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Quantum transport through single-molecule devices:

spin and vibration

Abstract

Over the past few years the emerging field of molecular electronics has stimulated
the interest in understanding the physics of single-molecule transistors. Not only
is this a result of promising technological applications, it has also been shown that
the presence of specific internal molecular degrees of freedom leads to numerous
novel quantum transport phenomena that go beyond the physics observed in larger
nanostructural objects such as quantum dots or carbon nanotubes. In the present
work we investigate the coupling of electronic degrees of freedom to (i) vibrations,
(ii) spins, and (iii) chemical conformations in transport through molecular junctions.

Transport through magnetic molecules is discussed in relation to molecular spin-
tronics, i.e. the idea of integrating the concepts of molecular electronics and spin-
tronics. An essential requirement for spintronics devices is the ability to control
and detect the spin. In this context, we find that magnetic anisotropy is crucial for
slow spin relaxation. The spin moment transmitted from one lead of the molecular
junction to the other depends strongly on the orientation of the molecular spin and
can be much larger than the initial molecular spin itself. This effect of giant spin
amplification allows one to effectively read out the spin information. Importantly,
the leads need not be polarized. On the other hand, spin writing requires a molecular
junction that consists of one ferromagnetic and one nonmagnetic lead. Interestingly,
current-induced switching of the spin to a predetermined state only requires a finite
bias voltage and is also possible in the absence of a magnetic field.

Furthermore, the proposed setup leads to interesting physics beyond the effect
of spin writing, including the occurrence of large negative differential conductance
(NDC) at high temperatures. This effect is the consequence of a new spin blockade
mechanism. By this we mean the suppression of the single-electron tunneling rates
for electrons of one spin species due to density-of-states effects.

The interplay of magnetic and vibrational degrees of freedom is investigated in
transport through vibrating single-molecule transistors in the Kondo regime. We
find that the dependence of the Kondo temperature on the gate voltage is much
weaker than in conventional nanostructures in the regime of strong electron-phonon
coupling. Moreover, the Coulomb blockade is strongly asymmetric about the charge
degeneracy points (marking the transition from the non-Kondo to the Kondo val-
ley), i.e. the peaks in the differential conductance are well pronounced on one side
of the degeneracy points, whereas they almost vanish on the other side. Experimen-
tal evidence for these two unusual features has been obtained in recent transport
experiments on organic complexes.

The main requirement for an electric circuit in nanoscale dimensions is a molecular
device that can be switched between two distinct conductive states. Because of



intrinsic bistabilities many single-molecule junctions reveal current-induced switching
behavior, e.g. involving cis and trans isomers of a molecule. We study this process
for molecules which exhibit two (meta)stable conformations in the neutral state, but
only a single stable conformation in the ionic state. While other recent works in
this field consider switching processes which are stimulated by thermal activation or
vibrational-assisted tunneling from one minimum of the double well to the other, we
show that the switching may also be induced by the current involving two subsequent
sequential tunneling processes. Here, our main focus of interest is the regime of
strongly asymmetric couplings to the leads, corresponding to the experimental setup
of a scanning tunneling microscope (STM) conductance measurement. We show
that the transport dynamics can be described by a set of Fokker-Planck equations
for the Wigner distribution function of the molecule. Our main result is that the
average number of switching events per time becomes extremely small compared to
the average electronic tunneling rate determined by the current. In other words, the
time that the molecule is in one of the two conformations is long compared to the
average time between subsequent tunneling events. Such remarkable behavior has
been observed in recent STM experiments.
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1 Introduction

1.1 Molecular electronics

The proposal to use single molecules for the fabrication of devices in electronic data
processing goes back to a seminal work by Aviram and Ratner [1] in 1974, which
may be regarded as the birth of the research field called molecular electronics. The
idea was to construct a molecular rectifier by manipulating its electronic properties
with functional donor and acceptor groups. However, since the state of the art was
far away from the experimental realization of a single-molecule transistor, the vision
of an electrical circuit based on molecular components remained an academic issue
during the following decades.

Research in this area is mainly driven by the technological motivation to overcome
the limits of semiconductor microelectronics. Since the invention of the transistor by
Shockley, Bardeen, and Brattain in 1947 (Nobel prize 1956), the computer industry
has been reporting a rapid progress in fabricating faster and faster chip devices.
Improving their efficiency relies essentially on reducing the size of the chip features,
since the velocity of the charge carriers is a property which is entirely controlled by
the semiconductor material so that speed of data processing is essentially governed
by the size of the components. The miniaturization trend in the history of computer
hardware follows an empirical law stating that the number of transistors that can be
placed on an integrated circuit is increasing exponentially, doubling approximately
every two years. This observation was first made by G. E. Moore [2] in a 1965 paper
and is illustrated in Fig. 1.1.

A particularly interesting aspect of molecular electronics, besides the prospect of
further miniaturization, is the possibility of using chemical synthesis for the fabrica-
tion of device components. This approach called bottom-up would start from rela-
tively simple molecules and be massively parallel, seeking to have single molecules
arrange themselves into more complex structures by self-assembly. In contrast, the
concept of top-down approaches consists of creating nanostructures by starting from
larger devices and directly controlling the manufacture of smaller features while cut-
ting materials into the desired shape, e.g. using electron beam lithography. The
concept of bottom-up was already addressed by R. P. Feynman in his famous lecture
at an American Physical Society meeting at Caltech in 1959, There’s Plenty of Room
at the Bottom [3]. In particular Feynman discussed the possibility of manipulating
individual atoms on the nanoscale in relation to denser computer circuitry and mi-
croscopy that would go beyond the limitations of scanning electron microscopes those
days. Why cannot we write the entire 24 volumes of the Encyclopedia Britannica on
the head of a pin? [3] At that time Feynman’s ideas were pure thought experiments,
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1 Introduction

since the necessary technologies had not been developed yet. However, 40 years later
some of his ideas have been experimentally realized, e.g. by the development of the
scanning tunneling microscopy and data storage devices such as the IBM Millipede
[4], respectively.

Despite the reigning optimism about molecular electronics, industrial practicabil-
ity standards and profitability requirements of molecular electronics have not been
met yet. Since research in this area has just begun, it will only turn out in the
future which specific concepts are also promising from an economic point of view.
However, molecular electronics has also been receiving much attention independently
of the above mentioned technological aspects. Aside from the possibility of enabling
the next step in miniaturization towards smaller devices, molecular electronics has
become of fundamental interest in that it poses numerous questions aiming at a
deeper understanding of electronic transport on the molecular level. In this con-
text, transport through single molecules has turned into a flourishing field at the
interface between physics and chemistry. On the one hand, similarities to larger
nanostructures have become evident in various experiments such as the observation
of the Coulomb blockade and the Kondo effect [5–7]. On the other hand, it has been
shown experimentally and theoretically that the presence of specific internal molec-
ular degrees of freedom leads to novel quantum transport phenomena that go far
beyond the physics observed in more conventional nanosized objects such as semi-
conductor quantum dots or carbon nanotubes [8–36]. An overview of the sizes of
typical nanostructures and molecular devices is sketched in Fig. 1.2.

1.2 Molecular spintronics

An alternative strategy to go beyond conventional semiconductor-based microelec-
tronics is known as spintronics. Complementary to molecular electronics, spintronics
relies on using not only the charge of the electron but also its spin to store and pro-
cess information, bringing the memory and logic functionality on the same chip with
the electronic spin being the the ultimate logic bit [38]. In this respect spintronics
has set a new paradigm.

The discovery of giant magnetoresistance (GMR) by P. Grünberg et al. [39] and A.
Fert et al. [40], awarded the Nobel prize in 2007, is considered the birth of this field of
research. The effect is observed in thin metal films of alternating ferromagnetic and
nonmagnetic layers, manifesting itself as a significant decrease in electrical resistance
due to the presence of a magnetic field. Giant magnetoresistance has been exploited
commercially and has led to a number of patents in the computer industry. For
instance, it has been used in modern hard disk drives and non-volatile semiconductor
memory devices such as magnetoresistive random access memory (MRAM) chips.
Furthermore, this emerging field of semiconductor-based spintronics is expected to
have great potential to lead to a number of further technological applications in the
future.

In semiconductors spin preserves coherence over extremely long times and dis-
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1.2 Molecular spintronics

Figure 1.1: Moore’s law. The number of transistors that can be placed on an integrated
circuit is increasing exponentially, doubling approximately every two years. The figure is
taken from Intel’s webpage [37].

Figure 1.2: Illustration of length scales relevant for semiconductor-based electron-
ics and molecular electronics. The figure of the quantum dot is taken from
C. Schönenberger’s group in Basel. The figure of the DNA molecule is taken from
http://www.dnamnd.med.usyd.edu.au. The figures of the azobenzene molecule and Mn12

derivative are taken from the Wikipedia. The figure of the N@C60 molecule is taken
from W. Harneit’s group in Berlin. The figure of the carbon nanotube is taken from
http://people.cecs.ucf.edu/sseal/debs/debasis.htm.
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1 Introduction

tances and thus offers the prospect of being used for quantum logic [9; 11; 38; 41].
This idea is mainly based on the presence of spin-orbit interaction, which plays a
ubiquitous role in semiconductor spintronics. However note that while spin-orbit
interaction is an intrinsic property of the electronic structure that allows one to ma-
nipulate the spin by electric means only, as e.g. exploited in the spin Hall effect
[42; 43], it is the main source of spin dephasing and responsible for spin decoherence
at the same time.

Remarkably, only little efforts have been made on combining the promising con-
cepts of molecular electronics and spintronics. The driving idea behind molecular
spintronics consists of integrating these two strategies for the purpose of exploiting
all their advantages. The spin presents an attractive degree of freedom to be used in
logic devices, since the relevant energy scales are typically a few orders of magnitude
smaller than those involved in manipulating the electron charge in a transistor. This
can translate into devices exhibiting ultra-low power consumption and high speed
[9; 11; 38; 41]. Moreover the molecular world provides all ingredients required for an
electric network. Organic molecules have the advantage to be produced with low-
temperature low-cost chemical methods instead of high-temperature solid-state tech-
niques. Chemical synthesis allows the design of polymers with the desired electronic
structure and conductivities ranging over several orders of magnitude. Furthermore,
molecules can be anchored to metal substrates in various ways. The spin relaxation
times of single-molecule transistors can be extremely long compared to the average
electronic tunneling time which is governed by the current [9; 11; 38; 41].

The combination of molecular electronic and spintronics relies essentially on mag-
netic molecules, i.e. molecules with a local spin [44]. In this context, magnetic
single-molecule transistors have been proposed as candidates for the experimental
realization of molecular spintronics. Despite the fact that many molecules tend to
be diamagnetic in the neutral state due to the presence of paired valence electrons
in the molecular orbitals, there exists a large number of metal complexes which are
paramagnetic. Some porphyrin complexes such as heme, which is based on a central
iron ion, have a local spin S = 2. Manganese Mn12 complexes [45] and iron F8

derivatives [46] even reveal a spin of length S ≃ 10. Endohedral fullerenes [47; 48]
consisting of nitrogen doped or phosphorus doped C60 are paramagnetic due to the
presence of three unpaired p electrons, resulting in a total spin S = 3/2. Furthermore,
any molecule that is diamagnetic in the neutral state usually becomes paramagnetic
when it is charged.

The prospect of using single-molecule magnets in the context of molecular spin-
tronics is elucidated in Chapter 3, where our main focus is on concepts of spin reading
and writing.

1.3 Experimental motivation

Over the past few years molecular electronics has fueled the interest in understanding
the physics of single-molecule transistors. Experimental research in this field has been
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1.3 Experimental motivation

(a) (b)

Figure 1.3: (a) Scanning tunneling microscope setup. Here the molecule is strongly coupled
to the substrate and weakly coupled to the tip. (b) Setup of a three-terminal molecular
junction. Here the molecule is symmetrically coupled to the source and drain electrode.
The presence of an additional gate electrode allows one to shift the electrostatic potential
of the molecule.

enabled and motivated by the development of new techniques which allow for the
realization of single-molecule devices. In the following we survey the state of the art,
even though the selection of listed works makes no claim to be complete.

Experimental works which propose to measure the conductivity of single molecules
essentially fall into two classes. The first involves a scanning tunneling microscope
(STM) setup [49]. Here the tip and the substrate layer serve as source and drain
electrodes, respectively, cf. Fig. 1.3(a). The second is based on a molecular junction
that is created by the use of the breakjunction technique [18] or electromigration
[12]. Here the molecule is located in the gap of a metal wire that is adsorbed on a
substrate surface, whereas the voltage drops off between the two edges of the gap,
which serve as source and drain electrodes in this case, cf. Fig.1.3(b).

Both approaches have been employed by a number of groups and led to many
interesting works. Scanning tunneling microscope experiments usually involve very
asymmetric couplings to the leads. The molecule is relatively strongly coupled to
the substrate, whereas it is much more weakly coupled to the tip electrode. As a
consequence the spectrum of the molecule may be affected by presence of the sub-
strate in an essential way. Its spectral function reveals additional broadenings of
the peaks due to quantum fluctuations, which is expected to manifest itself as a
broadening of the peaks in the differential conductance for temperatures small com-
pared to the hybridization energy. On the other hand, molecular junctions usually
imply weaker and more symmetric couplings to the leads. The molecular spectrum
is hardly affected by the presence of the electrodes. Some of these experiments are
performed with mechanically controllable break junctions [18]. In this approach, a
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1 Introduction

Figure 1.4: Experimental data for transport through single C60 by Park et al. [12]. The
current-voltage characteristics show approximately equidistant steps due to the excitation
of molecular phonons. The conductance gap in the vicinity of zero bias voltage represents
the Coulomb blockade. The inset shows the current while opening the junction by electro-
migration.

metal wire is glued onto a flexible substrate by lithographical methods and fractured
by bending the substrate, by which an adjustable tunneling gap can be established.
The bending of the substrate is controlled by a piezo element. The breaking of the
junction and the creation of the gap in the metal wire is indicated by a rapid re-
duction of the conductance by several orders of magnitude. Subsequently, organic
molecules are being adsorbed onto the two electrodes of the break junction, which
were broken in solution, resulting in formation of a self-assembled monolayer (SAM)
on the electrodes. The piezo element allows for changing the molecule-lead coupling
by adjusting the spacing between the electrodes, which is usually of the order of
a nanometer. Alternatively the gap between the electrodes can be created by the
process of electromigration [12]. Furthermore, molecular junctions also allow for an
additional gate electrode, which is usually integrated in the experimental setup as
a metal layer under the substrate. In the experiments by Park et al. [12] the entire
structure was defined on a SiO2 insulating layer on top of a doped silicon wafer. The
presence of a gate electrode provides an additional control parameter that permits
one to effectively shift the electrostatic energies of the molecule, turning the molecu-
lar junction into a transistor. Mainly for this reason, this technique has become very
popular and received much attention in the context of molecular electronics.

Many experiments report transport phenomena which are similar to those effects
observed in conventional nanostructures. The Coulomb blockade and the Kondo
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Figure 1.5: Experimental data for transport through single Mn12 by Jo et al. [23]. Two-
dimensional plots of the differential conductance as a function bias V and gate voltage Vg

show peaks due to magnetic excitations. The presence of a magnetic field (b),(d) leads to a
shift of the peaks observed for vanishing magnetic field (a),(c).

effect [5–7] both arising due to large ionization energies and the small size of molecular
structures are very prominent examples in this context.

However, understanding the physics in single-molecule transistors is not only mo-
tivated by promising technological applications, it has also been shown that the
presence of specific internal molecular degrees of freedom leads to numerous novel
quantum transport phenomena that go beyond the physics observed in larger nano-
structures such as quantum dots. In this context, much attention has been paid to
effects arising from the coupling of electronic degrees of freedom to (i) vibrations,
(ii) spins, and (iii) different chemical conformations of the molecule.

Pioneering transport measurements on vibrating single-molecule transistors have
been performed by Park et al. [12]. The conductance of a molecular junction consist-
ing of a single C60 molecule connected to two gold electrodes has been investigated
with respect to the coupling between the center-of-mass motion of the C60 molecule
and single-electron hopping. This coupling leads to quantized oscillations of the
C60 molecule against the gold surface and drives the molecule out of vibrational
equilibrium at sufficiently large bias voltages. As a consequence, the motion of elec-
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1 Introduction

Figure 1.6: Scanning tunneling microscope images for azobenzene by Henningsen et al. [50].
Conformational switching is induced by the current through the molecule.

trons through the molecule is strongly modified by single-electron charging and the
quantization of vibrational energy levels. A remarkable feature is the occurrence of
equidistant vibrational sidebands in the differential conductance with an energy of
approximately 5 meV, where each step in the tunneling current can be attributed
to the excitation of a certain number of phonons, cf. Fig. 1.4. This excitation is
reminiscent of the Franck-Condon processes encountered in electron-transfer and
light-absorption processes in molecules, where the vibrational excitation accompa-
nies the electronic motion [12]. This transport measurement has demonstrated that
single-electron tunneling can be used to excite and probe the motion of a molecule,
which behaves as a high-frequency nanomechanical oscillator.

The role of coupling between electronic and magnetic degrees of freedom in trans-
port through single molecules has been considered in recent experiments on man-
ganese Mn12 derivatives by Jo et al. [23] and Heersche et al. [22]. These experiments
on devices incorporating magnetic molecules report signatures of magnetic states and
their associated magnetic anisotropy. Among other phenomena, they focus on the
fine structure of the Coulomb blockade peaks in the differential conductance dI/dV
of single-molecule magnets, cf. Fig. 1.5. Here the occurrence of additional magnetic
sidebands is due to magnetic excitations of the local spin. Each peak in the dif-
ferential conductance corresponds to an inelastic sequential tunneling event, which
changes the charge of the molecule by one and the spin by 1/2. Applying an external
magnetic field that couples linearly to the magnetic moment of the molecule gives
rise to an additional Zeeman splitting and allows one to distinguish these magnetic
sidebands from vibrational sidebands and other observed structures. Furthermore,
cotunneling processes, which give the dominant contribution to the tunneling current
through the molecular junction in the Coulomb blockade regime, have been observed
[23].

An essential requirement for electric circuits of nanoscale dimensions is a molec-
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1.3 Experimental motivation

ular device that can be switched between two distinct conductive states. Because
of intrinsic bistabilities many single-molecule junctions reveal switching behavior,
e.g. involving cis and trans isomers of a molecule [50–60]. Among many other im-
portant works, a recent experiment on oligo-phenylenevinylene (OPV3) derivatives
by Danilov et al. [51] has addressed the topic of current-induced conformational
switching. The current-voltage characteristics show switching behavior between two
distinct conformational states. Here the observed bistability leading to the switch-
ing behavior is associated with the breaking and reformation of a thiol bond in the
contact zone between molecule and electrode. Remarkably, it takes approximately
1010 electrons tunneling through the molecular junction to induce a single switch-
ing event. In other words, the chemical conformation of the molecule persists over
times extremely long compared to the average electronic tunneling time. Such low-
quantum-yield switching has also been observed in various other experiments, for
instance, in STM measurements on azobenzene derivatives [50].

In summary, a very large number of molecules ranging from the hydrogen molecule
to DNA has been investigated experimentally in molecular junctions. Depending on
the molecule-lead coupling, vibrational and magnetic excitations appear as steps or
kinks in the current-voltage characteristics. The appearance of steps in the current
(corresponding peaks in dI/dV ) is characteristic of the weak coupling regime which
is best realized in breakjunction-like experiments, whereas the kinks (correspond-
ing steps in dI/dV ) are usually observed in the strong coupling regime, realized in
STM experiments. Specific aspects of experimental results will also be referred to
in the following chapters, when we discuss in detail the roles of (i) electron-phonon
interaction, (ii) magnetic anisotropy, and (iii) cis/trans-isomerism in single-molecule
transistors.

Recently, research in the field of molecular electronics has also been inspired by
the prevailing optimism about graphene-based electronics [61; 62]. Remarkably, at
the time when silicon-based technology is approaching its natural limit, graphene
seems to offer an exceptional choice among all other new candidate materials. While
most approaches essentially rely on considering graphene as a new channel materials
for field-effect transistors (FET), others are interested in studying its properties
as a single electron transistor (SET) in the context of molecular electronics [61;
62]. Here the main advantage is that graphene nanostructures are stable down to
a single benzene ring and that everything including conducting channels, quantum
dots, barriers can be cut out from a graphene sheet in any size using conventional
top-down methods such as electron-beam lithography and dry etching. Interestingly,
for a minimum feature size of ≃ 10 nm, graphene reveals conductance gaps due to
Coulomb blockade corresponding to energies of the order of eV, which should, in
principle, allow SET circuitry operational at room temperature. Indeed, the main
reason why SET architecture has failed to establish itself is the difficulties associated
with the extension of its operation to room temperature due to poor stability of
materials at the nanometer scale. Currently, graphene is considered a promising
candidate to overcome these problems [61; 62].
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1 Introduction

1.4 Theoretical treatment

Theoretical works on quantum transport through molecules and other nanostructures
fall into two classes. The first relies on a detailed modeling of the molecule and the
contact region between the molecule and the leads by the use of density functional
theory (DFT) [63; 64]. In a second step, electronic transport is described within
a Landauer theory using the Kohn-Sham potentials of density functional theory
[16; 65–67]. While this method is successful in obtaining the correct (experimentally
observed) positions of energy resonances in the differential conductance, the main
problem that it suffers from the fact that the conductivity of molecules is overes-
timated by one to two orders of magnitude. However, note that density functional
theory, which was actually developed to obtain the ground state of an isolated atomic
or molecular structure, is per se inappropriate for the description of nonequilibrium
phenomena, since there exists no extension of the Hohenberg-Kohn theorems to scat-
tering problems such a electronic transport, so far. The DFT approach should there-
fore be considered a first approximation rather than a realistic theoretical modeling
of the transport problem. Furthermore, the inclusion of specific internal molecular
degrees of freedom such as vibrations leads to conceptual problems.

Recently great efforts have been made to overcome these difficulties by approaches
using time-dependent density functional theory (TDDFT), the main success of which
has been its application to the calculation of excited states of many-particle systems.
Time-dependent density functional theory relies on the Runge-Gross theorem [68],
which is the time-dependent analogue of the Hohenberg-Kohn theorem [69] for DFT.
Yet only time will tell if TDDFT is really suitable for an accurate description of
single-molecule devices out of equilibrium [64; 70].

The second class of theoretical works on quantum transport through molecules
relies on a parametric modeling of the relevant molecular levels. Many of these
approaches start from a generic Anderson-like model and employ nonequilibrium
(Keldysh) Green function methods [71; 72], density-matrix theory [73], and Wil-
son’s renormalization group [74]. The molecular junction is usually described by a
Hamiltonian of type

H = Hmol +Hleads +Ht, (1.1)

where Hmol describes the molecule, Hleads describes the leads, and Ht describes the
coupling between them. Usually Hmol and Hleads can be diagonalized exactly in
the absence of the coupling, which allows for a perturbative expansion in Ht. This
approach has been successful in describing most of the observed transport phenom-
ena in quantum dots and is motivated by the fact that single-molecule junctions
reveal similar effects. Its main advantage as compared to ab initio calculations is
the possibility of including specific molecular degrees of freedom such as vibrations,
spins, and chemical conformations. Furthermore, it also allows for a more realistic
modeling of the leads, e.g. using a Luttinger-liquid model [75]. Electronic correlation
effects, that are usually not included in DFT calculations, can readily be taken into
account. Dissipative effects, which lead to the relaxation of vibrational modes or
spin dynamics, can be described either phenomenologically in terms of additional

16



1.5 Overview

relaxations rates or more microscopically by adding the coupling to a bosonic bath
or spin bath, respectively.

The present work belongs to the second group of approaches. Details on specific
methods frequently used in quantum transport theory are contained in Chapter 2.

1.5 Overview

The present work is organized as follows. Chapter 2 contains an introduction to
methods frequently used in quantum transport theory which serve as a basis for our
main results discussed in the following chapters. We survey transport phenomena in
mesoscopic systems and derive master equations from a density-matrix formalism.
We compute the inelastic sequential tunneling rates for the transitions between the
many-particle states of the system. The presence of vibrations and of the spin leads
to the emergence of Franck-Condon matrix elements and Clebsch-Gordan coefficients
in the rates, respectively. Subsequently, we calculate next-to-leading order tunnel-
ing processes. The transition rates for cotunneling are obtained within a T -matrix
formalism. Furthermore, we consider the conductance of Anderson-type models in
general and discuss the Meir-Wingreen-formula. We consider transport within the
Keldysh formalism showing schematically how the classical equations of motion can
be obtained from that approach. Finally, we discuss Kondo transport and renormali-
zation group techniques.

In Chapter 3 we consider transport through single-molecule magnets. Our mo-
tivation derives from the idea of molecular spintronics [11; 41; 76] which consists
of integrating the promising concepts of molecular electronics and spintronics. We
propose that the coupling between electronic and magnetic degrees of freedom leads
to interesting many-body effects that go beyond the well-understood occurrence of
emission sidebands in the differential conductance due to inelastic electronic tun-
neling. In this respect, the most essential requirement for spintronics devices is the
ability to effectively control and detect the spin. We show that magnetic anisotropy
is crucial for slow spin relaxation in magnetic molecules, which can be exploited in
the context of current-induced spin reading and writing. One of our main findings
is that the current can be highly polarized for time periods which are exponentially
long as a function of the molecular excitation energies, if the molecule in the junction
is prepared in a magnetic initial state. The net spin moment transmitted from one
lead to the other depends strongly on the initial orientation of the molecular spin
and can be much larger than the initial molecular spin itself. This spin amplification
effect effectively allows one to read out the spin information. Importantly, the leads
need not be polarized. However, spin writing requires a molecular junction that con-
sists of one ferromagnetic and one nonmagnetic lead. Interestingly, current-induced
switching of the spin to a predetermined state only requires the presence of an elec-
tric field in form of a bias voltage, but no magnetic field, and is thus a comparatively
fast process.

The proposed setup leads to interesting physics beyond the effect of spin writing,
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including the occurrence of large negative differential conductance (NDC) at high
temperatures. This effect is distinct from the NDC found at low temperatures in the
fine structure of the differential conductance peaks due to inelastic processes. Instead
it is related to a new spin blockade mechanism. By this we mean the suppression of
the single-electron tunneling rates for electrons of one spin species due to density-of-
states effects. We also find that the charge transmitted through a molecule prepared
in a particular spin state depends strongly on the initial state in certain parameter
regimes. This effect is related to the giant spin amplification mentioned above but
appears in the charge channel and is thus more robust against relaxation processes.

