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Abstract

Simulations of optical processes and complex nanostructured devices have become
omnipresent in recent years in several fields of current research and industrial ap-
plications, not limited to the field of photovoltaics. Devices or processes are opti-
mized with respect to a certain objective where the underlying physical processes
are described by partial differential equations. In photovoltaics and photonics elec-
tromagnetic fields are investigated which are governed by Maxwell’s equations.
In this thesis a reduced basis method for the solution of the parameter dependent

electromagnetic scattering problem with arbitrary parameters is developed. The
method is developed with the specific challenges arising in optical simulations of
thin-film silicon solar cells in mind. These are large in domain size and have a
complex three-dimensional structure, making optimization tasks infeasible if high-
accuracy of the electromagnetic field solution is required. The application of the
empirical interpolation methods allows to expand an arbitrary parameter depen-
dence affinely. Thus not only geometries, but also material tensors and source fields
can be parameterized. Additionally, the required non-linear post-processing steps
of the electromagnetic field to derive energy fluxes or volume absorption are ad-
dressed. The reduced basis method allows to reduce the computational costs by
orders of magnitude compared to efficient finite element solvers.
In addition, an efficient tailored domain decomposition algorithm is presented to

model incoherent layers or illuminations in optical systems efficiently. This is of
particular interest for solar cells in superstrate configuration where the absorber is
illuminated through a glass substrate.
The developed methods are employed in application examples taken from collab-

orations with experimentalists active in the joint lab “BerOSE”1. The optical model
of a thin-film silicon multi-junction with incoherent light-trapping is characterized
in great detail. The computational gains through hybrid, hp adaptive finite elements
are studied and the incoherent domain decomposition algorithm is applied to model
a more realistic light-trapping by the glass substrate.
The numerical examples of a hexagonal nano-hole array and multi-junction silicon

solar cell with a tunable intermediate reflector layer show that the reduced basis
method is well suited as a forward solver for modeling and optimization tasks aris-
ing in photovoltaics and photonics. Reduced models for illumination and geometric
parameters are built providing up to five orders of magnitude savings in compu-
tational costs. Resonance phenomena present in the nano-hole array example are
detected and the model adapts itself automatically.

1Berlin Joint Lab for Optical Simulations for Energy Research (BerOSE)
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1. Introduction
I’d put my money on the sun and solar energy.
What a source of power! I hope we don’t have
to wait till oil and coal run out before we
tackle that.

(attributed to Thomas Edison)
Climate change and nuclear disasters have driven governments around the world to
effect change in the global energy supply. At the forefront of this development is
the demand for a decarbonized and sustainable energy supply for an exponentially
growing world population. Furthermore, the economic development of the newly
industrializing nations has added to the demand for resources and energy. The field
of green photonics summarizes efforts to address these arising global challenges by
means of optical technologies. This comprises the development and use of more en-
ergy efficient light sources [Moser et al., 2014, Wolff et al., 2015], optical sensors and
production technologies [Pfleging et al., 2014]. It also includes energy technologies
to harvest solar energy through photovoltaic energy conversion [Stannowski et al.,
2013] or artificial photosynthesis [Abdi et al., 2013].
The optical devices considered in green photonics oftentimes require the consider-

ation of wave optical effects due to their structure sizes in the order of nanometers.
Predictive numerical simulations of optical effects in nanophotonic devices are a use-
ful tool for their design and optimization. They further allow to understand optical
effects and novel devices. The simulation and modeling of these devices thus require
the solution of Maxwell’s equations, the set of partial differential equations (PDEs)
describing electromagnetic fields.
This setting of a system whose physical properties or processes are described by

a PDE is common in applied sciences and engineering applications. As solutions of
these PDEs modeling temperature distributions, mechanical stresses, fluid dynamics
or electromagnetic fields are analytical only in specific cases, numerical solvers rely
on discretization schemes such as finite differences [Yee and Others, 1966, Taflove
and Hagness, 2005], finite volumes [Hermeline, 2004], the discontinuous Galerkin
[Hesthaven and Warburton, 2010, Li and Huang, 2012] or Finite Element Method
(FEM) [Monk, 2003, Demkowicz, 2006]. The numerical solution of the discretized
systems is generally computationally expensive as the examined devices and hence
the discrete systems are growing larger in size and more complex. Oftentimes the
desired numerical accuracy of the discretization schemes cannot be achieved or only
part of a device is modeled as the resulting computation times might equate to hours
or days.
The computational effort makes detailed numerical studies and optimizations of

1



1. Introduction

systems governed by PDEs oftentimes infeasible in practical applications. Com-
monly the devices depend on parameters varying geometrical features such as widths
or heights of structural components or other material properties. In the context
of photonic devices scans over wavelength and incidence angle of the illumination
sources are frequent. Typically, a large number of solutions of the parameter de-
pendent partial differential equation (μPDE) are computed for multiple design pa-
rameters and/or configurations in these tasks. This is referred to as a many-query
context which often arises in applications such as optimization or inverse problems
like parameter estimation. In other contexts the budget for computational expenses
is limited by time constraints. This is referred to as a real-time context. It is for
example encountered in on-line process control.
Generally, the solution of the PDE itself is of lesser interest for the device op-

timization. Instead derived quantities of the solutions called outputs of interest
are employed as goal functions. Hence, in many applications it is convenient to
derive an input-output relationship. This is typically achieved by interpolation of
pre-computed solutions which offers computationally inexpensive input-output rela-
tionships at the expense of neglecting the underlying physical processes as only the
output data enters. We employed and compared different interpolation strategies in
[Hammerschmidt et al., 2014b] for model problems from optical critical dimension
metrology and solar cell modeling.
A different approach is to derive a reduced model for the μPDE by a low-dimension-

al approximation of the (very) high-dimensional problem. A promising strategy to be
used in model order reduction is the Reduced Basis Method (RBM). It allows to split
the computation in an expensive reduction step executed first and an inexpensive
second phase during which solutions can be computed extremely fast. A more
detailed historical review of the method is presented in Section 5.1.

1.1. Challenges in optical simulations of solar cells

In photovoltaics the need for better, more efficient devices has led to the simulta-
neous development of new cell concepts and a refinement of existing technologies.
Especially in silicon solar cells the optics of the device are of a great importance,
as silicon based solar cells suffer from insufficient absorption of the incident solar
irradiation due the indirect bandgap of the absorber material. Hence, advanced cell
concepts and photonic structures must be found to trap light inside the solar cell
absorber. Optical simulations are indispensable in this process. However, there are
a number of modeling challenges to overcome.
Rigorous optical simulations of large scale, three dimensional, complex nanostruc-

tured solar cells are computationally expensive. This especially holds for solar cells
relying on light trapping provided by random textures as most thin-film silicon solar
cells (TFSSCs) do. The statistical nature of the texturing of the interfaces between
adjacent cell layers requires either large domains with the correct treatment of the
heterogeneous exterior domains or an artificial periodification and subsequent aver-

2



1.2. Thesis contribution

aging over Monte Carlo samples [Lockau, 2012]. Furthermore, the vertical device
structure exhibits layers and geometrical features on multiple scales. Very thin lay-
ers and tiny features on the nanometer scale are optically relevant and cannot be
omitted in a discretization, one also has to account for the glass substrate which is
several mm thick. This discrepancy in scale leads to high-frequency oscillations in
the computed reflection which are not observed in experiments where imperfections
and averaging effects are present. Additionally, neither the sun nor the experi-
mentally used light sources provide the perfect coherent illumination fields used in
models of solar cells. These incoherence effects are difficult to model and naive
implementations depend on high computational effort.
All the above mentioned challenges lead to a large number of simulations to be

run to predict the optical response of a solar cell in experiments accurately. Opti-
mizations of specific layer thicknesses or feature sizes and studies of the influence
of material parameters add to the already large, and possibly high-dimensional, pa-
rameter spaces considered in these tasks. Hence, reduced models are sought allowing
to compute solutions to Maxwell’s equations with arbitrary parameter dependencies
with low computational effort. A particular challenge in this context are non-linear
outputs of interest whose evaluation can be a bottleneck for large computational
domains.

1.2. Thesis contribution

This thesis addresses some of the challenges in optical simulations of nanostruc-
tured solar cells presented above. It contributes a tailored domain decomposition
method that in itself is suited to reduce computation times in solar cell modeling
by decomposing the cell model into smaller, easier to handle subdomains. Further,
this method is exploited to model incoherent layers or illuminations more efficiently.
An orthogonal decomposition is employed to reduce evaluation times in computing
quadratic outputs of interest.
The main contribution of this thesis is a reduced basis method for the electro-

magnetic scattering problem with arbitrary parameter dependencies and non-linear
outputs of interest. While a previous implementation [Pomplun, 2010] was limited
to geometrical parameter variations, the method presented here allows to include
non-geometrical parameters varying material properties or illumination sources as
well. This is essential for the modeling of solar cells. The same holds for the non-
linear outputs of interest which are rarely addressed in current research where the
main focus is on linear outputs.
Furthermore, the methods developed in this thesis are extensively studied in model

examples motivated by the close collaboration to experimentalists from Helmholtz-
Zentrum Berlin für Materialien und Energie (HZB) and Kompetenzzentrum Dünn-
schicht- und Nanotechnologie für Photovoltaik Berlin (PVcomB). They are designed
to introduce and promote the developed mathematical tools in the application field
of photonic devices. The numerical examples demonstrate the possibility to build
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reduced models for geometrical and non-geometrical parameters with high-accuracy
allowing to compute field enhancements in a photonic crystal or solar cell absorp-
tance with a very dense sampling previously impractical to compute and use in
optimizations. In addition, we show that a very accurate geometrical modeling of
the cell topography including all layers is possible with the underlying finite ele-
ment solver JCMsuite and that an incoherent domain coupling yields more realistic
estimates of substrate light trapping with reasonable computational costs.

1.3. Thesis outline

This thesis is structured into five main chapters. In Chapter 2 the basic principles
of the photovoltaic energy conversion are presented. The energy conversion process,
its limits and the concept of multi-junction solar cells are discussed in Sections 2.1.
The optical properties of silicon based solar cells are presented in Section 2.2 where
the concept of light-trapping is introduced and optical modeling of silicon solar cells
with randomly textured interfaces is discussed.
In Chapter 3 the mathematical background of the methods presented in this the-

sis is established. Results from functional analysis are recapitulated in Section 3.1.
These are essential for the weak formulation of the electromagnetic scattering prob-
lem in Section 3.2. A review of Maxwell’s equations and a brief introduction to
the Finite Element Method are also included in this section. Section 3.3 contains
a scattering matrix domain decomposition method based on a Fourier plane wave
basis. A semi-analytical method for layered media is introduced in Section 3.3.4.
Chapter 4 proposes an algorithm to include incoherent layers or illumination

sources into rigorous optical simulation through means of a domain decomposition
approach. The principle of incoherent light and existing modeling approaches for
it in the context of solar cells are reviewed in Sections 4.1 and 4.2. The proposed
domain decomposition method is introduced in Section 4.3 with an orthogonal de-
composition strategy to speed up computations of quadratic outputs of interest.
Chapter 5 comprises the main contribution of this thesis, a reduced basis method

for optical simulations of solar cells. A historical review of the method precedes
the presentation of the state-of-the-art reduced basis approximation and the self-
adaptive construction of a basis in Sections 5.3 and 5.6. The specific requirements
of a reduced basis method with respect to solar cell modeling, the parameterization
of the electromagnetic scattering problem and the inclusion of quadratic outputs of
interest, are discussed in Sections 5.5 and 5.7.
The numerical examples in Chapter 6 demonstrate the efficacy of the methods

presented in this thesis. Three application examples from collaborations with ex-
perimentalists in the field of solar cell research are investigated. In Section 6.1 the
reduced basis technique for Maxwell’s equations is applied to a photonic crystal made
of silicon exhibiting resonance phenomena in the field solution. The arising errors
of the reduced basis and the empirical interpolation approximations are discussed
in detail.
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The remaining examples concern the simulation of multi-junction solar cells. The
focus of these examples is to establish a rigorous optical modeling setting for TFSSC
including incoherent light trapping. We investigate the use of our implementation
for this context in Section 6.2 and discuss aspects of the modeling and discretization
with finite element methods as well. The final example in Section 6.3 demonstrates
the efficacy of the Reduced Basis Method for Maxwell’s equation for the optimization
of the optical properties of a large nanostructured thin-film silicon solar cell.
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2. Photovoltaics Basics

The photovoltaic conversion of sunlight into electricity is one of the cornerstones of a
sustainable energy supply for a growing world economy. The demand for renewable
energy production is consistently greater than the supply. The world wide installed
peak power of photovoltaics (PV) installations surpassed 170 GWp

1 in 2014 and more
than 200 GWp are estimated for 2015 [IEA, 2015]. Although these are impressive
growth rates, PV still only accounts for about one percent of the world’s electricity
supply. In Germany 6.9% of the net electricity production in 2014 was supplied
by more than 1.5 million PV installations with a peak power of 38.5 GWp [Wirth,
2015]. A continued steady growth demands for higher cell efficiencies, more energy,
cost and environmentally efficient production. The productions costs have been
significantly reduced over the last decade, for example by employing more efficient
cell designs.
This chapter introduces the fundamental physical process of photovoltaic energy

conversion, cell concepts and limiting principles in Section 2.1. A detailed discussion
of the optical properties of TFSSC in Section 2.2 comprising light trapping concepts
and the optical modeling concludes it. Terms and challenges presented here are
essential for the numerical examples presented in Chapter 6.

2.1. Physics of solar energy conversion in thin-film
silicon solar cells

This sections gives a brief overview of the working principles of photovoltaics in
general and silicon thin-film solar cells in particular. It starts with a brief review
of the photovoltaic energy conversion and presents fundamental limits of energy
conversion and the device structure of multi-junction thin-film solar cells. An in
depth description can be found in many textbooks such as the well written book by
Würfel [Würfel, 2009].

2.1.1. Photovoltaic energy conversion

The conversion of electromagnetic field energy to electric energy in a semiconduc-
tor works by converting to electro-chemical energy first. Energy transferred from
the electromagnetic field excites bound electrons from the valence band to the con-
duction band of the absorber. The absence of an electron in the valence band is

1Wp or “watt-peak” charaterizes a the nomimal output power of a module
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2. Photovoltaics Basics

referred to as a hole. Absorption of photons with sufficient energy to bridge the
energy bandgap

EG = EC − EV
between valence and conduction band is the most important process in solar cells.
In order to obtain a working PV device, these pairs of charges (the excited electron
and the hole) have to be separated subsequently, otherwise they recombine and their
energy is lost.

The generated electrons and holes diffuse through the material to the boundaries.
Using n- and p-doped barrier layers at the contacts in a semiconductor solar cell,
one can discriminate the extracted charge species. The boundary interface between
the p-type and n-type layers is called a pn-junction. The different doping levels in
the boundary layers imply a potential difference which drives the different species to
the doped contacts: holes to p-type, electrons to n-type. In solar cell absorbers with
short diffusion lengths, like amorphous silicon, this additional drift acting in the
right directions improves the extraction efficiency. Several other contacting schemes
have been developed, but are of lesser interest for this work as all solar cells presented
herein are based on the pn-junction.

2.1.2. Efficiency limits

The electric power output P = j · V of a solar cell depends on its operating condi-
tions. The relation between the current j and voltage V is described by a non-linear
characteristic

j = jsc + jR

(
exp

(
qV

kT

)
− 1

)
(2.1)

where q, kB and T are the elementary charge, the Boltzmann constant and the
temperature. The reverse saturation current jR depends on diffusion lengths of
electrons and holes as well as their recombination rates. The axis intersections
of the current-voltage characteristic are given by the short-circuit current jsc (no
voltage) and the open-circuit voltage Voc (no current). The open-circuit voltage is
given by

Voc =
kBT

q
ln

(
1− jsc

jR

)
. (2.2)

The Voc decreases with larger cell thicknesses.

The short circuit current is the current produced by absorbed photons. Although
the incident photon exciting an electron-hole pair may carry additional energy be-
yond the bandgap of the material, this excess energy cannot be extracted as the
carriers thermalize on much shorter time scales then they can be extracted. Hence
only one pair of charge carriers can be created by every incident photon with energy
beyond the bandgap. The maximal short-circuit current is thus depends only on the
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2.1. Physics of solar energy conversion in thin-film silicon solar cells

number of incident photons noted as the solar photon flux density Φ. It is given by

jsc = −e
∫ ∞
EG

EQE(λ)Φ(λ) dλ (2.3)

with the external quantum efficiency (EQE). This is the probability of an incident
photon to generate an electron-hole pair and is ideally close to unity. The short-
circuit current density decreases with increasing bandgap. Due to thermalization
losses, the incident power is of lesser interest than the spectral photon flux Φ. It
is obtained by scaling the incident power with the inverse of the photon energy
Eph = ~ω = 2πhpc0/λ where Planck’s constant hp enters.
The current-voltage characteristic (2.1) has a distinct operating point at which the

power output PMPP is maximized. It is called the maximum power point. Ideally,
the fill factor

FF =
PMPP

jscVoc

relating PMPP and the product of jsc and Voc is close to one.
As the Voc (2.2) depends on the short-circuit current and increases with the

bandgap EG, the bandgap of the absorber material limits the efficiency

η =
jscVocFF

Psun

of a solar cell. For solar irradiation under standardized conditions with the AM1.5G
spectrum (cf. Section 2.2) shown in Figure 2.2 the optimal bandgaps lie between
1.1 eV and 1.5 eV with a maximum efficiency of 33.7% at 1.34 eV. This limit is known
as the Shockley–Queisser limit [Shockley and Queisser, 1961]. The optimum is very
broad, making crystalline silicon with EG=1.12 eV and 29% maximum efficiency a
good, although not optimal candidate for a single junction solar cell material.
A major limiting factor of the solar cell efficiency is the thermalization loss by

photons with excess energy beyond the bandgap. The photon energy does not enter
the formulas above which only depend on the number of photons with energies
beyond the bandgap. If a collection of every photon with all of its energy was
possible, 42% of the incident power could be theoretically converted.
The theoretical limit of the short-circuit current density (jsc) of a crystalline silicon

solar cells is jsc = 46 mAcm-2 and cell records of 41.8 mAcm-2 have been reported
for a cell with 25.6% efficiency and a Voc of 740 mV [Green et al., 2015].

2.1.3. Multi-junction thin-film solar cells

To overcome the limitations of a solar cell with a single junction as assumed above,
multiple cells using different absorber materials with different bandgaps can be com-
bined. They can either be arranged side-by-side or in series behind each other. Using
spectrum splitting optics such as prisms, different spectral intervals of the incident
light can be focused on spatially separate cells. However, this is more expensive from
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Figure 2.1.: Simplified vertical device schematic of a tandem thin-film silicon solar
cell in superstrate configuration.

an engineering point of view as it requires tracking of the sun’s position, than placing
the subcells in series into the light path ordered by highest to lowest bandgap.
A very common combination is to combine two or three subcells. In fact, the high-

est ever demonstrated cell efficiency relies on a four subcell concept [Green et al.,
2015]. A combination of two subcells (a tandem configuration) is oftentimes used
to boost the efficiency of TFSSC by combining a high bandgap, thin, amorphous
silicon (a-Si) top cell with a much thicker, lower bandgap, micro-crystalline silicon
(μc-Si) bottom cell. This promises cell efficiencies of theoretically up to 36% [Wür-
fel, 2009] and devices with over 12% efficiencies have been demonstrated by several
groups [Green et al., 2015, Stannowski et al., 2013]. The monolithic integration of
the subcells requires careful balancing of the different currents generated by the sub-
cells under illuminations. Either they are contacted individually, which drastically
increases complexity in cell design and production, or the subcells are connected
in series. In this case the total current generated by the device is limited by the
minimum of the currents of the subcells.
In Figure 2.1 the vertical device structure of an a-Si/μc-Si tandem cell is depicted

schematically. In the shown superstrate configuration, incident light passes through
the glass substrate first and is subsequently scattered by surface corrugations of
the transparent conductive oxide (TCO). In this tandem configuration the thinner
amorphous silicon subcell is referred to as a top cell and the second, microcrystalline
subcell is called bottom cell. A back contact and reflector complete the structure.
An intermediate reflector layer may also be introduced in the optical path. Apart
from the glass / TCO interface all material interfaces are corrugated due to artificial
or naturally occurring textures.
The electric circuit is closed by contacting front and back TCO. As the name

suggests, these materials must be optically transparent but conducting. These are
conflicting goals and the improvement of TCOs is challenging for material scientists.
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Figure 2.2.: The solar irradiance spectra AM0(black) and AM1.5G(red) have their
maxima in the visible part of the spectrum around 500 nm. The AM0
spectrum [NREL, 2015] fits well to the spectrum of a black body (dashed
line) at the surface temperature of the sun (Tsun=5777 K). The AM1.5G
spectrum includes atmospheric absorption and scattering effects and
thus has less power. It exhibits several distinct grooves which are related
to absorption lines of atmospheric gases (mainly water vapor, carbon
dioxide and nitrogen based gases).

Commonly employed TCOs are ZnO:Al - aluminium doped zinc oxide (AZO), ZnO:B
- boron doped zinc oxide (BZO) and SnO2:F - fluorine doped tin oxide (FTO).

2.2. Optics of thin-film silicon solar cells

The solar spectrum in space above the earth’s atmosphere can be roughly approx-
imated by the spectrum emitted by a black body at a temperature Tsun=5777 K
[NASA, 2015]. At the surface of the earth the spectrum is slightly different due to
scattering and absorption in the atmosphere which can be observed in Figure 2.2. A
standardized spectrum AM1.5G [NREL, 2015] is used for experimental comparison
and simulations which is meant to represent standard conditions in mid-latitudes.
AM1.5 stands for an air mass that is 50% larger than at normal incidence corre-
sponding to a zenith incidence of 48.2°. It corresponds to an illumination with an
energy current density of 1 kWm-2.
As discussed in the previous section, due to thermalization losses for solar cells

the incident power is of lesser interest than the spectral photon flux. In Figure
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2. Photovoltaics Basics

2.3 the photon flux is shown instead of the spectral energy current density. The
maximum of the photon flux is observed to be around 640 nm; red shifted compared
to the maximum of the spectral energy current density in Figure 2.2. However, even
beyond the visible spectrum a large number of photons are present in the spectrum
and can thus contribute to the cell current if they are absorbed. The hatched area
in Figure 2.3 contains half of the total number of photons below 1100 nm. This
indicates, that the near infrared part of the spectrum can contribute substantially
to the photo current in a silicon solar cell. The bandgap position of amorphous
silicon (indicated by the vertical black line) is very close to the median of this
photon distribution, which motivates the popular choice of a-Si as a high-bandgap
material in thin-film silicon tandem configurations.
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Figure 2.3.: The spectral photon flux corresponds to the number of solar photons
included in the AM1.5G spectrum (black line). It is shown up to the
band edge of silicon at 1100 nm. In contrast to the irradiance spectrum
in Figure 2.2, the maximum is slightly red shifted and broader. As
guidance to the eye the limits of the visible spectrum are marked as
dotted lines (violet and red). The hatched area contains 50% of the
photons with energies larger than the band edge of silicon. The vertical
black line marks the band edge of amorphous silicon (assumed to be
1.7 eV).
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Figure 2.4.: (a): Real (solid lines) and imaginary part (dashed lines) of the refrac-
tive index of crystalline (black), amorphous (blue) and microcrystalline
silicon (red). Data provided by PVcomB. (b): The black line shows the
penetration depth of incident light in crystalline silicon for wavelengths
of interest. The hatched areas mark typically used absorber thicknesses
in wafer and thin-film technologies. The absorber thicknesses employed
in wafer cell concepts are sufficient to absorb nearly all the light in a
single pass up to 1100 nm wavelength. In thin-film devices the absorber
thicknesses are insufficient to absorb photons of wavelength larger than
700-800 nm in a single pass.

2.2.1. Light trapping

An ideal solar cell absorbs all incident photons in the absorber layer. Intensity
decays according the exponential Lambert-Beer law

I(d) = I0 exp{−αd}. (2.4)

One of the most widely used absorber materials is silicon [Wirth, 2015]. Its abun-
dance in the earths crust (second only to oxygen) and non-toxicity make it the most
viable option to base a renewable world energy supply on [Saga, 2010]. In contrast
to other absorber materials, such as GaAs or InP, which are direct semiconductors,
silicon is an indirect semiconductor. Thus it exhibits relatively poor absorption of
photons whose energy is close to the band edge. The result is a relatively poor
absorption efficiency. In Figure 2.4a the real (solid line) and imaginary part (dashed
line) of the refractive indices of crystalline (black), amorphous (blue) and microcrys-
talline silicon (red) is shown. Note the logarithmic scale for the imaginary parts.
Figure (2.4b) depicts the penetration depth

dpen =
1

α
=

λ

4πIm {n}
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(where n is the refractive index) of the incident photons in crystalline silicon. This
quantity is derived from (2.4) and measures the depth an electromagnetic field can
reach as its intensity decays to 1/e. The penetration depth in silicon increases by
orders of magnitude over the spectrum. Typically employed absorber thicknesses
(indicated as hatched areas) are insufficient to absorb all of the incident photons.
Especially in the near infrared this severely limits the short-circuit current density
as there still are a large number of photons in the spectrum (cf. discussion in the
previous section). This imperfect absorption makes management of the incident
light a key issue in solar cell optimization. The objective is to enhance the optical
path of the incident light as much as possible in order to have similar absorption as
in much thicker absorbers. An obvious improvement is the introduction of a back
reflector designed to reflect light reaching the back side of the absorber layer back
into it. Thus the path length of the light effectively doubles.
Although the use of planar slabs as absorbing layers is beneficial for the electrical

properties, they are not optimal for the optics of the solar cell. The high refractive
index n ∈ [3.5, 7) of silicon leads to large reflection losses in excess of 30% in bare
planar slabs. It also allows for light to be trapped inside the absorber layer by total
internal reflection due to contrast in refractive indices between the absorber material
and air. Anti-reflective coatings (ARCs) based on index matching or destructive
interferences can be used to reduce reflection losses. Perfect transmission for a
single wavelength can be achieved for a coating with thickness d = λ/4, but for
a broad spectrum multiple layers have to be used, rendering the ARC much more
complex. Furthermore, the anti-reflection effect works in both directions and hence
light cannot be trapped any more as it is easily out-coupled.
A similar effect anti-reflection effect can be achieved through corrugations of the

absorber layer. In addition, these corrugations scatter light away from the incidence
angle, thus increasing the light path within the absorber layer. A study of scatter-
ing and non-scattering anti-reflection designs can be found in [Lockau et al., 2014b].
A plethora of different concepts and structures to scatter and trap light efficiently
within the absorber layer have been presented. Figure 2.5 (ii-iv) depicts some con-
cepts that are commonly discussed in addition to the discussed anti-reflective coating
in Figure 2.5 (i):

periodic scatterers A periodic nano-structuring, such as a grating, scatters light
very efficiently into discrete angles and allows to focus light into specific spatial
regions. The list of possible structures comprises a number of different 1D and
2D gratings, i.e. binary, blazed and sinusoidal gratings or arrays of scatterers
such as (inverted) pyramids and nanowires [Zeng et al., 2006, Krč et al., 2011,
Čampa et al., 2009, Yu et al., 2010a, Mavrokefalos et al., 2012, Christesen et al.,
2012, Schmitt et al., 2012, Kowalczewski et al., 2013, Paetzold, 2013, Lockau
et al., 2014b, Lockau et al., 2014c, Becker et al., 2014].

random scatterers A random or disordered nano-texturing scatters an incident
light beam into a continuum of angles. The randomization of the interface
angles leads to broadband anti-reflection and scattering effects. The shape
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Figure 2.5.: Schematics of four different light-management concepts employed in so-
lar cell research. (i) An anti-reflective coating can be employed to reduce
reflections and a back reflector doubles the light path inside of the semi-
conductor absorber layer. (ii): Periodic textures scatter incident light
into discrete angles. The unit cell shape and period may vary. (iii): A
random texture scatters light into a variety of angles accepting incident
light from all angles. (iv): (Metallic) nano-particles allow for tailored
light-scattering at the front of the solar cell absorber or scatter light
and enhance optical near-fields inside the absorber layer.

of the texture may range from densely packed, high-aspect ratio, needle-like
structures (black silicon) to much larger, etched craters in AZO [Yablonovitch,
1982, Campbell and Green, 1987, Krč et al., 2003, Koynov et al., 2006, Fahr
et al., 2011, Ferry et al., 2011, Jovanov et al., 2013].

nano-particles Nano-scale particles at the interface of an absorber have a scattering
effect as well. Tailoring size and shape, the scattering can be directed as well.
Metallic nano-particles within the absorber layer scatter light and can lead to
an enhanced plasmonic near-field in the vicinity of the particle which leads
to absorption enhancements [Schaadt et al., 2005, Fahr et al., 2009, Deceglie
et al., 2012, Schmid et al., 2014, Schmid and Manley, 2014].

The design and optimization of nano-photonic scattering structures for light-
management is a field of intense research and many different light-trapping concepts
have been investigated both experimentally and theoretically. This intense work has
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led to the derivation of theoretical limits for light-path or absorption enhancements
different concepts. A review of these can be found in [Sprafke and Wehrspohn,
2012]. The most important limit being the geometric limit derived by Yablonovitch
[Yablonovitch, 1982] which is often named in his honor. Assuming a scattering sur-
face with ideal diffuse (or Lambertian) scattering properties, weak-absorption in a
slab much thicker than the incident wavelength and a perfect reflector, the light-path
can be enhanced by a factor of at most

αYab = 4n2

where n is the real part of the refractive index. There are multiple possibilities to
derive this limit without using the wave characteristics of light, hence the name
geometric limit. For grating structures and very thin absorber layers, absorption
enhancements can exceed this limit by a factor of π [Yu et al., 2010b] through
coupling to high-quality resonances with high intensities. By accepting light from
the entire half-space, but restricting the emission cone of light to a very small solid
angle Θ, the absorption enhancement factor is

αecone =
4n2

sin2(Θ)
.

