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Summary

The Theta rank of a finite point configuration V is the maximal degree nec-
essary for a sum-of-squares representation of a non-negative linear function
on V . This is an important invariant for polynomial optimization that is
in general hard to determine. We study the Theta rank of point configu-
rations via levelness, that is a discrete-geometric invariant, and completely
classify the 2-level (equivalently Theta-1) configurations whose convex hull
is a simple or a simplicial polytope.

We consider configurations associated to the collection of bases of matroids
and show that the class of matroids with bounded Theta rank or levelness
is closed under taking minors. This allows us to find a characterization of
matroids with bounded Theta rank or levelness in terms of forbidden minors.

We give the complete (finite) list of excluded minors for Theta-1 matroids
which generalize the well-known series-parallel graphs. Moreover, we char-
acterize the class of Theta-1 matroids in terms of the degree of generation of
the vanishing ideal and in terms of the psd rank for the associated matroid
base polytope.

We analyze in full detail Theta-1 matroids from a constructive perspective
and discover that they are sort-closed, which allows us to determine a uni-
modular triangulation of every matroid base polytope and to characterize its
volume by means of permutations.

A closed formula for the enumeration of Theta-1 matroids on a ground set
of size n seems out of reach, but we exploit the constructive properties to
provide asymptotic estimates. As a consequence, we obtain an exponential
lower bound on the number of 2-level polytopes of any fixed dimension.

As for the k-level matroids with k > 2, we prove that the list of excluded
minors is finite for every k and we describe the excluded minors for k-level
graphs. We also investigate the excluded minors for graphs of Theta rank 2.

For the case of hypersimplices, that is, matroid base polytopes of uniform
matroids, we present results about the non-negative rank and the Gröbner
fan together with conjectures about possible generalizations to the class of
Theta-1 matroids.
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Introduction

Let V ⊂ Rd be a configuration of finitely many points and c ∈ Rd a vector.
If we are asked to maximize the linear function 〈c,x〉 = c1x1 + . . .+ cdxd on
V , we are dealing with a simple task, namely, to evaluate 〈c,v〉 for all v ∈ V
and record the maximum value.
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Figure 1: Linear optimization over a configuration V .

It is tempting to claim that linear optimization over a finite point configura-
tion is computationally easy and, in particular, that the computational cost
is linear in the number of points of V . These considerations rely on one key
assumption, namely that V is provided as a finite list of points.

For instance, a linear optimization over the configuration V leads to the same
outcome if solved on the polytope P = conv(V ).

x1

x2

x1−2x2 ≥ −1

x1+2x2 ≥ −1

Figure 2: Linear inequalities defining conv(V ).
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Moreover, the polytope P = conv(V ) can be described by a system of linear
inequalities Cx ≤ δ, where C ∈ Rm×d and δ ∈ Rm (see Figure 2). It is
known that the linear programming problem

max
p∈Rd

〈c,p〉 s.t. Cp ≤ δ

can be solved in polynomial time [Sch03a, Ch. 5].

On the other hand, V could be described as the set of solutions to a system
of non-linear polynomial equations (see Figure 3) in which case the direct
approach to the optimization requires us to solve the system as a first step
and therefore is rather unpractical. In general, performing linear optimiza-
tion over a finite configuration of points defined by non-linear polynomial
constraints is NP-hard [Lau09, Sect. 1].

x1

x2





x21+4x22−2x1−3=0

(x1−2x2+1)(x1−2x2−1.4)(x1−2x2−3)(x1−2x2−3.8)=0

(x1+2x2+1)(x1+2x2−1.4)(x1+2x2−3)(x1+2x2−3.8)=0

Figure 3: A polynomial description of V .

An alternative way of tackling the problem is to optimize over a relaxation of
conv(V ), that is, a set containing conv(V ), and this yields an approximate so-
lution in polynomial time. The key observation is that the polytope conv(V )
is determined by the set of all linear inequalities of the form `(x) ≥ 0, where
`(x) is a non-negative linear function on V .

A linear function `(x) = δ−〈c,x〉 which is non-negative on V is called k-sos
(sum of squares) with respect to V if there exist polynomials h1, . . . , hs ∈
R[x1, . . . , xd] such that deg(hi) ≤ k and

`(v) = h2
1(v) + h2

2(v) + · · ·+ h2
s(v) (1)

for all v ∈ V .
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Among the non-negative linear functions defining conv(V ) we consider the
ones that are k-sos. This set of functions cuts out a convex set TBk(V ), called
the k-Theta body of V . Notice that the Theta bodies form a hierarchy of
relaxations TB1(V ) ⊇ TB2(V ) ⊇ . . . ⊇ conv(V ).

The Theta rank Th(V ) of V is the smallest k ≥ 0 such that every non-
negative linear function is k-sos with respect to V . As V is finite and `(x)
non-negative on V , we may interpolate

√
`(x) over V by a single polynomial

which shows that Th(V ) ≤ |V |−1. This, however, is a rather crude estimate
as the 0/1-cube V = {0, 1}n has Theta rank 1.

The Theta rank was introduced in [GPT10] as a measure for the ‘complex-
ity’ of linear optimization over V using tools from polynomial optimization.
Whenever V is given as the solutions to a system of polynomial equations,
the size of a semidefinite program for the (exact) optimization of a linear
function over V is of order O(dTh(V )). For this reason we are interested in
the set

VTh
k := {V point configuration : Th(V ) ≤ k}.

For many practical applications, for instance in combinatorial optimization,
an algebraic description of V is readily available and the semidefinite pro-
gramming approach is the method of choice. Clearly, situations with high
Theta rank make the approach impractical.

Finding the Theta rank of a configuration is a recurrent question in this
thesis. For many instances it is hard to determine an exact answer, but we
will exploit geometric properties for bounding the Theta rank from above.
As we will provide thorough definitions in the following chapters, we try now
to convey an intuition for the main objects involved in our work and how
they connect to each other.

An inclusion-maximal subconfiguration V ′ = {v ∈ V : `(v) = 0} for some
linear function `(x) non-negative on V is called a facet of V . It follows from
basic convexity that Th(V ) is the smallest k such that all facet-defining `(x)
are k-sos.

A point configuration V is k-level if for every facet-defining hyperplane H
there are k parallel hyperplanes H = H1, H2, . . . , Hk with

V ⊆ H1 ∪H2 ∪ · · · ∪Hk.

We denote by Lev(V ) the levelness of V , that is, the smallest k such that V
is k-level. It is easy to see that Th(V ) ≤ Lev(V )−1. Indeed any non-negative
facet-defining linear function `(x) attains at most Lev(V ) values l1, . . . , lLev(V )

and thus there is a polynomial g(x) of degree Lev(V )−1 which interpolates
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the values
√
l1, . . . ,

√
lLev(V ) on V . Clearly `(x) = g2(x) on V . Hence, the

class VLev
k of k-level point configurations is a subclass of VTh

k−1. A main result
of [GPT10] is the following characterization of VTh

1 .

Theorem 0.0.1 ([GPT10, Thm. 4.2]). Let V be a finite point configuration.
Then V has Theta rank 1 if and only if V is 2-level.

This result encourages us to investigate the Theta rank via geometry, since
it states that VLev

2 is exactly the set of configurations V for which TB1(V ) =
conv(V ). With these motivations in mind, we dedicate a significant part
of this work to 2-level configurations, which arise in several situations. For
instance, the polytopes P = conv(V ), V ∈ VLev

2 , occur in the study of ex-
tremal centrally-symmetric polytopes [SWZ09] as well as in statistics un-
der the name of compressed polytopes [Sul06] and include many interesting
classes of polytopes (see Section 2.2.3). Furthermore, 2-level configurations
are affinely equivalent to 0/1-configurations which gives them a combinatorial
flavour but does not suffice to fully understand them.

We succeed in classifying the combinatorial types of simple and simplicial
2-level configurations and we identify a class of matroids (denoted byMLev

2 )
such that for every matroid M ∈MLev

2 the matroid base configuration VM is
2-level. The base configuration VM contains the characteristic vectors of the
bases of M . The combinatorial properties of a matroid base configuration
VM come in handy to determine the levelness Lev(VM).

We try to make our presentation as complete and detailed as possible and we
explore several features of the familyMLev

2 . The combinatorial characteriza-
tion by excluded minors is one of the aspects we focus on, but we also analyze
decompositions and constructive properties ofMLev

2 , the enumeration of this
matroid family, and the structure of the vanishing ideal I(VM).

Beyond 2-levelness, we address the case of k-level matroids for k > 2. At this
point the challenge becomes harder and no general excluded minor character-
ization has been found so far. In addition, geometric results about levelness
only provide upper bounds to Theta rank, since VLev

k ( VTh
k−1.

Chapter 1 introduces most of the basic concepts and properties that are
needed in this work. We have tried to make this thesis as self-contained as
possible and, for sake of clarity, we adjusted or simplified standard definitions
and theorems to our needs. We identified two main areas requiring some
background: point configurations and polytopes, and matroid theory. For
a better readability, in some other cases we recall definitions and properties
throughout the thesis, at the moment when they are needed.
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Chapter 2 begins with a review of general facts about 0/1-point configu-
rations. The second part of the chapter focuses on 2-level configurations,
which can be considered as a subclass of the 0/1-configurations. We present
some properties of 2-level configurations and an overview of known classes of
2-level polytopes.

Our contribution to a better understanding of 2-level configurations appears
in Section 2.3: we classify the combinatorial types of simple (which easily fol-
lows from known results of [KW00]) and simplicial 2-level polytopes. More
precisely, simple 2-level polytopes are Cartesian products of simplices and
simplicial 2-level polytopes are direct sums of simplices of the same dimen-
sion.

Chapter 3 is the core of the thesis. We study matroids and the associated
base configurations in relation to levelness. Particularly interesting to us are
the classesMTh

k andMLev
k , that is, matroids whose base configurations have

Theta rank ≤ k and levelness ≤ k, respectively. We show that MTh
k and

MLev
k are closed under taking minors. This, in principle, allows us to find a

characterization in the form of forbidden sub-structures.

In Section 3.2, we examine the class MTh
1 of matroids of Theta rank 1 or,

equivalently, 2-level matroids. Our main result is the excluded-minor char-
acterization ofMTh

1 , which in turn unlocks several doors to a deeper under-
standing of this family and its properties. We can summarize our findings in
the following theorem.

Theorem 0.0.2. Let M = (E,B) be a matroid and VM ⊂ RE the corre-
sponding base configuration. The following are equivalent:

(i) VM has Theta rank 1 or, equivalently, is 2-level;

(ii) M has no minor isomorphic to M(K4), W3, Q6, or P6;

(iii) M can be constructed from uniform matroids by taking direct sums or
2-sums;

(iv) The vanishing ideal I(VM) is generated in degrees ≤ 2;

(v) The base polytope PM has minimal psd rank.

Part (ii) yields a complete and, in particular, finite list of excluded minors
whereas (iii) gives a synthetic description of this class of matroids. The four
excluded minors M(K4), W3, Q6, and P6 are all of rank 3 on 6 elements and
we will describe them in Section 3.2. The excluded minor characterization
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shows thatMLev
2 is the generalization to matroids of the well-known family

of series-parallel graphs GSP. Parts (iv) and (v) are proven in Chapter 6
(Section 6.1 and Section 6.2, respectively).

In Section 3.3 we restrict to the class of graphs. We give a complete list
of excluded minors for k-level graphs (Theorem 3.3.6). The classes of 3-
level and 4-level graphs appear in works of Halin (see [Die90, Ch. 6]) and
Oxley [Oxl89]. In particular, we show that the wheel with 5 spokes W5 has
Theta rank 3. Combined with results of Oxley [Oxl89], this yields a list of
candidates for a complete characterization of Theta-2 graphs.

Every minor-closed family of matroids has an excluded-minor characteriza-
tion and the Robertson-Seymour theorem [RS04] guarantees that the list of
excluded minors for minor-closed families of graphs is finite. This is not nec-
essarily true for matroids. Part (ii) of Theorem 0.0.2 proves the finiteness
of the excluded minors for MLev

2 . Moreover, even though the explicit list
of excluded minors for MLev

k seems hard to provide for k > 2, we prove in
Section 3.4 that such a list is finite.

Part (iii) of Theorem 0.0.2 hints that we could look at the familyMLev
2 from

the constructive side, which is indeed the topic of Chapter 4. Notice that
2-level matroids generalize series-parallel graphs and many features in the
graph setting have counterparts for matroids. Every connected matroid is
constructed as a sequence of 2-sums of rings, multiedges, and 3-connected
matroids. This construction process can be represented by a tree-like struc-
ture whose vertices are labelled by matroids and whose edges are labelled
by pairs of elements of adjacent vertex labels. The case of 2-level matroids
shows some interesting features: the vertex labels are chosen among uniform
matroids and we can get rid of the edge labels without losing information, as
explained in Section 4.1. As a consequence, the family of connected matroids
inMLev

2 is in bijection with a family of trees which we name UMR-trees.

A second result we obtain from the constructive approach is that 2-level ma-
troids are sort-closed matroids for some ordering of the ground set. This fact
implies that the corresponding matroid base polytopes are alcoved, in the
sense of [LP07], and determines an explicit unimodular triangulation. More-
over, we show that 2-level matroids are contained in the class of positroids,
which were introduced by Postnikov in [Pos06] and have many interesting
combinatorial properties.

Every 2-level base polytope PM has a particular inequality description which
relates to the normalized volume vol(PM). This allows us to compute vol(PM)
as the number of permutations satisfying some constraints for the position
of their descents. We illustrate a way to control the evolution of the defining
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inequalities of PM with respect to the tree decomposition of M and the
constraints for the descents of permutations follow.

Chapter 5 is devoted to the enumeration of connected (and non-connected) 2-
level matroids. As this family generalizes the family of series-parallel graphs
GSP, we apply methodologies of enumerative combinatorics inspired by the
paper [DFK+11], where a successful asymptotic enumeration of GSP is pre-
sented. We use the combinatorial class of UMR-trees as a proxy and enu-
merate it by a generating function T (x) =

∑
n≥1 tnx

n, where the coefficient
tn counts the number of connected 2-level matroids on n elements. A closed
formula for the coefficients of T (x) is out of reach, but we can iteratively com-
pute its coefficients up to arbitrary degree. Moreover, we provide asymptotic
estimates for the number of connected 2-level matroids on n elements. From
this number we deduce a lower bound, exponential in n, on the number of
combinatorially non-equivalent 2-level (n−1)-polytopes.

Chapter 6 is divided into two areas: it completes the missing parts (iv)
and (v) of Theorem 0.0.2 and presents some results about hypersimplices
followed by our conjectures about possible generalizations to 2-level matroid
base polytopes.

Section 6.1 deals with the vanishing ideal of matroids M ∈ MLev
2 , that is

the vanishing ideal I(VM) of the 2-level base configuration VM . We present
the proof of Part (iv) of Theorem 0.0.2, namely that 2-level matroids are
precisely those matroids M for which the base configuration VM is cut out
by quadrics (Theorem 6.1.5). This contrasts the situation for general point
configurations as shown in Example 6.1.3.

Section 6.2 is dedicated to the psd rank of a base polytope P . This is
the smallest “size” of a spectrahedron that linearly projects to P . The psd
rank was studied in [GPT13, GRT13] and it was shown that the psd rank
rankpsd(P ) is at least dim(P ) + 1. Part (v) of Theorem 0.0.2 states that the
2-level matroids are exactly those matroids for which the psd rank of the
base polytope PM = conv(VM) is minimal. Again, this is in strong contrast
to the psd rank of general polytopes.

The extension complexity (or non-negative rank) of a polytope P is defined
in analogy to psd rank as the smallest number of facets of a polytope that
linearly projects to P . The extension complexity can be seen in terms of a
cone factorization for a cone of type Rm

≥0 and is shown to be the same as
the non-negative rank of the slack matrix of P ([Yan91]). This is a current
topic in optimization for which some basic questions, such as the extension
complexity of the Cartesian product of polytopes, remain unanswered. In
Section 6.3 we study the extension complexity of the hypersimplex ∆n,k,
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that is, the matroid base polytope of the uniform matroid Un,k, and prove
that for n ≥ 6

xc(∆n,k) = 2n.

In other words, the hypersimplex ∆n,k, n ≥ 6, does not admit any extension
with fewer facets than the hypersimplex itself. We conjecture this to be
true for a whole class of 2-level base polytopes satisfying some additional
requirements.

One last result about hypersimplices is presented in Section 6.4. More pre-
cisely, we consider the vanishing ideal of ∆n,k, that is the ideal In,k := I(VUn,k

)
for a uniform matroid Un,k. We study the reduced Gröbner bases of In,k in
light of results from [HR03] and describe the Gröbner fan GF(In,k). Finally,
we interpret GF(In,k) as the normal fan of a polyhedron, which turns out to
be the Minkowski sum of a permutahedron with the cone Rn

≤0.

Chapter 3 and the first two sections of Chapter 6 are partly joint work with
Raman Sanyal ([GS14]), while Section 4.1 and Chapter 5 are joint work with
Juanjo Rué ([GR15]). Section 6.3 is part of an ongoing project with Arnau
Padrol and Raman Sanyal.



Chapter 1

Basics

1.1 Point configurations and polytopes

1.1.1 Basic definitions and properties

Let V = {v1, . . . ,vn} be a point configuration in Rd with no repeated points.
The affine hull of V is the affine subspace

aff(V ) :=

{
n∑

i=1

µivi : µi ∈ R,
n∑

i=1

µi = 1

}

and the dimension of V is the dimension of its affine hull dim(V ) :=
dim(aff(V )).

Let `(x) = δ − 〈c,x〉 be a linear function for 0 6= c ∈ Rd, δ ∈ R. The
set H` := {p ∈ Rd : `(p) = 0} defines a hyperplane in Rd and is called
supporting for V if V ∩H` 6= ∅ and `(v) ≥ 0 for all v ∈ V . Equivalently,
H` is supporting for V if V is contained in the closed half-space H+

` := {p ∈
Rd : `(p) ≥ 0}.
For every supporting hyperplane H`, the subconfiguration V ′ = {v ∈ V :
`(v) = 0} is called a face of V . A face V ′ is proper if V ′ 6= ∅ and V ′ 6=
V . The k-faces of V are the faces V ′ such that dim(V ′) = k and the
(dim(V )−1)-faces are called facets. The face lattice of V is the set of faces
of V together with a partial order by inclusion. Two configurations V1 and
V2 are combinatorially equivalent if there is a bijection V1 → V2 which
preserves the face lattice.

An affine map is a function f : Rd1 → Rd2 such that

f(x) = Ax + b,

A ∈ Rd2×d1 and b ∈ Rd2 . Two configurations V1 ⊂ Rd1 and V2 ⊂ Rd2 are
affinely equivalent if there is an affine map f : Rd1 → Rd2 such that f
restricts to a bijection V1 → V2. Such affine map is called an affine trans-
formation of V1. Figure 1.1 shows three affinely equivalent configurations.

1



2 1.1. POINT CONFIGURATIONS AND POLYTOPES

Figure 1.1: Affinely equivalent configurations of 4 points in R2.

Every affine transformation f of V preserves supporting hyperplanes and
therefore V and f(V ) have the same face lattice. It follows that two affinely
equivalent configurations are also combinatorially equivalent.

Given a point configuration V = {v1, . . . ,vn} ⊂ Rd, the convex hull

conv(V ) :=

{
p ∈ Rd : p =

n∑

i=1

λivi, λi ∈ R≥0 and
n∑

i=1

λi = 1

}

is called a polytope. The set of vertices of P = conv(V ) is the inclusion-
minimal subconfiguration V(P ) ⊆ V such that P = conv(V(P )). The ver-
tices of P are the 0-faces of V , its dimension dim(P ) is dim(V(P )) and its
faces are the convex hulls of the faces of V(P ). The interior of P is defined
as the set int(P ) := {p ∈ P : p /∈ F for every facet F ⊂ P}. Notice that our
definition of interior corresponds to the usual definition of relative interior.
Two polytopes are combinatorially or affinely equivalent if and only if the
configurations given by their set of vertices are.

Let us consider a point configuration V with d+1 points such that dim(V ) =
d. Every subconfiguration of k+1 points is a k-face of V and the convex hull
of V is called d-simplex. Among many properties, we mention that all its
facets are (d−1)-simplices. A polytope such that all its facets are simplices
is called simplicial.

In [Zie95, Thm. 2.15] several equivalent ways to represent a polytope are
listed. We defined a polytope as the convex hull of a point configuration
and we now emphasize that a polytope P ⊂ Rd can also be represented
as the intersection of facet-defining closed half-spaces, one for each facet,
with the affine hull of V(P ). This representation for P ⊂ Rd with m facets
translates into a system of inequalities given by the facet-defining half-spaces
H+
`1
, . . . , H+

`m
and equalities given by the affine hull aff(V(P )). More precisely,

if `i(x) = δi − 〈ci,x〉 for i = 1, . . . ,m, then we can write

P = {p ∈ Rd : Cp ≤ δ} ∩ aff(V(P )),
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where C ∈ Rm×d, ci is the ith row of C, and δ = (δ1, . . . , δm). Notice that
no equalities are needed if P ⊂ Rd is d-dimensional.

Example 1.1.1. Let us consider the point configuration

V = {(1, 0, 0), (0, 1, 0), (−1,−1, 0), (0, 0, 1), (0, 0,−1)} ⊂ R3.

The configuration has 6 facets, 9 edges (1-faces), and 5 vertices (0-faces).
Notice that every point of V is a 0-face, thus V is the set of vertices of
conv(V ). The supporting hyperplanes of the facets are

x1 − 2x2 + x3 = 1, −2x1 + x2 + x3 = 1, x1 + x2 + x3 = 1,

x1 + x2 − x3 = 1, x1 − 2x2 − x3 = 1, −2x1 + x2 − x3 = 1.

We draw the polytope P := conv(V ) as in Figure 1.2 and observe that every
facet is a 2-simplex, thus P is simplicial.

x3

x2

x1O

Figure 1.2: Bipyramid over a triangle.

The configuration V provides the representation of P by vertices; from the
facet-defining hyperplanes we find the representation by inequalities

P = {p ∈ R3 : Cp ≤ δ},
where δ = 1 ∈ R6 and

C =




1 −2 1
−2 1 1

1 1 1
1 1 −1
1 −2 −1
−2 1 −1



.
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Let P ⊂ Rd be a polytope with vertices V = {v1, . . . ,vn} and m facets.
Consider the representation given by the facet inequalities

P = {p ∈ Rd : Cp ≤ δ} ∩ aff(V ),

for C ∈ Rm×d and δ ∈ Rm. With a slight abuse of notation we consider V
as a matrix in Rn×d whose rows are represented by the vertices of P . The
slack matrix of P with respect to the representation (V,C, δ) is the matrix
S ∈ Rn×m

≥0 such that Sij = δj − 〈cj,vi〉. Equivalently,

S = [V,1] · [−C, δ]T ∈ Rn×m
≥0 .

Observe that the slack matrix is not unique: scaling columns of S by positive
scalars yields several valid slack matrices for P . Namely, this operation
corresponds to rescaling all coefficients in one inequality, thus it does not
alter the polytope P .

We denote by S(P ) the set of all slack matrices for P . Any S ∈ S(P ) specifies
an embedding of P up to affine equivalence. In particular, any slack matrix
S ∈ S(P ) encodes the combinatorial structure of the polytope: the support
supp(S) of S is the 0/1-matrix whose zero entries are exactly the zero entries
of S and is enough to reconstruct the face lattice of P ([Zie95, Ch. 2, Ex. 2.7]).

The extension complexity of P , which we discuss in Section 6.3, is another
information carried by a slack matrix S ∈ S(P ) as proven in [Yan91].

Example 1.1.2. We can compute the slack matrix of the polytope P defined
in Example 1.1.1 with respect to the given representation (V,C,1).

S = [V,1] · [−C,1]T =




1 0 0 1
0 1 0 1
−1 −1 0 1
0 0 1 1
0 0 −1 1


 ·



−1 2 −1 −1 −1 2
2 −1 −1 −1 2 −1
−1 −1 −1 1 1 1
1 1 1 1 1 1


 =

=




0 3 0 0 0 3
3 0 0 0 3 0
0 0 3 3 0 0
0 0 0 2 2 2
2 2 2 0 0 0


.

Let P ⊂ Rd be a d-polytope (d-dimensional polytope) such that 0 ∈ int(P ).
Its polar is defined as the set

P ◦ := {y ∈ Rd : yTp ≤ 1 for all p ∈ P}.
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The set P ◦ is a d-polytope and 0 ∈ int(P ◦). Moreover, (P ◦)◦ = P and it
easy to see that, given the vertices V of P or a representation {p ∈ Rd :
Cp ≤ 1} ∩ aff(V ), there is a straightforward description of the polar of P :

P ◦ = conv(C) = {y ∈ Rd : V y ≤ 1}.

Polarity induces a bijection between the vertices of P and the facets of P ◦
and vice versa. More generally, it reverses inclusion of faces and interchanges
k-faces of P with (dim(P )−k−1)-faces of P ◦. We say that the face lattice of
P ◦ is the opposite of the face lattice of P . We refer the reader to [Zie95,
Sect 2.3] for more details.

If a d-polytope P ⊂ Rd does not contain 0 in its interior, the polar set of
P is not a polytope. Nevertheless, for any translation P ′ of P such that
0 ∈ int(P ′), the polar of P ′ is a polytope. The polar polytopes obtained
by different translations of P , while having different metric properties, have
the same combinatorial structure, since their face lattices are opposite to the
face lattice of P . We say that a polytope P∆ is a combinatorial polar of
P if its face lattice is opposite to the face lattice of P . If 0 ∈ int(P ), then P ◦
is also a combinatorial polar of P . Clearly, every full-dimensional polytope
P has at least one combinatorial polar P∆.

A d-polytope P ⊂ Rd is simple if every vertex is adjacent to exactly d edges.
Any combinatorial polar of a simple polytope P is simplicial.

Example 1.1.3. Consider again the polytope P of Example 1.1.1. We can
easily find the vertices of its polar polytope. Indeed, P = {p ∈ R3 : Cp ≤ 1}
implies P ◦ = conv(C), where the rows of the matrix C represent the point
configuration

{(1,−2, 1), (−2, 1, 1), (1, 1, 1), (1, 1,−1), (1,−2,−1), (−2, 1,−1)}.

The polytope P ◦, shown in Figure 1.3, is simple.

O

Figure 1.3: Triangular prism.
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The inequality representation of the polar easily follows from V , namely
P ◦ = {y ∈ R3 : V y ≤ 1}. Observe that the slack matrix of P ◦ with respect
to the representation (C, V,1) is ST , where S is the slack matrix of P with
respect to (V,C,1) computed in Example 1.1.2.

Now we introduce two important constructions in the setting of finite point
configurations.

Let V1 ⊂ Rd1 and V2 ⊂ Rd2 be point configurations. TheCartesian product
of V1 and V2 is the configuration

V1 × V2 :=

{(
v1

v2

)
∈ Rd1+d2 : v1 ∈ V1 and v2 ∈ V2

}
.

If, in addition, 0 ∈ int(conv(V1)) and 0 ∈ int(conv(V2)), the direct sum (or
free sum) of V1 and V2 is the configuration

V1 ⊕ V2 :=

{(
v1

0

)
∈ Rd1+d2 : v1 ∈ V1

}
∪
{(

0

v2

)
∈ Rd1+d2 : v2 ∈ V2

}
.

The dimension of both constructions is dim(V1) + dim(V2). Moreover, both
of them are combinatorial, that is the face lattices of V1×V2 and V1⊕V2 can
be derived from the face lattices of V1 and V2 [Zie95, Ch. 0].

Proposition 1.1.4. A non-empty configuration V ′ is a face of V1 × V2 if
and only if there exist non-empty faces V ′1 ⊆ V1 and V ′2 ⊆ V2 such that
V ′ = V ′1 × V ′2 .
Proposition 1.1.5. The configuration V ′ is an i-face of V1 ⊕ V2 for i ≤
dim(V1) + dim(V2) − 1 if and only if there exist faces V ′1 ⊂ V1 and V ′2 ⊂ V2

such that dim(V ′1) + dim(V ′2) + 1 = i and V ′ = (V ′1 × {0}) ∪ ({0} × V ′2).

Observe that each facet V ′ of the direct sum V1 ⊕ V2 is constructed from a
facet of V1 and a facet of V2.

If two configurations V1 and V2 are sets of vertices of two polytopes P1 =
conv(V1) and P2 = conv(V2), then the Cartesian product and the direct sum
are the classic polytopal constructions presented in [HRGZ04, Sect. 16.1.3].

Example 1.1.6. The configuration V in Example 1.1.1 is the direct sum of
the configurations V1 = {(1, 0), (0, 1), (−1,−1)} ⊂ R2 and V2 = {1,−1} ⊂
R1. The polytope P1 = conv(V1) is a 2-simplex and P2 = conv(V2) is a
1-simplex.

On the other hand, the vertices V ◦ of the polar polytope P ◦ described in Ex-
ample 1.1.3 form a point configuration that can be obtained as the Cartesian
product of V ◦1 = {(1,−2), (−2, 1), (1, 1)} ⊂ R2 and V ◦2 = {1,−1} ⊂ R1.
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The last example suggests a polarity relation between direct sums and Carte-
sian products of polytopes. Indeed, as discussed in [HRGZ04, Sect. 16.1.3],
two polytopes P1 and P2 containing the origin in the interior satisfy

(P1 × P2)◦ = P ◦1 ⊕ P ◦2 .

1.1.2 Gale duality

Gale duality for vector configurations is a very useful tool which is ulti-
mately applied to obtain results in polytope theory ([Zie95, Sect. 6.4],[Mat02,
Sect. 5.6]). In particular, polytopes with few vertices (compared to the di-
mension) can be well understood by means of Gale duality. For instance, in
Chapter 2 we will use it to study a very specific class of polytopes, that is,
direct sums of simplices.

Given a point configuration V = {v1, . . . ,vn} ⊂ Rd (possibly the vertices of
a polytope), the columns of the matrix

hom(V ) :=

[
v1 v2 . . . vn
1 1 . . . 1

]
∈ R(d+1)×n

define a configuration of n vectors in Rd+1 which is called the homogeniza-
tion of V .

x1

x2

x3

x1

x2 x3 = 1

Figure 1.4: Homogenization of 4 points in R2.