A very prominent spin-related transport phenomenon known as the Kondo effect
is considered in Chapter 4. Here we are particularly interested in the interplay of
magnetic and vibrational degrees of freedom in transport through vibrating single-
molecule transistor. We find that the coupling between electronic and vibrational de-
grees of freedom results in an unusual behavior of the differential conductance, which
is distinct from the physics observed in larger nanostructures. First the dependence
of the Kondo temperature on the gate voltage is much weaker than in quantum dots.
Second the Coulomb blockade is strongly asymmetric about the charge degeneracy
points (marking the transition from the non-Kondo to the Kondo valley), i.e. the
peaks in the differential conductance are well pronounced on one side of the degen-
eracy points, whereas they almost vanish on the other side. Experimental evidence
for these two unusual features has been obtained in recent transport experiments on
organic complexes [19; 77; 78]. The Kondo temperature, which is determined by the
exchange coupling constant, is computed employing a Schrieffer-Wolff transforma-
tion of the Anderson-Holstein Hamiltonian and a poor man’s scaling approach. The
sequential tunneling regime is described using rate equations.

The topic of current-induced conformational switching is addressed in Chapter 5.
Motivated by recent experiments on azobenzene derivatives, we study this process for
molecules which exhibit two (meta)stable conformations in the neutral state, but only
a single stable conformation in the ionic state. We derive and analyze appropriate
Fokker-Planck equations, obtained from a density-matrix formalism starting from a
generic model, and present comprehensive analytical and numerical results for the
switching dynamics. In particular, we are interested in the quantum yield which
is the probability for a single electron tunneling through the system to switch the
molecule. We first derive a set of quasi-classical Boltzmann equations which describe
the tunneling dynamics in the absence of dissipation. Subsequently, the Boltzmann
equation is extended to account for dissipation, resulting in a set of Fokker-Planck
equations. This allows us to derive a formal solution for the quantum yield, which
is based on this Fokker-Planck equation. Finally, the formal solution is analyzed in
detail, both analytically and numerically.

We show that conformational switching may also be induced by the current in-
volving two subsequent sequential tunneling processes. Here, our main focus is the
regime of strongly asymmetric couplings to the leads, corresponding to the exper-
imental setup of a scanning tunneling microscope conductance measurement. We
treat the current flow within the sequential tunneling approximation, which is justi-
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fied in setups with passivated substrates. Our central finding is that there exists a
rather sharp crossover between two qualitatively different switching mechanisms as
a function of temperature. For low temperatures, the switching process is induced
by tunneling electrons when the vibrational coordinate is close to the minimum of
the cis state. We call this process current-induced switching. Beyond a critical
temperature, switching is strongly dominated by tunneling processes which occur
close to the maximum of the barrier between the cis and the trans states. We re-
fer to this process as thermally activated. Remarkably, this happens long before
the temperature becomes of the order of the barrier height. Experimentally, the
two switching mechanisms are readily distinguished by their different temperature
dependences. While the current-induced switching exhibits only weak temperature
sensitivity, thermal activation processes follow Arrhenius behavior. Moreover, our
results predict that the quantum yield depends exponentially on the tunneling rate
to the substrate which makes it highly sensitive to the level of passivation of the
substrate.
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In the present chapter we survey transport phenomena in mesoscopic systems and
discuss formalisms frequently used in quantum transport theory, which provide the
basis for the research presented in the remaining chapters of this thesis. We derive
master equations describing the electronic tunneling through a tunnel junction and
a Golden-Rule expression for the inelastic sequential transition rates. Employing
a T -matrix formalism this approach is readily generalized to include higher-order
processes such as cotunneling. For mesoscopic tunnel junctions that can be mod-
eled by an Anderson-type Hamiltonian, the conductance is directly related to the
spectral function of the single impurity, as shown by Meir and Wingreen [79]. Fur-
thermore, we show how the classical equations of motion can be obtained from the
Keldysh formalism. In the end, we discuss Kondo transport and renormalization
group techniques.

2.1 Transport phenomena in mesoscopic systems

Mesoscopic systems reveal a number of nonequilibrium phenomena which differ dis-
tinctly from the transport properties of macroscopic electric devices. Most strik-
ingly, quantum dots, carbon nanotubes and single molecules usually do not show
ohmic response over wide ranges of bias voltage. In such systems, the feature size is
smaller than the electron mean free path [80]. Understanding transport through
nanostructures goes beyond the laws of classical electrodynamics and requires a
quantum mechanical description, taking into account both the discreteness of the
electronic charge and electronic interferences.

Many mesoscopic systems show a significant suppression of the conductance at
low bias voltages. This behavior known as the Coulomb blockade is characteristic of
tunnel junctions, where the system (e.g. a molecule or a quantum dot) is separated
from the leads by large potential barriers. In equilibrium electronic tunneling through
the junction is blocked entirely. Only if the energy of the charge carriers in the leads
is increased by applying a bias voltage V can the barrier be overcome to allow
for the flow a large current. The critical bias threshold for the onset of tunneling
processes is determined by the charging energy of the quantum dot or the molecule,
respectively, and is revealed as a step in the current I and a corresponding peak in
the differential conductance dI/dV . Increasing the bias voltage further may excite
higher charge states and open up additional transport channels, resulting in further
peaks in dI/dV . In many experiments the electrostatic energies can be shifted by
applying a gate voltage.
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Figure 2.1: Energy scheme of a quantum dot (a) in the Coulomb blockade and (b) in the
sequential tunneling regime. In (a) the lead electrons do not have enough energy to tunnel
onto the dot. In contrast, in (b) electrons can tunnel from the left lead onto the dot and,
subsequently, from the dot into the right lead, resulting in a large current. (c) Current I
and differential conductance dI/dV as a function of bias V . (d) Differential conductance
dI/dV as a function of bias V and gate voltage Vg. The characteristic pattern revealed in
the density plot is known as Coulomb diamonds. The numbers denote the accessible charge
states.

Plotting the differential conductance dI/dV as a function of bias voltage V and
gate voltage Vg leads to a characteristic two-dimensional pattern named Coulomb
diamonds, cf. Fig. 2.1. Each peak separating two plateaus with different conductance
can be attributed to a certain charging energy of the system. The energetically
accessible charge states are different for each plateau. Also note that the equilibrium
(zero bias) occupancy changes as a function of gate voltage.

In the regime of weak system-lead coupling transport is usually described by rate
equations for the occupation probabilities of the many-body states. To lowest-order
in the tunneling amplitude, the rates are given by an expression equivalent to Fermi’s
Golden Rule describing sequential tunneling processes. However, if these processes
are suppressed due to blockade mechanisms, such as the Coulomb blockade or the
Franck-Condon blockade [29], transport is dominated by next-to-leading order pro-
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Figure 2.2: (a) Energy scheme and (b) differential conductance dI/dV as a function of bias
V and gate voltage Vg, obtained for a vibrating single-molecule transistor. Each excitation
of phonons corresponds an inelastic tunneling process revealed as a peak in dI/dV . Figure
(b) is taken from Ref. [29]. Voltages are given in multiples of the vibrational ground state
energy.

cesses called cotunneling, describing the coherent transfer of an electron from one
terminal of the junction to another. Sequential tunneling and cotunneling rates can
be derived using a density-matrix approach or T -matrix formalism, as shown in the
following section.

In contrast to transport through quantum dots, electronic tunneling through
single-molecule junctions is strongly affected by inelastic scattering processes re-
sulting from the presence of internal molecular degrees of freedom. Consider, for
instance, a vibrating molecule between two electrodes. In case of strong enough
coupling between the electronic and vibrational degrees of freedom, electrons can
excite a phonon on the molecule while passing through the junction, if their energy
is sufficiently high. Likewise, electronic tunneling may also involve the excitation or
de-excitation of several phonons. For a harmonic potential surface of the vibrational
mode, the equidistant excitation spectrum of the molecule leads to equidistant peaks
in the differential conductance, where each peak represents the excitation of a certain
number of phonons, cf. Fig. 2.2. If vibrational relaxation is slow compared to the
average tunneling time, the current may effectively drive the molecule out thermal
equilibrium, cf. e.g. Refs. [14; 29].

Other causes of inelastic scattering observed in transport through single-molecule
transistors are, for instance, magnetic excitations of a local spin and switching be-
tween different chemical conformations.

A very prominent spin-related transport phenomenon in mesoscopic systems
known as the Kondo effect is the coherent exchange between the spin of a single
impurity and the Fermi sea of conduction electrons. The Kondo effect is well known
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2 Quantum Transport Theory

from the study of the resistivity of metals due to scattering off magnetic impurities.
There the scattering causes an increase in the resistivity with decreasing tempera-
ture. The anomalous behavior, first explained by Kondo in 1964 [81], turns out to
be an intriguing many-body effect [82; 83]. Interestingly, the quantum dot with an
odd number of additional electrons behaves in a similar way as the spin one-half
magnetic impurity. The occurrence of the Kondo resonance has been observed for
numerous nanostructures. Strikingly, here it manifests itself as an enhancement of
the zero bias conductance at low temperatures.

A theoretical description of the Kondo effect is possible in terms of the Anderson
model and renormalization group techniques. We will come back to more details in
the last section of the present chapter.

2.2 Master equation

In this section we derive master equations describing the quantum transport in the
regime of weak coupling to a reservoir. The molecular junction is modeled by an
Anderson-like Hamiltonian of the form H = Hmol + Hleads + Ht, with Hleads =
∑

αk
ǫka

†
αk
aαk and Ht =

∑

αkσ tα a
†
αkσdσ +h.c., where a†αkσ creates an electron with

momentum k, spin σ and ǫk in lead α, while d†σ creates an electron with spin σ on
the molecule. Specific molecular degrees of freedom are described by the Hmol. The
main requirement for the use of rate equations is the presence of temperatures large
compared to the current-induced level broadening of the molecular states.

The starting point of the derivation is the von Neumann equation describing the
time evolution of the density matrix ρ of the system,

∂ρ(t)

∂t
= − i

~
[Ht(t), ρ(t)] . (2.1)

Integrating from time zero to time t gives

ρ(t) = ρ(0) − i

∫ t

0
dt′
[

Ht(t
′), ρ(t′)

]

, (2.2)

and
∂ρ(t)

∂t
= − i

~
[Ht(t), ρ(0)] − 1

~2

∫ t

0
dt′
[

Ht(t),
[

Ht(t
′), ρ(t′)

]]

, (2.3)

respectively. Here operators O with an explicit time argument are in the interaction
picture,

O(t) = ei(Hmol+Hleads)t/~O e−i(Hmol+Hleads)t/~. (2.4)

The dynamics of the molecule is described by the reduced density matrix which is
obtained by tracing out the degrees of freedom of the leads,

ρmol(t) = Trleads ρ(t). (2.5)
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2.2 Master equation

Solving Eq. (2.3) for ρ relies on two approximations [73; 84]. The large-reservoir
approximation allows us to write the density matrix as a direct product,

ρ(t) ≃ ρmol(t) ⊗ ρleads, (2.6)

of the density matrices ρmol(t) and ρleads describing the degrees of freedom of the
molecule and the leads. In addition, we neglect effects of the molecule on the leads,
which are assumed to remain in separate thermal equilibria despite the applied bias
voltage and which are described by Fermi distribution functions,

fα(ǫ) =
1

e
ǫ−µα

T
+1
, (2.7)

at chemical potentials µα. The Markov approximation permits us to replace

ρmol(t
′) ≃ ρmol(t) (2.8)

in Eq. (2.3) and to replace the lower limit of integration by minus infinity, which
means that memory effects of the molecular dynamics are ignored. In other words
the change of ρmol at time t should only depend on ρmol at time t itself on a coarse-
grained time average. These substitutions lead us to

∂ρmol(t)

∂t
= −

∫ t

0
dt′Trleads

[

Ht(t),
[

Ht(t
′), ρmol(t) ⊗ ρleads

]]

. (2.9)

The time correlation functions in Eq. (2.9) are supposed to decay fast for times t− t′
long compared to the electronic relaxation time of the leads. Therefore, we may
introduce t′′ = t − t′ as a new variable and let the upper limit of integration go to
infinity,

∂ρmol(t)

∂t
= −

∫ ∞

0
dt′′Trleads

[

Ht,
[

Ht(−t′′), ρmol ⊗ ρleads

]]

. (2.10)

Going back to the Schrödinger picture yields

∂ρmol

∂t
= −i [Hmol, ρd] −

∫ ∞

0
dt′′Trleads

[

Ht,
[

Ht(−t′′), ρmol ⊗ ρleads

]]

, (2.11)

where the first term describes the unperturbed time evolution. Opening the double
commutator gives four terms, ∂ρmol/∂t ≡ −i [Hd, ρd(t)]+A+B+C+D, which read
[85; 86]

A = − Trleads

∫ ∞

0
dt′′ Hte

−i(Hmol+Hleads)t
′′

Hte
i(Hmol+Hleads)t

′′

ρmol(t) ⊗ ρleads,

(2.12)

B = Trleads

∫ ∞

0
dt′′ Htρmol(t) ⊗ ρleadse

−i(Hmol+Hleads)t
′′

Hte
i(Hmol+Hleads)t

′′

, (2.13)

C = Trleads

∫ ∞

0
dt′′ e−i(Hmol+Hleads)t

′′

Hte
i(Hmol+Hleads)t

′′

ρmol(t) ⊗ ρleadsHt, (2.14)

D = − Trleads

∫ ∞

0
dt′′ ρmol(t) ⊗ ρleadse

−i(Hmol+Hleads)t
′′

Hte
i(Hmol+Hleads)t

′′

Ht.

(2.15)
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Inserting the tunneling Hamiltonian Ht and tracing over the degrees of freedom of
the leads,

Trleads

(

ρleadsa
†
α1k1σ1

aα2k2σ2

)

= δα1α2δk1k2δσ1σ2fα(ǫk), (2.16)

Trleads

(

ρleadsaα1k1σ1a
†
α2k2σ2

)

= δα1α2δk1k2δσ1σ2 [1 − fα(ǫk)] , (2.17)

we obtain

A = −
∫ ∞

0
dt′′
{

∑

αkσ

|tα|2f(ǫk − µα)eiǫkt′′dσe
−iHmolt

′′

d†σe
iHmolt

′′

ρmol

+|tα|2 [1 − f(ǫk − µα)] e−iǫkt′′d†σe
−iHmolt

′′

dσe
iHmolt

′′

ρmol

}

, (2.18)

B =

∫ ∞

0
dt′′
{

∑

αkσ

|tα|2 [1 − f(ǫk − µα)] eiǫkt′′dσρmole
−iHmolt

′′

d†σe
iHmolt

′′

+|tα|2f(ǫk − µα)e−iǫkt′′d†σρmole
−iHmolt

′′

dσe
iHmolt

′′

}

, (2.19)

C =

∫ ∞

0
dt′′
{

∑

αkσ

|tα|2 [1 − f(ǫk − µα)] e−iǫkt′′e−iHmolt
′′

dσe
iHmolt

′′

ρmold
†
σ

+|tα|2f(ǫk − µα)eiǫkt′′e−iHmolt
′′

d†σe
iHmolt

′′

ρmoldσ

}

, (2.20)

D = −
∫ ∞

0
dt′′
{

∑

αkσ

|tα|2f(ǫk − µα)e−iǫkt′′ρmole
−iHmolt

′′

dσe
iHmolt

′′

d†σ

+|tα|2 [1 − f(ǫk − µα)] eiǫkt′′ρmole
−iHmolt

′′

d†σe
iHmolt

′′

dσ

}

. (2.21)

For the bias voltage drop,
eV = µL − µR (2.22)

we always consider the case of symmetric capacitive couplings if not stated otherwise,

µL = −µR =
eV

2
. (2.23)

Deriving an equation of motion for the occupation probabilities,

Pn ≡ 〈n| ρmol |n〉 , (2.24)

of the molecular many-body states n requires the evaluation of matrix elements
〈n|∂ρmol/∂t|n〉. The summation over momenta can be rewritten as an integral over
energy, where we assume the density of state να of each lead α to be constant.
The time integral over exponentials then yields delta functions expressing the energy
conservation during the tunneling processes. Finally we arrive at a set of coupled
rate equations,

∂Pn

∂t
=
∑

m6=n

PmRm→n − Pn
∑

m6=n

Rn→m. (2.25)
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with tunneling rates

Rn→m =
2π

~

∑

ασ

|tα|2να

(

fα(−ǫdn + ǫdm)|Cσ
nm|2 +

[

1 − fα(ǫdn − ǫdm)
]

|Cσ
mn|2

)

, (2.26)

for the transition from molecular many-body state n to state m. Here we have
assumed rapid dephasing for the vanishing of off-diagonal matrix elements of the
density matrix [87]. Equation (2.26), which is equivalent to Fermi’s Golden Rule,
gives the lowest-order contribution to the total tunneling rate within the perturbative
expansion in Ht.

Equation (2.25) describing the dynamics of all molecular degrees of freedom ex-
presses the conservation of probability. The change of the occupation probability of
any state n, ∂Pn/∂t, is governed by the net flow of probabilities into this molecular
state,

∑

m6=n P
mRm→n, and out of this molecular state, Pn

∑

m6=nRn→m. The in-
teresting physics arising from the presence of specific molecular degrees of freedom
is essentially contained in the overlap matrix elements

Cσ
mn ≡ 〈m|dσ|n〉, (2.27)

Cσ†
mn ≡ 〈m|d†σ|n〉. (2.28)

This matrix determines the relative weights and selection rules for the current-
induced transitions between two molecular eigenstates. For instance Cσ

mn (Cσ†
mn)

can only be non-vanishing if the occupancy of state n is larger (smaller) than the
occupancy of state m. We come back to the role of selection rules for magnetic and
vibrational quantum numbers at a later time.

2.3 T -matrix and generalized Fermi’s Golden Rule

The Golden-Rule expression for the transition rates derived in the previous section
can be readily generalized to include higher-order tunneling processes. Here the
initial state |i〉 and the final state |f〉 are coupled by multiple scatterings described
by the perturbation Ht. The following discussion is based on Ref. [83].

In the interaction picture, the time evolution of any state |ψ〉 due to the pertur-
bation Ht is given by the Schrödinger equation

i~
∂

∂t
|ψ(t)〉 = Ht(t)|ψ(t)〉. (2.29)

This means that the wave functions |ψ〉 at time t0 and |ψ〉 at time t are related to
one another by a unitary operator,

|ψ(t)〉 = U(t, t0)|ψ(t0)〉. (2.30)

The iterative solution for the time evolution operator U is given by

U(t, t0) = 1 +
1

i~

∫ t

t0

dt1Ht(t1) +
1

(i~)2

∫ t

t0

dt1Ht(t1)

∫ t1

t0

dt2Ht(t2) + · · · . (2.31)
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In the Schrödiner picture the corresponding time evolution operator is
e−iH0t/~U(t, t0)e

iH0t0/~, where H0 = H − Ht is the unperturbed Hamiltonian, and
the time dependence of the initial state is given by

|i(t)〉 = e−iH0t/~U(t, t0)e
iH0t0/~|i〉. (2.32)

The probability of finding the system in state |f〉 with energy Ef at time t on the
condition that it had been initially prepared in state |i〉 with energy Ei, before the
perturbation was switched on, is given by the overlap Pif (t) = |〈f |i(t)〉|2. The time
derivative dPif (t)/dt is therefore the change in probability per unit time, which we
interpret as the transition rate Γif between initial and final state. Evaluating all
time integrals one obtains

Γif =
2π

~
|〈f |T |i〉|2 δ(Ef − Ei), (2.33)

where the T -matrix is self-consistently given by

T = Ht +Ht
1

Ei −H0 + iη
T. (2.34)

This expression is a generalization of Fermi’s Golden Rule. To second order in the Ht

one recovers the sequential tunneling rates derived in the previous section. Next-to-
leading-order processes are proportional to the fourth power of the tunneling matrix
elements tα. If the lowest-order processes are suppressed due to blockade mecha-
nisms, e.g. due to the Coulomb blockade or the Franck-Condon blockade, cotunneling
processes naturally yield the dominant contribution to the electronic transport. A
cotunneling process describes the coherent transfer of an electron from one terminal
of the nanostructure to another. Importantly, the intermediate state may have an
energy that is much larger than the energy of the initial state. Thus cotunneling is
referred to as a virtual process.

To fourth order in the tunneling Hamiltonian, the transition rate for transferring
an electron from lead α to lead α′ while changing the molecular state from n to n′

yields

Γnn′

αα′ =
2π

~

∣

∣

∣

∣

〈f |〈n′|Ht
1

Ei −H0
Ht|n〉|i〉

∣

∣

∣

∣

2

δ(Ef − Ei). (2.35)

In this notation the initial state |n〉|i〉 and final state |n′〉|f〉 = |n′〉a†
α′k

′σ′
aαkσ|i〉 have

energies Ei and Ef , respectively, where |i〉 refers to the equilibrium state of the left
and the right Fermi sea and |n〉 to the molecular state n. For simplicity, we restrict
ourselves to the case of infinite U , i.e. double occupation of the molecule is ener-
getically forbidden. Then the total cotunneling rates describing virtual transitions
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Figure 2.3: Inelastic sequential tunneling and cotunneling schematically exemplified. Se-
quential tunneling processes (a) usually give the dominant contribution to the current
through a junction outside the Coulomb blockade. Their amplitude is linear in the transfer
matrix element tα. However, in the Coulomb blockade cotunneling processes play a crucial
role, when the energy transport channels are either far above (b) or below (c) the Fermi
energies of the leads. Their amplitude is quadratic in tα.

between two empty (Γnn′,00
αα′ ) and two singly occupied molecular states (Γnn′,11

αα′ ) read

Γnn′,00
αα′ =

2π

~
|tα|2|tα′ |2

∑

kk
′σσ′

δ(Ef − Ei)

×
∣

∣

∣

∣

∣

∑

α′′k
′′σ′′

∑

α′′′k
′′′σ′′′

〈i|〈n′|a†αkσaα′k
′σ′a

†
α′′′k

′′′σ′′′
dσ′′′

1

Ei −H0
d†σ′′aα′′k

′′σ′′ |n〉|i〉
∣

∣

∣

∣

∣

2

=
2π

~
|tα|2|tα′ |2

∑

σσ′

να(σ)να′(σ′)

∫

dǫ

∣

∣

∣

∣

∣

∑

n′′

Cσ′

n′n′′Cσ∗
nn′′

ǫ+ ǫn − ǫn′′

∣

∣

∣

∣

∣

2

×fα(ǫ) [1 − fα′(ǫ+ ǫn − ǫn′)], (2.36)

Γnn′,11
αα′ =

2π

~
|tα|2|tα′ |2

∑

kk
′σσ′

δ(Ef − Ei)

×
∣

∣

∣

∣

∣

∑

α′′k
′′σ′′

∑

α′′′k
′′′σ′′′

〈i|〈n′|a†αkσaα′k
′σ′d

†
σ′′′aα′′′k

′′′σ′′′

1

Ei −H0
a†

α′′k
′′σ′′

dσ′′ |n〉|i〉
∣

∣

∣

∣

∣

2

=
2π

~
|tα|2|tα′ |2

∑

σσ′

να(σ)να′(σ′)

∫

dǫ

∣

∣

∣

∣

∣

∑

n′′

Cσ′

n′′nC
σ∗
n′′n′

−ǫ+ ǫn′ − ǫn′′

∣

∣

∣

∣

∣

2

×fα(ǫ) [1 − fα′(ǫ+ ǫn − ǫn′)]. (2.37)

Since the above expressions diverge due to second-order poles from the energy de-
nominators, the cotunneling rates cannot be evaluated directly. Therefore, we apply
a regularization scheme that follows Refs. [29; 88–90] and is motivated by the ob-
servation that Eqs. (2.36) and (2.37) do not take into account the fact that the
intermediate state obtains a finite width due to the tunneling. We come back to this
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2 Quantum Transport Theory

point in Chapter 3 in the context of cotunneling through monolayers of magnetic
molecules.

2.4 Conductance for Anderson-type models

Many nanostructured junctions are described by the Anderson model,

H = ǫd
∑

σ

nσ + U n↑n↓ +
∑

αkσ

(

tαd
†
σaαkσ + t∗αa

†
αkσdσ

)

+
∑

αkσ

ǫk a
†
αkσaαkσ. (2.38)

Here d†σ (a†
kσ) creates an electron with energy ǫd (with energy ǫk and momentum

k) and spin σ on the dot (in the reservoir), U is the local Coulomb repulsion of the
electrons and nσ = d†σdσ.

In the linear response limit the conductance G, defined as the proportionality
coefficient between the current I through the sample and the voltage V applied to
it,

I = GV (2.39)

is given by the Kubo formula

G = −e
2

h
Γ lim

ω→0
Im
[

1

ω
CR(ω)

]

(2.40)

where CR(ω) is the retarded current-current correlator

CR(t− t′) = −Θ(t− t′)〈[Iα(t), Iα(t′)]〉 (2.41)

in the energy domain and Iα is the usual current operator. Calculating the expecta-
tion value of the commutator gives

G =
e2

h

∫

dω
ΓLΓR

ΓL + ΓR
A(ω)

(

−∂f(ω)

∂ω

)

. (2.42)

This equation is remarkable in the sense that it directly relates the spectral function
A(ω) of a mesoscopic system to its conductance. In the regime of strong coupling
to the leads the level broadening can become large compared to the thermal energy.
Thus computing the spectral function in the presence of tunneling couplings allows
one to study the conductance of a mesoscopic system to any order in the hybridization
Ht.