In [Sprafke and Wehrspohn, 2012] this is referred to as “ultra-light trapping”.
Several light-trapping concepts have been demonstrated with the promise to ex-

ceed the geometrical limit experimentally. Only a handful of them are industrially
viable or compatible with current manufacturing techniques. The industry stan-
dard as of 2015 for (tandem) TFSSCs is still the use of a randomly textured TCO.
Out of the above mentioned candidate materials, BZO and etched AZO provide
light-scattering superior to FTO.

2.2.2. Optical modeling

The efficiency considerations in Section 2.1.2 rely to great extend on the short-circuit
current density in (2.3) which is the integral over the EQE weighted with spectral
solar photon flux. In solar cell optimization the wavelengths resolved EQE is often
used as a figure of merit instead. The EQE measures the probability of an incident
photon at a specific energy to be collected as a charge carrier pair at the contact.
Optical simulations allow to compute the cell absorptance and to estimate the EQE
of a solar cell assuming perfect carrier collection, i.e. neglecting all electrical loss
mechanisms. Figures 6.15 and 6.16 show simulated EQE curves and absorptance
plots.
Underlying all considerations in this work is a fully parameterized optical solar

cell model. This model builds on the work presented in [Lockau, 2012]. The model
is based on measured data wherever applicable, for example refractive indices and
geometric parameters such as thicknesses and textures measured by atomic force
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microscopy (AFM). The thin-film solar cells in superstrate configuration are modeled
as layered media stacks with different cell domains separated by arbitrary interface
textures. This emulates the production of solar cells by chemical vapor deposition
(CVD) where cell layers are deposited in sequence on top of each other, starting
with a substrate layer. In all examples presented in this work the substrate is FTO
on glass, but other TCOs can be and have been considered as well. A specialized
meshing pipeline for these geometries, as presented in great detail in [Lockau, 2012],
is used to generate the geometrical models of the TFSSCs. For more general, three-
dimensional, nano-photonic structures other meshing tools are more suitable and
have been employed to generate for example the meshes in Section 6.1.
Approximate methods have been successfully employed to account for random

textures in solar cells for years [Leblanc et al., 1994, Krč et al., 2003, Jäger et al.,
2012, Jäger, 2012]. Rigorous treatments however are a more recent phenomenon
[Rockstuhl et al., 2007, Lockau, 2012, Isabella et al., 2014, Jäger et al., 2015] with the
major restrictions being computation time and domain sizes. The modeled tandem
solar cells have a randomly rough interface texture which extends over several cm2

before being separated by electric circuits in the real world. However, incident light
does not propagate to the limits of the absorber layer but will be absorbed within
(possibly many) micrometers of absorber materials. These lateral dimensions still
push the the boundaries of current computing capabilities for rigorous Maxwell
solvers if modeled as an isolated domain. For modeling purposes and especially
for experimental comparability, it is crucial to account for light being scattered
across the lateral boundaries of the computational domain. Commonly periodic
boundary conditions are employed to serve as artificial boundary conditions at the
lateral boundaries of the computational domains. Thus, light scattered out of one
boundary re-enters on the opposite side. The random, infinitely extended texture
is thus restricted to a periodic unit cell with small lateral dimensions in the range
of a few micrometers [Lockau et al., 2013]. A Monte-Carlo sampling over several of
these unit cells generally provides reasonable approximations of the solar cell optics.
We employ different methods to include random textures into periodic unit cells:

• periodification of AFM data,

• mirroring of AFM data,

• generation of synthetic data with similar statistics.

Each of these methods has drawbacks. The substrate roughness can be directly
investigated by means of AFM which provides the basis for all methods. The random
structure of the substrate texture prohibits the direct use of measured AFM data as
an interface texture in periodic setups. Periodification of patches taken from AFM
data at the domain sizes suitable for 3D simulations may lead to distortions of the
surface morphology in these smaller patches. Mirroring of smaller patches along
x and y axis yields periodic patches by design, but may also introduce rims and
ridges along the mirror axis. However, this method allows to model larger unit cells,
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2. Photovoltaics Basics

provided the illumination shares the same symmetry. This is the case for most solar
cell simulations where normally incident light is used.
The morphologic statistics derived from AFM data allow to generate synthetic tex-

tures based on height autocorrelation length (ACL) and root mean squared rough-
ness (RMS). These are derived from a radial fit of the (height) autocorrelation
function (ACF)

γ(f ;d) =

∫
R2 f(r)f(r + d) dr

σ2
(2.5)

where d ∈ R2 and f : R2 → R is a height distribution with variance σ2. It can be
efficiently computed via fast Fourier transform (FFT) if f is periodic or periodified.
Assuming the height distribution is isotropic, it can be represented by a radial ACF
with only a distance variable d. Fitting the radial formulation of (2.5) by a Gaussian
distribution

γ(d;σRMS, LACL) = σ2
RMS exp

(
3

2

(
d

LACL

)2
)
, (2.6)

defines the ACL parameter LACL and the RMS parameter σRMS. This information is
readily available for a variety of morphologies. Some authors use other constants or
exponents in the exponential, leading to different definitions of the autocorrelation
length.
As the ACF is related to the power spectral density (PSD) (Wiener-Khinchin

theorem, [Goodman, 2000])

γ(f ;d) =

∫
R2

f̂ᵀ(k)f̂(k)

σ2
eik·d dk =

∫
R2

PSD(k)eik·d dk,

we can use it to generate a random distribution with the same ACF by introducing
random phases in the inverse transform

z(r) = FFT−1
(
σRMS

√
PSD(k)eiφrand

)
.

This technique and is described in detail in [Wu, 2000] and applied to solar cell
modeling [Lockau et al., 2011, Lockau, 2012, Hammerschmidt et al., 2013]. It also
allows for a controllable variation of surface statistic parameters which was used in
[Kirner et al., 2014].
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The following chapter reviews the mathematical basis required for the formulation
and the solution of Maxwell’s equations with the Finite Element Method and the
theoretical understanding and analysis of the Reduced Basis Method presented in
Chapter 5. We start with a summary of the necessary definitions and results from
functional analysis in Section 3.1. This comprises the concept of Hilbert spaces,
the variational formulation and the function spaces used in this thesis. In Section
3.2 we review Maxwell’s equations as the fundamental set of equations modeling
light-matter interaction in thin-film solar cells and photonic nanostructures. The
electromagnetic scattering problem and its weak formulation, the discretization with
finite elements and appropriate boundary conditions are presented in this context.
A few remarks in Section 3.3 on domain decomposition methods focused on the
concepts used in Chapter 4 conclude this chapter.

3.1. Functional analysis

The introduction of the electromagnetic scattering problem and its solution with
finite elements requires terms, concepts and notations from functional analysis.
Specifically Hilbert and Sobolev spaces and their properties are required to describe
and solve Maxwell’s equations numerically. A comprehensive introduction to func-
tional analysis is found in [Werner, 2011] where the following definitions are adapted
from.

3.1.1. Hilbert spaces

The definition of a K-Hilbert space over a field K = C or K = R requires some
preliminary work. We recall the definitions of a norm ‖ · ‖X and a normed vector
space (X, ‖ · ‖X):

Definition 3.1 (Norm). Let X be a K-vector space. A function

‖ · ‖X : X → [0,∞)

is called norm, if the following axioms are satisfied ∀x, y ∈ X and ∀λ ∈ K:

(i) ‖λx‖X = |λ|‖x‖X ,

(ii) ‖x+ y‖X ≤ ‖x‖X + ‖y‖X ,
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3. Mathematical Basics

(iii) ‖x‖X = 0⇒ x = 0.

The pair (X, ‖ · ‖X) is called a normed vector space.

For any x, y ∈ X a metric d(x, y) = ‖x− y‖X is induced by this norm. This allows
for a definition of sequences and terms like convergence. For a Hilbert space we need
the concept of a complete space:

Definition 3.2 (Complete normed spaces). A normed space X in which all Cauchy
sequences converge is called complete or Banach space.

Furthermore we require an additional map to be defined on the vector space X

Definition 3.3 (Inner product). Let X be a C-vector space. A map

(·, ·)X : X ×X → K

is called inner product or scalar product, if the following axioms are satisfied
∀x, y, z ∈ X and ∀λ ∈ K:

(i) (x+ y, z)X = (x, z)X + (y, z)X ,

(ii) (x, λy)X = λ(x, y)X ,

(iii) (x, y)X = (y, x)X ,

(iv) (x, x)X ≥ 0,

(v) (x, x)X = 0 ⇐⇒ x = 0,

where the bar denotes complex conjugation. The pair (X, (·, ·)X) is called an inner
product space.

We call two elements of X orthogonal if (x, y)X = 0. These definitions combined
define a Hilbert space:

Definition 3.4 (Hilbert space). A normed vector space (X, ‖ · ‖X) is called pre-
Hilbert space, if an inner product (·, ·)X : X×X → K with (x, x)X = ‖x‖X ∀x ∈ X
exists. A complete pre-Hilbert space is called Hilbert space.

We recall some properties of linear operators mapping a Hilbert space X to another
Hilbert space Y . Particularly, the case of Y = K is of interest.

Definition 3.5 (Dual space). Let X be a K-Hilbert space. The space of all bounded
/ continuous linear maps · : X → K is called the dual space and denoted X ′. Its
elements are bounded/continuous linear functionals. With

(cF )(x) = cF (x)

(F +G)(x) = F (x) +G(x)
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for F,G ∈ X ′, x ∈ X, c ∈ K and the dual norm ‖ · ‖X′ given by

‖F‖X′ = sup
x∈X

|F (x)|
‖x‖X

,

X ′ is a Banach space. F (x) is oftentimes shortened to Fx.

Remark. As bothX andK are normed spaces, continuity and boundedness of F ∈ X ′
are equivalent (cf. [Werner, 2011] Theorem II.1.2).

The following theorem allows to identify elements of the space X ′ with elements of
the Hilbert space X and vice versa.

Theorem 3.6 (Riesz representation theorem). For each F ∈ X ′, there exists a
unique f ∈ X such that

F (x) = (f, x)X ∀x ∈ X.

Furthermore, ‖F‖X′ = ‖f‖X holds. We call f the Riesz representation of F .

Corollary 3.7 (Riesz representer of anti-linear form). The Riesz representer of an
anti-linear form F , that is

F (x+ y) = F (x) + F (y),

F (λx) = λF (x),

is a unique f ∈ X such that

F (x) = (x, f)X ∀x ∈ X.

Proof. G(x) = F (x) is a linear form, hence Theorem 3.6 applies. The Definition 3.3
(iii) of the inner product yields the result.

3.1.2. Variational formulation

The Finite Element Method presented in Section 3.2.4 requires the partial differential
equation to be stated in weak form. This variational formulation is based on bilinear
or sesquilinear forms.

Definition 3.8 (Sesquilinear form). Let X be a K Hilbert space. A mapping

a(·, ·) : X ×X → K

is called bilinear (K = R) or sesquilinear (K = C) form, if ∀x, y, z ∈ X, ∀λ, µ ∈ K

a(λx+ µy, z) = λa(x, z) + µa(y, z)

a(x, λy + µz) = λa(x, y) + µa(x, z)
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Definition 3.9 (continuity, coercivity). A sesquilinear form a(·, ·) on a normed
space X is

(i) bounded or continuous if there exists a constant R+ 3 γ <∞ such that

|a(x, y)| ≤ γ‖x‖X‖y‖X ∀x, y ∈ X. (3.1)

The smallest constant γ satisfying (3.1) is called the continuity constant of
a.

(ii) coercive if there exists a constant R+ 3 α > 0 such that

|a(x, x)| ≥ α‖x‖2X ∀x ∈ X. (3.2)

The largest constant α satisfying (3.2) is called the coercivity constant of
a.

(iii) hermitian or symmetric if:

a(x, y) = a(y, x) ∀x, y ∈ X.

In the following, we focus on sesquilinear forms on C-Hilbert spaces as they are
required for the variational formulation of Maxwell’s equation later on. The results
for bilinear forms hold analogously. We will make use of the following properties:

Corollary 3.10. Let a(·, ·) be a bounded sesquilinear form. There exists a unique
bounded linear operator T : X → X such that

a(x, y) = (T (x), y)X ∀x, y ∈ X.

The operator norm of T is the continuity constant y > 0 satisfying (3.1).

Proof. For every x ∈ X a(x, ·) is a linear, bounded functional and according to Theo-
rem 3.6 we can find the Riesz representer Ax ∈ X such that a(x, y) = (Ax, y)X ∀x ∈
X. We define T (x) := Ax. The operator norm of T is

|||T ||| = sup
x∈X

‖T (x)‖
‖x‖

= sup
x∈X

‖a(x, ·)‖X′
‖x‖

= sup
x∈X

sup
y∈X

a(x, y)

‖x‖‖y‖
= γ

where we used ‖T (x)‖ = ‖a(x, ·)‖X′ .

We now turn to variational problems given by sesquilinear forms. The prototype of
such a problem is the following:

Problem 1. Let a(·, ·) be a bounded, coercive sesquilinear form on a Hilbert space
X and f ∈ X ′. Find u ∈ X such that

a(u, v) = f(v) ∀v ∈ X (3.3)
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The following lemma states the existence and uniqueness of solutions of Problem 1.

Lemma 3.11 (Lax-Milgram). Let X be a Hilbert space. Suppose a(·, ·) : X×X → C
is a bounded, coercive sesquilinear form. Then for each f ∈ X ′ there exists a unique
solution u ∈ X to (3.3) and

‖u‖X ≤
γ

α
‖f‖X′ ,

where γ and α are the continuity and coercivity constants.

This famous Lax-Milgram lemma (also known as Lax-Milgram theorem) relies on
the coercivity of the sesquilinear form a(·, ·). A generalization of this lemma for
non-coercive sesquilinear forms uses the inf-sup constant β instead.

Definition 3.12 (Inf-sup constant). Let a(·, ·) be a sesquilinear form on a normed
space X. The inf-sup constant β of a(·, ·)is given by

β = inf
x∈X

sup
y∈X

|a(x, y)|
‖x‖X‖y‖X

.

a(·, ·) satisfies the Babuška-Brezzi condition, if β > 0.

With the Babuška-Brezzi condition the existence and uniqueness of solutions to
Problem 1 can be extended to non-coercive sesquilinear forms.

Lemma 3.13 (Generalized Lax-Milgram). Let X be a Hilbert space. Suppose a(·, ·) :
X ×X → C is a bounded sesquilinear form which satisfies the Babuška-Brezzi con-
dition. Then for each f ∈ X ′ there exists a unique solution u ∈ X to (3.3) and

‖u‖X ≤
γ

β
‖f‖X′ ,

where γ and β are the continuity and inf-sup constants of a(·, ·), respectively.

3.1.3. Function spaces

The variational formulation of Maxwell’s equation involves Sobolev spaces of scalar
and vector valued functions. These are an important class of Hilbert spaces of par-
ticular interest for the solution of PDEs in weak form. Before turning to Sobolev
spaces, we recall some results on integration which always refers to Lebesque inte-
gration on Ω ⊆ Rn.

Lp spaces We define the space of p-integrable functions Lp(Ω) as

Lp(Ω) :=

{
f : Ω → K, f measurable,

∫
Ω

|f(r)|p dr <∞
}
, 1 ≤ p <∞

‖f‖∗Lp(Ω) :=

(∫
Ω

|f(r)|p dr
)1/p

, f ∈ Lp(Ω)
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The case p =∞ is defined in the following sense:

L∞(Ω) :=
{
f : Ω → K, f measurable, ‖f‖∗L∞(Ω) <∞

}
‖f‖∗L∞(Ω) := ess supf = inf

c∈R
{ |f | < c almost everywhere }

‖f‖∗Lp(Ω) is only a semi-norm on Lp(Ω) as ∀f ∈ N : ‖f‖∗Lp(Ω) = 0 where

N := {f | f = 0 almost everywhere }.

In the quotient space
Lp(Ω) := L∞(Ω)/N

functions f and g are identified if f − g = 0 almost everywhere. Elements of Lp(Ω)
are equivalence classes [f ] of functions f . We may chose a single representation of
a class to represent it whenever the result does not depend on the specific choice of
the representation.
All Lp(Ω), 1 ≤ p ≤ ∞ are Banach spaces, but only the space of square-integrable

functions L2(Ω) is a Hilbert space. In L2(Ω) we have the inner product

(u, v)L2(Ω) =

∫
Ω

u(r)v(r) dr (3.4)

with the associated norm

‖u‖L2(Ω) =
(
(u, u)L2(Ω)

)1/2
=

(∫
Ω

|u(r)|2 dr
)1/2

.

Sobolev spaces The definition of Sobolev spaces relies on the concept of weak
derivatives. Before introducing their definition we note another function space and
introduce the multi-index notation α = (α1, . . . , αn)

ᵀ ∈ N with |α| =
∑n

i=1 αi. This
abbreviates the notation of the derivative of a function v : Ω → K:

Dαv = ∂α1
x1
∂α2
x2
· · · ∂αnxn v

Definition 3.14 (Continuously differentiable functions). We denote

Ck(Ω) = {v ∈ C(Ω) |Dαv ∈ C(Ω), |α| ≤ k ∈ N}

the set of k times continuously differentiable functions φ : Ω → R with compact
support in Ω. We call C∞0 (Ω) the set of test functions.

Definition 3.15 (Weak derivative). Let u ∈ L1(Ω). We call w ∈ L1(Ω) satisfying∫
Ω

uDαv dr = (−1)|α|
∫
Ω

wv dr ∀v ∈ C∞0 (Ω)

the weak αth partial derivative of u.
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If w exists, it is uniquely determined and we write Dαu := w. The existence of
(weak) partial derivatives gives rise to the definition of Sobolev spaces.

Definition 3.16 (Sobolev space). The Sobolev space W k,p is defined as

W k,p := {u ∈ Lp(Ω) |Dαu ∈ Lp(Ω) ∀α ∈ Nn with 0 ≤ |α| ≤ k} .

We abbreviate W k,2 = Hk(Ω) and note that

(u, v)Hk(Ω) =
∑
|α|≤k

∫
Ω

DαuDαv dr

is a scalar product on Hk(Ω) which induces the norm

‖u‖Hk(Ω) =

∑
|α|≤k

∫
Ω

DαuDαu dr

1/2

.

The existence of the scalar product distinguishes Hk(Ω) from the Banach spaces
W k,p(Ω), making it a Hilbert space.

H(curl,Ω) spaces The solution of Maxwell’s equations are vector fields in R3

thus we need to extend the concepts of Sobolev spaces from scalar to vector valued
functions. This poses no problem as the definition of the L2 inner product (3.4)
easily extends to vectorial functions. For u = (u1, u2, u3)

ᵀ ∈ (L2(Ω))3 and v =
(v1, v2, v3)

ᵀ ∈ (L2(Ω))3 (3.4) becomes

(u, v)(L2(Ω))3 =

∫
Ω

3∑
i=1

uivi dr

and similarly the norm

‖u‖(L2(Ω))3 =
(
(u, u)(L2(Ω))3

)1/2
.

In Maxwell’s equations we find the differential operators ∇× and ∇· acting on
three-dimensional vectorial functions which are defined as

curl u = ∇× u = (∂x2u3 − ∂x3u2, ∂x3u1 − ∂x1u3, ∂x1u2 − ∂x2u1)
ᵀ

and

div u = ∇ · u =
3∑
i=1

∂xiui

for u ∈ (L2(Ω))3 with weak partial derivatives.
This allows to define the following Hilbert space which we will employ in solving

Maxwell’s equations numerically.
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Definition 3.17 (H(curl,Ω)). We define the space of three-dimensional vectorial
functions u ∈ (L2(Ω))3 with curl u ∈ (L2(Ω))3 as

H(curl, Ω) =
{
u ∈ (L2(Ω))3 | ∇ × u ∈ (L2(Ω))3

}
with the corresponding norm

‖u‖H(curl,Ω) =
(
‖u‖2(L2(Ω))3 + ‖∇ × u‖2(L2(Ω))3

)1/2
.

This Hilbert space is of fundamental importance for solutions to Maxwell’s equa-
tions as its elements correspond to solutions with finite energy.

3.2. Maxwell’s equations and the electromagnetic
scattering problem

This sections serves as a brief introduction to the set of equations stated by James
Clerk Maxwell (1831-1879) 150 years ago. This set of equations is named in his
honor and consists of two pairs of coupled PDEs relating six fields. These fields
describe the dynamical behavior of electromagnetic fields and its interactions with
matter. In this section we start with the classical macroscopic Maxwell’s equations,
introduce a harmonic time-dependence and consider the specific problem setting of
scattering of an electromagnetic fields by an obstacle. We conclude this section
by deriving the weak formulation of the time-harmonic electromagnetic scattering
problem and its solution using FEM discretizations with the appropriate boundary
conditions to model transparent boundaries in isolated domains. The derivativation
and notation follows the FEM chapter of [Lavrinenko et al., 2014].

3.2.1. Maxwell’s equations

The electromagnetic field at a spatial coordinate r ∈ R3 at time t ∈ R is described
by four real-valued vector functions: the electric field strength E, the magnetic field
strength H , the electric flux density D and the magnetic flux density B.

The sources of an electromagnetic field are the macroscopic static charge distribu-
tions ρ, a scalar quantity, or the macroscopic electric current densities j, a vectorial
quantity. We state the Maxwell’s equations in differential form together with their
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3.2. Maxwell’s equations and the electromagnetic scattering problem

commonly used names:

Faraday’s law of induction
∂B

∂t
+∇×E =0, (3.5a)

Coulomb’s law ∇ ·D = ρ, (3.5b)

Ampère’s law
∂D

∂t
−∇×H =− j, (3.5c)

absence of magnetic monopoles ∇ ·B =0. (3.5d)

The conservation of charges in the field equations (3.5a) and (3.5c) requires the
divergence conditions (3.5b) and (3.5d) to hold. This can be seen by taking the
divergence of (3.5a) and (3.5c)

∇ · ∂B
∂t

= 0 and ∇ · ∂D
∂t

+∇ · j = 0 (3.6)

where ∇ · (∇ × x) = 0 for any vector x is used. The continuity equation of the
electric charge

∇ · j + ∂ρ

∂t
= 0 (3.7)

is obtained by adding the divergence of (3.5c) and the time derivative of (3.5b).
Together, (3.7) and (3.6) yield

∂

∂t
∇ ·B =

∂

∂t
(∇ ·D − ρ) = 0

Maxwell’s equations require 12 components of the vector fields E,H ,D and B
to be fixed but constitute only 8 equations. In addition, not all quantities are
independent. Namely, E and B are linked as can be shown quickly: Introducing a
vector potential A satisfying

B = ∇×A,

which is motivated by (3.5d), we get

∇×
(
E +

∂A

∂t

)
= 0

instead of (3.5a). The vanishing curl of this expression allows to express it as the
gradient of a scalar potential Φ, i.e.

−∇Φ = E +
∂A

∂t
.

This means, only four components of E and B are independent. In total we require
six additional equations to fix all components. These are called constitutive relations
describing the dependence of electric flux density and magnetic field on the electric
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field and magnetic flux density

D =D(E,B),

H =H(E,B).

In this work we assume all bodies to be at rest and assume a harmonic dependence
on time t with angular frequency ω > 0, that is

E(r, t) = Re
{
Ê(r, ω)e−iωt

}
, (3.8a)

H(r, t) = Re
{
Ĥ(r, ω)e−iωt

}
. (3.8b)

and similarlyD,B, j and ρ. As physical fields are always real valued, taking the real
part is a necessity. The quantities denoted with hats are complex-valued functions
contain phase information called phasors. Multiplying these quantities with a phase
factor e−iωt and taking the real part recovers the real valued physical quantity at a
point r at time t.

In the following we will consider only time-harmonic fields and hence will drop the
hat notation. The time-harmonic Maxwell’s equations are now derived from (3.5)
by applying the time derivative

∂

∂t
→ −iω

and now read

∇×E − iωB =0, (3.9a)
∇ ·D = ρ, (3.9b)

∇×H + iωD = j, (3.9c)
∇ ·B =0. (3.9d)

The continuity condition (3.7) becomes

∇ · j − iωρ = 0. (3.10)

Assuming linear material relationships, the constitutive equations read as

D = εE, (3.11a)
H = µB, (3.11b)

j = σE + ji. (3.11c)

where ε, µ and σ are the permittivity, permeability and conductivity tensors. Here
we assume that the electric current density can be split into a conducting part σE
depending linearly on the electric field and an impressed part ji. We can rewrite
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the set of equations (3.9) into a single, second order equation for the electric field E

∇× µ−1∇×E − ω2εE = iωji. (3.12)

To facilitate the transformation, we introduced the complex permittivity tensors

ε = ε+ i
σ

ω
(3.13)

and used the constitutive material equations (3.11) and Maxwell’s equations (3.9c)
to transform (3.9a):

∇×E − iωB =0
(3.11)⇐⇒

µ−1∇×E − iωH =0
∇×·
=⇒

∇× µ−1∇×E − iω∇×H =0
(3.9c)⇐⇒

∇× µ−1∇×E − iω(j − iωD) =0
(3.11)⇐⇒

∇× µ−1∇×E − iω(σE + ji − iωεE) =0 ⇐⇒

∇× µ−1∇×E − iω(σ − iωε)E =iωji
(3.13)⇐⇒

∇× µ−1∇×E − ω2εE =iωji

A special solution of (3.12) for homogeneous media with constant ε and µ without
impressed current sources ji is a plane wave

E(r) = E0e
ik·r (3.14)

with k,E0 ∈ C3 if k ·E0 = 0 and k =
√
k · k =

√
|k1|2 + |k3|2 + |k3|2 = ω

√
µε. We

call k the wave-vector with wave number k. The plane wave propagates in a direction
r0 provided Re {k · r0} > 0. It is evanescent in direction r0 if Im {k · r0} > 0.

3.2.2. Weak formulation of the Time-Harmonic
Electromagnetic Scattering Problem

The electromagnetic scattering problem describes the interaction of an incident elec-
tromagnetic field with a scatterer S located within a bounded domain of interest
Ωint with boundary ∂Ωint = Γ . The schematic in Figure 3.1 depicts this setup with
an arbitrarily shaped scatter S and a polygonal domain boundary Γ with outer
normal n. The incident field Ein is a solution to Maxwell’s equations in the ex-
terior Ωext = R3 \ Ωint with permeability µext and permittivity εext. It enters the
domain Ωint, interacts with the scatterer S and excites a scattered electromagnetic
field Esc. This scattered field is outward radiating, i.e. it leaves Ωint through the
boundary Γ and does not (re-)enter Ωint. The total electromagnetic field in Ωext is
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Figure 3.1.: Schematic depiction of scattering of an electromagnetic field by a scat-
terer S inside a domain Ωint. The incoming field Ein enters the domain
Ωint through the boundary Γ where it is the source for the electromag-
netic field E. The scattered electromagnetic field Esc originates in Ωint

and is strictly outward radiating into the exterior Ωext = R3 \ Ω with
permeability µext and permittivity εext.

30
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the superposition of Ein and Esc

E = Ein +Esc.

In order to arrive at a well-posed problem formulation we need to impose appropriate
boundary conditions at Γ and at ‖r‖ → ∞. We demand, that the scattered electric
field asymptotically resembles a transversal plane wave traveling radially away from
the origin. The following definition guarantees this property in more formal way.

Definition 3.18 (Silver-Müller Radiation Condition). A solution Esc to Maxwell’s
equations is called (strictly) outward radiating if it satisfies the Silver-Müller
radiation condition

lim
r→∞

r

(
∇×Esc(r)× r0 − i

ω
√
εextµext

c0
Esc(r)

)
= 0

uniformly for all directions r0,

where r ∈ R3 is the spatial coordinate with norm r = ‖r‖ and r0 = r−1r, εext and
µext are the permittivity and permeability in the exterior domain and c0 the speed
of light in vacuum.

This definition is a necessary condition for the unique solvability of the following
strong formulation of the electromagnetic scattering problem which is the prototyp-
ical problem considered throughout this thesis.

Problem 2 (Electromagnetic scattering problem - strong formulation). For given
Ωint with boundary Γ :
Find E such that

(i) the electric field E satisfies Maxwell’s equations in the interior Ωint:

∇× µ−1∇×E − ω2εE = ji in Ωint

(ii) the scattered electric field Esc satisfies Maxwell’s equations in the exterior
domain Ωext = R3 \Ωint:

∇× µ−1ext∇×Esc − ω2εextEsc = 0 in Ωext

(iii) the tangential component of the electric field is continuous (boundary condi-
tion at Γ )

n× (E −Esc −Ein) |Γ = 0 (3.15)

where the incident electric fieldEin satisfies Maxwell’s equations in the exterior
domain Ωext

(iv) the scattered electric field Esc is strictly outward radiating, i.e. it fulfills the
Silver-Müller radiation condition 3.18 (boundary condition at ‖r‖ → ∞).
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In the following, we do not consider problems with impressed current sources, i.e.
from now on

ji = 0.

We observe that Ein enters the problem formulation only at the boundary Γ .

The weak formulation of the electromagnetic scattering problem is readily derived
from (3.12). Instead of E, we we denote u ∈ X the electric field with a function
space X to be specified later. We multiply (3.12) with the complex conjugate of a
test function v ∈ (C∞0 )3 and subsequently integrate over R3:∫

R3

v ·
(
∇× µ−1∇× u− ω2εu

)
dr = 0.