The columns of any matrix W ∈ R(d+1)×n give a configuration w1, . . . ,wn

of (possibly repeated) vectors in Rd+1. Given W ∈ R(d+1)×n we define the
vector space of linear dependences

Dep(W ) :=

{
λ ∈ Rn :

n∑

i=1

λiwi = 0

}
,
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and the vector space of linear evaluations

Val(W ) := {z ∈ Rn : zi = 〈c′,wi〉, c′ ∈ Rd+1}.

Moreover, a-Dep(V ) := Dep(hom(V )) is the vector space of affine depen-
dences of a point configuration V and a-Val(V ) := Val(hom(V )) the vector
space of its affine evaluations.

A main feature of a-Val(V ) is that it encodes a description of the faces of
V : a configuration V ′ ⊂ V lies in a supporting hyperplane if and only if
there is an affine evaluation z ∈ a-Val(V ) such that zi = 0 for vi ∈ V ′ and
zi > 0 otherwise. Indeed the affine evaluation z is given by evaluating a linear
function `(x) = δ−〈c,x〉 on V , where c ∈ Rd and δ ∈ R. The corresponding
evaluation on hom(V ) is given by the vector c′ = (−c, δ) ∈ Rd+1.

Example 1.1.7. Consider the point configuration V ⊂ R3 from Example
1.1.1. We have

W = hom(V ) =




1 0 −1 0 0
0 1 −1 0 0
0 0 0 1 −1
1 1 1 1 1


 .

The vector space of linear dependences of W has dimension one and we can
choose the basis (2, 2, 2,−3,−3).

Let us consider four different vectors in R3+1: c′1 = (0, 0, 1, 0), c′2 = (0, 1, 0, 0),
c′3 = (0, 0, 1, 1), c′4 = (−1,−1, 1, 1). The corresponding linear evaluations on
W are (0, 0, 0, 1,−1), (0, 1,−1, 0, 0), (1, 1, 1, 2, 0), (0, 0, 3, 2, 0). Note that the
first two evaluations have both positive and negative entries, thus do not
correspond to faces of V . Indeed they correspond to the hyperplanes x3 = 0
and x2 = 0 as shown in Figure 1.5.
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x3

x2

x1O

x3

x2

x1O

Figure 1.5: Evaluations corresponding to non-faces of V .

The third and the fourth evaluations correspond to faces of V as shown in
Figure 1.6. In particular, c′3 gives the vertex v̄ = (0, 0,−1) and c′4 gives the
facet V ′ = {(1, 0, 0), (0, 1, 0), (0, 0,−1)}. We see that v̄ ⊂ V ′ because the
zeros of the evaluation of c′3 are also zeros of the evaluation of c′4. Notice
that, up to multiplication by a positive scalar, the evaluation of a facet is
exactly the column of the slack matrix corresponding to the facet.

x3

x2

x1O

x3

x2

x1O

Figure 1.6: Evaluations corresponding to faces of V .

Consider a full-rank matrix W ∈ R(d+1)×n, n ≥ d+1. The kernel of W
has dimension n−d−1. Let G ∈ R(n−d−1)×n be a full-rank matrix such that
W · GT = 0 ∈ R(d+1)×(n−d−1). The matrix G is called Gale dual of W and
its columns form a configuration of (possibly repeated) vectors {g1, . . . ,gn}
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in Rn−d−1. The Gale dual G is unique up to linear transformations. Notice
that the ith column wi of W is naturally associated to the ith column of G.

We state here the main theorem about Gale duality which suggests how to
go back and forth from a vector configuration to its Gale dual in order to
extract as much information as possible. The reader is referred to [Zie95,
Ch. 6] for more details.

Theorem 1.1.8. Let W ∈ R(d+1)×n be a full-rank matrix and G its Gale
dual. The following holds:

(i) Val(W ) = Dep(G);

(ii) Dep(W ) = Val(G).

The theorem can be applied directly to study a spanning point configuration
V = {v1, . . . ,vn} ⊂ Rd. Let G be the Gale dual of hom(V ) (shortly, the
Gale dual of V ): for any I ⊂ [n], the set {vi : i ∈ I} is a face of V if and
only if there exists λ ∈ Rn such that λi = 0 for i ∈ I, λi > 0 for i /∈ I, and

∑

i/∈I

λigi = 0.

The facets of V are the inclusion-maximal sets I ⊂ [n] such that the subcon-
figuration {vi : i ∈ I} lies on a supporting hyperplane. Therefore the facets
of V are in bijection with the minimal positive dependences in G.

Since the last row of hom(V ) contains only ones, the linear evaluation of
ed+1 = (0, . . . , 0, 1) ∈ Rd+1 is 1 ∈ Rn. Theorem 1.1.8 implies the following
proposition.

Proposition 1.1.9. Let V ⊂ Rd be a spanning configuration of n points.
Let G be its Gale dual. Then

n∑

i=1

gi = 0.

Example 1.1.10. Consider once more the configuration V ⊂ R3 from Ex-
ample 1.1.1. The Gale dual of V is G = [2, 2, 2,−3,−3] ∈ R1×5.

R1

g1 = g2 = g3

0 2−3

g4 = g5

Figure 1.7: Gale dual of the bipyramid over a triangle.
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It is straightforward to see that facets of V are determined by any I ⊂ [5]
such that |I ∩ {1, 2, 3}| = 2 and |I ∩ {4, 5}| = 1, since they correspond to
minimal dependences of the vectors in G.

1.2 Matroids

1.2.1 Basic definitions and properties

Matroids will play a central role throughout this thesis and we recall here
basic definitions and properties. The combinatorial theory of matroids is a
vast subject and we refer the reader to the book by Oxley [Oxl11] for further
information.

Matroids have several equivalent definitions and we present the definition
that fits our point of view.

Definition 1.2.1. A matroid of rank k is a pair M = (E,B) consisting of
a finite ground set E and a collection of bases ∅ 6= B ⊆

(
E
k

)
satisfying the

basis exchange axiom: for B1, B2 ∈ B and x ∈ B1 \ B2, there is y ∈ B2 \ B1

such that (B1 \ x) ∪ y ∈ B.

A set I ⊆ E is independent if I ⊆ B for some B ∈ B. The rank of X ⊆ E,
denoted by rankM(X), is the cardinality of the largest independent subset
contained in X. The circuits of M are the inclusion-minimal dependent
subsets. Given a matroid M we denote its ground set by E(M), its collec-
tion of bases by B(M), its collection of independent sets by I(M), and its
collection of circuits by C(M).

The collection of circuits (as well as the collection of independent sets or
the rank function) uniquely determines a matroid and sometimes we use this
description instead of the one given by the collection of bases. For instance,
we define matroid isomorphism via the collection of circuits: two matroids
M1 and M2 are isomorphic if their collection of circuits are the same up to
relabelling of the ground sets E(M1) and E(M2). More formally, M1

∼= M2

if there is a bijection ϕ : E(M1) → E(M2) such that, for all X ⊆ E(M1),
ϕ(X) ∈ C(M2) if and only if X ∈ C(M1).

We recall here one more property of the collection of circuits.

Proposition 1.2.2 ([Oxl11, Lem. 1.1.13]). Let C be the collection of circuits
of a matroid M . Then the following hold:

(i) ∅ /∈ C;
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(ii) If C1 and C2 are in C and C1 ⊆ C2, then C1 = C2;

(iii) If C1 and C2 are distinct members of C and e ∈ C1 ∩ C2, then there
exists C3 ∈ C such that C3 ⊆ (C1 ∪ C2) \ e.

Given a matroid M = (E,B), an element e ∈ E is called a loop if {e} is a
circuit. We say that e, f ∈ E are parallel if {e, f} is a circuit. A matroid
is simple if it does not contain loops or parallel elements. A parallel class
of M is a maximal subset X of E such that any two distinct elements of
X are parallel and no element is a loop. The set X ⊆ E is a non-trivial
parallel class if |X| > 1. A flat of a matroid is a set F ⊆ E such that
rankM(F ) < rankM(F ∪ e) for all e ∈ E \ F .
A particular class of matroids that we will consider are the graphic ma-
troids. To a graph G = (V,E) we associate the matroid M(G) = (E,B).
The bases are exactly the spanning forests of G. The running example for
this section is the following.

Example 1.2.3. Let G be the graph in Figure 1.8.

1

32
4

Figure 1.8: Graphic matroid with 4 elements.

The graphic matroid M = M(G) has ground set E = {1, 2, 3, 4}, rank(M) =
2, and collection of bases

B(G) = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}}.

The dual matroidM∗ of the matroidM = (E,B) is the matroid defined by
the pair (E,B∗) where B∗ = {E \B : B ∈ B}. A coloop of M is an element
which is a loop of M∗. Equivalently, it is an element which appears in every
basis of M .
If e ∈ E is not a coloop, we define the deletion as the matroid M \ e :=
(E \ e, {B ∈ B : e 6∈ B}). If e is a coloop, then the bases of M \ e are
{B \ e : B ∈ B}. Dually, if e ∈ E is not a loop, we define the contraction
as the matroid M/e := (E \ e, {B \ e : e ∈ B ∈ B}). These operations can be
extended to subsets X ⊆ E and we write M \X and M/X, respectively. We
also define the restriction of M to a subset X ⊆ E as M |X := M \ (E\X).
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Note that (M \ X)∗ = M∗/X. A minor of M is a matroid obtained from
M by a sequence of deletion and contraction operations. The subclass of
graphic matroids is closed under taking minors but not under taking duals.

Let us introduce the following relation among elements of E: e1, e2 ∈ E are
related if there exists a circuit of M containing both. This is an equivalence
relation and the equivalence classes are called the connected components
of M . Let us write c(M) for the number of connected components. The
matroid M is connected if c(M) = 1.

Let us recall a result of Tutte about connectedness of matroid minors.

Proposition 1.2.4 ([Oxl11, Thm. 4.3.1]). Let M = (E,B) be a connected
matroid. Then for every e ∈ E, M \ e is connected or M/e is connected.

Let G be a graph with at least 3 vertices which has no loops nor isolated
vertices. The graphic matroid M(G) is connected if and only if G is bicon-
nected, that is, the removal of any vertex leaves a connected graph.

1.2.2 Matroid base configurations

To each matroid we associate a point configuration representing the collec-
tion of bases. For a fixed ground set E let us write 1X ∈ {0, 1}E for the
characteristic vector of X ⊆ E, that is (1X)e = 1 if and only if e ∈ X.

Definition 1.2.5. Let M = (E,B) be a matroid. The base configuration
of M is the point configuration

VM := {1B : B ∈ B} ⊂ RE.

The base polytope of M is PM := conv(VM).

Note that
VM∗ = 1E − VM . (1.1)

In particular, VM and VM∗ are related by an affine transformation.

Observe that VM is not a full-dimensional point configuration. Indeed, VM
is contained in the hyperplane

∑
e∈E xe = rank(M).

Let M1 and M2 be matroids with disjoint ground sets E1 and E2. The
collection

B := {B1 ∪B2 : B1 ∈ B(M1), B2 ∈ B(M2)}
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is the set of bases of a matroid on E1 ∪ E2, called the direct sum of M1

and M2 and denoted by M1 ⊕M2. The corresponding base configuration is
exactly the Cartesian product

VM1⊕M2 = VM1 × VM2 . (1.2)

If E1, . . . , Es ⊆ E are the connected components of M , then M =
⊕

iM |Ei
.

Thus, showing that dimVM = |E|−1 if M is connected proves the following.

Proposition 1.2.6. The smallest affine subspace containing VM is of dimen-
sion |E| − c(M).

Moreover, since the dual M∗ of a matroid M has the same ground set and
VM and VM∗ are affinely equivalent, we get the following corollary.

Corollary 1.2.7. A matroid M is connected if and only if M∗ is connected.

For a subset X ⊆ E let us write `X(x) =
∑

e∈X xe. For A ⊆ E we then
have `X(1A) = |A∩X|. Hence, rankM(X) = maxv∈VM `X(v). For X ⊆ E we
define the supporting hyperplane

HM(X) := {p ∈ RE : `X(p) = rankM(X)}.
The corresponding faces of VM (or equivalently of PM) are easy to describe.

Proposition 1.2.8 ([Edm70]). For a matroid M = (E,B) and a subset
X ⊂ E, we have

VM ∩HM(X) = VM |X⊕M/X = VM |X × VM/X .

Let us illustrate this on our running example.

Example 1.2.9 (continued). The graph given in Example 1.2.3 yields a con-
nected matroid on 4 elements and hence a 3-dimensional base configuration.
The corresponding base polytope is shown in Figure 1.9:

(1, 0, 1, 0) (1, 0, 0, 1)

(0, 1, 0, 1)

(1, 1, 0, 0)

1

2 ⊕ 3

4

1

2 ⊕
3

4

(0, 1, 1, 0)

Figure 1.9: Faces of a matroid base polytope.
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The 5 bases correspond to the vertices of PM . We considered the subset
{3, 4} whose associated face M(G) |{3,4} ×M(G) /{3, 4} is the quadrilateral
facet of the polytope, and the subset {1, 2} whose associated face M(G) |{1,2}×
M(G) /{1, 2} is the vertex (1, 1, 0, 0).

In the remainder of the section we will recall the facet-defining hyperplanes
of VM which will also show that all faces of VM correspond to direct sums of
minors. The facial structure of VM has been of interest originally in combina-
torial optimization [Edm70] (see also [Sch03b, Ch. 40]) and later in geometric
combinatorics and tropical geometry [AK06, FS05, Kim10].

Theorem 1.2.10. Let M = (E,B) be a connected matroid. For every facet
U ⊂ VM there is a unique ∅ 6= S ⊂ E such that U = VM∩HM(S). Conversely,
a subset ∅ 6= S ⊂ E gives rise to a facet if and only if

(i) S is a flat such that both M |S and M/S are connected;

(ii) S = E \ e for some e ∈ E such that both M |S and M/S are connected.

In [FS05] the subsets S in (i) were called flacets and we stick to this name.

Example 1.2.11. The facets of the running example are four triangles and
one square. The four triangles correspond to the two sets {1, 2, 4}, {1, 2, 3} of
cardinality |E|−1 and the two flacets {1}, {2}, while the square corresponds
to the flacet {3, 4}. We have already described in the previous example
the square facet. In the picture we highlight two triangular facets, the first
one (green) corresponding to the flacet {1}, the second one (red) to the set
{1, 2, 4}.

(1, 0, 1, 0) (1, 0, 0, 1)

(0, 1, 0, 1)(0, 1, 1, 0)

(1, 1, 0, 0)

1

2 4

⊕
3

1
⊕ 2

3
4

(0, 1, 1, 0)

Figure 1.10: Facets of a matroid base polytope.

A useful and recurrent class of matroids is given by the uniform matroids
Un,k for 0 ≤ k ≤ n with ground set E = {1, . . . , n} and collection of bases
B = {B ⊆ E : |B| = k}. Uniform matroids are in general not graphic. The
graphic ones are listed in Figure 1.11.
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... . .. ..
.

Figure 1.11: Graph representations of Un,0, Un,1, Un,n−1, and Un,n.

The basis graph of a matroid M = (E,B) is the undirected graph with one
vertex for each element in B such that two vertices B1 and B2 are adjacent
if and only if |B1∆B2| = 2, where ∆ is the symmetric difference (B1 \B2) ∪
(B2 \ B1). Equivalently, it is the 1-skeleton of the base polytope PM as first
characterized in [GGMS87].

Let us conclude this section with some results for base polytopes that will be
used in Chapter 5 for the asymptotic enumeration of 2-level base polytopes.
The first one appears as part of Exercise 4.9 in [Whi86, Ch. 4].

Proposition 1.2.12. Let M1 and M2 be connected matroids. The basis
graphs of M1 and M2 are isomorphic if and only if M1

∼= M2 or M1
∼= M∗

2 .

Two polytopes are congruent if they are related by rigid motions and re-
flections. This implies that that they have the same edge lengths, volume,
and 1-skeleton. The next corollary follows immediately and appears as an
exercise in [BGW03, Ch. 1, Ex. 18].

Corollary 1.2.13. Let M1 and M2 be connected matroids. The base poly-
topes PM1 and PM2 are congruent if and only if M1

∼= M2 or M1
∼= M∗

2 .

It is known that “congruent” ⇒ “combinatorially equivalent”. The converse is
not true in general: for instance, there exist full-dimensional simplices with
vertices in {0, 1}d and different volumes as shown in [Zie00]. Nevertheless, for
the class of base polytopes, Proposition 1.2.12 yields the following corollary.

Corollary 1.2.14. Let M1 and M2 be connected matroids. The polytope PM1

is congruent to PM2 if and only if PM1 is combinatorially equivalent to PM2.

Proof. We only need to prove one direction. If PM1 is combinatorially equiva-
lent to PM2 , then the two polytopes have isomorphic face lattices and, in par-
ticular, isomorphic 1-skeletons. By Proposition 1.2.12,M1

∼= M2 orM1
∼= M∗

2

and therefore PM1 is congruent to PM2 by Corollary 1.2.13.
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1.2.3 Matroid operations

The uniform matroids turn out to be the building blocks for an interesting
class of matroids we will be exploring in the next chapters. To construct
matroids using these building blocks, we introduce three matroid operations
that retain levelness as we will prove in Chapter 3.

Let M1 = (E1,B1) and M2 = (E2,B2) be matroids such that {q} = E1 ∩E2.
We call q a base point. If q is not a coloop of both matroids, then we define
the series connection S(M1,M2) with respect to q as the matroid on the
ground set E1 ∪ E2 and with bases

B = {B1 ∪B2 : B1 ∈ B1, B2 ∈ B2, B1 ∩B2 = ∅}.

We also define the parallel connection with respect to q as the matroid
S(M∗

1 ,M
∗
2 )∗ provided that q is not a loop of both. Notice that S(M1,M2)

contains both M1 and M2 as a minor.

The operations of series and parallel connection, introduced by Brylawski
[Bry71], are inspired by the well-known series and parallel operations on
graphs. The following example illustrates the construction in the graphic
case.

Example 1.2.15. Let us consider the two graphic matroids U3,2 andM(K4).
Their series connection is the following graph:

S(
q

,
q

q

) =

Figure 1.12: Series connection of graphic matroids.

An extensive treatment of these two operations is given in [Oxl11, Sect. 7.1].

The most important operation that we will need is derived from the series
connection (or dually, by the parallel connection). Let M1 = (E1,B1) and
M2 = (E2,B2) be matroids with E1 ∩ E2 = {q}. If neither M1 nor M2 have
q as a loop or a coloop, then we define the 2-sum

M1 ⊕2 M2 := S(M1,M2)/q.

This is the matroid on the ground set E = (E1 ∪ E2) \ q and with bases

B := {B1 ∪B2 \ q : B1 ∈ B1, B2 ∈ B2, q ∈ B14B2},
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where B14B2 is the symmetric difference.

The 2-sum is an associative operation for matroids which defines, by anal-
ogy to the direct sum, the 3-connectedness: a connected matroid M is 3-
connected if and only if it cannot be written as a 2-sum of two matroids
each with at least 3 elements and is isomorphic to a minor of M .

Example 1.2.16. Let us consider the 2-sum of a matroid U3,2 ⊕2 M(K4):
both matroids are graphic, therefore we can illustrate the operation for the
corresponding graphs.

q

⊕2

q

=

Figure 1.13: 2-sum of graphic matroids.

To perform the 2-sum, we select an element for each matroid, while in the
picture it looks like we also need to orient the chosen element. This is the
case only because we are drawing graph representations of graphic matroids;
in fact the structure given by the vertices is forgotten when we look at the
matroid from a purely combinatorial perspective. Whitney’s 2-Isomorphism
Theorem [Oxl11, Thm. 5.3.1] clarifies that the matroid structure does not
depend on the orientation we decide for the chosen elements.



Chapter 2

Configurations and levelness

2.1 Configurations of 0/1-points

In Chapter 1 we introduced a first class of 0/1-configurations, that is, ma-
troid base configurations. We saw that the combinatorics of a matroid M is
strongly related to the geometry of the base configuration VM and, in partic-
ular, encodes the face lattice of VM . In the field of polyhedral combinatorics,
0/1-configurations are used to represent and analyze combinatorial objects.

In many instances, we can rephrase a combinatorial optimization problem
as a maximization of a linear function over a 0/1-point configuration. We
mention here the travelling salesman problem, the maximum stable set of
a graph, and the maximum cut of a graph. For a comprehensive review on
combinatorial optimization and a much richer collection of examples, we refer
to [Sch03b]. Let us point out that whenever we write 0/1-configuration, we
might as well say 0/1-polytope. Namely, any 0/1-configuration V is the set of
vertices of the 0/1-polytope conv(V ). Therefore we will use V and conv(V )
as interchangeable objects in this context.

The class of 0/1-configurations coming from stable sets of graphs is highly
inspiring for our work, because it connects to our considerations for levelness
and Theta rank. We will say more about this topic in Section 2.2, while we
briefly introduce now the maximum stable set problem.

A stable set of a graph G with vertices [n] and edges E is a subset X ⊆ [n]
such that there is no edge e ∈ E with endpoints inX. We associate to a stable
set X its characteristic vector 1X ∈ {0, 1}n. The stable set configuration
of a graph G is

STAB(G) := {1X : X is a stable set of G}.

The maximum stable set problem consists of maximizing the linear function∑
i∈[n] xi over STAB(G).

19
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A B

C

Stable sets: {∅, A,B,C}
1∅ = (0, 0, 0) 1A = (1, 0, 0)

1B = (0, 1, 0)

1C = (0, 0, 1)

Figure 2.1: Stable set polytope of a triangle graph.

The variety of problems from combinatorial optimization which can be rep-
resented by 0/1-configurations is very broad. However, 0/1-configurations
are highly complicated and many basic problems are open (see [Zie00]).

Theorem 2.1.1 ([Zie00, Sarangarajan-Ziegler]). For d ≥ 6 there is a col-
lection of at least 22d−2 combinatorially non-equivalent d-dimensional 0/1-
configurations in Rd.

In addition to the fact that the number of 0/1-configurations is doubly-
exponential in the dimension, the following theorem shows that they can
have many facets.

Theorem 2.1.2 ([FKR00],[KRGSZ97]). For all large enough d, let V be the
d-dimensional 0/1-configuration with the largest number of facets f(V ). Then

3.6d < f(V ) < 30(d− 2)!.

It is not a surprise that even basic questions, such as the classification of
simplicial 0/1-polytopes, remain unanswered. On the other hand, simple
0/1-polytopes are fully understood.

Theorem 2.1.3 ([KW00, Thm. 1]). A d-dimensional 0/1-polytope is simple
if and only if it is equal to a Cartesian product of 0/1-simplices.

Moreover, it is also shown that the following holds.

Proposition 2.1.4 ([KW00, Cor. 2]). A combinatorial polar of a simple
0/1-polytope is combinatorially equivalent to a simplicial 0/1-polytope.

The converse is not true: it is mentioned in [KW00] that there exists a 4-
dimensional simplicial 0/1-polytope with 7 points and 13 facets whose combi-
natorial polar is not combinatorially equivalent to any 0/1-polytope. Thus,
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from the simple 0/1-polytopes we obtain by polarity some combinatorial
types of simplicial 0/1-polytopes, but the list is incomplete.

Our contribution to the understanding of 0/1-configurations will be focused
on the 2-level ones. After exploring some of their properties in Section 2.2,
we will give in Section 2.3 the complete classification of combinatorial types
for simple and simplicial 2-level 0/1-configurations.

2.2 An overview of 2-level configurations

This section is focused on levelness of configurations, with particular atten-
tion to the case of 2-levelness. The configurations in VLev

2 form, up to affine
transformations, a subclass of 0/1-configurations and, because of Theorem
0.0.1, they have Theta rank 1 and, thus, are interesting from the point of view
of optimization. The restrictive geometric condition of 2-levelness makes the
configurations easier to study, but is not enough for a full understanding. In
fact, VLev

2 is a broad and fascinating class of configurations, for which many
questions, such as the classification of combinatorial types and the enumer-
ation, are wide open.

2.2.1 Levelness and 2-levelness

A point configuration V is k-level if for every facet-defining hyperplane H
there are k parallel hyperplanes H = H1, H2, . . . , Hk with

V ⊆ H1 ∪H2 ∪ · · · ∪Hk.

Equivalently, V is k-level if every facet-defining linear function `(x) takes
at most k distinct values on V . We say that a facet F is k-level if its
facet-defining linear function `(x) takes exactly k distinct values on V . The
levelness Lev(V ) of V is the smallest k such that V is k-level. A polytope
is k-level if its vertices form a k-level configuration.

The levelness of the Cartesian product can be found explicitly.

Proposition 2.2.1. Let V1 ⊂ Rd1 and V2 ⊂ Rd2 be point configurations.
Then the levelness satisfies Lev(V1 × V2) = max(Lev(V1), Lev(V2)).

Proof. A linear function `(x,y) is facet-defining for V1 × V2 if and only if
`(x,0) is facet-defining for V1 or `(0,y) is facet-defining for V2. Thus a facet-
defining function `(x,y) for V1 × V2 takes at most Lev(V1) values if it is of
type `(x,0) or at most Lev(V2) values if it is of type `(0,y).
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The class VLev
2 has already been studied from several perspectives. For in-

stance, we report three useful results from [GPT10, Sect. 4], where 2-level
configurations appear under the name of exact sets.

Proposition 2.2.2. Every 2-level configuration in Rd is affinely equivalent
to a 0/1-configuration in {0, 1}d.

Proposition 2.2.3. Every 2-level configuration V is the set of vertices of
conv(V ).

Proposition 2.2.4. Every face of a 2-level configuration is 2-level.

Proposition 2.2.3 explains why 2-level configurations can be equivalently
studied as 2-level polytopes. In general, it is not true that a k-level point
configuration V is equivalent to its convex hull conv(V ), since it could hap-
pen that Lev(V ) > Lev(conv(V )). Figure 2.2 shows a 3-level configuration V
such that the levelness of conv(V ) is 2.

Figure 2.2: 3-level configuration, 2-level polytope.

We will present and prove Proposition 2.2.4 in a more general fashion in
Section 3.1.

For a more inclusive overview about 2-level configurations we should men-
tion [Sta80], where compressed polytopes are introduced. A full-dimensional
polytope P with vertices in Zd is compressed if every pulling triangulation
of P using the points in P ∩Zd is unimodular, that is every simplex in the
triangulation has volume 1/d!. A point configuration V is 2-level if and only
if conv(V ) is affinely equivalent to a compressed polytope. For more details
about compressed polytopes we refer to [OH01], [Sul06] and [DLRS10, Ch. 9].

Affine transformations map parallel hyperplanes to parallel hyperplanes, which
means that the levelness of a configuration is invariant under affine transfor-
mations.
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One challenging problem is to classify 2-level configurations up to combina-
torial equivalence. Since affinely equivalent configurations are also combi-
natorially equivalent, Proposition 2.2.2 allows us to restrict our attention to
0/1-configurations, and brute force algorithms yield results for small dimen-
sions d ≤ 6. Indeed the count of 2-level configurations is

dimension 2 3 4 5 6
# 2-level config. 2 5 19 106 1150

and is available at [Fis] together with several other computational results
about 2-level polytopes. However, no general classification (or enumeration)
is available so far.

In Chapter 3 we present and analyze a new subclass of VLev
2 which arise

from matroids and is endowed with simple constructive properties, suitable
for counting purposes. As a consequence, we will obtain in Chapter 5 an
exponential lower bound on the number of 2-level configurations.

Section 2.3 handles the classification of combinatorial types for the case of
simple and simplicial 2-level configurations and motivates the need for the
following properties of the slack matrices of 2-level polytopes.

Proposition 2.2.5. A polytope P is 2-level if and only if there exists S ∈
S(P ) such that S is a 0/1-matrix.

Proof. Let S ′ ∈ S(P ). Since P is 2-level, every column of S ′ has only two
different entries (0 and k) which we can rescale to form a 0/1-column. Thus
we get a 0/1-matrix in S(P ).

A point configuration (polytope) is combinatorially 2-level if there exists
a 2-level configuration (polytope) with the same face lattice.

Proposition 2.2.6. A polytope P is combinatorially 2-level if and only if
there exists a polytope Q such that for S ∈ S(P ), supp(S) ∈ S(Q).

Proof. Consider S ∈ S(P ). The support supp(S) determines the combina-
torics of P , that is, its face lattice. If supp(S) ∈ S(Q), then Q is combinato-
rially equivalent to P . Moreover, Q is 2-level by Proposition 2.2.5.
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2.2.2 Polytopal constructions and levelness

We briefly discuss here the relation between polytopal constructions and
levelness. Proposition 2.2.1 shows that the Cartesian product of polytopes
preserves 2-levelness.

We consider a second construction, that is, the pyramid over a polytope:
for a d-polytope P ⊂ Rd+1 and a point a /∈ aff(P ) we define

pyr(P ) := conv(P ∪ a).

The point a is called apex of the pyramid.

Proposition 2.2.7. The pyramid pyr(P ) over a k-level d-polytope P ⊂ Rd+1

is a k-level polytope.

Proof. The facets of pyr(P ) are either P or conv(F ∪ a), where F is a facet
of P and a is the apex of the pyramid. Clearly P is a 2-level facet of pyr(P ).
If the facet F of P is k-level, there exists a sequence of at most k parallel
hyperplanes H1, H2, . . . , Hk containing all the vertices of P ; since P is not
full-dimensional, we can tilt the sequence of hyperplanes in such a way that
H1 also contains a and thus the facet (F ∪ a) is k-level for pyr(P ).

The previous proposition shows that the levelness of a polytope is preserved
by the pyramid construction and, in particular, 2-levelness is preserved.

Among other constructions, the join preserve levelness. On the other hand,
we have already encountered a construction which fails to preserve levelness,
namely the direct sum. The counterexample is provided by the polytope in
Example 1.1.6: P is obtained as the direct sum of ∆2 and ∆1 and is not
2-level. In fact Proposition 4.4 in [GRT13] proves the even stronger fact
that P is not combinatorially 2-level. The direct sum of simplices will be
investigated in Section 2.3 as the key to classify simplicial 2-level polytopes.

2.2.3 A catalog of 2-level polytopes

This subsection surveys known classes of 2-level polytopes and their proper-
ties.

I) Hypersimplices

The easiest example of a 2-level polytope is certainly the simplex; more
interesting is the class of hypersimplices which first appeared in [GGMS87].
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For any positive integers n and k, 2 ≤ k ≤ n−2, we define the hypersimplex
as the convex set

∆n,k := conv

({
p ∈ {0, 1}n :

n∑

i=1

pi = k

})
=

{
p ∈ [0, 1]n :

n∑

i=1

pi = k

}
.