Equation (2.42) can also be generalized to finite bias voltages. This was done by
Meir and Wingreen [79] who showed that the intuitive result

I =
e2

h

∫

dω
ΓLΓR

ΓL + ΓR
A(ω)

[

f(ω − µL) − f(ω − µR)
]

(2.43)

gives the current at any bias voltage V = (µL − µR)/e, where µL and µR are the
chemical potentials of the left and right reservoirs, respectively.
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2.5 Keldysh Formalism

2.5 Keldysh Formalism

Complementary to the density-matrix approach introduced in the previous sections,
rate equations describing the quantum transport through mesoscopic systems can be
obtained from the Keldysh formalism in some particular cases [91]. Here the main
idea consists in deriving an equation of motion for the Keldysh Green function and
interpreting this as a distribution function of the system. Our goal is to discuss this
concept by deriving the rate equations and computing the tunneling current for the
resonant-level model,

H = H0 +Ht, (2.44)

with
H0 = ǫd d

†d+
∑

αk

ǫk a
†
αk
aαk (2.45)

and
Ht =

∑

αk

[

tα a
†
αk
d+ t∗α d

†aαk

]

. (2.46)

The starting point is Dyson’s equation

G = G0 +G0 ΣG (2.47)

for the matrix Green function

G ≡
(

GR GK

0 GA

)

(2.48)

and matrix self energy

Σ ≡
(

ΣR ΣK

0 ΣA

)

, (2.49)

whereGR (ΣR), GA (ΣA) andGK (ΣK) denote the retarded Green function (retarded
self energy), advanced Green function (advanced self energy), and Keldysh Green
function (Keldysh self energy), respectively. The propagator G0 denotes the free
matrix Green function. Here G is related to the contour-ordered Green function in
Keldysh space by Larkin-Ovchinnikov transformation [72]. Using that the free Green
function solves the Schrödinger equation, we can rewrite Eq. (2.47) as

(

i~
∂

∂t
−H0 − Σ

)

G = 1, G

(

i~
∂

∂t
−H0 − Σ

)

= 1, (2.50)

where the square brackets denote the commutator, while the curly brackets denote
the anticommutator. Taking the sum and the difference gives

[

i~
∂

∂t
−H0 − Σ, G

]

= 0

{

i~
∂

∂t
−H0 − Σ, G

}

= 2. (2.51)

The Keldysh component of the commutator yields
[

i~
∂

∂t
−H0 − Σ, GK

]

= ΣRGK + ΣKGA −GRΣK +GKΣA. (2.52)
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(a)

(b)

(c)

(d)

Σd =
∑

αk
tαkGαk t

∗
αk

ΣLkk
′ = tLkGd t

∗
Lk

′

Σ
(cot)
d =

∑

αα′kk
′ tαkGαk t

∗
αk
Gd tα′k

′ Gα′k
′ t∗

α′k
′

Σ
(cot)

Lkk
′ = tLkGd t

∗
Rk

′ GRk
′ tRk

′ Gd tLk

Figure 2.4: Self energy contributions of leading [(a),(c)] and next-to-leading order [(b),(d)]
in the molecule-lead coupling. The solid lines denote the propagator electronic Gd of the
single impurity, whereas the dashed lines denote the electronic propagator Gαk of lead α.

So far, all Green functions G and self energies Σ depend on two times t1 and t2. For a
semiclassical description it is useful to introduce sum coordinates, T = (t1+t2)/2, and
difference coordinates, t = t1−t2 and Fourier transform to the difference coordinates,

G(T, ω) =
1

~

∫

dt eiωtG(T + t/2, T − t/2). (2.53)

Passing to the Wigner representation gives

∂GK

∂T
= − i

~

[(

ΣR − ΣA
)

GK −
(

GA −GR
)

ΣK
]

(2.54)

in the semiclassical limit ~ → 0. To lowest order the self energies of the single-
impurity and the leads shown in Fig. 2.4 are given by

ΣR,A
d = ∓iπ

∑

k

δ(ǫk−ω)
(

|tLk|2 + |tRk|2
)

, ΣK
d =

∑

k

|tLk|2GK
Lk +

∑

k

|tRk|2GK
Rk,

(2.55)
and

ΣR,A
Lkk

′ = ∓iπ δ(ω − ǫd) tLkt
∗
Lk

′ , ΣK
Lkk

′ = tLkt
∗
Lk

′GK
d . (2.56)

Using that the spectral function is sharply peaked at the charging energy ǫd com-
pared to ΣK

d ,
(

GR −GA
)

≃ −2πi δ(ω − ǫd), (2.57)

we obtain

∂GK
d

∂T
=

1

~

(

ΓL + ΓR

)

GK
d +

2π

~
δ(ω − ǫd)

∑

k

(

|tLk|2GK
Lk + |tRk|2GK

Rk

)

, (2.58)

where Γα ≡ 2π
∑

k
δ(ǫk − ω) |tαk|2. Integrating this equation over ω and using that

the Keldysh function of the leads is also strongly peaked, GK
αk

≃ δ(ω− ǫk)
∫

dωGK
αk

,
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gives
∂gK

d

∂T
=

2π

~

∑

αk

δ(ǫd − ǫk)
(

gK
αk − gK

d

)

, (2.59)

where gK ≡
∫

dωGK . Interpreting gK
d as the distribution function, i.e. as the oc-

cupation probability, of the single impurity, gK
d = P 1, and gK

αk
as the distribution

function of lead α, gK
αk

= fαk, we recover the rate equation describing the dynamics
of the resonant-level model,

∂P 1

∂T
=

2π

~

∑

αk

|tαk|2 δ(ǫd − ǫk)
(

fαkP
0 − [1 − fαk]P 1

)

. (2.60)

The current through lead α is then given by

Iα = e
2π

~

∑

k

|tαk|2 δ(ǫd − ǫk)
(

fαkP
0 − [1 − fαk]P 1

)

. (2.61)

Similarly, one can compute higher-order corrections to the transition rates. For
instance, the cotunneling matrix self energies of the leads, shown in Fig. 2.4, read

Σ
(cot)

Lkk
′ = |tLk|2

∑

k
′

|tRk
′ |2
(

GR
d G

R
Rk
GR

d GR
d G

R
Rk
GK

d +GR
d G

K
Rk
GA

d +GK
d G

A
Rk
GA

d

0 GA
d G

A
Rk
GA

d

)

.

(2.62)
In the limit ǫd ≫ 0, where GR,A

d = 1/(ω − ǫd ± iη) ≃ 1/ǫd, we obtain

Σ
(cot)
Lk

≃ |tLk|2
ǫd

∑

k
′

|tRk
′ |2

ǫd

(

GR
Rk

GK
Rk

0 GA
Rk

)

=
|tLk|2
ǫd

∑

k
′

|tRk
′ |2

ǫd

(

−iπ δ(ω − ǫk′) GK
Rk

0 iπ δ(ω − ǫk′)

)

, (2.63)

which gives

∂gK
Lk

∂T
=

2π

~

∑

kk
′

|tLk|2|tRk
′ |2

ǫ2d
δ(ǫLk

′ − ǫRk
′)
[

gK
Rk

′ − gK
Lk

]

. (2.64)

Interpreting again gK
αk

′ as the distribution function of the leads, we recover the
cotunneling transition rates proportional to 1/ǫ2d for the regime, where the resonant
level is far away from the Fermi energies of the leads.

The above derivation can be readily generalized to obtain Boltzmann equations
for the case of an additional external field or disorder potentials. However, including
the presence of local interactions for the single impurity usually turns out to be
non-trivial.
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2 Quantum Transport Theory

2.6 Kondo transport and renormalization group

A quantitative description of the build-up of Kondo correlations in quantum dots
is possible in terms of the single-impurity Anderson model, Eq. (2.38) [5; 6]. A
Schrieffer-Wolff transformation [92] relates the Anderson model to the Kondo model,

HK = −
∑

αα′kk
′

Jαα′ sαα′kk
′ · S, (2.65)

describing the coherent exchange between the spin of a localized state, S ≡
∑

σσ′ d
†
σ(σσσ′/2)dσ′ , and the spins of the Fermi sea of delocalized electrons, sαα′kk

′ ≡
∑

σσ′ a
†
αkσ(σσσ′/2)aα′k

′σ′ . Here σ = (σx, σy, σz) denotes the vector of the Pauli ma-
trices. Equation (2.65) is obtained from Eq. (2.38) using a canonical transformation
of the form

H̃ ≃ eSHe−S , (2.66)

where the generator

S =
∑

αkσ

[

tα
ǫk − ǫd − U

nσ̄a
†
αkσdσ +

tα
ǫk − ǫd

(1 − nσ̄)a†αkσdσ

]

− h.c. (2.67)

is chosen such that the Hamiltonian H̃ has no terms first order in the tunneling
amplitude tα. Carrying out the transformation requires to expand the exponentials
in Eq. (2.66),

H̃ = H0 −
1

2
[S, [S,H0]] −

1

3
[S, [S, [S,H0]]] −

1

8
[S, [S, [S, [S,H0]]]] + . . . . (2.68)

Here H0 includes all terms of the Anderson model except for tunneling Hamilto-
nian. Evaluation of all relevant commutators yields the following expression for the
exchange coupling,

Jαα′kk
′ = t∗αtα′

(

1

ǫk − ǫd
+

1

ǫ′k − ǫd
+

1

U + ǫd − ǫk
+

1

U + ǫd − ǫ′k

)

. (2.69)

Importantly, the exchange is purely antiferromagnetic,

Jαα′ ≃ 2t∗αtα′

U

ǫd(ǫd + U)
< 0, (2.70)

assuming that only states close to the Fermi energy, k, k′ ≃ kF , have to be taken
into account.

The anomalous scattering behavior arises by performing a perturbation theory
calculation to third order in the exchange coupling, revealing the divergence that
is the precursor of the Kondo resonance [83]. In the same spirit as our approach
to cotunneling, we consider the amplitude for the tunneling of an electron from
the left lead L to the right lead R, i.e. the final state of the electron system is
|fe

kσk
′σ′

〉 ≡ a†RkσaLk′σ′ |ie〉, where |ie〉 denotes the initial state of lead electrons. In
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2.6 Kondo transport and renormalization group

addition, the spin of the dot may change, i.e. we must sum over all possible initial
states |σi〉 and final states |σf 〉 of the dot spin.

The rate for transferring electrons from left to right can be written as

ΓRL =
2π

~

∑

ikk
′σσ′σiσf

pi

∣

∣

∣t
i(1)

RkσLk
′σ′,σiσf

+ t
i(2)

RkσLk
′σ′,σiσf

+ · · ·
∣

∣

∣

2
δ(ξk − ξk′), (2.71)

where pi denotes the distribution function of possible initial states i. To first order
in HK the amplitude for the electron transfer from left to right is

t
i(1)

RkσLk
′σ′,σiσf

= 〈fe
kσk

′σ′ | 〈σf |HK |σi〉|ie〉 =
JRL

2

∑

j=x,y,z

〈σf |Sj |σi〉σj
σσ′n

i
Lk

′σ′(1 − ni
Rkσ),

(2.72)

where ni
αkσ is the occupation of the single-particle state kσ in lead α in the initial

state. Evaluating all spin sums yields

Γ
(2)
RL ≃ 2π

~
ν2
0

3J2
RL

4

∫

dξn(ξ − µL)[1 − n(ξ − µR)] (2.73)

for the second order contribution to the tunnel rate. Here ν0 is the density of states,
which we assume to be constant.

The next-to-leading contribution to the tunneling rate is given by

Γ
(3)
RL ≃ 4π

~

∑

ikk
′σσ′σiσf

pi Re
{[

t
i(1)

RkσLk
′σ′,σiσf

]∗
t
i(2)

RkσLk
′σ′,σiσf

}

δ(ξk − ξk′) (2.74)

Expansion of the T -matrix gives

t
i(2)

RkσLk
′σ′,σiσf

= 〈fe
kσk

′σ′ |〈σf |HK
1

Ei −Hleads + iη
HK |σi〉|ie〉. (2.75)

This second-order term must involve one term with JRL and one term with JRR

or JLL in order for ti(2)RkσLk′σ′ to be non-zero. After straightforward calculations one
arrives at the following expression for the third-order tunneling rate

Γ
(3)
RL ≃ 6π

8
(JRLν0)

2

∫

dξ n(ξ−µL) [1 − n(ξ − µR)]





∑

β

Jββν0

∫ D

−D
dξ1

n(ξ1 − µβ)

ξ1 − ξ



 .

(2.76)
Here D denotes the band width. A similar expression can be derived for scattering
from right to left, and after subtracting the two, one obtains

I =
e

2π

∫

dξ [n(ξ − µL) − n(ξ − µR)] T (ξ) (2.77)

for the Kondo current, where

T (ξ) ≃ 3

4
(2πJRLν0)

2



1 +
∑

β

Jββν0

2

∫ D

−D
dξ1

n(ξ1 − µβ)

ξ1 − ξ



 . (2.78)
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This expression for the transmission coefficient shows that there occurs a peak in
the conductance at low temperatures, since for T ≪ D both µβ and ξ are relatively
small, so that the conductance diverges logarithmically at low temperatures [83],

∫ D

−D
dξ1

n(ξ1 − µβ)

ξ1 − ξ
≃
∫ D

−D
dξ1

n(ξ1)

ξ1
≃
∫ −T

−D
dξ1

1

ξ1
= ln(T/D). (2.79)

We can give a simple estimate of the temperature at which the Kondo resonance
starts to dominate transport by noticing when the last term in the parenthesis in
Eq. (2.78) is comparable to the first. This defines the so-called Kondo temperature,

TK = D exp

(

− 1

ν0
∑

β Jββ

)

. (2.80)

The form of the Kondo temperature shows that it is non-perturbative in the exchange
coupling. Thus we do not expect to gain more insight by continuing the perturbative
expansion.

An estimate of the Kondo temperature can also be obtained using Wilson’s re-
normalization group [74]. Employing poor man’s scaling [82; 93] yields equations
for the renormalization flow which relate the Kondo temperature to the antiferro-
magnetic exchange. To carry out the scaling one divides the conduction band into
states, 0 < |ǫk| < D − |δD|, which are retained, and states within |δD| of the band
edge which are to be eliminated. One finds that the lowest-order correction to the
Hamiltonian is proportional to squares of the exchange coupling.

The elimination of virtual scattering to the band edges in the lowest order results
in a Hamiltonian of the same form but with renormalized couplings J(D) which
effectively depend on the band width D,

J(D) = J + δJ(D). (2.81)

The scaling equations assume the form

dJLL

d lnD
= ν0(J

2
LL + J2

LR), (2.82)

dJRR

d lnD
= ν0(J

2
RR + J2

LR), (2.83)

dJLR

d lnD
= ν0JLR(JLL + JRR). (2.84)

For the case of symmetric couplings to the leads, JLL = JRR = JLR = J , they reduce
to

dJ

d lnD
= 2ν0J

2. (2.85)

The solution of Eq. (2.85) reads

J(D) ≃ J

1 − 2ν0J lnD/T
. (2.86)
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2.6 Kondo transport and renormalization group

This defines the Kondo temperature as the energy scale as of the logarithmic diver-
gence as

TK ∼ e−1/2ν0J . (2.87)

It is this renormalization of the exchange coupling,

J(T ) ≃ J
1

lnT/TK
, (2.88)

which is the origin of the logarithmic behavior of the conductance at low temperature.
It can be shown that the conductance of the Kondo resonance approaches the limit
2e2/h at zero temperature. The crossover between the underdeveloped Kondo regime
discussed above, T > TK , and the strong coupling Kondo regime, T < TK , has been
discussed extensively in the literature and is reviewed, for instance, in Ref. [94].

In the presence of a finite bias voltage, many physical quantities such as the con-
ductance are not determined by low-energy excitations, since all states with energies
of order of the applied voltage contribute to exchange scattering processes. But as
long as the cutoff is large compared to the voltage, D ≫ V , one usually expects
the poor man’s scaling approach to hold. However, it should be remarked that there
exists no general theory of renormalization out of equilibrium, so far.
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2 Quantum Transport Theory
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3 Transport through magnetic

molecules—spin reading and writing

3.1 Experimental motivation

Investigating spin-dependent electronic transport through magnetic molecules is mo-
tivated by the idea of molecular spintronics to integrate the promising concepts of
molecular electronics and spintronics [8; 10; 11; 15; 24; 38; 41; 95]. A particularly
interesting aspect of molecular electronics, besides the prospect of further minia-
turization, is the possibility of using chemical synthesis for the fabrication of device
components, whereas spintronics is discussed in relation to magnetic memory and
quantum computation. However, employing magnetic molecules as memory devices
in a nanoscale electric circuit requires a deeper understanding of their transport
properties.

Recent experimental research on single-molecule magnets has focused on the fine
structure of the Coulomb blockade peaks in the differential conductance. Seminal
experiments by Jo et al. [23] have reported the occurrence of magnetic sidebands in
transport through Mn12 derivatives in a molecular junction, cf. Fig. 3.1(a). These
are due to magnetic excitations of the local anisotropic spin of length S ≃ 9. Each
peak in the differential conductance can be attributed to an inelastic sequential
tunneling event, which changes the molecular spin by 1/2. Applying an external
magnetic field that couples linearly to the magnetic moment of the molecule gives
rise to an additional Zeeman splitting, which allows for distinguishing magnetic from
vibrational sidebands. Furthermore, cotunneling processes, which give the dominant
contribution to the tunneling current through the molecular junction in the Coulomb
blockade regime, have been observed [23].

Further measurements on Mn12 by Heersche et al. [22] have revealed the occur-
rence of novel spin-blockade mechanisms. A striking observation is the occurrence
of complete current suppression outside the Coulomb blockade regime due to the
presence of magnetic blocking states, cf. Fig. 3.1(b). Magnetic excitations on the
energy scale of the anisotropy barrier of the molecule are responsible for negative
differential conductance features. Transport calculations, taking into account the
high-spin ground state and excited states of the molecule, are in agreement with a
current blockade mechanism involving non-degenerate spin multiplets.

Experiments on cobalt Co2+ complexes in a molecular junction by Liang et al. [19]
have shown that the coupling between the local molecular spin and the spins of the
lead electrons may also give rise to the build-up of Kondo correlation, cf. Fig. 3.1(c).

The tunneling spectra of individual magnetic endohedral fullerenes N@C60 have
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Figure 3.1: (a) Color plot of the differential conductance dI/dV of Mn12 as a function of
bias voltage V and magnetic field B at fixed gate voltage Vg, taken from Ref. [23]. (b)
Differential conductance of Mn12 as a function of gate voltage Vg and bias voltage Vb, taken
from Ref. [22]. A region of complete current suppression (left degeneracy point, arrow) and
low-energy excitations with negative differential conductance (right degeneracy point) are
observed. The dashed line near the left degeneracy point indicates the suppressed diamond
edge [22]. (c) Plot of the conductance G versus bias voltage V at various temperatures,
obtained from a single-V2 transistor, taken from Ref. [19]. The temperatures of the mea-
surements (in K) are T = 0.3, 1.0, 2.0, 3.1, 4.2, 6.3, 9.0, 14 and 20, in order of decreasing
peak height.
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3.2 Model

been studied in recent experiments by Grose et al. [35]. Here the authors report spin
excitations revealed in the differential conductance, which are the consequence of the
exchange coupling between the nitrogen spin and the electron(s) on the C60 cage.
While the nitrogen atom retains its three p electrons and has a constant spin 3/2,
the spin of the C60 molecule changes due to the electronic tunneling. The fact that
the entire molecule remains magnetic is verified by observing a low-spin to high-spin
transition as a function of magnetic field and by the existence of nonequilibrium
tunneling originating from low-energy excited states [35].

Furthermore, spin-dependent transport through nonmagnetic molecular nano-
structures has been studied extensively over the past few years [96–100]. Pioneering
experiments by Tsukagoshi et al. [96] have reported the injection of spin-polarized
electrons from ferromagnetic contacts into multi-walled carbon nanotubes, finding
direct evidence for coherent transport of electron spins and hysteretic magnetoresis-
tance. Very weak spin-orbit coupling suggests extremely long spin relaxation times
and the possibility of coherent spin propagation over large distances, which presents
an encouraging result for the development of practical nanotube spintronic devices.
These findings have stimulated a growing activity in this area, including experiments
on spin transport through polymers [97; 98] and molecular junctions [99], and optical
pump/probe experiments through molecular bridges [100].

The purpose of the following sections is to elucidate some of these experimental
findings theoretically and to discuss the role of single-molecule magnets in relation
to molecular spintronics. Our main focus is on spin reading and writing.

3.2 Model

We consider a single magnetic molecule connected to two metallic leads which serve
as source and drain electrodes. The molecular junction is described by a Hamiltonian
of the form

H = Hmol +Hleads +Ht, (3.1)

where Hmol represents the molecular degrees of freedom, Hleads represents the leads,
and Ht the tunneling of electrons between the molecule and the leads.

The molecule is assumed to consist of only a single non-degenerate orbital which
is involved in the electronic transport. Electrons interact with one another via local
Coulomb repulsion, i.e. doubly occupying the molecule costs additional charging
energy. Furthermore, the orbital spin s is coupled to a local impurity spin S, which
remains constant despite the current-induced nonequilibrium. This means that the
molecule is paramagnetic even in the neutral state, when s vanishes and the total
spin is given by S. In some molecules the local spin is isotropic, e.g. in endohedral
fullerenes [48; 85; 86]. Here rotational symmetry in spin space can only be broken
due to the presence of an external magnetic field. However, many molecules such
as Mn12 or heme possess a magnetic anisotropy [22; 23]. The simplest Hamiltonian
describing the electronic and spin degrees of freedom of an anisotropic magnetic
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3 Transport through magnetic molecules—spin reading and writing

molecule reads

Hmol = (ǫd − eVg)n+
U

2
n(n− 1) − J s · S −K2 (Sz)2 −B(sz + Sz). (3.2)

Here, n ≡ d†↑d↑ + d†↓d↓ denotes the number operator counting the electrons on the

molecule, where d†σ (dσ) creates (annihilates) an electron with spin σ and single-
electron energy ǫd, which can be shifted by applying a gate voltage Vg. The para-
meter U denotes the Coulomb repulsion of the electrons in the orbital. If not stated
otherwise, we consider the limit U → ∞, i.e. double occupation of the molecule is
energetically forbidden, since our main effects do not depend on the presence of finite
charging energies. The electronic spin operator s is given by

s ≡
∑

σσ′

d†σ
σσσ′

2
dσ′ , (3.3)

where σ ≡ (σx, σy, σz) denotes the vector of Pauli matrices. The parameter J
denotes the exchange interaction between an electron in the orbital and the local
spin of length S. We define the operator for the total spin as

Stot ≡ s + S. (3.4)

We restrict ourselves to the case of easy-axis magnetic anisotropy, K2 > 0, i.e. we
consider an anisotropy-induced energy barrier. For simplicity we assume the g-factors
of the two spins to be identical and only take into account an external magnetic field
B which is applied along the anisotropy axis, pointing into, say, z direction. Trans-
port through magnetic molecules with non-collinear anisotropy axis and magnetic
field has been studied in Ref. [87]. Arbitrary angles between the easy axis and the
field lead to the violation of certain spin selection rules, resulting in a much richer
fine structure in the differential conductance.

The passage of a charge current is due to a finite bias voltage V between the
two metallic electrodes L (left) and R (right), which are modeled as non-interacting
Fermi gases,

Hleads =
∑

αkσ

ǫαkσ a
†
αkσaαkσ. (3.5)

Here a†αkσ (aαkσ) creates (annihilates) an electron with energy ǫαkσ, momentum k,
and spin σ in lead α = L,R.

The hybridization of the molecular orbital with the leads is described by a tunnel-
ing Hamiltonian,

Ht =
∑

αkσ

[

tα a
†
αkσdσ + t∗α d

†
σaαkσ

]

, (3.6)

where we consider the case of symmetric contacts, tL ≃ tR in the following, e.g. re-
alized in many breakjunction experiments [12].

The molecule-lead coupling is assumed to be sufficiently weak, such that the tun-
neling may be treated perturbatively. The unperturbed Hamiltonian is readily diag-
onalized. Since the charge n of the molecule is a good quantum number, the solutions
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3.2 Model

for the eigenstates fall into charge sectors with n = 0, 1, 2 electrons. For n = 0 and
n = 2 the local spin decouples from the electronic system, since the z-component of
the total spin, sz +Sz = Sz, commutes with Hmol. For both cases, one obtains 2S+1
eigenstates enumerated by the magnetic quantum number m of the z component of
the total spin sz + Sz = Sz. Their eigenenergies ǫ(n,m) are

ǫ(0,m) = −K2m
2 −Bm, (3.7)

ǫ(2,m) = 2(ǫ− eVg) + U −K2m
2 −Bm. (3.8)

In contrast, in the n = 1 sector the total spin Stot · Stot does not commute with
Hmol for nonvanishing K2. However, its z component Sz

tot = sz + Sz does. Thus the
eigenvalue m of Sz

tot is still a good quantum number. The subspace in the n = 1
sector has dimension 2(2S + 1). A suitable basis is formed by product states,

{| ↓〉, | ↑〉} ⊗ {| − S〉, . . . , |S〉}, (3.9)

where | ↓〉 and | ↑〉 denote the two eigenstates of s, while |m〉 denotes the 2S + 1
eigenstates of the local spin S. The states with extremal magnetic quantum numbers
m = −S − 1/2 and S + 1/2 are

|1,−S − 1/2〉 = | ↓〉| − S〉, |1, S + 1/2〉 = | ↑〉|S〉. (3.10)

Their energies are

ǫ(1,−S − 1/2) = ǫd − eVg +B(S + 1/2) − JS

2
−K2S

2, (3.11)

ǫ(1, S + 1/2) = ǫd − eVg −B(S + 1/2) − JS

2
−K2S

2. (3.12)

All other values for magnetic quantum numbers, −S−1/2 < m < S+1/2, appear as
eigenvalues of two product states, namely | ↓〉|m+1/2〉 and | ↑〉|m−1/2〉. Therefore,
the remaining eigenstates of Hmol must be linear combinations of two product states
with the same m. Inserting the ansatz

|ψ〉 = α| ↓〉|m+ 1/2〉 + β| ↑〉|m− 1/2〉 (3.13)

and noting that

s · S = szSz +
s+S− + s−S+

2
, (3.14)

we find that the Hamiltonian in the two-dimensional subspace spanned by the two
product states reads

Hmol =

[

ǫd − eVg −Bm+
J

4
−K2

(

m2 +
1

4

)] (

1 0
0 1

)

+

(

Jm
2 −K2m −J

2

√

S(S + 1) −m2 + 1/4

−J
2

√

S(S + 1) −m2 + 1/4 −Jm
2 +K2m

)

. (3.15)
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3 Transport through magnetic molecules—spin reading and writing

The resulting eigenenergies are

ǫ±(1,m) = ǫd − eVg −Bm+
J

4
−K2

(

m2 +
1

4

)

± ∆E(m), (3.16)

with

∆E ≡

√

K2(K2 − J)m2 +

[

J

4
(2S + 1)

]2

, (3.17)

for the normalized eigenstates

|1,m〉± =
(2K2 − J)m∓ 2∆E

2
√

∆E
√

2∆E ∓ (2K2 − J)m
| ↓〉|m+ 1/2〉

+
J
√

S(S + 1) −m2 + 1/4

2
√

∆E
√

2∆E ∓ (2K2 − J)m
| ↑〉|m− 1/2〉, (3.18)

for −S + 1/2 ≤ m ≤ S − 1/2. The states with m = −S − 1/2 and m = S + 1/2
mentioned above can be reobtained from Eq. (3.18), since the prefactor of one of the
two product states vanishes in these cases. One obtains |1,−S−1/2〉 = |1,−S−1/2〉±
and |1, S + 1/2〉 = |1, S + 1/2〉±, which completes the enumeration of eigenstates of
Hmol.