Integrating by parts we find∫
R3

∇× v · µ−1∇× u− ω2v · εu dr = 0 (3.16)

where the arising boundary term vanishes at infinity due to the compact support of
v. We split the integral into the interior and exterior parts defined over Ωint and
Ωext, use u = usc + uin in Ωext and ensure that (3.15) holds:∫

Ωint

∇× v · µ−1∇× u− ω2v · εu dr

+

∫
Ωext

∇× v · µ−1∇× usc − ω2v · εusc dr

+

∫
Ωext

∇× v · µ−1∇× uin − ω2v · εuin dr︸ ︷︷ ︸
:=I

= 0 (3.17)

The last integral I can be rewritten into a boundary integral over Γ by means of
the vector identity

∇ (a · b) = b · (∇× a)− a · (∇× b) ,

the assumption that uin is a solution to Maxwell’s equations in the exterior and
Gauß’s theorem:

I =

∫
Ωext

∇ ·
(
v · µ−1∇× uin

)
+ v · ∇ × µ−1∇× uin − ω2v · εuin dr

=

∫
Ωext

∇ ·
(
v · µ−1∇× uin

)
+ v ·

(
∇× µ−1∇× uin − ω2εuin

)︸ ︷︷ ︸
=0

dr

=

∫
∂Ωext

v · µ−1∇× uin ds = −
∫
Γ

v · µ−1∇× uin ds.
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Now (3.17) reads∫
Ωint

∇× v · µ−1∇× u− ω2v · εu dr +

∫
Ωext

∇× v · µ−1∇× usc − ω2v · εusc dr

=

∫
Γ

v · µ−1∇× uin ds. (3.18)

In the following, it is useful to abbreviate

aint(v,u) =

∫
Ωint

∇× v · µ−1∇× u− ω2v · εu dr (3.19)

and

aext(v,usc) =

∫
Ωext

∇× v · µ−1∇× usc − ω2v · εusc dr. (3.20)

Next, we introduce an auxiliary function g with support only in the vicinity of Γ
which is tangentially continuous and fulfills

g|Γ = uin|Γ . (3.21)

This function helps to include the continuity condition (3.15) in the weak formula-
tion. We write

usc = (usc + g)− g := w − g. (3.22)

We replace usc in (3.18) and use the abbreviations

aint(v,u) + aext(v,w − g) =
∫
Γ

v · µ−1∇× uin ds

⇐⇒ aint(v,u) + aext(v,w)− aext(v, g) =
∫
Γ

v · µ−1∇× uin ds

⇐⇒ aint(v,u) + aext(v,w) = aext(v, g) +

∫
Γ

v · µ−1∇× uin ds. (3.23)

By construction u and w are defined on Ωint and Ωext, respectively, but are contin-
uous across Γ , thus we can define

uw =

{
u(r) r ∈ Ωint,

w(r) r ∈ Ωext.

Inserting this definition into (3.23) we obtain

aint(v,uw) + aext(v,uw) = aext(v, g) +

∫
Γ

v · µ−1∇× uin ds. (3.24)

Finally, we can state the weak formulation of the electromagnetic scattering problem.
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We have not yet specified the proper function space X for u. In order for the integrals
to exist, we must demand ∇×u to be integrable. This makes X = H(curl,R3) the
proper choice as function space.

Problem 3 (Electromagnetic scattering problem - weak formulation). Let the inci-
dent field uin and its tangential component ∇×uin be given on Γ . For arbitrary g
satisfying (3.21) we have the following variational formulation of the electromagnetic
scattering problem:
Find u ∈ H(curl,R3) such that

a(v,u) = f(v) ∀v ∈ H(curl,R3) (3.25)

where
a(v,u) =

∫
R3

∇× v · µ−1∇× u− ω2v · εu dr. (3.26)

and

f(v) =

∫
Ωext

∇× v · µ−1∇× g − ω2v · εg dr +
∫
Γ

v · µ−1∇× uin ds. (3.27)

3.2.3. Transparent boundary conditions

The electromagnetic scattering Problem 3 is stated on an unbounded domain. For
the numerical solution it is split in a bounded domain Ωint enclosing the scatterer
and an unbounded exterior Ωext. A mathematically correct formulation must obey
the radiation boundary condition, i.e. it must account for radiation out of the com-
putational domain Ωint to infinity by imposing a transparent boundary condition
on Γ = ∂Ωint. Only for specific instances it is possibly to describe the transpar-
ent boundaries by means of Dirichlet-, Neumann- or Robin-boundary conditions,
for example by employing a Dirichlet-to-Neumann (DtN) operator. Generally, the
straight-forward discretization and application of artificial boundary conditions in-
troduces artificial, unphysical reflections from the boundaries which no longer satisfy
the radiation condition in Definition 3.18, i.e. the scattered field is no longer strictly
outward radiating.
Different concepts and transparent boundary conditions have been introduced.

Among them the Perfectly Matched Layer method [Berenger, 1994] has emerged
as the most widely used. The idea of this method is a complex continuation of
the Maxwell’s equation to a complex coordinate system. In the complex deformed
coordinate system propagating and oscillating waves are deformed to exponentially
decaying waves. If the decay at a finite distance ρ > 0 is sufficiently approximated,
a zero Dirichlet boundary condition can be imposed without distorting the solution.
The complex stretching of the coordinate system in the exterior is indicated in

Figure 3.2. In this trapezoidal coordinate system the coordinate stretching (x, ξ) 7→
(x, (1 + iσ)ξ) works along the distance coordinate ξ. The Perfectly Matched Layer
(PML) also allows for structured exterior domains. As the coordinate stretching
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3.2. Maxwell’s equations and the electromagnetic scattering problem

Figure 3.2.: Schematic of a trapezoidal coordinate system in the structured exterior
of a domain Ωint. The dotted lines mark lines of constant distance
coordinates ξ.

is applied to the continuous problem the resulting weak formulation is identical to
Problem 3 except for a transformation of the permeability and permittivity tensors
in Ωext. It thus integrates naturally in the FEM discretization presented in the next
section. A detailed presentation of the PML in general and the adaptive PML used
throughout this thesis in particular can be found in [Zschiedrich, 2009].
Other concepts for transparent boundary conditions comprise Green’s tensor meth-

ods [Paulus and Martin, 2001], mode-matching methods and the use of infinite el-
ements [Cecot et al., 2003]. An elegant characterization of the radiation condition
in Definition 3.18 for time-harmonic fields is the pole condition method [Schmidt,
2002, Hohage et al., 2003a]. The outgoing solutions are characterized by the loca-
tion in the complex plane of the poles of their Laplace transformation with respect
to a generalized distance variable. It has been shown to be equivalent to the PML
[Hohage et al., 2003b] and can be used to detect spurious modes in resonance mode
computations [Kettner, 2012].

3.2.4. hp finite element discretization

This section serves as only as a brief introduction to the Finite Element Method.
For a more general introduction we refer to [Braess, 2007] and to [Monk, 2003,
Demkowicz, 2006, Demkowicz et al., 2007, Lavrinenko et al., 2014] for the specifics
of FEM for Maxwell’s equation.
A natural way to solve a PDE numerically is to use the weak formulation of the

PDE and to replace the function space of the continuous problem V by a finite
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dimensional subspace Vh. For Problem 3 we hence choose

Vh ⊂ V = H(curl, Ω).

As Vh is a subspace of H(curl,Ω) we call Vh a conforming finite element space and
note

N = dimVh <∞.

The discrete analog to Problem 3 reads

Problem 4 (Finite element approximation). Find uh ∈ Vh such that

a(vh,uh) = f(vh) ∀vh ∈ Vh. (3.28)

Let B = {ξ1, ξ2, . . . ξN} be a basis of Vh and

uh =
N∑
i=1

αiξi

the expansion of the solution uh of (3.28) in it. As spanB = Vh it is sufficient in
Problem 4 to demand (3.28) to hold for all ξ ∈ B. This simplifies (3.28) to the
linear system of equations

a

(
ξj,

N∑
i=1

αiξi

)
=

N∑
i=1

a(ξj, ξi)αi = f(ξj), j = 1, . . .N (3.29)

or in matrix-vector notation
Aα = f (3.30)

with Ai,j = a(ξi, ξj), fi = f(ξi) and the unknown coefficient vector αi = αi.
A finite element subspace Vh must be constructed such that (3.30) is solvable with

reasonable computational effort, i.e. A should be sparse. In finite element methods
this is achieved by using basis or ansatz functions which have a small support in Ω.
The name of the method arises from the discretization of Ω into a mesh of a finite
number of disjoint geometrical elements Ki with ∪iKi = Ω. The subscript h usually
refers to the typical size of the elements, e.g. the radius of the circumscribed sphere.
On each element K a space of polynomials PK up to order p is chosen together with
a set of linear functionals ΣK called degrees of freedom. The triple (K,PK , ΣK) is
called a finite element and must be unisolvant, i.e. ΣK must uniquely determine a
basis of PK .
Constructing finite elements and corresponding subspaces suitable for Maxwell’s

equations is still a question of research. Avoiding unphysical or spurious solutions
is a necessity. A discussion of different finite elements and associated spaces for the
electromagnetic fields is out of the scope of this introduction. For a detailed overview
we refer to [Monk, 2003, Demkowicz et al., 2007, Zaglmayr, 2006, Bergot and Du-
ruflé, 2013]. Here we quote some of the principles and key ideas in constructing

36



3.2. Maxwell’s equations and the electromagnetic scattering problem

these spaces. The analysis of the variational Problem 3 reveals complications, if the
finite element space is a subspace of the kernel of the curl-operator. The Helmholtz-
decomposition is thus used to factor out the null-space of the curl-operator. The
correct way to construct finite element spaces starts with the following sequence

H1(Ω)/R ∇−→ H(curl, Ω) ∇×−→ H(div, Ω) ∇·−→ L2(Ω)

called the de-Rham complex [Jänich, 2005]. Functions are identified as elements of
the quotient spaceH1(Ω)/R if they only differ by a constant. The diagram indicates,
that for a function p ∈ H1(Ω)/R the gradient ∇p lies in H(curl,Ω). In addition, the
range of the operator ∇ is the kernel of the curl operator whose range is L2(Ω). If
this diagram holds, we call the sequence exact. On simply connected subsets Ω ⊆ R3

this is fulfilled.
We demand for finite dimensional subspaces

Wh ⊂ H1(Ω)

Vh ⊂ H(curl, Ω)
Sh ⊂ H(div, Ω)
Zh ⊂ L2(Ω)

to fulfill the corresponding sequence

Wh
∇−→ Vh

∇×−→ Sh
∇·−→ Zh

exactly. This guarantees, that each element function vh ∈ Vh contained in the kernel
of the curl-operator is the gradient of a scalar potential, i.e. we have

∇× vh = 0⇒ ∃φ ∈ Wh : vh = ∇φ.

Our implementation [Pomplun et al., 2007] uses a full family of Nédélec’s edge ele-
ments [Nedelec, 1980] including tetrahedra, hexahedra, prisms and pyramids [Bergot
et al., 2010, Bergot and Duruflé, 2013]. They have been proven to have optimal con-
vergence rates and can be used directly in hybrid meshes [Bergot and Marc, 2013].
Table 3.1 lists the dimensions of these optimal finite element spaces for different
element types.
In FEM textbooks Céa’s Lemma, the discrete analog to the Lax-Milgram Lemma

3.13, is usually employed to derive error bounds for the error between exact and
approximate solutions u ∈ V and uh ∈ Vh for a coercive bilinear form a(·, ·). It
states, that the approximation error of the Galerkin solution is bounded by the
best-approximation in Vh with discretization independent constants. A generaliza-
tion to non-coercive sesquilinear forms holds with the Babuška-Brezzi condition (cf.
Definition 3.12). Hence, the FEM solution is the best approximation of the solution
to Maxwell’s equation in Vh. Furthermore, we have convergence of the discrete to
the continuous solution with uniform mesh refinements, also called h-refinements.
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The convergence rate is limited by the minimum of the polynomial degree p of the
ansatz functions and the regularity r of the solution [Demkowicz et al., 2007]:

‖u− uh‖H(curl,Ω) ≤ CN−min(p,r)

In a uniform p-refinement the convergence rate is only limited by the regularity.
The regularity of the solution of Maxwell’s equations is reduced at boundaries or
material interfaces, where singularities may occur. Using a posteriori error estimates
to steer locally adaptive h-refinements, the converge rate is thus limited only by
the polynomial degree of the ansatz functions. Typically, large elements with high
polynomial degrees provide a good approximation provided the solution is analytic.
The drawback of a fixed polynomial degree p for all elements is the investment
of numerical effort even if the solution is of lower regularity where the high-order
ansatz functions do not provide a benefit. The hp-adaptivity [Demkowicz et al.,
2007] resolves this handicap by allowing for different polynomial degrees to be set
on each element. Choosing both h and p adaptively leads to exponential convergence
in case of unlimited regularity.

A posteriori adaptive h- and p-refinements require the solution to be known to
steer refinements. This becomes infeasible for larger problems in three spatial di-
mensions. Oftentimes there is a priori knowledge about the physics of the solution
and location of singularities. In this case, the initial mesh can be pre-refined to
adapt to the local regularity and create ideally Optimal Initial Meshes [Demkowicz
et al., 2007]. These allow to observe exponential convergence rates for uniform p-
refinements even pre-asymptotically. In order to optimize the numerical effort, the
polynomial degree can then adapted to the local mesh size. Estimating the error in
simple test problems over each element allows to set the polynomial degree a priori
according to a user-specified global accuracy level.

Table 3.1.: Dimension of optimal finite element spaces for different element types
derived in [Bergot and Duruflé, 2013].

element \ order 1 2 3 4 5 6 7 8
tetrahedron 6 20 45 84 140 216 315 440
prism 15 52 120 228 385 600 882 1240
hexahedron 27 96 225 432 735 1152 1701 2400
pyramid 10 35 81 154 260 405 595 836

38



3.3. Scattering matrix domain decomposition

3.3. Scattering matrix domain decomposition

A domain decomposition method is a numerical strategy to subdivide computa-
tions into problems on subdomains and coordinate the solutions between adjacent
subdomains in order to solve the full problem. The subproblems can be solved in-
dependently of each other thus allowing for parallelization. There are several ways
to update the solutions on the interface between subdomains by either choosing an
iterative approach and/or overlapping subdomains [Schädle et al., 2007]. Another
possibility are Mortar methods [Wohlmuth, 2000, Hollaus et al., 2010] where vari-
ables only acting on the interface are introduced and the solution is ensured via
Lagrange multipliers. Non-iterative methods usually leave a smaller and coarser
problem to be solved on the skeleton.
In this section we derive a non-overlapping domain, non-iterative decomposition

method based on scattering matrices in a Fourier plane wave basis. We also briefly
recall a semi-analytical method for layered media in Section 3.3.4. These are the
building blocks for the incoherent coupling algorithm presented in Chapter 4. In
contrast to the previous sections we reserve bold symbols for (complex) vectors and
denote fields with roman letters to distinguish E ∈ CM and E : R3 → C3.

3.3.1. Fourier plane wave basis

In the following we assume a computational domain Ω with transparent boundary
conditions in ±z direction and a two-fold Bloch-periodic behavior of the electromag-
netic field. This means for lattice vectors a1 and a2 ∈ R3 we have

E(r + ai) = E(r)eikB ·ai (3.31)

with the Bloch-vector kB and ai ∈ {a1,a2}. Associated with ai is a reciprocal grid
vector bi defined by

ai · bj = 2πδi,j. (3.32)

For simplicity we will assume the grid vectors to lie in the xy plane.
The Fourier transform of the electric field in the exterior domain Ω+ with re-

spect to the z = z0 hyperplane is an infinite sum in case of the assumed two-fold
periodicity.

E(r) =
∑
n1∈Z

∑
n2∈Z

E+
n1,n2

eik
+(n1,n2)·r +E−n1,n2

eik
−(n1,n2)·r (3.33)

with the complex amplitudes E+
n1,n2

and E−n1,n2
∈ C3, the wave vectors k±(n1, n2) =

(k⊥(n1, n2),±kz(n1, n2))
ᵀ where k⊥(n1, n2) = n1b1 + n2b2 ∈ R2 with the x,y com-

ponents of the reciprocal grid vectors bi. kz(n1, n2) is defined by

kz(n1, n2) =
√
k2m − ‖k⊥(n1, n2)‖2 ∈ C (3.34)
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(a) (b)

Figure 3.3.: (a) Schematic depiction of an isolated, layered domain Ω with half-
infinite sub- and superspaces Ω− and Ω+. The subdomains Ω1−Ω5 are
separated by the boundaries Γ1 − Γ4.
(b) Schematic and labeling for the scattering matrix computation de-
tailed in Section 3.3.2. The subdomains are isolated individually by
introducing artificial, half-infinite sub- and superspaces Ω−i and Ω+

i in
place of the boundaries Γi and Γi−1.
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with the wavenumber km = 2πn/λ0 depending on the refractive index n of the
material and the vacuum wavelength λ0.
If we assume a non-absorptive material, km is a real number and we can distinguish

two cases for kz = kz(n1, n2):

• Re {kz} > 0, Im {kz} = 0, i.e. ‖k⊥(n1, n2)‖ ≤ km. E(r) = E±n1,n2
eik
±(n1,n2)·r

is called an upward/downward propagating plane wave.

• Re {kz} = 0, Im {kz} > 0, i.e. ‖k⊥(n1, n2)‖ > km. E(r) = E+
n1,n2

eik
+(n1,n2)·r is

called an evanescent plane wave in z -direction. Due to Im {kz} > 0 it decays
exponentially, i.e. limz→∞ e

ikzz = 0.

We call
E↑(r) =

∑
n1∈Z

∑
n1∈Z

E+
n1,n2

eik
+(n1,n2)·r

and
E↓(r) =

∑
n1∈Z

∑
n1∈Z

E−n1,n2
eik
−(n1,n2)·r

the up- and downward propagating spectrum in the upper half space. The am-
plitudes E±n1,n2

depend on the z coordinate z0 of the plane. By applying a phase
shift e∓ikz(n1,n2)z0 they can be pulled back to z = 0 which we choose as a common
reference plane.
In most applications the full Fourier series (3.33) of E is truncated and not all

Fourier modes are kept or computed. We refer to such a truncation as a k-spacing.
A formal definition reads

Definition 3.19 (k-spacing). A k-spacing is a finite set K = {(ni,mi) i = 1 :
N |ni,mi ∈ Z} of N diffraction orders.

A common k-spacing would be the set of all propagating Fourier modes. The ex-
pansion of an electric field with respect to a k-spacing K is

E(r) =
∑

(n1,n2)∈K

E+
n1,n2

eik
+(n1,n2)·r +E−n1,n2

eik
−(n1,n2)·r. (3.35)

A field uin incident from Ω+ excites a scattered field Esc in Ω, Ω+ and Ω−. The
scattered field Esc is outward radiating hence its Fourier series expansion in Ω+ and
Ω− with respective k-spacings K+, K− is

Esc(r) =
∑

(n1,n2)∈K+

E+
n1,n2

eik
+(n1,n2)·r in Ω+ (3.36)

Esc(r) =
∑

(n1,n2)∈K−

E−n1,n2
eik
−(n1,n2)·r in Ω− (3.37)

The same holds true for illumination from Ω−.
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Remark (Polarizations). The electric field of a plane wave can be split into two
orthogonal polarizations, i.e. E±n1,n2

= p1p1 + p2p2 with p1,p2 ∈ R3,p1 · p2 = 0 and
p1, p2 ∈ C. In the definition of Esc we did not account for this. Doubling up each
integer pair in K allows to distinguish the different polarizations. Henceforth, we
assume this to be the case but keep the same notation to avoid additional indices.

The choice of reference polarizations allows to express the amplitudes E±n1,n2
by

complex scalars E±n1,n2
, the Fourier coefficients, if we allow the members of K to

appear twice. The scattered field in Ω+ and Ω− can thus be associated with the
vector

Esc =

E+
n1,m1

, . . . , E+
nN+

,mN+︸ ︷︷ ︸
coefficients from (3.36)

, E−n1,m1
, . . . , E−nN− ,mN−︸ ︷︷ ︸

coefficients from (3.37)


ᵀ

= (E+,E−)
ᵀ (3.38)

In the (non-homogeneous) interior domain Ω the electric field can no longer be
written as a superposition of plane waves with respect to a k-spacing K. However,
the illuminating field uin in Ω+ or Ω− can be characterized like in (3.36) and (3.37)
with the propagation directions switched. Similarly to (3.38) it can be expressed
as Ein. The linearity of Maxwell’s equations thus allows to describe the scattered
electromagnetic field Esc at r ∈ Ω as the superposition of fields excited by plane
waves associated with K. We denote these fields ul if the incident field is a plane
wave associated with the l-th element of K. We use the same ordering as before, i.e.
first sources in Ω+ on K+ followed by those in Ω− on K−. This yields

Esc(r) =
N∑
l=1

Ein
l ul(r) , r ∈ Ω (3.39)

with N = N+ + N−. Here N+ and N− denote the cardinalities of K+ and K−.
Collecting complex electric field amplitudes of ul at r in U(r) ∈ C3×N allows to
rewrite (3.39) as

Esc(r) = U(r)Ein , r ∈ Ω. (3.40)

3.3.2. Scattering matrices for isolated domains

We define a scattering matrix for the simple isolated geometry depicted in Figure
3.3a with homogeneous, isotropic and infinite half-spaces Ω+ and Ω−. The associ-
ation of every illuminating field with a vector Ein of Fourier coefficients motivates
the definition of a scattering matrix T .

Definition 3.20 (Scattering matrix). A scattering matrix characterizes the scat-
tering of an incident field by a scatterer located in a spatial domain Ω with ho-
mogeneous, isotropic and infinite half-spaces Ω+ and Ω− in terms of k-spacings
K+, K− with cardinalities N+ and N−. The i-th column of a scattering matrix
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T ∈ C(N++N−)×(N++N−) is the response of the underlying system, represented as Esc

as in (3.38), when illuminated by a plane wave of normalized amplitude associated
with the i-th element of K = K+ ∪ K−.

Remark (Reflection and Transmission). A scattering matrix T can be subdivided
into four submatrices Tj,i, i, j = 1, 2. Numbering Ω+ and Ω− top to bottom, the
response or scattered field in the same domain is characterized by the square matrix
Ti,i ∈ CNi×Ni . This response is referred to as reflection. The response in the opposing
domain Ωj is given by the rectangular matrix Tj,i ∈ CNj×Ni . This response is referred
to as transmission.

3.3.3. Domain decomposition and coupling conditions on
interfaces

In this section we present the domain decomposition algorithm based on scattering
matrices and the corresponding coupling conditions which must hold on the interface
between neighboring subdomains. Instead of using an iterative domain decompo-
sition algorithm like a Schwarz method [Quarteroni and Valli, 1999] to ensure the
coupling conditions on {Γi}NΩ−1

i=1 we solve directly for the coupling conditions. The
idea of the domain decomposition presented here is targeted at a commonly encoun-
tered layered or stacked geometry depicted schematically in Figure 3.3a. Oftentimes
the computational domain Ω consists of - or can be vertically split into - smaller,
non-overlapping subdomains {Ωi}NΩi=1, numbered from top to bottom. Following the
domain decomposition concept we aim to compute the solution of Maxwell’s equa-
tions on each subdomain separately. As adjacent subdomains Ωi and Ωi+i share a
common boundary Γi = {r = (x, y, z)ᵀ ∈ R3 | z = γi ∈ R}, the electric fields Ei in
Ωi and Ei+1 in Ωi+1 must match on Γi. We refer to the ensemble {Ωi} as a stack.
The algorithm presented here is based on the following assumption.

Assumption 1 (ε-Separability). We assume constant, isotropic permeability and
permittivity tensors in the vicinity Γ ε

i = {r = (x, y, z)ᵀ ∈ R3 | |z − γi| < ε} of Γi.

In the previous section we derived a scattering matrix for a single, isolated do-
main Ω. We thus isolate each subdomain by introducing artificial, homogeneous,
isotropic, infinite sub- and superspaces Ω−i and Ω+

i below and above each Ωi. In
Figure 3.3b this is depicted schematically. Matching exterior domains for neigh-
boring subdomains, i.e. the chosen permittivities and permeabilities on Ω−i and
Ω+
i+1 should be identical, and k-spacings are required. This allows us to compute

scattering matrices T i for every subdomain individually.
A solution to Maxwell’s equation requires the total electric field E = Ein+Esc on

the shared boundary Γi between Ωi and Ωi+1 to match. As Γi = Ω−i ∩Ω+
i+1, we can

describe E on Γi in two separate ways. Regarding the subproblem for Ωi first, we
have illumination (i.e. upward propagating fields) incident from Ω−i and scattered
(i.e. downward propagating) fields. The latter are either caused by reflection of
the incident field in the same domain or fields transmitted through the domain.
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As in (3.40) we denote U = (U+ U−) = U(r) ∈ C3×N the collective amplitudes of
plane waves associated with the upward and downward propagating Fourier modes
in K = K−i = K+

i+1 at an arbitrary but fixed point r ∈ Γi. Similarly we use the
vector notation for the Fourier coefficients of the incident fields E±i . This yields
Ein = U+E−i for this illumination and the scattered fields become Esc,1 = U−T i2,2E−i
and Esc,2 = U−T i2,1E+

i where we used the scattering matrix T i to relate illuminating
fields to scattered fields. An examination of the subproblem for Ω+

i+1 yields related
expressions: Ein = U−E+

i+1 andEsc = U+T i+1
1,1 E

+
i+1+U+T i+1

1,2 E
−
i+1. Note the changed

propagating direction of illumination and scattered fields compared to the previous
case. These considerations lead to the following equation in r:

U+E−i + U−
(
T i2,1E+

i + T i2,2E−i
)
= U−E+

i+1 + U+
(
T i+1
1,1 E

+
i+1 + T i+1

1,2 E
−
i+1

)
(3.41)

As (3.41) must hold for every r ∈ Γi and arbitrary U we immediately find

E−i = T i+1
1,1 E

+
i+1 + T i+1

1,2 E
−
i+1

E+
i+1 = T i2,1E+

i + T i2,2E−i (3.42)

The interface conditions for Γ0 and ΓNΩ are trivial. The matching conditions (3.42)
for all interfaces Γi can be collected in a stack matrix S by traversing the interfaces
top to bottom. The resulting matrix

S=



I
−T 1

2,1 −T 1
2,2 I
I −T 2

1,1 −T 2
1,2

−T 2
2,1 −T 2

2,2 I
I −T 3

1,1 −T 3
1,2

−T 3
2,1 −T 3

2,2 I
I . . .

. . .
−T N−12,2 I
I −T N1,1 −T N1,2

I


is block tridiagonal. In the same way we collect the Fourier coefficients Ei =
(E+

i E
−
i ) of all subdomains Ωi in a vector. The global illumination source of the

stack can be encoded as an illumination source sin. Thus we find the system

Sw = sin (3.43)
w = S−1sin

The solution w of (3.43) is a complex valued vector containing Fourier coefficients of
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3.3. Scattering matrix domain decomposition

all incoming fields in the subproblems. Its dimension is determined by the number
of interfaces and the cardinalities of the k-spacings involved.
The incoherent domain decomposition algorithm in Section 4.3 relies on this con-

cept. In the Appendix A.1 we look at the common case of coupling of two domains
and derive a relation to iterative methods.

3.3.4. Semi-analytical method for layered media

In case of homogeneous, isotropic, non-magnetic materials separated by planar inter-
faces the solution can be computed very efficiently using semi-analytical approaches.
The solution to Maxwell’s equation for plane wave illumination in such layered me-
dia or multilayer stacks is oftentimes computed with a transfer matrix method.
Many variations, descriptions and implementations exist. Classically, these are for-
mulated in S- or T-matrix formalisms using 2×2 matrices describing reflection and
transmission at planar interfaces. Here, the Fresnel coefficients enter. Likewise,
propagation within each uniform layer is described by a matrix containing phase
shifts and dampings. Multiplication of these matrices readily yields the scatter-
ing matrix of the layered media. This method does not allow to access the fields
within a layer directly which is required if one wants to attribute attenuation to
a specific layer. For more detailed insights we refer to the extensive literature on
multi-layer [Harbecke, 1986, Santbergen et al., 2013] and Fourier Modal Methods
[Li, 1996, Lavrinenko et al., 2014, Gutsche, 2014].
In the following we briefly present a semi-analytical method to compute the am-

plitudes of the fields within every layer simultaneously. This approach is previously
documented in [Lockau, 2012] and in [Pomplun, 2006] in greater detail. In the
Appendix A.2 we additionally derive the electric field energy within the stack an-
alytically. As above we assume the stack to oriented along the z -axis. Instead of
traversing the N domains as before, we now focus on the interface conditions for
the different Fourier-modes. The assumption of homogeneous isotropic materials
allows to represent the electromagnetic field as Fourier-modes as there are no field
discontinuities in z -direction. The individual plane waves are not coupled by the
layers or interfaces thus it suffices to investigate one. In the following we use the
numbering presented in Figure 3.4 and focus on a single mode u. Inside every layer
i we split the mode into up and down propagating plane waves u+

i and u−i whose
zero-phase planes we choose to be z = zi−1 and z = zi. These are marked with dots
in Figure 3.4 and ensure decreasing field amplitudes with increasing propagation
distance from the interfaces. The layers 0 and N + 1 are assumed to be infinite.
In every layer we have three degrees of freedom for the amplitudes of the propagat-

ing waves as the wave vectors k±i are already determined by the Fourier mode con-
sidered and the material parameters εi, µi in the layer. In total we have 3 ·2 · (N+2)
degrees of freedom. As

k±i · u±i = 0 (3.44)
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must hold in every layer we collect 2N + 2 conditions in the stack. In the infinite
layers only outgoing fields are unknown and treated the same way whereas incoming
fields are known. Hence they fulfill (3.44) trivially. However, they are prescribes
as right hand sides and fix additional 6 degrees of freedom. The remaining 4N + 4
conditions are fixed by the continuity conditions for the tangential components of E
and H and the normal components of D and B derived from Maxwell’s equations
[Nolting, 1990]. These read

(εiui − εi+1ui+1) · n = 0

(∇× ui −∇× ui+1) · n = 0

(ui − ui+1)× n = 0(
µ−1i ∇× ui − µ−1i+1∇× ui+1

)
× n = 0

and must hold across the N + 1 material interfaces.
These conditions form a linear system which can be solved very fast for a given

layered media stack with materials {εi, µi}Ni=1 and thicknesses {di = zi − zi−1}Ni=1.

