let f : Sj → ‖C‖ be a continuous map. Our goal is to

extend f continuously to the ball Bj+1. Let S be a triangulated j-sphere, which
means ‖S‖ is homeomorphic to Sj , so let φ : ‖S‖ → Sj be a homeomorphism.
Then the composition f ◦φ : ‖S‖ → ‖C‖ is a continuous map between polyhedra
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of simplicial complexes, so it has a simplicial approximation s : V (S ′)→ V (C),
where S ′ is a subdivision of S. Then ‖s‖ is homotopic to f ◦φ, so let H : ‖S‖×
[0, 1] → ‖C‖ be a homotopy with H(x, 0) = ‖s‖ (x) and H(x, 1) = f ◦ φ(x) for
all x ∈ ‖S‖. By our supposition, s has a simplicial extension ŝ : V (B)→ V (C),
where B is a filling of S ′. We then have that ‖ŝ‖ is a continuous extension of
‖s‖ to the polyhedron ‖B‖. We know ‖B‖ is homeomorphic to the ball Bj+1

and has boundary ‖S ′‖ = ‖S‖, so let ψ : ‖B‖ → Bj+1 be a homeomorphism
extending φ.

Define g : Bj+1 → ‖C‖ by

g(x) =

{
‖ŝ‖ ◦ ψ−1(2x) if |x| ≤ 1

2 ,
H(φ−1( x

|x| ), 2 |x| − 1) if |x| ≥ 1
2 .

We will show that g is a continuous extension of f , which will prove the if
direction of our proposition. Both pieces of g are clearly continuous. We need
to show that they agree on the boundary. Let |x| = 1

2 . Then 2x is in Sj ,
so ψ−1(2x) is in ‖S‖, and ψ−1(2x) = φ−1(2x), since ψ and φ agree on the
boundary. Thus ‖ŝ‖ (ψ−1(2x)) = ‖s‖ (φ−1(2x)).

(⇒) Now suppose that ‖C‖ is k-connected.
Let −1 ≤ j ≤ k, and let f : V (S) → V (C) be a simplicial map from some

triangulated j-sphere S to C. We will find a filling of S and a simplicial extension
of f to the filling. We start by taking the cone B = p ∗ S. We will assume for
convenience that S lies in Rd×0 for some d, and that p = (0, . . . , 0, 1) in Rd×R,
but make special note that the construction does not rely on this fact. Consider
‖B‖ ∩ (Rd × [1/2, 1]). This is also the polyhedron of a cone over S, so let B′
be the corresponding simplicial complex, and let S ′ ⊆ B′ be the subcomplex
corresponding to ‖B‖∩ (Rd×1/2), which is isomorphic to S in the obvious way.
Let f ′ : V (S ′) → V (C) be the map corresponding to f via this isomorphism.
Now let φ : ‖S ′‖ → Sj be a homeomorphism, and let ψ : ‖B′‖ → Bj+1 be
a homeomorphism extending φ. Then ‖f‖ ◦ φ−1 is a continuous map from Sj

to ‖C‖, and since ‖C‖ is k-connected, it can be extended to a continuous map
g : Bj+1 → ‖C‖. Then by the simplicial approximation theorem, there is a
subdivision B′′ of B such that there is a simplicial approximation h : V (B′′)→
V (C) of g ◦ ψ.

We will now extend the subdivision B′′ to a subdivision of B. We will define
a chain of complexes B0, . . . ,Bn with B0 = B′′ and Bn a subdivision of B,
such that each is a subcomplex of the next. For each j-simplex σ of S, let σ′

be the corresponding simplex of S ′, and let K0(σ) be the subcomplex of B′′
that is a subdivision of σ′. Let v1, . . . , vn be the vertices of S, and v′1, . . . , v

′
n

the corresponding vertices of S ′. Supposing Bi−1 has been defined, and that
Ki−1(σ) is a subdivision of a j-simplex for each j-simplex σ of S, let Bi be the
union of Bi−1 and the joins of vi with Ki−1(σ) as σ ranges over the j-simplices
of S containing vi. We also define Ki(σ) for each j-simplex σ of S. If σ does
not contain vi, let Ki(σ) = Ki−1(σ), otherwise let τ = ‖Ki−1(σ)‖ be a simplex,
and let Li(σ) be the subdivision of the facet of τ disjoint from the vertex of S ′
corresponding to vi. Define Ki(σ) = vi ∗ Li(σ), which is again a subdivision of
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a j-simplex. In each step, the Ki(σ) make up the boundary of the ball Bi. In
the end, Bn is a subdivision of B.