The Hamiltonian in Eq. (3.2) is the simplest one with an anisotropy-induced en-
ergy barrier, which exhibits the essential physics of reading, storing, and writing
molecular-spin information, as will be discussed in the present chapter. We want
to remark that the model does not take into account magnetic quantum tunneling
through the anisotropy barrier in the absence of electronic tunneling. The reason
is that this effect, which has been studied in Ref. [22], is typically very weak in the
sense that it involves only processes of higher order in the tunneling amplitude.

Transport is described within the rate equation approach discussed in Chapter 2.
The main assumption is that the molecule-lead coupling is sufficiently weak, so that
the hybridization with the leads can be treated as a small perturbation. The under-
lying physics is that thermal energies dominate over lead-induced energy broadenings
of the molecular levels. This approach is thus referred to as the high-temperature
limit of electronic transport [14]. The derivation of rate equations relies on two cru-
cial approximations. Due to the large-reservoir approximation, the leads are hardly
affected by the coupling to the molecule such that they remain in separate thermal
equilibria despite the applied bias voltage and can be described by Fermi distribution
functions fα(ǫ) = 1/[e(ǫ−µα)/T + 1] at chemical potentials µα. Formally speaking,
the density matrix of the full system can be approximated by the direct product of
the density matrices of the molecule and the leads, cf. Eq. (2.6). Due to the Markov
approximation memory effects of the molecular dynamics can be neglected. The rate
equations for the occupations Pn of many-particle states n read

dPn

dt
=
∑

m6=n

PmRm→n − Pn
∑

m6=n

Rn→m, (3.19)
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where the rates for a transition from state n with energy ǫn to state m with energy
ǫm are given by an expression equivalent to Fermi’s Golden Rule,

Rn→m =
∑

ασ

Γασf(ǫm − ǫn − µα)
(

|Cσ
nm|2 + |Cσ

mn|2
)

. (3.20)

Here

Γασ =
2π

~
|tα|2νασ (3.21)

is the typical rate for the tunneling of electrons with spin σ between the molecule
and lead α, i.e. the average electronic tunneling time is given by

τ0 =

(

∑

ασ

Γασ

)−1

. (3.22)

The overlap matrix elements Cσ
mn ≡ 〈m|dσ|n〉 (Cσ†

mn ≡ 〈m|dσ†|n〉) are sums of
Clebsch-Gordan coefficients and can be computed numerically. Note that, by def-
inition, Cσ

mn (Cσ†
mn) can only be finite if the electron number of state n is larger

(smaller) by 1 than the electron number of state m.
One of the central quantities we are interested in is the tunneling current between

the two electrodes. Its operator is given by the commutator

Iα = i

[

H, e
∑

kσ

a†αkσaαkσ

]

= −i e
∑

kσ

[

tα d
†
σaαkσ − t∗α a

†
αkσdσ

]

. (3.23)

Following the same steps as in the derivation of the transition rates, second-order
perturbation theory yields the following expression for the sequential tunneling cur-
rent,

Iα = e
∑

mlσ

Γασ

(

f(ǫl − ǫm − µα)|Cσ
ml|2 − [1 − f(ǫm − ǫl − µα)] |Cσ

lm|2
)

Pm. (3.24)

The spin-resolved current is defined in an obvious way,

Iσα = e
∑

ml

Γασ

(

f(ǫl − ǫm − µα)|Cσ
ml|2 − [1 − f(ǫm − ǫl − µα)] |Cσ

lm|2
)

Pm, (3.25)

which allows one to write the spin current as

Iα
s ≡ I↑α − I↓α

2e
. (3.26)

Here the factor 1/2 accounts for the electron spin.
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3 Transport through magnetic molecules—spin reading and writing

3.3 Spin amplification, reading, and writing in transport

through anisotropic magnetic molecules

3.3.1 Fine structure of the Coulomb blockade

The anisotropy-induced energy barrier of the single-molecule magnet partially lifts
the degeneracy of the molecular levels. In the differential conductance dI/dV this
manifests itself as a splitting of the Coulomb blockade peaks. The resulting fine
structure of the peaks in two-dimensional plots of dI/dV as a function of bias voltage
V and gate voltage Vg is shown in Fig. 3.2. For comparison, vanishing anisotropy is
considered in Fig. 3.2(a), whereas an anisotropy barrier of K2 = 0.04 eV is considered
in Fig. 3.2(b). Each peak can be attributed to an inelastic sequential tunneling
process, for which the occupancy changes by unity, ∆n = 1, while the magnetic
quantum number changes by ∆m = 1/2. The fine structure of the Coulomb peaks
in the differential conductance reveals several interesting features which are specific
of the presence magnetic degrees of freedom and which are absent, for instance, in
vibrating single-molecule transistors.

Most strikingly, the number of fine structure peaks in dI/dV is different for the
two opposite sides of the degeneracy point. In addition, the distance between two
subsequent peaks varies a lot. In contrast, the presence of vibrational degrees of
freedom usually gives rise to equidistant peaks on both sides of the degeneracy point.
In the following we will briefly explain the physics behind these characteristic fine
structure patterns.

For the chosen parameters, the peaks on the left side of the crossing point cor-
respond to transitions from empty to singly occupied states. In equilibrium, i.e. at
zero bias voltage, the molecule is in the ground state with n = 0, |m| = 2. The first
peak involves the transitions with |m| = 2 → 5/2. Transitions with |m| = 1 → 3/2,
|m| = 0 → 1/2, and |m| = 1 → 1/2 are already possible at lower bias voltages,
but they are not excited since the corresponding initial states with |m| = 1 and
|m| = 0 are not occupied in Coulomb blockade regime. The second peak in dI/dV
corresponds to transitions |m| = 2 → 3/2. The next peaks can be attributed to
transitions with |m| = 1 → 3/2, |m| = 0 → 1/2, |m| = 1 → 1/2, |m| = 2 → 3/2.

The peaks on the right side correspond to transitions from singly occupied to empty
states. In equilibrium the molecule is in the ground state with n = 1 and |m| = 5/2.
The first peak corresponds to transitions with |m| = 5/2 → 2. The transitions with
|m| = 3/2 → 2, |m| = 1/2 → 1, |m| = 3/2 → 2, |m| = 1/2 → 0, |m| = 3/2 → 1 and
|m| = 1/2 → 1 are energetically possible already at lower bias voltages but cannot
be excited, since the corresponding initial states have not been occupied yet. The
next two peaks belong to transitions with |m| = 1/2 → 0, |m| = 3/2 → 1. Note that
several transitions appear twice because there are two states with magnetic quantum
numbers ±3/2 and ±1/2, respectively. For a local spin of length S = 2, there exist
nine energetically different transitions obeying the selection rules, as illustrated from
Figs. 3.2(c),(d).

Interestingly, one of the peaks in Fig. 3.2(b) exhibits negative differential conduc-
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Figure 3.2: (a),(b) Differential conductance dI/dV as a function of gate voltage Vg and bias
voltage V . Yellow (bright) colors denote positive values of the differential conductance, dark
red colors denote negative values. In (a) results for an isotropic molecular spin are shown.
Here we assume T = 2meV for the thermal energy, ǫ = 0.2 eV for the molecular single-
particle energy, J = 0.1 eV for the exchange coupling, and vanishing magnetic field B = 0.
Coulomb blockade is found to the left and right of the V-shaped region, whereas within this
region a nonzero steady-state current is flowing. The satellite line results from the exchange
splitting of energy levels for n = 1. In (b) an anisotropy of K2 = 0.04 eV is assumed,
leading to a complex splitting of the dI/dV peaks. We find one peak with NDC (arrow).
(c),(d) Energy level scheme and allowed transitions between many-particle states with zero
electrons (n = 0) and one electron (n = 1). (c) The n = 0 multiplet is energetically lower
than the n = 1 multiplet. For the chosen parameters, the sequence of peaks in dI/dV can be
attributed to the following transitions from empty to singly occupied states, starting at low
bias voltage, |m| = 2 → 5/2, |m| = 2 → 3/2, |m| = 1 → 3/2, |m| = 0 → 1/2, |m| = 1 → 1/2,
|m| = 2 → 3/2. (d) Reverse case. For the chosen parameters, the sequence of peaks in dI/dV
can be attributed to the following transitions from empty to singly occupied states, starting
at low bias voltage, |m| = 5/2 → 2, |m| = 1/2 → 0, |m| = 3/2 → 1. Solid arrows mark
transitions that occur as peaks in the differential conductance, whereas dashed arrows mark
transitions that do not appear in dI/dV , since the corresponding levels are still unoccupied
when these transitions become energetically possible.
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Figure 3.3: Occupation and steady-state current in units of e/τ0, dI/dV in units of e/τ0
per volt, and probabilities of various states (dashed) for a cut through the NDC region in
Fig. 3.2(b) at the lower thermal energy T = 1meV. The arrow indicates the plateau with
reduced current. Inset: Molecular energy levels of states with n = 0 (black bars) and n = 1
(red/gray bars with circles) and magnetic quantum numbers m.

tance. To elucidate this effect we plot in Fig. 3.3 the current, differential conductance,
and relevant occupation probabilities at constant gate voltage at a lower temperature.

At low bias voltage only the degenerate ground states |1, 5/2〉 and |1,−5/2〉 are
occupied and no current is flowing. For increasing bias first the transitions to |0,±2〉
become possible, cf. the energy-level scheme in the inset in Fig. 3.3. The current
then increases to a plateau. On this plateau the four states have equal probability
and one obtains

IL =
e

2
RL

|1,±5/2〉→|0,±2〉. (3.27)

Next, the transitions from |0,±2〉 to |1,±3/2〉− become active and the system reaches
a new plateau, denoted by an arrow in Fig. 3.3, with

IL =
e

3

(

R|1,±5/2〉→|0,±2〉 +R|1,±3/2〉−→|0,±2〉

)

. (3.28)

Since for these particular parameters R|1,±3/2〉−→|0,±2〉/R|1,±5/2〉→|0,±2〉 < 1/2 due to
the coefficients in Eq. (3.18), the current is smaller than on the first plateau, leading
to negative differential conductance in the crossover region. The transitions between
plateaus are rounded due to the thermal broadening at nonzero temperatures. This
mechanism is different from the one found for Mn12 complexes [22]—in our case
there is no blocking state in which the molecule becomes trapped due to suppressed
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outgoing transition rates. On the contrary, the probabilities Pn are equal for all
accessible states n.

3.3.2 Spin amplification effect

We now turn to the relaxation of the molecular spin. Consider, for instance, a
molecule that is prepared in state |0, 2〉. Assume that at time t = 0 a finite bias
voltage is switched on, which forces the occupation probabilities of the molecular
states to approach a nonequilibrium distribution. In the absence of an external
magnetic field, the steady state is a mixed state with equal probabilities for states
with magnetic quantum numbers +m and −m. One may thus ask the question how
fast the average molecular spin decays. Figure 3.4(a) shows the time dependence of
the average occupation,

n(t) ≡
∑

i

niP
i(t), (3.29)

and the spin polarization,
m(t) ≡

∑

i

miP
i(t). (3.30)

The time evolution of various occupation probabilities is obtained by solving the
non-stationary rate equation, Eq. (3.19), which can be rewritten in matrix form,

Ṗ = AP, (3.31)

where P ≡ (P 1, P 2, . . . ) denotes the vector of all occupation probabilities and A is a
matrix with components Anm = Rm→n−δnm

∑

m′ Rn→m′ . The solution of Eq. (3.31)
takes the form

P(t) = eAt P(0), (3.32)

where the matrix exponential can be calculated numerically. The time evolution
(3.32) shows that the conditional probability of finding the molecule in state n at a
time t, if it was prepared in state m at time zero, is given by P(n|m; t) = (eAt)nm,
which allows us to calculate the temporal behavior of various observables.

As can be seen from Fig. 3.4(a), the average occupation approaches the constant
value 1/2 on the time scale τ0, the typical time for a single tunneling event. As soon
as the bias voltage is large enough to overcome the Coulomb blockade and allows for
the passage of electrons, the molecule spends half of the time in the empty state and
half of its time in the charged state.

However, the spin polarization shows a quite different behavior with two distinct
time scales. Initially, m(t) approaches a quasi-steady state on the time scale τ0, which
in this case has higher polarization, since the state |1, 5/2〉 has significant weight.
Then, m(t) decays to zero more slowly. This decay is slow because the molecule
must pass through several intermediate states to reach a state with opposite spin
polarization, essentially performing a one-dimensional random walk, as indicated in
the level scheme in Fig. 3.4(b). Figure 3.4(a) shows that the spin relaxation initially
becomes slightly faster for increasingK2. This is due to the change of matrix elements
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Figure 3.4: (a) Time evolution of the occupation probability n(t) and average spin polar-
ization m(t) for bias voltage V = 0.2V, and T = 2meV, S = 2, ǫd = 0.12 eV, U = 1 eV,
J = 0.1 eV, and B = 0 for various anisotropies K2. The gate voltage Vg is absorbed into ǫd.
The molecule is prepared in state |0, 2〉 at time t = 0. (b) Molecular energy levels for states
with occupancy n = 0 (black bars) and n = 1 (red/gray bars with circles) for the parameters
from (a) and K2 = 0.04 eV. Active transitions are denoted by dashed lines. The crosses
denote the transitions that next become thermally suppressed for larger K2 or smaller bias
V .

Cσ
ij with K2. For anisotropies K2 & 0.04 eV the decay becomes very slow, since two

of the transitions needed to reverse the spin, denoted by the crosses in Fig. 3.4(b),
become higher in energy than eV/2 and are thus forbidden for T → 0 and thermally
activated for T > 0.

Importantly, in the regime of thermally activated (slow) spin relaxation a size-
able steady-state current is flowing, since transitions between the states |0,±2〉 and
|1,±5/2〉 are still possible, see Fig. 3.4(b). This should lead to a significant spin
polarization of the current,

pα =
Iα
↑ − Iα

↓

Iα
↑ + Iα

↓

, (3.33)

since the transitions involving the states |0,±2〉 and |1,±5/2〉 only allow for the
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Figure 3.5: Total transmitted spin through the left and right leads for a magnetic molecule
prepared in the n = 0 maximum spin state |0, 2〉, as functions of bias voltage. The parameters
are the same as in Fig. 3.4 with K2 = 0.04 eV. The steady-state current is also shown. The
inset shows the spin transmitted through the left lead on a logarithmic scale as a function
of bias voltage for three different temperatures. For small bias, V → 0, the transmitted spin
for the two lower temperatures should also decrease again, like it does for T = 0.02 eV. No
results are plotted in this regime due to round-off errors in the calculation of the steady-state
probabilities.

tunneling of electrons with spin up.
The total spin, that is transmitted from lead α via the molecule into the opposite

lead, depends significantly on the initial distribution function Pinit of the molecule
and is obtained by integrating the spin current over all times,

S[Pinit] =

∫ ∞

0
dt Iα

s (t). (3.34)

Results for the bias dependence of the transmitted spin with initial state |0, 2〉 are
shown Fig. 3.5. Varying the bias voltage we observe four different regimes: (i) For
small bias voltages we are in the Coulomb blockade regime with a very small steady-
state current. However, we find that the total transmitted spin is exponentially large
in a characteristic energy barrier ∆E over temperature. In our example ∆E is the
difference between the energy ǫ−(1, 3/2)− ǫ(0, 2) necessary for a spin-down electron
to tunnel in and the available energy eV/2 of an incoming electron, which is smaller.
While all transitions are thermally activated, the ones necessary to relax the spin
have a much higher energy than the transition between |0, 2〉 and |1, 5/2〉, which
dominates the current. However, the transmission takes exponentially long since
this transition is also thermally activated.
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3 Transport through magnetic molecules—spin reading and writing

(ii) For larger bias we find the most interesting regime. The spin relaxation rate
is still small while the current is large. The bias is too small to overcome the energy
barrier between spin up and down, see Fig. 3.4(b). If the system starts in state
|0, 2〉, the only transition with a large rate is to state |1, 5/2〉, while the transitions
to the states |1, 3/2〉± are thermally suppressed in this regime [note that they are
higher in energy in Fig. 3.4(b)]. Thus a spin-up electron has to enter since the
process increases the total spin from m = 2 to m = 5/2. This electron can leave the
molecule through the other lead, returning it to the initial state. On the other hand,
a second electron cannot enter the molecule since this would cost a high Coulomb
energy U . Therefore, the current is fully spin polarized until a transition to state
|1, 3/2〉− occurs. This thermally suppressed transition happens with a small rate
proportional to exp(−∆E/T ), where ∆E = ǫ−(1, 3/2) − ǫ(0, 2) − eV/2, as above.
Consequently, the current is spin-polarized for an exponentially long time leading to
an exponentially large transmitted spin, |∆Sα| [the negative sign in Fig. 3.5 can be
understood by considering the transition rates, Eq. (3.20), in detail]. The exponential
dependence of the transmitted spin on ∆E/T is clearly seen in the inset in Fig. 3.5.
The average time Tα

s ≡ 1/|Iα
s (t = 0)| for one unit of spin to be transmitted is of

the order of τ0. More precisely, the total transmitted spin for a long time interval
∆t≫ τ0 is of the order of ∆t/τ0. The tunneling of a single electron is instantaneous
in our model. If TR

s is short compared to the spin relaxation time in the leads, large
opposite magnetizations will be accumulated in the leads, similarly to the effect
of spin injection studied intensively in recent years [101]. This effect is induced
by the breaking of spin symmetry at t = 0 only through the polarization of a single
quantum spin, and can thus be described as giant spin amplification. It is a promising
method to read out spin information. The magnetization in the leads could be
detected with a pickup coil or by the magneto-optical Kerr effect [42; 102]. A strong
amplification mechanism could also facilitate the reliable transfer of spin between
individual molecules in a device.

(iii) Further increase of the bias leads to a regime where the transmitted spin is
nonzero but not exponentially enhanced. Here, both the spin relaxation rate and the
current are large. The bias is large enough to overcome the energy barrier. Figure
3.5 shows that the spin transmitted through the left lead is (in absolute value) larger
by two than through the right lead. The reason is that the electrons flow from right
to left and that the spin of the initial state has to leave the molecule for t→ ∞.

(iv) At large bias all transitions between states with n = 0, 1 are possible. The
spin transmitted through the right, incoming lead, ∆SR, essentially vanishes. The
initial spin leaves the molecule through the left lead, leading to ∆SL ∼= −2. This is
the nonmagnetic regime.

The pattern seen in Fig. 3.5 is robust under changes of the anisotropy K2. For
K2 = 0 the regime of giant spin amplification is absent but for any K2 > 0 it exists
at sufficiently low temperatures, since the only requirement is that the energy of
state |1, 5/2〉 is lower than the one of |1, 3/2〉− states.
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Figure 3.6: Probabilities of molecular states after initial preparation in state |0,−2〉 as
functions of time at the bias voltage V = 0.207V. The probabilities of states with extremal
spin polarization and of the representative intermediate state |0, 0〉 are shown. A magnetic
field (B = 2meV) leads to spin relaxation towards larger spin values. The parameters are
T = 0.2meV (lower than before), K2 = 0.04 eV and otherwise as in Fig. 3.4(a). Inset:
Probabilities after the bias voltage is suddenly switched off in the steady state reached for
V = 0.207V.

3.3.3 Spin reading and writing

Due to the strong dependence of the transmitted spin on the initial state of the
molecule, the spin amplification effect provides an attractive mechanism to read out
information through the spin. But for molecular memory applications one also needs
the ability to write information. In our case, this means that a mechanism is required
which enables to switch the molecule to a predetermined spin state. An obvious
idea would be to apply a magnetic field to a molecule attached to the nonmagnetic
leads considered so far. However, applying a field at zero bias does not work since
all transitions remain thermally suppressed so that relaxation to the spin-polarized
steady state is exponentially slow.

We find that reliable switching requires a two-step scheme. First one applies a
magnetic field, which tilts the energy levels in Fig. 3.4(b), and a bias voltage that is
just large enough to allow transitions in the desired direction but not in the opposite
one at sufficiently low temperatures. Since the Zeeman energy B is small, this
requires a fine tuning of the bias V on the scale B/e and cooling to temperatures
T ≪ B. Figure 3.6 shows the change of probabilities for all states with n = 0, 1 if one
starts with state |0,−2〉 and applies a positive magnetic field to switch the molecule
to spin up. The Zeeman energy is chosen as B = 2 meV. The molecule crosses over
from state |0,−2〉 to a steady state essentially consisting of |0, 2〉 and |1, 5/2〉 on a
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Figure 3.7: Probabilities of molecular states after initial preparation in state (a) |0,−2〉
and (b) |0, 2〉 as functions of time at the bias voltage (a) V = 0.7V and (b) −0.7V. The
right lead is ferromagnetic with a ratio of densities of states of νR

↓ /ν
R
↑ = 0.001. There is no

applied magnetic field. The other parameters are as in Fig. 3.6 except for the much higher

thermal energy T = 0.02 eV.

time scale of the same order and of the same origin as the spin relaxation times, see
Fig. 3.4. The decay of state |0, 2〉 is slow as compared to the typical tunneling time
τ0. Similarly, the occupation and de-occupation of intermediate states with magnetic
quantum numbers m < 2 happen on a time scale much larger than τ0. The one-
dimensional random walk finally ends in a mixed state with occupation probabilities
1/2 for the both states |0, 2〉 and |1, 5/2〉.

Note that in a molecular circuit one could apply a magnetic field to many molecules
and address a specific one with the bias voltage. In the second step the bias is
switched off. The inset of Fig. 3.6 shows that the system then relaxes towards the
target state |0, 2〉 on the time scale τ0. In the nonequilibrium situation, only the two
states |0, 2〉 and |1, 5/2〉 are occupied. After switching off the bias, the equilibrium
is reached quickly, since it takes only time of the order of one tunneling process for
the molecule to be stuck in the ground state |0, 2〉.

However, this writing scheme is problematic because it requires to reverse a large
magnetic field between switching events, which is a very slow process. Furthermore,
it requires very low temperatures. Our main idea is to overcome these problems by
using one ferromagnetic and one nonmagnetic lead. The ferromagnetic lead R is
modeled by different densities of states νR

σ for up and down (σ =↑, ↓) electrons. We
set the spin polarization νR

↓ /ν
R
↑ = 0.001 so that the lead is essentially a half-metallic

ferromagnet such as NiMnSb and CrO2. For less complete spin polarization in the
lead, the reliability of the switching degrades. We note that spin injection from
a ferromagnet is not trivial. However, in recent years significant progress has been
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3.4 Transport through anisotropic magnetic molecules with partially ferromagnetic leads

made [101]. Nevertheless, the most difficult task in implementing this writing scheme
probably is to achieve a high degree of spin polarization of tunneling electrons.

Figure 3.7 shows that one can switch the spin polarization in both directions on
the time scale of typical spin relaxation times by applying a bias voltage in vanishing
magnetic field. For V > 0 electrons pass through the molecule from right to left,
cf. Fig. 3.7(a). Since νR

↓ is small, nearly all electrons have spin up. Due to exchange
scattering between the electron spin and the local spin, the latter is increased. Figure
3.7(a) shows that all states except for |0, 2〉 and |1, 5/2〉, which have the largest
positive magnetization, die out. By switching the bias voltage to V = 0 as in
Fig. 3.6 we can then make the molecule relax rapidly towards the unique state |0, 2〉
(not shown). For V < 0, electrons flow from left to right, Fig. 3.7(b). Spin-down
electrons are essentially trapped on the molecule until they perform a spin exchange
with the local spin, which decreases the local spin. As the result, the state |1,−5/2〉
becomes populated at the expense of all other states. Importantly, no fine tuning of
the bias voltage is required. Furthermore, the temperature need not be small—the
results shown in Fig. 3.7 are calculated with T close to room temperature. Both
properties are desirable for molecular-electronics applications.

Note that if one lead is ferromagnetic, the current is generally spin-polarized even
in the steady state. Therefore, the total transmitted spin, Eq. (3.34), diverges.
However, we can define the excess transmitted spin in a certain state relative to the
steady state,

∆Sα[P] =

∫ ∞

0
dt [Iα

s (t,P) − Iα
s (t = ∞,P)]. (3.35)

It is this quantity that exhibits spin amplification as in the case of nonmagnetic
leads.

3.4 Transport through anisotropic magnetic molecules

with partially ferromagnetic leads

3.4.1 Spin blockade and negative differential conductance

An essential requirement for spintronics devices is the ability to control and detect
the spin. In the previous section, we have shown that magnetic anisotropy is crucial
for slow spin relaxation in magnetic molecules and leads to the effect of giant spin
amplification, which allows one to read out spin information. Furthermore, we have
seen that spin writing requires the presence one ferromagnetic lead. For this purpose,
we now consider the inelastic transport through an anisotropic magnetic molecule
weakly coupled to one nonmagnetic and one ferromagnetic lead. This configuration
is motivated by the possibility to switch the molecule to a predetermined spin state,
i.e. to write the spin, by applying a bias voltage in zero magnetic field, as discussed
above. Our goal is to show that the proposed setup leads to interesting physics
going beyond the application of spin writing, including the occurrence of a new spin
blockade mechanism and negative differential conductance at room temperature.
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(a) (b)

(c)

Figure 3.8: Two-dimensional plots of the differential conductance dI/dV in the vicinity
of one particular degeneracy point for a magnetic molecule between one nonmagnetic lead,
νL
↓ /ν

L
↑ = 1, and one ferromagnetic lead, νR

↓ /ν
R
↑ ≃ 0. (a) dI/dV for Zeeman splitting

B = 0.05 eV. (b) dI/dV for vanishing magnetic field. Here we choose J = K2 = 5meV and
zero temperature. When the magnetic field is switched on, the Coulomb blockade regime
and the spin blockade regime are separated by a finite window of bias voltage for which the
conductance is high. Since the conductance is low (governed by νR

↓ /ν
R
↑ ) in the spin blockade

regime, NDC must occur where the conductance drops again. (c) Scheme of the molecular
energy levels with all allowed transitions involving the states with n = 0 and n = 1 electrons
in an external magnetic field. In the spin blockade regime all transitions are energetically

possible if the bias voltage V is large enough. However, the rates for spin-down electrons
tunneling from the molecule into the right lead (curved arrows with slash) are strongly
suppressed due to the small density of states.
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3.4 Transport through anisotropic magnetic molecules with partially ferromagnetic leads

We start by discussing the steady-state transport properties. As noted above, the
anisotropy of the local spin partially lifts the degeneracy of the molecular energy
levels with respect to the magnetic quantum number m, where m denotes the eigen-
values of the z component of the total spin Stot [22; 103]. This leads to a splitting of
peaks in the differential conductance dI/dV at low temperatures, as shown in Fig. 3.8
for (a) finite and (b) vanishing magnetic field B. We assume again a spin polarization
of νR

↓ /ν
R
↑ = 0.001 for the densities of states of right lead. The complicated fine struc-

ture in the vicinity of the degeneracy point V0 arises from the anisotropy of the local
spin and the exchange interaction between the electrons in the molecular orbital and
the local spin. This feature has been discussed for the case of two unpolarized leads
above and can be explained in an analogous way. Strikingly, dI/dV is asymmetric
with respect to the bias voltage, i.e., several fine-structure peaks have a significantly
different intensity when the bias changes sign. This results from the breaking of
spin-rotation symmetry by the ferromagnetic lead together with spin selection rules
for the tunneling processes.