Figure 3.4.: Labeling of the layered media stack and fields involved in algorithm is
described in the text. The vertical lines mark interfaces at the position
zi ∈ R. The arrows indicate propagating directions of the fields ui in
layer i with permittivity εi and permeability µi. The zero-phase planes
are determined by the dots.
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4. Incoherence in Rigorous Optical
Simulations

This chapter presents a tailored domain decomposition algorithm that allows to
model incoherent light efficiently in rigorous optical simulations. The application of
the algorithm is the frequently encountered setup of a substrate coupled to a nano-
photonic device which is common for the type of solar cells investigated in this thesis.
The key contribution here is the use of the domain decomposition framework to
model incoherence and an efficient method to compute quadratic outputs of interest.
The chapter starts with a brief introduction to incoherence in Section 4.1 where

its effects are described and polarization incoherence is modeled. Additionally the
spectral decomposition of an incoherent light source is presented and the averaging
of derived field quantities is introduced. Existing modeling approaches for incoherent
light in the context of solar cells are presented in Section 4.2. The proposed domain
decomposition method is presented in Section 4.3. Here, the averaging for a coherent
summation of fields is discussed before the orthogonal decomposition is derived to
speed up computations. The details of the algorithm are presented and discussed in
the context of previous concepts.

4.1. Introduction to incoherence

Electromagnetic waves (like any kind of wave) only exhibit stationary interference
patterns if they are correlated in time and space. This ability of a wave to interfere
with itself or other waves constructively enables many physical effects and related
technologies such as the anti-reflective coating (cf. Section 2.2.1), lithography or
lasing. In Figure 4.1 the intensity pattern of a coherent (4.1b), partially coherent
(4.1c) and incoherent (4.1d) superposition is depicted. The sun and thermal light
sources in general emit uncorrelated or incoherent radiation. At macro scales geo-
metrical optics or “ray tracing” is sufficient to describe refraction and scattering of
light as only the (incoherent) light intensity is of importance. With feature sizes of
scattering structures and layer thicknesses on the nanoscale, this is not the case for
optical wavelengths and coherent wave optical effects have to be considered.

4.1.1. Polarization incoherence in solar cell modeling

Rigorous modeling requires a coherent illumination source with a well defined po-
larization. Modeling polarization incoherence for a plane wave illumination source
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4. Incoherence in Rigorous Optical Simulations

(a)

(b) coherence pattern (c) partial coherence pat-
tern

(d) incoherence pattern

Figure 4.1.: Schematic of electromagnetic fields (depicted as plane waves in (a))
interfering at a point r on the x-axis. Resulting interference patterns in
case of (b) coherent, (c) partially coherent or (d) incoherent fields.

is simple. The incident plane wave Ein amplitude can be written as the sum of two
orthogonal, normalized field components

Ein = α1E
1
in + α2E

2
in

with E1
in ·E2

in = 0 and α1, α2 ∈ C. Exploiting the linearity of Maxwell’s equations
allows to decompose the resulting scattered field into components

Esc = α1E
1
sc + α2E

2
sc

as well. For the scattered fields we can no longer assume orthogonality. In conse-
quence, the intensity of the scattered field becomes

‖Esc‖2 = ‖α1E
1
sc+α2E

2
sc‖2 = |α1|2‖E1

sc‖2+|α2|2‖E2
sc‖2+2Re

{
α1α2E

1
sc·E2

sc

}
.

In general, the last term does not vanish. However, averaging over all possible
polarizations eliminates this term. This is easily demonstrated by parameterizing
the amplitude of the incident wave

Ein(θ) = a
(
cos(θ)E1

in + sin(θ)E2
in

)
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4.1. Introduction to incoherence

where a ∈ C, θ ∈ [0, 2π] and averaging of the angular parameter yields

〈Esc(θ)〉θ =
|a|2

2π

∫ 2π

0

cos2(θ)‖E1
sc‖2 + sin2(θ)‖E2

sc‖2 dθ

+
|a|2

2π

∫ 2π

0

2Re
{
sin(θ) cos(θ)E1

sc ·E2
sc

}
dθ

=
|a|2

2

(
‖E1

sc‖2 + ‖E2
sc‖2
)
. (4.1)

Thus the incoherent average over all possible polarizations is obtained by computing
the average of two orthogonal polarizations.

4.1.2. Spectral decomposition of an incoherent source

In a monochromatic, coherent wave the field amplitude is constant whereas the phase
varies with time. Typically, this is not the case for real-world light sources and the
amplitudes are only constant within a (small) coherence time. Furthermore, the light
has a spectral bandwidth∆ω instead of a single frequency ω0. The Fourier transform
allows to write every polychromatic light field as a superposition of monochromatic
light sources. In case of an incoherent illumination, the power spectral density
of the source can be used to determine the response of an optical system to the
illumination by weighting the responses of monochromatic illuminations according to
the spectral density. This approach is usually used for solar cell modeling to compute
the implied photo-currents by weighting the computed monochromatic absorption
with the spectral density of the sun depicted in Figure 2.3.
In the field of partial coherence the mutual coherence function

Γ (r1, r2, τ) = lim
T→∞

1

2T

∫ T

−T
F (r1, t)F (r2, t+ τ) dt

introduced by [Born and Wolf, 1999] is used to describe the correlation of a field
F at two points r1, r2 at time delay τ . A similar mutual spectral density is ob-
tained by Fourier transformation of the time-dependent source fields to characterize
the correlation with itself in time. In [Lockau, 2012] this was used to justify the
monochromatic plane wave as a source model for solar illumination.
The spectral density is related to the auto-correlation of a signal via the Wiener-

Khinchin-theorem [Goodman, 2000]. In Section 2.2.2 we exploited this already for
a spatial signal but the same can be done for a temporal signal. In [Sarrazin et al.,
2013, Herman et al., 2014] this is used to derive an incoherence function

I(ω) = τc

√
ln 2

π3
e−

ln 2
π2

τ2c ω
2

(4.2)

with a Gaussian spectral density depending on the coherence time τc of a stochastic
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4. Incoherence in Rigorous Optical Simulations

modulation of a temporal signal. This is a model of a monochromatic source with
a finite coherence time. A similar model is obtained by disturbing the temporal
signal of a monochromatic wave by a stochastic modulation and subsequent Fourier
transformation of a simulated signal [Lee et al., 2012].

4.1.3. Averaging of derived quantities

We can use the spectral decomposition of the (partially) incoherent source to com-
pute incoherent averages of quantities derived from the electromagnetic field in ana-
log to (4.1). A common application, for example in optical simulations of solar cells,
is the determination of optical losses in terms of volume absorption

A = 2ωIm

{∫
Ω

E ·D dr

}
= 2ωIm

{∫
Ω

1

4
E · εE dr

}
(4.3)

which requires the volume integration of the electric field energy density, which is a
(quadratic) nonlinear function of the electric field. The energy flux in homogeneous,
transparent media is another example for a derived quantity.

Instead of regarding the frequency spectrum as in the previous section, we use
the wavelength dependent spectrum ξ : λ 7→ [0,∞). We denote the wavelength
dependent quantity J(λ) = J(E(λ)). The averaged quantity <J> is

<J>=

∫
Λ

ξ(λ)J(λ) dλ. (4.4)

Here Λ ⊂ [0,∞) denotes the wavelength interval of interest which is usually small
and bounded. This notation covers the equi-distribution used in Section 4.1.1,
Gaussian-distribution used in Section 4.1.2 and the weighting by the solar pho-
ton flux in Section 2.1.2 in computations of the jsc. We thus make no assumptions
on the weighting function ξ.

The case of averaging a linear quantity is trivial and thus omitted here. Here, we
assume the derived quantity J to be the volume or surface integral over a quadratic
function of the electromagnetic field E, i.e. J(λ) =

∫
Ω
j(λ, r) dr with density j.

In the following we thus restrict the computation to the product EHE (here EH

denotes the complex conjugate transpose to be distinguished from the component
wise complex conjugate E) which is the major building block of (4.3). A scalar
permittivity ε ∈ C can be moved out of the density in (4.3) easily, giving rise to
this product. A non-scalar permittivity tensor can be treated similarly, but would
introduce additional terms which complicate notation without providing additional
insights.
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4.2. Modeling approaches for incoherence

Modeling (partially) incoherent electromagnetic fields has been an active field in
recent years and several models and algorithms have been suggested. Models either
address the response of a structure if the illumination source is (partially) incoherent
or derive the response of a structure that removes coherence.
A typical example of the latter is found in the field of multilayer or thin-film

systems [Harbecke, 1986]. Here a layer that does not exhibit interference effects
in reflection or transmission measurements is called an incoherent layer. Typically,
these layers are thicker than the coherence length of the illumination source and/or
the layer interfaces are not plan parallel as assumed in the models. As these layers
remove phase correlations between the illumination and the scattered light, the
phase is usually neglected and only the amplitudes are investigated. These models
have been adapted to the field of thin-film solar cells and combined with the scalar
scattering theory [Krč et al., 2003]. Here, the field is split into a coherent beam and
a separate incoherent beam.
Another approach to model incoherent layers in multilayer films is averaging over

multiple simulations. The availability of efficient semi-analytical methods (cf. Sec-
tion 3.3.4) allows to compute the same structure multiple times with varying thick-
nesses [Prentice, 2000] or by randomization of the phase shift introduced by the
incoherent layer [Santbergen et al., 2013]. We will demonstrate the equivalence of
both methods in Section 4.3.3.
Modeling of incoherent illumination generally relies on the spectral decomposition

of the source field as outlined in Section 4.1.2. This allows to regard the incoherent
source as the superposition of monochromatic fields which are correlated according
to the spectral density [Sarrazin et al., 2013, Lee et al., 2012]. A modulation of
the transient signal by a modulating function with randomized jump intervals can
be analyzed numerically by its Fourier transform [Lee et al., 2012] or used as the
motivation for a parameterized spectral density [Sarrazin et al., 2013]. Like in the
multilayer case, where an average is applied, these models rely on a convolution
of the coherent response of a complex optical system with the spectral density.
As it is applied after coherent computations, it acts as a moving average filter on
the computed coherent spectrum. Thus the response of the system can be easily
investigated under varying coherence lengths of the illumination. In Section 6.2.6
the effect of this filtering is demonstrated for a solar cell model.
A very frequently encountered experimental setup, where a thick substrate layer

is part of the optical system, has been investigated by multiple groups as well.
This configuration is commonly found in applications ranging from photonic crystals
[Becker et al., 2014], solar cells [Lockau, 2012] and light-emitting diodes [Zschiedrich
et al., 2012]. Here, a nano-photonic system containing subwavelength sized features
is coupled to a glass substrate or a multilayer stack of several mm thickness. The
substrate is generally assumed to be an incoherent layer, i.e. it does not show
interference effects in reflection or transmission measurements even if the incident
light is coherent.
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This setup poses a challenge to rigorous simulation routines such as the finite
element method due to the large discrepancy in scales between the substrate and the
rest of the device. Usually, the glass layer is not accounted for and the illumination
is modeled as incident from an infinite half-space with a correction for the initial
reflection at the air/substrate interface using Fresnel’s equations.

As drastically reducing the size of the substrate, to bring the different scales into a
regime suitable for example for a FEM discretization, distorts the solution, iterative
approaches [Abass et al., 2013, Lockau et al., 2011, Lockau, 2012] have been used
to include the substrates. Here, like in ray-tracing methods based on geometrical
optics, the path of the light or its energy is traced between the substrate and the
solar cell or photonic device. After every pass through the photonic device, the
absorption within it is calculated and the reflected fraction of light is propagated
to the substrate/air interface. Here it either is transmitted and thus no longer
accounted for, or it is reflected back towards the nano-photonic part of the device.
In case of a solar cell, the amount of light trapped by total internal reflection due to
scattering into large angles can be significant, especially at long wavelengths where
absorption is poor.

These iterative methods are easily implemented, but are inefficient as they require
possibly many iteration or passes for the incident light to be fully absorbed or
transmitted. This means multiple solutions have to be computed. Furthermore, in
all of the passes the absorption within the photonic system has to be computed.
This operation can be expensive as well if the discretization has a large number
of degrees of freedom N . The number of floating point operations involved in its
computation is O(N 2).

A different approach is taken in [Čampa et al., 2013]. They scale down and ad-
just the thickness of the substrate layer to eliminate or match the phase of the
reflected wave thus mimicking incoherent reflection. The elimination requires par-
ticular knowledge about the phase shift introduced by the structure beneath the
substrate which is only directly available in layered media and for plane wave illu-
mination. Using this knowledge, the interference fringes in the measured reflection
can be eliminated by adjusting the layer thicknesses and averaging the simulation
results. In more realistic setups, they adjust the thickness to shift the phase of the
reflected wave by π such that in the superposition of the solutions the interference
term vanishes. However, this only eliminates the interference term of one diffraction
order with itself. The specular direction introduces the most visible fringes, thus
the correction is applied with respect to it. The method cannot correct for interfer-
ence fringes excited by multiple diffraction orders as present in strongly scattering
structures.
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Figure 4.2.: Schematic of the tailored domain decomposition proposed. The two do-
mains are indicated by the rectangles and have domain sizes on different
scales. Adaptive finite elements are employed to discretize the scattering
structure with features on nanoscales. The much larger homogeneous
or simply structured domain is treated with semi-analytical methods.

4.3. Incoherent coupling domain decomposition
algorithm

In this section we present an algorithm suited to couple domains incoherently. The
algorithm is aimed at a frequently encountered setup depicted in Figure 4.2. The
idea of the algorithm is quickly summarized:

(i) Decompose the incoming incoherent electromagnetic field spectrally.

(ii) Accelerate the computations using a tailored domain decomposition method
by exploiting the structure of the computational domain.

(iii) Accelerate the evaluation of nonlinear output functionals using an orthogonal
decomposition.

In the following we focus on the last steps as the spectral decomposition is already
addressed in Section 4.1.2.
As in Section 3.3, where we adapt the notation and concepts from, we assume

that the computational domain Ω can be split into subdomains Ωi. This setup is
schematically shown in Figure 4.2. Here the domains are indicated by rectangles.
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One is a simply structured domain Ω1, either a single homogeneous or a layered
media consisting of multiple such layers. The second domain Ω2 is complex and
nano-structured. This assumption is fulfilled by typical setups in solar cell or light
emitting diode simulations.
We further assume a large discrepancies in the size of the domains involved. In

typical application examples this ranges from O(1000) wavelength for Ω1 to O(10)
wavelengths for the complex 3D domain Ω2. This discrepancy in scale leads to a
vastly different sensitivity of the solution with respect to changes in domain size or
frequency of the incident light. We state this explicitly for later reference.

Assumption 2 (Low wavelength sensitivity). We assume a robust behavior of the
fields U in Ω2 with respect to the wavelength. Hence ∂

∂λ
U is assumed do be negligible

in Λ ⊂ [0,∞) denoting the parameter interval of interest.

The domain decomposition algorithm outlined in Section 3.3 relies on scattering
matrices (cf. Definition 3.20) mapping incident electromagnetic fields represented as
Fourier coefficients in the Fourier plane wave basis to the scattered electromagnetic
fields excited by the incident fields. We can exploit the structures of Ω to find
the appropriate numerical tool best suited for each subdomain independently. The
simple structure of Ω1 allows to determine its scattering matrix TLM rapidly using
a semi-analytical method outlined in Section 3.3.4. The complex structured domain
Ω2 containing subwavelength sized features requires a rigorous treatment with an
adaptive finite element discretization to derive the scattering matrix TFE. The
subscript reflects the applied numerical tool: LM for layered media represents a
semi-analytical method whereas FE stands for finite elements.
The domain decomposition algorithm uses the stack matrix S constructed from

the scattering matrices Ti of the subdomains Ωi to compute the weights w as the
solution of the linear system (3.43). The computational effort required to construct
S and to compute w from S and sin is negligible compared to the computational
effort required to derive the scattering matrices Ti for the subdomains Ωi.

4.3.1. Incoherent average in case of a coherent summation of
fields

In the following we derive an incoherent average as in (4.4) for a coherent super-
position of electromagnetic fields. This is the natural setting for the domain de-
composition method based on scattering matrices where each column of the matrix
represents the scattered electromagnetic field in the exterior of the computational
domain in a Fourier plane wave basis. In the interior the scattered electromagnetic
field is not necessarily decomposable into plane waves. For homogeneous media this
is possible and there are analytical formulas to compute even quadratic quantities
as assumed here. In Appendix A.2 this is shown explicitly. In the following we will
assume the scattered field to be a finite element field.
In Section 3.3 we used N plane waves on k-spacings K as incident fields on a

domain Ω. We denoted the scattered field excited by the j-th incident field at
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r ∈ Ω as uj(r) ∈ C3 and found the scattered field E(r) =
∑N

j=1wjuj(r) where
wj are the weights describing the decomposition of the global illumination field. To
facilitate reading we drop the spatial coordinate r and use it only to highlight spatial
dependence explicitly.
The density j(λ, r) becomes j(λ) = j(λ, r) := E(λ, r)HE(λ, r) and similarly

uj(r) = uj.

j(λ) = E(λ)HE(λ) =

(
N∑
j=1

wjuj(λ)

)H ( N∑
k=1

wkuk(λ)

)

=
N∑
j=1

|wj|2‖uj(λ)‖2 +
N∑
j=1

N∑
k=1
k 6=j

wjwkuj(λ)
Huk(λ)

=
N∑
j=1

|wj|2‖uj(λ)‖2 + 2
N∑
j=1

N∑
k>j

Re
(
wjwkuj(λ)

Huk(λ)
)

As the spectral average and the volume integration are interchangeable, we find for
the averaged density < j>

< j> =

∫
Λ

ξ(λ)j(λ) dλ =

∫
Λ

ξ(λ)

(
N∑
j=1

wjuj(λ)

)H ( N∑
k=1

wkuk(λ)

)
dλ (4.5)

=
N∑
j=1

∫
Λ

ξ(λ)|wj(λ)|2‖uj(λ)‖22 dλ (4.6)

+ 2
N∑
j=1

N∑
k>j

Re

(∫
Λ

ξ(λ)wj(λ)wk(λ)uj(λ)
Huk(λ) dλ

)
. (4.7)

This incoherent average is unsuited for most applications even if the wavelength
integral is evaluated numerically. This ansatz demands the evaluation of N+ N(N+1)

2

volume integrals over products of electric fields uj in (4.6) and (4.7) per wavelength
and is thus infeasible to compute. However, this representation allows to distinguish
the incoherent part (4.6) and oscillating part (4.7).

4.3.2. Orthogonal decomposition for quadratic outputs of
interest

Searching for more efficient ways to compute the volume integral over the averaged
density in (4.6) and (4.7) we move to a matrix-vector notation. As in Section 3.3
we use U ∈ C3×N to denote the collective field amplitudes of the N fields uj at a
spatial coordinate r. This allows to write E(r) = U(r)w with the weight vector
w ∈ CN with the i-th component (w)i = wi. Similarly, Ui ∈ CN is the transpose of
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the i-th row of the matrix U .
Using the above notation we rewrite (4.5) as∫

Λ

ξ(λ)j(λ) dλ =

∫
Λ

ξ(λ) (Uw)H (Uw) dλ =

∫
Λ

ξ(λ)
3∑
i=1

((Uw)i)
H (Uw)i dλ

=

∫
Λ

ξ(λ)
3∑
i=1

{
N∑

j,k=1

(Uj)iwjwk(Uk)i

}
dλ

=

∫
Λ

ξ(λ)
3∑
i=1

UH
i WHUi. (4.8)

In the last line we used the following definition implicitly.

Definition 4.1 (Weight matrix). The matrix W = wwH ∈ CN×N with entries

Wjk = wj(λ)wk(λ)

is called a weight matrix. W is hermitian by construction.

The fact that W is hermitian allows to apply the following theorem.

Theorem 4.2 (Schur and spectral decomposition). For any matrix M ∈ CN×N a
unitary matrix Q ∈ CN×N and an upper triangular matrix D ∈ CN×N exist such
that

M = QDQH .

IfM is hermitian, D is real, diagonal and its entries are the eigenvalues ofM and
the columns of Q form an orthonormal basis of CN . If M is positive semi-definite
the spectral decomposition and the Schur decomposition coincide.

The theorem and its proof can be found in different versions in textbooks [Deufl-
hard and Hohmann, 1993] and the original article [Schur, 1909]. It is a special case
of the more general Singular Value Decomposition (SVD). As we are only dealing
with the case of quadratic matrices, we refrain from speaking of a SVD or a Proper
Orthogonal Decomposition (POD).

We use WH = W = QHDQ in (4.8) and write qk for the k-th column of Q. qk
is an eigenvector of W corresponding to the k-th eigenvalue dkk ∈ R, the diagonal
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entry of D. With these notations we continue (4.8) for < j>∫
Λ

ξ(λ)
3∑
i=1

UH
i WUi =

∫
Λ

ξ(λ)
3∑
i=1

UH
i QDQHUi dλ

=

∫
Λ

ξ(λ)
3∑
i=1

(
QHUi

)H D (QHUi

)
dλ

=

∫
Λ

ξ(λ)
3∑
i=1

{
N∑
k=1

N∑
j=1

(QH)jUidkj(QH)kUi)

}
dλ

=

∫
Λ

ξ(λ)
3∑
i=1

{
N∑
k=1

dkk(QH)kUi(QH)kUi)

}
dλ

=

∫
Λ

ξ(λ)
3∑
i=1

{
N∑
k=1

dkkqHk Uiq
H
k Ui)

}
dλ

=

∫
Λ

ξ(λ)
N∑
k=1

dkk

{
3∑
i=1

qHk Uiq
H
k Ui)

}
dλ

=

∫
Λ

ξ(λ)
N∑
k=1

dkk

{
(Uqk)H (Uqk)

}
dλ (4.9)

This expression is convenient as D is usually not of full rank and only a few eigen-
values contribute to the integral. Without loss of accuracy it is possible to restrict
the summation in (4.9) to dkk 6= 0.

< j>=

∫
Λ

ξ(λ)
N∑
k=1
dkk 6=0

dkk

{
(Uqk)H (Uqk)

}
dλ (4.10)

Special case: constant fields

We return to the case of coupled domains. As noted above, the computational effort
required to compute w is negligible compared to the computation of the scattering
matrices Ti for the subdomains Ωi or the computation of a single volume integration
of the density. The same holds for the orthogonal decomposition of the weight
matrix. Even with the reduced costs of computing at most N volume integrals, it
is impractical to evaluate the averaged density expression (4.10) as it requires the
coherent solutions for all λ ∈ Λ.
However, it is possible to compute an approximation to (4.10) for specific cases

where Assumption 2 holds. This assumption allows to treat the fields uk and thus
the matrix U as independent of λ in Λ. This leads to the following approximation
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of (4.10)

< j> =

∫
Λ

ξ(λ)
3∑
i=1

UH
i WUi dλ

≈
3∑
i=1

UH
i

(∫
Λ

ξ(λ)W dλ

)
Ui =

3∑
i=1

UH
i <W> Ui

=
N∑
k=1
dkk 6=0

dkk

{
(Upk)H (Upk)

}
(4.11)

where pk denotes the eigenvector of <W>, the incoherently averaged weight matrix.
If the fields are actually independent of λ, the approximation is error free.

4.3.3. Incoherent coupling algorithm

Based on the findings in the previous sections we can present an algorithm to ef-
ficiently calculate the effects of an incoherent illumination or an incoherent layer
for the setup depicted in Figure 4.2. The substrate ΩLM is simply structured and
can be treated semi-analytically (cf. Section 3.3.4), whereas the nano-structured
subdomain ΩFE is discretized using adaptive finite elements. Based on Assumption
2 we treat the fields in Ω2 as independent of λ which also means TFE is constant
over Λ. This is justified due to separation of scales between the ΩLM and the cell
ΩFE.
The spectral average over W can be computed explicitly. As TFE is constant only
TLM needs to be reevaluated to construct S for changing λ which is assumed to be a
fast operation. Computing this scattering matrix comprises solving N independent,
semi-analytical problems whose computational costs only depend on the number of
layers involved. As mentioned in Section 4.2 the wavelength of the illumination and
the thickness of a layer inside a multilayer stack are interchangeable as a closer look
into the algorithm in Section 3.3.4 reveals.
The thicknesses di = zi−zi−1 of layer i with zi taken from Figure 3.4 enter only in

the forward and backward propagation within each layer to state the coupling condi-
tion on the opposing interface to the adjacent layer. This is achieved by a multiplica-
tion of the amplitudes with the phase factor φ = eikz(k⊥)di where the dependence of
kz(k⊥) on the wavelength is known (cf. (3.34) in Section 3.3.1). Hence we can obtain
the solution for λ′ instead of λ by adjusting di to d′i = dikz(k⊥)(kz′(k⊥))−1. Note
that we need to adjust every layer thickness differently according to k⊥. Computing
TLM for a different wavelength can thus be achieved by adjusting the thickness for
each plane wave of the k-spacing first and subsequent re-computation.
However, when aiming at an incoherent coupling of two domains a neglect of the

adjusting step for wavelength or thickness for each member of the k-spacing provides
an additional benefit of decoupling the diffraction orders. As kz(k⊥) depends not
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only on the wavelength but also on k⊥, keeping a constant layer thickness d while
changing the wavelength introduces different phase shifts for different k⊥. This
reduces interference effects between the fields excited by these plane waves in the
nano-structured subdomains.
The Algorithm 1 is split into three phases. First, the proper Fourier plane wave

basis i.e. the k-spacing for the scattering matrices has to be chosen and the corre-
sponding scattering matrix TFE of the complex structured domain is computed using
an adaptive finite element discretization. Reusing the LU decomposition of the fi-
nite element system matrix helps to reduce computational costs by handling multiple
sources simultaneously. Next, the incoherent illumination is spectrally decomposed
and its statistical variation is encoded in a variation of the simply structured domain.
This concludes the first phase. In analog to the Reduced Basis Method presented
in Chapter 5 we can call this the offline phase.
Subsequently we can now compute the scattering matrix TLM of the simple domain

for a number of parameters very quickly using one of the inexpensive semi-analytical
methods presented in Section 3.3.4. For every λ we can combine the scattering
matrices of the simple and complex structured domains to form the stack matrix S
and solve the stack system. In addition, we update the weight matrix W . We call
this the online phase.
This yields a sequence of solutions to the Maxwell’s equation of the coupled system

for varying parameters encoded in the Fourier plane wave basis. In a post processing
step these can be used to compute the incoherently averaged quantities of interest.
The orthogonal decomposition presented in Section 4.3.2 reduces the computational
cost for this step drastically thus making the computation feasible. We call this the
post processing phase.
The algorithm presented above is not limited to two domains and can easily be

extended to multiple domains. Also the light is not required to be incident from the
substrate side as shown in Figure 4.2. The domain decomposition algorithm works
in any of these cases. However, the orthogonal decomposition for quadratic outputs
of interest in Section 4.3.2 relies on the Assumption 2. Thus the incoherent part of
the algorithm will only reduce costs as long as the quantity of interest is derived
from the domain assumed to have low sensitivity with respect to the wavelength.

4.3.4. Comparison to other approaches

The algorithm presented here combines ideas from other approaches to gain a com-
putationally advantageous method. Note, that we have assumed the parameter λ
to be the wavelength, but we have not exploited this fact anywhere. We can treat λ
to be a general parameter changing material properties or geometrical sizes equiv-
alently. This means, all the presented modeling approaches in Section 4.2 can be
treated in this framework. It allows to model an incoherent layer like it is common
practice in the multilayer or thin-film community. The usually applied averaging is
feasible as the changes are reflected in adaptations of the layered media and not the
finite element block. The same holds true for a randomization of the phase in the
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Algorithm 1 incoherent coupling of two domains
%% offline - initialization of quantities
determine k-spacing K
compute scattering matrix TFE of the complex structured domain
determine illumination statistics {λk, skin, ξk}Mk=1

initialize weight matrix W ← 0

%% online - solution of coupled systems
for k ∈ {1, . . . ,M} do
compute scattering matrix of simply structured domain TLM(λk)
build stack matrix Sλk ← {TFE, TLM}
solve Sλkw = skin
update weight matrix W ←W + ξkww

H

end for

%% post processing - compute incoherent average with orthogonal decomposition

compute orthogonal decomposition of weight matrix W resulting in Q and D
initialize I ← 0
while |dk| > tol do
I ← I +

∫
V
dk (Uqk)H (Uqk) dr

j ← j + 1
end while
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layer which can be achieved by a thickness adjustment of a layer.
Likewise an incoherent light source can be modeled. Computing its spectral de-

composition, and adapting the layer thickness of the layered media to reflect changes
in wavelength, allows to compute the incoherent averages without significantly in-
creased cost over the expense of computing the scattering matrix of the complex
structured block for the central wavelength. As only the spectral decomposition of
the source into monochromatic fields is required to compute the average, the deriva-
tion of said decomposition does not play a role. In this context a modulation of the
transient field is identical to a theoretical or statistical model of the effects of such
a modulation. Also the effect of a moving average (MA) filter can be included into
the computation of the average itself without additional cost.
The main advantage over iterative models lies in the reduced cost of the coupled

problem. In Appendix A.1 we demonstrate the connection of an iterative approach to
the direct solution for the coupling conditions. Obviously it is possible to implement
an iterative procedure using the scattering matrices of both domains directly to
mimic the methods in [Abass et al., 2013] and [Lockau et al., 2011, Lockau, 2012].
Depending on the dimension of the k-spacing N and the eigenvalue spectrum of the
averaged weight matrix, the number of volume integrations might be lower for the
iterative procedure.
The method of [Čampa et al., 2013] of averaging two simulations for adapted thick-

nesses can profit from the domain decomposition approach provided the computa-
tion of the scattering matrix is not more expensive then solving two finite element
problems. However, this should always be the case as the usage of a direct solver
allows to scale optimally with the number of right hand sides. Furthermore, due
to the tailored decomposition of the domains it is not necessary to discretize large,
homogeneous substrates with finite elements like they do, but more efficiently with
semi-analytical methods.
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5. A Reduced Basis Method for
Optical Simulations of
Nanostructured Thin-Film
Solar Cells

Optimizations of optical properties of nanostructured solar cells are challenging as
it requires accounting for various interdependent parameters to be included. In
general, the cells are optimized with respect to the short-circuit current density.
As outlined in Chapter 2, this usually means to optimize structures with regard to
light-trapping at the band edge where absorption is poor. The time and computa-
tional resources required to compute the forward solutions during the optimization
procedure can render an optimization procedure to become infeasible as for example
the wavelength integration of the absorptance within the absorber layer cannot be
too sparse to provide a meaningful approximations to the jsc. Reduced order models
are well suited to address these many-query situations.
In this chapter we present a Reduced Basis Method for the solution of param-

eterized non-coercive PDEs such as the time-harmonic electromagnetic scattering
problem underlying the optical simulations of solar cells. It allows to split the so-
lution of the problem into an expensive offline step executed only once, and an
online evaluation with low computational demands. The reduced model is built self-
adaptively and allows to compute non-linear outputs of interest orders of magnitude
faster than the approximated original problem.
We start with a brief historical review of the method in Section 5.1. In Section 5.2

we define the problem and quantities of interest. The construction of the reduced
basis and the estimation of approximation errors are presented in Sections 5.3 and
5.4. An efficient offline-online decomposition requires an affine parameter depen-
dence. In Section 5.5 we employ the Empirical Interpolation Method to construct
an affine decomposition for the electromagnetic scattering problem for any param-
eter dependence. The self-adaptive construction in the offline phase is presented in
Section 5.6. Non-linear outputs of interest and their inclusion in the reduced basis
formalism are addressed in Section 5.7. The computational costs involved in build-
ing a reduced basis are examined in Section 5.8. The chapter is concluded by a brief
consideration of high-performance computing aspects in relation to the constructing
of a reduced basis in Section 5.9.
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5.1. Historical review

The RBM is a promising strategy to be used in model order reduction of μPDEs.
It provides a low-dimensional approximation of a (very) high-dimensional problem
which implies a structure on the manifold of solutions of the μPDE with respect to
the parameter µ. The RBM is observed to converge exponentially and for special
cases this has been proven as well [Maday et al., 2002, Binev et al., 2011]. It
is widely investigated for applications ranging from structural dynamics [Farhat
et al., 2014, Afonso et al., 2009], option pricing [Haasdonk et al., 2012], modeling
concentrations of ions in lithium-ion batteries [Lass and Volkwein, 2013], non-linear
convection-diffusion in [Drohmann et al., 2011] to hierarchical flow systems such as
blood vessels [Maday and Rønquist, 2002, Iapichino et al., 2012, Iapichino et al.,
2014]. The investigated PDEs include Stoke’s equation [Iapichino et al., 2014], the
heat [Bui-Thanh et al., 2008] and Helmholtz equation [Maday and Rønquist, 2002].
A comprehensive overview of the method can be found in [Rozza et al., 2008]. The
literature on Maxwell’s equations is not as extensive but starting with [Jabbar and
Azeman, 2004] several groups have investigated the transient case [Mancini and
Volkwein, 2013] as well as the time-harmonic case [Pomplun, 2010, Chen et al.,
2011, Benner and Schneider, 2013].
The RBM was introduced for a parametric setting in nonlinear analysis of struc-

tures [Almroth et al., 1978, Noor and Peters, 1980]. These early works were re-
stricted to a single parameter and lacked the currently used a posteriori estimators
and sampling procedures as well as rigorous error bounds. Nowadays the RBM
has been extended to more general PDE and ordinary differential equation (ODE)
contexts and is mostly used in the real-time or multi-query context where inexpen-
sive and therefore very many or extremely fast solutions of a μPDE are sought after.
The appeal of this method relies in the offline-online splitting of the solution process
into two phases: an expensive offline procedure and an inexpensive online phase.
Ideally the reduced basis can be evaluated in the online phase at very low compu-
tational costs with a guaranteed accuracy. The objective is thus to fully decouple
the evaluation of the reduced basis from the dimension N of the underlying FEM
discretization of the μPDE during the online phase. The decoupling requires an
affinity in the parameter dependence and many problems can be modeled with an
affine parameter dependence. However, for general non-linearities this was not pos-
sible until the development of the Empirical Interpolation Method (EIM) allowed for
an affine expansion of parameter dependencies. The RBM is historically based on a
variational formulation and a finite element discretization but other discretization
schemes (e.g. finite volumes) exist.