The hypersimplex ∆n,k is not full-dimensional and the second formulation
underlines that it is obtained as a section of the n-cube by the hyperplane∑
xi = k. The definition provides a vertex representation of ∆n,k and it is

not hard to check that all facet-defining hyperplanes are of the form xi = 0
and 1− xi = 0 (see [Grü03, Ex. 4.8.16]).

Proposition 2.2.8. Hypersimplices are 2-level polytopes.

Proof. Every hypersimplex ∆n,k has vertices in {0, 1}n, thus every facet-
defining linear function of type `(x) = xi or `(x) = 1 − xi can only attain
the values 0 or 1.

Up to permutations of the columns, the slack matrix associated to the facet
representation of ∆n,k is a matrix of the form [A|1−A] ∈ {0, 1}(n

k)×2n, where
the rows of A are all possible vectors in {0, 1}n with exactly k ones and 1
is the all-ones matrix. Because of Proposition 2.2.5 we already expected to
find a 0/1-matrix in S(∆n,k).

One last observation about hypersimplices is that they represent the matroid
base polytopes for the non-graphic uniform matroids and they will play a
main role throughout the thesis.

II) Hanner polytopes

Let us now mention a class of 2-level polytopes that is entirely constructed
using Cartesian products and direct sums, namely Hanner polytopes. We
report here the recursive definition and refer to [Han56] for more details. A
polytope P is a Hanner polytope if it satisfies one of the following:

(i) P is a centrally symmetric line segment;

(ii) P is the Cartesian product of two Hanner polytopes;

(iii) P is the direct sum of two Hanner polytopes.

A polytope P with vertices V is centrally symmetric if −v ∈ V for every
v ∈ V . Notice that all Hanner polytopes are centrally symmetric, since both
the Cartesian product and the direct sum preserve central symmetry.
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We have shown that the direct sum does not always preserve 2-levelness.
Nevertheless this is true if we apply this construction to two Hanner polytopes
(the word Hanner configuration refers to the vertices of a Hanner polytope).

To show this fact, we observe that, by central symmetry, every facet V ′ of
a Hanner configuration V has a corresponding parallel facet V ′′ := {−v :
v ∈ V ′}. Given two Hanner 2-level configurations V1 and V2, every facet V ′
of V1 ⊕ V2 is of the form (V ′1 × {0}) ∪ ({0} × V ′2) where V ′i is a facet of Vi,
i = 1, 2. Let V ′′i be the opposite facet of V ′i : V ′′ = (V ′′1 ×{0})∪ ({0}×V ′′2 ) is
a facet of V1 ⊕ V2 and, more precisely, V ′′ is opposite to V ′. Moreover, since
facet-defining hyperplanes of opposite facets are parallel and

V ′ ∪ V ′′ = ((V ′1 × {0}) ∪ ({0} × V ′2)) ∪ ((V ′′1 × {0}) ∪ ({0} × V ′′2 )) =

= (V1 × {0}) ∪ ({0} × V2) = V,

we have that V1 ⊕ V2 is 2-level and therefore, by inductive reasoning, we
conclude that all Hanner polytopes are 2-level.

III) Stable set polytopes of perfect graphs

A beautiful class of 2-level polytopes arises by considering a subclass of the
2-level stable set polytopes for graphs. This subclass has been studied by
Lovász in [GLS93, Ch. 9] and has a surprising combinatorial characterization
based on the properties of the graph.

A graph is perfect if and only if the clique number coincides with the chro-
matic number for all its induced subgraphs. The class of perfect graphs
contains many interesting graphs such as bipartite graphs, chordal graphs,
line graphs of bipartite graphs, and comparability graphs. For more details
we refer to [BM08, Sect. 14.4].

Theorem 2.2.9 ([GPT10, Thm. 3.1]). The stable set polytope of a graph G
is 2-level if and only if G is a perfect graph.

The beauty of Lovász’s theorem lies in the ability to link a geometric prop-
erty such as levelness to a purely combinatorial property of graphs. This
remarkable characterization encourages the combinatorial investigation of
other classes of 2-level polytopes: in Chapter 3 we will unveil an analogous
link between the geometry of matroid base polytopes and the combinatorics
of matroids. This will yield a new class of 2-level polytopes.

IV) Hansen polytopes

The class of Hansen polytopes, that is twisted prisms over stable set poly-
topes of perfect graphs, first appeared in [Han77] and has been analyzed in
the context of Kalai’s 3d conjecture in [SWZ09]. Every polytope in this class
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is centrally symmetric and 2-level. Notice that the twisted prism over a 2-
level polytope is not necessarily a 2-level polytope as we can check for the
hypersimplex ∆6,2. It is not known which 2-level polytopes retain 2-levelness
after the twisted prism construction.

V) Order polytopes

The last class of 2-level polytopes, namely order polytopes, was first intro-
duced in [Sta86]. An order polytope OA is defined from a partially ordered
set A = {a1, . . . , an} as the convex hull of all the 0/1-points v ∈ {0, 1}n sat-
isfying that if vi = 1 and aj ≤ ai in A, then vj = 1.

2.3 Simple and simplicial

We classify first the combinatorial types of simple 2-level polytopes. This is
a straightforward consequence of Proposition 2.2.2 and Theorem 2.1.3.

Proposition 2.3.1. A 2-level polytope is simple if and only if it is affinely
equivalent to a Cartesian product of 0/1-simplices.

The goal of this section is to understand 2-level simplicial polytopes by means
of polarity. The main obstacle we have to overcome is that the combinatorial
polar of a 2-level polytope is not necessarily combinatorially 2-level.

We have already encountered an instance of this fact in Example 1.1.6. In-
deed the 2-level polytope ∆2 × ∆1 is affinely equivalent to a 2-level 0/1-
polytope but its polar is not combinatorially 2-level. As a first step towards
the understanding of simplicial 2-level polytopes, we look at the polar of
Cartesian products of simplices and determine which ones are combinatori-
ally 2-level. To answer this question, we use to the Gale duality introduced
in Chapter 1.

Proposition 2.3.2. Let V = {v1, . . . ,vn} ⊂ Rd be a spanning point config-
uration and G = [g1, . . . ,gn] ∈ R(n−d−1)×n its Gale dual. The configuration
V is 2-level if and only if every facet V ′ = {vi : i ∈ I ⊂ [n]} of V is such
that ∑

i/∈I

gi = 0.

Proof. If V is 2-level, for any facet V ′ of V with supporting hyperplane H`,
the linear function `(x) takes two values on V . The evaluation of `(x) on V
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is a vector in Rn with ith component equal to

`(vi) =

{
0 , if i ∈ I
a , if i /∈ I.

Since affine evaluations on V correspond to linear dependences ofG (Theorem
1.1.8), we conclude that

0 =
n∑

i=1

`(vi)gi =
∑

i/∈I

agi =⇒ 0 =
∑

i/∈I

gi.

Conversely, suppose that the condition holds for all facets. The linear depen-
dence in G corresponds to an affine evaluation on V that takes only values 0
and 1, hence V is 2-level.

Theorem 2.3.3. The direct sum P = ∆k1 ⊕ ∆k2 ⊕ . . . ⊕ ∆kl, ki > 0 for
i = 1, . . . , l, is a combinatorially 2-level polytope if and only if

k1 = k2 = . . . = kl.

Proof. If P is combinatorially 2-level, there exists a 2-level polytope P ′ with
the same face lattice. Let V = {v1,1, . . . ,v1,k1+1, . . . ,vl,1, . . . ,vl,kl+1} be the
configuration of vertices of P ′ where the first index i of a point indicates that
it comes from the vertices of ∆ki . The Gale dual of V is of the form

G = [g1,1, . . . ,g1,k1+1︸ ︷︷ ︸
∆k1

, . . . ,gl,1 . . .gl,kl+1︸ ︷︷ ︸
∆kl

] ∈ R(l−1)×(
∑
ki+l).

Let us consider the facet obtained by excluding the first vertex of each sim-
plex. Since P ′ is 2-level, Proposition 2.3.2 yields the equation

l∑

i=1

gi,1 = 0.

By considering the facet obtained by excluding the first vertex of each simplex
and a vertex j of ∆kl , j = 2, . . . , kl + 1, we get

0 =
l−1∑

i=1

gi,1 + gl,j =
l∑

i=1

gi,1 ⇒ gl,1 = gl,j for all j = 2, . . . , kl+1.

By the same argument, we show that all vectors associated to same simplex
are equal. It follows that

G = [g1, . . . ,g1︸ ︷︷ ︸
(k1+1)-times

, . . . , gl, . . .gl︸ ︷︷ ︸
(kl+1)-times

],
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where gi := gi,1 = . . . = gi,ki+1. We saw that

l∑

i=1

gi = 0.

Furthermore, by Proposition 1.1.9 we obtain

0 =
l∑

i=1

(ki + 1)gi.

Without loss of generality we may assume k1 ≤ k2 ≤ . . . ≤ kl. Suppose that
at least one inequality is strict and consider the equalities

0 =
l∑

i=1

(ki + 1)gi − (k1 + 1)
l∑

i=1

gi =
l∑

i=2

(ki − k1)gi.

This linear dependence among at most l−1 vectors ofG yields a contradiction
because it corresponds to a proper face strictly containing all the vertices of
a facet. We conclude that k1 = k2 = . . . = kl.

Conversely, suppose that all simplices have dimension k. We consider a set
of vectors {g1, . . . ,gl} ⊂ Rl−1 such that any l−1 vectors are independent and

0 =
l∑

i=1

gi.

For instance, the set of vectors {e1, . . . , el−1,−1} satisfies the requirements.
From {g1, . . . ,gl} we create the matrix

G = [g1, . . . ,g1︸ ︷︷ ︸
(k+1)-times

, . . . , gl, . . .gl︸ ︷︷ ︸
(k+1)-times

] ∈ R(l−1)×(kl+l).

The matrix G is the Gale dual of a point configuration which is 2-level and
combinatorially equivalent to V(∆k1 ⊕∆k2 ⊕ . . .⊕∆kl).

The last theorem describes a family of simplicial combinatorially 2-level poly-
topes that we can obtain by polarity from the simple 2-level polytopes. We
investigate whether there can be any other combinatorial types of simplicial
2-level polytopes.

Our considerations concern slack matrices of polytopes. In particular, let us
recall a proposition that follows from [GGK+13, Thm. 6].



30 2.3. SIMPLE AND SIMPLICIAL

Proposition 2.3.4. If a matrix S ∈ Rn×m
≥0 with rank(S) ≥ 2 is a slack

matrix of a polytope, then the vector 1 ∈ Rn is in the column span of S.
Moreover, if 1 ∈ Rm is in the row span of S, then ST is also a slack matrix
of some polytope.
Example 2.3.5. In Example 1.1.3 we found a slack matrix S of the polytope
P := ∆2 × ∆1 ⊂ R3. We get another possible S ′ ∈ S(P ) by rescaling the
columns of S.

S ′ =




0 1 0 0 1
1 0 0 0 1
0 0 1 0 1
0 0 1 1 0
0 1 0 1 0
1 0 0 1 0



.

This is a 0/1-matrix and thus P is 2-level. Notice that ST is the slack matrix
of ∆2 ⊕∆1, while (S ′)T is not a slack matrix since it does not contain 1 in
the column span.

Nevertheless it is true that for every polytope P , there exists S ∈ S(P ) such
that ST is a slack matrix of some polytope. Furthermore, as one could expect,
there is a connection between the transpose of a slack matrix and polytope
polarity.
Proposition 2.3.6 ([GGK+13, Prop. 18]). Suppose S ∈ Rn×m

≥0 such that
S and ST are both slack matrices. Then there exists a polytope P , with
0 ∈ int(P ), such that S ∈ S(P ) and ST ∈ S(P ◦).

The properties of the slack matrices of a polytope allow us to provide an
alternative proof for one direction of Theorem 2.3.3.

Proof. (Alternative proof for ⇒ of Thm. 2.3.3) Let S ∈ Rn×m be a slack
matrix of P = ∆k1 ⊕ ∆k2 ⊕ . . . ⊕ ∆kl and S ′ = supp(S). By Proposition
2.2.6 if P is combinatorially 2-level, then there exists a 2-level polytope Q
such that S ′ ∈ S(Q). In particular, S ′ is an admissible slack matrix and
by Proposition 2.3.4 the vector 1 is in the column span of S ′. Equivalently,
there exists a column vector a ∈ Rm such that S ′a = 1.

The structure of the facets of P implies that the matrix S ′ has exactly one
entry 1 for each set of vertices associated to the same simplex ∆ki . Therefore
the left kernel of S ′ contains all elements of the form

zij := (0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
V(∆ki

)

, 0, . . . , 0, . . . , 0,−1, . . . ,−1︸ ︷︷ ︸
V(∆kj

)

, 0, . . . , 0),
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that is, for any i, j ∈ [l], i < j, zijS ′ = 0. We obtain

0 = zijS ′a = zij 1 = ki + 1− (kj + 1) = ki − kj.

Since ki = kj for all i, j ∈ [l], we conclude that k1 = k2 = . . . = kl.

Theorem 2.3.7. Let P be a simplicial polytope and P∆ a combinatorial
polar of P . If P is 2-level, then P∆ is combinatorially 2-level.

Proof. Consider S ∈ S(P ). Since P is 2-level, supp(S) ∈ S(P ). Moreover, P
is simplicial and therefore all facets contain the same number of vertices. It
follows that the columns of supp(S) have constant sum, thus the vector 1 is in
the row span of supp(S). This implies that supp(S)T is a slack matrix of some
polytope Q, which is a 2-level polytope and is combinatorially equivalent to
P∆.

We conclude the section with a corollary, that provides a complete answer
to the classification of combinatorial types for simplicial 2-level polytopes.

Corollary 2.3.8. A 2-level polytope is simplicial if and only if it is combi-
natorially equivalent to a direct sum ∆k⊕ . . .⊕∆k of simplices with identical
dimension k.

Proof. If P is a simplicial 2-level polytope, Theorem 2.3.7 shows that any
combinatorial polar P∆ of P is combinatorially equivalent to a 2-level sim-
ple polytope. Proposition 2.3.1 states that every 2-level simple polytope is
affinely equivalent to a product of simplices ∆k1 ×∆k2 × . . . ×∆kl , thus, P
must be combinatorially equivalent to ∆k1 ⊕ ∆k2 ⊕ . . . ⊕ ∆kl . Since P is
2-level, by Theorem 2.3.3 we conclude that k1 = · · · = kl.





Chapter 3

Matroid base configurations

This chapter is entirely dedicated to matroids and graphs. We characterize
the class of 2-level matroids and generalize the characterization to k-level
graphs. In addition, we find upper bounds on the size of excluded minors for
k-level matroids. This shows that there are finitely many of them.

We start with a section about face-hereditary properties of point configura-
tions. This motivates our interest in matroid base configurations, as faces of
base configurations are base configurations of matroid minors.

3.1 Face-hereditary properties

The definitions of levelness and Theta rank make only reference to the affine
hull of the configuration V and thus neither depend on the embedding nor
on a choice of coordinates. To have it on record we note the following basic
property.

Proposition 3.1.1. The levelness and the Theta rank of a point configura-
tion are invariant under affine transformations.

That this does not hold for (admissible) projective transformations is clear for
the levelness and for the Theta rank follows from Theorem 0.0.1. Moreover,
a proposition analogous to Proposition 2.2.1 holds for Theta rank.

Proposition 3.1.2. Let V1 ⊂ Rd1 and V2 ⊂ Rd2 be point configurations.
Then the Theta rank satisfies Th(V1 × V2) = max(Th(V1),Th(V2)).

Proof. A linear function `(x,y) is facet-defining for V1 × V2 if and only if
`(x,0) is facet-defining for V1 or `(0,y) is facet-defining for V2. Thus any
representation (1) lifts to R[x,y].

The Theta rank as well as the levelness of a point configuration are not mono-
tone with respect to taking subconfigurations as can be seen by removing a

33
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single point from {0, 1}d. However, it turns out that monotonicity holds for
subconfigurations induced by supporting hyperplanes. Let us call a collection
P of point configurations face-hereditary if it is closed under taking faces.
That is, V ∩H ∈ P for any V ∈ P and supporting hyperplane H for V .

As promised, the following lemma generalizes Proposition 2.2.4.

Lemma 3.1.3. The classes VTh
k and VLev

k are face-hereditary.

Proof. Let V ⊂ Rd be a full-dimensional point configuration and H = {p ∈
Rd : g(p) = 0} a supporting hyperplane such that the affine hull of V ′ :=
V ∩ H has codimension 1. Let `(x) be facet-defining for V ′. Observe that
`(x) and `δ(x) := `(x) + δg(x) give the same linear function on V ′ for all δ.
For

δ = max
{−`(v)
g(v)

: v ∈ V \ V ′
}

`δ(x) is non-negative on V . Hence any representation (1) of `δ over V yields
a representation for ` over V ′. Moreover, the levelness of `δ gives an upper
bound on the levelness of `.

It is interesting to note that these properties are not hereditary with respect
to arbitrary hyperplanes. Indeed, consider the point configuration

V = ({0, 1}n × {−1, 0, 1}) \ {0}

It can be easily seen that Th(V ) = Lev(V ) − 1 = 2. The hyperplane H =
{p ∈ Rn+1 : pn+1 = 0} is not supporting and V ′ = V ∩ H = {0, 1}n \ {0}.
The linear function `(x) = x1 + · · · + xn − 1 is facet-defining for V ′ with
n levels. As for the Theta rank, any representation (1) yields a polynomial
f(x) = `(x) −∑i h

2
i (x) of degree 2k that vanishes on V ′ and f(0) = −1 −∑

i h
2
i (0) < 0. For n > 4, the following proposition assures that Th(V ′) ≥ 3.

Proposition 3.1.4. Let V ′ = {0, 1}n \ {0} and f(x) a polynomial vanishing
on V ′ and f(0) 6= 0. Then deg f ≥ n.

Proof. For a monomial xα, let τ = {i : αi > 0} be its support. Over the
set of 0/1-points it follows that xα and xτ :=

∏
i∈τ xi represent the same

function. Hence, we can assume that f is of the form f(x) =
∑

τ⊆[n] cτx
τ

for some cτ ∈ R, τ ⊆ [n]. Moreover c∅ = f(0) 6= 0 and without loss of
generality we can assume c∅ = 1. Any point v ∈ V ′ is of the form v = 1σ for
some ∅ 6= σ ⊆ [n] and we calculate

0 = f(v) =
∑

∅⊆τ⊆σ

cτ .
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It follows that cτ satisfies the defining conditions of the Möbius function of
the Boolean lattice and hence equals cτ = (−1)|τ | for all τ ⊆ [n]. In particular
c[n] 6= 0, which finishes the proof.

3.2 2-level matroids

We define the following families of matroids:

MLev
k := {M matroid : Lev(VM) ≤ k}, and

MTh
k := {M matroid : Th(VM) ≤ k}.

We will say that a matroidM is of Theta rank k or k-level if the corresponding
base configuration VM is. Now combining Proposition 1.2.8 with Lemma 3.1.3
proves the main theorem of this section.

Theorem 3.2.1. The classesMTh
k andMLev

k are closed under taking minors.

Proof. Every minorN ofM can be written in the formM/Y \X. By Proposi-
tion 1.2.8, the configuration VM/Y is a face of VM∩HM(Y ). Moreover, we can
apply Proposition 1.2.8 again to show that VM/Y \X is a face of VM/Y . Thus
there is a supporting hyperplane H such that VM ∩H is affinely isomorphic
to VN . Lemma 3.1.3 assures us that Th(VN) ≤ Th(VM).

Let us analogously define the classes GThk and GLevk of graphic matroids of
Theta rank and levelness bounded by k. These are also closed under taking
minors and the Robertson-Seymour theorem ([RS04]) asserts that there is a
finite list of excluded minors characterizing each class.

In our study of the Theta rank and the levelness of base configurations, the
following asserts that we will only need to consider flacets. For brevity, a
k-level flacet refers to a flacet whose corresponding facet is k-level.

Proposition 3.2.2. Let M be a connected matroid and S = E(M)\e. Then
`S(x) takes 2 values on VM and hence is 1-sos.

Proof. Let r be the rank of M . Restricted to the affine hull of VM , we have
that `S(x) and r − xe induce the same linear function. As VM is a 0/1-
configuration, it follows that `S(x) takes the 2 values r and r− 1 on VM .

Proposition 3.2.3. Uniform matroids are inMLev
2 and hence inMTh

1 .
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Proof. The base polytope of Un,k is given by

PUn,k
= conv{1B : B ⊆ E, |E| = k} = ∆n,k.

Proposition 2.2.8 concludes the proof.

In this section we investigate the excluded minors for the matroids inMLev
2

(shortly, 2-level matroids) and, by Theorem 0.0.1, the matroids of Theta
rank 1. In this case we can give the complete and in particular finite list of
excluded minors. We start by showing that matroids with few elements and
of small rank cannot be excluded minors forMLev

2 .

Proposition 3.2.4. Let M = (E,B) be a matroid. If rank(M) ≤ 2 or
|E| ≤ 5, then M is 2-level.

Proof. The case rank(M) = 1 is trivial since there is no proper flacet. On
the other hand, if rank(M) = 2 the proper flacets are necessarily flacets of
rank 1. The linear function `F (x) for any such flacet F only takes values in
{0, 1} and thus is 2-level. By (1.1) and Proposition 3.1.1, M and M∗ have
the same Theta rank and levelness. If |E| ≤ 5, then either M or M∗ is of
rank ≤ 2.

A first example of a matroid of levelness ≥ 3 is given by the graphic matroid
associated to the complete graph K4.

3

6

4

1

2

5

3 6 4

1

2

5

Figure 3.1: K4 and its geometric representation.

Proposition 3.2.5. The graphic matroid M(K4) is 3-level.

Proof. Let F be the flat {1, 2, 3} corresponding to the labelled example shown
in Figure 3.1. Both the contraction of F and the restriction to F are con-
nected (or biconnected on the level of graphs) and thus F is a flacet with
`F (x) = x1 + x2 + x3. The spanning trees B1 = {1, 5, 6} and B2 = {4, 5, 6}
satisfy |F ∩ B2| < |F ∩ B1| < rank(F ) which shows that M(K4) is at least
3-level. To see that M(K4) is at most 3-level we notice that every proper
flacet F has rank smaller or equal than rank(M(K4)) − 1 = 2 and hence
`F (x) can take at most three different values.
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Before analyzing other matroids we quickly recall a geometric represen-
tation of certain matroids of rank 3: the idea is to draw a diagram in the
plane whose points correspond to the elements of the ground set. Subsets of
3 elements constitute a basis unless they are contained in a depicted line.

Example 3.2.6. Let us consider the graph K4 and its geometric represen-
tation as a matroid as shown in Figure 3.1. The geometric representation
consists only of the four lines associated to the 3-circuits of K4.

Starting from the geometric representation of M(K4) we define three new
matroids by removing one, two or three lines of the representation and we
call them respectively W3, Q6, and P6. None of these matroids is graphic,
but we can easily draw their geometric representations:

3 6 4

2

1

5

W3

3 6 4

2

1

5

Q6

3 6 4

2

1

5

P6

Figure 3.2: Geometric representations of W3, Q6, and P6.

It is also interesting to observe that the four matroids M(K4), W3, Q6, and
P6 are self-dual matroids.

Proposition 3.2.7. The matroids W3, Q6, and P6 are 3-level.

Proof. Let M be any of the three given matroids and consider F = {3, 4, 6}.
It is easy to check that M |F ∼= U3,2 and M/F ∼= U3,1 which marks F
as a flacet. The vertices of the matroid polytope associated to the bases
{1, 2, 5}, {1, 2, 4}, {1, 3, 4} lie on distinct hyperplanes parallel to HM(F ) =
{p ∈ R6 : `F (p) = rankM(F )}. Therefore the matroids are at least 3-level.
Since rank(M) = 3, we can use the same argument as in the proof of Propo-
sition 3.2.5.

The list of excluded minors for MLev
2 so far includes M(K4), W3, Q6, and

P6. To show that this list is complete, we will approach the problem from
the constructive side and consider how to synthesize 2-level matroids. We
already saw thatMLev

2 is closed under taking direct sums. In Chapter 1 we
introduced three more operations, namely series and parallel connection and
2-sum. Now we see that these operations retain levelness.

For the following result, we write E1 ]E2 = (E1 ∪E2 ∪{q1, q2}) \ {q} for the
disjoint union of E1 and E2.
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Lemma 3.2.8. Let M1 = (E1,B1) and M2 = (E2,B2) be matroids with
{q} = E1 ∩ E2 not a coloop of both. Then the base polytope PS of the series
connection S = S(M1,M2) is linearly isomorphic to

(PM1 × PM2) ∩ {p ∈ RE1]E2 : pq1 + pq2 ≤ 1}.

Proof. It is clear that the base configuration VS is isomorphic to

V ′ = (VM1 × VM2) ∩ {p ∈ RE1]E2 : pq1 + pq2 ≤ 1}

under the linear map π : RE1]E2 → RE1∪E2 given by π(1q1) = π(1q2) = 1q
and π(1e) = 1e otherwise. Indeed, let ri = rank(Mi), then a linear inverse is
given by s : RE1∪E2 → RE1]E2 with s(x)qi = ri − `Ei

(x) for i = 1, 2 and the
identity otherwise.

It is therefore sufficient to show that the vertices of

P ′ = (PM1 × PM2) ∩ {p ∈ RE1]E2 : pq1 + pq2 ≤ 1}.

are exactly the points in V ′. Clearly V ′ is a subset of the vertices and any
additional vertex of P ′ would be the intersection of the relative interior of an
edge of PM1 × PM2 with the hyperplane H = {p ∈ RE1]E2 : pq1 + pq2 = 1}.
However, every edge of PM1 × PM2 is parallel to some 1e − 1f for e, f ∈ E1

or e, f ∈ E2. Thus every edge of PM1 × PM2 can meet H only in one of its
endpoints which proves the claim.

It is interesting to note that the operation that related PM1 and PM2 to
PS(M1,M2) is exactly a subdirect product in the sense of McMullen [McM76].
From the description of PS(M1,M2) we instantly get information about the
Theta rank and levelness of the series and parallel connection.

Corollary 3.2.9. Let S = S(M1,M2) be the series connection of matroids
M1 and M2. Then

Th(S) = max(Th(M1),Th(M2)).

The same holds true for the parallel connection as well as the levelness.

Proof. Lemma 3.2.8 shows that the facet-defining linear functions of PS are
among those of PM1 × PM2 and `(x) = 1 − xq1 − xq2 . However, by the
characterization of the bases of S, `(x) can take only values in {0, 1}. Hence,
Th(VS) = Th(VM1 × VM2) and Proposition 3.1.2 finishes the proof.

Corollary 3.2.10. The classesMTh
k andMLev

k are closed under taking series
and parallel connections.
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We will need the following two properties.

Lemma 3.2.11 ([CO03, Lem. 2.3]). Let M be a 3-connected matroid having
no minor isomorphic to any of M(K4), W3, Q6, P6. Then M is uniform.

Lemma 3.2.12 ([Oxl11, Thm. 8.3.1]). Every matroid that is not 3-connected
can be constructed from 3-connected proper minors of itself by a sequence of
direct sums and 2-sums.

We can finally give a complete characterization of the classMLev
2 =MTh

1 .

Theorem 3.2.13. For a matroid M the following are equivalent:

(i) M has Theta rank 1;

(ii) M is 2-level;

(iii) M has no minor isomorphic to M(K4), W3, Q6, or P6;

(iv) M can be constructed from uniform matroids by taking direct or 2-sums.

Proof. (i) ⇒ (ii) is just Theorem 0.0.1. (ii) ⇒ (iii) follows from Theo-
rem 3.2.1 and Proposition 3.2.7. Let M be a matroid satisfying (iii). If M is
3-connected, then M is uniform by Lemma 3.2.11. If M is not 3-connected,
then Lemma 3.2.12 shows that it satisfies (iv). Finally, uniform matroids
have Theta rank 1 by Proposition 3.2.3. Theta rank ≤ k is retained by series
connection (Corollary 3.2.9) and, by definition, also by the 2-sum.

Example 3.2.14. If we look at the family of 2-level graphic matroids, the
only excluded minor is the graph K4. The class of graphs which do not
contain K4 as a minor is the well-known class of series-parallel graphs
GSP. The theorem implies GLev2 = GSP.

Notice that the class of base polytopes of 2-level matroids is not contained in
any of the families of 2-level polytopes listed in Section 2.2.3. For instance,
it strictly contains all hypersimplices and no hypersimplex can be obtained
as an order polytope. Moreover, there are 2-level base polytopes (like U7,2)
with an odd number of vertices which implies that they are not centrally
symmetric, thus neither Hanner nor Hansen polytopes. Finally, every 2-
level polytope has a simple vertex if and only if it is isomorphic to a stable
set polytope of a perfect graph (see [FFF+]), and the hypersimplex ∆4,2 is
3-dimensional with vertices of degree 4.
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3.3 k-level graphs

In this section we study the class GLevk of k-level graphs for arbitrary k.
The Robertson-Seymour theorem assures that the list of excluded minors
characterizing GLevk is finite and we give an explicit description in the next
subsection. In Section 3.3.2, we focus on the class of 3-level graphs which is
characterized by exactly one excluded minor, the wheel W4 with 4 spokes.
The class of W4-minor-free graphs was studied by Halin and we recover its
building blocks from levelness considerations. In Section 3.3.3 we focus on
the class of graphs with Theta rank 2. Excluded minors for this class can be
obtained from the structure of 4-level graphs.

3.3.1 Excluded minors for k-level graphs

A consequence of Theorem 3.2.13 is that a graph G is 2-level if and only if
G does not have K4 as a minor. In order to give a characterization of k-level
graphs in terms of excluded minors, we first need to view K4 from a different
angle.

Definition 3.3.1. The cone over a graph G = (V,E) with apex w 6∈ V is
the graph

cone(G) = (V ∪ {w}, E ∪ {wv : v ∈ V }).

Let us denote by Cn the n-cycle. Thus, we can view K4 as the cone over C3.
As in the previous section, we only need to consider graphic matroids M(G)
which are connected, that is we restrict to biconnected graphs. For a flacet
F let us denote by VF ⊆ V the vertices covered by F .