The V -Vg map shows three transport regimes: At low bias the current is thermally
suppressed due to the Coulomb blockade, except close to the degeneracy point V0.
The electron number on the molecule is constant, i.e., n = 0 for Vg < V0 and
n = 1 for Vg > V0, since all transitions between different molecular charge states
are energetically forbidden. At large positive bias the conductivity of the molecule
is high, since the electrons in the right lead have enough energy to overcome the
energy barrier between the n = 0 and n = 1 states. This is the conducting regime.
However, at large negative bias the conductivity of the molecule is low. This current
suppression is due to a spin blockade mechanism which will be explained in the
following.

There exist essentially two definitions of spin blockade that are frequently used
in the literature on transport through quantum dots. The original definition refers
to the phenomenon that transition probabilities for single-electron tunneling vanish
between states corresponding to successive electron numbers if the total spins differ
by more than ∆S = 1/2 [22; 104–107]. The other, more general definition refers to
the situation that the tunneling rate for electrons of one spin direction is strongly
suppressed relative to the other, e.g. due to ferromagnetic leads [108; 109] or Zeeman
splitting [110]. In this case the system can be stuck in a particular molecular many-
body state because the rates for leaving these states are small.

In our case the spin blockade is related to the second mechanism [108–110] but
the interaction between the electrons on the molecule and the local anisotropic spin
leads to a modified picture. As soon as the bias is sufficiently high, all transitions
between the n = 0 and the n = 1 multiplets are energetically possible, as shown
in Fig. 3.8(c). Selection rules for sequential tunneling require ∆m = 1/2. Both
spin-up and spin-down electrons hop onto the molecule with equal rates, since the
densities of states νL

↑ and νL
↓ in the left (incoming) lead are equal for both spin

directions. On the other hand, spin-up electrons leave the molecule much faster due
to the polarization of the right (out-going) lead. Electrons keep flowing through the
molecule until a spin-down electron tunnels in. This spin-down electron can leave
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(a)

(b)

Figure 3.9: (a) Current-voltage characteristics in the vicinity of the Coulomb blockade
threshold assuming K2 = J = B = 0.05 eV. The inset shows the current over a broader
voltage range. (b) Energy level scheme for the n = 0 and n = 1 spin multiplets as a function
of the magnetic quantum number m. The bias voltage is just high enough to allow the
transition between the many-particle states with spin m = S and m = S+1/2. The steady-
state current is highly spin-polarized, since the tunneling of spin-down electrons is thermally
suppressed. This regime corresponds to the plateau with enhanced current in (a).

the molecule only with a very small tunneling rate due to the low density of states
νR
↓ . On the other hand, it can rapidly leave the molecule as a spin-up electron if the

local spin is simultaneously reduced by unity. However, the number of possible spin
flips is limited, depending on the initial spin state and the length S of the local spin.
Therefore, the molecule finally ends up in the singly charged state with minimal spin,
i.e., Stot = −S − 1/2. Further electronic tunneling is blocked, since the left lead is
energetically unreachable and the right lead has a low density of states for spin-down
electrons, cf. Fig. 3.8(c).

Another interesting feature shown in Fig. 3.8(a) is the appearance of a finite win-
dow of bias voltages between the Coulomb blockade and spin blockade regimes, for
which the conductivity of the molecule is high. This obviously leads to negative
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3.4 Transport through anisotropic magnetic molecules with partially ferromagnetic leads

differential conductance when the spin blockade regime with low conductivity is en-
tered. Figure 3.9(a) shows the current-voltage characteristics in the vicinity of the
Coulomb blockade threshold at zero gate voltage for finite magnetic induction. The
external field tilts the molecular energy levels with respect to the magnetic quantum
number m due to the additional Zeeman energy, as sketched in Fig. 3.9(b). This
removes any degeneracies of the spin multiplets entirely. For small bias voltages and
low temperatures the current is suppressed due to the Coulomb blockade. But as
soon as the transition from the ground state of the n = 0 multiplet with maximal
spin, m = S, to the lowest-energy state of the n = 1 multiplet with maximal spin,
m = S + 1/2, becomes energetically allowed the current increases to the plateau
shown in Fig. 3.9(a). These two levels are then equally occupied. Moreover, the
current through the molecule is highly spin polarized, since spin-up electrons tunnel
rapidly through the molecule, whereas the passage of spin-down electrons is sup-
pressed. When the bias is further increased to allow tunneling also of spin-down
electrons, the molecule goes over to the state with n = 1 and m = −S − 1/2 in
several steps and the current is strongly suppressed by the spin blockade mechanism
discussed above. The first required transition from n = 0 and m = S to n = 1 and
m = S − 1/2 has the highest energy so that all following transitions become active
at the same bias. The width ∆V of the bias window with large current corresponds
to twice the difference of these two excitation energies and is given by

e∆V = 2
[

2SK2 +B − ∆E(S + 1/2) − ∆E(S − 1/2)
]

, (3.36)

where ∆E(m) ≡ [K2(K2−J)m2+(J/4)2(2S+1)2]1/2. This holds as long as νR
↓ /ν

R
↑ ≪

1 and the Zeeman energy B is not too small. For B → 0 we have to take into account
that the states with n = 0 and m = ±S become degenerate ground states.

The observation of the current plateau requires the temperature to be small com-
pared to e∆V , see Fig. 3.9(a). At high temperatures the current steps broaden so
that the plateau of high current vanishes. Nevertheless, the current remains large
at bias voltages close to the transition point from the Coulomb blockade to the spin
blockade, as shown in the inset in Fig. 3.9(a). For vanishing magnetic field, B = 0,
there is no enhanced current at low temperatures, as we will explain below. Never-
theless, at high temperatures a pronounced current maximum develops close to the
transition from the Coulomb blockade to the spin blockade, as shown in Fig. 3.10(a).
For anisotropy barriers K2 > 0, the peak grows and broadens with increasing tem-
perature. Since the current remains small deep in the spin blockade regime, a broad
region of negative differential conductance develops. This is remarkable since nega-
tive differential conductance, which has already been observed or predicted for many
systems, is usually a low-temperature effect. The high-temperature NDC is a distinct
effect, since it appears even when there is no NDC at low temperatures.

Before we explain the high-temperature negative differential conductance we note
that the temperature dependence of the I-V curves is qualitatively different for
vanishing anisotropy barrier and large exchange interaction, K2 ≪ T ≪ J , as shown
in Fig. 3.10(b). Most striking is the fact that the maximum of the peaks stays
constant for T → 0. For this situation the energy levels are shown in Fig. 3.10(c).
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(a)

(b)

(c)

Figure 3.10: (a),(b) Temperature dependence of the current-voltage characteristics ex-
hibiting negative differential conductance. In (a) we assume K2 = J = 5meV and vanishing
magnetic field, corresponding to the spin multiplets schematically shown in Figs. 3.8 and
3.9, except that now B = 0. In (b) we assume a large exchange interaction J = 0.1 eV and
vanishing magnetic anisotropy K2 = 0. (c) Energy level scheme for the n = 0 and n = 1
multiplets as a function of the magnetic quantum number m for the case in (b).
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It is obvious that only a single energy difference is relevant as long as the higher
n = 1 quartet is not occupied. If eV/2 exactly equals this transition energy, the
Fermi functions in the rates, Eq. (3.20), for these transitions all equal 1/2 and are
thus independent of the temperature. Consequently, the steady-state probabilities
and the current are also independent of the temperature at this bias. For lower bias
all transitions from states with occupancy n = 0 to states with n = 1 are thermally
suppressed and for higher bias the relevant transitions become fully active (the Fermi
functions approach unity) and we enter the spin blockade regime discussed above. In
both regimes the current decreases for T → 0. (In fact the current maximum does
not occur exactly where eV/2 equals the transition energy. Rather, it depends on
the balance between the thermally activated transition rates from n = 0 to 1 and
the spin-down transition rates from n = 1 to 0 controlled by νR

↑ /ν
R
↓ .) In the spin

blockade regime this leads to negative differential conductance. It is remarkable that
the spin blockade—a quantum effect—leads to large negative differential conductance
at room temperature.

For the case of large anisotropy barriers K2 > 0 and, more importantly, small
exchange coupling J , cf. Fig. 3.10(a), the current at the maximum increases with
temperature since transport through the higher n = 1 quartet contributes more and
more. For the same reason the current maximum shifts to larger bias voltages. On
the other hand, the current maximum vanishes for T → 0. In Fig. 3.10(a) we have
assumed vanishing magnetic field and there is no window of enhanced current at
low temperatures: At small bias, in the Coulomb blockade regime, the steady state
has predominantly n = 0 and m = −S due to the asymmetric tunneling rates into
the right lead. As the bias is increased the system directly crosses over to the spin
blockade regime when the bias equals the excitation energy to the state with n = 1
and m = −S − 1/2.

3.4.2 Super-Poissonian shot noise

In the previous sections we have seen that interesting dynamical transport phenom-
ena such as slow spin relaxation and giant spin amplification are revealed aside from
remarkable steady-state properties such as the fine structure of the Coulomb dia-
monds. For this reason, we now pay more attention to dynamical properties of the
system and study the intrinsic noise (also known as shot noise) of a single-molecule
magnet due to the stochastic character of electron tunneling. Our motivation is to
show that the current suppression originating from the discussed spin blockade mech-
anism can easily be distinguished experimentally from other blockade mechanisms
by characteristic features in the noise spectrum.

The noise spectrum is defined as the Fourier transform of the current-current
correlation function [111],

Sαβ(ω) = 2

∫ ∞

−∞
dt eiωt〈δIα(t) δIβ(0)〉, (3.37)

where α and β denote lead indices. The noise of the symmetrized current I = IL+IR
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reads

S(ω) ≡ 1

4

[

SLL(ω) + SLR(ω) + SRL(ω) + SRR(ω)
]

. (3.38)

Nonequilibrium current noise in mesoscopic structures is a consequence of the dis-
creteness of the charge carriers [112]. For conductors with open channels the
fermionic statistics of electrons results in a suppression of the shot noise below the
classical Schottky limit [113]. This was first noted by Khlus [114] and Lesovik [115]
for single-channel conductors and generalized by Büttiker [116] for many-channel
conductors. Mesoscopic conductors are often probed by two or more leads. In this
case quantum statistics also induces cross-correlations between the currents in dif-
ferent terminals α and β. Since these correlations vanish in the classical limit, even
their sign is not obvious a priori [110].

An exact solution of the non-stationary rate equations describing the dynamics of
the single-electron transistor is obtained in the frequency representation. The low-
frequency limit of the noise intensity, which is relevant for the calculation of Fano
factors, is considered in detail. The discussion is based on the viewpoint of Korotkov
[111]. The time evolution of the occupation probabilities Pn of various many-particle
states is obtained as explained in Sec. 3.3.2.

Figure 3.11 shows the current noise spectrum for three different bias voltages re-
presenting the Coulomb blockade, spin blockade, and conducting regime. The latter
is reached here by applying a large negative bias, which overcomes the spin blockade
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3.4 Transport through anisotropic magnetic molecules with partially ferromagnetic leads

by allowing conduction through doubly occupied states. Here we consider the nor-
malized correlation function SLL(ω)/SLL(ω → ∞) which gives information about
temporal correlations of tunneling events for the left lead. According to Eq. (3.37),
SLL(ω) is the Fourier transform of the current-current correlation function. The con-
stant part SLL(∞) comes from the autocorrelation contribution, which is a positive
delta-function at vanishing time difference. In the conducting regime the noise spec-
trum exhibits a minimum at zero frequency since the corresponding contribution
to the correlation function is negative. Whenever the molecule is doubly occupied,
further electrons cannot tunnel in due to the Pauli principle. This is the usual an-
tibunching effect for fermions. The typical frequency scale apparent in Fig. 3.11 for
the conducting case is the inverse of the typical time the molecule remains doubly
occupied, which is of the order of the typical tunneling time τ0 = (2π|tL|2νL/~)−1.

Anticorrelation of subsequent tunneling events is also found for the Coulomb
blockade regime. In this case, however, the anticorrelation is due to the Coulomb re-
pulsion, which hinders a second electron from entering the singly occupied molecule.
As it is well known, the Fano factor F ≡ S(ω = 0)/2e|I|, which is defined as the ra-
tio of the zero-frequency noise to the classical Schottky result [112], is close to unity
in this case, since single electrons tunnel through the system in rare, uncorrelated
events.

In contrast, in the spin blockade regime the noise is enhanced at ω = 0. This
maximum results from a bunching of the charge carriers, which means that several
electrons tend to tunnel through the molecule within a short time interval. On the
other hand, the average waiting time between such events is comparatively long.
Results for the Fano factor reveal super-Poissonian shot noise, F > 1, in the spin
blockade regime. It reaches the value F ≃ 3 for one halfmetallic lead, νR

↓ /ν
R
↑ → 0.

This factor can be understood by taking into consideration that the Fano factor con-
tains information about the charge of the current-carrying particles and the quantum
correlations between them. In the spin blockade regime, the molecule is in the singly
occupied state and has minimal spin for most of the time. Electrons from the left lead
cannot hop onto the molecule until a spin-down electron is emitted into the right
lead. The rate for this process is strongly suppressed. However, if the spin-down
electron does leave the molecule, the probability for further tunneling processes is
high, since electrons of both spin directions may then tunnel into the molecule. A
current is flowing until a spin-down electron occupies the molecule again, which leads
to the spin blockade state. Analytical results for the Fano factor can be obtained
from the following expression, cf. Ref. [29],

F = 〈N〉〈t
2〉 − 〈t〉2
〈t〉2 +

〈N2〉 − 〈N〉2
〈N〉2 . (3.39)

Here N denotes the number of electrons tunneling through the molecule in one
bunch and t the waiting time between such processes. The waiting times t between
the tunneling events approximately obey a Poisson distribution. Since the electronic
transport is dominated by the three states with n = 0, m = −S and n = 1, m =
−S ± 1/2, one finds a probability of 1/2N for N electrons in the bunch. From this
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3 Transport through magnetic molecules—spin reading and writing

one can calculate the moments occurring in Eq. (3.39) and obtains F = 3. This
result is of the same fundamental origin as the super-Poissonian shot noise found
for quantum dots in the spin blockade regime in Ref. [110], which considers the case
K2 = J = 0 (no local spin) and nonmagnetic leads. In this case the spin blockade is
induced by application of a magnetic field [110]. We note that Eq. (3.11) also gives
the observed value F = 1/2 for the conducting regime.

3.4.3 Spin-charge conversion

As discussed above, slow spin relaxation leads to the effect of giant spin amplifica-
tion in transport through anisotropic magnetic molecules coupled to two nonmag-
netic leads. At bias voltages close to the Coulomb blockade threshold the total
spin transmitted from one lead to the other can become exponentially large at low
temperatures, if the molecule is prepared in a magnetically polarized initial state at
time t = 0. However, if one lead is ferromagnetic the steady-state current is highly
spin-polarized so that it is necessary to consider the excess transmitted spin instead.
Analogously, one can define the excess transmitted charge: Assume that the molecule
is prepared in a specific state n at time zero and then evolves according to the rate
equations (3.19). Since it approaches the steady state exponentially as a function of
time, the excess charge

∆Qα
n ≡

∫ ∞

0
dt [Iα(t) − Iα(t = ∞)] (3.40)

is finite. Here our main observation is that ∆Qα
n can depend very strongly on the

initial state n if the steady state shows spin blockade behavior. Practically it is
much easier to measure the charge accumulation in the leads instead of the excess
spin [42; 43; 117], since the accumulated charge is conserved (except for leakage
currents), whereas the spin is not. Moreover, it should be easier to employ the
excess charge for further data processing.

Results for the excess transmitted charge as a function of bias voltage are shown
in Fig. 3.12(a), where an initial state with n = 0 and spin m = S is assumed. The
fine structure close to the Coulomb blockade threshold basically originates from the
anisotropy of the local spin. Most striking is the exponential enhancement of ∆Qα

n

at voltages above the Coulomb blockade threshold, where the steady-state current is
already nonzero (but small due to the spin blockade). When the bias is just large
enough to enable the two transitions from the n = 0 state with extremal spin to the
n = 1 state with extremal spin, m = ±S → ±(S+1/2), the system initially prepared
in a state with maximal spin, m = S + 1/2, for an exponentially long time only
performs transitions between the two extremal state connected by a solid line in the
level scheme in Fig. 3.12(b). Thus a sizable—and completely spin-polarized—current
is flowing until the molecule overcomes the anisotropy barrier by thermal activation.
After that it rapidly relaxes towards the spin blockade state, which shows a small
steady-state current. On the other hand, if the molecule is prepared in the state
with minimal spin, m = −S − 1/2, it already starts out in the spin blockade state
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Figure 3.12: (a) Excess transmitted charge ∆QL as a function of bias voltage in the vicinity
of the first Coulomb blockade step for different polarizations of the right lead: νR

↓ /ν
R
↑ =

0.5, 0.3, 0.1, and 0.01. We assume J = 4meV, K2 = 1meV, vanishing magnetic field and an
initial state with n = 0 and m = 2. The steady-state current for νR

↓ /ν
R
↑ = 0.1 is also shown.

The inset shows ∆QL as a function of the anisotropy constant K2, where the bias voltage
V corresponds to the arithmetic mean of the first two excitation energies. (b) Energy level
scheme of the n = 0 and n = 1 multiplets. The molecule is prepared in the initial state with
spin m = S.
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3 Transport through magnetic molecules—spin reading and writing

and the current is always small. Thus in the first case an exponentially large excess
charge is accumulated in the leads in addition to the excess spin. In this regime the
proposed setup functions as a spin-charge converter, i.e., spin information can be
read through measurement of the excess transmitted charge.

On the other hand, if the bias is large enough to allow further transitions involving
other levels, the system rapidly relaxes back towards spin blockade so that ∆Qα

n is
of the order of the elementary charge e. Note that the excess transmitted charge
increases for increasing anisotropy of the local spin, as can be seen from the inset in
Fig. 3.12(a).

3.5 Cotunneling and non-equilibrium magnetization in

magnetic molecular monolayers

3.5.1 Cotunneling through magnetic molecules

Until now we have restricted ourselves to the regime where the electronic tunneling
in and out of the molecule is governed by incoherent, sequential tunneling processes
only. However, if these are suppressed due to blockade mechanisms such as the
Coulomb blockade or the Franck-Condon blockade [29], cotunneling processes natu-
rally play an important role and may give the dominant contribution to the electronic
tunneling. Cotunneling processes are next to leading order in the tunneling Hamil-
tonian and describe the coherent transfer of an electron from one lead to another
in two steps, as discussed in Chapter 2. Importantly, the intermediate state can
have an energy much larger than the energy of the initial state. Thus cotunneling is
referred to as a virtual process.

In the following we study magnetic molecules under a bias voltage in the Coulomb-
blockade regime. Our main result is that, while any features in the differential
conductance are very small due to the suppression of the current, there are large
changes in the average magnetic moments of the molecules with bias voltage and
applied field. The measurement of magnetic moments of submonolayers of molecules
has been demonstrated years ago [118; 119]. Even the detection of the spin of a single
molecule may be feasible [76; 120]. However, it is not clear how to perform such a
measurement in a molecular-junction experiment. A recent experiment suggests
that it is possible to employ carbon nanotube superconducting quantum interference
devices for the detection of the switching of single magnetic moments [121].

For the most part, we consider here a monolayer of magnetic molecules sand-
wiched between two metallic electrodes, see Fig. 3.13, since the measurement of the
magnetization of a thin film is expected to be easier than that of a single molecule.
Furthermore, various molecules form nearly perfect monolayers on metallic substrates
[122]. We assume that magnetic interactions between the molecules are negligible
and that all molecules have the same spatial orientation relative to the electrodes
[122]. In this case it is sufficient to consider the properties of a single molecule.
described by the Hamiltonian in Eq. (3.2).
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V

thin top electrode

bottom electrode

Figure 3.13: Sketch of the geometry. A monolayer of magnetic molecules is adsorbed on
a metallic substrate, which serves as a bottom electrode. A thin metallic layer is used as a
top electrode.

The leading contribution to the transition rates between molecular many-particle
states is of second order in Ht, corresponding to Fermi’s Golden Rule. Going beyond
the leading order is possible by employing a T -matrix formalism, as discussed in
Chapter 2. The T matrix [83] is self-consistently given by

T = Ht +Ht
1

Ei −H0 + iη
T. (3.41)

Here Ei is the energy of the initial state |i〉|n〉, where |i〉 refers to the equilibrium state
of the left and right leads (at different chemical potentials) and |n〉 is a molecular
state, and η is a positive infinitesimal ensuring that the Green function in T is
retarded. To fourth order, the transition rate from state |i〉|n〉 to |f〉|n′〉 with an
electron tunneling from lead α to lead α′ is given by

Γni;n′f
αα′ =

2π

~

∣

∣

∣

∣

〈f |〈n′|Ht
1

Ei −H0 + iη
Ht|n〉|i〉

∣

∣

∣

∣

2

δ(Ef − Ei). (3.42)

The energies of the initial state |n〉|i〉 and final state |n′〉|f〉 = |n′〉a†α′k′σ′aαkσ|i〉 are
denoted by Ei and Ef , respectively. We only consider the case of infinite U , i.e.
double occupancy of the molecule is forbidden, and obtain

Γnn′,00
αα′ =

2π

~
t2αt

2
α′

∑

σσ′

νασνα′σ′

∫

dǫ

∣

∣

∣

∣

∣

∑

n′′

Cσ′

n′n′′Cσ∗
nn′′

ǫ+ ǫn − ǫn′′ + iη

∣

∣

∣

∣

∣

2

f(ǫ− µα) [1 − f(ǫ+ ǫn − ǫn′ − µα′)], (3.43)

Γnn′,11
αα′ =

2π

~
t2αt

2
α′

∑

σσ′

νασνα′σ′

∫

dǫ

∣

∣

∣

∣

∣

∑

n′′

Cσ′

n′′nC
σ∗
n′′n′

−ǫ+ ǫn′ − ǫn′′ + iη

∣

∣

∣

∣

∣

2

f(ǫ− µα) [1 − f(ǫ+ ǫn − ǫn′ − µα′)], (3.44)

where Γnn′,00
αα′ (Γnn′,11

αα′ ) denotes the cotunneling rate describing virtual transitions
between two empty (singly occupied) molecular states. To the same order in Ht, one
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Figure 3.14: (a) Differential conductance dI/dV and (b) probabilities Pn of molecular
many-particle states as functions of bias voltage V , for low bias voltages. The probability
P 5/2 of the ground state has been scaled by a factor 1/3. Here, we assume S = 2, J = K2 =
5meV, ǫd = 10J , B = 2meV, and T = 0.3meV.

also obtains processes changing the electron number by ±2. However, for U → ∞
these pair-tunneling processes [123] are suppressed. Note that Eqs. (3.43) and (3.44)
contain both elastic and inelastic cotunneling.

Since the above expressions diverge due to second-order poles from the energy
denominators, the cotunneling rates cannot be evaluated directly. We apply a regu-
larization scheme that follows Refs. [88–90] and is motivated by the observation that
Eqs. (3.43) and (3.44) do not take into account that the intermediate state obtains a
finite width Γ due to the coupling to the leads. In the regime of weak tunneling, the
width Γ is of second order in the tunneling amplitudes tα. This width is introduced
into the energy denominators replacing η. When the cotunneling rates are expanded
in powers of Γ, it turns out that the leading term is of order 1/Γ ∝ 1/t2α. This cancels
two powers of the tunneling amplitude in Eqs. (3.43) and (3.44) so that the result is
in fact a sequential tunneling contribution. Since we have already included the full
sequential-tunneling rates, this new contribution should be dropped. We thus take
the next order, Γ0, for the cotunneling rates.

Both the sequential and cotunneling rates appear in the rate equations for the
probabilities to find the molecule in state n,

dPn

dt
=
∑

αm

(

Γmn
α Pm − Γnm

α Pn
)

+
∑

αα′m

(

Γmn
αα′Pm − Γnm

αα′Pn
)

, (3.45)
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where Γmn
α denotes the sequential tunneling rate and Γmn

αα′ ≡ Γmn,00
αα′ + Γmn,11

αα′ the
cotunneling rate. Note that Γmn,00

αα′ (Γmn,11
αα′ ) is non-zero only if both n and m are

empty (singly occupied) states. The current through, say, the left lead is given by

IL = −e
∑

nm

(nn − nm)Γmn
L Pm − e

∑

nm

(Γmn
LR − Γmn

RL)Pm, (3.46)

where nm is the occupancy of state m. The steady-state probabilities Pm of the
molecular states m are obtained by solving Eq. (3.45) with the time derivatives
set to zero. The average magnetization in the z direction per molecule is given by
M =

∑

nmnP
n, where mn denotes the quantum number of the z component of the

total spin s + S in state n.
We start by discussing our results obtained for the differential conductance dI/dV

at low bias voltages. If the system is in the Coulomb blockade regime, sequential
tunneling is thermally suppressed and transport is dominated by cotunneling. The
magnitude of the current is then small. The conductance at zero bias voltage is finite,
see Fig. 3.14(a), due to elastic cotunneling. The cotunneling rates are proportional
to the bias voltage, if the molecular level is far away from the chemical potentials,
leading to ohmic behavior. The rounded steps in dI/dV correspond to the onset
of additional inelastic cotunneling processes. Selection rules for the spin quantum
number require ∆m = 0,±1. For the parameters chosen in Fig. 3.14, the ground
state has electron number n = 1 and maximum spin, m = 5/2. Inelastic cotunneling
processes corresponding to the two steps involve the two different final states with
n = 1, m = 3/2 and virtual occupation of the state with n = 0, m = 2, as illustrated
in Fig. 3.15. Further steps in dI/dV are not observed, since the corresponding
inelastic cotunneling transitions have smaller energy differences between initial and
final states and are therefore activated immediately when the probability of the initial
state becomes significant.

Cotunneling steps and sequential tunneling peaks show fundamentally different
dependences on the onsite energy ǫd. For single-molecule junctions it is possible
to change ǫd by applying a gate voltage, e.g. in molecular-junction experiments.
However, for monolayers one does not have this opportunity. We come back to this
point below. While the bias voltages at which sequential tunneling peaks occur shift
linearly with ǫd, the positions of cotunneling steps remain unaffected. This follows
directly from evaluating Eqs. (3.43)–(3.44) in the limit of large ǫd [83]. For magnetic
molecules, the position of the cotunneling steps shifts linearly as a function of the
external magnetic field due to the Zeeman effect, as observed for Mn12 [23] and
N@C60 [35].