5.2. Problem definition and quantities of interest

The time-harmonic electromagnetic scattering problem 2 relates an input (e.g. ma-
terial distributions, source fields) to an output via a parameterized PDE. Its solution
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is the electromagnetic field, a physical quantity that oftentimes is of lesser interest.
Instead, derived quantities of this field are more commonly investigated, for example
the coefficients of its Fourier transform, the power fluxes between different (sub-)
domains or the electric field energy contained within a (sub-) domain. In a more
general setting these notions are not only applicable to the time-harmonic electro-
magnetic scattering problem, but to any parameterized system relating inputs to
outputs via a PDE where quantities of interest are given as functionals of the PDE-
solution. In the following we consider real valued parameters µ ∈ D ⊂ Rd where D
is assumed to be bounded and consider output quantities sl and sq where the sub-
scripts distinguish between linear and quadratic quantities throughout this chapter.
We state the following input-output relationships for linear and quadratic quantities
of interest:

Problem 5. For a given input parameter µ ∈ D ⊂ Rd, compute the linear and
quadratic outputs of interest

sl(µ) = l(u(µ)),

sq(µ) = q(u(µ)),

where u(µ) ∈ X satisfies the following weak formulation:
Find u(µ) ∈ X such that:

a(v, u(µ);µ) = f(v;µ), ∀v ∈ X (5.1)

Here a(·, ·;µ) is a bilinear form describing the weak formulation of a parameter
dependent PDE. The outputs are given by a linear functional l(·) ∈ (X)′ and a
quadratic functional q(·) = q̃(·, ·), where q̃ is bilinear, respectively.
In general, (5.1) is not solvable in the classical sense. Instead, a numerical method

is employed to discretize this variational equation. As stated earlier, the FEM offers
many advantages in this context and is generally the method of choice. Assuming a
FEM discretization we can state discretized input-output relationships:

Problem 6 (Truth-Approximation). For a given input parameter µ ∈ D ⊂ Rd,
compute the linear and quadratic outputs of interest

sl(µ) = l(uN (µ)),

sq(µ) = q(uN (µ)),

where uN (µ) ∈ XN satisfies the following weak formulation:
Find uN (µ) ∈ XN such that:

a(v, uN (µ);µ) = f(v;µ), ∀v ∈ XN (5.2)

The solution of (5.2) in the finite element space XN ⊂ X requires the inversion
of a large sparse matrix of dimension N , where N = dimXN is usually in the order
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of at least 1 · 106 for real world 3D applications. This makes the direct evaluation
of the truth approximation for a set {µ1, µ2, µ3, . . . } of distinct parameters in many
query applications infeasible as a single evaluation may require considerable com-
putational resources. In particular this rules out real-time applications, because a
single inversion can take hours.

5.3. Reduced basis approximation and construction

The purpose of the reduced basis approximation is to provide a low-dimensional
approximation of the high-dimensional Problem 6 that allows for rapid evaluations
for a set of parameters. It is based on the assumption, that the manifold of solutions
of the μPDE with respect to all the parameters µ ∈ D

MN = {uN (µ) is a solution to (5.2) |µ ∈ D} ⊂ XN

can be approximated well by low dimensional subspace XN ⊂MN . If this assump-
tion holds true, i.e.

MN ≈ XN ⊂ XN ,

it is reasonable to assume that solutions of the following reduced problem are good
approximations of uN (µ), the solution of (5.2):

Problem 7 (Reduced Problem). For a given input parameter µ ∈ D ⊂ Rd, compute
the outputs of interest

sl(µ) = l(uN(µ)),

sq(µ) = q(uN(µ)),

where uN(µ) satisfies the following weak formulation:
Find uN(µ) ∈ XN such that:

a(v, uN(µ);µ) = f(v;µ), ∀v ∈ XN (5.3)

We refer to XN as a reduced basis space with dimension N . A more formal
definition reads:

Definition 5.1 (Snapshots, Reduced Basis and Reduced Basis Spaces). Let DN =
{µ1, . . . , µN} ⊂ D a set of distinct parameter and {uN (µi)}Ni=1 the set of correspond-
ing (linearly independent) solutions of (5.2). We refer to uN (µi) as the snapshot
corresponding to the parameter µi. Then

XN = spani=1,...,N{uN (µi)}

is a N -dimensional (Lagrange)- reduced basis space. A basis ΦN = {φ1, . . . , φN} ⊂
XN ⊂ X of a reduced basis space XN is called a reduced basis.
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Figure 5.1.: Schematic of the solution manifold M (red). A point on it corresponds
to a solution of (5.2) a parameter µ ⊂ D. The snapshots are marked as
crosses. An approximation of the manifold based on the reduced basis
space spanned by these snapshot solutions is shown in blue.

Figure 5.1 shows the solution manifold MN , a reduced basis space XN and some
snapshots uN (µi). It is possible to define other reduced basis spaces, for exam-
ple Hermite and Taylor spaces which include (high-order) derivatives of snapshot
solutions with respect to the parameter into the reduced basis space as well, but
this work refers to Lagrangian reduced basis spaces only. The assumption of linear
independence leads to nested or hierarchical reduced basis spaces with increasing
number of snapshots

X1 ⊂ X2 ⊂ · · ·XN ⊂MN .

With sufficiently large N these spaces should approximate MN “reasonably well".
In the literature the concept of Kolmogorow N -width is used to measure the quality
of such an approximation. The challenging task remains to find appropriate reduced
basis spaces with N << N such that Problem 7 can be solved orders of magnitude
faster than the truth approximation 6.

5.3.1. Offline-online decomposition

The Definition 5.1 of the reduced basis space XN indicates the use of solutions of the
truth approximation as basis functions. Computing these snapshots is the main cost
in the offline or assembling phase of the reduced basis as the truth approximation
has to be solved N times. In this phase we invest computational resources in order
to benefit in the online of much reduced computational costs. The variational
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formulation (5.3) is solved in XN and its solution uN(µ) exhibits the expansion

uN(µ) =
N∑
i=1

αi(µ)φi.

Using a Galerkin projection onto the basis ΦN of XN reduces (5.3) to the equivalent
formulation

N∑
i=1

αi(µ)a(φi, φj;µ) = f(φj;µ) ∀φj ∈ ΦN .

This is a linear system
AN(µ)α = fN(µ)

in the N unknown coefficients α = (αi)i=1,...,N with the matrix

AN(µ) = (a(φi, φj;µ))i,j=1,...,N

and right-hand side
fN(µ) = (f(φi;µ))i,j=1,...,N .

Thus in the (online) evaluation phase the computation of the solution requires only
the inversion of this low-dimensional system. Assembling this parameter dependent
system however depends on the number of degrees of freedom in the underlying
finite element approximation as the basis functions are of dimension N . Hence it is
of critical importance to decouple the assembly of this system from N .

We observe that in case of an affine parameter dependence

a(v, u;µ) =

QA∑
q=1

θAq (µ)aq(v, u)

f(v;µ) =

Qf∑
q=1

θfq (µ)fq(v)

of the (sesqui-) linear forms a and f , this is readily achieved as linearity allows to
write

AN(µ) =
QA∑
q=1

θAq (µ)A
q
N

fN(µ) =

Qf∑
q=1

θfq (µ)f
q
N
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with

AqN = (aq(φi, φj))i,j=1,...,N , (5.4a)
f qN = (f(φi))i=1,...,N . (5.4b)

In this case the assembling only requires the summation of QA N × N matri-
ces and Qf vectors and is thus independent of N . The N dependent matrices
{AqN | q = 1, . . . , QA} and vectors {f qN | q = 1, . . . , Qf} can be precomputed in the
offline phase. The output quantities can be similarly reduced to an offline com-
putable part depending on N which allows for only N dependent evaluation costs in
the online phase. In Section 5.8 we list the steps and the operation counts involved
in assembling and solving the reduced system with its output functionals.
Although the Finite Element Method and the Reduced Basis Method seem sim-

ilar there are distinct differences. The reduced basis method generates a very low
dimensional model for a specific problem. Its use of ansatz functions with a global
support leads to dense albeit very small linear systems. This is in opposition to
FEM where locally supported ansatz functions generate large but sparse systems.

5.4. A posteriori error estimation

The reliability of the reduced basis method relies on accurate approximation of the
solution to the truth approximation and efficient methods to compute and control
approximation errors. In particular the desired self-adaptive construction of a re-
duced basis requires not only tight and effective error bounds but computable ones.
In this section we present rigorous bounds for the approximation errors for the solu-
tion and quantities of interest. We furthermore derive computable error estimators
suitable for an offline-online decomposition thus allowing for efficient evaluation of
the error bound in the construction of the reduced basis.

5.4.1. Error bounds

In this section we present errors bounds for the residual of the primal problem in the
dual norm. The following theorem is the basis for the a posteriori error estimates
derived later.

Theorem 5.2 (Primal error bounds). The residual

rpr(·; ũ) : X → C, v 7→ rpr(v; ũ) = f(v)− a(v, ũ) (5.5)

of the approximate solution ũ ∈ X̃ ⊂ X and the inf-sup constant β of a(·, ·) bound
the error e = u − ũ of the approximate solution to the exact solution u ∈ X. It
holds:

‖e‖X ≤
1

β
‖rpr(·; ũ)‖X′ .

69



5. Reduced Basis Method for Optical Simulations of Solar Cells

Proof. Using Corollary 3.10 we find a map T : X 7→ X relating a(x, ·) ∈ X ′ for every
x ∈ X to the Riesz representer Ax ∈ X such that a(x, y) = (Ax, y)X ∀y ∈ X. For
Ax ∈ X we have

0 < β‖e‖X‖Ax‖X ≤ |a(Ax, e)|. (5.6)

This follows from the Definition 3.12 of β where the supremum is attained at the
Riesz representer Ax ∈ X .
The residual also fulfills

a(v, e) = a(v, u)− a(v, ũ) = f(v)− a(v, ũ) = rpr(v; ũ) ∀v ∈ X

as u is the exact solution. Inserting the Riesz representer v = Ax yields

a(Av, u− ũ) = rpr(Av; ũ) ≤ ‖rpr(·; ũ)‖X′‖Av‖X . (5.7)

Combining (5.6) and (5.7) and eliminating ‖Ax‖ concludes the proof.

The theorem allows to bound the errors of the continuous quantities of interest.
The following Lemma bounds the error of the linear quantity of interest.

Lemma 5.3. For a linear quantity of interest we find

|sl − s̃l| ≤
1

β
‖l(·)‖X′‖rpr(·; ũ)‖X′ .

Proof. Linearity of l(·) allows to apply Theorem 5.2:

|sl − s̃l| =|l(u)− l(ũ)| = |l(u− ũ)|
≤‖l(·)‖X′‖e‖X

≤ 1

β
‖l(·)‖X′‖rpr(·; ũ)‖X′ .

In case of a quadratic function of interest sq we obtain the similar result exploiting
the properties of the locally Lipschitz-continuous, bounded functional.

Lemma 5.4. For a quadratic quantity of interest we find

|sq − s̃q| ≤
Lq
β2

(
γ‖rpr(·; ũ)‖X′ ‖f‖X′ + ‖rpr(·; ũ)‖2X′

)
where Lq = supw∈X

|q(w)|
(w,w)X

> 0 and γ the continuity constant of a(·, ·;µ).

Proof. The quadratic functional q(v) = q̃(v, v) allows to expand

s̃q =q(ũ) = q(u+ e) = q(u) + q(e) + q̃(u, e) + q̃(e, u).
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Hence with the continuity of q and the constant Lq we find

|sq − s̃q| = |q(e) + q̃(u, e) + q̃(e, u)|
≤ Lq

(
‖e‖2X + 2‖e‖X ‖u‖X

)
.

Now we apply Theorem 5.2 to bound ‖e‖X :

‖e‖2X + 2‖e‖X‖u‖X ≤
1

β
‖rpr(·; ũ)‖X′ ‖u‖X +

1

β2
‖rpr(·; ũ)‖2X′

Applying the Lax-Milgram Lemma 3.13 to bound ‖u‖X gives the desired result.

5.4.2. Error estimators

According to the error bounds for the residual and quantities of interest estimating
the dual norm of the residual is key in determining a tight error estimate. A numer-
ical evaluation of it in XN ⊂ X starts with the Riesz representer Rpr

N (µ) ∈ X of the
anti-linear, parameter dependent residual rpr(·; ũ(µ)), i.e.

(v,Rpr
N (µ))XN = rpr(v; ũ(µ)) ∀v ∈ XN . (5.8)

Solving (5.8) directly has the same costs as the solution of the truth approximation
in addition to the costs of computing ‖rpr(·; ũ(µ))‖(X)′ = ‖Rpr

N (µ)‖XN which again
depends on N . Assuming once more that a(·, ·;µ) and f(·;µ) can be affinely decom-
posed we can recover an efficient offline-online decomposition of the dual norm of the
residual. Exploiting the linearity of the scalar product and recalling the definition
of rpr(·; ũ(µ)) in (5.5) we thus find

(v,Rpr
N (µ))XN = f(v;µ)− a(v, ũ(µ)) =

Qf∑
q=1

θfq (µ)fq(v)−
QA∑
q=1

θAq (µ)aq(v, ũ(µ))

=

Qf∑
q=1

θfq (µ)fq(v)−
QA∑
q=1

N∑
i=1

θAq (µ)αi(µ)aq(v, φi)

where we expanded ũ in the basis Φ of XN . Finding Riesz representers of the anti-
linear functionals fq(·) and aq(·, φ) by solving

q ∈ {1, . . . , Qf} : fq(v) = (v, Fq)XN ∀v ∈ XN (5.9a)
q ∈ {1, . . . , QA}, i ∈ {1, . . . , N} : aq(v, φi)X = (v, Aiq)XN ∀v ∈ XN (5.9b)

allows to rewrite

Rpr
N (µ) =

Qf∑
q=1

θfq (µ)Fq −
QA∑
q=1

N∑
i=1

θAq (µ)A
i
q
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and hence we find

‖Rpr
N (µ)‖2 =

Qf∑
q,q′=1

θfq (µ)θ
f
q′(µ)(Fq, Fq′)XN

− 2Re


Qf∑
q=1

QA∑
q′=1

N∑
i=1

θfq (µ)θ
A
q′(µ)(Fq, A

i
q′)XN


+

QA∑
q,q′=1

N∑
i,i′=1

θAq (µ)θ
A
q′(µ)αi(µ)αi′(µ)

(
Ai
′

q , A
i
q′

)
XN

. (5.10)

The N dependent scalar products (Fq, Fq′)XN , (Fq, Aiq′)XN and (Ai
′
q , A

i
q′)XN can be

computed offline. In the online phase ‖Rpr
N (µ)‖2 can be computed independently

of N . Owing to Theorem 5.2 we can construct a rigorous, N -independent error
estimator for the reduced basis

∆N(µ) =
1

β(µ)
‖Rpr

N (µ)‖XN . (5.11)

Similarly we can also derive rigorous estimators for the resulting errors in the
output quantities

∆l
N(µ) = ‖l(·)‖(XN )′∆N(µ),

∆q
N(µ) =

Lq
β(µ)

(
γ‖f‖X′∆N(µ) +∆N(µ)

2
)
.

The necessary constants are usually not known hence we rather use the relative
difference between an evaluation in XN and XN−1 as indicators for the quality of
the approximation. We denote these

ηlN =
‖slN − slN−1‖L∞
‖slN‖L∞

, (5.12)

ηqN =
‖sqN − s

q
N−1‖L∞

‖sqN‖L∞
(5.13)

for N ≥ 2.

5.4.3. Inf-sup constant

The certification of the accuracy of a RBM relies on rigorous error estimates. These
estimates require the computation of the parameter dependent inf-sup constant β(µ)
for every parameter µ in the parameter space D. In the following we explore a way
to compute β(µ).
As a sesquilinear form a(·, ·) is linear in the second argument on X and ∀v ∈ X :
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a(v, ·) ∈ X ′. Hence Definition 3.12 can be restated equivalently as:

β = inf
v∈X

‖a(v, ·)‖X′
‖v‖X

. (5.14)

Due to the Riesz-representation Theorem 3.6 we can find a map

T : X → X

v 7→ Tv

such that
a(v, ·) = (Tv, ·)X ∀v ∈ X (5.15)

With (5.15) we reformulate (5.14):

β = inf
v∈X

‖a(v, ·)‖X′
‖v‖X

= inf
v∈X

‖(Tv, ·)X‖X′
‖v‖X

= inf
v∈X

‖Tv‖X
‖v‖X

= inf
v∈X

(Tv, Tv)X
‖v‖X‖Tv‖X

(5.16)

using ‖(·, T v)X‖X′ = supw∈X
|(w,Tv)X |
‖w‖X

= ‖Tv‖X .
We obtain

β2 = inf
v∈X

(Tv, Tv)X
(v, v)X

by squaring (5.16) and can interpret the right-hand side of this equation as the
Rayleigh quotient of the symmetric, positive definite eigenvalue problem:
Find (x, λ) ∈ X × R such that

(Tv, Tx)X = λ(v, x)X ∀v ∈ X. (5.17)

The inf-sup constant β now corresponds to the square root of the smallest eigen-
value λmin of (5.17):

β =
√
λmin

Estimation of βµ for reduced basis error estimates Solving the discretized
eigenvalue problem (5.17) of size N directly for all parameter µ ∈ D is infeasible. In
recent years the successive constraint method (SCM) [Huynh et al., 2007, Chen et al.,
2008, Chen et al., 2009] is usually employed to construct lower bounds βLB < β for
the inf-sup constant by solving small linear optimization problems. It is observed
that this method converges poorly thus leading to high computational complexity
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[Hess et al., 2014]. In [Hess et al., 2014] four different estimators (upper-bound-
SCM, MinRes-, Galerkin-estimators, and Kriging-interpolation) are evaluated in
a coplanar waveguide-setting at GHz frequencies. Their investigation reveals the
MinRes-estimator introduced in [Maday and Rønquist, 2002] to be the most accu-
rate. However, these estimators approximate the discrete stability constant, but are
not lower bounds.
The electromagnetic scattering problem is stated in an unbounded domain. In

these conditions, the inf-sup constant is nearly unaffected by small parameter per-
turbations in the interior. This will be demonstrated by the numerical examples in
Chapter 6. Hence for almost constant β(µ) replacing it by a constant β0 has little
effect on the error estimates presented before. We take β0 to be the minimum over
a finite subset Dβ of D. It is beneficial to choose Dβ the set of snapshot locations as
we already have access to the LU decomposition of the system matrix A(µ) there.
This serves to reduce computational costs as we will demonstrate in the following.

Direct computation of discrete constant In order to compute β, we solve the
discrete analog of (5.17). We call H ∈ CN×N the inner product matrix of XN ⊂
X, i.e. (x, y)XN = xHHy. With the finite element matrix A ∈ CN×N , we have
a(v, w) = vHAw and find T by means of

a(v, w) = (Tv, w)X ∀v, w ∈ XN
=⇒ vHAw = vHT HHw ∀v,w ∈ CN

⇐⇒ A = T HH
⇐⇒ AH−1 = T H

⇐⇒ T = H−HAH . (5.18)

In XN this allows to rewrite the left-hand side in (5.17) as follows

(Tv, Tx)X =(T v)HHT x
=vHT HHT x

(5.18)
= vH(H−HAH)HHH−HAHx
=vHAH−1HH−HAHx
=vHAH−HAHx

As v ∈ XN is arbitrary, solving (5.17) is now equivalent to

AH−HAHx = λHx (5.19)

We can solve (5.19) by an inverse power iteration detailed in Algorithm 2. It
requires the inversion of the system matrix A and the inner product matrix H. The
LU decomposition of H has to be computed only once provided sufficient memory
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Algorithm 2 Inverse power iteration algorithm to compute β
invert H,A
i→ 0 , q0 = x0

‖x0‖X
while not converged do
Solve AH−HAHxi+1 = Hqi by

xi+1 = A−HHHA−1Hqi

Set

λi+1 =
xHi+1AH−HAHxi+1

xHi+1Hxi+1

Set
qi+1 =

xi+1

‖xi+1‖X

i→ i+ 1
end while
return β =

√
λi+1

is available to store it for future use. The same holds for the LU decomposition of
the system matrix which in case of a reduced basis snapshot location has already
been computed.

5.5. Parameterization of the electromagnetic
scattering problem

The electromagnetic scattering Problem 2 depends on a number of parameters that
might be interdependent on each other. The offline-online decomposition in N de-
pendent and independent operations presented in Section 5.3 relies on an affine
parameter dependence of the bilinear form. A commonly encountered affine decom-
position of the sesquilinear form a is

a(v, u; {ω, µ, ε}) = (∇× v, µ−1∇× u)− ω2(v, εu)

= aµ(v, u)− ω2aε(v, u),

resulting an affine decomposition with respect to the frequency ω and supposedly
parameter independent sesquilinear forms aµ(v, u), aε(v, u). Similar affine decompo-
sitions in ε, µ exist as well. However, when considering dispersive materials these
decompositions are no longer affine as ε, µ are functions of ω. Likewise, for geo-
metrical parameter variations this is not true and other affine decompositions must
be used. In [Pomplun, 2010] the affine decomposition of Maxwell’s equations with
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respect to geometrical parameterizations used piecewise linear transformations of
topologically equivalent meshes which fulfill the affine geometry precondition.
Whereas in [Pomplun, 2010] the implementation was limited to geometrical pa-

rameter variations, we aim to lift this restriction and aspire to include all parameters
in our reduced basis method. This comprises material parameters, such as permit-
tivity and permeability, as well as source parameters, such as incidence angle and
frequency of the illumination. The restriction to real valued parameter domains
D ⊂ Rd requires separate modeling of real and imaginary parts of complex valued
quantities, i.e. the permittivity. In practice this restriction is of no consequence as
C can be identified as R2.

5.5.1. Empirical Interpolation Method

Interpolating arbitrary functions is a challenging task if little information is available
a priori . Classically, Lagrangian interpolation methods have been used with great
success for polynomial functions and have found their way into various textbooks on
numerics [Deuflhard and Hohmann, 1993]. Questions on existence and uniqueness of
the interpolant are followed by discussions of optimally chosen interpolation points
and algorithms. For example in the one dimensional case Gauss-Chebyshev nodes
provide an optimal choice of interpolation points and define a unique Lagrangian
interpolation operator. Although the theory of polynomial interpolation is very well
documented and fairly extensive, a number of open questions remain when a more
general set of non-polynomial or complex shaped, high dimensional domains are
investigated. In these cases oftentimes optimal interpolation points are unknown or
demand tailored and complicated implementations.
The demand for a general purpose, a-posteriori error controlled interpolation

scheme has led to the introduction of the Empirical Interpolation Method (EIM)
[Barrault et al., 2004] and its discrete analog the Discrete Empirical Interpolation
Method (DEIM) [Chaturantabut and Sorensen, 2009, Chaturantabut and Sorensen,
2010]. These methods have been used with great success in connection with reduced
basis methods [Grepl et al., 2007, Eftang et al., 2010a] and the algorithmic ideas
demonstrate several similarities as both methods rely on snapshots. In fact, the
interpolation points have been referred to as “magic points” [Maday et al., 2007]
in praise of their efficiency in interpolating general classes of functions. This qual-
ification is justified by the observation of the good interpolation behavior of the
empirical interpolant compared to known optimal solutions for model problems.
In the following we briefly present the general idea of EIM and demonstrate its

convergence properties with respect to several examples. For more detailed expla-
nations and proofs the reader is referred to [Barrault et al., 2004, Maday et al.,
2007, Chaturantabut and Sorensen, 2009, Chaturantabut and Sorensen, 2010]

Construction of affine approximation We present the empirical interpolation
for a parameter dependent function g : Ω × D 7→ R where we assume g(·, µ) ∈
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L∞(Ω) ∀µ ∈ D with a non-affine dependence on the parameter µ ∈ D ⊂ Rd. The
idea is to find an approximation

g(r;µ) ≈ IQ [g(·;µ)] (r) =
Q∑
q=1

θq(µ)gq(r)

with scalar functions θq : Rd 7→ R and a “collateral reduced basis” {gq}Qq=1.
Like in a reduced basis approximation the empirical interpolation approximates the

parametric manifold M = {g(·;µ) |µ ∈ D} by Q snapshots. The EIM, in contrast
to RBM, does not rely on a Galerkin projection of the snapshots. Instead a linear
system for the interpolation coefficient θq is derived by demanding the interpolation
to be exact at Q interpolation nodes rq chosen by the algorithm.
The approximation is constructed iteratively. We start by defining a set of interpo-

lation points R = {r1, . . . , rQ} and parameters P = {µ1, . . . , µQ} and the collateral
reduced basisQ = {ξ1, . . . , ξQ} which are generating functions {g(·;µ1), . . . , g(·;µQ)}
associated with P.
We initialize the set with a starting parameter P1 = {µ1} such that g(·;µ1) 6= 0

and the set of interpolation points R1 = {r1} where r1 = argmaxr∈Ω ‖g(r;µ1)‖∞.
We than set ξ1 = g(·;µ1)‖g(r1;µ1)‖−1∞ and set Q = {ξ1}. Associated with these
choices is the interpolation operator IQ. For Q > 1 we define recursively:

• µQ = argmaxµ∈D ‖g(·;µ)− IQ−1 [g(·;µ)] ‖∞, PQ = PQ−1 ∪ {µQ}

• rQ = argmaxx∈Ω ‖g(·;µQ)− IQ−1 [g(·;µQ)] ‖∞, RQ = RQ−1 ∪ {rQ}

• ξQ =
g(·;µQ)−IQ−1[g(·;µQ)]

‖g(rQ;µQ)−IQ−1[g(rQ;µQ)]‖∞
, QQ = QQ−1 ∪ {ξQ}

In implementations D and Ω are replaced by finite subsets which makes the solu-
tion of the optimization problems feasible. The resulting basis Q is not orthogonal
but hierarchical and bounded as ξq(rq) = 1 ∀q ≤ Q. The algorithmic construction
resembles the Greedy-Algorithm 3 used to construct a reduced basis. It is discussed
in detail in Section 5.6.1.
The interpolation operator IQ [·] at µ ∈ D is defined as follows: With RQ and

QQ constructed as above we define the matrix Q = (ξj(ri))
Q
i,j=1 and the vector

g = (g(ri;µ))
Q
i=1. The solution θ of

Qθ = g

gives rise to the interpolant IQ [g(·;µ)] =
∑Q

q=1 θqξq(·). The matrix Q is lower
triangular with a unit diagonal and hence always invertible. The cost associated
with the computation of θ is O(Q2).