We set f̂ : V (Bn) → V (C) to be equal to h on V (B′′) and equal to f on
V (S) (these are all of the vertices of Bn). We must check that it is simplicial.
Consider a simplex σ ∈ Bn. If it is contained in S, f maps it to a simplex
of C, and if it is contained in B′′, h maps it to a simplex of C. Otherwise, by
constuction σ = σ1 ∗ σ2, where σ1 is a simplex of S and σ2 is a simplex of B′′
that is part of the subdivision of a j-simplex τ of S ′, which has σ′1 as a face.
Since g ◦ψ is linear on τ , σ2 is mapped by g ◦ψ into the simplex τ is mapped to
by f ′. Since h is a simplicial approximation of g ◦ ψ, h must maps the vertices
of σ2 to the vertices of the simplex τ is mapped to by f ′. Therefore f̂ maps σ
to a face of that simplex, hence to a simplex. Therefore, f̂ is simplicial, and the
lemmas follow.

5.2.7 Star Replacement

One technique for proving the connectedness of a simplicial complex using
Proposition 5.2.33 is the following: Take a PL-sphere of the desired dimension
together with a simplicial map from it to the complex. Find an initial PL-filling
and some extension of the map to the filling, which may fail to be simplicial.
Then fix the filling and the map by iteratively replacing “bad” simplices with
good ones. One method of doing this involves replacing the open star of a sim-
plex with a filling of its link. This makes sense, since by Proposition 5.2.32, the
link is a sphere.

Definition 5.2.36. Let B be a PL-ball, let σ ∈ B be a simplex not contained
in its boundary, and let F be a filling of lkB(σ). Then the star-replacement of
σ by F is the complex starrepB(σ,F) = B \ starB(σ) ∪ (∂σ ∗ F).

It is important to note that the star-replacement leaves the boundary of the
ball unchanged, and does in fact produce another ball, which is due to our extra
requirement of fillings.

For example, this approach was used in [27]. We will also apply this tech-
nique in the proof of Meshulam’s Theorem. If we want to perform this operation
more than once, then we had better make sure that the result again produces
a PL-ball. The fact that this does in fact happen is stated in the following
theorem, whose proof will be the topic of the rest of the subsection.

Theorem 5.2.37. Let B be a PL-ball, and let σ ∈ B be a simplex not contained
in the boundary of B. If F is a PL-filling of lkB(σ), then starrepB(σ,F) is a
PL-ball.

Lemma 5.2.38 (Lemma 1.13 in [18]). Let S and S ′ be PL-spheres, and let B
and B′ be PL-balls. Then S∗S ′ is a PL-sphere and S∗B and B∗B′ are PL-balls.

The following lemma we will prove later:
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Lemma 5.2.39. If B and B′ are geometric PL-balls with φ : V (∂B)→ V (∂B′)
an isomorphism between their boundaries, then there are subdivisions K of B
and K′ of B′ with an isomorphism ψ : V (K)→ V (K′) such that ‖ψ|∂K‖ = ‖φ‖.

Lemma 5.2.40 (Lemma 1.3 in [18]). Let K be a geometric simplicial complex,
and let L ⊆ K be a subcomplex. Then the following holds:

(1) If K′ is a subdivision of K, then there is a subcomplex L′ ⊆ K that is a
subdivision of L.

(2) If L′ is a subdivision of L, then there is a subdivision K′ of K that has L′
as a subcomplex.