While dI/dV represents the change of the very small current with bias voltage
in the cotunneling regime, changes of the occupation probabilities Pn of molecular
states with bias voltage are of order unity, as shown in Fig. 3.14(b). The probability
of the lowest-energy state with m = 5/2 decreases, whereas the probabilities of other
states increase. Cotunneling enables transitions between molecular states with the
same electron number but with magnetic quantum numbers differing by ∆m = ±1.
These transitions are suppressed only as the inverse square of the energy difference
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3 Transport through magnetic molecules—spin reading and writing

Figure 3.15: Level scheme showing the energies of molecular states as a function of mag-
netic quantum number m for electron numbers n = 0, 1 in the presence of a magnetic
field. The dashed double arrows signify inelastic cotunneling between the ground state with
m = 5/2 and the two states with m = 3/2, involving virtual occupation of the state with
n = 0 and m = 2. While sequential tunneling requires a change of the electron number by
∆n = ±1 and of the magnetic quantum number by ∆m = ±1/2, cotunneling processes obey
the selection rules ∆n = 0, ∆m = 0,±1.

between the initial state and the virtual state involved. In sequential tunneling, such
transitions are also possible, requiring two consecutive steps, but are exponentially
suppressed in the Coulomb blockade regime. In the sequential tunneling approxima-
tion the molecule would thus remain in the lowest energy state with essentially unit
probability. This approximation is evidently invalid for determining the probabilities
in this regime.

Interestingly, the strong effect of cotunneling on the probabilities also leads to
observable effects of sequential tunneling on transport in the cotunneling regime
[124; 125]. While sequential tunneling starting from the lowest-energy state is expo-
nentially suppressed, sequential tunneling from higher-energy states can be possible.
With increasing bias voltage, these higher-energy states become increasingly popu-
lated due to cotunneling, as Fig. 3.14(b) shows. This leads to sidebands in dI/dV
in the Coulomb blockade regime that show the linear dependence on the gate volt-
age characteristic of sequential tunneling [125]. Strong electron-phonon coupling can
enhance this effect, since it crucially affects the ratio of the rates for sequential and
cotunneling processes [124; 125]. In our case, these sidebands are very weak, since
the current is controlled by the small cotunneling rates. However, we will see that
the effect on the probabilities Pn of molecular states is significant.

3.5.2 Nonequilibrium magnetization in magnetic molecular monolayers

Figure 3.16(a) shows the average magnetization per molecule as a function of bias
voltage over a broad range including both the cotunneling and sequential tunneling
regimes. The magnetization is nonzero due to an external magnetic field. At zero
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Figure 3.16: (a) Average magnetization M of a single magnetic molecule in units of ~,
(b) linear and (c) logarithmic plot of the current I, and (d) probabilities Pn of various
molecular many-particle states as functions of bias voltage V . The parameters are chosen
as in Fig. 3.14.

bias, the molecule is in its ground state with m = 5/2. The onset of inelastic
cotunneling to the two states with m = 3/2 leads to a decrease in the magnetization
in each case.

The bias voltage dependence of the magnetization for voltages above the Coulomb
blockade threshold is accompanied by sizeable steps in the current, as seen in
Fig. 3.16(b). At each of these fine structure steps an additional inelastic sequential
tunneling transition becomes possible. The Coulomb blockade threshold corresponds
to the transition with initial state n = 1, m = 5/2 and final state n = 0, m = 2.
Therefore, the onset of sequential tunneling is accompanied by a decrease in the
magnetization. At large bias the magnetization drops to zero since all states are
occupied with equal probability.

Remarkably, pronounced step-like features are also present below the Coulomb
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3 Transport through magnetic molecules—spin reading and writing

Figure 3.17: Level scheme illustrating the interplay between sequential tunneling (solid
arrows) and cotunneling (dashed arrows) in magnetic molecules. Even below the Coulomb-
blockade threshold sequential tunneling processes starting from higher-energy states popu-
lated by cotunneling may cause the depopulation of these states and drastically affect the
average magnetization. At the step denoted by an arrow in Fig. 3.16(a), the excitation of
the transition with m = −1/2 → 0 (heavy solid arrow) gives rise to a redistribution of the
probabilities Pn. Note that exothermal transitions with ∆m = ±1/2 are always possible.

blockade threshold in Fig. 3.16(a), where the current is due to cotunneling and thus
very small, cf. Figs. 3.16(b)–(c). This can be understood from the bias voltage
dependence of the relevant probabilities Pn in Fig. 3.16(d). As an example, consider
the step marked by an arrow in Fig. 3.16(a). The physics leading to the drastic change
of the probabilities is illustrated in Fig. 3.17: The sequential tunneling processes
with m = −3/2 → −2, m = −1/2 → −1, m = 3/2 → 2, and m = 1/2 →
1, starting at the higher-energy level of each pair (thin arrows in Fig. 3.17), are
already energetically possible at lower bias voltages causing the partial depopulation
of the initial states. However, the probabilities of these states are non-zero mainly
due to cotunneling processes (dashed arrows in Fig. 3.17). Below the step marked
in Fig. 3.16(a), the half-integer spin states with positive and negative m are not
connected by sequential tunneling processes. As soon as the transition with m =
−1/2 → 0 (bold arrow in Fig. 3.17) becomes possible, the states with positive and
negative m are connected and fast, sequential tunneling processes depopulate all
states except for the ground state, which has m = 5/2. Consequently, the average
magnetization again approaches its maximum value. Similarly, one can attribute
each step to a particular molecular transition. As Fig. 3.16(c) shows, the onsets of
some of these sequential tunneling processes can also be seen in the current, which
is, however, tiny in the cotunneling regime.

The above discussion shows that quantities that depend strongly on the proba-
bilities of molecular states, such as the magnetization, are much more sensitive to
changes of the bias voltage in the Coulomb blockade regime than the conductance.
This suggests to use the magnetization-voltage characteristics, i.e., the magnetization
as a function of bias voltage, instead of the current-voltage characteristics to extract
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3.5 Cotunneling and non-equilibrium magnetization in magnetic molecular monolayers

the excitation spectrum of magnetic molecules. In order to distinguish magnetic
transitions from, e.g. vibrational excitations, one should analyze their dependence
on the magnetic field. Furthermore, for a monolayer there is no gate voltage that
can serve as an independent parameter. The magnetic field can assume this role.

Figure 3.18(a) shows a density plot of the magnetization as a function of bias
voltage and magnetic field. The magnetization is an odd function of the field. The
transition energies shift linearly with the field, ∆E = ∆mB, if the initial and final
states have magnetic quantum numbers differing by ∆m.

Complementary to conventional dI/dV plots, the density plots in Fig. 3.18 can
serve as fingerprints of the internal degrees of freedom of the molecules. The Zee-
man splitting of the molecular levels due to the external magnetic field gives rise
to triangular plateaus with a tip at B = 0. These plateaus are bounded by two
sequential tunneling transitions. In each case, these two transitions differ in the sign
of the magnetic quantum number m of both initial and final molecular states. For
the chosen parameters, the plateaus can be attributed to the following transitions
from empty to singly occupied states, starting at low bias voltage (cf. Fig. 3.17):
|m| = 3/2 → 2, |m| = 1/2 → 1, |m| = 1/2 → 0, |m| = 3/2 → 2, |m| = 3/2 → 1,
|m| = 1/2 → 1, |m| = 5/2 → 2 (this is the first transition starting from the ground
state and thus represents the Coulomb blockade threshold), |m| = 1/2 → 0, and
|m| = 3/2 → 1. Several transitions appear twice because there are two states with
magnetic quantum numbers ±3/2 and ±1/2, respectively. For a local spin S = 2
there exist nine transitions obeying the selection rule ∆m = ±1/2, as can be seen
from Fig. 3.17, in accordance with the nine plateaus shown in Fig. 3.18(a). Note
again that the signal is similar on both sides of the Coulomb blockade threshold.

The origin of the plateaus is schematically illustrated in Fig. 3.18(e) for the tran-
sition |m| = 1/2 → 0. In the absence of an external Zeeman field the excitation
energies for both transitions is equal. However, the excitation energies differ by
the Zeeman energy as soon as a magnetic field is switched on. This leads to the
occurrence of a finite bias voltage window, where the excitation of one of the two
transitions is energetically possible whereas the other one is not. Inside this window,
only the spin-down state is depopulated by sequential tunneling, leading to a large
positive magnetization.

3.5.3 Interplay of cotunneling and spin relaxation

So far, we have restricted ourselves to the situation where the relaxation of the
local molecular spin is dominated by electron tunneling, i.e. the spin is conserved
between tunneling events. However, there are other processes that also contribute
to spin relaxation: (i) Magnetic molecules containing transition-metal ions, such as
Mn12 clusters, show strong spin-orbit interaction, which leads to spin relaxation. (ii)
Hyperfine interactions with nuclear magnetic moments in the molecule can also lead
to spin relaxation. However, in molecules one has the chance to essentially remove
this mechanism by choosing isotopes with vanishing nuclear spins. (iii) Dipolar
interactions with spins of other molecules in the monolayer or with impurity spins
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3 Transport through magnetic molecules—spin reading and writing

Figure 3.18: Average magnetization M of a single magnetic molecule in units of ~ as a
function of bias voltage V and magnetic field B for different spin relaxation times: (a)
trel = ∞, (b) trel = 106τ0, (c) trel = 102τ0, and (d) trel = 0. Here τ0 denotes the typical
electronic tunneling time. All other parameters are chosen as above. The dashed lines
denote the Coulomb-blockade threshold. (e) Level schemes illustrating the origin of the
magnetization plateaus.
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3.5 Cotunneling and non-equilibrium magnetization in magnetic molecular monolayers

Figure 3.19: (a),(b) Magnetization M and (c),(d) differential conductance of a single mag-
netic molecule as a function of V and ǫd for (a),(c) slow spin relaxation, trel = 1010τ0, and
(b),(d) fast spin relaxation, trel = τ0. We assume S = 2, J = K2 = 5meV, T = 0.1meV,
and B = 2meV.

in the electrodes contribute to spin relaxation. (iv) Small non-uniaxial magnetic
anisotropies lead to tunneling between the eigenstates of Hmol. This mechanism
has recently been discussed in the context of transport through magnetic molecules
[22; 103; 126].

All these processes change the magnetic quantum number while keeping the elec-
tron number constant (∆n = 0). The dominant transitions are the ones with
∆m = ±1. These are the same selection rules as for cotunneling, indicating that one
should include additional spin relaxation for consistency when studying cotunneling.

The effect of spin relaxation on electronic transport is included in the formalism by
a phenomenological rate ∝ 1/trel which forces the system to approach the equilibrium
distribution on the time scale trel. We include additional transition rates between
states i and j with selection rules ∆n = 0 for the occupancy and ∆m = ±1 for the
spin,

Γrel
ij =

1

trel
exp

(

ǫi − ǫj
T

)

, for ǫi < ǫj , (3.47)

Γrel
ij =

1

trel
, otherwise. (3.48)
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Figure 3.20: Polarization of the current, p = (IL
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↓ )/(IL
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↓ ), as a function of spin
relaxation time trel in units of the typical tunneling time τ0 for different values of the
magnetic field.

The additional rates obey detailed balance, ensuring relaxation towards equilibrium
in the absence of tunneling.

Effects of spin relaxation on the bias-voltage dependence of the magnetization
are illustrated in Figs. 3.18(a)–(d). For small trel (fast relaxation), the number of
transitions appearing as steps in the magnetization-voltage characteristics is reduced,
since spin relaxation depopulates higher-energy states that serve as initial states for
these transitions.

The magnetization plateaus start to occur when the relaxation time trel becomes
significantly larger than the typical sequential-tunneling time τ0. (The sequential -
tunneling time enters because the relevant process is the depopulation of states by
sequential tunneling.) Then the time spent by the electron on the molecule is smaller
than the spin relaxation time so that magnetic excitations survive between tunneling
events.

So far, we have considered a monolayer of magnetic molecules, mostly because
the measurement of the magnetization is easier for larger numbers of molecules.
As mentioned previously, even the detection of a single molecular spin might be
feasible [76; 120]. Using a single molecule allows one to introduce a gate electrode
in order to tune the molecular energy levels by shifting ǫd, see Eq. (3.2). In the
following, we briefly discuss results obtained for varying gate voltage. To increase
the magnetization signal while retaining the gate electrode, one might also consider
a one-dimensional array of magnetic molecules or even a large number of such arrays
aligned in parallel.

The plot of the magnetization and the differential conductance as functions of bias
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voltage and onsite energy ǫd presented in Figs. 3.19(a),(c) shows two striking features.
First, the magnetization shows steps indicating the onset of inelastic cotunneling
which are almost independent of ǫd. The corresponding steps in dI/dV are very
small in absolute units, see Fig. 3.14(a).

Second, the magnetization shows strong additional magnetic sidebands in the
Coulomb blockade regime. These sidebands are the consequence of sequential tun-
neling transitions depopulating molecular states that are populated by cotunneling,
as discussed above. In the differential conductance the corresponding features are
completely hidden by the low-bias tail of the large peak at the Coulomb blockade
threshold (not shown). The observation of these sidebands in the Coulomb blockade
regime requires spin relaxation times long compared to the typical tunneling time.
For fast spin relaxation, fine structure peaks are only present in the sequential tun-
neling regime, see Fig. 3.19(b), since sequential tunneling is still faster than spin
relaxation, even though cotunneling is slower. As shown in Fig. 3.19(d), the absence
of such sidebands is accompanied by suppressed fine structure peaks in the sequential
tunneling regime.

Finally, we note that sufficiently fast spin relaxation leads to spin-polarized station-
ary currents in the presence of a magnetic field. If the spin of the magnetic molecule
relaxes fast compared to the typical tunneling times, which is essentially determined
by the current, the system is essentially always in its ground state. Due to the Zee-
man effect the ground state has maximum magnetic quantum number; m = 5/2 for
our example. Thus only spin-down electrons can tunnel onto the molecule, resulting
in a spin-polarized current. Note that this argument is not restricted to low-order
perturbation theory in Ht. As shown in Fig. 3.20, the degree of spin polarization is
basically determined by the ratio of the spin relaxation rate and the typical electronic
tunneling rate.

3.6 Conclusions

In conclusion, we have studied the inelastic charge and spin transport through an
anisotropic magnetic molecule weakly coupled to metallic leads. The three pro-
cesses crucial for molecular memory applications—writing, storing, and reading
information—can be implemented in such a device. The information storage is af-
fected by spin relaxation, which can be very slow for large easy-axis anisotropy. Also
due to the anisotropy, application of a bias voltage to a molecule in a spin-polarized
state can lead to the transfer of a large amount of spin or magnetic moment from
one lead to the other. This transmitted spin increases exponentially for low tem-
peratures. We have proposed that this giant spin amplification could be used to read
out spin information and have discussed a scheme to write the information, which
does not require a magnetic field but uses one ferromagnetic lead.

In this context, we have investigated transport through a single anisotropic mag-
netic molecule coupled to one ferromagnetic and one nonmagnetic lead. Two types
of negative differential conductance occur. One appears at low temperatures in an
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3 Transport through magnetic molecules—spin reading and writing

external magnetic field. Here the Coulomb blockade and spin blockade regimes are
separated by a finite window of bias voltages for which the current is strongly en-
hanced. This is due to the interplay of bias voltage, magnetic field, and magnetic
anisotropy, which allows only transitions between two specific molecular many-body
states and prevents the spin flips necessary for spin blockade. The other negative
differential conductance effect appears at high temperatures in the vicinity of the
Coulomb blockade threshold. Interestingly, this predicted effect is a manifestation of
quantum effects (the Pauli principle and spin selection rules) at room temperature.
We have further shown that spin blockade is accompanied by super-Poissonian shot
noise, as found earlier for nonmagnetic quantum dots. Furthermore, the total charge
transmitted through the molecule can depend strongly on its initial spin state. The
difference in transmitted charge can become exponentially large at low temperatures.
This spin-charge conversion presents an elegant method to read out the spin.

Finally, we have considered the interplay of electronic transport through magnetic
molecules and their nonequilibrium magnetic moment beyond the sequential tun-
neling approximation. We have focused mostly on monolayers, which should give a
better chance to measure the magnetization than single molecules would.

While the excitation of inelastic tunneling processes in the Coulomb blockade
regime only leads to a very small absolute change in the current, the changes in the
probabilities of finding the molecule in various many-particle states are significant.
This manifests itself in a strong bias voltage dependence of the magnetization. The
magnetization of a molecular monolayer can be switched by an amount of the order of
the saturation magnetization by a small change of bias voltage, and without causing
the flow of a large current.

We find steps in the differential conductance due to inelastic cotunneling, which
have been observed in recent experiments on Mn12 [23]. These steps are accom-
panied by much larger changes in the magnetization. Another interesting effect is
the appearance of additional sidebands in the Coulomb-blockade regime that can be
ascribed to de-excitations by sequential tunneling of states populated by cotunnel-
ing. These sidebands are very prominent in the magnetization. We suggest that
the magnetization, or any measurable quantity that strongly differs between molec-
ular states, can be employed to study molecular transitions that are hidden in the
Coulomb blockade regime.

For spintronics applications, the ability to control the persistence of the stored
information is crucial. In this context, we have also discussed effects of spin re-
laxation due to the coupling of the molecule to its environment, by introducing a
phenomenological spin relaxation rate in the formalism. Our results have shown that
for sufficiently fast spin relaxation the peaks in the differential conductance and the
steps in the magnetization are washed out, as expected. At the same time, the degree
of polarization of the steady-state current contains information about the ratio of the
spin relaxation rate and the typical electronic tunneling rate. Fast spin relaxation,
while in general undesirable, can lead to a highly polarized current in the presence
of a magnetic field.
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4 Asymmetric Coulomb blockade and

Kondo temperature of

single-molecule transistors

In the following we pay attention to a very prominent spin-related transport phe-
nomenon known as the Kondo effect. The build-up of Kondo correlations requires a
system with a spin-degenerate ground state such as a singly-charged molecule with
total spin 1/2. In this context, we are particularly interested in the interplay of mag-
netic and vibrational degrees of freedom. Recent experiments for single-molecule
transistors have shown that the gate voltage dependence of the Kondo temperature
is much weaker as compared to conventional nanostructures such as quantum dots.
This phenomenon is accompanied by the occurrence of strongly asymmetric Coulomb
blockade peaks in the differential conductance. These experimental observations are
explained within a generic model that considers the coupling between the electronic
and vibrational degrees of freedom of the molecule, taking into account anharmonic
vibrational potentials.

4.1 Motivation

The occurrence of the Kondo effect in transport through artificial nanostructures
such as quantum dots was predicted long ago [5; 6]. Its experimental observation
[127] has generated considerable interest in recent years leading to a number of fasci-
nating experimental and theoretical works [7; 32; 128–131]. An important question
addressed by these works is the fate of the Kondo effect out of equilibrium due to
the presence of a bias voltage [132–134].

In quantum dots a quantitative description of the build-up of Kondo correlations
is possible in terms of the single-impurity Anderson model,

H0 =
∑

αkσ

ǫka
†
αkσaαkσ + ǫd(n↑ + n↓) +Un↑n↓ +

∑

αkσ

[

tαka
†
αkσdσ + t∗αkd

†
σaαkσ

]

, (4.1)

where d†σ (a†αkσ) creates an electron with energy ǫd (with energy ǫk and momentum k
in lead α) and spin σ on the dot (in the reservoir), U is the local Coulomb repulsion
of the electrons and nσ = d†σdσ. For single occupation of the molecular level, the
exchange between the localized spin of the molecule and the spin of the conduction
electrons is obtained from a Schrieffer-Wolff transformation and yields

J = 2t2
(

1

ǫd
− 1

ǫd + U

)

, (4.2)
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Figure 4.1: Experimental data for the Kondo temperature TK as a function of gate
voltage Vg for several devices, taken from Ref. [20]. The Kondo temperature is nor-
malized with respect to the Coulomb blockade charge degeneracy point. Values of Γ
inferred for these devices are, top down, 22.6, 11.5, 18, 3.3, 12.6, 14.2, and 26.8meV.
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Figure 4.2: Experimental data for the differential conductance dI/dV as a function of
bias voltage V and gate voltage Vg obtained from a single-V2 transistors, taken from
Ref. [19].
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4.2 Model and Methods

for ǫk ≪ ǫd, U and tαk ≃ t. In single-electron transistors the onsite energy ǫd can be
effectively shifted by applying an additional gate voltage, Vg. Employing poor man’s
scaling one can derive an expression which describes the experimentally observed
gate voltage dependence of the Kondo temperature TK ∼ e−1/ν0J in quantum dots
[135],

TK =

√
ΓU

2
eπǫd(ǫd+U)/ΓU , (4.3)

where Γ is the coupling to the leads.
Surprisingly, recent experiments by Yu et al. have revealed that Eq. (4.3) does not

work in certain single-molecule junctions, composed of transition metal complexes
[di-(di-pyridyl-pyrrolato)cobalt] [20]. Instead the gate dependence of the Kondo tem-
perature is found to be much weaker, cf. Fig. 4.1. Interestingly, this observation is
coupled to strongly asymmetric Coulomb blockade peaks, cf. Fig. 4.2. Measurements
of the differential conductance as a function of bias and gate voltage show Coulomb
diamonds with drastically different peak intensities at the two opposite sides of the
crossing point [19; 20; 77; 78]. The persistence of these unusual features in differ-
ent single-molecule devices suggests that their explanation can be ascribed to the
presence of specific molecular degrees of freedom such as vibrations.

In two recent works, Balseiro et al.[136; 137] suggested that strong electron-vibron
interactions could explain the weak dependence TK(Vg). The principal idea is that
for strong electron-vibron coupling the dominant contribution to the kinetic exchange
stems from virtual charge fluctuations involving higher-excited vibrational states. In
this case, the energy denominators in Eq. (4.2) are modified to include the vibrational
excitation energy of the intermediate states for which the Franck-Condon overlap
with the vibrational ground state is maximal. As a result the dependence of J , and
hence TK , on the gate voltage is suppressed as compared to the situation of weak
or no electron-vibron coupling. These authors also show numerical results, based
on the numerical renormalization group technique, which are consistent with the
asymmetric Coulomb blockade.

The purpose of this chapter is to point out that strong electron-vibron coupling
may also naturally account for the observation of a pronounced asymmetry of the
Coulomb blockade diamonds in an alternative manner. Indeed, strong electron-
vibron coupling implies that tunneling of electrons onto or off the molecule is ac-
companied by significant molecular deformations. This suggests that one should go
beyond the common assumption of harmonic vibrations by including anharmonicities
of the molecular potential surfaces. Our central result is that these anharmonicities
can lead to strongly asymmetric Coulomb blockade diamonds.

4.2 Model and Methods

Our results are based on a model which considers a single molecule weakly coupled
to two metallic leads. Relaxation in the leads is assumed to be sufficiently fast so
that their electron distributions can be described by Fermi functions. We assume
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4 Asymmetric Coulomb blockade and Kondo temperature of single-molecule transistors

transport to be dominated by a single molecular level with onsite energy ǫd and local
Coulomb repulsion U . In addition to H0, the full Hamiltonian contains a vibrational
contribution,

H = H0 +
P 2

2µ
+ Vn(X), (4.4)

describing the kinetic and potential energy for the collective vibrational mode X.
The variables P and µ denote the momentum and the reduced mass of the nuclear
motion. Due to the electron-phonon coupling, the potential energy Vn(X) depends
on the molecular charge state n.

This dependence is included through a global shift of the potential surface,
Vn(X) =

∑

n v(X−
√

2nλl)|n〉〈n|, where |n〉 denotes the electronic state with charge
n, λ the dimensionless electron-phonon coupling strength and l = (~/µω0)

1/2 the
oscillator length. The anharmonic shape v(X) of the potential surface is described
by a Morse potential [138],

v(X) = D
[

e−2βX − 2e−βX
]

. (4.5)

The curvature of v(X) is given by ω0 = β2
√

2D/µ. The energies of bound states of
the Morse oscillator are given by

Eq = ~ω0(q + 1/2) − χ~ω0(q + 1/2)2, (4.6)

cf. Ref. [138]. The parameter χ = ~β/2
√

2Dµ determines the asymmetry of the
Morse potential in comparison with the harmonic potential and the number of bound
states which is given by j = ⌊(1/χ− 1)/2⌋.

The occupation probabilities Pn
q of the molecular eigenstates |n, q〉 with electronic

occupancy n and phonon number q are obtained by solving rate equations,

dPn
q

dt
=
∑

n′q′

(Pn′

q′ W
n′→n
q′→q − Pn

q W
n→n′

q→q′ ) − 1

τ
(Pn

q − P eq
∑

q′

Pn
q′). (4.7)

Here Wn′→n
q→q′ is the rate for a transition from state |n, q〉 to |n′, q′〉. The last term

describes the fact that phonons relax towards the equilibrium distribution P eq
q =

e−~ω0/kT [1−e−~ω0/kT ] on the phenomenological time scale τ . Here we always assume
fast vibrational relaxation, i.e. τ ≈ 0. Effects of nonequilibrium for anharmonic
molecular vibrations have been considered in Ref. [139].

Second-order perturbation theory in the tunneling Hamiltonian yields a Golden-
Rule expression for the transition rates, for the transition rates,

Wn→n′

q→q′,α =2πt2ν
∣

∣

∣Mn→n′

q→q′

∣

∣

∣

2 {

f(−∆c
nn′ + (q′ − q)~ω0 − µα)

+ [1 − f(∆c
nn′ + (q − q′)~ω0 − µα)]

}

, (4.8)

where f denotes the Dirac-Fermi function, ν the local density of states in the leads,
µα the chemical potential of lead α, ∆c

nn′ ≡ ǫd(n
′−n)+Un′(n′−1)/2−Un(n−1)/2,
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Figure 4.3: Franck-Condon matrix elements, M0→1

q→q′ , of the Morse oscillator for (a) λ = 0.1,
(b) λ = 1.0, (c) λ = 2.0, and (d) λ = 4.0.

and Mn→n′

q→q′ =
∫∞
−∞ dxφ∗n,q(x)φn′,q′(x) the Franck-Condon matrix element of two

eigenfunctions of the Morse oscillator [138],

φn,q(ξ) =

√

βq!2(j − q)

Γ(2j − q + 1)
e−ξ/2ξj−qL2(j−q)

q (ξ +
√

2nλl). (4.9)

Here ξ = (2j + 1) exp(−βX) is the Morse coordinate, L the generalized Laguerre
polynomial, and Γ denotes the Gamma function. The total tunneling rate is
Wn→n′

q→q′ =
∑

αW
n→n′

q→q′,α. In the sequential tunneling regime, the steady-state cur-
rent is given by Iα = e

∑

nqq′ P
n
q [Wn→n−1

q→q′,α − Wn→n+1
q→q′,α ], where the bias voltage is

V = (µL − µR)/e.