Theorem 5.5 (A posteriori error estimate). Let IQ and IQ′ be empirical interpolants
for Q′ > Q with QQ ⊂ QQ′ and RQ ⊂ RQ′ defined as above. Let Q = (ξj(ri))

Q′

i,j=Q+1.
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For µ ∈ D we define δ := (g(ri;µ)− IQ [g(·;µ)] (ri))Q
′

i=Q+1 and compute θ′ = Q−1δ.
If

IQ [g(·;µ)] ∈ span(QQ′) (5.20)

the following a posteriori error bound for the interpolation error holds

‖g(·;µ)− IQ [g(·;µ)] ‖∞ ≤ ∆g
Q,Q′,∞(µ) = ‖θ

′‖1 =
Q′∑

i=Q+1

|θ′i|

The assumption (5.20) generally does not hold and the estimator is not a rigorous
upper bound. On the other hand the error bound is inexpensive to evaluate as it
only requires one additional evaluation of g(·;µ) for Q′ = Q + 1. Rigorous error
bounds exist [Eftang et al., 2010a] depending on the parametric derivatives of the
approximated functions.
The Lebesque constant ΛQ = supx∈Ω

∑Q
q=1 |vq(x)|, where vq are the characteristic

functions of span(QQ) satisfying vq(ri) = δqi, allows to bound the approximation
error a priori . In [Barrault et al., 2004, Maday et al., 2007] it is proven that the
EIM approximation satisfies

‖IQ [g(·;µ)]− g(·;µ)‖∞ ≤ (1 + ΛQ) inf
v∈span(QQ)

‖g(·;µ)− v‖∞. (5.21)

The tight bound 2Q−1 for ΛQ is shown in [Barrault et al., 2004, Maday et al., 2007].
In practice the observed behavior is much better as found in the cited papers and
in the numerical examples in Chapter 6.
The affine approximation of the bilinear form with the empirical interpolant leads

to a different, interpolated truth approximation. In this thesis we refer to this
approximation as the truth approximation with empirical interpolation.

Problem 8 (Truth-Approximation with empirical interpolation). Let IQA and IQf
be empirical interpolants for the sesquilinear form a(·, ·) and the linear form f(·).
For a given input parameter µ ∈ D ⊂ Rd, compute the linear and quadratic outputs
of interest

sl(µ) = l(uN (µ)),

sq(µ) = q(uN (µ)),

where uN (µ) ∈ XN satisfies the following weak formulation:
Find uN (µ) ∈ XN such that:

IQA
[
a(v, uN (µ);µ)

]
= IQf [f(v;µ)] , ∀v ∈ XN (5.22)

5.5.2. Implementation details

Our reduced basis implementation is based on JCMsuite. In the following we
consider the treatment of parameter dependencies in optical simulations of nano-
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photonic systems with it. We distinguish parameterizations of geometrical features
from non-geometrical features.

Geometrical parameters Geometrical parameter dependencies are incorporated
into the grid generation process in our implementation. By explicitly defining point
derivatives in the layout of the geometry to be modeled, geometrical deformations
with respect to parameters are included automatically into the underlying grid and
are treated separately from non-geometrical parameters which are not deforming
the grid. These parameters can describe and vary geometrical properties of three
dimensional objects, among them length, width and height, as well as radii of cir-
cles and cylinders, or sidewall angles. Whereas the material properties may enter
affinely in the weak formulation, the geometrical parameters generally do not. In
many regards the geometrical variations prove the most difficult to handle in the
parameterization, as the reduced basis construction requires topologically equivalent
grids. The generation of meshes suitable for reduced basis computations capable of
handling large deformations is part of our current research.

Non-geometrical parameters A general work flow for simulating optical proper-
ties of nanostructured devices starts and ends in a scripting language. Typically
a set of user defined templates is used to generate the solver input for a given set
of parameters. This usually includes steps to load and interpolate measured data
(such as refractive indices) as well as modeling sources (for example rotating and
scaling the k-vector of a plane wave). These templates can execute complex opera-
tions based on the input (entered as key-value pairs), but eventually keywords are
substituted for their values.
Our RBM implementation relies on the scripting interfaces offered by JCMsuite to

Matlab and Python. It uses named parameters and passes key-value pairs to the
scripting interfaces, executes any scripts necessary and substitutes the key words to
obtain the required input which is subsequently processed by the program. Internally
the required data is cached and calls to the scripting interfaces are bundled to reduce
the number of overall calls as for example the overhead including startup times of
Matlab can make up several seconds. This procedure allows for very flexible usage
and has the main advantage of exposing a wide range of parameterizations to be
defined in a high level scripting environment. In contrast to replicating a lot of
functionality of a higher level language in a low level implementation this embedded
scripting interface is much more versatile and efficient. The possible downside of
this approach is the excess burden for the user to define self-sustained templates
that accept only the named parameters.

5.6. Self-adaptive reduced basis assembly

This section presents strategies to build Lagrange reduced basis spaces XN . In Sec-
tion 5.3 we did not specify how to choose the parameter locationsDN = {µ1, . . . , µN}
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where the snapshots ui = uN (µi) are computed. As the online costs of the reduced
basis depend on the dimension N we attempt to choose DN such that the resulting
space XN = spani=1,...,N{uN (µi)} approximates the solution manifold MN over D
well. Hence, for a given N we want to include as much information about MN in
XN as possible, i.e. we aim to choose XN as the optimal approximation in terms
of linear subspaces of M. In these cases one usually is restricted to determine the
snapshot locations by solving an optimization problem. The definition of “best”
depends on the chosen metric d(·, ·) : X ×X 7→ R+.
In case of a single parameter D ⊂ R it is oftentimes possible to determine optimal

snapshot locations. These are however not necessarily identical to optimal interpo-
lation points for the output of interest [Maday et al., 2007] which are known to be
Chebychev nodes. In high dimensional parameter spaces there is usually less or no
a priori knowledge for optimal choices available.

5.6.1. Greedy snapshot selection

Instead of a direct construction of a N -dimensional subspace of X the idea is to
use the available information during the construction phase and build XN self-
adaptively. The use of the inexpensive a posteriori -estimators (cf. Section 5.4.2)
allows to assess how well the solution for a parameter µ ∈ D is approximated in a
given reduced basis space XN . The most common strategy is thus a “greedy” selec-
tion of the worst resolved parameter over a finite dimensional training setDtrain ⊂ D
and subsequent enrichment of the reduced basis space by the corresponding snapshot
solution. The inclusion of this parameter location into the reduced basis yields the
maximal improvement in terms of approximatingMN . This strategy has been shown
to yield optimally chosen N -dimensional subspaces [Binev et al., 2011] with respect
to Kolmogorow-N -width and exponential convergence rates for elliptic problems.
The Greedy algorithm 3 works as follows: A first snapshot parameter µ1 is se-

lected at random and the corresponding snapshot u(µ1) is computed as a solution
to the truth approximation. This allows to define an error estimate ∆1. For the
selection of the next snapshot this error estimate is evaluated over Dtrain and the pa-
rameter corresponding to the largest error estimate is selected as the new snapshot
parameter. This procedure is repeated until the maximum of the error estimate over
the training set is smaller than the user specified tolerance level ε or a maximum
dimension Nmax has been reached.
In Algorithm 3 the algorithm is outlined in more detail. Here, additional steps

are mentioned such as the construction of ∆i. This summarizes the offline tasks
necessary to construct the reduced basis, i.e. the projections of the snapshot onto the
reduced basis. These steps are described in Section 5.3.1 for the affine decomposition
and in Section 5.4.2 for the residual error estimate. The choice of the error indicator
in Algorithm 3 influences the result. The choice of one of the error indicators for
the output quantities instead of ∆N(·) possibly leads to a smaller basis but might
not approximate the field solution uN (µ) as well. Conversely this is guaranteed by
the continuity of the output quantities.

80



5.6. Self-adaptive reduced basis assembly

The listed algorithm also includes steps to compute lower bounds βLB for the
inf-sup-constant β. In Section 5.4.3 we commented on the estimation of βLB. These
enter the estimates and are listed for completeness.

Algorithm 3 Self-adaptive construction of the reduced basis space XN by greedy
selection of snapshots

choose training set Dtrain ⊂ D, maximal reduced basis dimension Nmax and
error threshold ε

2: choose µ1 ∈ Dtrain at random, compute snapshot uN (µ1)
set X1 = span{uN (µ1)}

4: orthonormalize X1

compute βLB = β(µ1)
6: construct ∆1

refine Dtrain

8: µ2 = argmaxµ∈Dtrain ∆1(µ)
i→ 2

10: while ∆i−1(µi) ≥ ε and i ≤ Nmax do
compute snapshot uN (µi)

12: set Xi = Xi−1 ∪ span{uN (µi)}
orthonormalize Xi

14: compute βLB = min{βLB, β(µi)}
construct ∆i

16: refine Dtrain

µi+1 = argmaxµ∈Dtrain ∆i(µ)
18: i→ i+ 1

end while

The computed snapshots are also orthogonalized against each other using a Gram-
Schmidt procedure. The orthogonality improves the numerical stability.

Adaptive refinement and partitioning of Dtrain

The underlying assumption for the reduced basis computation is a smooth solution
manifold M. This is usually measured as small Kolmogorow-N -width, a measure
hard to compute. The contrary is usually readily observed a posteriori if a high
number of reduced basis functions is required in the construction of the reduced
order model. An analytical parameter dependence or high regularity of the solution
is uncommon in real-world applications where these features are, if at all, only
observed locally thus requiring at least a sufficiently dense approximation Dtrain

of D. Even with the optimal strategy, the choice of the training set Dtrain has
significant influence on the computation times and size of the reduced basis. In
[Haasdonk et al., 2011] three problems are mentioned:

(i) over-fitting of too small training sets,
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(ii) long training times in high dimensional parameter spaces,

(iii) possibly large number of reduced basis functions resulting in long online eval-
uation times.

Their strategies to overcome these drawbacks include locally adaptive grid refine-
ments of Dtrain with penalties for long non-refinement history and adaptive pa-
rameter domain partition. These are closely related to the hp strategy presented
in [Eftang et al., 2010a]. Here h-refinements corresponds to locally adaptive par-
titioning of the parameter domain. This limits the computational complexity in
the online phase as the parameter domain is split into subdomains Di if a given
number Nmax of reduced basis functions is considered insufficient to approximate
the output of interest over the parameter domain as a whole. Allowing for variable
maximal reduced basis space dimensions N i

max in the Greedy enrichment within the
subdomains yields the hp strategy.
All these strategies yield possibly very many bases for subdomains, each satisfying

the global dimension limitNmax and error tolerances. The linear systems to be solved
in the online phase are still small through the locality in parameter domain.

Locality beyond partitioning

The domain partitioning suggested in [Eftang et al., 2010a, Haasdonk et al., 2011]
yield independent reduced bases for adjacent subdomains which may lead to the
choice of parameter locations close to or on the boundary. Hence they require com-
putation of effectively redundant truth solutions for close-by parameter values as the
subdomain reduced bases do not share basis functions. This is a major drawback of
the refinement strategies based on tessellation of the parameter domain. Alternative
approaches are suggested in [Maday and Stamm, 2013] and [Amsallem et al., 2009].
Amsallem proposed an interpolation in the tangent space of the underlying Grass-
manian manifold for parameterized linear structural dynamics. Instead of directly
interpolating between snapshots to generate an approximation for new parameter
values, they map them to the tangent space at a reference point, interpolate in the
tangent space, before pulling back. In their specific case, reduced order models are
built for symmetric positive definite matrices (mass, damping and stiffness) belong-
ing to simple matrix manifolds whose structure is exploited, thus allowing for online
computation of the mapping and interpolation.
The innovative idea proposed by Maday uses local approximation spaces spanned

by the N snapshots closest to a parameter µ. The distance is measured by an empir-
ical, problem specific metric based on the Hessian matrix of the output functional in
each parameter point accounting for anisotropies in the parameter dependence. The
Greedy strategy is then adapted to use a varying training set chosen optimally with
the problem specific distance metric. The aim is to uniformly distribute the points
of the trainings set Dtrain with respect to the constructed metric. This advantage
comes at the expense of a higher online complexity as the parameter specific reduced
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basis space is constructed online and can only partially precomputed with higher
offline effort.

Our implementation

The strategies presented above all require significant overhead in tessellation and
tracking grid refinements as well as partitioning. In case of a locally adaptive snap-
shot selection the online phase might even become substantially more expensive.
In many applications users choose to query the reduced model for very specific
parameter locations which are oftentimes known a priori or may include areas of
particular interest. We thus adapt our training set strategy accordingly starting
with a hypercube enclosing D. This step is listed in Algorithm 3 as “refine Dtrain”.
The user may provide an initial training set D0

train which is subsequently expanded
through adaptive refinement following the general idea of [Haasdonk et al., 2011].
To overcome the curse of dimensionality we refrain from global refinements of Dtrain

in each Greedy iteration and furthermore allow for cells to be only split according
to the steepest parameter derivatives. This limits the exponential growth of the
training set through bisections.

5.6.2. Dual strategies

The use of the adjoint or dual problem can significantly improve convergence rates
for the quantities of interest as it measures the ”slack“ of the solution with respect
to the outputs in Problem 6. This we will briefly investigate in the following. The
dual problem is derived from the corresponding Lagrange function with the primal
variable u ∈ X and dual variable w ∈ Xdu as follows. Starting with the derivatives
of the Lagrangian

L(u,w) = s(u) + f(w)− a(w, u)

with respect to the primal variable u we obtain

L′u(u,w)(v) = s′u(u)(v)− a′u(w, u)(v)

The dual problem is now found as

L′u(u,w)(v) = 0, ∀v ∈ Xdu.

In case of a linear output

s(u) = sl(u) = l(u) = (l, u) for l ∈ X ′

this reads as:

83



5. Reduced Basis Method for Optical Simulations of Solar Cells

Problem 9 (Dual Problem - linear case ). Let u ∈ X. Find w ∈ Xdu such that:

a(w, v) = −l(v), ∀v ∈ Xdu

The quadratic case with

s(u) = sq(u) = (u,Qu) for Q ∈ X ′

is slightly more complicated but similar:

Problem 10 (Dual Problem - quadratic case ). Let u ∈ X. Find w ∈ Xdu such
that:

a(w, v) = −(u,Qv)− (v,Qu), ∀v ∈ Xdu

In case of the Maxwell scattering problem the input-output relationship is not
compliant as the sesquilinear form a(·, ·) is not complex symmetric and the right
hand side differs from the primal problem. A dual corrected approximation of the
output of interest [Pierce and Giles, 2000] of the primal problem using an approxi-
mation of the dual solution w is given by

s̃pd = s̃− rpr(w, u)

which is bounded by (cf. [Pomplun, 2010])

|s̃pd − s̃| ≤ 1

β
‖rpr(·, u)‖X′‖rdu(·, w)‖X′.

Here rpr(w, u) denotes the primal residual which is evaluated at the dual solution
and rdu(w;u) the corresponding residual of the dual problem.
In many publications [Sommer et al., 2015, Pomplun and Schmidt, 2010] these dual

corrected output of interest are employed to improve convergence. Most focus on
linear outputs though quadratic outputs are not drastically more complicated in this
context. The drawback of this improved convergence is the necessity to construct
a separate reduced basis for the dual problem and the Xdu

N . The Galerkin orthog-
onality of the residual prohibits the use of Xdu

N = XN as the correction rpr(w, u)
would vanish thus requiring a separate reduced basis space Xdu

N 6= XN . Note that
the sesquilinear form a(·, ·) is the same in primal as in the dual problem (linear and
quadratic). This allows to compute the dual bases for Problems 9 and 10 efficiently
using the same approximation of the left hand side as in the primal problem. How-
ever, the dual corrected output of interest requires a solution of the dual problem for
every output of interest. In the typical setup described in this work usually a larger
number of outputs is considered. Especially for this configuration the overhead of
computing multiple reduced bases for dual problems might not be compensated by
the improved converge rates of the dual correction.
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5.7. Quadratic quantities of interest

Many applications require the investigation and optimization of power fluxes or
energy transformation processes. Flux and density integration post processing of
arbitrary flux or density type tensor fields hence are of great interest for many
studies. Computation of power fluxes via integration of the Poynting vector fluxes
S = Re

{
E ×H

}
across the boundaries of subdomains and integration of the elec-

tric energy density 1
4
E·D over subdomains are among the most common. In contrast

to linear outputs of interest such as the Fourier transform of the scattered electro-
magnetic field, these quantities are quadratic functionals of the electric field. As
much of the literature on RBMs is focused on linear functionals, this post process-
ing step for the RBM is thus presented in more detail in this section.

5.7.1. Expanded formulation for quadratic outputs

A method to include general quadratic outputs of the form

sq(u;µ) = l(u;µ) + q(u, u;µ),

where q(·, ·;µ) and l(·;µ) are (sesqui-)linear forms, into a reduced basis formulations
is an expanded problem formulation. In [Huynh and Patera, 2007] it is presented
for stress intensity factors in fracture mechanics and in [Sen, 2007] for power fluxes
in acoustics. The idea underlying this formulation is essentially the simultaneous
computation of the solution u and the adjoint state z for the quadratic(-linear)
output, allowing to compute the quadratic output of interest as a linear, compliant
output. The extended formulation thus requires the computation of a pair (u, z) as
solutions of the following system:

a(v, u;µ) = f(v;µ) ∀v ∈ X (5.23a)

a(z, v;µ) = q(u, v;µ) +
1

2
l(v;µ) ∀v ∈ X (5.23b)

Setting

w+ =
1

2
(u+ z)

w− =
1

2
(u− z)

allows to reformulate (5.23) as

a(v, w+;µ) + a(v, w−;µ) = f(v;µ) ∀v ∈ X (5.24a)

a(w+, v;µ)− a(w−, v;µ) = q(w+, v;µ) + q(w−, v;µ) +
1

2
l(v;µ) ∀v ∈ X. (5.24b)
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For all v+, v− ∈ X we obtain by adding (5.24a) and (5.24b)

a(v+, w+;µ) + a(v+, w−;µ)

+a(w+, v+;µ)− a(w−, v+;µ)

−q(w+, v+;µ)− q(w−, v+;µ) = f(v+;µ) +
1

2
l(v+;µ)

and subtracting (5.24a) from (5.24b)

a(w+, v−;µ)− a(w−, v−;µ)
−a(v−, w+;µ)− a(v−, w−;µ)

−q(w+, v−;µ)− q(w−, v−;µ) = −f(v−;µ) + 1

2
l(v−;µ)

again two equations. This set of equations is equivalent to

A(V ,W ;µ) = F (V ;µ) ∀V ∈ X (5.25)

where X = X × X, W = (w+, w−), V = (v+, v−) and the sesquilinear form A :
X × X ×D→ C and linear form F : X ×D→ C are defined as

A(V ,W ;µ) =a(v+, w+;µ) + a(v+, w−;µ)

− a(v−, w+;µ)− a(v−, w−;µ)
+ a(w+, v+;µ)− a(w−, v+;µ)
+ a(w+, v−;µ)− a(w−, v−;µ)
− q(w+, v+;µ)− q(w−, v+;µ)
− q(w+, v−;µ)− q(w−, v−;µ)

F (V ;µ) =f(v+;µ)− f(v−;µ) + 1

2
l(v+;µ) +

1

2
l(v−;µ)

Evaluating the compliant output functional F (W ;µ) at the solution W of (5.25) is
now equivalent to computing the quadratic output in the original problem. This
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can be quickly checked:

F (W ;µ) =f(w+;µ)− f(w−;µ) + 1

2
l(w+;µ) +

1

2
l(w−;µ)+

=f(w+ − w−;µ) + 1

2
l(w+ + w−;µ)

=f(z;µ) +
1

2
l(u;µ)

=a(z, u;µ) +
1

2
l(u;µ)

=q(u, u;µ) +
1

2
l(u;µ) +

1

2
l(u;µ)

=q(u, u;µ) + l(u;µ)

=sq(u;µ)

Assessment of the expanded formulation

The benefit of this formulation is obviously the evaluation of the quadratic output
as a linear functional, thus being suited for a standard reduced basis formalism.
Furthermore, a compliant output does not require a primal-dual formulation as in
the linear, non-compliant case to achieve similar convergence rates.
The downside of this formulation is the requirement to solve (5.25) which is of

dimension dim(X ) = 2 dim(X). Hence in a discretized system this is equivalent to
the inversion of a system with twice the number of unknowns. Even though in the
RBM this operation is only executed in the offline phase while the online costs are
not affected, this renders the extended formulation infeasible for large, non-coercive
systems with dim(X) in the order of millions. In addition, this approach does not
scale well for multiple quadratic outputs.

5.7.2. Density integration

The electric field energy density is given by we = 1
4
E ·D as an expression of the

electric field E and the electric displacement fieldD and similarly the magnetic field
energy density by wm = 1

4
H ·B with the magnetic field H and the magnetic flux

density B. In the following we focus on the electric field energy density. Assuming
D = εE holds, we appears as a quadratic form:

we(E) =
1

4
E ·D =

1

4
E · εE. (5.26)

The energy densities itself are usually of minor interest whereas the integrated quan-
tity, the electric field energy We =

∫
Ω
we dr contained within a (sub-) domain Ω,

are of greater importance. The electric field energy allows for example to compute
the volume absorption within the domain (cf. Section 2.2.2). Usually a numeric
quadrature rule of sufficiently high order is used to compute this integral in the
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finite element context. This is an efficient strategy if the integration has to be done
only once (cf. also Section 4.3.2), even though this post processing step can become
very expensive.

Reduced basis formalism

Let ΦN = {φi, i = 1, . . . , N} a basis of the reduced basis space XN . We expand the
reduced basis solution uN(µ) in this basis

uN(µ) =
N∑
i=1

αi(µ)φi

and evaluate We for uN

We(uN(µ)) =
1

4

∫
Ω

N∑
i=1

αi(µ)φi · ε(µ)
N∑
j=1

αj(µ)φj dr

=
N∑

i,j=1

αi(µ)αj(µ)
1

4

∫
Ω

φi · ε(µ)φj dr

=
N∑

i,j=1

αi(µ)αj(µ)Q(φi, φj;µ)

= α(µ)ᵀQ(µ)α(µ)

Note that evaluating Q(µ) ∈ CN×N for a given µ requires N2 volume integrations of
snapshot solutions φi. Thus this procedure becomes highly inefficient as it requires
all snapshot solutions to be stored along with their shape functions and implies costs
in the order of N2N 2. However, we can employ once again an empirical interpolation
scheme to recover an affine expansion in the parameter. In this case this has to be
done with respect to the permittivity tensor ε instead of the complete FEM system
matrix. This leads to a set of parameters {µ1, . . . , µQPP } which is in generally
distinct from the one used in the empirical interpolation of the FEM system. Using
this set ε(µ) reads

ε(µ) =

QPP∑
k=1

θk(µ)ε(µk) (5.27)

and subsequently the matrix entries become

Q(µ)i,j = Q(φi, φj;µ) =
1

4

∫
Ω

φi · ε(µ)φj dr =
P∑
k=1

θk(µ)
1

4

∫
Ω

φi · ε(µk)φj dr

=

QPP∑
k=1

θk(µ)Q(φi, φj;µk).
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To distinguish between subdomains Ωid ⊂ Ω we furthermore have to restrict the in-
tegral to Ωid and treat all of the I disjoint subdomains {Ωid1 , Ωid2 , . . . ΩI} separately.
As a simplification we do not use separate empirical interpolants for the restricted
permittivity tensors ε|Ωid . This is justified as an affine expansion interpolating ε
on Ω does so on subdomains Ωid ⊂ Ω as well. Theoretical savings in requiring
fewer expansion terms in a subdomain compared to a global approach have to be
balanced against a more complicated implementation managing separate empirical
interpolants for subdomains.

Offline phase

Naturally we aim at reducing online costs as much as possible. Thus it is necessary to
compute the entries Qid(φi, φj;µk) during the offline phase which still is an expensive
step as it requires QPPN

2 integrations for every subdomain Ωid. Note that Q is only
symmetric if ε is real valued, i.e. the materials are non-absorptive. However, we
can exploit the nature of the reduced basis elements φi which can be expanded in
the underlying finite element basis {ζ1, . . . , ξN} themselves. Using the expansion
φi =

∑N
li=1 βliζli we can rewrite Qid(φi, φj;µk) once more as

Qid(φi, φj;µk) =
N∑
li=1

N∑
lj=1

βliβlj
1

4

∫
Ωid

ζli · ε(µk)ζlj dr = β
ᵀ
iQid(µk)βj. (5.28)

Assembling Qk
id = Qid(µk) is closely linked to assembling the mass matrix in the

FEM system matrix A. Computing the matrix entry Qid(φi, φj;µk) results in a
Galerkin projection step involving the finite element coefficient vectors βi,βj of the
snapshot solutions φi, φj and the matrix Qk

id. The computational effort is reduced
by restricting the assembly process to degrees of freedom associated with Ωid and
likewise selection of the associated entries of β.
Summarizing the previous steps:

(i) Empirical interpolation of ε(·) with respect to {µ |µ ∈ D}.

(ii) Assembly of required matrices {Qk
id}.

These two steps are independent of the reduced basis assembling steps and can thus
be executed prior to the computation of the first snapshot (or in parallel). The
addition of a new snapshot requires the projection step (5.28) to be executed with
respect to every previous snapshot and for all matrices. This results in (2N−1)QPP I
total projections.

Online phase

In the online phase we can compute the electric field energy contained in the sub-
domain Ωid very efficiently for an arbitrary µ ∈ D. We start by determining the
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Table 5.1.: Operation count of the offline and online phases for different algorithmic
steps.

phase step operation count

offline

system assembly for EIM O(QAN )

computation of snapshots solutions1 O(NN 2)

Gram-Schmidt orthogonalization O(N2N )

matrix projection O(QAN
2N )

residual error estimate: inner product matrix1 O(N 2)

residual error estimate: substitutions O(N(Qf +QA)N )

residual error estimate: scalar products O(N2(Qf +QA)
2N )

linear output of interest O(NN )

quadratic output of interest: assembly O(QPPN )

quadratic output of interest: projection O(QPPN
2N )

online

assembly of reduced system O(QAN
2)

solution of reduced system O(N3)

residual error estimate O(Q2
AN

2)

linear output of interest O(N)

quadratic output of interest O(QPPN
2)

empirical interpolation coefficients θ(µ) (5.27) first. Then we can use the coefficient
vector α of (5.7.2) to compute W id

e (uN(µ)) as follows:

W id
e (uN(µ)) =

QPP∑
k=1

θk(µ)α
ᵀQkidα (5.29)

5.8. Operation count

In the previous sections we did not examine the computational costs in constructing
the reduced basis approximation. We thus discriminate the operation count between
offline and online phase. An overview of all steps involved with associated operation
count is found in Table 5.1.
Offline, the EIM requires assembling QA FEM systems. The sparse FEM system

of dimension N has to be solved for N snapshots. The complexity of this opera-
1Actual costs depend on the sparsity structure of the FEM system matrix. The complexity O(N 2)
noted here is based on the observed cpu times listed in Table 6.4.
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tions depends on several factors such as the structure, storage format and number of
non-zero entries. In practical applications we usually observe complexity resembling
O(N 2) as listed in Section 6.2.2. The snapshots are orthogonalized to increase nu-
meric stability. This involves computing N2 projections of the snapshots onto each
other. Subsequently they are projected onto the QA system matrices (cf. (5.4)). As
these are sparse, the number of operations is O(QAN

2N ). The residual error esti-
mator requires the computation of several Riesz representers (cf. (5.9)). However,
a single LU decomposition of the inner product matrix H is sufficient to compute
these together with N(Qf+QA) forward/backward substitutions. Subsequently, the
N2(Qf +QA)

2 scalar products in (5.10) are computed.
The costs for linear outputs amount to O(NN ). For the quadratic output in Sec-

tion 5.7.2 we need to distinguish the assembly of the QPP terms and the projection.
The assembly is related to the FEM system assembly thus the costs are compara-
ble. These matrices are sparse as well, hence the cost for the projections (5.28) are
O(QPPN

2N ).
In the online phase it is sufficient to assemble QA reduced systems which amounts

to O(QAN
2) operations. The inversion of the dense RB system amounts to O(N3)

operations and an additional O(N) operations is required for the evaluation of a
linear output of interest. The evaluation of the residual error estimate requires
O(Q2

AN
2). The quadratic output of interest has approximately the same costs as it

requires O(QPPN
2) operations.

5.9. Reduced Basis Method and high performance
computing

The RBM demands a lot of computational resources during the offline phase. High-
performance computing centers offer supercomputers with performance in the peta-
flop/s regime. Naturally one seeks to develop strategies to optimally use the re-
sources available and distribute the workload whenever possible. In terms of high
performance computing parallelization is key. The authors of [Knezevic and Peter-
son, 2011] note several opportunities for parallelization, including

• N dependent operations should be executed in parallel if possible,

• the Greedy search is embarrassingly parallel.

The first is easily addressed. The underlying finite element toolbox of JCMsuite
heavily relies on thread parallelization wherever feasible. Namely matrix-vector op-
erations as well as the solution of the linear system make efficient use of the available
processing power through use of the OpenMP framework. The Greedy search re-
quires evaluations of the error estimator for any parameter µt ∈ Dtrain during the
argmax computation. Parallelizing this operations directly reduces computation
times and scales optimally with the number of cores. However, it demands a thread
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safe implementation of the reduced basis solution and error estimation, an opera-
tion that terminates within milliseconds. In real world application problems with
N ≈ 106 the N operations clearly determine the offline computation times and the
Greedy search is negligible even in high-dimensional parameter spaces (hours vs.
seconds).
Current high-performance systems or super-computing clusters often use nodes

with 64 GB main memory [HLRN, 2015, LRZ, 2015] whereas large-memory sys-
tems are rare. Hence computing nodes in supercomputers are generally too small
to compute a reduced model for a larger problem on their own. We thus find a
more challenging restriction in the available memory of a single machine. During
the offline phase our RBM implementation assembles and stores a number of large
sparse matrices of dim ≤ N . This is required by the EIM employed for both the
parameter dependent system matrix and the matrices used in the post processes for
subdomains. These possibly large storage requirements may prohibit the solution of
the linear system to be executed on the same machine. The strategies to circumvent
this include

• reassembling the matrices each time they are required,

• writing matrices to disk,

• using more than one physical machine.