Proposition 3.3.2. Let G = (V,E) be a biconnected graph and F ⊂ E a
flacet with |E\F | ≥ 2. Then G|F is a vertex-induced subgraph.

Proof. By contradiction, suppose that e ∈ E\F is an edge with both end-
points in VF . Since F is a flacet, G/F is a biconnected graph with loop e.
This contradicts |E\F | ≥ 2.

The definition of flacets requires the graph G/F to be biconnected. This, in
turn, implies that G|E\F is connected. Let us write C(F ) := {uv ∈ E : u ∈
VF , v 6∈ VF} for the induced cut. Moreover, let us write F := E \(F ∪C(F )).
The next result allows us to find minors G′ of G with Lev(G′) = Lev(G).
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Lemma 3.3.3. Let G be a biconnected graph and F a k-level flacet. Then
F is a k-level flacet of the graph G/F .

Proof. Let H = G/F . It follows from the definition of flacets, that G|F is
connected and thus H/F = G/(F ∪ F ) = U|C(F )|,1 is biconnected. Moreover,
H|F = G|F is biconnected and therefore F is a flacet of H.

The levelness of the flacet F cannot be bigger than k. Let T1 ⊂ E be
a spanning tree such that the restriction to the connected graph G|E\F is
also a spanning tree. In particular, |T1 ∩ F | is minimal among all spanning
trees. It now suffices to show that there is a sequence of spanning trees
T1, T2, . . . , Tk ⊂ E with |Ti ∩ F | = |T1 ∩ F | + i − 1 for all i = 1, . . . , k and
such that Ti ∩ F = Tj ∩ F for all i, j. The contractions Ti/F then show that
F is at least k-level for H.

If Ti ∩ F is not a spanning tree for G|F , then pick e ∈ F \ Ti such that e
connects two connected components of (VF , Ti ∩ F ). Since Ti is a spanning
tree, there is a cycle in Ti ∪ e that uses at least one cut edge f ∈ C(F ) ∩
Ti. Hence Ti+1 = (Ti \ e) ∪ f is the new spanning tree with the desired
properties.

The contraction of F in G gives a graph with vertices VF ∪ {w}, where w
results from the contraction of F .

Proposition 3.3.4. Let G = (V,E) be a simple, biconnected graph and let
w be a vertex such that the set of edges F of G − w is a flacet. Then F is
k-level if and only if deg(w) = k.

Proof. Let Ew be the edges incident to w. For a spanning tree T ⊆ E, we
have `F (1T ) = |F ∩ T | = |T | − |Ew ∩ T |. Hence, F is k-level if and only
if there are at most k spanning trees T1, . . . , Tk such that every Ti uses a
different number of edges from Ew. Since |Ew| = deg(w) and every spanning
tree contains at least one edge of Ew, there are at most deg(w) spanning trees
with different size of the intersection with F , thus k ≤ deg(w). Moreover, G
is simple, thus there exists a spanning tree T1 such that Ew ⊆ T1. Applying
the same reasoning of the proof of Lemma 3.3.3, we obtain the sequence of
spanning trees with the desired properties. Finally, we observe that T1 ∩ F
has deg(w)− 1 connected components, thus the sequence is made of at least
deg(w) trees, proving that deg(w) ≤ k.

It follows from Proposition 3.3.4 that the cone over a biconnected graph on
k vertices has a k-level flacet. The next result gives a strong converse to this
observation. A graph G is called minimally biconnected if G \ e is not
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biconnected for all e ∈ E. For more background on this class of graphs we
refer to [Plu68] and [Dir67].

Proposition 3.3.5. Let G be a simple, biconnected graph with a vertex w
such that the set of edges F not incident to w is a flacet. If F is k-level, then
G has a minor cone(H) with apex w where H is a minimally biconnected
graph on k vertices.

Proof. Let m = |VF |. By Proposition 3.3.4, deg(w) = k and thus m ≥
k. By removing edges if necessary, we can assume that G|F is minimally
biconnected. By Proposition 1.2.4 the contraction of any edge of G|F leaves
a biconnected graph. Contract an edge such that at most one endpoint is
connected to w. The new edge set F ′ is still a k-level flacet. By iterating
these deletion-contraction steps, we obtain a cone over F ′ with apex w.

Theorem 3.3.6. A graph G is k-level if and only if G has no minor cone(H)
where H is a minimally biconnected graph on k + 1 vertices.

Proof. Let G = (V,E) be a graph and F ⊂ E a m-level flacet such that
m > k. By Lemma 3.3.3, we may assume that F is the set of edges not
incident to some w ∈ V . By Proposition 3.3.5, we may also assume that G|F
is minimally biconnected on m vertices. Now, G|F contains a minor H that
is minimally biconnected on k+ 1 vertices and hence G contains cone(H) as
a minor.

3.3.2 The class of 3-level graphs

According to Theorem 3.3.6, the excluded minors for GLev3 are cones over
minimally biconnected graphs on 4 vertices. The only minimally biconnected
graph on 4 vertices is the 4-cycle and hence the excluded minor is W4 =
cone(C4), the wheel with 4 spokes. In general, let us write Wn = cone(Cn)
for the n-wheel, which is a graph of levelness n. The family ofW4-minor-free
graphs was considered by R. Halin (see [Die90, Ch. 6]). In this section, we
will rediscover the building blocks for this class.

We start with the observation that by Lemma 3.2.12 and Corollary 3.2.9,
we may restrict to 3-connected, simple graphs. Recall that a graph G (and
its matroid) is k-connected if the removal of any k−1 vertices leaves G
connected. Also, a graph is k-regular if every vertex is incident to exactly
k edges.

Proposition 3.3.7. A 3-level, 3-connected simple graph is 3-regular.
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Proof. A graph G with a vertex of degree at most 2 cannot be 3-connected. If
there is a vertex w of degree at least 4, then G−w is biconnected. It follows
that the set of edges F not incident to w form a flacet and Proposition 3.3.4
yields the claim.

The following well-known result (see [Oxl11, Thm 8.8.4]) puts strong restric-
tions on minimally 3-connected matroids. A n-whirl is the matroid of the
n-wheel Wn = cone(Cn) with the additional basis being the rim of the wheel
B = E(Cn).

Theorem 3.3.8 (Tutte’s wheels and whirl theorem). Let M = (E,B) be a
3-connected matroid. Then the following are equivalent:

(i) For all e ∈ E neither M\e nor M/e is 3-connected;

(ii) M is a n-whirl or n-wheel, for some n.

We will come back to whirls in the next section. For now, we note that the
only minimally 3-connected graphs are the wheels. Moreover note that every
3-regular simple graph must have an even number of vertices (3|V (G)| =
2|E(G)|).

Lemma 3.3.9. Let G be a 3-connected 3-regular simple graph with at least
6 vertices. Then G is at least 4-level.

Proof. By assumption G cannot be a wheel. By Theorem 3.3.8, there must
be an edge e such that G \ e or G/e is 3-connected. Now, G \ e has a
degree-2 vertex for all e ∈ E and hence is not 3-connected. On the other
hand, G/e is 3-connected and the removal of multiple edges does not alter
3-connectivity. This rules out all the cases where G/e has multiple edges,
because there would be a vertex of degree 2 (not counting multiple edges).
The only possibility is that G/e is a simple 3-connected graph with a vertex
of degree 4. By Proposition 3.3.4, we conclude that G \ e (and consequently
G) is at least 4-level .

Corollary 3.3.10. K4 is the only 3-level, 3-connected simple graph.

The following gives a complete characterization of 3-level graphs.

Theorem 3.3.11. For a graph G the following are equivalent.

(i) G has no minor isomorphic to W4;
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(ii) G is 3-level;

(iii) G can be constructed from the cycles C2, C3, the dual C∗3 , and K4 by
taking direct or 2-sums.

Proof. (i)⇔ (ii) is Theorem 3.3.6 together with the fact that C4 is the unique
minimally biconnected graph on 4 vertices. (ii)⇒ (iii) follows from Corollary
3.3.10. (iii) ⇒ (ii) follows from Corollary 3.2.9 and (1.2).

By inspecting the building blocks for 2-level (Example 3.2.14) and 3-level
graphs, it is tempting to think that the building blocks of k-level graphs are
given by the building blocks and the excluded minors of GLevk−1. This turns
out to be false even for GLev4 . Indeed Lev(K5) = 4 and we cannot obtain it as
a sequence of direct sums and 2-sums of C2, C3, C∗3 , K4 = W3, and W4.

3.3.3 4-level and Theta-2 graphs

A further hope one could nourish is that 3-level graphs coincide with the
graphs of Theta rank 2. This would be the case if and only if Th(W4) = 3.
The only k-level flacet F of Wn with k > 3 is given by the rim of the
wheel F = E(Cn). To find a sum-of-squares representation of `F (x) for the
basis configuration VM(Wn) of Wn, we may project onto the coordinates of F
which coincides with the configuration of forests of Cn. Now, every subset of
E(Cn) is independent except for the complete cycle I = E(Cn). Hence the
configuration of forests is given by {0, 1}n \ {1} and the linear function in
question is `(x) = n− 1−∑i xi. For n = 4 and for all v ∈ {0, 1}4 \ {1},

18`(v) = 2(`(v)(`(v)− 4))2 + (`(v)(`(v)− 1))2,

and this gives a sum-of-squares representation (1) of degree≤ 2. We may now
pullback the 2-sos representation to `F (x) which shows that W4 is Theta-2.

Towards a list of excluded minors for GTh2 , we focus on the class of 4-level
graphs. Using Theorem 3.3.6 we easily find the two excluded minors for GLev4 :

Figure 3.3: Excluded minors of GLev4 .
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The first graph is the 5-wheel W5, the second graph is the cone over K2,3 and
is called A3\x in [Oxl89]. The next result states that this is the right class
to study.

Proposition 3.3.12. The wheel W5 has Theta rank 3.

Proof. Let F = E(C5) be the edges of the rim of the wheel which is a flat
of rank 4. This is the unique 5-level flacet and it is sufficient to show that
4 − `F (x) is not 2-sos with respect to the spanning trees V = VM(W5) of
W5. Arguing by contradiction, let us suppose that there are polynomials
h1(x), . . . , hm(x) of degree ≤ 2 such that

f(x) := 4− `F (x)− h1(x)2 − · · · − h1(x)2

is identically zero on V .

Consider the point p = 1F . This is not a basis of M(W5) and a polynomial
separating p from V is given by f(x). That is, by construction f(x) is a
polynomial that vanishes on V and f(p) ≤ −1 6= 0. Now we may compute a
degree-compatible Gröbner basis of the vanishing ideal I = I(V ) (see Chapter
6 for more) using Macaulay2 [GS]. Evaluating the elements of the Gröbner
basis at p shows that the only polynomials not vanishing on p are of degree
5. As deg(f) ≤ 4 by construction, this yields a contradiction.

The proof suggests an interesting connection to Tutte’s wheels and whirls
theorem (Theorem 3.3.8): for n = 4 it states that the vanishing ideal of the
n-wheel I(Wn) is generated by I(Wn) and a unique polynomial of degree
n. This should be viewed in relation to Proposition 3.1.4: projecting VWn

and VWn onto the coordinates of F = E(Cn) yields {0, 1}n and {0, 1}n \ {1},
respectively.

Oxley [Oxl89] determined that the class of 3-connected graphs not having
W5 as a minor consists of 17 individual graphs and 4 infinite families. The
graph A3\x is 5-level and belongs to this set of graphs. In addition, it is a
minor of all the elements of the 4 infinite families and it is minor of three
further graphs. This proves the following result.

Theorem 3.3.13. Every 4-level graph is obtained by direct and 2-sums of
C2, C3, C∗3 , and the 14 graphs represented in Figure 3.4.
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K4 W4 K3,3 K5\e (K5\e)∗

K5 H6 A3\{x, y} Q3 J1

J2 K2,2,2 H7 J3

Figure 3.4: List of 3-connected graphs of GLev4 .

As A3\x is Theta-2, a complete list of excluded minor has to be extracted
from the 17 graphs plus 4 families in [Oxl89]. As a last remark, we note that
the Theta-1 graphs are given by series-parallel graphs. On the contrary, the
property of being Theta-2 is unrelated to graph planarity. A computational
approach to this list of graphs has been tried: as a result we checked that some
of the graphs in the list are Theta-2. However, whenever we do not obtain
a Theta-2 decomposition of a facet-defining linear function (in a reasonable
amount of computational time), we are missing a certificate to decide if the
graph is Theta-3.

Proposition 3.3.14. The graphs K5 and K3,3 have Theta rank 2.

Proof. For both cases we use the idea that for a given flacet F ⊆ E, we may
project the basis configuration V onto the coordinates given by F and find
a 2-sos representation of the linear function rank(F )−∑i xi.

For the graph K3,3, the only flacets of levelness > 3 are given by 4-cycles.
Projecting onto these coordinates yields {0, 1}4 \ {1} which is a point con-
figuration of Theta rank 2.

For the complete graphK5, we note that any flacet F of levelness > 3 is given
by the edges of an embedded K4. For such a flacet, we might equivalently
consider `E\F (x)−1 ≥ 0. Projecting onto E\F again yields {0, 1}4\{0}.
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3.4 Excluded minors for k-level matroids

Theorem 3.2.1 implies that the classMLev
k andMTh

k have an excluded minor
characterization. Theorem 3.2.13 provides the list of excluded minors for
MLev

2 = MTh
1 , and in particular, shows that the list is finite. In general,

the list of excluded minors is not expected to be finite for all minor-closed
matroid families.

In the previous section we described the excluded minors of GLevk , for every
k. Since we are dealing with a minor-closed class of graphs, they are finitely
many as implied by Robertson-Seymour theorem ([RS04]). On the other
hand, the problem of characterizing the finite excluded minors of GThk remains
open, even for k = 2.

This section is devoted to the excluded minors ofMLev
k for k > 2. A complete

characterization, analogous to the graph setting, seems out of reach. For
instance, the cone construction introduced for graphs (3.3.1) is not a matroid
operation, since it relates to the vertex structure. In this section we prove
that the list of excluded minors ofMLev

k is finite for every k.

Let us define the following property of matroids, which relates to their level-
ness.

Definition 3.4.1. A matroid M is called minimally k-level if Lev(M) = k
and for every minor N , Lev(N) < Lev(M).

SinceM1⊕2M2 contains bothM1 andM2 as minors ([Oxl11, Thm. 8.3.1]), it
follows from Lemma 3.2.12 and Corollary 3.2.9 that every minimally k-level
matroid is 3-connected.

The minimally k-level matroids relate to the excluded minors for levelness.
In particular, we immediately realize that every excluded minor of MLev

k is
a minimally (k+i)-level matroid for some i ≥ 1. Moreover, all minimally
(k+1)-level matroids are excluded minors ofMLev

k . However, it is not clear
a priori whether there exists an excluded minor ofMLev

k which is minimally
(k+i)-level for i > 1. We answer this question in Proposition 3.4.14.

We state now the main theorem of this section.

Theorem 3.4.2. For every k, there are finitely many minimally k-level ma-
troids. In particular, the list of excluded minors forMLev

k−1 is finite.

To prove the theorem, we show that for a fixed k, the size of the ground set of
a minimally k-level matroid is bounded, which implies that we can construct
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finitely many of such matroids. Moreover, Proposition 3.4.14 gives that the
excluded minors for MLev

k−1 are exactly the minimally k-level matroids and
the second claim of the theorem follows.

To bound the size of the ground set of a minimally k-level matroid M , we
choose one of its k-level flacets F and bound separately the size of F and the
size of its complement F = E(M) \ F . Both tasks require us to analyze the
structure of minimally k-level matroids and their properties.

We already saw in the proof of Lemma 3.3.3 the approach we will often use
in this section to determine the levelness of a matroid. More precisely, in
the graph setting we constructed a particular sequence of spanning trees of
a graph with respect to a flacet in order to deduce the levelness. We now
generalize this idea to any matroid M . A k-sequence of bases for a flacet
F is a collection of bases B1, . . . , Bk ∈ B(M) such that:

(i) |F ∩B1| is minimal among all bases;

(ii) |F ∩Bi| = |F ∩B1|+ i− 1, for 1 ≤ i ≤ k;

(iii) F ∩Bi ⊂ F ∩Bi+1, for 1 ≤ i ≤ k−1;

(iv) |F ∩Bk| = rankM(F ).

Lemma 3.4.3. A flacet F of a matroid M is k-level if and only if there is a
k-sequence of bases for F .

Proof. If F is a k-level flacet, we start from B1 ∈ B(M) such that |F ∩B1| is
minimal among all bases. We construct the sequence in the following way: if
F ∩Bi is not a basis of M |F , we pick f ∈ F such that rankM((F ∩Bi)∪f) =
rankM(F ∩Bi)+1. The set Bi∪f contains a circuit with at least one element
e ∈ F . Let us set Bi+1 = Bi \ e ∪ f . The sequence can be extended until
|F ∩ Bi| = rankM(F ). If F is k-level, then Bk must be the first basis in the
sequence such that F ∩Bk is a basis of M |F .
Conversely, given a k-sequence of bases for a flacet F , F is clearly k-level.

Before we start to investigate the family of minimally k-level matroids, we
introduce some technical lemmas. The following two lemmas follow from the
properties of the collection of circuits described in Proposition 1.2.2.

Lemma 3.4.4. Let M be a connected matroid and B any basis. For any
e ∈ E(M), the set B ∪ e contains a circuit C with at least 2 elements such
that e ∈ C. Moreover, for any e′ ∈ C the set B \ e′ ∪ e is a basis of M .
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Proof. Since B is a basis, it is immediate that B∪ e contains a circuit C and
e ∈ C. Moreover, M is connected, thus e is not a loop and C contains at
least another element. For any e′ ∈ C, consider B′ := B \ e′ ∪ e.
Suppose by contradiction that B′ is not a basis. The set B′ necessarily
contains a circuit C ′ and e ∈ C ′. Since e ∈ C ∩ C ′, by Proposition 1.2.2
there exists a circuit C ′′ such that C ′′ ⊆ (C ∪ C ′) \ e ⊆ B. This yields the
contradiction and concludes the proof.

Lemma 3.4.5. Let M be a matroid such that the set {e, e′} ⊆ E(M) is a
circuit. Then for every circuit C ∈ C(M) such that e ∈ C and e′ /∈ C, the
set C \ e ∪ e′ is also a circuit.

Proof. Let us consider the two circuits {e, e′} and C: since e ∈ C ∩ {e, e′},
by Proposition 1.2.2 the set (C ∪{e, e′}) \ e contains a circuit C ′. By contra-
diction, suppose that C ′ 6= C \ e∪ e′: since C is a circuit, e′ ∈ C ′. Moreover,
e′ ∈ C ′∩{e, e′} allows us to apply again Proposition 1.2.2 to claim that there
exists a circuit C ′′ such that C ′′ ⊆ (C ′∪{e, e′})\e′ ⊂ C. Since C is a circuit,
this yields a contradiction and proves that C ′ = C \ e ∪ e′ ∈ C(M).

The third lemma is specifically related to levelness.

Lemma 3.4.6. Let M be a connected matroid and F a k-level flacet. For
any e ∈ F , there exists a k-sequence of bases B1, . . . , Bk such that e ∈ Bi for
i = 1, . . . , k.

Proof. Consider any basis B such that |F ∩B| is minimal among the bases.
If e ∈ B, we set B1 = B. Otherwise, by Lemma 3.4.4, B ∪ e contains a
circuit C (with at least 2 elements) such that e ∈ C and for any e′ ∈ C,
the set B \ e′ ∪ e is a basis. We can choose an element e′ ∈ F ∩ C. Indeed
suppose that F ∩C = {e}; since F is a flat, this would imply e ∈ F which is
a contradiction. Thus we choose e′ ∈ F ∩C and set B1 = B \ e′ ∪ e. Now we
construct the sequence starting from B1 as in the proof of Proposition 3.4.3,
with the additional requirement that we never remove e when passing from
Bi to Bi+1. This is possible because whenever e belongs to the circuit C in
Bi ∪ f for f ∈ F , C contains at least another element in F .

A matroid M is minimally connected if M is connected and there is no
element e ∈ E(M) such that M \ e is connected.

We prove now four propositions which eventually will provide us the tools to
obtain the upper bounds on the size of minimally k-level matroids.
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Proposition 3.4.7. Let M be a minimally k-level matroid and F a k-level
flacet of M . Then (M/F )∗ is a minimally connected matroid.

Proof. Suppose that (M/F )∗ is not minimally connected. There exists an
element e ∈ F such that the deletion (M/F )∗ \ e is a connected matroid.
Dually, Corollary 1.2.7 implies that (M/F )/e is connected.

Since M is minimally k-level, it is 3-connected. By Lemma 3.4.6 we can
construct a k-sequence of bases for F such that all bases contain e. We have
that B1 \ e, . . . , Bk \ e is a k-sequence of bases of the matroid M/e for F . We
only need to check that F is a flacet of M/e.

If C is a circuit containing e and some elements of F , it must contain at least
a second element e′ ∈ F because F is a flat. In addition, there must be at
least a third element e′′ ∈ F , otherwise e′ would be a loop of (M/F )/e, which
is connected by hypothesis. This shows that F is a flat of M/e. Moreover,
(M/e)/F ∼= (M/F )/e and (M/e)|F ∼= M |F are connected. Thus F is a
k-level flacet of M/e, contradicting the k-level minimality of M .

Proposition 3.4.8. Let M be a minimally k-level matroid and F a k-level
flacet of M . Then rankM(F ) = |F |.

Proof. By contradiction, suppose rankM(F ) < |F |. Consider a k-sequence of
bases B1, . . . , Bk for F . Because of the assumption rankM(F ) < |F |, we can
pick an element e ∈ F \B1. By Proposition 3.4.7, (M/F )/e is not connected.
Since F is a flacet, M/F is connected and Proposition 1.2.4 implies that
(M/F ) \ e is connected.

The set F is a flacet of the matroid M \ e. Indeed F is a flat of M \ e and
both (M \ e)|F ∼= M |F and (M \ e)/F ∼= (M/F ) \ e are connected.

The bases B1, . . . , Bk are also bases for M \ e and form a k-sequence for
the flacet F . Thus M \ e is a k-level minor of M , contradicting the k-level
minimality of M .

Proposition 3.4.9. Let M be a minimally k-level matroid and F a k-level
flacet of M . Then M |F is a minimally connected matroid.

Proof. Suppose that M |F is not minimally connected. Consider e ∈ F such
that (M |F ) \ e is connected. F̂ = F \ e is a flat of M \ e. We show that F̂ is
a k-level flacet of M \ e.
The matroid (M \ e)|F̂ ∼= (M |F ) \ e is connected by hypothesis and the
matroid (M \ e)/F̂ is also connected. To prove the second claim, we show
that (M \e)/F̂ ∼= M/F . Since M |F is connected, we can consider one circuit
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C ofM |F containing e such that it has the least possible number of elements.
Let us choose another element e′ ∈ C and define the set C− := C \ {e, e′}.
The set {e, e′} is a circuit of the matroid M ′ := M/C−. By Lemma 3.4.5
e ∈ C ′ ∈ C(M ′) implies C ′ \ e ∪ e′ ∈ C(M ′). Thus, (M ′ \ e)/e′ ∼= (M ′/e)/e′

and the claim follows.

At last, we show that there is a k-sequence of bases of M \ e for F̂ . Let us
consider a k-sequenceB1, . . . , Bk ∈ B(M) for F such that e /∈ Bk. To find this
sequence we exploit the fact thatM |F is connected and therefore there exists
a basis of M |F avoiding any chosen element e. We can complete this basis
to a basis Bk of M . Then, we construct the sequence B1, . . . , Bk backwards:
given Bi, consider an element f ∈ F such that f /∈ Bi. The set Bi ∪ f
contains a circuit with at least one element f ′ ∈ F because M is minimally
k-level and by Proposition 3.4.8 there is no circuit entirely contained in F .
Thus, we set Bi−1 = Bi \ f ′ ∪ f .
The k-sequence B1, . . . , Bk is also a k-sequence of bases ofM \e for the flacet
F̂ , contradicting the k-level minimality of M .

Proposition 3.4.10. Let M be a minimally k-level matroid and F a k-level
flacet of M . Then rankM(F ) = k−1.

Proof. Suppose that rankM(F ) > k−1. Consider a k-sequence B1, . . . , Bk

for F : by definition |F ∩ Bk| = rankM(F ) > k−1 and thus |F ∩ B1| > 0.
Equivalently, there is an element e ∈ F such that e ∈ Bi for i = 1, . . . , k. We
prove that the matroid M/e is k-level with respect to the flacet F̂ = F \ e.
The matroid (M/e)|F̂ ∼= (M |F )/e is connected because M |F is minimally
connected by Proposition 3.4.9 and (M/e)/F̂ ∼= M/F is connected because
F is a flacet of M . Finally, B1 \ e, . . . , Bk \ e are bases of M/e and form a
k-sequence of the flacet F̂ , contradicting the k-level minimality of M .

We report two useful propositions whose proofs are available in Oxley ([Oxl11]).

Proposition 3.4.11 ([Oxl11, Prop. 4.3.11]). LetM be a minimally connected
matroid of rank r where r ≥ 3. Then |E(M)| ≤ 2r−2. Moreover, equality
holds if and only if M ∼= M(K2,r−1).

Proposition 3.4.12 ([Oxl11, Ch. 4, Ex. 10 (d)]). Let M be a matroid for
which M∗ is minimally connected. Then either M ∼= Un,1 for some n ≥ 3 or
M has at least rank(M)+1 non-trivial parallel classes.

Notice that there is only one minimally connected matroid of rank 1, namely
U1,1. Also the rank 2 case is easy to understand.
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Corollary 3.4.13. The uniform matroid U3,2 is the only minimally connected
matroid of rank 2.

Proof. LetM be a minimally connected matroid of rank 2 on n ≥ 3 elements.
The dual matroid M∗ is a rank n−2 matroid. By Proposition 3.4.12, either
M∗ ∼= Un,1 or M∗ has at least rank(M∗)+1 = n−2+1 = n−1 non-trivial
parallel classes. The first possibility implies n−2 = 1, hence M = U3,2; the
second possibility would require at least 2n−2 > n elements, which is clearly
not possible.

The following proposition implies the equivalence of excluded minors for
MLev

k−1 and minimally k-level matroids.

Proposition 3.4.14. Every minimally k-level matroid M has a minor N
such that Lev(N) = k−1.

Proof. Consider a k-level flacet F of a minimally k-level matroid M and
choose a k-sequence B1, . . . , Bk for F . Pick the element e ∈ F such that
e /∈ B1 and e ∈ Bi for i = 2, . . . , k.

Since M is minimally k-level, Lev(M/e) ≤ k−1. Moreover, F̂ := F \ e
is a flacet of M/e (we apply here the same argument used in the proof of
Proposition 3.4.10) and it is (k−1)-level since we can exhibit the (k−1)-
sequence of bases B2 \ e, . . . , Bk \ e.

We now present the proof of the main theorem of this section.

Proof of Theorem 3.4.2. Let us consider a minimally k-level matroid M for
k ≥ 4: any k-level flacet F of M is of rank k−1 by Proposition 3.4.10. In
particular, rank(F ) ≥ 3 and therefore, by Proposition 3.4.9 and Proposition
3.4.11, F has at most 2(k−1)− 2 = 2k−4 elements.

We try to find an upper bound for the number of elements in F . First, we
partition F into two sets T and S = F \ T such that

T = {e ∈ F : ∃C circuit of M with e ∈ C and |C ∩ F | = 2}.

Every element e ∈ T is in a non-trivial parallel class of M/F : by definition,
e ∈ T if there is a circuit C of M containing elements of F and only another
element e′ ∈ F which implies that {e, e′} is a circuit of M/F . On the other
hand, every element e ∈ S is in a circuit containing at least 3 elements of
F and therefore e is a trivial parallel class of M/F . Since all the non-trivial
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parallel classes originate from elements in T and every class has at least 2
elements, their number is bounded from above by |T |/2.
Let us set h := rank(M)− rank(F )−1, so that rank(M/F ) = h + 1. By
Proposition 3.4.7, (M/F )∗ is a minimally connected matroid on at least 3
elements (since the levelness requirements imply |F | ≥ 4) and by Proposition
3.4.12 there are two possibilities:

(i) M/F ∼= U|F |,1. This means rank(M) = k and |F | ≤ k because of
Proposition 3.4.8. It follows that |E(M)| = |F |+|F | ≤ 2k−4+k =
3k−4;

(ii) rank(M/F ) = h+1 > 1. By proposition 3.4.12 M/F has at least h+2
non trivial parallel classes, hence we obtain the inequality

|T |
2
≥ h+ 2⇒ |T | ≥ 2h+4. (3.1)

Moreover, F has exactly rank(F )+h+1 = k+h elements and this fact
yields a second inequality, namely

|T | ≤ k+h. (3.2)

Combining 3.1 and 3.2 we get

2h+4 ≤ k+h =⇒ h ≤ k−4.

It is immediate that |F | = k+h ≤ 2k−4 and finally

|E(M)| = |F |+|F | ≤ 2k−4+2k−4 = 4k−8.

We have shown that for every minimally k-level matroid M , k ≥ 4, |E(M)|
is bounded.

The case k = 2 is trivial since M |F = U1,1 and the case k = 3 is such that
M |F = U3,2 and |F | ≥ 3. We can find an upper bound |F | using the same
argument as before: the only difference is that the first case yields the upper
bound |F | ≤ 3 and the second case |F | ≤ 2k− 4 = 2 which is not realizable.
Thus |F | = 3.

For any k, the number of elements of a minimally k-level matroid is bounded,
therefore there exist finitely many minimally k-level matroids.

If we consider an excluded minor M ofMLev
k−1, every minor of M is at most

(k−1)-level. From Proposition 3.4.14 it follows that every excluded minorM
ofMLev

k−1 is such that Lev(M) = k. We conclude that the excluded minors of
MLev

k−1 are the minimal k-level matroids, which are finitely many.





Chapter 4

The constructive approach

4.1 Structural properties

Part (iv) of Theorem 3.2.13 suggests us to try a constructive approach to
2-level matroids. This point of view can be framed in the general theory of
matroid decompositions and yields some useful results for the case we are
interested in. More precisely, 2-level matroids turn out to be in bijection
with a particular class of trees.