4.3 Results and Discussion

We will analyze the consequences of the model for both the Kondo temperature
and the Coulomb blockade. In both cases, important ingredients are the Franck-
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Figure 4.4: Kondo temperature as a function of gate voltage for (a) anharmonic and (b)
harmonic vibrations. Here we assume U = 6 ~ω0, Γ ≡ 2π|tα|2να = π~ω0.

Condon matrix elements of the Morse potential. Corresponding numerical results
are plotted in Fig. 4.3, which reveal two striking features: (i) The diagonal matrix
elements decrease exponentially with increasing λ, whereas off-diagonal elements
increase simultaneously, giving rise to the Franck-Condon blockade [29]. (ii) The
Franck-Condon matrix is no longer symmetric under parity transformations. The
direction of the relative shift of the potential surfaces of neutral and charged states,
as determined by the sign of λ, is relevant for the overlap of two vibrational wave
functions, and hence M q→q′

n→n′ 6= M q′→q
n→n′ [138]. For a given sign of λ, the Franck-

Condon elements M q→q′

n→n′ with q′ < q are strongly suppressed in comparison with
those with q′ > q.

We first address the gate voltage dependence of the Kondo temperature within our
model. Performing a Schrieffer-Wolff transformation in the presence of anharmonic
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potential surfaces, we obtain

J = 2t2
∞
∑

m=0

[

|M0→1
0→m|2

ǫd − ~ω0[m− χ(m+ 1/2)2 + χ/4]

− |M2→1
0→m|2

ǫd + U + ~ω0[m− χ(m+ 1/2)2 + χ/4]

]

(4.10)

for the exchange coupling. Implications for the Kondo temperature as a function of
gate voltage (setting Vg = ǫd for simplicity) are shown in Fig. 4.4(a) for different
values of λ. Similar to the case of harmonic vibrations [136], which is presented
in Fig. 4.4(b) for comparison, the gate voltage dependence becomes weaker with
increasing electron-vibron interaction λ. The origin of this suppression is that due
to the Franck-Condon matrix elements Mn→n′

0→m , the dominant contribution to the
exchange coupling in Eq. (4.10) for large λ stems from virtual charge fluctuations
involving highly excited vibrational states with m ≈ λ2. Indeed, these states have
maximal overlap Mn→n′

0→m with the vibronic ground state. As a result, the energy de-
nominators in Eq. (4.10) are dominated by the vibrational energy of the intermediate
state, suppressing the dependence of the exchange coupling and consequently TK on
the gate voltage Vg.

The anharmonicity of the molecular potential surfaces results in an asymmetric
dependence TK(Vg), which is most pronounced in the regime of strong electron-
vibron coupling. For the symmetric case, the function lnTK(Vg) is approximately a
parabola, which can essentially be described by only taking into account the term
with q = λ2 in the expression for the exchange coupling in Eq. (4.10), i.e. lnTK ∝
(ǫd − ~ω0λ

2)(ǫd + U + ~ω0λ
2)/(U + 2λ2

~ω0). For strong electron-vibron coupling,
this parabola is flattened out by increasing λ. In contrast, for the asymmetric case,
the gate voltage dependence is approximately given by

lnTK ∝ (ǫd − ~ω0λ
2)(ǫd + U + ~ω0λ

2)

U + αλ2~ω0 + γǫd
, (4.11)

in the regime of weak electron-vibron coupling, where α ≡ (M0→λ2

0→1 +M0→λ2

2→1 )/M0→λ2

0→1

and γ ≡ (M0→λ2

0→1 − M0→λ2

2→1 )/M0→λ2

0→1 , For stronger electron-vibron coupling, only
one of the two energy denominators of the term with q ≈ λ2 in Eq. (4.10) is large,
whereas the other one is negligible. Therefore, the parabolic gate voltage dependence
lnTK(Vg) crosses over into a linear dependence, as can be seen from Fig. 4.4.

Next, we address the asymmetry in the Coulomb blockade peaks about the charge
degeneracy point (marking the transition from the non-Kondo to the Kondo val-
ley) which accompanies the quenching of the gate dependence of TK in experiment.
To this end, we have computed the Coulomb blockade behavior in the presence of
anharmonic vibronic potentials within the sequential tunneling approximation. (Of
course, this approximation will not capture the Kondo physics at small biases.) Cor-
responding two-dimensional plots of the differential conductance as a function of bias
voltage V and gate voltage Vg are shown in Fig. 4.5. We observe a fine structure in
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Figure 4.5: Differential conductance dI/dV as a function of V and Vg for λ = 2.0, and
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the vicinity of the Coulomb blockade peaks [cf. Fig. 4.5a] which results from excita-
tions of bound states of the Morse oscillator, once the bias voltage exceeds the limits
of the the Coulomb blockade.

Interestingly, the number of visible peaks and the peak heights changes drastically
about the charge degeneracy point, where two molecular charge states become de-
generate. While there occur only very few, but strongly pronounced peaks on one
side, there are several consecutive weaker peaks on the other side.

The underlying physics behind this behavior is illustrated in Fig. 4.6. Due to
the coupling of the electrons and the vibrations, the oscillator potential surfaces
of the charged and uncharged state are shifted with respect to each other. As a
consequence, the overlap of two wave functions with occupancy differing by unity
depends strongly on their vibrational quantum numbers.

If the neutral state is energetically below the singly charged one [as shown in
Fig. 4.6(a)], the spatial overlap of the state with n = 0, q = 0 and several states
with charge n = 1 and higher vibronic states are of the same order of magnitude.
The wave functions assume large values in the vicinity of the classical turning points.
Since the position of the left turning point is similar for a large number of vibronic
states, the corresponding inelastic transition rates involving the excitation of vibrons
are comparatively large likewise.

On the other hand, if the neutral state is energetically above the singly charged
state [cf. 4.6(b)], the situation looks qualitatively different. Only the spatial overlaps
of the vibronic ground state with n = 0, q = 0 and very few excited vibronic states
with n = 1 are significant. Since the position of the right turning point changes
drastically as a function of the vibrational quantum number, there are only very few
Franck-Condon matrix elements which are of the same order of magnitude, so that
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Figure 4.6: Level schemes showing the relevant vibrational excitations for a ground state
with occupancy (a) n = 0 and (b) n = 1.
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Figure 4.7: Current-voltage characteristics for (a) positive and (b) negative gate voltage
in units of e/τ0, where 1/τ0 = (2π/~)|tα|2να. Here, we assume λ = 2.0, χ ≃ 0.03, j = 18,
strong Coulomb interaction (U → ∞) and temperatures T = 0.05 ~ω0 (solid curves) and
T = 0.3 ~ω0 (dashed curves), respectively.
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4 Asymmetric Coulomb blockade and Kondo temperature of single-molecule transistors

the number of peaks in dI/dV is small, whereas the corresponding peak heights are
large.

We note in passing that the saturation value of the current does not depend on
the gate voltage, so that the sum of all differential-conductance peak heights is equal
for both sides of the degeneracy point, cf. Fig. 4.7.

Our crucial observation with regard to the experimentally observed asymmetry
of the Coulomb blockade peaks involves the effect of thermal broadening at finite
temperature. As shown in Fig. 4.5(b), thermal broadening washes out the fine struc-
ture with the characteristic temperature scale given by the vibrational frequency ~ω0

(with a rather small numerical prefactor). Due to the asymmetry in the number and
strength of vibrational sidebands on both sides of the charge degeneracy point, this
induces a pronounced asymmetry of the Coulomb blockade which is quite reminis-
cent of the experimental data. In fact, due to the thermal broadening, the closely
spaced peaks on one side of the charge degeneracy point effectively merge into one
peak, while the more widely spaced peaks on the other side are merely suppressed.
We want to emphasize that this feature is characteristic of the regime of strong (and
intermediate) electron-vibron interaction, whereas it disappears entirely in the weak
coupling limit.

4.4 Summary and Conclusions

In summary, we have analyzed the effects of anharmonic potential surfaces on
Coulomb blockade and Kondo physics in single-molecule transistors. Our study
was motivated by recent measurements for single-molecule devices which have re-
ported the simultaneous occurrence of two striking features: First, the observed gate
voltage dependence of the Kondo temperature is much weaker in comparison with
quantum dots. Second, the differential conductance reveals peaks with drastically
different intensities at the two opposite sides of the charge degeneracy point. We ar-
gue that strong electron-vibron coupling which favors anharmonic potential surfaces
can explain both observations within a single generic model.

Our explanation is alternative to previous suggestions, also relying on strong
electron-vibron coupling, but relating the asymmetry in the Coulomb blockade to
the influence of Kondo correlations. Possible experimental signtures which can dis-
tinguish between the two explanations include: (i) Anharmonic potential surfaces
should lead to a nonparabolic dependence of the Kondo temperature on gate voltage.
(ii) In our model, the suppressed Coulomb blockade peaks can, in principle, occur
on either side of the charge degeneracy point, dependent on the specific molecule
under consideration and independent of whether one is concerned with a Kondo or
non-Kondo valley. We hope that future experiments will investigate these issues.
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5 Current-induced conformational

switching in single-molecule

junctions

Current-induced conformational switching in single-molecule junctions constitutes
a fundamental process in molecular electronics. Motivated by recent experiments
on azobenzene derivatives, we study this process for molecules which exhibit two
(meta)stable conformations in the neutral state, but only a single stable conformation
in the ionic state. We derive and analyze appropriate Fokker-Planck equations,
obtained from a density-matrix formalism starting from a generic model, and present
comprehensive analytical and numerical results for the switching dynamics in general
and the quantum yield in particular.

5.1 Introduction

An essential requirement for electric circuits of nanoscale dimensions is a molecu-
lar device that can be switched between two distinct conductive states. Because
of intrinsic bistabilities many single-molecule junctions reveal switching behavior,
e.g. involving cis and trans isomers of a molecule [50–60].

In this context, various types of switching mechanisms that stimulate changes of
the chemical conformation have been discussed in the literature [51]. Consider a
molecule that is either in the cis or in the trans configuration modeled by a double-
well potential as shown in Fig. 5.1(a). The potential surface is characterized by
an energy barrier W between the two minima and an attempt frequency ω0, which
is determined by the curvature at the local minimum. This energy barrier can be
overcome by (i) thermal activation. The rate for this process is given by

Γthermal ≃
ω0

2π
exp

(

−W
T

)

. (5.1)

For thermal energies T larger than the vibrational energy ~ω0, thermal activation
dominates over (ii) quantum tunneling, cf. Fig. 5.1(b). Switching due to quantum
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5 Current-induced conformational switching in single-molecule junctions

tunneling is also exponentially suppressed,1

Γquantum ≃ ω0

2π
exp

(

− W

~ω0/2π

)

. (5.2)

Both thermal and quantum tunneling do not require the molecule to be out of equi-
librium and, in principle, occur even at zero bias voltage. In addition, conformational
switching can also be induced by the applied current, which drives the molecule out
of equilibrium. (iii) Such current-induced switching can be triggered by tunneling
events into and out of the molecule which are accompanied by the emission of a
single vibron, as illustrated in Fig. 5.1(c). Assuming that all relevant charge states
exhibit the same conformational bistability and ohmic response,

Γcur-ind(V ) ≃ λG

e
(|V | − ~ω0/e) Θ (|V | − ~ω0/e) , (5.3)

i.e. the rate for such processes is proportional to the phase space volume of electrons
energetically available in the reservoirs determined by the bias voltage V . Here G is
the conductance and λ the effective electron-vibron coupling strength. Equation (5.3)
can be derived treating the electron-vibron coupling perturbatively [57]. (iv) The
switching may also require several subsequent inelastic tunneling events to overcome
the energy barrier between the cis and trans state, cf. Fig. 5.1(d). If the critical
oscillator state where the transition becomes possible is given by n, the switching
rate acquires the form [57]

Γcur-ind,n(I) ∼ In. (5.4)

In order to observe such a power-law dependence on the current I the excitation of
vibrons has to be induced by the current, whereas vibrational de-excitation has to
be dominated by dissipative rather than current-induced processes. The discussed
switching mechanisms (i)–(iv) have been found to play an important role in oligo-
phenylenevinylene (OPV3) derivatives, which have recently been investigated by
Danilov et al. [51] in a molecular junction.

In the present chapter we consider molecules which exhibit conformational bistabil-
ity only in the neutral state, while the potential surface of the ionic state has a single
minimum. Due to an avoided level crossing this minimum is typically in between
the two minima of the double well, cf. Fig. 5.1(e), e.g. as approximately realized in
azobenzene [140]. Our main focus is on the regime of strongly asymmetric couplings
to the leads, corresponding to the experimental setup of a scanning tunneling mi-
croscope (STM) conductance measurement. Here the molecule is strongly coupled
to the substrate, while the coupling to the tip is much weaker. This asymmetry has
important consequences for the conductance and for the dynamics of the passage of

1In the expression for the switching rate due to quantum tunneling, the frequency in the expo-
nential is actually determined by the curvature of the potential surface at the local maximum.
However, since it is usually of the same order of magnitude as the attempt frequency ω0, we do
not distinguish between the two frequencies.
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Figure 5.1: Switching process induced by thermal activation (a), quantum tunneling (b),
vibrational-assisted tunneling involving the emission of a single phonon (c), and the emission
of several phonons (d). The switching process studied in the present work is sketched in (e).
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Figure 5.2: (a) Experimental data for the quantum yield of a molecular switch in scanning
tunneling microscope manipulation of single chlorophyll-a derivatives, taken from Ref. [141].
The two curves describe the switching dynamics involving the molecular conformations
shown in (b). The data sets used for the plots are recorded with constant bias voltage.

charge carriers. For thermal energies large compared to the level-broadening due to
the coupling to the leads, the stationary current is

I ∼ e
ΓtipΓsub

Γtip + Γsub
, (5.5)

where Γtip and Γsub are the tunneling-induced level widths due to the coupling to
the tip and to the substrate, respectively. Thus, the current passing through an
asymmetric junction is, to a good approximation, governed by the smaller rate only.
The molecule spends most of the time in the neutral state, i.e. whenever an elec-
tron tunnels from the tip onto the molecule, it continues into the substrate almost
instantaneously, while the average waiting time until the next tunneling event from
the tip is long.

The basic mechanism of current-induced switching now follows from the Franck-
Condon principle, which states that the vibrational state does not change during the
much faster electronic tunneling processes in and out of the molecule. The switching
process is initiated by a first transition from one of the two conformational states
into the charged state. After the molecule evolves on the potential surface of the
charged state, it eventually undergoes a second tunneling transition from the charged
state into a conformational state, cf. Fig. 5.1(e). Clearly, the switching probability
strongly depends on the ratio of the vibrational frequency in the charged state, ω,
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and Γ = Γtip + Γsub. For ω ≫ Γ the molecule oscillates many times between the
two tunneling events, and the probabilities for transitions from the charged state
into the two conformational states of the neutral molecule are of the same order.
In contrast, for ω ≪ Γ the ionic state survives for much less than a full vibration
period. Thus, the molecule returns to its original conformation with high probability,
and conformational switching occurs rarely. Such low-quantum-yield switching has
been observed in recent experiments [50; 141; 142], cf. Fig. 5.2. For instance, STM
measurements on azobenzene and chlorophyll-a derivatives show that only one out
of 1010 tunneling electrons induces a switching event.

It is this regime of low-quantum-yield switching in asymmetric molecular junc-
tions which is the principal focus of the this chapter. We focus on the regime of
sequential tunneling relevant to STM experiments on passivated surfaces [143]. We
present a fully analytical treatment of the quantum yield within a generic model
system. Specifically, we show that the temperature dependence reflects a sensitive
interplay of vibrational frequency, tunneling rates, and charge-induced vibrational
deformation. Our results are obtained from a Fokker-Planck equation which in-
corporates the molecule-tip and molecule-substrate tunneling as well as dissipation
of the vibrational degree of freedom. A crucial assumption in our approach is the
quasi-classical treatment of the vibrations. In this respect, our approach is related to
the formalism used for the description of transport through nanoelectromechanical
systems (NEMS) that have recently received much attention [144–146].

5.2 Model

We consider a vibrating single molecule which is coupled to two reservoirs, which
serve as source and drain electrodes. The vibrational potential surface of the neutral
molecule is assumed to have the form of a double well representing the cis and the
trans state, whereas the potential surface of the charged state is assumed to be
harmonic.

Vibrational relaxation in the neutral state is assumed to be sufficiently fast so that
tunneling events always start from one of the minima of the double well. This permits
one to approximate the double well potential by two separate harmonic oscillators.
The resulting three-level system with states |cis〉, |trans〉, |1〉 is described by the
molecular Hamiltonian

Hmol = Hcis|cis〉〈cis| +Htrans|trans〉〈trans| +H1|1〉〈1|, (5.6)

where

Hs = ǫs +
p2

2ms
+ Vs(x) (5.7)

denotes the vibrational Hamiltonian of subspace s = cis, trans, 1. The variables
x, p, and ms denote the normal coordinate, momentum, and reduced mass of the
vibrational modes, and Vs(x) denotes the corresponding potential within the har-
monic approximation, Vs(x) = msω

2
s(x − xs)

2/2, with oscillator frequency ωs and
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5 Current-induced conformational switching in single-molecule junctions

local minimum xs. The parameter ǫs denotes the energies of the relevant electronic
states.

The full system is modeled by the Hamiltonian

H = Hmol +Hleads +Ht, (5.8)

where
Hleads =

∑

αk

ǫka
†
αk
aαk (5.9)

describes the non-interacting electrons in the two leads (α =tip, sub), and

Ht =
∑

αk

tαa
†
αk

(

|cis〉〈1| + |trans〉〈1|
)

+ h.c. (5.10)

represents the tunneling between the molecule and the leads. We assume that tα is
non-zero for the |cis〉 ↔ |1〉 (|trans〉 ↔ |1〉) transitions when x < x1 (x > x1). Here
a†αk

creates an electron with momentum k and energy ǫk in lead α. We omit the
spin index of these operators, since we ignore spin-dependent transport phenomena
in the following.

5.3 Boltzmann equation

The dynamics of the system is described by a set of Boltzmann equations, which we
derive within a density-matrix formalism. The starting point is the von Neumann
equation,

dρ

dt
= − i

~
[H, ρ] , (5.11)

for the time evolution of the density matrix ρ of the system, which has the formal
iterative solution [73]

dρ(t)

dt
= − i

~
[Ht(t), ρ(0)] − 1

~2

∫ t

0
dt′
[

Ht(t),
[

Ht(t
′), ρ(t′)

]]

. (5.12)

Operators O with an explicit time argument are in the interaction picture, O(t) =
ei(Hmol+Hleads)t/~O e−i(Hmol+Hleads)t/~. The dynamics of the molecule is described by
the reduced density matrix which is obtained by tracing out the degrees of freedom
of the leads,

ρmol(t) = Trleads ρ(t). (5.13)

As discussed in Chapter 2, solving Eq. (5.12) for ρ relies on making the large-reservoir
approximation, which allows us to write the density matrix as a direct product, ρ(t) ≃
ρmol(t) ⊗ ρleads, of the density matrices ρmol(t) and ρleads of the molecule and the
leads, and the Markov approximation, which allows us to replace ρmol(t

′) ≃ ρmol(t)
in Eq. (5.12).
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5.3 Boltzmann equation

Furthermore, we assume ρmol(t) to be diagonal in the conformational degree of
freedom,

ρmol = |cis〉 ρcis 〈cis| + |trans〉 ρtrans 〈trans| + |1〉 ρ1 〈1| . (5.14)

Superpositions of different charge states can be neglected due to superselection rules
[147; 148], while superpositions of the cis and the trans state are assumed to decay
rapidly due to fast vibrational relaxation in the neutral state.

Tracing out the degrees of freedom of the leads, and opening the double commu-
tator in Eq. (5.12) gives

dρmol

dt
= − i

~
[Hmol, ρmol] −

∑

αk

|tα|2
~2

∑

s=cis,trans

∫ ∞

0
dτ

× (|s〉〈s| − |1〉〈1|)
{

eiǫkτ/~

(

fα(ǫk)e−iH1τ/~eiHsτ/~ρs

− [1 − fα(ǫk)] ρ1e
−iH1τ/~eiHsτ/~

)

+ h.c.
}

. (5.15)

Going to the Wigner representation of the density matrix,

Ws(x, p) =

∫

dy

2π~
e−ipy/~〈x+

y

2
|ρs|x− y

2
〉, (5.16)

allows for a semiclassical description of the vibrational modes, where, in the quasi-
classical limit, the Wigner function Ws(x, p) describes the probability of finding the
oscillator in state s = cis, trans, 1 at position x with momentum p.

The Wigner transform of the terms in Eq. (5.15) is evaluated for the slow-resonator
limit, ωs ≪ Γ, and the sequential tunneling limit, T ≫ ~Γ. Details on the calculation
are explained in the footnote.2 One finally arrives at the following set of Boltzmann

2We assume that the oscillators of the cis, trans, and charged states centered at xcis, xtrans, and
x1 = 0, respectively, all have the same reduced mass m and frequency ω, which allows all
calculations to be done explicitly. It is evident that the underlying arguments also extend to
the more general case.

Projecting Eq. (5.15) on, say, the cis state (the derivation for the two other states proceeds
analogously), we obtain

dρcis

dt
= −

i

~
[Hcis, ρcis] −

X

αk

|tα|
2

~2

Z

∞

0

dτ
n

e
iǫkτ/~

“

fα(ǫk)e−iH1τ/~
e

iHcisτ/~
ρcis

− [1 − fα(ǫk)] ρ1e
−iH1τ/~

e
iHcisτ/~

”

+ h.c.
o

. (5.17)

The Wigner transform of this equation reads

∂

∂t
Wcis(x, p) = {Hcis(x, p), Wcis(x, p)} − 2

X

αk

|tα|
2

~2
Re

Z

∞

0

dτe
i

~
[(ǫk+ǫcis−ǫ1)τ−px̃τ−(x−

xcis

2
)p̃τ ]

×



fα(ǫk)Wcis

„

x −
x̃τ

2
, p +

p̃τ

2

«

− [1 − fα(ǫk)] W1

„

x +
x̃τ

2
, p −

p̃τ

2

«ff

(5.18)

with x̃τ = xcis [cos (ωτ) − 1] and p̃τ = mωxcis sin (ωτ). The first term in the right-hand side in
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equations,

∂Ws

∂t
= {Hs,Ws} +R1→sW1 −Rs→1Ws, (5.20a)

∂W1

∂t
= {H1,W1} +

∑

s

(Rs→1Ws −R1→sW1) , (5.20b)

for s = cis, trans, with transition rates which are equivalent to Fermi’s Golden Rule,

Rs→1(x, p) =
∑

α

Γαfα

(

H1(x, p) −Hs(x, p)
)

, (5.21a)

R1→s(x, p) =
∑

α

Γα

[

1 − fα

(

H1(x, p) −Hs(x, p)
)]

. (5.21b)

Here Hs(x, p) = ǫs + p2/2ms + Vs(x) is the Wigner transform of the harmonic-
oscillator Hamiltonian and Γα = 2π|tα|2να/~, where να denotes the density of states
in lead α, which we take as a constant. The Poisson bracket appearing in Eq. (5.20)
is defined as

{Hs,Ws} =
∂Hs

∂x

∂Ws

∂p
− ∂Hs

∂p

∂Ws

∂x
. (5.22)

Note that all rates in Eq. (5.21) depend only on x and not on p if one assumes equal
reduced masses ms for all vibrational modes.

5.4 Fokker-Planck equation

The set of Boltzmann equations derived in the previous section does not have a unique
stationary solution in the absence of electronic tunneling. In this case Eq. (5.20) is
solved by any function Ws that depends on Hs only, since the Poisson brackets
then vanish exactly. However, a unique solution is obtained if we add the coupling
to a bath, which takes into account the damping of the vibrations such that the
system is driven back towards (local) equilibrium. The relaxation of the molecular

(5.18) denotes the Poisson bracket between the classical Hamiltonian and the Wigner function
of the cis state.

Computing the sum over momenta k in the wide-band limit, one realizes that the integrand in
(5.18) decays exponentially with the temperature. Since we are considering the slow-vibration
limit (ω ≪ Γ) and the sequential-tunneling regime (~Γ ≪ T ), we can therefore expand (5.18)
for ωτ ≪ 1 to obtain

∂

∂t
Wcis(x, p) ≃ {Hcis(x, p), Wcis(x, p)} − 2

X

αk

|tα|
2

~2
Re

Z

∞

0

dτe
i

~
[ǫk+ǫcis−ǫ1−mω2xcis(x−xcis/2)]τ

× {fα(ǫk)Wcis (x, p) − [1 − fα(ǫk)] W1 (x, p)} . (5.19)

The remaining integral over τ is easily evaluated and guarantees energy conservation for the
rates entering the Boltzmann equation (5.20).
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vibron due to the presence of a bosonic bath can be modeled by the Caldeira-Leggett
Hamiltonian [149; 150],

HCL = Hvib +Hbath +Hcoupling, (5.23)

where
Hvib = ~ωb†b (5.24)

describes the vibron,
Hbath =

∑

q

~ωqb
†
qbq (5.25)

a bath of harmonic oscillators, and

Hcoupling = ~g(b† + b)
∑

q

(b†q + bq) (5.26)

the linear coupling between them. Here b†q creates a phonon in the reservoir with
frequency ωq and g determines the coupling strength. Treating both the bosonic
and fermionic coupling to the leads perturbatively, we obtain a set of Fokker-Planck
equations [149; 150],

∂Ws

∂t
= {Hs,Ws} +R1→sW1 −Rs→1Ws

+ γs
∂

∂p
pWs +

γs

2
ms~ωs coth

(

~ωs

2T

)

∂2

∂p2
Ws, (5.27a)

∂W1

∂t
= {H1,W1} +

∑

s

(Rs→1Ws −R1→sW1)

+ γ1
∂

∂p
pW1 +

γ1

2
m1~ω1 coth

(

~ω1

2T

)

∂2

∂p2
W1, (5.27b)

to lowest non-vanishing order in ~g. The damping rate γs = 2πg2
∑

q δ(ωs − ωq)
determines the magnitude of the drift (terms proportional to the first derivative
with respect to the momentum) and diffusive motion (terms proportional to the
second derivative). Note that our calculation ignores any effects of dissipation on
the tunneling rates.