The first is only a last resort as the overhead of reassembling QA + QPP FEM
matrices in every iteration is tedious. Offloading large matrices to disk is possible
but produces overhead in reading and writing. The latter strategy requires the
simultaneous use of at least two machines which further increases the computational
requirements. Provided we have a computing cluster at our disposal, we can leverage
the advantages process parallelization in addition to thread parallelization. Using
Message Passing Interface (MPI) we can exchange information and data between
different processes within the cluster and use different machines for assembling and
solution of the linear systems. Thus the matrix inversion can be done on a machine
or a cluster with sufficient memory, whereas another machine keeps the matrices in
memory and transfers the matrix to be inverted to the other processes.
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In this chapter numerical results are presented demonstrating the efficacy of the
methods presented in the previous chapters. Most of theses examples are adapted
from previous indicated publications. They demonstrate in great detail the flexibility
of the implementation and the properties of the presented methods.
The reduced basis method relies on the assumption that the solution manifold

can be approximated well by snapshot solutions. In case of a structure exhibiting
resonant behaviour the field solution changes drastically with small variations of a
parameter. In the first example in Section 6.1, the efficacy of the Reduced Basis
Method for such a case is demonstrated. A reduced model is derived for photonic
crystal made of silicon. The arising errors of the reduced basis and the Empirical
Interpolation approximations are discussed in detail.
The following examples concern the simulation of multi-junction solar cells. The

inclusion of incoherent layers in rigorous optical simulations. The focus of this
examples is to establish a rigorous optical modeling setting for TFSSC including
incoherent light trapping. On this basis we investigate the use of Reduced Basis
Method and our implementation for this context in detail and demonstrate conver-
gence properties again.

6.1. Hexagonal nano-hole array: a reduced basis
for a photonic crystal

The following numerical example demonstrates the efficacy of the Reduced Basis
Method for Maxwell’s equation in case resonance phenomena occur. Results pre-
sented in this example were published in [Hammerschmidt et al., 2015b]. In this
section we present a short motivational review of previous work, before presenting
the optical model the reduced basis is built on. A detailed discussion and analysis of
the approximation errors are presented next. The simulation results of the reduced
model conclude this section.

6.1.1. Review and motivation

Photonic crystals are periodic structures that inhibit propagation of electromagnetic
waves of frequencies within a specific frequency band called photonic band gap. The
commonly used Distributed Bragg reflector is a one-dimensional photonic crystal
consisting of a stack of multiple layers with different refractive indices. It can be
used as an ideal reflector for specific wavelength λ0 or a wavelength interval using
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a large number of repeating pairs of materials whose thicknesses are close to λ0
4n

where n is the refractive index. The alternation of materials leads to a constructive
interference pattern which gives rise to a photonic stop band of wavelengths which
are reflected by the layer stack almost perfectly.
The same principle applies to higher spatial dimensions where repeating material

patterns are introduced through (nano-) structuring of materials for example in
gratings [Joannopoulos et al., 2011, Yablonovitch, 1993]. Hexagonal arrays of holes
in a high-index material are among the most frequently investigated structures.
They give rise to pronounced photonic band gaps and are envisioned to be used in a
variety of applications such as solar cell light management or up-conversion as well
as optical sensing.
In [Becker et al., 2014] we investigated the absorption properties and the excitation

of high-intensity near-fields within periodic, conical cavities (or nanoholes) of a
silicon slab. We computed near-field enhancements as an increased electromagnetic
field energy density in and 100 nm above the cavity normalized by the same quantity
for the incident field in free space. The resonance bands depicted in Figure 6.1a
were also observed in experimental reflection measurements and a good agreement
between experimental and numerical results was found in the cited reference. The
photonic crystal exhibits several distinct resonances with high quality factors in both
polarizations which strongly depend on the wavelength and incidence angle of the
illumination. They correspond to resonance modes excited in the photonic crystal
structure. We found enhancements larger than a factor of 500 in [Becker et al., 2014]
and subsequently found even higher enhancements for specific optical modes. The
highest field enhancements correspond to excitation of Bloch modes in the crystal.
Even if the highest field intensities are confined within the silicon crystal, the leakage
into the cavity is substantial and encourages the afore mentioned applications.
The main numerical result of [Becker et al., 2014] is thus the field enhancement

patterns of the nanohole array for all symmetry directions of the lattice. In Figure
6.1a such a pattern is shown for p-polarized illumination from the upper half-space
tilted along the Γ −K direction. Several distinct resonances are visible, correspond-
ing to resonance modes of the photonic crystal. The field enhancement for θ = 17°
in Figure 6.1b exhibits a number of high quality resonances over a broad spectrum.
The resonance marked in red has a field enhancement larger than 230 and a full
width half maximum smaller than 1.5 nm. It is isolated and drifts only slightly in
resonance wavelength as can be seen in the rectangle marked in Figure 6.1a.
A slight red-shift compared to the experimental results was observed in the nu-

merical simulations. The confidence in the accuracy of the numerical simulations
allowed to conclude that this shift is due to small deviations of the experimentally
realized structures to the model geometry. The deviations of the geometric param-
eters are readily investigated using a reduced basis model for the geometric and
illumination parameters. Furthermore, many of the envisioned applications profit
from broadband field enhancements. A reduced basis can be employed to optimize
geometric parameters for the desired applications.
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Figure 6.1.: (a): Simulated field enhancement pattern of the nanohole array on log-
arithmic scale. The field enhancement is measured in the cavity and
100 nm above the array and normalized with the field energy of a plane
wave in the respective volume. The incident wave is p-polarized and
tilted along the Γ −K direction. The white line marks the cut shown
in b). The rectangle marks the limits of the parameter domain of the
reduced order model discussed in this section.
(b): Simulated electric field enhancement for p-polarized light at 17°
incidence angle in Γ −K direction on a logarithmic scale (data adapted
from [Becker et al., 2014]). The reduced order model contains the sec-
tion of the spectrum shown in red. The resonance in this interval has
a field enhancement larger than 230 and a full width half maximum
smaller than 1.5 nm.
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6.1.2. Optical model

(a)
(b) (c) (d)

Figure 6.2.: Schematic of the unit cell of the hexagonal nanohole array with 600 nm
pitch in real space (a) and k-space (b). The high-symmetry points of
the irreducible Brillouin zone (gray) are marked. (b) The silicon slab
(orange) sits on a glass substrate (gray) and is 390 nm thick. (c) The
conical hole (blue) is centered in the unit cell with a sidewall angle of
17° and has a diameter of of 385 nm at the center of the slab. An air
layer (100 nm thick, not shown) completes the cell. In ±z directions
transparent boundary conditions are applied.

We use exactly the same setup as in [Becker et al., 2014]. The unit cell model of the
investigated periodic structure is shown in Figure 6.2. The cell has a pitch of 600 nm
and the conical hole has a sidewall angle of 17 ° inherent to the fabrication process.
The diameter of the hole is 385 nm at the center of the 390 nm thick slab. The unit
cell is split into four subdomains: the silicon slab, the cavity, the glass substrate
and the air layer of 100 nm thickness above the array. In ±Z directions transparent
boundary conditions are applied, i.e. the air and glass domains are extended via
PML-layers. The p-polarized illumination from the upper half-space is varied in
wavelength λ and incidence angle θ along the Γ -K-direction. The parameterization
used is

Ein(λ, θ) =

 0

− cos(θ)

− sin(θ)

 , kin(λ, θ) =

 0

sin(θ)

− cos(θ)

 2πnglass
λ

.

The refractive index of silicon (taken from [Palik, 1998]) is dispersive but real-
valued in the investigated wavelength range and nair = 1, nglass = 1.53 are kept
constant. The FEM discretization with fourth-order elements and adaptive, accurate
PML-settings yields a system with N = 249 540 unknowns.
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6.1.3. Reduced basis assembly

In order to study the effectivity and the convergence properties of our reduced basis
implementation, we build a reduced basis for the illumination parameters λ and θ in
the parameter domain D = [1200 nm, 1280 nm] × [14°, 20°] with the self-adaptive
assembly with the Greedy algorithm described in Section 5.6 and 5.6.1. As the
computational requirements of this model problem are relatively small (240 s of cpu
time for a snapshot and 16 GB memory) no restrictions to the number of snapshots
are prescribed. We chose an estimated accuracy of 5 · 10−6 in the output quantities
as the stopping criterion. The reduced model is build for three output quantities
simultaneously:

• the Fourier transform in z direction to compute the reflection of the array,

• the Fourier transform in -z direction to compute the transmission of the array,

• the electric field energy density integration to compute field enhancements in
the subdomains of the array.

Due to the small pitch, only the 0th order Fourier mode is propagating in ±Z
direction. The quadratic output quantity electric field energy is computed for the
four subdomains. We will refer to these quantities again by the corresponding post
process names in JCMsuite: FourierTransform and DensityIntegration.
The training set Dtrain used for the various Greedy searches is chosen to be quite

dense to adequately resolve all features within D. It initially comprises 101×21
sampling points in a equidistant grid along λ and θ axis.
The EIM approximation is executed using a tolerance of εEIM = 1 · 10−7. The

statistics of the EIM approximation are listed in Table 6.1. For the empirical inter-
polation of the system matrix QA = 3 snapshots are required leading to an estimated
error of δAEIM = 7.45 · 10−12 over the training set Dtrain. Using the same training
set, we find requirements of Qb = 8 and QPP = 2 for the empirical interpolation
of the source terms and the quadratic post processes. The resulting approximation
errors over Dtrain are δbEIM = 9.42 · 10−8 and δEIM = 7.24 · 10−13 respectively.

Table 6.1.: EIM approximation summary - number of terms Q employed in expan-
sion and error estimate δ of approximation for different functionals.

EIM system matrix right hand side post process
Q 3 8 2
δ 7.449 · 10−12 9.424 · 10−8 7.237 · 10−13

In the offline phase 30 snapshots are computed to build the reduced basis for the
parameter space D = [1200 nm, 1280 nm] × [14°, 20°]. The same training set Dtrain

of cardinality 2021 is used for the empirical interpolation and the Greedy step in the
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Figure 6.3.: Snapshot positions in parameter space are marked as crosses. They are
superimposed on a gray-scale logarithmic plot of the field enhancement
shown in Figure 6.1a. The color of the marker indicates the sequence
of snapshot selection from darker to lighter colors. The first snapshot
chosen is the center of the parameter domain. Most snapshots are lo-
cated at the boundaries (dashed white line) of the parameter domain.
A cluster of snapshots lies along the resonance band at approximately
1250 nm.
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6.1. Hexagonal nano-hole array: a reduced basis for a photonic crystal

reduced basis offline phase. Figure 6.3 depicts the location of the chosen snapshots
(crosses) in the parameter domain. The color coding indicates the sequence in which
the snapshots were chosen (dark to light markers). The first snapshot is chosen in
the center of the parameter domain and the subsequent snapshots are determined by
the Greedy algorithm. The choice of snapshot locations follows the boundaries of D.
This is in line with other publications where similar observations were made [Eftang
et al., 2010b]. The first selected snapshots cover the extreme positions (1200, 14)
and (1280, 20). Along the resonance band we find 6 snapshots in total with the first
3 snapshots chosen in iterations 5-7.
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Figure 6.4.: (a): Error estimates with increasing reduced basis dimension in a semi-
logarithmic plot. The residual error estimate (black) is normalized with
the estimate for N = 1 (see Section 5.4.2 for definitions of the error
estimators). The error estimates ηl(N) and ηq(N) for the FourierTrans-
forms (red, green) and DensityIntegration (blue) measure the L∞-norm.
(b)-(d): Contours of the residual error estimate on a logarithmic scale
with 4 (b), 7 (c) and 17 (d) snapshots.
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The reduced basis offline phase chooses the snapshots according to a Greedy strat-
egy depending on the error estimate for the worst-resolved parameter in the training
set. Hence the estimated error generally decreases with increasing Greedy iterations.
In Figure 6.4a the error estimates with increasing reduced basis dimension is shown
in a semi logarithmic plot. The black line shows the normalized residual error esti-
mate (5.11) for increasing reduced basis dimension N . The maximum of the error
estimate in the first Greedy iteration is used as a normalization factor. The error
first increases to a maximum of 115.62 at N = 6 before dropping to a level of 0.0440
at N = 8. Subsequently we observe exponential convergence of this error estimate
up to a level of 3.59 · 10−9. The increase is caused by the resonance band traversing
the parameter domain as the false color contour plots of the estimated error in D
in subfigures b)-d) show. The labels in Figure 6.4a correspond to the subfigures.
Figure 6.4b shows contours of the error estimate using 4 snapshots (whose locations
are depicted as black squares). Clearly recognized by the estimator is the resonance
band traversing the parameter domain at ≈ 1250 nm. As this area is poorly ap-
proximated by the first snapshots, the error estimate increases momentarily, leading
to the maximum in Figure 6.4a. The error estimator does not recognize this reso-
nance band and underestimates the true error in this region. In Figure 6.4c, using 7
snapshots, the resonance band is much better resolved and the error level decreases
globally. The maximum is no longer found in the proximity of the resonance band.
The last contour plot in Figure 6.4d corresponds to a global error level of 10-6.
The dashed red and green graphs for the FourierTransform in -z and z directions

and the blue graph for the DensityIntegration depict the errors ηl(N) and ηq(N)
defined in Section 5.4.2 in the L∞-norm. The graphs again start at N = 2 as the
errors ηl(1), ηq(1) are not defined. All three graphs exhibit an exponential reduction
of the error over the training set up to approximately 2 · 10−6.

6.1.4. Approximation errors

The error of reduced basis approximation can be measured differently. In general
the reduced basis should approximate the truth solution itself more accurately with
increasing reduced basis dimensions. In most applications the error in the output
quantities is of particular interest. In our RBM we have to distinguish between
the error of the reduced basis and the additional approximation introduced by the
empirical interpolation (cf. Section 5.5.1). We thus compare the reduced basis
approximation and two sets of reference solutions for two randomly chosen parameter
ensembles Ξ1,2 ⊂ Dtrain of 500 parameters each. Figure 6.7 shows the distribution
of the parameter locations Ξ1 as crosses. The diagram itself is discussed later in
Section 6.1.5. For these parameters µ ∈ Ξ1 we solve the full FEM problem without
any approximation i.e. these solution fulfill the truth approximation 6 on page 65.
Note that these reference solutions are not solutions of the truth approximation 8
on page 78 which includes the EIM approximation of the system matrix and right-
hand sides. We compute a second set of reference solutions over the parameter
ensemble Ξ2 ⊂ Dtrain, Ξ1 6= Ξ2 as solutions of the truth approximation 8 including
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6.1. Hexagonal nano-hole array: a reduced basis for a photonic crystal

the empirical interpolation for the system matrix and right-hand side.

Output quantities We begin by comparing the output quantities for the first kind
of reference solutions. We measure errors in the L∞ norm, i.e. for vector components
in the Fourier transform the errors are taken component wise. In Figure 6.5 the
relative errors are depicted for the two linear quantities (FourierTransform in z and
-z direction) and the quadratic quantities of interest (the density integration in the
four subdomains) as dashed lines. Each plot shows the maximum error over Ξ1 (red)
and the mean error (blue). All output quantities exhibit an identical convergence
trend. An initial plateau of the error is followed by a steep decrease of the error
before a stagnation sets in at N=15. The maximum errors saturate at 1 · 10−3
with the mean slightly lower. The errors in the Fourier transform in z direction
are slightly higher. We do not observe any difference between the convergence
rates of linear or quadratic output quantities up to the plateau. The stagnation
is readily explained: The reference solutions used for comparison is not identical
to the solution approximated by the reduced basis. The reference solution used for
comparison here does not include the empirical interpolation error. Hence we cannot
expect convergence of these quantities beyond the accuracy of the solution itself. At
the resonances we are close to or at this accuracy limit as shown in the next section.
The reference solutions with the empirical interpolation included are the truth

solutions approximated by the reduced basis itself. The error in the output quan-
tities for these references are included in Figure 6.5 as solid lines. We observe a
convergence behavior almost identical to the previous case up to N = 10. Here, the
maximal error (red) decreases even beyond N = 15 and finally saturates at 1 · 10−4.
The error mean (blue) is almost an order of magnitude smaller. The saturation can
be attributed to the empirical interpolation error introduced in the approximation
of the quadratic post process and not to the convergence of the field solution itself
as in the previous case. This is demonstrated in Figure 6.6.

Field solution The output functionals are continuous functions of the field so-
lution. Hence we do not expect a fundamentally different result in studying the
approximation error of the field solution. In Figure 6.6 the convergence of the mean
and maximum of the error in the H(curl,Ω) norm is shown as well as the relation
between the reduced basis error estimate and the H(curl,Ω)-error. Here the two
kinds of reference solutions are depicted separately but with the same axis scalings.
The mean and maximum of the error over Ξ1 have identical trends and fit those of
the output quantities in Figure 6.5. The errors initially are constant before dropping
6 orders of magnitude at N=7. The maximum stagnates at a level 1 · 10−3 at N=17.
The mean error decreases only slowly beyond N=10 and to level of 1 · 10−5. The
drop of the error coincides with the inclusion of snapshots in the resonance band
into the reduced basis (compare Figure 6.3 and the discussion in the previous sec-
tion). Once these have been included in the basis, the errors are orders of magnitude
smaller.
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Figure 6.5.: Relative error in the output quantities over the reduced basis dimension
measured between the reduced basis approximation and two reference
solutions. There is one plot per output quantity which is indicated in the
upper right of each axis. The first type of reference solutions fulfill the
truth approximation 6 without empirical interpolation. The maximal
(red dashed line) and mean (blue dashed line) relative errors to this
reference over the set Ξ1 stagnate beyond N = 15. The second type
of reference solutions fulfill the truth approximation 8 with empirical
interpolation and the maximal (red line) and mean (blue line) relative
errors over the set Ξ2 are smaller and still decrease with increasing N .

102



6.1. Hexagonal nano-hole array: a reduced basis for a photonic crystal

truth approximation with empirical interpolation

truth approximation without empirical interpolation

max Ξ1
mean Ξ1

H
(c

ur
l) 

er
ro

r

10−9

10−6

10−3

100

103

106

reduced basis dimension
0 5 10 15 20 25 30

es
tim

at
ed

 e
rr

or
100

103

106

109

1012

1015

H(curl) error
10−12 10−9 10−6 10−3 1 1000

max Ξ2
mean Ξ2

H
(c

ur
l) 

er
ro

r

10−9

10−6

10−3

100

103

106

reduced basis dimension
0 5 10 15 20 25 30

es
tim

at
ed

 e
rr

or

100

103

106

109

1012

1015

H(curl) error
10−12 10−9 10−6 10−3 1 1000

Figure 6.6.: Maximum and mean error of Ξ1 ⊂ DN
train in H(curl,Ω) norm over the

reduced basis dimension (left) and estimated reduced basis error over
the error in H(curl,Ω) norm (right). The error is measured with re-
spect to the reference solutions fulfilling the truth approximation with-
out empirical interpolation 6 (top) and with empirical interpolation 8
(bottom).
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Table 6.2.: Statistics of the H(curl,Ω) norm of the reference solutions over Ξ1

mean min max median standard deviation
89.28 15.24 8840.50 17.37 525.48

The scatter plot relating estimated error and H(curl,Ω) error demonstrates the
reasonable performance of the error estimate. The correlation coefficient ρ = 0.86
indicates a positive correlation. Especially for a low to medium accuracy the estima-
tor works well. At higher accuracy, the efficiency seems to get worse. As mentioned
earlier, the error shown here is measured between the reduced basis solution and
the reference solution, not the discrete solution approximated by the reduced basis.
This additional error is not accounted for by the error estimate shown here. Beyond
this, the resonance structure of the field solution also has an effect. Due to the
resonance, the H(curl,Ω) norm of the reference solutions differs greatly over the
parameter domain. The statistics in Table 6.2 show this in detail. In relation to
the norm of the solution, the approximations are orders of magnitude better than
indicated by maximum of the absolute error shown here and in 6.6.
We conclude our investigation by comparing to the second kind of reference solu-

tions fulfilling the truth approximation with the empirical interpolation of the dis-
crete operators. These solutions are approximated by the reduced basis and hence
the error should not stagnate as before. The resulting convergence of the mean
and maximum of the error in the H(curl,Ω) norm and the scatter plot of reduced
basis error estimate and H(curl,Ω)-error are depicted in the lower half of Figure
6.6. Compared the previous case shown on top, we observe clear similarities in the
convergence of the H(curl,Ω) error for low reduced basis dimensions. The previ-
ously observed stagnation of the errors beyond N=17 is not found here. Instead,
the errors decrease exponentially beyond N=21 up to a level of at most 2.09 · 10−8
with a mean of 5.14 · 10−10. Similarly, the correlation between the estimated and
observed error is very good with a correlation coefficient ρ > 0.96. The errors are
correctly approximated by the residual error estimate over the complete range of 15
orders of magnitude.

6.1.5. Error analysis

The approximation errors observed in the previous section are generally reduced
with increasing dimension of the reduced basis. In the following we thus investigate
the sources of the errors further. We determine the inf-sup constant first to justify
its neglect (cf. Sections 5.4.2 and 5.4.3) and then investigate the errors introduced
by the empirical interpolation of the system matrix and right-hand side in more
detail.
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Figure 6.7.: The false color plot of the inf-sup constant β distribution in param-
eter space D for 500 randomly selected values (indicated by crosses)
of the finest training set DN

train. The color bar axis coincides with the
histogram on the right showing the clustering of β for the 500 data
points.

Inf-sup constant estimation The residual error estimator used here does nei-
ther account for the empirical interpolation error nor the inf-sup constant β. As
demonstrated, neglecting the empirical interpolation error is problematic at high
accuracies. Neglecting the estimation of the inf-sup constant prevents the use of
the term “certified” in the context of our reduced basis implementation, but comes
at greatly reduced computational costs. In this example the inf-sup-constant varies
between 0.18 and 0.50. The distribution of β over D shown in Figure 6.7 exhibits
a banded structure where β is constant within each of the two large stripes. This
naturally follows from the frequency selective behavior of the investigated structure.
The histogram shows the clustering around 0.19 and 0.23 which corresponds to the
two stripes.

Empirical interpolation error The error introduced by the affine expansion of the
sesquilinear form a(·, ·;µ) and linear form f(·;µ) with the Empirical Interpolation
Method in Section 5.5.1 is measured and controlled in the L∞ norm. In Section 6.1.4
we found the errors in the H(curl,Ω) norm to be much larger than the estimated
L∞ errors of the EIM approximation listed in Table 6.1. This is why we investigate
two errors related to the EIM approximation for a set Ξeim ⊂ D of 500 parameters.
In the discretized system the matrix A is approximated by Aeim and the right
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(a) Absolute error ∆1 (logarithmic scale) (b) Absolute error ∆2 (logarithmic scale)

(c) Relative error δ1 (logarithmic scale) (d) Relative error δ2 (logarithmic scale)

(e) Histogram of log10(∆1) (f) Histogram of log10(∆2)

Figure 6.8.: (a)-(d): Scatter plots of the empirical interpolation error ∆1,2 (absolute)
and δ1,2 (relative) for the set Ξeim ⊂ D (see text for definitions). The
positions of the EIM snapshots for the matrix (diamonds) and right-
hand sides (squares) are marked blue. (e)-(f): Histograms of log10(∆1)
and log10(∆2).
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6.1. Hexagonal nano-hole array: a reduced basis for a photonic crystal

hand side b by beim. We compare the solutions

x = A−1b,
xeim = A−1eimbeim,
x̃ = A−1beim.

This motivates the definition of the following absolute errors

∆1 = ‖x− xeim‖H(curl,Ω),

∆2 = ‖x̃− xeim‖H(curl,Ω)

and similarly relative errors

δ1 =
∆1

‖xeim‖H(curl,Ω)
,

δ2 =
∆2

‖xeim‖H(curl,Ω)
.

The computed errors over Ξeim are shown in Figure 6.8 on logarithmic scales
as scatter plots together with histograms. ∆1 (Figure 6.8a) exhibits its maximal
values along the resonance band. We find values larger than 1 · 10−5 for ∆1 in this
region with a maximum of 0.0024. However, the relative error δ1 at this parameter
location is only 2.75 · 10−7. Similarly, we observe δ1 (Figure 6.8c) to be at most
4.28 · 10−7 with a mean of ≈ 1 · 10−7. The histogram Figure 6.8e confirms values
of ∆1 > 1 · 10−5 to be the exception (23 out of 500 data points). The median of
log10(∆1) −6.02 is close to the mean of −6.16.
The distribution of ∆2 over Ξeim in Figure 6.8b differs distinctly from the distri-

bution of ∆1 (Figure 6.8a). A band along the central wavelength is well resolved
for all incidence angles. Similarly, at the boundaries the error is minimal. Overall,
we observe ∆2 to smaller than 2.62 · 10−8. The relative error distribution in (Fig-
ure 6.8d) is almost identical, albeit with error levels four magnitudes smaller. The
median and mean of log10(∆2) in Figure 6.8f are ≈ −12.
In Figures 6.8a-(d) the positions of the EIM snapshots for the matrix and right-

hand sides are marked as blue diamonds and squares. Their locations coincide with
minima of both ∆1 and ∆2. Best observed in the relative errors δ1 and δ2 is the
structure of the errors. Along the lines connecting the central snapshot and the
snapshots on the boundaries in parameter space, the error is lowest. For the errors
∆2, δ2 we observe an anisotropy in the error along the wavelengths of the snapshots
employed for the matrices. This is of little surprise, as this error measures the
deviations in the inverse of A and Aeim acting on beim, as

∆2 = ‖x̃− xeim‖H(curl,Ω) = ‖A−1beim −A−1eimbeim‖H(curl,Ω)

= ‖(A−1 −A−1eim)beim‖H(curl,Ω). (6.1)
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As in this study the incidence angle and wavelength have been varied, the parameter
dependency of the matrices are not as pronounced as the right-hand side dependency.
This can be observed here in the different magnitudes of the errors ∆1 and ∆2.
We conclude that the relative errors introduced by the Empirical Interpolation

Method approximation of the matrix and right-hand side are satisfyingly controlled.
However, in the vicinity of the resonance band these errors might be substantial in
absolute terms.

6.1.6. Online evaluation and results

In the online phase the reduced basis allows to evaluate the reduced order models in
milliseconds instead of around 4 minutes which is the total time required to compute
a single data point in the simulated field enhancement pattern shown in Figure 6.1a
using a quad-core workstation. Due to limited computational capacities, the field
pattern is computed on a coarse, equidistant cartesian grid with 381×81 points.
This restriction is quite severe, as evident from Figure 6.9 where a detailed view of
the field enhancement pattern in the parameter domain D is shown. The depicted
field enhancement is a linear interpolation of 33×7 values. As the resonance width
is close to the distance between two grid points, it is unlikely to evaluate it at all or
even judging its maximum enhancement. The resonance band is visible in Figure
6.9b but poorly resolved and exhibits a single peak.

(a) (b)

Figure 6.9.: A detailed view of the reference field enhancements shown in Figure
6.1a for rectangular parameter domain D as a surface plot (a) and as a
contour plot with logarithmic scaling of the field enhancement (b).

The reduced basis allows to evaluate the field enhancement overDmuch faster and
with increased resolution in parameter space. We focus the evaluation to the vicinity
of the resonance band between 1248 nm and 1251 nm and use 101×21 sampling
points arranged in an equidistant grid. The evaluation of the reduced basis with the
full dimension takes 205.62 s for the sampling set of 2021 evaluation points. The
majority of the time is spent generating the input for the solver in Matlab (105 s).
Subsequently, each evaluation takes on average 358.4 ms on a single core for the full
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field enhancement contour (log scale) error (log scale)

(a) N=4

(b) N=5

(c) N=11

(d) N=28

Figure 6.10.: Field enhancements computed by evaluation of the reduced basis in
the vicinity of the resonance wavelength as surface plots (left column),
contour plots (middle) and the relative deviations from the true solu-
tion (right). The rows correspond to using 4 snapshots (a), 5 snapshots
(b), 11 snapshots (c) and 28 snapshots (d). Contour plots and error
plots are logarithmically scaled.
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reduced basis dimension. This includes inversion of the reduced system, the linear
and quadratic post processing and writing of three separate output files. The speed
up factor compared to the truth approximation is about 2300 for this example.
In Figure 6.10 the results of four evaluations using different numbers of snapshots

are shown as surface plots on the left, as contour plots with logarithmic scaling in
the middle and the contour of the relative error to the most accurate reconstruction
on the right. In the first row (a) the reduced basis is evaluated using 4 snapshots.
The field enhancement pattern is poorly recovered as none of the employed snapshot
lies on or near the resonance band (cf. discussion of recognition of the resonance
in the error estimate in the previous section and Figure 6.3). The error contour
indicates large deviations along the resonance band. As the fifth selected snapshot
lies on the resonance band, the field enhancement with 5 snapshots in the second
row (b) is much better. The error contour still indicates deviations along the band.
The resonance is correctly approximated in the third row (c) with 11 snapshots.
The deviations are reduced globally by 2 orders of magnitude and the error contour
has no longer a structure. The field enhancement and contour plots in the last row
is visually identical to the previous row. Here 28 out of the 30 snapshots are used.
The deviations are now negligible.

6.2. Incoherence in optical simulations of
multi-junction thin-film silicon solar cells

In this example we investigate the domain decomposition algorithm for incoherent
coupling presented in Chapter 4. The material of this example is adapted from
[Hammerschmidt et al., 2013, Hammerschmidt et al., 2014a] where the presented
model geometry is investigated in great detail. We present a convergence study
for the finite element discretization first, comment on computational gains through
use of hybrid meshes and control of polynomial degrees, and conclude with the
incoherent coupling giving rise to a more realistic light-trapping approximation of
the model.