Proof of Theorem 5.2.37. Since σ is a simplex, hence a PL-ball, and lkB(σ) is a
PL-sphere, σ∗ lkB(σ) is a PL-ball by Lemma 5.2.38. Moreover, since ∂σ is a PL-
sphere, and F is a PL-ball, ∂σ ∗ F is also a PL-ball by Lemma 5.2.38. Further-
more, their boundaries are both ∂σ ∗ lkB(σ), so we will apply Lemma 5.2.39. To
make this precise, we take geometric realizationsK of B andK′ of starrepB(σ,F).
Since both K and K′ contain geometric realizations L and L′, respectively, of
B \ starB(σ), there is a natural isomorphism φ : V (L) → V (L′). This restricts
to an isomorphism between the realizations M and M′ of ∂σ ∗ lkB(σ), which
form the common boundary of the PL-balls we are replacing with one another.
By Lemma 5.2.39, there are isomorphic subdivisions C ofM and C′ ofM′, with
the isomorphism induced by ‖φ‖ on the boundary. By Lemma 5.2.40, there is
a subdivision B′ of K which contains C as a subcomplex. B′ of course contains
a subdivision E of L, which corresponds via ‖φ‖ to a subdivision E ′ of L′. This
yields that B′ = E ∪ C is isomorphic to E ′ ∪ C′. Hence starrepB(σ,F) has a
subdivision isomorphic to a subdivision of a PL-ball, which implies that it must
itself be a PL-ball, as desired.

All that is left is to prove Lemma 5.2.39. To do this, we will need one more
Lemma.

Lemma 5.2.41 (Corollary 1.6 in [18]). If two geometric simplicial complexes
have the same polyhedron, then they have a common subdivision.

Proof of Lemma 5.2.39. Since the boundaries of B and B′ are isomorphic, B
and B′ must have the same dimension d. Let ∆ be a geometric realization
of the abstract d-simplex. Since B and B′ are PL-d-balls, there are geometric
subdivisions L of B and L′ of B′, which are isomorphic to geometric subdivisions
D and D′ of ∆ via isomorphisms η : V (L) → V (D) and η′ : V (L′) → V (D′),
respectively. Then L and L′ induce geometric subdivisions ‖φ‖ (∂L) and ∂L′ of
∂B′, and by Lemma 5.2.41, these have a common subdivision T .

Now let v be a point in the interior of ∆. Consider the subdivisions E =
‖η‖◦

∥∥φ−1∥∥ (T ) and E ′ = ‖η′‖ (T ) of ∂∆. Then E ∗ v and E ′ ∗ v are subdivisions
of ∆. Since both E and E ′ are isomorphic to T , there is a natural isomorphism
ξ : V (E) → V (E ′) induced by the isomorphisms with T , such that ‖ξ‖ =

‖η′‖ ◦ ‖φ‖ ◦
∥∥η−1∥∥. Extend this to an isomorphism ξ̂ of E ∗ v and E ′ ∗ v by fixing
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v. By Lemma 5.2.41, there is a common subdivision F of E ∗ v and D, and this

corresponds to a subdivision F ′ =
∥∥∥ξ̂∥∥∥ (F) of E ′ ∗ v. Now F ′ and D′ have a

common subdivision G′ by Lemma 5.2.41, and this corresponds to a subdivision

G =
∥∥∥ξ̂−1∥∥∥ (G′) of F . Thus we have found isomorphic subdivisions G and G′

of ∆, which are subdivisions of D and D′, respectively. Hence K =
∥∥η−1∥∥ (G)

and K′ =
∥∥η′−1∥∥ (G′) are isomorphic subdivisions of B and B′, respectively via

an isomorphism ψ : V (K) → V (K′) induced by
∥∥η′−1∥∥ ◦ ∥∥∥ξ̂∥∥∥ ◦ ‖η‖. We claim

that ‖ψ|∂K‖ = ‖φ‖, which would complete the proof of the lemma. This is

straightforward, as ‖ψ|∂K‖ =
∥∥η′−1|∂D′∥∥ ◦ ∥∥∥ξ̂|E∥∥∥ ◦ ‖η|∂L‖, and since ξ̂ restricts

to ξ on the boundary, we thus have ‖ψ|∂K‖ =
∥∥η′−1|∂D′∥∥ ◦ ‖ξ‖ ◦ ‖η|∂L‖ = ‖φ‖,

as desired.