In the absence of electronic tunneling, the stationary solutions of Eq. (5.27) reduce
to Gaussian distribution functions,

Ws ∼ exp

[

− Hs(x, p)

~ωs coth (~ωs/2T ) /2

]

, (5.28)

where s = cis, trans, 1. If the vibrational energy is larger than the thermal energy,
~ωs ≫ T , one obtains the occupation probabilities of the ground state wave function
of the harmonic oscillator, whereas for the reverse case, ~ωs ≪ T , one obtains
Boltzmann distribution functions.
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5.5 Quantum yield

The Fokker-Planck equation derived in Sec. 5.4 allows us to investigate the current-
induced conformational switching dynamics of the molecule. Specifically, we are
interested in the quantum yield which is the probability for a single electron tunnel-
ing through the system to switch the molecule. We calculate this quantity as the
conditional probability for the molecule to go, say, into the trans state in the first
tunneling event after excitation from the cis state into the charged state at time
t = 0.

We are interested in the regime where the molecule spends almost all the time in
the neutral state, i.e. either in the cis or in the trans conformation, due to very asym-
metric couplings to the leads. The rate for electronic tunneling from the molecule
into the leads is assumed to be much higher than all vibrational frequencies, ωs ≪ Γ.
Shortly after a transition from the cis state to the charged state, the two Wigner
functions Wcis and Wtrans are equal to zero. In this case the equations of motion
(5.27) simplify to

∂Wcis

∂t
= {Hcis,Wcis} +R1→cisW1 + γcis

∂

∂p
pWcis

+
γcis

2
mcis~ωcis coth

(

~ωcis

2T

)

∂2

∂p2
Wcis, (5.29)

∂Wtrans

∂t
= {Htrans,Wtrans} +R1→transW1 + γtrans

∂

∂p
pWtrans

+
γtrans

2
mtrans~ωtrans coth

(

~ωtrans

2T

)

∂2

∂p2
Wtrans, (5.30)

∂W1

∂t
= {H1,W1} − (R1→cis +R1→trans)W1. (5.31)

We need not include any rates out of the cis and trans states, since we are only inter-
ested in the first out-scattering event. The drift and diffusion terms in Eq. (5.31) for
the charged state have been neglected. This is justified since the switching dynamics
is controlled by times t ∼ 1/ωs beyond which W1(t) is exponentially suppressed.
In contrast, dissipation becomes relevant for much later times of order 1/γs. Note
also that the dissipative terms in the other two equations do not change the over-
all probability to be in one of the charge states, but only the detailed form of the
distribution function within each charge states. Consequently, dissipation affects
the quantum yield only through the initial vibrational distribution function after an
electron tunnels from the tip to the molecule.

It is convenient to introduce action and angle variables (S and θ) for the charged
state,

x = −
√

2S

m1ω1
cos θ, p =

√

2m1ω1S sin θ, (5.32)

since this transformation generates a cyclic variable and reduces the Poisson bracket
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to the simple form

{H1,W1} = −ω1
∂W1

∂θ
. (5.33)

Since Eq. (5.31) does not containWcis andWtrans, it can thus be solved independently,

W1(θ, S, t) = W1(θ − ω1t, S, t = 0) exp

[

−
∫ t

0
dt′
∑

s

R1→s(θ − ω1t
′, S)

]

. (5.34)

We can now insert this result into Eq. (5.30). Integrating over phase space yields
∫

dθ dSWtrans(θ, S, t) =

∫

dθ dS R1→trans(θ, S)

×
∫ t

0
dt′W1(θ − ω1t

′, S, t = 0) exp

[

−
∫ t′

0
dt′′
∑

s

R1→s(θ − ω1t
′′, S)

]

,

(5.35)

where we made use of the fact that the integral of the Poisson bracket over phase
space vanishes.

The quantum yield is the total probability of going into any trans state with
position x and momentum p at any time t > 0,

Y = lim
t→∞

∫

dθ dS Wtrans(θ, S, t). (5.36)

First we calculate the partial quantum yield, y(θ0, S0), which is obtained if one as-
sumes a delta function in phase space for the initial distribution function of the
charged molecule, W1(θ, S, t = 0) = δ(S−S0) δ(θ−θ0). Then the total quantum yield
Y can be computed as an average over all possible initial conditions W1(θ, S, t = 0),

Y =

∫

dθdSW1(θ, S, t = 0)y(θ, S). (5.37)

For the partial quantum yield we obtain

y(θ, S) =

∫ ∞

0
dt′R1→trans

(

θ + ω1t
′, S
)

exp

[

−
∫ t′

0
dt′′
∑

s

R1→s

(

θ + ω1t
′′, S
)

]

.

(5.38)
Note that it depends on both xcis and xtrans because of the position dependence of
the rates R1→cis and R1→trans. Making use of the periodicity of the rates in θ we can
perform the integrations over complete periods, T1 = 2π/ω1, and obtain

y(θ, S) =

∫ T1

0
dt′R1→trans

(

θ + ω1t
′, S
)

exp
[

−
∫ t′

0 dt′′
∑

sR1→s (θ + ω1t
′′, S)

]

1 − exp
[

−
∫ T1

0 dt′′
∑

sR1→s (θ + ω1t′′, S)
] .

(5.39)
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In the regime of our interest, where the tunneling rate is large compared to the
oscillation frequency, ω1 ≪ Γ, the exponential in the denominator is very close to
zero and can be neglected, such that

y(θ, S) ≃
∫ T1

0
dt′R1→trans

(

θ + ω1t
′, S
)

exp

[

−
∫ t′

0
dt′′
∑

s

R1→s

(

θ + ω1t
′′, S
)

]

.

(5.40)
This result has a clear physical interpretation. The exponential describes the condi-
tional probability that the molecule starting at phase space point S and θ at time
t′′ = 0 is still in the charged state at time t′′ = t′.

5.6 Results and discussion

In what follows, we assume for simplicity that the three oscillators of the cis, trans,
and charged states centered at xcis, xtrans, and x1 = 0, respectively, all have the
same reduced mass m and frequency ω. The damping rate is thus the same for all
vibrational states and we denote it as γ.

The regime of interest is characterized by the inequalities

Γtip ≪ ω ≪ Γsub. (5.41)

Moreover, we will assume that the tip-to-molecule tunneling is sufficiently weak,

Γtip ≪ γ ≪ ω, (5.42)

so that the vibrational mode thermally equilibrates in both the cis and trans con-
formation after each tunneling event. The nonequilibrium regime Γtip ≫ γ is clearly
interesting but beyond the scope of the present work.

It is natural to assume that the asymmetric molecule-electrode coupling goes along
with asymmetric voltage drops (although the latter are determined by capacitive
couplings rather than tunnel amplitudes). To be specific, we will assume that the
voltage V = Vtip − Vsub drops entirely between tip and molecule,

Vtip ≃ V, Vsub ≃ 0. (5.43)

This has important consequences for the electronic transport. Energy conservation
for the electronic tunneling from the cis state into the charged state requires

ǫ1 − ǫcis + V1(x) − Vcis(x) < Vtip. (5.44)

In the vicinity of x ≃ xcis this condition reduces to

ǫ1 − ǫcis +
1

2
mω2x2

cis < Vtip, (5.45)

which defines a threshold voltage beyond which tunneling from tip to molecule be-
comes possible. For voltages not too far below this threshold, tunneling from the
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molecule into the substrate is always energetically possible, since the corresponding
condition for energy conservation,

ǫ1 − ǫcis + V1(x) − Vcis(x) > Vsub, (5.46)

is always satisfied for sufficiently large values of ǫ1 − ǫcis and Vsub ≃ 0.
When the bias exceeds the threshold value Vc = ǫ1 − ǫcis +mω2x2

cis/2, the steady-
state current through the molecule is given by

Icis ≃ eΓtip, (5.47)

i.e. it is essentially governed by the slower tip-to-molecule tunneling. Due to the
Franck-Condon principle, the vibrational distribution function in the cis state will
be left unaltered during the tunneling process. Due to the assumption Γtip ≪ γ
and for thermal energies T ≫ ~ω, the stationary solution of Eq. (5.27) in absence
of tunneling reduces to a Boltzmann distribution function, cf. Eq. (5.28). Thus the
initial distribution function of the charged state is

W1(θ, S, t = 0) =
ω

2πT
exp

[

−Hcis(θ, S) − ǫcis
T

]

. (5.48)

Notice that if the bias voltage is in the vicinity of the threshold voltage Vc, the dis-
tribution function becomes truncated during tunneling due to energetic restrictions.
Apart from the initial distribution function, the switching dynamics is mostly de-
termined by tunneling processes from the molecule into the substrate. Since these
processes are not affected by energetic restrictions, their rates are essentially con-
stant, independent of temperature and bias.

We begin our analytical analysis by deriving the partial quantum yield y(θ, S).
We approximate R1→trans(θ, S) = Γsub for |θ| > π/2 and zero otherwise. Similarly,
we take R1→cis(θ, S) = Γsub for |θ| < π/2. Then, we find for ω ≪ Γsub

y(θ) ≃ exp

[

−Γsub

ω

(π

2
− θ
)

]

. (5.49)

Note that the quantum yield depends only on the phase space angle θ and not on the
action coordinate S. This is a direct consequence of the harmonic potential surface.
Phase space angles θ > 0 correspond to positive initial velocities and thus lead to a
higher quantum yield as compared to θ < 0. Plots of the partial quantum yield for
different values of Γsub/ω are shown in Fig. 5.3.

For θ = 0 the partial quantum yield is approximately exp (−Γsubπ/2ω). This
result has a simple physical interpretation, since π/2ω is just a quarter period of the
harmonic motion on the potential surface.

For the case where the initial distribution function W1(θ, S, t = 0) is given by
Eq. (5.48), i.e. the thermal distribution in the cis state, the total quantum yield is
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Figure 5.3: Partial quantum yield y(θ) as a function of phase space angle θ for different
ratios of the electronic tunneling rate Γsub and the vibrational frequency ω.

readily obtained from Eqs. (5.38) and (5.40),

Y =
ω

2πT
exp

(

−mω
2x2

cis

2T

)∫ π/2

−π/2
dθ exp

[

−Γsub

ω

(π

2
− θ
)

]

×
∫ ∞

0
dS exp

(

−ωS
T

+
mω2|xcis|

T

√

2S

mω
cos θ

)

. (5.50)

We now change the action variable to J = ωS/T and introduce the large parameter
L = mω2x2

cis/2T . Moreover, it is useful to write the second large parameter Γsub/ω =
αL, where α denotes the ratio of the two large parameters. Note that α increases
with temperature and can be interpreted as a measure of temperature. With these
definitions, we find

Y =
exp (−L)

2π

∫ π/2

−π/2
dθ exp

[

−αL
(π

2
− θ
)]

∫ ∞

0
dJ exp

(

−J + 2
√
LJ cos θ

)

.

(5.51)
If the dominant contribution to the θ-integral comes from a region which does not
include θ ≃ π/2, the integration over J can be performed by saddle-point integration
due to L ≫ 1. This can be made explicit by introducing x = J/L. Doing so and
performing the saddle-point integration over x, we obtain

Y =

√

L

π

∫ π/2

−π/2
dθ cos θ exp

{

−L
[

α
(π

2
− θ
)

+ sin2 θ
]}

. (5.52)
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Finally, at sufficiently low temperatures, α < 1, we can also perform the angular
integration by the saddle-point method. Finding the saddle point, we obtain that
the optimal θ is given by

θ0 =
1

2
arcsinα. (5.53)

The existence of an optimal θ reflects the competition between the following trends:
The larger the initial θ, the smaller is its weight in the initial distribution func-
tion, but the larger is the corresponding partial yield. Performing the saddle-point
integration, we obtain our central analytical result for the quantum yield,

Y ≃
(

1 +
√

1 − α2

2
√

1 − α2

)1/2

exp

{

−L
2

[

α (π − arcsinα) + 1 −
√

1 − α2
]

}

. (5.54)

It is instructive to analyze various limits of this equation. At very low tem-
peratures, α≪ 1, the expression (5.54) for the quantum yield takes the form

Y ≃ exp

(

−π
2

Γsub

ω

)

. (5.55)

This reflects the fact that at low temperatures, the initial distribution function is
very narrow and is well approximated by δ(S − mωx2

cis/2)δ(θ). Thus, switching
requires that the system stays for a quarter oscillation period in the charged state.
At larger temperatures where α is close to but still smaller than one, we find

Y ≃ 1√
2(1 − α2)1/4

exp

[

−L
(

π

4
+

1

2

)]

. (5.56)

This result is remarkable in that the exponential suppression is stronger than what
one would expect for thermal activation, namely exp(−L). This suggests that there
exists a “critical" temperature where there is a sharp crossover between current-
induced switching and processes closely related to thermal activation, originating
from θ ≃ π/2.

Indeed, it is straightforward to compute the contribution to the quantum yield
Y in Eq. (5.51) from angle variables θ in the vicinity of π/2 which were previously
neglected. To do so, we start with Eq. (5.51), expand the exponent for θ ≃ π/2, and
obtain

Yπ/2 ≃ L

2π
exp (−L)

∫ ∞

0
dθ̃

∫ ∞

0
dJ exp

[

−L
(

αθ̃ + J − 2
√
Jθ̃
)]

. (5.57)

Changing integration variables to t = Lθ̃ and j = LJ , we note that the last term in
the exponent can be neglected in the limit of large L. Then, the integration becomes
elementary and we obtain

Yπ/2 ≃ ω

2πΓsub
exp (−L). (5.58)
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Figure 5.4: Total quantum yield Y as a function of the inverse temperature 1/T for different
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Thus, we indeed confirm that for α close to unity, the dominant contribution is
no longer current-induced switching, but rather thermal-activation processes. Since
L ≫ 1 there is a sharp crossover between both behaviors when the exponents in
Eqs. (5.54) and (5.58) coincide. This happens for a critical αc determined by

αc

2
(π − arcsinαc) =

√

1 − α2
c , (5.59)

which yields αc ≃ 0.63.
The critical αc translates into a critical temperature

Tc = αc
ω

Γsub

mω2x2
cis

2
. (5.60)

For T < Tc, cis-trans switching is dominated by current-induced switching while
thermal activation takes over for T > Tc. Since L is typically a large parameter,
this crossover will typically be sharp. It is important to note that this crossover
occurs long before the thermal broadening of the initial distribution function becomes
comparable to |xcis|.

These analytical results are compared to numerical evaluations of Eq. (5.50) in
Fig. 5.4 (solid lines) where the quantum yield is shown as a function of temperature.
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For T < Tc, the yield can be approximated by the expression for current-induced
switching [dashed lines, Eq. (5.54)] while for T > Tc, it is mostly thermally activated
[dotted lines, Eq. (5.58)]. The existence of a sharp transition for T close to Tc can
be clearly seen in the figure.

5.7 Summary and conclusions

We have analyzed the current-induced conformational switching in single-molecule
junctions. Our study is motivated by recent STM experiments on azobenzene deriva-
tives, which we model as having two stable conformations in the neutral state (cis
and trans), while the potential surface of the charged molecule only exhibits a single
minimum [Fig. 5.1(e)]. Current flow through such a conformational switch is char-
acterized by telegraph noise, since the two conformations will in general be charac-
terized by different conductances and switching between the conformations occurs
rarely.

As appropriate for STM setups, we consider a molecular junction with strongly
asymmetric coupling to tip and substrate and treat current flow within the sequen-
tial tunneling approximation. The latter is justified in setups with passivated sub-
strates. Our central finding is that there exists a rather sharp crossover between
two qualitatively different switching mechanisms as a function of temperature. For
low temperatures, the switching process is induced by tunneling electrons when the
vibrational coordinate is close to the minimum of the cis state. We call this pro-
cess current-induced switching. Beyond a critical temperature, switching is strongly
dominated by tunneling processes which occur close to the maximum of the barrier
between the cis and the trans states. We refer to this process as thermally activated.
Remarkably, this happens long before the temperature becomes of the order of the
barrier height.

Experimentally, the two switching mechanisms are readily distinguished by their
different temperature dependences. While the current-induced switching exhibits
only weak temperature sensitivity, thermal activation processes follow Arrhenius
behavior, see Fig. 5.4. Moreover, our results predict that the quantum yield depends
exponentially on the tunneling rate to the substrate which makes it highly sensitive
to the level of passivation of the substrate.

Our results leave several avenues for future research. It would be interesting to
analyze the quantum yield as a function of voltage for voltages in the vicinity of the
threshold for tip-to-molecule tunneling. Most important would be an extension to in-
clude the resonant broadening of the molecular orbital by the molecule-substrate cou-
pling, which would make our results applicable to experiments with non-passivated
substrates.
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In the present thesis, we have investigated the coupling of electronic degrees of free-
dom to (i) vibrations, (ii) spins, and (iii) chemical conformations in transport through
single-molecule devices. Our work is motivated by a number of recent experiments
which show that the presence of internal molecular degrees of freedom leads to nu-
merous novel quantum transport phenomena that go beyond the physics observed in
larger nanostructural objects such as quantum dots or carbon nanotubes.

Transport through magnetic molecules has been discussed in the context of molec-
ular spintronics, i.e. the idea of integrating the promising concepts of molecular
electronics and spintronics. We have found that magnetic anisotropy is crucial for
slow spin relaxation and allows one to read out and write the spin of a single molecule
connected to two metallic electrodes. Interestingly, current-induced spin switching
to a predetermined state only requires a finite bias voltage and is also possible in the
absence of a magnetic field. Furthermore, we have shown that the proposed setup
leads to interesting physics beyond the effect of spin writing, including the occur-
rence of large negative differential conductance (NDC) at high temperatures and a
new spin blockade mechanism.

The Kondo effect in single-molecule transistors has been investigated for the case
of a vibrational mode which is coupled to the electronic degree of freedom. Our main
findings are the quenching of the gate voltage dependence of the Kondo temperature
in the regime of strong electron-phonon coupling and the occurrence of a strongly
asymmetric Coulomb blockade. Experimental evidence for these two unusual features
has been obtained in recent transport experiments on organic complexes.

Because of intrinsic bistabilities many single-molecule junctions reveal current-
induced switching behavior, e.g. involving cis and trans isomers of a molecule. We
have studied this process for molecules which exhibit two (meta)stable conformations
in the neutral state, but only a single stable conformation in the ionic state. While
other recent works in this field consider switching processes which are stimulated by
thermal tunneling or vibrational-assisted tunneling from one minimum of the double
well to the other, we have shown that the switching may also be induced by the
current involving two subsequent sequential tunneling processes. We have found
that the transport dynamics can be described by a set of Fokker-Planck equations
for the Wigner distribution function of the molecule. Our main result is that the
average number of switching events per time becomes extremely small compared to
the average electronic tunneling rate determined by the current. In other words, the
time that the molecule is in one of the two conformations is long compared to the
average time between subsequent tunneling events.

Our results leave several avenues for future research. (i) In the context of molecular
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spintronics, it would be interesting to investigate spin-dependent transport through
one-dimensional and two-dimensional arrays of magnetic molecules. Due to the long
lifetime of the magnetic state, spin-crossover molecules promise to be particularly
suitable as switches [151]. At low temperatures spin-crossover materials reveal a
transition from the low-spin to the high-spin state, where the energy difference be-
tween the two states relies on the interplay between crystal field splitting of the
d-orbitals of the metal ions and Hund’s rule. We expect the conductances of the
spin states to be significantly different, which should be related to a large magne-
toresistance, i.e. changes of the conductance in response to an external magnetic
field. Furthermore, inelastic spin scattering might play a crucial role and affect most
transport properties. For instance, spin might be accumulated on the molecules as a
consequence of spin-polarized tunneling currents. However, if the molecular array is
sufficiently long, the amount of spin transferred from the lead into the junction may
reach a macroscopic magnitude and may thus be easily detected. Presumably, in-
vestigating the spin dynamics of spin-crossover chains requires one to go beyond the
rate-equation approach used in the present work. In particular, interesting physics
could be hidden in the off-diagonal matrix elements of the density-matrix describing
superpositions of various spin states.

(ii) Transport through single-molecule magnets has only been studied in the regime
of weak molecule-lead coupling, so far. However, a large number of experiments is
based on a scanning tunneling microscope (STM) setup, where the molecule is weakly
coupled to the tip electrode but strongly coupled to the substrate. As a consequence,
the resonances in the spectral function of molecule reveal strong broadenings due to
quantum fluctuations, which is expected to manifest itself as a broadening of the
peaks in the differential conductance for thermal energies small compared to the
hybridization energy. Obviously, this cannot be understood within the sequential
tunneling approximation. One possibility would be to study transport through mag-
netic molecule within the Keldysh formalism, in order to take into account all order
of the self-energy in the hybridization.

(iii) While the present work has shown that interesting results for current-induced
conformational switching can be obtained from semi-classical Fokker-Planck equa-
tions in the high-temperature limit, only little attention has been paid to effects in
the low-temperature regime. One important question would be to investigate the
switching behavior including the broadening of the molecular levels due to the cou-
pling to the leads. Furthermore, interesting physics might be revealed taking into
account higher-order tunneling processes such as cotunneling. The discussed switch-
ing dynamics should also lead to characteristic features in the noise spectrum of the
system, as mentioned previously. Another question would be to include a more re-
alistic model for the description of vibrational dissipation than the Caldeira-Leggett
model used in the present work.
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Quantentransport durch einzelne Moleküle:

Spin- und Schwingungsfreiheitsgrade

Deutsche Kurzfassung

Im Zuge des vorherrschenden Optimismus im jungen Forschungsgebiet der Moleku-
laren Elektronik hat die Untersuchung des elektronischen Transports durch einzelne
Moleküle während der letzten Jahre besondere Beachtung erfahren. Dies ist nicht nur
die Folge vielversprechender technologischer Anwendungen. Auch hat sich gezeigt,
dass die Anwesenheit spezifischer molekularer Freiheitsgrade zu neuartigen Quan-
tentransportphänomenen führt, deren Beschreibung über die in größeren Nanostruk-
turen zu beobachtende Physik hinausgeht. In der vorliegenden Arbeit untersuchen
wir die Kopplung zwischen elektronischen Freiheitsgraden und (i) Schwingungsfrei-
heitsgraden, (ii) Spins, (iii) Konformationsfreiheitsgraden im Transport durch Einzel-
molekültransistoren.

Der Transport durch magnetische Moleküle wird mit Bezug auf molekulare
Spintronik diskutiert, der Idee Konzepte molekularer Elektronik und Spintronik
mit einander zu kombinieren. Eine der Hauptvoraussetzungen für Spintronik-
Bauelemente stellt die Fähigkeit der Manipulation und Detektion von Spins dar.
In diesem Zusammenhang finden wir, dass magnetische Anisotropie verantwortlich
ist für langsame Spinrelaxation.

Die Spinmenge, die von einer Zuleitung des Einzelmolekültransistors zur anderen
transmittiert wird, hängt stark von der Orientierung des anfänglichen moleku-
laren Spins ab und kann sehr viel größer als dieser werden. Dieser Effekt der
Spinverstärkung gestattet es effektiv Spininformationen auszulesen. Es sei darauf
hingewiesen, dass die Zuleitungen nicht spin-polarisiert zu sein brauchen. Anderer-
seits erfordert das Schreiben des Spins einen Aufbau, der aus einer ferromagnetischen
und einer nicht-magnetischen Zuleitung besteht. Interessanterweise ist für das strom-
induzierte Schalten des Spins in einen vorgegebenen Zustand lediglich eine endliche
Spannung, jedoch kein Magnetfeld erforderlich.

Darüberhinaus führt der vorgeschlagene Aufbau zu interessanter Physik über den
Effekt des magnetischen Schreibens hinaus, wie dem Auftreten großer negativer dif-
ferentieller Widerstände bei hohen Temperaturen. Dieser Effekt ist die Konsequenz
eines neuartigen Spinblockade-Mechanismus. Damit meinen wir die Unterdrück-
ung der Tunnelraten für Elektronen einer bestimmten Spinrichtung aufgrund unter-
schiedlicher Zustandsdichten der Zuleitungen.

Das Wechselspiel zwischen magnetischen Freiheitsgraden und Vibrationsfreiheits-
graden untersuchen wir im Transport durch schwingende Einzelmolekültransistoren
im Kondo-Regime. Wir finden, dass die Abhängigkeit der Kondo-Temperatur von der
Gate-Spannung für starke Elektron-Phonon-Kopplung sehr viel schwächer ist als in
konventionellen Nanostrukturen wie Quantenpunkten. Außerdem ist die Coulomb-
blockade stark asymmetrisch in der Nähe der Entartungspunkte in der differentiellen



Leitfähigkeit, d. h. Peaks in der differentiellen Leitfähigkeit sind stark ausgeprägt
auf der einen Seite des Entartungspunktes, hingegen sehr schwach auf der anderen.
Ein experimenteller Nachweis dieser ungewöhnlichen Transporteigenschaften gelang
in kürzlich veröffentlichten Messungen an organischen Molekülkomplexen.

Die Hauptvoraussetzung für einen elektrischen Schaltkreis auf der Nanoskala sind
molekulare Bauelemente, die sich zwischen zwei Zuständen mit deutlich unter-
schiedlichen Leitwerten hin- und herschalten lassen. Aufgrund intrinsischer Bista-
bilität zeigen viele Einzelmolekültransistoren strom-induziertes Schaltverhalten, das
beispielsweise die cis- und trans-Zustände eines Moleküls beinhaltet. Wir unter-
suchen diesen Prozess für Moleküle, die zwei (meta)stabile Konformationen im neu-
tralen Zustand aufweisen, aber nur eine stabile Konformation im ionischen Zustand.
Während andere Arbeiten in diesem Gebiet hauptsächlich Schaltprozesse betrachten,
die durch thermische Aktivierung oder das direkte Tunneln von einem Potentialmin-
imum der Doppelmulde ins andere stimuliert werden, zeigen wir, dass der Strom
das Schalten auch in Form von zwei sequentiellen Tunnelprozessen induzieren kann.
Unser Hauptinteresse liegt in der Untersuchung des Regimes stark asymmetrischer
Kopplung zwischen Molekül und Zuleitungen, was dem Aufbau eines Rastertun-
nelmikroskops entspricht. Wir zeigen, dass sich die Transportdynamik durch Fokker-
Planck-Gleichungen für die Wigner-Verteilungsfunktion des Moleküls beschreiben
lässt. Unser Hauptergebnis besteht darin, dass die mittlere Anzahl von Schalt-
ereignissen pro Zeit extrem klein gegenüber der mittleren elektronischen Tunnelzeit
werden kann, welche durch den Strom bestimmt wird. Mit anderen Worten, die
Zeit, welche das Molekül in einer der beiden Konformationen verbringt, ist sehr lang
gegenüber der Zeit zwischen zwei Tunnelereignissen. Derart auffälliges Schaltverhal-
ten wurde kürzlich in Transportmessungen, z. B. an Azobenzol, beobachtet.