4.1.1 Tree decompositions of matroids

To understand matroid properties from the constructive perspective, it is
convenient to adapt the definition of 2-sum for matroids with disjoint ground
sets. Let M1 and M2 be matroids such that E(M1) ∩ E(M2) = ∅. For any
pair e1 ∈ E(M1) and e2 ∈ E(M2) that are not loops nor coloops, we define
the 2-sum (M1, e1)⊕2 (M2, e2) as the matroid (E(M1)∪E(M2) \ {e1, e2},B),
where

B := {B1∪B2\{e1, e2} : B1 ∈ B(M1), B2 ∈ B(M2), |(B1∪B2)∩{e1, e2}| = 1}.

The elements e1 and e2 are called the base points of the 2-sum.

As we already mentioned, there is a theory of matroid decompositions and
we refer to [Oxl11, Sect. 8.3] for a complete overview on this topic. The
decomposition relies heavily on the 2-sum operation and proves itself to be
a valuable tool for the understanding of 2-level matroids. In this section we
summarize a few definitions and results that are relevant for our purposes.

Definition 4.1.1. A matroid-labelled tree is a tree T with vertex set
{N1, . . . , Ns} for some positive integer s such that

(i) the Ni’s are matroids with pairwise disjoint ground sets;
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56 4.1. STRUCTURAL PROPERTIES

(ii) an edge joining Ni and Nj is labelled by a set {ei, ej} such that ei ∈
E(Ni), ej ∈ E(Nj), and ei, ej are neither loops nor coloops;

(iii) every element ei ∈ E(Ni) is used in at most one edge label.

We call N1, . . . , Ns the vertex labels of T .

From now on we will call Un,1 a multiedge and denote it by Mn and we will
call Un,n−1 a ring and denote it by Rn. As already observed in Chapter 1,
rings and multiedges are graphic matroids.

Given a matroid-labelled tree T , let us consider an edge t with label {ei, ej},
which connects two vertex labels Ni and Nj. The contraction of t yields
a matroid-labelled tree T/t with the same vertex labels except Ni and Nj

which have been merged in a vertex label (Ni, ei)⊕2 (Nj, ej). The adjacencies
of T/t are given by the contraction of the edge t in T .

For each vertex label Ni of a matroid-labelled tree, we partition the ground
set E(Ni) into two sets: the set W (Ni) of elements which appear in some
edge label and the set F (Ni) = E(Ni) \W (Ni). We call W (Ni) the set of
ideal elements (generalizing the notion of ideal edge in [Tut01, Sect. IV.3])
and F (Ni) the set of free elements.

Example 4.1.2. Figure 4.1 displays, on the left, 5 graphs related by 2-
sums, whose base points are specified by pairs of equal colors. Performing
all operations yields the graph on the right which is series-parallel, since
obtained as a sequence of 2-sums of rings and multiedges.

1
3

2
4

⊕2

5

6

7

⊕2

8

9

10

11

12

⊕2

13
14

15

16

⊕2
17

18
19

6

9

10

11

15

14

3

2

1 19
18

Figure 4.1: Sequence of 2-sums of graphs.
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Each graph is labelled in order to describe its ground set and its collection
of bases. The free elements are colored blue. We can represent the structure
of the 2-sums by the tree shown in Figure 4.2.

{4, 5}

{7, 8} {12, 13}

{16, 17}

R4

M3

R5

M4

R3

Figure 4.2: Example of matroid-labelled tree.

The tree T is a matroid-labelled tree. The contraction of all edges in T yields
a matroid-labelled tree with a unique vertex label corresponding to the graph
shown on the right in Figure 4.1.

Definition 4.1.3. A tree decomposition of a connected matroid M is
a matroid-labelled tree T such that if V (T ) = {N1, . . . , Ns} and E(T ) =
{t1, . . . , ts−1}, then

(i) E(M) =
⋃s
i=1 F (Ni);

(ii) |E(Ni)| ≥ 3 for all i, unless |E(M)| < 3, in which case s = 1 and
N1 = M ;

(iii) M is the matroid that labels the single vertex of T/{t1, t2, . . . , ts−1}.

The condition (ii) ensures that every tree decomposition of a matroid M has
a finite number of vertex labels. Otherwise, for instance, we could add a chain
of arbitrarily many vertex labels U2,1 and still obtain a tree decomposition
of M .

Notice that the matroid-labelled tree of Example 4.1.2 satisfies all the re-
quirements for being a tree decomposition of the series-parallel graph drawn
in Figure 4.1.

The following theorem is taken from [Oxl11, Thm. 8.3.10] and originally ap-
peared in [CE80]. According to our definitions, we replace the words “circuit”
and “cocircuit” with “ring” and “multiedge”, respectively.

Theorem 4.1.4. Let M be a connected matroid. Then M has a tree decom-
position TM in which every vertex label is a 3-connected matroid, a ring, or
a multiedge, and there are no two adjacent vertices that are both labelled by
rings or by multiedges. Moreover, TM is unique up to relabelling of its edges.
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The requirement of no adjacent rings or multiedges is strictly necessary for
uniqueness as Figure 4.3 shows.

{4, 5} {4, 5} {7, 8}
R6 R4 R4 R4 R3 R3

∼= ∼=

Figure 4.3: Tree decompositions of R6.

Every matroid-labelled tree T which satisfies the condition (ii) of Definition
4.1.3 is a tree decomposition of the matroid obtained by contracting all edges
of T . We want to “reverse” the decomposition process and understand which
non-isomorphic (in terms of the corresponding matroids) tree decompositions
can be constructed when we restrict the possible choices for vertex labels.
The constructive process requires to choose the tree structure (the vertex
labels and their adjacencies) and an appropriate labelling for the edges.

Theorem 4.1.4 explains how to prevent the construction of different tree
structures representing isomorphic matroids: we only use vertex labels that
are 3-connected matroids, rings, or multiedges. In addition, two vertex labels
Ni and Nj can be adjacent only if they are not both rings or both multiedges.

Our focus is on 2-level matroids, hence the set of possible vertex labels re-
stricts to uniform matroids by Part (iv) of Theorem 3.2.13. We divide them
into three categories:

(i) M-vertices: correspond to multiedges of size at least 3;

(ii) R-vertices: correspond to rings of size at least 3;

(iii) U-vertices: correspond to uniform matroids Un,k such that n ≥ 4 and
2 ≤ k ≤ n− 2.

Once we decided the tree structure, we have to choose an appropriate edge
labelling. For any pair of vertex labels Ni and Nj connected by an edge, we
choose two base points ei ∈ F (Ni) and ej ∈ F (Nj) for the 2-sum. After we
add the edge label {ei, ej}, the elements ei and ej are no longer free elements.

Since every free element can be used at most once to label an edge, the
degree deg(Ni) of a vertex label Ni, that is, the number of edges incident
to Ni, can be at most |E(Ni)|. This condition must be satisfied by the tree
structure. Corollary 3.2.10 implies that every tree constructed with labels
of type M, R, and U yields a 2-level matroid if it satisfies the condition that
deg(Ni) ≤ E(Ni) for all vertex labels.
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In general, different choices of the base points yield non-isomorphic matroids,
despite the fact that the tree structure is the same. Example 4.1.5 shows this
possibility for a tree with only two vertex labels.

At the beginning of this chapter we described the collection of bases for the
2-sum; the collection of circuits of (M1, e1)⊕2 (M2, e2) is

C(M1 \ e1) ∪ C(M2 \ e2) ∪ (4.1)
∪ {(C1 \ e1) ∪ (C2 \ e2) : e1 ∈ C1 ∈ C(M1) and e2 ∈ C2 ∈ C(M2)} .

Example 4.1.5. Consider two copies of the 3-connected matroid P6 whose
geometric representation is given in Figure 3.2. P6 has one circuit with 3
elements and all other circuits with 4 elements. Let us label the ground set
of the first copy by [6] := {1, . . . , 6} in such a way that the only circuit with
3-elements is {1, 2, 3}; analogously the second copy has ground set [7, 12] :=
{7, . . . , 12} and circuit with 3 elements {7, 8, 9}. Figure 4.4 shows two non-
isomorphic 2-sums obtained by different choices of the base points.

{1, 7}
P6 P6 �

{4, 10}
P6 P6

Figure 4.4: Non-isomorphic matroids from 2-sum of two copies of P6.

From the description of circuits (4.1), it is immediate that the first matroid
has circuits of size 4, 5, and 6 and the second one has circuits of size 3, 4,
and 6. Thus, the two matroids are not isomorphic.

4.1.2 The family of UMR-trees

We define a class of trees whose vertices are labelled by uniform matroids
and show that it is in bijection with the family of connected 2-level matroids.

Definition 4.1.6. Let T be a tree whose vertex labels are of type U, M, and
R and such that no two M-vertices and no two R-vertices are adjacent. The
tree T is a UMR-tree if deg(Ni) ≤ |E(Ni)| for every vertex label Ni.

Notice that the edges of a UMR-tree T are unlabelled. Every matroid-labelled
tree that we obtain by an appropriate edge-labelling of T is the unique tree
decomposition of some 2-level matroid. Example 4.1.5 shows that, a priori,
different edge-labellings of T can yield tree decompositions of non-isomorphic
matroids. We prove in this section that this does not happen: every UMR-
tree corresponds to exactly one connected 2-level matroid.
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Let M be a matroid and π : E(M) → E(M) a permutation of its ground
set. Given the collection of bases B of M , we define π(B) := {π(B) : B ∈
B}. A matroid M is called permutation invariant if π(B) = B for every
permutation π of the ground set. We say thatM is transposition invariant
with respect to e1 ∈ E(M) and e2 ∈ E(M) if π(B) = B for the transposition
π = (e1, e2). Notice that the previous definitions apply if we consider the
collection of circuits C = C(M) instead of the collection of bases B. Indeed
π(B) = B if and only if π(C) = C.
Every uniform matroid is permutation invariant and it is easy to see that
every permutation invariant matroid is uniform.

The definition of permutation invariant matroid is too restrictive, therefore
we introduce a weaker definition of invariance. LetM be a matroid and TM its
unique tree decomposition. We say that M is Ni-transposition invariant
for a vertex label Ni of TM if it is transposition invariant with respect to
every pair of elements in F (Ni). We say that M is node-invariant if it is
Ni-transposition invariant for every vertex label Ni of TM .

In the rest of the section, whenever we refer to a uniform matroid U , we
assume that E(U) ≥ 3.

Lemma 4.1.7. Let M be a Ni-transposition invariant connected matroid
and U a uniform matroid. For every choice of f ∈ F (Ni) and u ∈ E(U), the
2-sum (M, f)⊕2 (U, u) yields the same matroid up to isomorphism.

Proof. The uniform matroid U is permutation invariant and thus the choice
of u ∈ E(U) does not affect the result of the 2-sum. Consider any two
elements f1, f2 ∈ F (Ni). We want to show that

Sf1 := (M, f1)⊕2 (U, u) ∼= (M, f2)⊕2 (U, u) =: Sf2 .

Notice that E(Sf2) = E(Sf1) \ {f2} ∪ {f1}. We claim that the bijection
ϕ : E(Sf1)→ E(Sf2) such that

ϕ(e) =

{
f1 , if e = f2

e , otherwise.

yields the matroid isomorphism. We need to show that for everyX ⊂ E(Sf1),
X ∈ C(Sf1) if and only if ϕ(X) ∈ C(Sf2).
As we mentioned in (4.1), a circuit C of Sf1 can be of 3 different types:

(i) C ∈ C(U \ u). Clearly ϕ(C) = C and C ∈ C(Sf2);
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(ii) C ∈ C(M \ f1). This implies that C is a circuit of M not containing
f1. Since M is Ni-transposition invariant, we have that π(C) ∈ C(M)
for π = (f1, f2). Moreover, f1 /∈ C implies f2 /∈ π(C), that is π(C) ∈
C(M \ f2). Finally, ϕ(C) = π(C) ∈ C(M \ f2) and thus ϕ(C) ∈ C(Sf2);

(iii) C = (C1\f1)∪(C2\u), f1 ∈ C1 ∈ C(M) and u ∈ C2 ∈ C(U). SinceM is
Ni-transposition invariant, for π = (f1, f2) we have π(C1) ∈ C(M) and
f2 ∈ π(C1). Moreover, ϕ(C) = (π(C1)\f2)∪(C2\u), f2 ∈ π(C1) ∈ C(M)
and u ∈ C2 ∈ C(U) and thus ϕ(C) ∈ C(Sf2).

We proved that the image under ϕ of any circuit of Sf1 is a circuit of Sf2 .
The same argument applies to show that all circuits of Sf2 are circuits of Sf1
under the map ϕ−1 : E(Sf2)→ E(Sf1).

Lemma 4.1.8. Let M be a node-invariant connected matroid and U a uni-
form matroid. The 2-sum (M, f) ⊕2 (U, u) is a node-invariant matroid for
any choice of f ∈ E(M) and u ∈ E(U).

Proof. Let Ni be a vertex label of the unique tree decomposition TM of the
matroid M : without loss of generality, we assume f ∈ E(Ni). In particular,
we choose f ∈ F (Ni). To prove that Sf := (M, f)⊕2 (U, u) is node-invariant,
we check that Sf is Nj-transposition invariant for every vertex label Nj.
Let Nj be a vertex label and f1, f2 ∈ F (Nj), f1, f2 6= f . The set C(Sf ) is
transposition invariant for π = (f1, f2). Indeed C(M \ f) and C(U \ u) are
transposition invariant for π because M is node-invariant and π does not act
on E(U). The same holds true for the circuits of the third type, since

π((C1 \ f) ∪ (C2 \ u)) = (π(C1) \ f) ∪ (C2 \ u)

and f ∈ π(C1) ∈ C(M) by node-invariance of M .

The tree decomposition of Sf has one new vertex, labelled by the uniform
matroid U . We still have to check that Sf is U -transposition invariant. The
same argument used above applies, since U is permutation invariant.

Now we are ready to state the main theorem of this section.

Theorem 4.1.9. The class of connected 2-level matroids is in bijection with
the class of UMR-trees.

Proof. By definition, every UMR-tree T admits an edge-labelling that turns
T into the unique tree decomposition TM of a matroid M . Now we show
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by induction on the number of vertex labels n that all edge-labellings for T
yield the same matroid M up to isomorphism and that M is node-invariant.

The base case n = 1 is trivial because the tree has no edges and a uniform
matroid is clearly node-invariant. Suppose that the tree T has n > 1 vertex
labels. Let U (a uniform matroid) be a leaf of T connected to a vertex
label Ni. By induction hypothesis, if we remove U from T , we obtain a
UMR-tree T ′ for which all edge-labellings determine the same matroid M ′

up to isomorphism. Moreover, M ′ is node-invariant. Now we consider the
2-sum (M ′, f) ⊕2 (U, u), where f ∈ F (Mi) and u ∈ E(U). By Lemma 4.1.7
every choice of f ∈ F (Ni) and u ∈ E(U) yields the same matroid M (up to
isomorphism). In addition, M is node-invariant by Lemma 4.1.8. Therefore
every edge-labelling of T yields a tree decomposition of the same matroid M
and the bijection follows.

4.2 Base polytopes and 2-sum

In this section we prove a property of the collection of bases of 2-level ma-
troids which allow us to explicitly determine a unimodular triangulation for
the associated base polytopes. Moreover, we show that these base polytopes
are alcoved, which implies the possibility of studying their volumes by means
of permutations.

Most proofs exploit the fact that 2-level matroids are constructed by sequen-
tial 2-sums of uniform matroids.

4.2.1 Sort-closed matroids and triangulations

Let M ∈ MLev
2 be a matroid of rank k on n elements. The base polytope

PM is a subpolytope of the hypersimplex ∆n,k. We will show that M is sort-
closed which implies that a well-known triangulation of ∆n,k due to Stanley
induces a unimodular triangulation of PM as proven in [LP07].

Let B be a collection of k-subsets of [n]. We consider an ordering o of the
elements [n]. For B1 and B2 in B we define

sorto(B1, B2) := {b1 ≤o b2 ≤o . . . ≤o b2k}

as the ordered sequence of elements of B1 tB2, that is, the multiset merging
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the elements of B1 and B2. We also define

Oddo(B1, B2) := {b1, b3, . . . , b2k−1}, and
Eveno(B1, B2) := {b2, b4, . . . , b2k}.

Notice that Oddo(B1, B2) and Eveno(B1, B2) are k-subsets of [n] and depend
on the chosen ordering o.

The collection B is called sort-closed if for every pair B1 and B2 in B, both
sets Oddo(B1, B2) and Eveno(B1, B2) are in B.

Definition 4.2.1. A matroid M = ([n],B) with an ordering o of the ground
set is sort-closed if the collection of bases B is sort-closed for o.

Sort-closed matroids appeared first in [Blu01] with the name of base-sortable
matroids. The property of being sort-closed depends on the ordering of the
ground set; up to relabelling of the ground set [n], we can assume that a
matroid is sort-closed for the natural ordering 1 < 2 < . . . < n of [n].

Example 4.2.2. Consider the matroidM in Example 1.2.3 with the natural
ordering o of the ground set 1 < 2 < 3 < 4. Its collection of bases B contains
all 2-subsets of [4] except {3, 4}. For every pair B1 and B2 in B, the non-
decreasing sequence is sorto(B1, B2) = {b1 ≤o b2 ≤o b3 ≤o b4}. Suppose that
Eveno(B1, B2) = {b2, b4} = {3, 4}: clearly b3 = 3 or b3 = 4 and in both cases
B2 = {3, 4}. Since this is not possible, M is sort-closed.

If we consider the isomorphic matroid M ′ obtained by exchanging labels 1
and 4 as shown in Figure 4.5 (this is equivalent to consider the ordering
4 < 2 < 3 < 1 of E(M)), we have the collection of bases

B′ = {{1, 2}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}.

4

32
1

Figure 4.5: Relabelling of the triangle with one double edge.

For B1 = {1, 2} and B2 = {3, 4} in B′, we have Oddo(B1, B2) = {1, 3} /∈ B′.
Thus M ′ is not sort-closed for the natural ordering of its ground set.
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Given a matroid on n elements and an ordering o of the ground set, we may
assume, up to relabelling of the ground set, that the ordering o is 1 < 2 <
. . . < n. A cyclic shift of this ordering is an ordering i < i+ 1 < . . . < n <
1 < . . . < i− 1 for some i ∈ [n].

Proposition 4.2.3. A sort-closed matroid M = ([n],B) with the ordering o
of the ground set is sort-closed for any cyclic shift ocyc of o.

Proof. Since M with o is sort-closed, for any pair B1 and B2 in B, the
sequence sorto(B1, B2) yields Oddo(B1, B2) ∈ B and Eveno(B1, B2) ∈ B. The
sequence sortocyc(B1, B2) is a cyclic shift of the sequence sorto(B1, B2) which
implies that either Oddocyc(B1, B2) = Oddo(B1, B2) and Evenocyc(B1, B2) =
Eveno(B1, B2), or Oddocyc(B1, B2) = Eveno(B1, B2) and Evenocyc(B1, B2) =
Oddo(B1, B2).

Next we show that the 2-sum of matroids preserves the property of being
sort-closed.

Theorem 4.2.4. Let M1 and M2 be two connected sort-closed matroids.
Then the 2-sum M = (M1, e1)⊕2 (M2, e2) is a sort-closed matroid for some
ordering of the ground set E(M).

Proof. Assume that E(M1) = [n] and E(M2) = [n+1, n+m] := {n+1, n+2,
. . . , n+m} and they are sort-closed for the natural ordering o. Moreover, by
Proposition 4.2.3 we can assume without loss of generality that e1 = n and
e2 = n+1. By definition, E(M) = {1, 2, . . . , n−1, n+2, . . . , n+m} and we
consider it together with its natural ordering o.

By definition of the 2-sum, every basis B ∈ B(M) is obtained from a pair of
bases B′ ∈ B(M1) and B′′ ∈ B(M2) such that either n ∈ B′ or n+1 ∈ B′′.
From now on we denote by B′ and B′′ the unique pair of bases such that
B = (B′ ∪B′′) \ {n, n+1}.
For any B1 and B2 in B(M), we show that Oddo(B1, B2) ∈ B(M). Consider
B′1 and B′2 in B(M1) and B′′1 and B′′2 in B(M2): since both M1 and M2 are
sort-closed, then Oddo(B

′
1, B

′
2) ∈ B(M1) and Oddo(B

′′
1 , B

′′
2 ) ∈ B(M2).

In addition, if n ∈ Oddo(B
′
1, B

′
2), then n+1 /∈ Oddo(B

′′
1 , B

′′
2 ): since n is the

biggest element in E(M1) and Oddo(B
′
1, B

′
2) does not contain the biggest

element of the sequence sorto(B
′
1, B

′
2), there must be two elements n in the

sequence, which means n ∈ B′1 and n ∈ B′2, thus n+1 /∈ B′′1 and n+1 /∈ B′′2 .
Vice versa, if n+1 ∈ Oddo(B

′′
1 , B

′′
2 ) then n /∈ Oddo(B

′
1, B

′
2). It follows that

BU := (Oddo(B
′
1, B

′
2) ∪Oddo(B

′′
1 , B

′′
2 )) \ {n, n+1} is in B(M).
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It is left to prove that BU = Oddo(B1, B2). We have that

sorto(B1, B2) = sorto (((B′1 tB′2) t (B′′1 tB′′2 )) \ {n, n+1}) ,

where the operation \ removes all the occurrences of n and n+1 from the
sequence. By the properties of the 2-sum, the operation \ leaves out exactly
two elements that, in addition, are consecutive in the sequence ordered by o.
It follows that

Odd(B1, B2) = (Oddo(B
′
1, B

′
2) ∪Oddo(B

′′
1 , B

′′
2 )) \ {n, n+1} = BU .

The same argument applies to show that Eveno(B1, B2) ∈ B(M).

For the class of 2-level matroids, we have the following.

Corollary 4.2.5. Let M be a connected 2-level matroid. Then M is sort-
closed.

Proof. By Part (iv) of Theorem 3.2.13, M can be written as a sequence of
2-sums of uniform matroids. Uniform matroids are trivially sort-closed and
Theorem 4.2.4 implies that all 2-sums we compute to construct M yield
sort-closed matroids.

The corollary is also true for non-connected 2-level matroids, since the direct
sum of sort-closed matroids yields a sort-closed matroid. Before we state one
of the main properties of sort-closed matroids, it is necessary to introduce a
particular triangulation of the hypersimplex due to Stanley.

In his paper [Sta77] Stanley defined the map

ψ : [0, 1]n−1 → [0, 1]n−1

(x1, . . . , xn−1) 7→ (y1, . . . , yn−1)

where yi = x1+. . .+xi−bx1+. . .+xic. He observed that ψ is piecewise-linear,
volume-preserving, and it fails to be bijective on a measure 0 set. There exists
a unimodular triangulation of the hypercube into open simplices ∇σ, labelled
by the permutations σ ∈ Sn−1 and given by

∇σ := {(y1, . . . , yn−1) ∈ [0, 1]n−1 : 0 < yσ(1) < yσ(2) < . . . < yσ(n−1) < 1}.

Applying the map ψ−1 to the simplices ∇σ, we obtain another unimodular
triangulation of the hypercube which is compatible with the subdivision of
the hypercube into full-dimensional hypersimplices (the usual hypersimplices
from which we remove the last coordinate, see Example 4.2.6). This is called
Stanley’s triangulation of the hypersimplex.
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Example 4.2.6. The hypersimplex ∆4,2 can be represented inside [0, 1]3 as
a full-dimensional polytope by removing the last coordinate and is a com-
binatorial octahedron as shown in Figure 4.6. Stanley’s triangulation of the
hypersimplex is made of the four simplices

ψ−1(∇132) = conv{(0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 1)} ,
ψ−1(∇231) = conv{(0, 0, 1), (1, 0, 0), (1, 0, 1), (0, 1, 0)} ,
ψ−1(∇312) = conv{(1, 1, 0), (0, 1, 0), (1, 0, 0), (1, 0, 1)} ,
ψ−1(∇213) = conv{(1, 1, 0), (0, 1, 0), (0, 1, 1), (1, 0, 1)}.

Figure 4.6: Stanley’s triangulation of ∆4,2.

It is shown in [LP07] that the base polytope of every sort-closed matroid has
a unimodular triangulation which is compatible with Stanley’s triangulation
of the hypersimplex.

Theorem 4.2.7 ([LP07, Thm. 4.2]). Let M be a matroid. Stanley’s trian-
gulation of the hypersimplex ∆n,k induces a triangulation of the base polytope
PM if and only if M is sort-closed.

By Corollary 4.2.5, the theorem shows how to find a unimodular triangu-
lation for base polytopes of 2-level matroids, namely the one induced by
Stanley’s triangulation. The vertices of the simplices in the triangulation are
characterized from the collection of bases of a sort-closed matroid.

LetM = ([n],B) be a sort-closed matroid with respect to the natural ordering
o of the ground set. A sorted subset ofM is a collection {B1, B2, . . . , Br} ⊆
B such that Oddo(Bi, Bj) = Bi and Eveno(Bi, Bj) = Bj for 1 ≤ i < j ≤ r.
For a sorted subset of size r = dim(PM)+1, the points 1B1 ,1B2 , . . . ,1Bdim(PM )+1

form the vertices of a simplex in the unimodular triangulation.
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Example 4.2.8. Consider the graphic matroid in Example 1.2.3. Its base
polytope is a subpolytope of the hypersimplex ∆4,2 and we see that it has
a unimodular triangulation induced by Stanley’s triangulation. The sorted
subsets ofM are {{1, 2}, {1, 3}, {1, 4}, {2, 4}} and {{1, 2}, {1, 3}, {2, 3}, {2, 4}},
which respectively correspond to the yellow and pink simplices of the trian-
gulation presented in Example 4.2.6.

4.2.2 Alcoved polytopes and volumes

Alcoved polytopes appeared in [LP07] and include many interesting classes of
polytopes such as hypersimplices, order polytopes and base polytopes of sort-
closed matroids. In particular, the base polytope PM of every 2-level matroid
M is alcoved. We will show how the tree decomposition TM determines an
inequality description of PM , which in turn relates to the volume of PM .

A polytope P ⊂ Rn is alcoved if P is given by inequalities of the form
bij ≤ xj−xi ≤ cij, with bij, cij ∈ Z. For more details, we refer to [LP07]. We
already mentioned that base polytopes of sort-closed matroids are alcoved
and Theorem 4.2.9 implies that all sort-closed matroids are positroids.

A positroid is a matroid on some ordered ground set which can be repre-
sented by the columns of a full-rank matrix such that all its maximal minors
are non-negative. Positroids were first introduced in the context of the totally
non-negative Grassmannian ([Pos06]) and are in bijection with several inter-
esting classes of combinatorial objects. The class of positroids is closed under
restriction, contraction, duality and cyclic shifts. For more about properties
of positroids we refer to [ARW15]. Moreover, in [Oh09] an excluded minor
characterization of this matroid family has been provided.

Our dedication to 2-level matroids draws the attention to the following the-
orem, whose proof will appear in [LP].

Theorem 4.2.9. Let M be a matroid such that PM is alcoved. Then M is
a positroid.

The theorem has a straightforward application to sort-closed matroids and
consequently to 2-level matroids.

Corollary 4.2.10. Every 2-level matroid is a positroid.

Besides the relation to positroids, the geometric nature of an alcoved poly-
tope P has a deep connection to the volume of P . Indeed every alcoved
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polytope comes with a natural unimodular triangulation; since all unimodu-
lar simplices have normalized volume 1, the normalized volume of P is equal
to the number of simplices in the triangulation.

For instance, the normalized volume of the hypersimplex ∆n,k is the Eulerian
number An−1,k−1, that is, the number of permutations in Sn−1 with exactly
k−1 descents. We can write any permutation σ ∈ Sn−1 as σ(1)σ(2) · · · σ(n−
1) or, shortly, σ1σ2 · · ·σn−1. A descent of σ is a position 1 ≤ i < n−1 such
that σ(i) > σ(i+ 1).

In [LP07] it is shown that an alcoved polytope P which lies in the hypersim-
plex ∆n,k has an inequality description




∑n
i=1 xi = k

0 ≤ xi ≤ 1 , for i ∈ [n]

bij ≤ xi+1 + . . .+ xj ≤ cij , for some (i, j) , 0 ≤ i < j ≤ n−1,

(4.2)

for bij and cij non-negative integer parameters and 0 ≤ i < j ≤ n−1. Note
that the last coordinate is only used in the inequality 0 ≤ xn ≤ 1. We denote
by DP ⊆ [0, n−2] × [0, n−1] the set of pairs (i, j) defining an inequality of
type bij ≤ xi+i + . . .+ xj ≤ cij.

Let us defineSP ⊂ Sn−1 as the set of permutations σ = σ1σ2 · · ·σn−1 ∈ Sn−1

satisfying the following conditions:

(i) σ has k−1 descents;

(ii) for every (i, j) ∈ DP the sequence σi · · ·σj has at least bij descents.
Furthermore, if σi · · ·σj has exactly bij descents, then σi < σj;

(iii) for every (i, j) ∈ DP the sequence σi · · ·σj has at most cij descents.
Furthermore, if σi · · ·σj has exactly cij descents, then σi > σj.

Note that we assume σ0 = 0.

Proposition 4.2.11 ([LP07, Prop. 6.1]). The normalized volume of P is
equal to |SP |.

Given a sort-closed matroid M , the normalized volume of PM is equal to the
number of sorted subsets ofM of size dim(PM)+1 ([LP07, Thm. 4.2]). Propo-
sition 4.2.11 provides a different way of counting the number of unimodular
simplices in the triangulation of PM . This last point of view motivates our
interest for the inequality description of base polytopes of 2-level matroids.
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The fact that every 2-level matroid M is a positroid (Corollary 4.2.10) tells
us something about the base polytope: PM has a simple description with few
inequalities which are explicitly presented in [ARW15, Prop. 5.5].

In what follows we analyze the inequalities of 2-level base polytopes and
relate them to the tree decomposition. Once again, the constructive approach
works well. In fact, for any 2-level matroid M we prove that the inequality
description of PM determines the description of PN , where N is the 2-sum of
M with a uniform matroid.

Let M be a 2-level matroid on [n] with the natural ordering. The base
polytope PM is alcoved and has an inequality description of the form (4.2).

Let us consider the 2-sum N := (M, e1) ⊕2 (U, e2), where U is a uniform
matroid of rank l on the ground set [n+1, n+m] := {n+1, n+2 . . . , n+m}.
The matroid N is 2-level, thus PN is alcoved with a description of type (4.2).