5.3 Meshulam’s Theorem

Now we’re ready to give the proof of Meshulam’s Theorem via triangulations.
For convenience, here is the statement of the theorem:

Theorem 2.1.5. Let G be a graph and let e ∈ E(G). Then we have

conn(G) ≥ min(conn(G− e), conn(G> e) + 1).

Proof. Let k = min(conn(G − e), conn(G > e) + 1). Since G has an edge, it is
nonempty, hence G− e is nonempty, and thus k ≥ −1 (since also conn(G> e) ≥
−2). The theorem is trivial for k = −1, since G is nonempty by assumption,
hence conn(G) ≥ −1. Therefore, assume k ≥ 0.

We want to show that I(G) is k-connected, so we aim to apply Propo-
sition 5.2.33. Therefore, consider a PL-j-sphere S for some integer j with
−1 ≤ j ≤ k and a simplicial map f : V (S) → V (I(G)). If we can find a

PL-filling B of S and a simplicial map f̂ : V (B) → V (I(G)) extending f , then
by Proposition 5.2.33 this would show that I(G) is k-connected.

We briefly outline how we will proceed. We start by using the fact that
I(G − e) is k-connected to find a filling of S and a simplicial extension of f
which maps to I(G− e). This extension might not be simplicial as a map into
I(G), however, so call any simplex of the filling “ruined,” if its image under the
extension is e (since e is a simplex of I(G− e), but not a simplex of I(G)). We
replace ruined simplices one by one, starting with the highest dimensional ones
and working our way down by utilizing the star-replacement operation referred
to in Theorem 5.2.37. In the end, we will have a PL-filling of S and a simplicial
extension of f with no ruined simplices, which will mean that the extension is
also a simplicial map to I(G).

Since V (I(G− e)) = V (I(G)) = V (G), and since I(G) is in fact a subcom-
plex of I(G − e) (every independent set of G is an independent set in G − e),



CHAPTER 5: Triangulations 104

f is also a simplicial map from S to I(G − e). Since conn(I(G − e)) ≥ k by
assumption, by Proposition 5.2.33, there is a PL-filling B of S and a simplicial
map f̂ : V (B) → V (I(G − e)) extending f . Call a simplex σ ∈ B “ruined,” if

f̂(σ) = e. Clearly, any simplex of B is witness to the fact that f̂ is not a simpli-
cial map into I(G) if and only if it contains a ruined simplex. We will change
the triangulation and the map until there are no more ruined simplices. Let
σ1, . . . , σn be the set of ruined simplices in order of decreasing dimension. Note
that the dimension of any ruined simplex is at least 1, since it must have at least
two vertices, one mapped to each endpoint of e. We will define a sequence of
fillings B0, . . . ,Bn, and simplicial maps f̂i : V (Bi)→ V (I(G− e)), with B0 = B,

f̂0 = f̂ , and Bn having no ruined simplices under f̂n as follows.
Suppose Bi has already been defined and has ruined simplices σi+1, . . . , σn.

Let d = dim(σi+1). By Proposition 5.2.32, lkBi
(σi+1) is a PL-(j − d)-sphere,

since σi+1 is of course not contained in the boundary S of Bi, because that part
of f̂i is equal to f , and hence simplicial into I(G). Note that f̂i maps the vertices
of the link to V (I(G> e)), because the vertices of the link are by definition in
simplices together with every vertex of σi+1 and these simplices are not ruined as
σi+1 is a maximal ruined simplex, and hence the images must not be adjacent to
either endpoint of e in G−e. Because conn(I(G>e)) ≥ k−1 by assumption, and
since d ≥ 1 (hence j − d ≤ k − 1), by Proposition 5.2.33, there is a PL-filling K
of lkBi(σi+1) together with a simplicial map g : V (K)→ V (I(G> e)) extending