We assume without loss of generality that e1 = n and e2 = n + 1. Thus, N
is defined on the ground set E(N)={1, . . . , n−1, n+2, . . . , n+m} and we will
use the variables x1, . . . , xn−1, xn+2, . . . , xn+m for the corresponding coordi-
nates.

Theorem 4.2.12. With the above assumptions, the base polytope PN has an
inequality description of the form




(i) x1 + . . .+ xn−1 + xn+2 + . . .+ xn+m = k + l − 1

(ii) 0 ≤ xi ≤ 1 , for i ∈ E(N)

(iii) k − 1 ≤ x1 + . . .+ xn−1 ≤ k

(iv) bij ≤ xi+1 + . . .+ xj ≤ cij , for (i, j) ∈ DPM
,

where DPM
, the bij’s and the cij’s are determined by the inequalities of PM .

Proof. First we prove that these inequalities describe a 0/1-polytope P . We
consider the transformation zi = x1 + . . . + xi for 1 ≤ i ≤ n−1 and zi =
x1 + . . .+ xn−1 + xn+2 + . . .+ xi+2 for n ≤ i ≤ n+m−2. All inequalities are
of the form zi− zj ≤ aij for integers aij. Since the matrix whose row vectors
are ei−ej is totally unimodular, the vertices of P have integer z-coordinates
([Sch86, Thm. 19.3]), and hence also integer x-coordinates. Since 0 ≤ xi ≤ 1,
the vertices of P are 0/1-points.

To prove the equality PN = P , we check that the two polytopes have the
same vertices. Choose any vertex of PN , that is, a point 1B for B ∈ B(N).
Let B′ ∈ B(M) and B′′ ∈ B(U) be the two bases associated with B.

Equality (i) is satisfied by definition of 2-sum, since |B| = rank(N) = k+l−1.
The inequalities (ii) are satisfied because 1B is a 0/1-point. The inequality
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(iii) follows from the fact that |B ∩ [1, n−1]| ∈ {k−1, k} by definition of
2-sum.

Consider any pair (i, j) ∈ DPM
and the corresponding inequality of type (iv):

since B′ ∈ B(M), we have that 1B′ satisfies the inequality bij ≤ xi+1 + . . .+
xj ≤ cij describing the polytope PM . The element xn is not involved in the
inequality and B ∩ [n − 1] = B′ ∩ [n − 1], thus 1B satisfies the inequality
bij ≤ xi+1 + . . .+ xj ≤ cij of P .

We have that V(PN) ⊆ V(P ). Let us consider any 0/1-vertex p ∈ V(P ). We
construct the set

B′p :=

{
{i ∈ [n−1] : pi = 1} , if p1 + . . .+ pn−1 = k

{i ∈ [n−1] : pi = 1} ∪ {n} , if p1 + . . .+ pn−1 = k − 1

and check that it forms a basis of the matroid M , because 1B′p satisfies all
inequalities of PM .

Combining (i) and (iii) we see that l−1 ≤ pn + . . . + pn+m−2 ≤ l. If we
construct the set

B′′p :=

{
{i : i∈[n+2, n+m] and pi=1} , if pn+2+ . . .+pn+m=l

{i : i∈[n+2, n+m] and pi=1} ∪ {n+1} , if pn+2+ . . .+pn+m=l−1,

and we easily see that |B′′p | = l and thus it forms a basis of U . Moreover
n+1 ∈ B′′p if and only if n /∈ B′p. Therefore there is a basis B of N associated
to B′p and B′′p such that 1B = p.



Chapter 5

Enumeration of 2-level matroids

5.1 The generating function T (x)

In this section we apply the results of Section 4.1 to get formulas for the
number of connected 2-level matroids of fixed size. It is noteworthy that this
matroid family generalizes the family of series-parallel graphs, which appears
in various areas and has several interesting properties. In particular, series-
parallel graphs have been already successfully studied from an enumerative
point of view in [BGKN07] and [DFK+11]. By means of Theorem 4.1.9, the
enumeration of connected 2-level matroids is equivalent to a tree enumeration
problem, namely the enumeration of UMR-trees.

5.1.1 Preliminaries

In this subsection we introduce the tools from enumerative combinatorics
that we need to count special families of trees. For the sake of brevity, we
do not include all the details and refer the reader to [FS09, Ch. 1] for a
thorough treatment.

A combinatorial class is a set A of combinatorial objects endowed with
a size function |·| such that the number of elements in A of any given size
is finite. The generating function (GF for short) associated to A is the
formal power series A(x) =

∑
a∈A x

|a| =
∑

n≥0 anx
n. In particular, an is the

number of elements in A of size n and we write [xn]A(x) := an. We assume
that every combinatorial class contains no object of size 0, thus a0 = 0. Given
two generating functions A(x) and B(x), we write A(x) ≤ B(x) if for each
n, [xn]A(x) ≤ [xn]B(x).

The symbolic method in enumerative combinatorics (see [FS09, Ch. 1])
gives a direct way to translate combinatorial operations among combinato-
rial classes into operations involving their generating functions. Besides the
disjoint union and the Cartesian product of combinatorial families, which
translate into sums and products of GFs, respectively, we introduce the multi-

71
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set construction: given a combinatorial class (A, |·|) with generating function
A(x), the multiset construction of A is the combinatorial family obtained
by taking all multisets of elements in A. The corresponding GF is equal to

Mul(A(x)) =
∏

α∈A

(1− x|α|)−1 =
∞∏

n=1

(1− xn)−an

= exp

(
∞∑

n=1

an log(1− xn)−1

)
= exp

(
∞∑

n=1

1

n
A(xn)

)
.

Notice that we obtain a formal power series with coefficients in Q. We also
define the restricted multiset construction for a set of positive integers
Λ as the combinatorial family obtained by taking multisets of elements in A
with the restriction that the number of components lies in Λ. We denote this
by MulΛ(A(x)). In particular,

Mul0(A(x)) = 1, Mul1(A(x)) = A(x), Mul2(A(x)) =
1

2

(
A(x)2 + A(x2)

)
.

The notation Mul≥k refers to the multiset operator restricted to Λ={j : j≥k}.

5.1.2 The combinatorial class of UMR-trees

Let us consider a UMR-tree T with vertex labels {N1, . . . , Ns}. For technical
reasons we introduce an additional type of vertex that we call leg. Legs
always have degree 1 and we represent them graphically by small red disks
as in Figure 5.1. For each free element of a vertex label Ni, we draw a leg
connected to Ni. Hence legs are exactly the leaves of the tree.

With the addition of legs, the degree of every vertex Ni is equal to the number
of elements in E(Ni). Let M be the matroid associated to T . From part (i)
of Definition 4.1.3, we see that the number of elements of E(M) is exactly
the number of legs of T .

The generating function T (x) =
∑

n≥1 anx
n, where an is the number of UMR-

trees with n legs, leads directly to the enumeration of 2-level matroids.

Before starting with the enumeration of UMR-trees, we recall the combina-
torial restrictions derived from the matroid setting:

(i) The edges are unlabelled;

(ii) No two R-vertices and no two M-vertices are adjacent;
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(iii) The degree of the R-vertices and M-vertices is greater or equal than 3,
and the degree of the U-vertices is greater or equal than 4.

Instead of trying to obtain enumerative formulas for UMR-trees via a direct
approach, we tackle the problem with the help of the Dissymmetry Theorem
for trees (Subsection 5.1.4) and turn our attention to rooted families.

In order to encode families of rooted UMR-trees, we will use an auxiliary type
of tree: a UMR-tree is pointed at a vertex if it has a special leaf that we call
the virtual leg. The virtual leg does not contribute to the total number of
legs and basically pinpoints its adjacent vertex, which we call the pointed
vertex, and distinguishes it from the other vertices.

A red triangle graphically represents the virtual leg. See Figure 5.1 for an
example of a UMR-tree pointed at a R-vertex. It is important to avoid confu-
sion between the pointed UMR-trees and the vertex-rooted UMR-trees: both
kinds of trees have a distinguished vertex but only pointed UMR-trees have
the virtual leg.

U

M R

M

U

U

Figure 5.1: A pointed UMR-tree with 18 legs and 1 virtual leg.

Notice that the degree m of any R-vertex (or M-vertex) uniquely determines
the vertex label Rm (or Mm). On the contrary, a U-vertex of degree m does
not specify the rank of the corresponding vertex label. Therefore the U-vertex
can represent any uniform matroid Um,k such that k ∈ {2, 3, . . . ,m−2} and
this fact must be encoded in the enumeration.

5.1.3 Counting pointed UMR-trees

In this subsection we analyze pointed UMR-trees and their generating func-
tions.
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We denote by AR(x), AM(x) and AU(x) the generating functions for UMR-
trees pointed at a vertex such that the virtual leg is adjacent to a R-vertex, a
M-vertex, and a U-vertex, respectively. Additionally, we write Al(x) for the
generating function of the tree pointed at a leg (see Figure 5.2).

Figure 5.2: The tree pointed at a leg.

Clearly, Al(x) = x. Notice that the first non-zero coefficients of the gener-
ating functions of pointed UMR-trees are [x2]AR(x) = [x2]AM(x) = 1, and
[x3]AU(x) = 1.

We obtain some relations among AR(x), AM(x), AU(x), and Al(x) by decom-
posing the trees at the pointed vertex. Let us consider AR(x): a tree pointed
at a R-vertex can be described as a R-vertex (adjacent to the virtual leg)
followed by a multiset of size greater or equal than 2 of (the disjoint union
of) trees pointed at a leg, at a M-vertex or at a U-vertex (see Figure 5.3).
Applying the symbolic method introduced in Subsection 5.1.1, the combina-
torial description is translated into the equation AR(x) = Mul≥2(AM(x) +
AU(x) + Al(x)) which can also be written in the form

AR(x) = exp

(
∞∑

r=1

1

r
(AM(xr) + AU(xr) + Al(x

r))

)
(5.1)

− 1− (AM(x) + AU(x) + Al(x)) .

⇐⇒
U

M R

M

U

U

U

M

M

U

U

Figure 5.3: Decomposition of a pointed UMR-tree.

The same reasoning applies if the pointed vertex is of type M and gives an
analogous equation for AM(x).

AM(x) = exp

(
∞∑

r=1

1

r
(AR(xr) + AU(xr) + Al(x

r))

)
(5.2)

− 1− (AR(x) + AU(x) + Al(x)) .
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Subtracting Equation (5.1) from Equation (5.2), we get

∑

r≥1

1

r
AR(xr) =

∑

r≥1

1

r
AM(xr)

and thus [xn]
∑

r≥1
1
r
AR(xr) = [xn]

∑
r≥1

1
r
AM(xr). In addition, notice that

the nth coefficient is determined as follows:

[xn]
∑

r≥1

1

r
AR(xr) = [xn]

∑

r≤n

1

r
AR(xr) =

∑

r|n

[x
n
r ]
AR(x)

r
,

where r|n refers to all positive integers r dividing n. The same holds true if
we replace AR(x) by AM(x).

Since the first non-zero coefficient [x2]AR(x) = [x2]AM(x) = 1, we can
inductively see that for every n, we have [xn]AR(x) = [xn]AM(x), thus
AM(x) = AR(x).

Getting formulas for AU(x) is slightly more involved: the multiplicity m−3
of a U-vertex of degree m must be encoded in the generating function.

If a vertex is adjacent to the virtual leg, we define its restricted degree
as the degree m minus 1. Let us use an auxiliary variable u which marks
the restricted degree of the pointed U-vertex. We emphasize that we do not
consider the contribution of the virtual leg to the total number of legs n.
However, the multiplicity of the U-vertex must be considered with respect to
the degree of the vertex and not with respect to the restricted degree. Let
us denote by d = m−1 the restricted degree of a tree pointed at a U-vertex
of degree m. The multiplicity of the U-vertex is m−3 = d−2.

We write an,d for the number of pointed trees with n non-virtual legs whose
virtual leg is attached to a U-vertex of restricted degree r counted with multi-
plicity 1. The notation aU(x, u) :=

∑
n, d≥3 an,dx

nud refers to the correspond-
ing generating function. Then we have

AU(x) =
∑

n,d≥3

(d− 2)an,dx
nud

∣∣∣∣∣
u=1

=
∂

∂u
aU(x, u)

∣∣∣∣
u=1

− 2aU(x, 1). (5.3)

Observe that aU(x, u) satisfies the equation aU(x, u) = Mul≥3(u(AM(x) +
AR(x)+AU(x)+Al(x))), which arises from the fact that the pointed U-vertex
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has restricted degree ≥ 3 (or equivalently, degree ≥ 4). Hence

aU(x, u) = exp

(
∞∑

r=1

ur

r
(AR(xr) + AM(xr) + AU(xr) + Al(x

r))

)

− 1− u (AR(x) + AM(x) + AU(x) + Al(x))

−Mul2(u(AM(x) + AR(x) + AU(x) + Al(x))).

Using Equation (5.3) we can write AU(x) in terms of aU(x, 1) and its deriva-
tive at u = 1. We set ψ :=

∑∞
r=1

1
r

(AR(xr) + AM(xr) + AU(xr) + Al(x
r)) and

obtain

AU(x) =ψ exp (ψ)− (AR(x) + AM(x) + AU(x) + Al(x)) (5.4)
− 2 Mul2(AM(x) + AR(x) + AU(x) + Al(x))

− 2 exp (ψ) + 2 + 2 (AR(x) + AM(x) + AU(x) + Al(x))

+ 2 Mul2(AM(x) + AR(x) + AU(x) + Al(x)).

Hence, we have three equations relating AR(x), AM(x) and AU(x). Moreover,
we know the first non-zero coefficient of each generating function and thus
we can iteratively compute the coefficients of AR(x), AM(x) and AU(x) up to
an arbitrary degree.

5.1.4 The Dissymmetry Theorem

The Dissymmetry Theorem for trees (see [BLLR97]) provides a general metho-
dology to relate a combinatorial class of trees with given properties to the
corresponding classes of rooted trees. A (vertex-)rooted tree is a tree with
a distinguished vertex. Analogously, we can root a tree at an edge for which
we can in addition choose an orientation. Figure 5.4 shows three possible
ways of rooting a tree.

Rooted vertex Rooted edge Rooted oriented edge

Figure 5.4: Examples of rooted trees.

Notice that different choices of the root of a tree yield different objects in the
corresponding family of rooted trees.
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Let T be a class of unrooted trees with a size function |·| (in our case it
counts legs) and the corresponding generating function T (x). We define
three families of rooted trees: T◦ is built from T by rooting vertices, T◦−◦ by
rooting edges and T◦→◦ by rooting and orienting edges. Let T◦(x), T◦−◦(x),
and T◦→◦(x) be the corresponding generating functions.

The Dissymmetry Theorem for trees asserts that there is a bijection
between T ∪T◦→◦ and T◦−◦∪T◦. This fact translates directly into the equality
among generating functions

T (x) + T◦→◦(x) = T◦−◦(x) + Tv(x).

We use the Dissymmetry Theorem to express the UMR-trees in terms of
rooted UMR-trees. Let T (x) be the generating function of UMR-trees and
denote by T◦(x), T◦−◦(x), and T◦→◦(x) the generating functions associated to
families of UMR-trees with a rooted vertex, a rooted edge, and a rooted ori-
ented edge, respectively. The Dissymmetry Theorem relates these generating
functions by the equation

T (x) = T◦(x) + T◦−◦(x)− T◦→◦(x). (5.5)

Let us compute each generating function in terms of the pointed families
obtained in Subsection 5.1.3. First we see that T◦−◦(x) can be written as the
sum of generating functions

T◦−◦(x) = TM−R(x) + TM−U(x) + TM−•(x) (5.6)
+ TR−U(x) + TR−•(x)

+ TU−U(x) + TU−•(x) ,

where the index of each term specifies the type of the end vertices of the
rooted edge (for instance, the first term TM−R(x) counts trees whose rooted
edge connects aM-vertex and a R-vertex). If we cut the rooted edge and paste
two virtual legs as shown in Figure 5.5, we obtain two pointed UMR-trees.
Each term in the sum (5.6) with the exception of TU−U(x) is the product of
the corresponding generating functions of the pointed families.

⇐⇒
U

M R

M

U

U

U

M R

M

U

U

Figure 5.5: A UMR-tree rooted at an edge (colored in red).
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To deal with the case of TU−U(x), observe that cutting the rooted edge results
in a multiset of size 2 of U-pointed trees. We conclude that

T◦−◦(x) = AM(x)(AR(x) + AU(x) + Al(x)) + AR(x)(AU(x) + Al(x)) (5.7)
+ Mul2(AU(x)) + AU(x)Al(x).

A decomposition analogous to Equation (5.6) applies for T◦→◦(x). This gen-
erating function can be written as

T◦→◦(x) = TM→R(x) + TM→U(x) + TM→•(x)

+ TR→M(x) + TR→U(x) + TR→•(x)

+ TU→M(x) + TU→R(x) + TU→U(x) + TU→•(x)

+ T•→M(x) + T•→R(x) + T•→U(x)

where the index of each term shows the type of the end vertices for the rooted
oriented edge. The computations are analogous to the ones for T◦−◦(x) with
the difference that orienting the edge destroys all symmetries. We get

T◦→◦(x) = AM(x)(AR(x) + AU(x) + Al(x)) (5.8)
+ AR(x)(AM(x) + AU(x) + Al(x))

+ AU(x)(AM(x) + AR(x) + AU(x) + Al(x))

+ Al(x)(AR(x) + AM(x) + AU(x)).

The last generating function to study is T◦(x). Observe that T◦(x) differs from
the sum AR(x) +AM(x) +AU(x) +Al(x) because, as we already mentioned,
pointed trees are different from trees rooted at a vertex. We write

T◦(x) = TR(x) + TM(x) + TU(x) + T•(x) (5.9)

where the index of each term indicates the type of the rooted vertex. We
want to express each term by means of pointed families. It is clear that

T•(x) = Al(x)(AR(x) + AM(x) + AU(x)) (5.10)

because a rooted leg induces canonically a rooted edge. For the other cases
observe that TR(x) = Mul≥3(AM(x) + AU(x) + Al(x)), which is obtained by
cutting the edges incident with the rooted R-vertex and pasting a virtual leg
to the resulting subtrees (this reasoning is analogous to the vertex decompo-
sition represented in Figure 5.3). We conclude that

TR(x) = Mul≥3(AM(x) + AU(x) + Al(x)) (5.11)
= Mul≥2(AM(x) + AU(x) + Al(x))−Mul2(AM(x) + AU(x) + Al(x))

= AR(x)−Mul2(AM(x) + AU(x) + Al(x))
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and an analogous expression holds for TM(x). At last, we study TU(x): let
tU(x, u) be the generating function of trees with a rooted U-vertex, whose
multiplicity is not yet encoded and whose degree is tracked by the variable
u. Then, tU(x, u) = Mul≥4(u(AR(x) + AM(x) + AU(x) + Al(x))) and

tU(x, u) =
∑

n,m≥4

tn,mx
num =⇒ TU(x) =

∑

n,m≥4

(m− 3)tn,mx
num

∣∣∣∣∣
u=1

=
∂

∂u
tU(x, u)

∣∣∣∣
u=1

− 3tU(x, 1).

Applying the same trick we used for aU(x, u) in Subsection 5.1.3, we get that

TU(x)=
∂

∂u
tU(x, u)

∣∣∣∣
u=1

− 3tU(x, 1) (5.12)

=

(
∂

∂u
−3

)
(aU(x, u)−u3 Mul3(AR(x) + AM(x) + AU(x) + Al(x)))

∣∣∣∣
u=1

=AU(x)− aU(x, 1) + (3− 3) Mul3(AR(x) + AM(x) + AU(x) + Al(x)))

=AU(x)−Mul≥3(AR(x) + AM(x) + AU(x) + Al(x))).

Substituting Equations (5.10),(5.11) and (5.12) in (5.9), we get an expression
for T◦(x). Finally, we replace (5.7), (5.8) and the expression of T◦(x) into
Equation (5.5). Once we have an expression for the generating function
T (x) in terms of the generating functions AR(x), AM(x), and AU(x), we can
compute its coefficients up to an arbitrary degree using Maple:

2x3+4x4+10x5+27x6+78x7+246x8+818x9+2871x10+10446x11+39358x12+ . . .

The scripts used for computations are available at [Rué].

5.2 Asymptotic analysis of T (x)

5.2.1 Preliminaries

In Section 5.1 we considered the generating function A(x) of a combinatorial
class A as a formal power series. We now interpret A(x) in the context of
complex analysis as an analytic power series and study its singularities.

An analytic power series A(x) with disc of convergence D has no singu-
larity inside D and at least one singularity on the boundary of D ([FS09,
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Thm. IV.5]). The singularities located on the boundary of D are called
dominant. In addition, if A(x) has non-negative coefficients, one of its
dominant singularities is a positive real number as stated by Pringsheim’s
Theorem ([FS09, Thm. IV.6]).

Our interest in the singularities of A(x) is motivated by the fact that the
position and the nature of the dominant singularities provide information
regarding the coefficients of A(x) and, in particular, their asymptotic growth
rate. We refer to [FS09, Sect. VI.4] for a detailed description of the singularity
analysis process.

When A(x) is not provided explicitly, but satisfies a functional equation, we
first have to determine the dominant singularities. The case we are interested
in requires to find the singularities of functions which satisfy a system of
functional equations.

Let us explain how to get an asymptotic estimate of the coefficients for a
function A(x), when there is a unique dominant singularity ρ, and, in addi-
tion, we have an expansion around this singularity. The expansion around ρ
is defined on a dented domain. A dented domain ∆(φ,R) at ρ ∈ C is the
set

{x ∈ C : x 6= ρ, |x| < R, |Arg(x− ρ)| > φ},

for |ρ| < R ∈ R and 0 < φ < π/2. The shape of a dented domain is that of
an indented disk as shown in Figure 5.6.

ϕ

ρ = 1O

R

Figure 5.6: Dented domain at ρ = 1.

We state here a simplified version of the Transfer Theorem for singularity
analysis ([Drm09, Cor. 2.16]).

Theorem 5.2.1 (Transfer Theorem). Let A(x) be a function with a unique
dominant singularity ρ. Assume that A(x) is analytic in a dented domain
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∆(φ,R) at ρ and that as x→ ρ in ∆(φ,R), A(x) admits an expansion

A(x) = C

(
1− x

ρ

)−α
+O

((
1− x

ρ

)−α+1
)
,

where α ∈ Q and α /∈ {0,−1,−2, . . . }. Then, as n→∞

[xn]A(x) ≈ C
1

Γ(α)
· nα−1 · ρ−n,

where Γ(α) =
∫∞

0
tα−1e−tdt denotes the classical Gamma function.

As mentioned before, in some cases there is a way to find the real dominant
singularities of a set of functions which are implicitly described by a system
of functional equations.

Let F(x,y) = (F1(x,y), . . . , Fk(x,y)) be a vector of functions Fi(x,y) with
complex variables x and y = (y1, . . . , yk) which are analytic around (0,0)
for i = 1, . . . , k. In addition, we require all functions Fi(x,y) to have non-
negative Taylor coefficients around (0,0).

LetA(x) = (A1(x), . . . , Ak(x)) be a vector of functions defined in a neighbor-
hood U0 of the origin and such that A(0) = 0. Suppose that A(x) satisfies
the system of functional equations A(x) = F(x,A(x)), that is, for all x ∈ U0

A1(x) = F1(x,A(x))

A2(x) = F2(x,A(x))

...
Ak(x) = Fk(x,A(x)).

The dependency graph G = (V,D) associated to the system A(x) =

F(x;A(x)) is the directed graph with vertex set {A1, . . . , Ak} and
−−−→
AiAj ∈ D

if and only if ∂Fi(x,A(x))
∂Aj(x)

6= 0 (the condition means that Fi depends on the
function Aj(x)). A dependency graph is called strongly connected if every
pair of vertices is connected by a directed path.

Theorem 5.2.2. Let A(x) = F(x;A(x)) be a system of functional equations
satisfying the conditions described above. Additionally, assume that the de-
pendency graph associated to A(x) is strongly connected. Denote by Ik the
k×k identity matrix and by Jac(F) the k×k-matrix where Jac(F)ij = ∂Fi(x,y)

∂yj
.

If the system
{
y = F(x;y)

0 = det (Ik − Jac(F))
(5.13)
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has a unique positive real solution (x0,y0) ∈ Rk+1
>0 , then the functions Ai(x)

have non-negative coefficients and a unique dominant singularity at x0. More-
over, they have a square-root expansion in a domain dented at x0.

The statement in its full generality is available in [Drm09, Sect. 2.2.5]). For
an application of this theorem in a setting similar to the one we are going to
approach, we refer to [DFK+11].

The square-root expansion of Ai(x) is of the form

Ai(X) = a0 + a1X + a2X
2 + . . .

in a domain dented at x0, where X =
√

1− x
x0
. In other words, the theorem

says that every function Ai(x) can be written in the form

gi(x) + hi(x)

√
1− x

x0

,

where the functions gi(x) and hi(x) are analytic at x0. From Theorem 5.2.1
we see that only the part related to hi(x) contributes to the asymptotic
estimate of the coefficients.

5.2.2 Asymptotic analysis

In this section we will get asymptotic estimates for [xn]T (x). More precisely,
since we proved in Subsection 5.1.4 that the generating function T (x) can be
expressed in terms of the generating functions AR(x), AM(x) and AU(x), we
study the system of functional equations based on (5.1), (5.2), and (5.4) and
check computationally that it is of type (5.13). From the unique positive real
solution (x0,y0) of the system, we obtain the unique dominant singularity
ρ = x0 for the functions AR(x), AM(x) and AU(x) and by Theorem 5.2.2 we
know that they have a square-root expansions in a domain dented at ρ.

The generating function T (x) has its dominant singularity at ρ and its sin-
gular expansion follows easily. Moreover, the Transfer Theorem 5.2.1 can
be applied to T (x) to obtain asymptotic estimates for its coefficients. In
particular, we get the growth constant ρ−1 ≈ 4.88052854.

It is shown in [DFK+11] that the number of unlabelled biconnected series-
parallel graphs on n vertices grows exponentially in n and the growth constant
is ≈ 8.05153567. Since series-parallel graphs are also 2-level matroids, we try
to generalize the methodologies from graphs to matroids.

Despite several similarities, there are few caveats that we have to take into
account:
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(i) matroids do not have a vertex structure; instead we count them by the
number of elements in the ground set, which will also pay off when
relating our results to the enumeration of 2-level base polytopes;

(ii) the tree decompositions of series-parallel graphs have only R-vertices
and M-vertices. General 2-level matroids are constructed using also the
U-vertices, that is, a much wider variety of building blocks.

(iii) series-parallel graphs with different graph realizations can correspond
to isomorphic matroids (see Figure 5.7) and must be counted only once
in the matroid setting.

∼=

Figure 5.7: Different graphs, isomorphic matroids.

It is clear that even though we use analogous tools, the comparison between
the asymptotic estimates that we get for 2-level matroids and the results
presented in [DFK+11] is not meaningful.

The first step for getting the asymptotic estimate of the coefficients of T (x)
is to determine the dominant singularities and the singular expansions of
AR(x), AM(x) and AU(x) up to the desired precision. In particular, it is
enough to consider the expansion up to X3 to avoid a cancellation of all
relevant terms when computing T (x).

Lemma 5.2.3. The generating functions AR(x), AM(x) and AU(x) have a
unique dominant singularity at ρ ≈ 0.20489584. The singular expansions of
AR(x), AM(x) and AU(x) in a domain dented at ρ are of the form

AR(X) = AM(X) = A0 + A1X + A2X
2 + A3X

3 +O(X4),

AU(X) = U0 + U1X + U2X
2 + U3X

3 +O(X4),

where X =
√

1− x/ρ, A0≈0.13529174, A1≈−0.23137622, A2≈0.04653888,
A3≈0.06281332, U0≈0.06921673, U1≈−0.19340420, U2≈0.15045323 and
U3≈0.01018058.

Proof. Since AR(x) = AM(x), we can replace AM(x) by AR(x) in (5.1) and
(5.4). For A(x) = (AR(x), AU(x)), we can obtain from these two equations a
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system of the form
{
AR(x) = F1(x,A(x))

AU(x) = F2(x,A(x))
(5.14)

satisfying the conditions of Theorem 5.2.2. In fact, if AR(x) and AU(x) have
a dominant singularity ρ, then the functions AM(xr) and AU(xr) for r ≥ 2

have dominant singularity ρ
1
r > ρ (since ρ < 1) and thus, are analytic at ρ.

With the same reasoning the exponential functions such as

exp

(
∞∑

r=2

1

r
(AR(xr) + AU(xr) + Al(x

r))

)

are analytic at ρ. Hence, we can approximate all these functions up to arbi-
trary precision by their truncated Taylor series at ρ, which can be computed
by means of an iterative algorithm.

After replacing the truncated Taylor series in (5.1) and (5.4), we obtain
two equations depending only on x, AR(x), and AU(x). This yields the sys-
tem (5.14) to which we apply Theorem 5.2.2: we add the equation 0 =
det (Ik − Jac(F)) and solve the three equations in three variables by means
of Maple computations. We find out that there is a unique solution

(x0, ÂR, ÂU) ≈ (0.20489584, 0.13529174, 0.06921673).

Thus, the singularity of both AR(x) and AU(x) is located at ρ = x0 ≈
0.20489584, and the truncated singular square-root expansions in a domain
dented at ρ are of the form

AR(X) = AM(X) = A0 + A1X + A2X
2 + A3X

3,

AU(X) = U0 + U1X + U2X
2 + U3X

3,

where X =
√

1− x/ρ and Ai and Ui are computable constants for i =

0, 1, 2, 3. In particular, we have A0 = ÂR and U0 = ÂU. Let A(X) =
(AR(X), AU(X)). By substituting the truncated singular expansions as fol-
lows {

AR(X) = F1

(
ρ(1−X2),A(X)

)

AU(X) = F2

(
ρ(1−X2),A(X)

)
,

and equating the coefficient of same degree, we obtain a system of equations
in the Ai’s and the Ui’s, whose solution gives the approximate values reported
in the statement of the theorem.
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Once we have computed the (truncated) singular square-root expansions at ρ
for AR(x), AM(x), and AU(x), we focus on T (x) and get asymptotic estimates
for its coefficients [xn]T (x).

Theorem 5.2.4. Let T (x) be the generating function of UMR-trees. We have
the asymptotic estimate

[xn]T (x) ≈ C · n−5/2 · ρ−n (1 + o(1)) ,

where C ≈ 0.07583455 and ρ ≈ 0.20489584.

Proof. We use the square-root expansions at ρ for AR(x), AM(x) and AU(x)
obtained in Lemma 5.2.3 together with the expressions in equations (5.5)-
(5.12) and we compute the square-root singular expansion

T (X) = T0 + T2X
2 + T3X

3 +O(X4),

where X =
√

1− x/ρ and T0 ≈ 0.03457946, T2 ≈ −0.18596384 and T3 ≈
0.17921766. Observe that the constant multiplying X in the singular expan-
sion is equal to zero: the cancellation of degree one terms is a consequence of
the application of the Dissymmetry Theorem for trees. The first term of type
(1− x/ρ)−α such that α /∈ {0,−1,−2, . . .} comes from T3X

3. We apply the
Transfer Theorem 5.2.1 to T (X)− T0− T2X

2 (whose coefficients are asymp-
totically the same as the coefficients of T (x)) and obtain the asymptotic
estimate for the coefficients of T (x).

The coefficients of T (x) encode the number of connected 2-level matroids.
We consider now the generating function T nc(x) which counts the number of
2-level matroids, including the non-connected ones. For this enumeration, we
need to consider UMR-forests instead of UMR-trees. Equivalently, we apply
the multiset construction over UMR-trees and thus

T nc(x) = Mul(T (x)) = exp

(
∞∑

r=1

1

r
(T (xr))

)
.

Observe that

exp

(
∞∑

r=1

1

r
(T (xr))

)
= exp(T (x)) exp

(
∞∑

r=2

1

r
(T (xr))

)
,

and the second factor is analytic at x = ρ. Hence, in a domain dented at
x = ρ the singular expansion of Mul(T (x)) is

Mul(T (x)) = exp(T0 + T2X
2 + T3X

3 +O(X4)) exp (g(x)) ,
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where we replace T (x) with its square-root expansion at ρ described in The-
orem 5.2.4 and the second exponent with its truncated Taylor series g(x) at
ρ. We compute the square-root expansion

T nc(x) = T nc0 + T nc2 X2 + T nc3 X3 +O(X4),

and we obtain T nc0 ≈ 1.03526853, T nc2 ≈ −0.19252251, T nc3 ≈ 0.18553841.
Applying Theorem 5.2.1, we conclude that

[xn] Mul(T (x)) ≈ C ′ · n−5/2 · ρ−n,

with C ′ ≈ 0.07850913.

It is interesting to observe that

lim
n→∞

[xn]T (x)

[xn]T nc(x)
≈ C

C ′
= 0.9659329 6= 1.

A conjecture of Mayhew, Newman, Welsh, Whittle [MNWW11] claims that
as n→∞, the ratio between the number of connected matroids on n elements
and the number of matroids on n elements is 1. On the other hand, Corollary
4.2.10 states that all 2-level matroids are positroids. In [ARW15, Thm. 10.7]
it is shown that this ratio for positroids is 1

e2
≈ 0.1353.

Even though the class MLev
2 is contained in the class of positroids and, as

n → ∞, the ratio between the number of connected 2-level matroids on n
elements and the number of 2-level matroids on n elements is different from
1, this result appears more reassuring with respect to the conjecture that
most matroids are connected.

5.2.3 Self-duality

This part is devoted to show that the number of self-dual connected 2-level
matroids is asymptotically negligible compared to the number of connected 2-
level matroids. This fact will be relevant when dealing with the enumeration
of 2-level matroid base polytopes.

Let us begin with a proposition from [Oxl11, Prop. 7.1.22].

Proposition 5.2.5. Let M1 and M2 be two matroids and ei ∈ E(Mi). Then

((M1, e1)⊕2 (M2, e2))∗ = (M∗
1 , e1)⊕2 (M∗

2 , e2).

Let M be a matroid and TM its unique tree decomposition, then Propo-
sition 5.2.5 implies that the tree decomposition of M∗ has the same tree
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structure of TM . Moreover, we replace each vertex label Ni with its dual
matroid N∗i .

We now consider the self-dual connected 2-level matroids. The vertex labels
are chosen among uniform matroids, and the operation of duality convertsM-
vertices into R-vertices and vice versa, and U-vertices into U-vertices. Since
U∗n,k = Un,n−k, the self-dual U-vertices are necessarily labelled by U2k,k. More-
over, for technical reasons, we consider virtual legs and legs to be self-dual.

Provided that matroid duality extends naturally to UMR-trees, we estimate
the contribution of the family of self-dual UMR-trees to the total number
of UMR-trees. We start analyzing the pointed situation: we write AR(x) =
SR(x) +NR(x), AM(x) = SM(x) +NM(x) and AU(x) = SU(x) +NU(x), where
the generating functions SR(x), SM(x) and SU(x) encode self-dual trees whose
pointed vertex is of type R, M, and U, respectively. The generating functions
NR(x), NM(x) and NU(x) encode trees pointed at a vertex which are not self-
dual. Observe that in particular SR(x) = SM(x) = 0, because the dual of
each R-vertex is an M-vertex. Thus there are no self-dual UMR-trees pointed
at either a R-vertex or a M-vertex.

We also use a similar notation for unrooted UMR-trees. We write T (x) =
S(x) + N(x), where S(x) is the generating function associated to self-dual
(unrooted) trees.

The next lemma tells us that the contribution of self-dual pointed trees to
the number of pointed trees is exponentially small.

Lemma 5.2.6. The following estimate holds:

[xn]SU(x) = o([xn]AU(x)).

Proof. We want to analyze SU(x). In this situation, the pointed vertex is a
U-vertex associated to a uniform matroid of type U2k,k. Hence, we notice that
the degree of the pointed vertex determines the rank of the vertex label, which
implies that the multiplicity in the counting is 1. Moreover, the possible
restricted degrees of the vertex belong to the set Λ = {3, 5, 7, . . . }.
The collection of pointed subtrees glued to the U-vertex is a multiset of pairs
of pointed trees such that one is the dual of the other, followed by a multiset
of odd size of self-dual pointed trees. Hence,

SU(x) = Mul{3,5,7,... }(SU(x) + Al(x)) (5.15)
+ Mul≥1(NR(x2) +NM(x2) +NU(x2))Mul{1,3,5,7,... }(SU(x) + Al(x)).
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Let η be the dominant singularity of SU(x). It is obvious that η ≥ ρ, because
the family of self-dual U-pointed trees is contained in the family of U-pointed
trees. We need to show that η > ρ.

Equation (5.15) can be analyzed with the same methods used in the proof of
Lemma 5.2.3. However, for our purposes it is enough to bound the coefficients
of SU(x) by means of rough estimates. Observe that Mul≥3(SU(x)+Al(x)) ≥
Mul{3,5,7,... }(SU(x) + Al(x)) and

Mul≥1(NR(x2) +NM(x2) +NU(x2))Mul≥1(SU(x) + Al(x)) ≥
Mul≥1(NR(x2) +NM(x2) +NU(x2))Mul{1,3,5,7,... }(SU(x) + Al(x)).

Hence, if s(x) satisfies the equation

s(x) = Mul≥3(s(x) + Al(x)) (5.16)
+ Mul≥1(NR(x2) +NM(x2) +NU(x2))Mul≥1(s(x) + Al(x)),

then SU(x) ≤ s(x). Let γ be the real dominant singularity of s(x). Observe
that this singularity arises either from the square-root singularity of the terms
AR(x2) = NR(x2), AM(x2) = NM(x2) and AU(x2) − SU(x2) = NU(x2) at√
ρ ≈ 0.45265421 or from a branch point of Equation (5.16).

A branch point x = β can be obtained as a solution to the pair of equations
s(x) = F (s(x), x), 1 = Fs(x)(s(x), x), where F (s(x), x) is the right-hand side
of 5.16. Computations performed in Maple show that there is no branch
point β ≤ √ρ. It follows that √ρ is the dominant singularity of s(x).

To conclude, [xn]s(x) ≥ [xn]SU(x) and the coefficients of s(x) have exponen-
tial growth of order ρ−n/2, thus exponentially small compared with ρ−n.

Since the number of pointed self-dual UMR-trees is exponentially small com-
pared to the total number of pointed trees, we can prove that the number
of self-dual unrooted UMR-trees is also exponentially small compared to the
total number of unrooted UMR-trees.

Proposition 5.2.7. The following estimate hold:

[xn]S(x) = o([xn]T (x)).

Proof. Let us split the class of self-dual UMR-trees by the type of the center.
The center of a connected graph is the set of vertices that minimize the
maximal path-distance from other vertices in the graph. The center of a tree
consists of a single vertex or two adjacent vertices (thus an edge). Accord-
ingly, we split the generating function S(x) = S◦(x) + S◦−◦(x). For each
summand we find an upper bound.
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Consider the self-dual trees whose center is a vertex: the center is necessar-
ily a U-vertex labelled by a matroid of type U2k,k. In this case the degree
of the pointed vertex determines the rank of the U-vertex, which counts
with multiplicity one. Hence, we have the rough upper bound S◦(x) ≤
Mul(AR(x2) +AM(x2) +NU(x2))Mul(SU(x) +Al(x)), whose dominant singu-
larity is strictly bigger than ρ, because of previous considerations on AR(x2),
AM(x2), AU(x2) ≥ NU(x2), and SU(x) (Lemma 5.2.6).

As for the self-dual trees whose center is an edge, we consider the pair of
pointed UMR-trees that arise when cutting the center of the tree and pasting
a virtual leg for each side of the cut. Two situations may happen:

(i) Each tree is self-dual;

(ii) Each tree is not self-dual, but one is the dual of the other.

In both cases (i) and (ii) we can easily find an upper bound: SU(x)2 and
AR(x2) +AM(x2) +NU(x2), respectively. It follows that S◦−◦(x) ≤ SU(x)2 +
AR(x2) + AM(x2) + NU(x2). Again, the dominant singularity of S◦−◦(x) is
strictly bigger than ρ. Hence the result follows.

5.2.4 Many 2-level polytopes from matroids

In Section 2.2 we highlighted the difficulties in enumerating 2-level polytopes.
Notice that connected 2-level matroids yield a class of 2-level polytopes and
in Section 3.2 we show that this class is not contained in any of the known
classes of Subsection 2.2.3. The bijection with UMR-trees eases the approach
to the enumeration of 2-level matroids. An additional effort results in an
asymptotic estimate for the number of combinatorially non-equivalent 2-level
base polytopes. Some properties of base polytopes presented in Section 1.2.2
become useful in this context: in particular, Corollary 1.2.14 reduces our
investigation to the number of non-congruent 2-level base polytopes, instead
of the combinatorially non-equivalent ones.

Theorem 5.2.8. The asymptotic number of combinatorially non-equivalent
(n−1)-dimensional 2-level base polytopes of connected matroids is

c · n−5/2 · ρ−n,

where c ≈ 0.03791727 and ρ−1 ≈ 4.88052854.

Proof. Every connected 2-level matroid M on n elements is, by definition,
associated with a 2-level base polytope PM . The connectedness of M implies
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that dim(PM) = n−1 and by Theorem 1.2.13, there is only another matroid
whose base polytope is congruent to PM , namely M∗.

Let us denote the number of connected 2-level matroids on n elements by
L2(n) and the number of self-dual ones by S2(n). The number of non-
congruent (n−1)-dimensional 2-level base polytopes is L2(n)+S2(n)

2
.

Applying the structural results of Section 4.1 and using the notation of Sub-
section 5.1.4, we easily see that L2(n) = [xn]T (x) and S2(n) = [xn]S(x).
We do not have closed formulas for the coefficients of the generating func-
tions, but we are able to provide asymptotic estimates: by Theorem 5.2.4,
the number of UMR-trees is asymptotically equal to C · n−5/2 · ρ−n, where
C ≈ 0.07583455 and ρ ≈ 0.20489584. Due to Proposition 5.2.7, the contribu-
tion of self-dual UMR-trees to this asymptotic is exponentially small. Hence,
the number of non-self-dual UMR-trees is asymptotically equal to the number
of UMR-trees. Finally, we want to count a matroid and its dual as one, since
they yield congruent base polytopes. Thus we divide by 2 and obtain that
the asymptotic estimate for the number of 2-level base polytopes equals the
asymptotic estimate for the number of UMR-trees except for the constant,
which is c = C

2
.

The number of combinatorially non-equivalent 0/1-polytopes in dimension
n is bounded from below by the number 22n−2 as stated in Theorem 2.1.1.
An asymptotic exponential lower bound on the number of 2-level polytopes
follows immediately from Theorem 5.2.8.

Observe that the constant C ′ for the asymptotic estimate of the coefficients of
T nc(x) is slightly bigger than the constant for T (x). However, this asymptotic
estimate is not suitable to get a better lower bound on the number of 2-level
polytopes in fixed dimension, because the dimension of a 2-level base polytope
depends on the number of connected components of the matroid (Proposition
1.2.6).



Chapter 6

Matroid ideals and cone-ranks

The first two sections of the chapter study the degree of the vanishing ideal
and the psd rank for matroids in MLev

2 , respectively. Results obtained in
these sections complete the proof of Theorem 0.0.2. The last two sections
contain results about hypersimplices that we believe can be generalized to
2-level matroids. More specifically, the third section is concerned with the
extension complexity of hypersimplices, while the fourth one deals with their
vanishing ideal.

6.1 Degree of base configurations

For a point configuration V ⊂ Rd, the vanishing ideal of V is

I(V ) := {f(x) ∈ R[x1, . . . , xd] : f(v) = 0 for all v ∈ V }.

We say that V is of degree ≤ k if there is a minimal generating set of I(V )
of maximal degree k. We write Gen(V ) = k if k is the smallest positive
integer such that I(V ) is of degree ≤ k. We define

VGen
k := {V point configuration : Gen(V ) ≤ k}

It is clear that Gen(V ) is an affine invariant and, since all point configurations
are finite, we get the following.

Proposition 6.1.1. The class VGen
k is face-hereditary.

Proof. Let H = {p ∈ Rd : `(p) = 0} be a supporting hyperplane for V . The
vanishing ideal of V ′ = V ∩H is the ideal generated by I(V ) and `(x). Since
`(x) is linear, this then shows that Gen(V ′) ≤ Gen(V ).

The relation to point configurations of Theta rank 1 is given by the following
proposition which is implicit in [GPT10].

91
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Proposition 6.1.2. If V ⊂ Rd is a point configuration of Theta rank 1, then
Gen(V ) ≤ 2.

Proof. From Theorem 0.0.1 we infer that V is 2-level. We may assume that
the configuration is spanning and hence up to affine equivalence, the 2-level
polytope P = conv(V ) is given by

P =

{
p ∈ Rd :

0 ≤ pi ≤ 1 for i = 1, . . . , d
δ−j ≤ `j(p) ≤ δ+

j for j = 1, . . . ,m

}

for unique facet-defining linear functions `j(x) and δ−j < δ+
j . In particular,

V ⊆ {0, 1}d. We claim that I(V ) is generated by the quadrics

xi(xi − 1) for 1 ≤ i ≤ d, and (`j(x)− δ−j )(`j(x)− δ+
j ) for 1 ≤ j ≤ m.

The vanishing locus U defined by the quadrics is a smooth subset of {0, 1}d.
Thus, the polynomials span a real radical ideal. Now, every vertex v ∈ V ⊆
{0, 1}d satisfies `j(v) = δ±j . Hence V ⊆ U . Conversely, every u ∈ U is a
vertex of P and hence U ⊆ V .

The following example illustrates the fact that the degree of generation is
invariant under projective transformations while Theta rank is not.

Example 6.1.3. To see that generation in degrees ≤ 2 is necessary for
Theta rank 1 but not sufficient, consider the planar point configuration V =
{(1, 0), (0, 1), (2, 0), (0, 2)}. The configuration is clearly not 2-level and hence
not Theta 1, however the vanishing ideal I(V ) is generated by x1x2 and
(x1 + x2 − 1)(x1 + x2 − 2) which implies Gen(V ) ≤ 2.

(0, 0) (1, 0) (2, 0)

(1, 0)

(2, 0)

Figure 6.1: 3-level configuration in VGen
2 .

The vanishing ideals of base configurations are easy to write down explicitly.
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Proposition 6.1.4. Let M = (E,B) be a matroid of rank r. The vanishing
ideal for VM is generated by

x2
e−xe for all e ∈ E, `E(x)−r, and xC =

∏

e∈C

xe for all circuits C ⊂ E.

Proof. Any solution to the first two sets of equations is of the form 1B for
some B ⊆ E with |B| = r. For the last set of equations, we note that
(1B)C = 0 for all circuits C if and only if B does not contain a circuit.
This is equivalent to B ∈ B. Arguments similar to those used in the proof of
Proposition 6.1.2 show that the polynomials generate a real radical ideal.

Let us write MGen
k for the class of matroids M with Gen(VM) ≤ k. The

previous proposition is a little deceiving in the sense that it suggests a direct
connection between the size of circuits and the degree of generation. This is
not quite true. Indeed, let us consider the 2-level matroidM = Un,n−1⊕Un,1.
Then both M and M∗ have a circuit of cardinality n but M ∈ MLev

2 ⊆
MGen

2 by Theorem 3.2.13 and Proposition 6.1.2. The main result of this
section is that for base configurations the condition of Proposition 6.1.2 is
also sufficient.

Theorem 6.1.5. Let M be a matroid. Then VM is Theta 1 if and only if
Gen(VM) ≤ 2.

Proof. In light of Proposition 6.1.2, we already know that MTh
1 ⊆ MGen

2 .
Now, if M ∈ MGen

2 \ MTh
1 , then M has a minor isomorphic to M(K4),

P6, Q6, or W3. Since MGen
2 is closed under taking minors, the following

proposition yields a contradiction.

Proposition 6.1.6. The matroidsM(K4),W3, Q6, and P6 are not inMGen
2 .

Proof. For a point configuration V ⊂ Rn, let I ⊂ R[x1, . . . , xn] be its van-
ishing ideal. Let us consider the (unique) reduced Gröbner basis G of I(V )
with respect to a degree-compatible term order. If I(V ) is generated in de-
grees ≤ k, then the set of all polynomials of degree ≤ k of G forms a set
of generators of I(V ). By using a software like Macaulay2 [GS], we can
verify that, for M ∈ {M(K4),W3, Q6, P6}, the set of quadratic polynomials
of a degree-compatible Gröbner basis does not generate the vanishing ideal
I(VM).
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6.2 Psd rank

Let Sm ⊂ Rm×m be the vector space of symmetric m×m matrices. The psd
cone is the closed convex cone Sm≥0 = {A ∈ Sm : A positive semidefinite}.

Definition 6.2.1. A polytope P ⊂ Rd has a psd-lift of size m if there is
an affine subspace L ⊂ Sm and a linear projection π : Sm → Rd such that
P = π(Sm≥0 ∩ L). The psd rank rankpsd(P ) is the size of a smallest psd-lift.

Psd-lifts together with lifts for more general cones were introduced by Gou-
veia, Parrilo, and Thomas [GPT13] as natural generalizations of polyhedral
lifts or extended formulations. Let us define VPsd

k as the class of point
configurations V in convex position such that conv(V ) has a psd-lift of
size ≤ k. In [GRT13] it was shown that for a d-dimensional polytope P
the psd rank is always ≥ d + 1. A polytope P is called psd-minimal if
rankpsd(P ) = dim(P ) + 1. We write VPsd

min for the class of psd-minimal (con-
vex position) point configurations.

Proposition 6.2.2. The classes VPsd
k and VPsd

min are face-hereditary.

Proof. Let V ∈ VPsd
k and let (L, π) be a psd-lift of P = conv(V ). For a

supporting hyperplane H we observe that (L ∩ π−1(H), π) is a psd-lift of
P ∩H of size k.

Let P be psd-minimal and let F = P ∩H be a face of dimension dim(F ) =
dim(P )−1. If F is not psd-minimal, then by [GRT13, Prop. 3.8], rankpsd(P ) ≥
rankpsd(F ) + 1 > dim(F ) + 2 = dim(P ) + 1.

A characterization of psd-minimal polytopes in small dimensions was ob-
tained in [GRT13] and, in particular, the following relation was shown.

Proposition 6.2.3. Let V be a point configuration in convex position. If
Th(V ) = 1, then P = conv(V ) is psd-minimal.

In [GRT13] the polytope of Example 1.1.6 is proposed as an instance of psd-
minimal polytope which is not (combinatorially) 2-level. This shows that
the condition above is sufficient but not necessary. The main result of this
section is that the situation is much better for base configurations.

Theorem 6.2.4. Let M be a matroid. The base polytope PM = conv(VM) is
psd-minimal if and only if Th(M) = 1.
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In light of Proposition 6.2.3 it remains to show that there is no psd-minimal
matroid M with Th(M) > 1. Since VPsd

min is face-hereditary, it is sufficient to
show that the excluded minorsM(K4),W3, Q6, and P6 are not psd-minimal.

In order to do so, we need to recall the connection to slack matrices and
Hadamard square roots developed in [GRT13]. For a more coherent pic-
ture of the relations in particular to cone factorizations we refer to the pa-
pers [GPT13, GRT13]. Let P be a polytope with v vertices and f facets. A
Hadamard square root of a slack matrix S ∈ S(P ) is a matrix H ∈ Rv×f

such that Sij = H2
ij for all i, j. Moreover, we define rank√ S as the smallest

rank among all Hadamard square roots. The following is the main connection
between Hadamard square roots and the psd-rank.

Theorem 6.2.5 ([GRT13, Thm. 3.5]). A polytope P is psd-minimal if and
only if rank√ (S) = dimP + 1 for S ∈ S(P ).

Thus, we will complete the proof of Theorem 6.2.4 by showing that the slack
matrices for the excluded minors of MTh

1 have Hadamard square roots of
rank ≥ 7. We start with a technical result.

Proposition 6.2.6. The matrix

A0 =




0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0




has rank√ A0 = 4.

Proof. Every Hadamard square root of A0 is of the form

H =




0 y1 y2 y3

y4 0 y5 y6

y7 y8 0 y9

y10 y11 y12 0




with y2
i = 1, i = 1, .., 12. Claiming that rank√ A0 = 4 is equivalent to

the claim that every Hadamard square root H is non-singular. Using the
computer algebra software Macaulay2 [GS] it can be checked that the ideal

I = 〈y2
1 − 1, ..., y2

12 − 1, detH〉 ⊆ C[y1, . . . , y12]

contains 1, which excludes the existence of a rank-deficient Hadamard square
root.
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Proposition 6.2.7. Let P = PM be the base polytope for a matroid M ∈
{M(K4),W3, Q6, P6} and S ∈ S(P ). Then rank√ (S) ≥ 7.

Proof. We explicitly give the argument for M = M(K4) and P = PM . This
proof works also for the other matroids for the same choice of the subcol-
lection of bases and flacets. It is sufficient to find a 7×7-submatrix A of S
with rank√ (N) ≥ 7. Consider the following subcollection of bases Bi’s and
flacets Fi’s of M :

B1 = {1, 2, 4} F1 = {1}
B2 = {1, 2, 5} F2 = {2}
B3 = {1, 2, 6} F3 = {3}
B4 = {1, 3, 6} F4 = {4}
B5 = {1, 4, 6} F5 = {5}
B6 = {1, 5, 6} F6 = {6}
B7 = {2, 4, 6} F7 = {3, 4, 6}

and the induced submatrix of S

A =




{1} {2} {3} {4} {5} {6} {3,4,6}

{1,2,4} 0 0 1 0 1 1 1
{1,2,5} 0 0 1 1 0 1 2
{1,2,6} 0 0 1 1 1 0 1
{1,3,6} 0 1 0 1 1 0 0
{1,4,6} 0 1 1 0 1 0 0
{1,5,6} 0 1 1 1 0 0 1
{2,4,6} 1 0 1 0 1 0 0




.

Then rank√ (A) = 7 if and only if the determinant

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 ±1 0 ±1 ±1 ±1

0 0 ±1 ±1 0 ±1 ±
√

2
0 0 ±1 ±1 ±1 0 ±1
0 ±1 0 ±1 ±1 0 0
0 ±1 ±1 0 ±1 0 0
0 ±1 ±1 ±1 0 0 ±1

±1 0 ±1 0 ±1 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=±

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 ±1 0 ±1 ±1 ±1

0 ±1 ±1 0 ±1 ±
√

2

0 ±1 ±1 ±1 0 ±1
±1 0 ±1 ±1 0 0
±1 ±1 0 ±1 0 0
±1 ±1 ±1 0 0 ±1

∣∣∣∣∣∣∣∣∣∣∣∣∣

is non-zero. Since it is of the form a +
√

2 · b for some integers a, b, we can
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check that b is non-zero. By Laplace expansion, this is the case if
∣∣∣∣∣∣∣∣∣∣

0 ±1 0 ±1 ±1
0 ±1 ±1 ±1 0
±1 0 ±1 ±1 0
±1 ±1 0 ±1 0
±1 ±1 ±1 0 0

∣∣∣∣∣∣∣∣∣∣

= ±

∣∣∣∣∣∣∣∣

0 ±1 ±1 ±1
±1 0 ±1 ±1
±1 ±1 0 ±1
±1 ±1 ±1 0

∣∣∣∣∣∣∣∣
6= 0.

The latter is exactly the claim that the matrix A0 of Proposition 6.2.6 has
rank√ (A0) = 4.

6.3 Extension complexity of hypersimplices

Given a polytope P , we denote by v(P ) its number of vertices and by f(P )

its number of facets. A polytope P̂ is called an extension of P if π(P̂ ) = P

for some linear projection π : Re → Rd. Notice that the image of a face of P̂
under π is not necessarily a face of P ; on the other hand, for any face F of
P the set π−1(F ) := {p ∈ P̂ : π(p) ∈ F} is a face of P̂ .

The extension complexity xc(P ) is the smallest number of facets of an
extension P̂ of P . An extension P̂ of P is minimal if it has xc(P ) facets.

Equivalently, it is possible to define the extension complexity of a polytope in
analogy to Definition 6.2.1, where we use the non-negative cone Rm

≥0 instead
of the psd cone Sm≥0. The extension complexity of P is then the size of the
smallest non-negative lift.

The polytope P is an extension of itself, therefore xc(P ) ≤ f(P ). Moreover,
xc(P ) ≤ v(P ) since every polytope is the projection of a simplex.

Let us state the following lemma in analogy to [GRT13, Prop. 3.8].

Lemma 6.3.1. Let P be a polytope and F ⊂ P a face. Then

xc(P ) ≥ xc(F ) + 1.

Proof. Let (P̂ , π) be a minimal extension of P . Let F be a face of P : the set
F̂ = π−1(F ) is a face of P̂ and is an extension of F by definition. Since F̂ is
a face of P̂ , it is contained in a facet of P̂ . Furthermore, every facet of F̂ is
obtained as an intersection F̂ ∩ Ĝ, with Ĝ facet of P̂ . Since f(F̂ ) ≥ xc(F ),
P̂ has necessarily at least xc(F ) facets and, in addition, at least one facet
containing F̂ . Thus xc(P ) ≥ xc(F ) + 1.
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Two corollaries follow immediately from the lemma.

Corollary 6.3.2. Let P ⊂ Rd be a d-polytope and F ⊆ P a k-face. Then

xc(P ) ≥ xc(F ) + d− k.

Corollary 6.3.3. If P ⊂ Rd is a d-dimensional polytope, xc(P ) ≥ d+ 1.

We can strengthen the incremental bound of Lemma 6.3.1 whenever there
are two disjoint facets with the same extension complexity.

Lemma 6.3.4. Let P be a polytope and let F1 and F2 be disjoint facets of P
such that xc(F1) = xc(F2) = r. Then

xc(P ) ≥ r + 2.

Proof. Let (P̂ , π) be a minimal extension of P . For i = 1, 2, the face F̂i =

π−1(Fi) is contained in ci ≥ 1 facets of P̂ and there are at least ri ≥ r facets
of P̂ meeting F̂i in facets. We only need to prove the lemma for the case
ci = 1 and ri = r, since in all other cases ci + ri ≥ r + 2 and this yields
enough facets of P̂ .

If ci = 1, F̂i is a facet of P . Moreover, F̂1 ∩ F̂2 = ∅ because their projections
F1 and F2 are disjoint by hypothesis. Therefore, F̂2 is not counted among the
r facets of P̂ intersecting F̂1 in a facet. Thus P̂ has at least r+ 2 facets.

This simple lemma trivially implies the extension complexity for the cube
(see [FKPT13a, Prop. 5.9]).

Corollary 6.3.5. Let P be a polytope combinatorially equivalent to the n-
dimensional cube Cn. Then xc(P ) = 2n.

Proof. We know that xc(P ) ≤ f(P ) = 2n and we now show that xc(P ) ≥ 2n.
For n = 1, P is a 1-simplex and xc(P ) = xc(C1) = 2. For n > 1 any facet F
of P is a combinatorial (n−1)-cube and there is a unique facet of P disjoint
from F , which is again a combinatorial cube. Hence, by Lemma 6.3.4 and
induction, we get

xc(P ) ≥ xc(Cn−1) + 2 = 2(n− 1) + 2 = 2n.

In this section we determine the extension complexity of hypersimplices. No-
tice that the hypersimplex ∆n,k is congruent to the hypersimplex ∆n,n−k and
therefore we only study the case k ≤ bn

2
c. We already mentioned that the
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facets of ∆n,k are defined by the inequalities of type xi ≥ 0 and 1 − xi ≥ 0,
for 1 ≤ i ≤ n. Thus f(∆n,k) = 2n ≥ xc(∆n,k).

We start to investigate the hypersimplices with small dimension: the first
instance is the hypersimplex ∆4,2 where v(∆4,2) =

(
4
2

)
= 6 and f(∆4,2) = 8.

Hence, we have the trivial bound xc(∆4,2) ≤ 6. The canonical projection
∆5 → ∆4,2 yields an extension with 6 facets. Observe that ∆4,2 is affinely
equivalent to a 3-dimensional octahedron. The simplex ∆5 is a minimal
extension since the polar P ◦ of ∆4,2 (more precisely, a translation of it con-
taining the origin in the interior) is a combinatorial 3-cube (thus xc(P ◦) = 6
by Corollary 6.3.5) and the extension complexity is preserved under polarity.