the restriction of f̂i to the link. Then let Bi+1 = Bi \ starBi
(σi+1)∪ (∂σi+1 ∗ K)

and let f̂i+1 equal f̂i on V (Bi \ starBi(σi+1)) and equal g on the vertices of K
(f̂i is equal to g on the intersection). By Proposition 5.2.37, this is a PL-ball if
Bi was. We claim that its only ruined simplices are σi+2, . . . , σn. To see this,
note that σi+1 has been removed, σi+2, . . . , σn have been untouched (as their
dimensions are at most d, and hence are not in the open star), and no new
ruined simplices have been added, since all the new simplices include vertices
from K, which are all mapped to V (G > e), and hence are not ruined (even
though they may contain a ruined simplex). Since I(G> e) is a subcomplex of

I(G), f̂i+1 is a simplicial map from Bi+1 to I(G− e).
In the end, Bn has no ruined simplex, so f̂n will be a simplicial map from Bn

to I(G), which is what was wanted. Therefore, conn(G) ≥ k and the theorem
follows.



Zusammenfassung

Rysers Vermutung aus dem Jahre 1971 besagt, dass für einen r-partiten r-
uniformen Hypergraphen H die Ungleichung τ(H) ≤ (r − 1)ν(H) erfüllt ist,
wobei τ(H) die Knotenüberdeckungzahl und ν(H) die Matchingzahl bezeichnet.
Diese Vermutung ist im Allgemeinen weiterhin offen. Fortschritte in verschiede-
nen Richtungen gab es unter anderem von Aharoni, Berger, Füredi, Haxell,
Lovász, Mansour, Scott, Song, Tuza, Yuster, und Ziv. Im Spezialfall r = 3 hat
Aharoni die Vermutung im Jahre 1999 bewiesen.

Das Hauptthema dieser Dissertation ist die Charakterisierung aller tripar-
titen 3-uniformen Hypergraphen H, die τ(H) = 2ν(H) erfüllen, also der ex-
tremalen Hypergraphen für Rysers Vermutung für r = 3. Diese haben alle
eine besondere Form, die wir “Home-Base” Hypergraphen nennen. Sie beste-
hen im Grunde aus ν(H) Teilhypergraphen mit τ = 2 und ν = 1, zusammen
mit möglicherweise extra Hyperkanten, die diese Teile nur auf bestimmte Weise
schneiden. Auf dem Weg zu einem Beweis dieser Charakterisierung finden wir
auch eine Charakterisierung von bipartiten Graphen, die extremal für ein bes-
timmtes topologisches Problem sind.

Für beide Charakterisierungen benutzen wir Kenntnisse über die Topologie
des sogenannten “Independence Complex” I von Kantengraphen. Deshalb un-
tersuchen wir zunächst eine untere Schranke des Zusammenhangs von I(L(H))
in Abhängigkeit von τ(H). Wir vermuten, dass diese Schranke verbessert werden
kann für r-partite r-uniforme Hypergraphen, und bestätigen diese Vermutung
für den Spezialfall r = 3 und τ(H) ≤ 12.

Ein Satz von Meshulam, welcher eine Aussage über den Zusammenhang
von dem “Independence Complex” eines Graphen macht, spielt eine wichtige
Rolle in unseren Beweisen. Der Beweis dieses Satzes den man in der Literatur
findet ist algebraisch geprägt. Wir geben einen eher geometrischen Beweis, in
dem wir bestimmte Triangulierungsmethoden benutzen. Die Richtigkeit dieser
Methoden, die unter anderem von Szabó und Tardos benutzt werden, wurde vor
ein paar Jahren in Frage gestellt. Im letzten Teil dieser Dissertation liefern wir
einen ausführlichen Beweis für die Richtigkeit dieser Methoden.

105



ZUSAMMENFASSUNG 106



Eidesstattliche Erklärung
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