A second instance is the 4-dimensional polytope P = ∆5,2. We consider
this polytope in light of the tools provided by [OVW14]: if we remove the
vertices (1, 1, 0, 0, 0) and (0, 0, 0, 1, 1) from P , we obtain a subpolytope Q
with 8 vertices and 7 facets. Since xc(Q) ≤ 7 and P = Q ∪ {(1, 1, 0, 0, 0)} ∪
{(0, 0, 0, 1, 1}, it follows by [OVW14, Thm. 2.2] that xc(∆5,2) ≤ 7 + 2 = 9.

Before approaching the general problem, we study the slack matrices of the
hypersimplices ∆6,2 and ∆6,3. More precisely, we try to find lower bounds
on their rectangle covering number, which in turn yield lower bounds on the
extension complexity. First we introduce some definitions that will help us
to handle the slack matrices under consideration.

Let S ∈ Rv× f be a non-negative matrix. A rectangle of S is a set R = I×J
such that I ⊆ [v], J ⊆ [f], and Sij > 0 for every (i, j) ∈ I × J . A rectangle
covering of S is a collection of rectangles R1, . . . , Rm such that Sij > 0 if
and only if (i, j) ∈ Rl for some l = 1, . . . ,m.

The rectangle covering number rc(S) of S is the minimal number of
rectangles among all possible rectangle coverings of S. This number repre-
sents a lower bound on the non-negative rank of S (see [FMP+15, Thm. 4])
and whenever S is the slack matrix of some polytope P , it follows that
xc(P ) ≥ rc(S). For further details about non-negative rank and rectangles
coverings we refer to [Yan91] and [FKPT13b].

The rectangle covering number for both slack matrices of ∆6,2 and ∆6,3 is 12
and has been computed by Stefan Weltge. The straightforward consequence
is that xc(∆6,2) = xc(∆6,3) = 12 and this last piece of information is essential
to prove the following theorem.

Theorem 6.3.6. For n ≥ 6 and 2 < k < n− 2,

xc(∆n,k) = 2n.

Proof. As already mentioned we can assume k ≤ bn
2
c. The proof is by
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induction on n with base case n = 6 for which we know xc(∆6,2) = xc(∆6,3) =
12.

Observe that ∆n,k∩{p ∈ Rn : pi = 0} ∼= ∆n−1,k and ∆n,k∩{p ∈ Rn : 1−pi =
0} ∼= ∆n−1,k−1 for all i = 1, . . . , n. The symbol ∼= is used here for congruent
polytopes. If k > 2 and n ≥ 7, then xc(∆n−1,k) = xc(∆n−1,k−1) = 2n− 2 by
induction hypothesis. We apply Lemma 6.3.4 and obtain

xc(∆n,k) ≥ xc(∆n−1,k) + 2 = 2(n− 1) + 2.

It only remains to prove the case k = 2. The hypersimplex ∆n,2 has n
facets of type ∆n,2 ∩ {p ∈ Rn : pi = 0} ∼= ∆n−1,2 and n facets of type
∆n,2 ∩ {p ∈ Rn : 1− pi = 0} ∼= ∆n−1.

Consider P = ∆n,2 and a minimal extension (P̂ , π). For any facet F of type
∆n−1,2, the face F̂ = π−1(F ) is contained in c ≥ 1 facets of P̂ and there are
at least r ≥ xc(F ) facets of P̂ meeting F̂ in facets. By induction hypothesis
xc(F ) = 2n− 2 and therefore, as in the proof of Lemma 6.3.4, the only case
to consider is c = 1 and r = xc(F ).

In consequence, we assume that for every facet Fi of P of type ∆n−1,2, F̂i =

π−1(Fi) is a facet of P̂ .

The remaining facets Gi, 1 ≤ i ≤ n of P are simplices and each Ĝi = π−1(Gi)

is the intersection of some facets Rj, 1 ≤ j ≤ m, of P̂ . None of these facets
Rj can be one of the F̂i’s, since Ĝi ⊆ F̂i would imply that Gi ⊆ Fi.

Now consider the polyhedron P̂ ′ obtained from P̂ by removing the inequal-
ities corresponding to the facets F̂i’s. That is, P̂ ′ is the intersection of all
half-spaces that define facets of P̂ different from F̂i, 1 ≤ i ≤ n. Similarly,
by removing the inequalities corresponding to the facets F1, . . . , Fn from the
inequality description of P , we obtain

P ′ =

{
p ∈ Rn :

n∑

i=1

pi = 2 and 1− pi ≥ 0, for i ∈ 1, . . . , n

}
,

which is a (n−1)-simplex.

Since none of the facet-defining hyperplanes containing the faces Ĝi’s is re-
moved, π(P̂ ′) ⊆ P ′. Furthermore, P̂ ′ is bounded. By contradiction, if P̂ ′ is
unbounded, then it can only be unbounded in directions that are parallel to
the kernel ker(π) of the projection π. Since F̂i = π−1(Fi), it follows that for
all i = 1, . . . , n the facet-defining hyperplanes Ĥi := aff(F̂i) are parallel to
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ker(π) and therefore

P̂ = P̂ ′ ∩
(

n⋂

i=1

Ĥi

+

)

is also unbounded, which yields the contradiction.

Now, P̂ ′ is an extended formulation of the (n−1)-dimensional polytope π(P̂ ′).
Therefore, by Corollary 6.3.3, P̂ ′ has at least n facets. These facets, together
with the n facets of type F̂i, prove that xc(P ) ≥ 2n.

The theorem implies that every hypersimplex ∆n,k with n ≥ 6 is a minimal
extension of itself. It is legitimate to ask whether there are other minimal
extensions, which is quickly answered with the help of Matlab scripts made
available by the authors of [VGGT14]. For instance, the hypersimplex ∆6,2

admits a minimal extension different from ∆6,2.

Conjecture 6.3.7. Let PM be the base polytope of a connected 2-level matroid
M whose tree decomposition TM has only U-vertices of degree ≥ 6. Then
xc(P ) = f(P ).

This last conjecture is tied to our understanding of the extension complex-
ity in relation to the subdirect product and other polytopal operations. It
was proven by Hans Raj Tiwary ([Tiw]) that the the join ? of two poly-
topes P1 and P2 is such that xc(P1 ? P2) = xc(P1) + xc(P2). The under-
standing of the Cartesian product would represent a relevant step towards
the understanding of the subdirect product. Unfortunately, the statement
xc(P1×P2) = xc(P1)+xc(P2), even though supported by experimental data,
still remains a conjecture. Notice that if this last statement was true, our
conjecture would readily extend to non-connected 2-level matroids.

6.4 Vanishing ideal of uniform matroids

6.4.1 Gröbner bases of In,k

Consider the uniform matroid Un,k and its base configuration ∆n,k (with a
slight abuse of notation this refers to the set of vertices and includes the
cases k = 1 and k = n−1). Since simplices and hypersimplices are 2-level
polytopes, Proposition 6.1.2 shows that the vanishing ideal In,k := I(∆n,k)
has a set of generators of degree ≤ 2. In particular, In,k admits the system
of quadratic generators

x2
i − xi for all i ∈ [n], and

∑
xi − k .
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In this section we study the ideal In,k. More precisely, using the combinatorial
description of its Gröbner bases provided in [HR03], we analyze the Gröbner
fan and characterize the state polyhedron of In,k.

We shortly recap the basic definitions from Gröbner bases theory that are
instrumental for our purposes. For more details we point to [Stu96, Ch. 1]
and [EH12, Ch. 2].

Let R[x] be the polynomial ring in n indeterminates. A total order ≺ on Nn

induces an order on the monomials xα := xα1
1 . . . xαn

n , that is xα ≺ xβ ⇔ α ≺
β. If 0 is the unique minimal element, and α ≺ β implies α+γ ≺ β+γ
for all α,β,γ ∈ Nn, then ≺ is called a term order. Given a polynomial
p ∈ R[x] and the term order ≺, the leading monomial LM≺(p) is the
maximal monomial with respect to ≺ appearing in p.

Given an ideal I ⊂ R[x], the initial ideal in≺(I) is the monomial ideal
{LM≺(p) : p ∈ I}. A set of generators {g1, . . . , gm} of I is a Gröbner
basis of I with respect to the order ≺ if and only if in≺(I) = 〈LM≺(gi) :
i = 1, . . . ,m〉. A Gröbner basis G is called reduced if for every element in
the basis the coefficient of the leading monomial is 1 and for any g, g′ ∈ G
LM≺(g) does not divide any of the monomials of g′.

Following the notation of [HR03], for given positive integers n and t, such
that 1 ≤ t ≤ n/2 we define the sets

Dt := {{d1 < . . . < dt+1} ⊂ [n] : di ≥ 2i, for i = 1, . . . , t} , and
Ht := {{h1 < . . . < ht} ⊂ [n] : hi ≥ 2i for i = 1, . . . , t−1 and ht < 2t} .

For J ⊆ [n] and 0 ≤ i ≤ |J |, let σJ,i denote the ith elementary symmetric
polynomial supported on {xj : j ∈ J}

σJ,i :=
∑

T⊆J,|T |=i

xT ∈ R[x].

We define the polynomials

fH,k :=
t∑

j=0

(−1)t−j
(
k − j
t− j

)
σH′,j ,

where H ∈ Ht and H ′ = H∪{2t, 2t+1, . . . , n}. We now state the main result
from [HR03].

Theorem 6.4.1 ([HR03, Cor. 1.4]). Let k and n be integers such that 0 ≤
k ≤ n/2 and ≺ an arbitrary term order such that xn ≺ xn−1 ≺ . . . ≺ x1. The
set of polynomials

G = {x2
2−x2, . . . , x

2
n−xn}∪{xD : D ∈ Dk}∪{fH,k : H ∈ Ht for some 0<t≤k}
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is the reduced Gröbner basis of In,k with respect to ≺.

If k > n/2, then the reduced Gröbner basis of In,k is the set

{x2
2−x2, . . . , x

2
n−xn}∪{xD : D ∈ Dn−k}∪{fH,k : H ∈ Ht for some 0<t≤n−k},

which only differs from the case In,n−k because of the different values of the
coefficients of the polynomials fH,k. In what follows we always assume that
k ≤ n/2. The case k > n/2 works similarly and leads to the same results.

Since the Gröbner basis depends only on the order of the indeterminates
induced by a term order ≺, there can be at most n! distinct Gröbner bases
of In,k. From the combinatorial description of the Gröbner basis provided in
Theorem 6.4.1 we see that different orders of the indeterminates yield the
same reduced Gröebner basis. In this section we find the number of different
reduced Gröbner bases.

Let us fix a term order ≺ such that xn ≺ xn−1 ≺ ... ≺ x1. Since the order
of the indeterminates encodes the information necessary to determine the
Gröbner basis, we study which orders of the indeterminates yield the same
Gröbner basis as ≺. The permutation π ∈ Sn corresponds to the order
xπ(n) ≺ . . . ≺ xπ(1).

We say that a permutation π ∈ Sn is Gröbner invariant for In,k if the
order xπ(n) ≺ xπ(n−1) ≺ ... ≺ xπ(1) and the order xn ≺ xn−1 ≺ ... ≺ x1 yield
the same reduced Gröbner basis of In,k. We denote by Sgb(n, k) ⊂ Sn the
set of all Gröbner invariant permutations for In,k.

For instance, if π ∈ Sgb(n, k), then π(1) = 1. Indeed, by Theorem 6.4.1, the
polynomial x2

i − xi is not in the reduced Gröbner basis of In,k if and only if
xi is the biggest in the order of the indeterminates and therefore π(1) = 1.
There are also other conditions that are satisfied by π and have the following
concise combinatorial description.

Proposition 6.4.2. A permutation π ∈ Sn is Gröbner invariant for In,k if
and only if π(1) = 1, π(Dk) = Dk, and π(Ht) = Ht for 0 < t ≤ k.

Proof. If π ∈ Sgb(n, k), then the Gröbner basis G of In,k with respect to the
order xn ≺ xn−1 ≺ ... ≺ x1 is the same as the one obtained from the order
xπ(n) ≺ xπ(n−1) ≺ ... ≺ xπ(1). Equivalently, for every g(x1, . . . , xn) ∈ G, the
polynomial π(g(x1, . . . , xn)) := g(xπ(1), . . . , xπ(n)) ∈ G.
From Theorem 6.4.1, it is clear that every monomial in G is of the form
xD for some D ∈ Dk, which implies π(xD) ∈ G if and only if π(D) ∈ Dk.
Therefore π(xD) ∈ G for all D ∈ Dk if and only if π(Dk) = Dk. Moreover,
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any polynomial fH,k for H ∈ Ht has degree t and therefore π(fH,k) has degree
t. It follows that π(fH,k) ∈ G for every H ∈ Ht if and only if π(Ht) = Ht.
Finally, no polynomial fH,k is of the form x2

i − xi, thus π(1) = 1.

Lemma 6.4.3. Let H be in Ht. Then the maximal element of H is at most
2t− 1.

Proof. The setH = {h1, . . . , ht} ∈ Ht is such that h1< . . . <ht and ht<2t.

Lemma 6.4.4. Let π be a permutation in Sn. If π ∈ Sgb(n, k), then π(2i) ≤
2i+ 1 and π(2i+ 1) ≤ 2i+ 1 for 1 ≤ i ≤ k − 1.

Proof. For every i, 1 ≤ i ≤ k − 1, consider the set

H = {2, 4, 6, ..., 2i, 2i+ 1} ∈ Hi+1.

By Proposition 6.4.2, π(H) ∈ Hi+1. If π(2i) > 2i + 1 or π(2i + 1) > 2i + 1,
π(H) would contain an element bigger than 2i + 1, contradicting Lemma
6.4.3

Theorem 6.4.5. Let π be a permutation in Sn. Then π ∈ Sgb(n, k) if and
only if π is a product of transpositions of type (2i, 2i + 1) for 1 ≤ i ≤ k − 1
and a permutation on the elements {2k, 2k + 1, . . . , n}.

Proof. If π ∈ Sgb(n, k), then we have that π(1) = 1. Moreover, by Lemma
6.4.4, either π(2) = 2 and π(3) = 3 or π(2) = 3 and π(3) = 2. Inductively, it
follows that either π(2i) = 2i and π(2i + 1) = 2i + 1 or π(2i) = 2i + 1 and
π(2i+ 1) = 2i for 1 ≤ i ≤ k − 1.

In order to prove that the permutations described in the statement of the
theorem are Gröbner invariant for In,k, it is enough to consider every trans-
position and the permutations of the elements {2k, 2k+1, . . . , n}, separately.
Let us apply a transposition of type π = (2i, 2i + 1) to H ∈ Ht. If 2i ∈ H
and 2i + 1 /∈ H, the set H \ {2i} ∪ {2i + 1} ∈ Ht. In fact, the element we
remove and the element we add occupy the same position j in the sequence
h1< . . . <ht and the condition 2i ≥ 2j (or 2i < 2j if j is the last position)
implies the condition 2i+ 1 ≥ 2j (or 2i+ 1 < 2j).

Analogously, if 2i + 1 ∈ H and 2i /∈ H, the set H \ {2i + 1} ∪ {2i} ∈ Ht,
since 2i+ 1 ≥ 2j (or 2i+ 1 < 2j) implies 2i ≥ 2j (or 2i < 2j). An arbitrary
permutation on the elements {2k, 2k+1, . . . , n} involves no elements in any
set H ∈ Ht, 1 ≤ t ≤ k (it follows from Lemma 6.4.3).
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The same kind of argument applies to show that π(Dk) = Dk, since a trans-
position does not alter the order and the inequalities conditions. Further-
more, any element in {2k, 2k + 1, . . . , n} is bigger than 2j for every position
1 ≤ j ≤ k and can be replaced with any other element in {2k, 2k+ 1, . . . , n},
still remaining in Dk.

Corollary 6.4.6. Fix an order ≺ on the indeterminates and let G be the
corresponding reduced Gröbner basis. There are exactly

2k−1(n− 2k + 1)!

different orders of the indeterminates yielding the reduced Gröbner basis G.

Proof. It is enough to count the number of permutations in Sgb(n, k): by
Theorem 6.4.5 this set of permutation is generated by k−1 transpositions
and a permutation on n− 2k + 1 elements. The count follows from the fact
that all generators act on disjoint sets.

Another straightforward corollary is the following.

Corollary 6.4.7. Let gb(In,k) be the set of all reduced Gröbner bases with
respect to all possible term orders. We have that

| gb(In,k)| =
n!

2k−1(n− 2k + 1)!
.

We get a similar result if we consider the ideal In,k such that k > n/2. More
precisely,

| gb(In,k)| =
n!

2n−k−1(n− 2(n− k) + 1)!
.

6.4.2 Gröbner fan and state polyhedron

Before discussing the Gröbner fan of In,k and the corresponding state poly-
hedron, we recall few definitions, following [Stu96, Ch. 1].

A set C ⊂ Rn is a polyhedral cone if there exists a finite set {v1, . . . ,vm} ⊂
Rn such that

C = {p ∈ Rn , p = λ1v1 + . . .+ λmvm for some λi ≥ 0, i = 1, . . . ,m}.

A fan is a finite collection F of polyhedral cones such that
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(i) if F ∈ F and F ′ is a face of F , then F ′ ∈ F ;

(ii) if F1, F2 ∈ F , then F1 ∩ F2 ∈ F .

In the rest of the section we use the compact notation a · b to denote the
scalar product 〈a, b〉 =

∑n
i=1 aibi of two vectors a, b ∈ Rn.

Any vector ω ∈ Rn induces a monomial ordering as follows: xα ≺ xβ if and
only if ω ·α < ω ·β. Notice that there exist monomials such that ω ·α =
ω ·β. We define the initial form inω(p) of a polynomial p =

∑
cix

αi ∈ R[x]
as the sum of all terms cixαi such that ω ·αi is maximal. Moreover, we define
the initial ideal

inω(I) := 〈inω(p) : p ∈ I〉,

which is not necessarily a monomial ideal. If we fix an arbitrary term order
≺, then in≺(inω(I)) is a monomial ideal and, in particular, it is the initial
ideal for the term order ≺ω such that xα ≺ω xβ if and only if ω ·α < ω ·β
or ω ·α = ω ·β and α ≺ β.
TheGröbner region GR(I) is the set of ω ∈ Rn such that inω(I) = inω+(I)
for some ω+ ∈ Rn

≥0. We set an equivalence relation among weight vectors of
the Gröbner region: the equivalence class of a vector ω is defined as

[ω] := {ω′ ∈ GR(I) : inω′(I) = inω(I)}.

Each equivalence class turns out to be a relatively open convex polyhedral
cone ([Stu96, Prop. 2.3]) and the set of closed cones [ω] forms a fan, namely
the so-called Gröbner fan GF(I) of the ideal I.

The reader is referred to [Stu96, Ch. 1-2] for more details about Gröbner
bases, Gröbner regions, and Gröbner fans of ideals.

For a homogeneous ideal I ⊆ R[x] it is known that GR(I) = Rn (see [Stu96,
Prop. 1.12]) and for I non-homogeneous GR(I) ⊇ Rn

≥0. We prove that the
Gröbner region of the ideal In,k is exactly Rn

≥0.

To see why, consider any ω+ ∈ Rn
≥0 and ω ∈ Rn such that inω(In,k) =

inω+(In,k). Notice that whenever ωi < 0, inω(x2
i − xi) = xi and thus xi ∈

inω(In,k). If ω has at least two negative components ωi and ωj, then the
monomials xi and xj belong to inω(In,k) and therefore to in≺ω(In,k), with ≺
any term order. The description of the Gröbner basis provided in Theorem
6.4.1 shows that this is impossible. If ω has only one negative component
ωi, we have inω(x2

i − xi) = xi and inω′(x1 + . . .+ xn − k) = xj 6= xi and the
same argument applies. We conclude that ω ∈ Rn

≥0.
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Let ω be a vector in Rn
≥0 and π ∈ Sn a permutation such that ωπ(1) ≥ ωπ(2) ≥

. . . ≥ ωπ(n). We call π an ordering permutation of ω. If ω has all distinct
components, there exists a unique ordering permutation.

The reduced Gröbner basis of In,k only depends on the order of the indeter-
minates induced by a term order (Theorem 6.4.1). Thus, given two vectors
ω and ω′ with the same unique ordering permutation, we have [ω] = [ω′]
because they induce the same order of the indeterminates. Moreover, this
shows that GF(In,k) is a coarsening of the braid arrangement fan described
in [PRW08, Sect. 3.2] restricted to the positive octant.

Each maximal cone of GF(In,k) is the union of maximal cones of the braid
arrangement fan. Every maximal cone of the braid arrangement fan is asso-
ciated with the ordering permutations of its element. Our goal is to charac-
terize the Gröbner fan of In,k as the normal fan of a suitable polyhedron.

Let us consider a polyhedron P ⊂ Rn. For any vector ω ∈ Rn such that

max
p∈P

ω ·p = pω <∞,

we define the face of P maximizing in the direction ω as the set

Pω := {p ∈ P : ω ·p = pω}.

We denote by R(P ) the set of vectors which define a face and partition it
into equivalence classes defined as

[ω]max := {ω′ ∈ R(P ) : Pω
′
= Pω}.

The equivalence classes are relatively open cones and the set of closed cones
[ω]max forms a fan called the normal fan NF(P ) of P .

To construct the polyhedron we are looking for, we define the Minkowski
sum of two polyhedra P1 and P2 in Rn as the polyhedron

P1 + P2 := {p1 + p2 ∈ Rn : p1 ∈ P1 and p2 ∈ P2}.

Notice that the normal fan of the Minkowski sum Q := P + Rn
≤0, where P

is a polytope in Rn and Rn
≤0 := {p ∈ Rn : pi ≤ 0 for all i}, is defined on

R(Q) = Rn
≥0.

Given the point (a1, . . . , an) ∈ Rn, the permutahedron Π(a1, . . . , an) is
the polytope obtained as the convex hull of all possible permutations of the
coordinates (a1, . . . , an). For k ≤ n/2, we define the polyhedron

Πn,k := Π(k, k − 1, k − 1, k − 2, k − 2, . . . , 1, 1, 0, 0, . . . , 0, 0︸ ︷︷ ︸
(n−2k+1)−times

) + Rn
≤0.
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We analyze the normal fan of Πn,k. Let ω ∈ Rn
≥0 be a vector with unique

ordering permutation π ∈ Sn (thus ωπ(1) > ωπ(2) > . . . > ωπ(n)). The only
vertex v = (v1, . . . , vn) of Πn,k that maximize ω ·v is vπ(1) = k, vπ(2) =
k − 1, . . . , vπ(n) = 0 (this follows from the rearrangement inequality). Thus,
Qω is a vertex and all vectors that can be strictly ordered by the same
permutation π necessarily belong to the same maximal cone. We conclude
that NF(Πn,k) is a coarsening of the braid arrangement fan restricted to Rn

≥0.

Example 6.4.8. Let us consider the polyhedron Π3,1. Its normal fan has
three maximal cones. In Figure 6.2 we illustrate the equivalence classes
[(1, 1, 1)]max, [(0, 1, 1)]max, and [(0, 0, 1)]max. The maximizing faces are re-
spectively a 2-simplex, an edge, and a vertex. The closure of [(0, 0, 1)] is
a maximal region of the normal fan and contains the vectors with ordering
permutations (312) or (321).

x1

x2

x3

x1

x2

x3

x1

x2

x3

Figure 6.2: Normal fan of Π3,1.

Given an ideal I ⊂ R[x], its state polyhedron SP(I) is the polyhedron
such that NF(SP(I)) = GF(I).

Theorem 6.4.9. The polyhedron Πn,k is the state polyhedron of In,k.

Proof. Let us consider the Gröbner fan GF(In,k) and the normal fan NF(Πn,k),
both defined on Rn

≥0. To show that they are equal, we check that the max-
imal regions of the two fans are the same. More precisely, we determine
which strictly ordered vectors are equivalent. Both fans are coarsenings of
the braid arrangement fan B, therefore they are equal if their maximal re-
gions gather together the same maximal regions of B (which we represent by
permutations).
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Theorem 6.4.5 implies that two strictly ordered weight vectors ω and ω′ are in
the same maximal cone of GF(In,k) if and only if their ordering permutations
π and π′ are such that π = π′ ◦ σ, where σ ∈ Sgb(n, k).

A maximal region of NF(Πn,k) is the set of vectors that are maximized at a
same vertex of Πn,k (including vectors that give faces strictly containing the
vertex). Two strictly ordered vectors ω and ω′ with ordering permutations
π and π′ are maximized by the same vertex if and only if π = π′ ◦ σ, where
σ can exchange the pairs of type (2i, 2i+ 1) for i = 1, . . . k − 1 and permute
all the elements (2k, 2k + 1, . . . , n) because all these operations do not alter
the values in the rearrangement inequality.

This set of permutation is clearly Sgb(n, k), therefore the two fans coincide.

If we consider the Gröbner fan of In,k for k > n/2, we easily find out that
GF(In,k) = GF(In,n−k). This also implies that SP(In,k) = SP(In,n−k), thus
the state polyhedron for k > n/2 is defined as

Π(n− k, n− k − 1, n− k − 1, . . . , 1, 1, 0, 0, . . . , 0, 0︸ ︷︷ ︸
(n−2(n−k)+1)−times

) + Rn
≤0.

The description of Πn,k follows quite naturally from the structure of the ideal
In,k. In general, the vanishing ideal of a base configuration VM is the ideal
In,k together with additional monomials corresponding to the circuits of the
matroid M . As soon as we run few computational experiments, we notice
that some classes of matroids appear to have a “well-behaved” Gröbner fan.

Conjecture 6.4.10. The Gröbner fan of the vanishing ideal of a configura-
tion VM , for M ∈MLev

2 , is a coarsening of the braid arrangement fan.

The conjecture is supported by several experiments we computed in Gfan.
Unfortunately, all the symmetries of the maximal cones that we observe
for the uniform matroids are destroyed as soon as we add the monomials
of the circuits of M to the ideal. To conclude, we want to mention two
other classes of matroids whose Gröbner fans appear to be coarsenings of
the braid arrangement fan, namely lattice path matroids ([BdMN03]) and
laminar matroids ([CCPV07]).
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Zusammenfassung

Der Theta-Rang einer endlichen Punktkonfiguration V ist der maximal benötigte
Grad, um eine beliebige, nicht-negative, lineare Funktion auf V als Summe
von Quadraten darzustellen. Diese Zahl ist eine wichtige Invariante für Prob-
leme der polynomiellen Optimierung und ist im Allgemeinen schwer zu bes-
timmen. Wir untersuchen den Theta-Rang einer Punktkonfiguration mittels
levelness, einer Invariante aus der diskreten Geometrie, und klassifizieren die
2-level (d.h. Theta-1) Konfigurationen deren konvexe Hülle ein simples oder
simpliziales Polytop ist.

Wir betrachten Konfigurationen, die man aus der Familie von Basen eines
Matroids erhält und zeigen, dass die Klasse von Matroiden mit beschränktem
Theta-Rang beziehungsweise levelness abgeschlossen bezüglich Minoren ist.
Dies gestattet es, Matroide mit beschränktem Theta-Rang oder beschränkter
levelness durch verbotene Minoren zu charakterisieren.

Die vollständige (endliche) Liste ausgeschlossener Minoren wird für Theta-1
Matroide angegeben, die den Fall von series-parallel graphs verallgemeinern.
Zudem lässt sich die Klasse der Theta-1 Matroide über den degree of gen-
eration des Verschwindungs-Ideals sowie über den psd-Rang des assozierten
Matroidenbasispolytops bestimmen.

Theta-1 Matroide sind sort-closed. Dies gestattet es, unimodulare Trian-
gulierungen des Matroidpolytops zu finden und sein Volumen mittels Per-
mutationen zu charakterisieren.

Asymptotische Schranken für die Anzahl an Theta-1 Matroiden auf einer
Grundmenge mit fester Größe werden gefunden. Somit gelingt es auch, eine
exponentielle untere Schranke an die Anzahl von 2-level polytopes einer be-
liebigen aber festen Dimension anzugeben.

Es wird bewiesen, dass k-level Matroide für k > 2 sich durch nur endlich
viele ausgeschlossene Minoren beschreiben lassen. Zudem wird eine Charak-
terisierung von k-level graphs durch verbotene Minoren angegeben und die
verbotenen Minoren für Graphen von Theta-Rang 2 untersucht.

Der nicht-negative Rang und Gröbnerfächer von Hypersimplizes – also Ma-
troidbasispolytopen von uniformen Matroiden – werden vollständig beschrieben.
Vermutungen über mögliche Verallgemeinerungen auf Theta-1 Matroide wer-
den präsentiert.

121





Eidesstattliche Erklärung

Gemäß §7 (4) der Promotionsordnung des Fachbereichs Mathematik und In-
formatik der Freien Universität Berlin versichere ich hiermit, dass ich alle
Hilfsmittel und Hilfen angegeben und auf dieser Grundlage die Arbeit selb-
ständig verfasst habe. Des Weiteren versichere ich, dass ich diese Arbeit
nicht schon einmal zu einem früheren Promotionsverfahren eingereicht habe.

Berlin, den 16. Juli

Francesco Grande




	Summary
	Acknowledgements
	Introduction
	Basics
	Point configurations and polytopes
	Basic definitions and properties
	Gale duality

	Matroids
	Basic definitions and properties
	Matroid base configurations
	Matroid operations


	Configurations and levelness
	Configurations of 0/1-points
	An overview of 2-level configurations
	Levelness and 2-levelness
	Polytopal constructions and levelness
	A catalog of 2-level polytopes

	Simple and simplicial

	Matroid base configurations
	Face-hereditary properties
	2-level matroids
	k-level graphs
	Excluded minors for k-level graphs
	The class of 3-level graphs
	4-level and Theta-2 graphs

	Excluded minors for k-level matroids

	The constructive approach
	Structural properties
	Tree decompositions of matroids
	The family of UMR-trees

	Base polytopes and 2-sum
	Sort-closed matroids and triangulations
	Alcoved polytopes and volumes


	Enumeration of 2-level matroids
	The generating function T(x)
	Preliminaries
	The combinatorial class of UMR-trees
	Counting pointed UMR-trees
	The Dissymmetry Theorem

	Asymptotic analysis of T(x)
	Preliminaries
	Asymptotic analysis
	Self-duality
	Many 2-level polytopes from matroids


	Matroid ideals and cone-ranks
	Degree of base configurations
	Psd rank
	Extension complexity of hypersimplices
	Vanishing ideal of uniform matroids
	Gröbner bases of In,k
	Gröbner fan and state polyhedron


	Bibliography
	List of Figures
	Zusammenfassung
	Eidesstattliche Erklärung