6.2.1. Optical model

We us a xy-axis aligned unit cell with lateral dimension of 1 μm × 1 μm to model
a thin-film silicon tandem solar cell. The solar cell geometry is described by a
stack of layers with different material properties, separated by randomly textured
interfaces. The investigated cell is a a-Si/μc-Si tandem solar cell in superstrate
configuration, meaning the solar cell is illuminated through its glass substrate of
several mm thickness. In this first setup light trapped between the solar cell back
reflector and the substrate/air interface is not taken into account. Instead the glass
substrate is modeled as a glass half-space in which the light is incident. The vertical
device structure of the modeled cell is listed in Table 6.3 in sequence of illumination:
A 600 nm thick FTO and a 130 nm thick FTO interlayer are used as a transparent
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Table 6.3.: Multi-layer structure in illumination sequence with functional role in the
solar cell, material and thickness of the layers.

function material thickness
substrate glass infinite
transparent front contact FTO 600 nm
front intermediate layer FTO 130 nm
p-doped layer 1 boron-doped a-Si 5 nm
p-doped layer 2 boron-doped a-Si 5 nm
top cell intrinsic layer amorphous silicon 270 nm
n-doped layer phosphorus-doped a-Si 30 nm
p-doped layer boron-doped μc-Si 30 nm
bottom intrinsic absorber layer micro-crystalline silicon 1600 nm
n-doped layer phosphorus-doped μc-Si 30 nm
transparent back contact zinc oxide 80 nm
silver back reflector silver 200 nm
air air infinite

conductive oxide. Two p-type a-Si layers of 5 nm thickness each, a 270 nm thick
intrinsic a-Si layer and 30 nm of n-type a-Si form the top cell. 30 nm of p- and n-type
μc-Si enclose the intrinsic μc-Si bottom cell of 1600 nm thickness. The back contact
is formed by a 80 nm zinc oxide (ZnO) layer with a 200 nm silver back reflector.
The back side half-space is assumed to be filled with air. The optical constants for
the absorbing materials were provided by PVcomB. The refractive indices of air and
glass were set to nair = 1.0 and nglass = 1.52.
The glass/FTO interface and the FTO/FTO-interlayer interface are assumed to be

planar. A random texture with the same RMS roughness and autocorrelation length
as FTO separates the FTO-interlayer and the top cell p-layer. The same texture
is used to separate all following cell layers corresponding to a material growth in
vertical direction. In Figure 6.11a a mesh of the unit cell is shown. Based on
previous findings [Lockau, 2012] the lateral dimensions of the unit cell were found
to be a compromise between modeling accuracy and computing capacities.
Periodic boundary conditions are applied in x- and y-directions and adaptive per-

fectly matched layers (cf. Section 3.2.3 or [Zschiedrich, 2009]) are used in ±z direc-
tions as transparent boundary conditions. Plane waves in +z direction are used as
incident fields which model solar irradiance reasonably well [Lockau, 2012].

6.2.2. Convergence in volume absorption

The short-circuit current density is the quantity of interest for optimizing the optical
properties of thin-film solar cells. It is computed as the (volume) absorption within
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(a) (b) (c)

Figure 6.11.: Finite element mesh of an a-Si/μc-Si tandem solar cell illuminated from
the bottom (a). Unstructured grids allow a good resolution also of the
highly doped thin p-type layers inside the device. Electric field energy
density is shown in a false-color plot on a logarithmic scale at 600 nm
(b) and 900 nm (c) wavelength.
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Table 6.4.: Computation times and number of unknowns for the convergence study
shown in Figure 6.12. Computations were executed on a multi-core com-
puter using 20 cores. In this example the cpu time required is roughly
proportional to the square of the number of unknowns.

FEM total time [s] # unknowns cpu time per cpu time per
degree unknown [ms] unknown2 [ns]

1 6 55 034 0.53 9.56
2 81 258 894 2.34 9.03
3 553 736 815 7.90 10.84
4 2617 1 619 232 17.89 11.05
5 7963 3 121 880 28.83 9.23
6 23148 5 341 218 47.58 8.91

the absorber layer weighted by the spectral solar photon flux and is an upper bound
for the achievable short-circuit current densities and thus the theoretical efficiency
of the solar cell. To estimate the reliability of our computed results, we perform a
showcase convergence study at 700 nm wavelength. Figure 6.12 shows the relative
error in volume absorption for a uniform p-refinement compared to the most ac-
curate solution computed. Exponential convergence of the relative error in volume
absorption can be observed in all cell layers with increasing polynomial order p of
the finite element ansatz functions. In particular the bottom cell i-layer (red line)
exhibits a perfectly exponential decrease. The other cell layers exhibit a similar
trend. A polynomial degree of p = 4 is required for the relative errors in all cell
layers to less then 1 · 10−3 (marked by dotted line). An error level of 1%, which is
sufficient for most applications, is reached for p = 3. The cpu times listed in Table
6.4 for this study exhibit an approximately quadratic increase with the number of
unknowns. These times include assembly and solution of the linear system.

6.2.3. Hybrid meshes and hp-adaptivity

Most optimization problems in thin-film PV aim at optimizing the short-circuit
current density or increasing the EQE over the solar spectrum. This requires the
solution of the forward problem (5.2) for many frequencies in order to estimate EQE
curves and compute short-circuit current densities. Hence the computational effort
for every solution should be minimized for a given level of accuracy. As a means to
reduce computational effort, we investigate four hybrid meshes of the same geome-
try with different numbers of prismatic and tetrahedral elements and their influence
on accuracy and computational effort. Hybrid finite element meshes contain un-
structured and structured meshed subdomains, i.e. both triangular prismatic and
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Figure 6.12.: Relative error in volume absorption at 700 nm wavelength compared
to a reference solution with polynomial degree 6. In addition the com-
putation time in seconds for each of the simulations is shown.

tetrahedral elements and allow to combine advantages of element types. The meshes
shown in Figure 6.11a exhibit adaption to different permittivities and wavelengths
as different mesh constraints have been used within the different cell layers. Fur-
thermore, only one or two layers of tetrahedrons are necessary to resolve the thinner
doped silicon layers (green) or the back TCO layer (soft yellow). The p-doped a-Si
layers of the top cell are not even visible as their layer thicknesses are too small
(5 nm) to be resolved at this scale. In Figure 6.13) a magnification of these layers
is shown. These layers are oftentimes neglected in optical simulations, but are im-
portant for optimization purposes [Deceglie et al., 2012] especially in tandem cells.
In the tetrahedral sample mesh A (cf. Figure 6.13) 1404 out of a total 10 756 tetra-
hedral elements are employed to resolve these thin layers. The assumed conformal
layer growth of the solar cell permits the use of a structured mesh with 468 prismatic
elements for these layers in mesh B, reducing the total number of elements to 9820
(cf. Table 6.5 and inset in Figure 6.13). For mesh C (also shown in Figure 6.13) the
remaining doped silicon and the back contact layers are meshed with prisms as well,
further reducing the total number of elements to 7480. Mesh D contains prisms in
all layers but the FTO layer, the FTO interlayer and the air super space, using a
minimal total number of 6241 elements.
In Figure 6.14(a) the number of unknowns used in the simulations with meshes

A-D is shown normalized by the number of unknowns for the tetrahedral mesh A.
The reduction in number of geometrical elements does not directly translate to a
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Table 6.5.: Number of tetrahedrons, prisms and total number of elements employed
in hybrid meshes A-D

mesh # tetrahedrons # prisms # elements
A 10 756 0 10 756

B 9352 468 9820

C 5842 1638 7480

D 1561 4680 6241

Figure 6.13.: Hybrid finite element meshes with triangular prismatic and tetrahedral
elements. Mesh A contains only tetrahedrons. Mesh C is a hybrid grid
and with five cell layers discretized by prisms. The absorber layers are
meshed with tetrahedral elements. In mesh D all but the first (FTO
and FTO interlayer) and last (air super space) cell layers are meshed
with prisms. Mesh B is identical to A except for the two barely visible
top cell p-layers (cyan and light green). A magnification of these layers
in meshes A and B without surrounding layers is visible in the inset.
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reduction in degrees of freedom as can be seen in Table 3.1. Hence we observe a
different behavior of the fourth mesh D compared to the other three. The lines for
meshes B and C lie below the black graph for mesh A indicating a reduction in the
number of unknowns whereas the blue graph (mesh D) shows a monotonic increase
up to 1.26 for p = 6. Thus only the use of prisms for the meshing of thin layers
results in a significant reduction in computational costs.

A particular advantage of the used prismatic elements is the possibility to choose
different polynomial degrees p‖ and p⊥ for the triangular basis and the translation
direction. Using this technique three additional computations have been executed
on meshes B and C (included as hollow diamond and square markers in Figure
6.14(a)) with a greatly reduced computational effort (up to 35% reduction). For
the simulations labeled B1, B2 and C1, C2 the polynomial degree p = p‖ = 4 was
kept constant for the triangular basis and p⊥ reduced to 1 (B1, C1) and 2 (B2, C2)
respectively on prismatic elements smaller than half the wavelength. In simulations
B3 and C3 p‖ = 3 and p⊥ = 2 was used. The relative error in top and bottom cell
volume absorption compared to the reference computed on the tetrahedral mesh A
for p = 4 are smaller than 1 · 10−3 for B1-3 and C2, C3. The relative error in the
top cell absorption for simulation C1 is one order of magnitude larger. These error
levels are the same when compared to the solutions for p = 4 on meshes B and C
respectively.

Figure 6.14(b) shows the convergence of the volume absorption in top and bottom
cell at 700 nm wavelength to the solution computed on mesh A. In general we ob-
serve a very similar convergence behavior for the top and bottom cell as all of the
dotted lines, marking top cell absorption, closely follow their continuous counter-
parts, marking bottom cell absorption. The solution computed on mesh B is closest
to the reference solution on mesh A and for p = 3, 4 the bottom cell absorptions
deviate relatively in the order of 1 · 10−7. The green line for mesh C show a similar
trend as the red line for mesh B. The relative error is slightly greater in the order of
1 · 10−5. As both meshes B and C are very much alike in their structure - both have
absorber layer meshed with tetrahedrons - this is the expected and desired behavior.
The blue line for mesh D shows a monotonically decreasing relative error down to
a level of 1 · 10−3 which is in the order of the accuracy we find for the solution for
p = 6 on the relatively coarse mesh A.

The lines in Figure 6.14 indicate that a reduction in numerical effort can be
achieved when combining tetrahedral and prismatic elements. Especially for thin
cell layers prism meshing is advantageous as the reduction in computational com-
plexity does not come at a great loss in accuracy. Furthermore it allows to lower
the computational costs by means of tuning the polynomial degree specifically for
very thin prismatic elements.
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Figure 6.14.: (a) The lines show the number of unknowns for the investigated meshes
A-D normalized with the number of unknowns for the tetrahedral mesh
A which are printed as labels to the black graph. The lines for meshes
B and C lie below the black graph for mesh A indicating a reduc-
tion in the number of unknowns. The blue graph (mesh D) shows a
monotonic increase up to 1.26 for p = 6. For meshes B and C addi-
tional simulations with adapted polynomial degrees for the prismatic
elements have been executed and included into the plot as additional
data points B1-3 and C1-3. (b) The relative error in volume absorption
at 700 nm wavelength for the three different hybrid meshes B-D com-
pared to the solution with the respective polynomial degree for mesh
A shows convergence. The lines marking top cell (dashed line) and
bottom cell (continuous line) absorption show similar behavior for all
of the regarded meshes. The red and green lines (meshes B and C)
converge to an error level of 1 · 10−5 whereas mesh D converges to an
error level of 1 · 10−3.
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Figure 6.15.: Simulated EQEs of top and bottom cells in three different setups la-
beled 1D (flat reference), 2D (1D line roughness) and 3D (full 2D
roughness) between 600 nm and 1100 nm wavelength. All lines are
smoothed using a centered moving average filter. The unsmoothed
curves for 2D and 3D simulations are shown as thinner lines of the
same color.

6.2.4. Usability of 2D simulations for assessment of
light-trapping of random textures

The investigated cells are deposited on FTO substrates with a random texture.
Using the texture generation method described in Section 2.2.2, we can generate
sets of random textures with any given autocorrelation function. Furthermore, this
method is in not restricted to 2D (generating height coordinates over a cartesian
plane), but can be employed to generate textures in 1D (resembling line roughnesses
or grating like structures). Using the same circular autocorrelation based on the
root mean squared roughness of 50 nm at 327 nm autocorrelation length of the
FTO topography, we simulated a complete EQE curve with 2D and 3D simulations
to assess the usability of 2D simulations to determine the light-trapping efficiency
of the random textures.
Figure 6.15 depicts the simulated bottom cell EQE curves (thin lines) between

600 nm and 1100 nm incident wavelength. The moving average (MA) filtered lines
(thick lines) offer easier comparison, but interference fringes are slightly shifted in
wavelength(observable for example at 880 nm between 1D and 2D simulation).
The blue graph shows the corresponding planar reference stack labeled 1D Simu-
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6.2. Incoherence in optical simulations of multi-junction thin-film silicon solar cells

lation without any roughness and therefore no light-trapping. This leads to highly
oscillatory bottom cell EQE curves (omitted). The graph shows the filtered bottom
cell EQE instead. The black lines mark the results of the 2D simulation with line
roughness. These simulations were done in a significantly larger computational do-
main of 15μm width and averaged over 10 Monte Carlo samples. The full 3D cell
simulation results are plotted in red. In addition, the top cell EQE for 3D and 2D
simulations are plotted using dotted lines in red and black, respectively.
The two shown top cell EQE curves for 2D and 3D simulations are nearly indis-

tinguishable below 650 nm. At larger wavelengths the 3D simulation shows slightly
higher absorption, but the difference is small. This effect is due to the shallow
roughness of the simulated textured interface (see Figure 6.13) which leads to poor
light-trapping compared to other TCOs such as BZO [Dominé et al., 2008]. In con-
trast, the three curves for the bottom cell EQE show a clear trend. Absorption
within the bottom cell in 3D simulation is higher at every simulated wavelength
compared to the corresponding 1D/2D simulations. The simulated bottom cell cur-
rent density is 32.65% higher in the 3D simulation than the 2D simulation which
in turn is 18.5% higher than the flat reference. This is to be expected as the refer-
ence has planar material interfaces and therefore no light trapping at all. The 2D
simulations exhibit light trapping effects, but to a far lesser extent as with the full
2D roughness in 3D simulations. The 2D simulations underestimate the bottom cell
absorption at the band edge by a factor of∫ 1100 nm

1000 nm
ABC,3D(λ) dλ∫ 1100 nm

1000 nm
ABC,2D(λ) dλ

≈ 2.

This dimension effect in light trapping efficiency is readily explained as the 2D and
3D modeling corresponds to different physics. Following the derivation of theoretical
limits (cf. Section 2.2.1) derived in [Yablonovitch, 1982, Yu et al., 2010b] in 2D
instead of 3D we find the maximum of the above cited relation to be 4

π
n ≈ 4.46.

The difference to the theoretical limit can be attributed to parasitic absorption, the
omitted superstrate light-trapping effects and the imperfect overall light-trapping
efficiency of the simulated structure due to the shallow roughness.
In general the dimension reduction from 3D to 2D does not yield the same light-

scattering results even if the surface morphology has identical statistics. The auto-
correlation function considered here only accounts for the height distribution of the
surface morphology but the distribution of surface angles is not controlled. In the
2D simulation light cannot be scattered out of the simulation plane in contrast a 3D
simulation. The light scattering properties of a surface morphology that is invariant
in one spatial direction (i.e. a grating) is thus fundamentally limited.

6.2.5. Absorptance in cell layers

The simulation yields not only EQE curves for top and bottom cell absorber lay-
ers, but absorptance numbers for all cell layers included. In Figure 6.16 these are
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Figure 6.16.: Stacked area plot of absorptance in cell layers. The absorptance of
the top and bottom cell layer is shown at the bottom of the plot.
The absorptance of the remaining cell layers is ordered in deposition
sequence from bottom to top. The reflectance is shown as a hatched
area. There is no transmittance.
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6.2. Incoherence in optical simulations of multi-junction thin-film silicon solar cells

visualized in an area plot. The absorptance in the intrinsic silicon layers is shown
on the bottom, followed by the TCO layer, the doped layers and finally the back
reflector layers. The hatched area corresponds to the reflected energy flux obtained
from the Fourier transform of the electric field in the exterior domain. This plot
is well suited to visualize parasitic and reflection losses. Several observations can
be made: The interference fringes in total absorptance (or 1-reflectance) are clearly
visible. Below 500 nm parasitic losses in the 5 nm thin p-doped silicon layers reduce
top cell absorptance. The top cell absorptance is maximal at 520 nm and drops
off drastically beyond 600 nm. The combined absorptance of top and bottom cell
reaches its maximum at 610 nm and gradually drops down. The front TCO ab-
sorptance becomes significant in the infrared part of the spectrum and the reflection
losses are clearly the dominant effect beyond 900 nm. For the simulated cell we find
top and bottom cell current densities of 11.25 mAcm-2and 12.52 mAcm-2. Having
access to all information allows to quantify losses in terms of lost short circuit cur-
rent density in this wavelength interval. The major loss mechanisms are reflection
losses of 9.07 mAcm-2and parasitic absorption loss in the FTO of 4.23 mAcm-2, the
silver back reflector (.97 mAcm-2) and the back TCO layer (1.28 mAcm-2). The
combined absorptance of the p-layers accounts for 0.96 mAcm-2.

6.2.6. Incoherent light trapping in a textured thin-film silicon
tandem solar cell

Simulations in the previous sections did not take the contribution of light trapped
by total internal reflection between the solar cell back reflector and the substrate/air
interface on the illumination side into account. The glass substrate was instead mod-
eled as a glass half-space and the calculated quantities were corrected with the Fres-
nel coefficient of the air/substrate interface. The Fresnel-corrected results are hence
obtained by scaling the computed quantities with a factor of c = (1−Rair/glass)

−1 =
(1 − (1−1.52

1+1.52
)2)−1 = 1.0445. The inclusion of incoherence into rigorous simulations

was discussed in detail in Chapter 4 with the special focus on incoherent coupling
of subdomains. Before investigating this algorithm in the context of the previously
investigated model cell, we mention the relation of the previously applied MA filter
to other incoherence modeling approaches. The graph in Figure 6.17 depicts the
generation rate of both subcells combined between 600 and 1100 nm (black line).
In addition 5 graphs of the same data are shown, each labeled with the according
coherence time (5 fs - 200 fs). These are generated from the coherent data with a
parameter dependent, Gaussian MA filter identical to the convolution with the in-
coherence function (4.2) presented for the illumination model presented in [Sarrazin
et al., 2013]. The chosen coherence times were taken from this reference. Coherence
times smaller than 90 fs distort the profile visibly. The spectral averaging with the
200 fs filter is roughly equivalent to a Gaussian filter with a few nm bandwidth and
agrees in its shape approximately with the profiles in Figures 6.15 and 6.18 (iv) and
(vi) which were generated by the applying a simple MA filter.
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Figure 6.17.: The combined absorptance of both top and bottom cell (black line) is
plotted together with MA filtered versions of the same profile according
to different coherence times (5 fs - 200 fs).

In Figure 6.18 the absorptance of all tandem cell layers is shown in the form of
area plots, together with the reflectance (shaded area). In subplot (i), the results
of Fresnel corrected coherent simulations are shown, not taking the light trapping
in the encapsulating glass layer into account. The sampling rate was 5 nm and
the relative error in volume absorption was kept below 1%. The inclusion of all
doped layers in combination with a low scattering efficiency of the relatively smooth
texture lead to many narrow width interference fringes in the total absorptance (1-
R). The same data is shown in (ii) with a simple MA filter (over 5 data points or
20 nm) applied. The simulation presented in (iii) includes the substrate in a coherent
simulation leading to much more pronounced, narrow width interference fringes. For
this simulation the wavelength sampling grid, the same as in (i), is too coarse to
resolve the fringes accurately. This simulation is again presented in (iv) with the MA
filter applied. The same simulation with the incoherent superstrate light trapping,
shown in (v) and filtered in (vi), has broader and less pronounced fringes. The
inclusion of the superstrate yields a reduced reflectance best observed in both (iv)
and (vi). The bottom cell absorption is improved as well. When comparing subplots
(iv) and (vi), we observe that the local maxima appearing in total absorptance at
1040 nm and 1080 nm are broader and slightly shifted in the incoherent case.
A natural figure of merit to compare these different spectra is the implied photo

current density over the wavelength range. Table 6.6 lists the current densities for
selected layers. As expected, the top cell current is not affected by light trapping -
coherent or incoherent. The reflection on the other hand is significantly reduced. The
bottom cell current increases slightly by 3.9% due to the incoherent light trapping
to 12.09 mAcm-2. The coherent light-trapping leads to marginally higher currents
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Figure 6.18.: Absorptance plots for the tandem cell in Figure 6.11. Left column:
In (i) the coherent simulation is shown without light trapping in the
encapsulating glass layer and a Fresnel correction. The simulation
data in (iii) includes the substrate in a coherent simulation leading to
much more pronounced narrow width interference fringes. The sim-
ulation with the incoherent light trapping in the encapsulating glass
layer shown in (v) has broader and less pronounced fringes. Right col-
umn: The same data as in the left column is plotted with a moving
average filter applied. The inclusion of the glass layer yields a reduced
reflectance in both (iv) and (vi) compared to (ii). The bottom cell
absorption is improved as well. In contrast to (iv) the local maxima
in the total absorptance at 1040 nm and 1080 nm in (vi) are broader
and slightly shifted.
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Table 6.6.: Implied photo current densities for selected cell layers. The reflection is
significantly reduced when light-trapping is included leading to higher ab-
sorption in the bottom cell and FTO layers. The coherent light-trapping
leads to marginally higher currents compared to the incoherent light-
trapping.

layer Fresnel correction incoherent coherent
[mA cm-2] [mA cm-2] [mA cm-2]

top cell 2.32 2.32 2.31
bottom cell 11.64 12.09 12.14
FTO 3.87 4.77 4.95
back TCO 1.33 1.78 1.83
silver reflector 0.96 1.19 1.22
reflection 8.38 6.07 5.89

compared to the incoherent light-trapping. This might be an artifact depending
on individual resonances which depend on the chosen wavelength sampling and
thickness of the glass substrate. In the incoherent coupling the thickness of the
glass layer no longer has an influence. In general the sampling rate is insufficient to
resolve all interference fringes. The sampling rate of 5 nm is a compromise to keep
the computational costs reasonable yet resolve the absorptance spectra adequately of
the whole spectrum. An adaptive sampling scheme as presented in [Hammerschmidt
et al., 2014b] does not work considerably better in case of highly oscillatory spectra.
A reduced basis (cf. Chapter 5 and Sections 6.1 and 6.3) for the wavelength can be
employed to improve the sampling.

6.3. Intermediate reflector layer optimization with
a reduced basis

The following numerical example demonstrates the efficacy of the Reduced Basis
Method for Maxwell’s equation for the optimization of the optical properties of
a large nanostructured thin-film silicon solar cell. This section is structured as
follows. We present a short motivational review of previous work, before presenting
the optical model the reduced basis is built on. A detailed discussion and analysis of
the approximation errors are presented next. The simulation results of the reduced
model conclude this section.
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6.3.1. Review and motivation

The limiting factor to multi-junction silicon solar cells is the light fraction absorbed
by the top cell which should absorb as much of the higher energy part of the solar
spectrum as possible. The bottom cell with the lower bandgap absorbs the high-
energy photons transmitted through the top cell which in turn are lost for the top
cell current thus limiting the maximal achievable top cell current. Due to serial
connection of the subcells the minimum current of the subcells limits the overall
current to be extracted from the tandem device. In a tandem cell configuration this
is the a-Si top cell which is limited in its thickness and hence absorption efficiency. A
trade-off between good electronic properties and high cell currents has to be found.
In practice, the thickness is thus limited to 200-300 nm [Kirner et al., 2014] which
is insufficient to overcome tandem cell efficiencies of ∼12%. Strategies to improve
top cell currents while restricting layer thickness comprise optimizing the TCOs
texturing which provides light trapping by scattering light away from the incidence
angle thus increasing the light path within the absorber. The ideal topography
of the scattering structure depends on the TCOs and absorber materials involved
and takes material growth and possibly decreased material quality into account.
Another promising strategy is to introduce an intermediate reflector layer (IRL)
made of silicon oxide between top and bottom cell [Dominé et al., 2008]. This leads
to an improved performance of the top cell as light is reflected back from the IRL
which has a lower refractive index. This gain in top cell absorption depends on the
light trapping properties of the rough TCO used as a front contact as well as the
thickness of the IRL. As both the feature size of the texture and the IRL thickness
dirl are in the order of the wavelengths of interest optical simulations resolving
wave phenomena are required. Figure 6.19 depicts the electric field energy density
distribution at 625 nm wavelength for dirl=5 nm, 62.5 nm and 120 nm. We observe
the effect of the intermediate reflector layer in the more pronounced interference
patterns in the top cell for larger dirl.
In a planar system, a variation of the IRL thickness dirl introduces an interference

in the reflectance. The reflectance exhibits maxima which are λ/2 apart. The
computation of an optimal dirl as the first maximum is trivial as the following
maxima are smaller in amplitude due to absorption. A change in incidence angle
effects the resonance condition which depends only on the normal component of the
incident wave vector. As it gets smaller, the optimal thickness increases. A textured
TCO leads to much improved light scattering, but as the solar cell is no longer a
planar material stack, 1D models no longer provide sufficiently accurate descriptions
of the interaction between scattering by the TCO topography and the IRL [Dominé
et al., 2006, Rockstuhl and Lederer, 2009].
In [Kirner et al., 2014] we systematically investigated the interaction of three dif-

ferent TCOs (FTO, BZO and AZO) commonly used in TFSSC and the ideal IRL
thickness experimentally and numerically. This required enormous computational
effort and the optimizations were limited to a few wavelengths and a rough sam-
pling of the IRL thickness. Using synthetic topographies generated by the method
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Table 6.7.: Multi-layer structure in illumination sequence with functional role in the
solar cell, material and thickness of the layers. This is a simplification of
Table 6.3 where the doped layers are omitted for the purpose of optical
optimization of the IRL.

function material thickness
substrate glass infinite
transparent front contact zinc oxide 600 nm
top cell absorber layer amorphous silicon 290 nm
intermediate reflector layer silicon oxide 5 nm-120 nm
bottom cell absorber layer micro-crystalline silicon 1800 nm
transparent back contact zinc oxide 80 nm
silver back reflector silver 100 nm
air air infinite

described in Section 2.5 instead of AFM data we could analyze the most commonly
used parameters in characterizing TCOs and their scattering efficiencies - rough-
ness and autocorrelation length - independently. We could obtain good qualitative
agreements between simulations and experiments in determining optimal dirl for the
three investigated TCOs. Furthermore we concluded that roughness alone is not a
solid figure of merit in predicting IRL performance and the lateral feature size is
probably as influential. This conclusion is based on simulation results of synthetic
surface morphologies indicating that the highest gain in top cell EQE for a given
roughness is found at lower autocorrelation lengths. The highest gain (both exper-
imentally and numerically) obtained for a BZO substrate could thus be improved
by further reducing the ACL. However, experimentally this will probably lead to
problems in depositing these layers and reduce material quality.

6.3.2. Optical model

A reduced basis for these parameters can significantly improve on simulation times
and provide additional confidence in the results by controlling sampling errors within
the investigated parameter domain. We use a model adapted from [Kirner et al.,
2014] which is a simplification of the model presented in the previous section for
the purpose of optical optimization of the IRL. Here, the doped layers are omitted
to reduce complexity. We use the cell materials and thicknesses listed in Table 6.7.
The sequence of materials in illumination direction is TCO, a-Si, IRL, μc-Si, AZO,
Ag. The cell was modeled in a superstrate configuration with glass and air half-
spaces in ±z directions, respectively. The cell is modeled using periodic boundary
conditions at a pitch of 1.7 μm×1.7 μm. The texture employed is generated using
a RMS roughness of 144 nm and autocorrelation length of 327 nm. These values
correspond to the statistics found for a BZO texture. The tetrahedral finite element
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(a) (b) (c)

Figure 6.19.: Finite element meshes of the modeled a-Si/μc-Si tandem solar cell illu-
minated from the bottom. The substrate roughness resembles a BZO
substrate. The electric field energy density at 625 nm illumination
wavelength is shown in a false-color plot on the same logarithmic scale
for different thicknesses of the intermediate reflector layer: 5 nm (a),
62.5 nm (b) and 120 nm (c). The fields show clear similarities. In
contrast to (a), stronger interference patterns and higher intensities
are visible in the top cell in (b) and (c).

mesh is parameterized and allows to vary the thickness dirl of the IRL. In Figure 6.19
the mesh is shown for dirl=5 nm, 62.5 nm and 120 nm with the corresponding electric
field energy density distribution at 625 nm wavelength. These are the minimum,
center and maximum of the dirl interval investigated in the following.

The p-polarized illumination from the lower half-space is varied in wavelength λ.
The parameterization of the illumination is

Ein(λ) =

 1

0

0

 , kin(λ) =

 0

0

1

 2πnglass
λ

.

The refractive indices of all materials but glass and air (nair = 1, nglass = 1.53)
are dispersive and provided by our collaboration partners from PVcomB and HZB.
The FEM discretization with third- and fifth-order elements and adaptive, accurate
PML-settings yield a system with N = 2327 777 unknowns.
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Table 6.8.: EIM summary - number of terms Q employed in expansion and error
estimate δ of approximation for different functionals. The quantities are
defined in Section 5.5.1

EIM system matrix right hand side post process
Q 15 1 11
δ 1.566 · 10−7 5.530 · 10−16 1.716 · 10−7

6.3.3. Reduced basis assembly

We build a reduced basis for the wavelength λ of the incident light and the thickness
of the intermediate reflector layer dirl in the parameter domainD = [600 nm, 650 nm]
×[5 nm, 120 nm] with λ ∈ [600 nm, 650 nm] and dirl ∈ [5 nm, 120 nm] with the self-
adaptive assembly with the Greedy algorithm described in Section 5.6 and 5.6.1.
As the computation requirements are significant for this model problem (ca. 21.7
hours of CPU time or ∼ 90 min on a 16 core machine and >100 GB of memory for
a single snapshot), the number of snapshots is restricted to 80. The reduced model
is built for three output quantities simultaneously:

• the Fourier transform in -z direction to compute the reflection of the solar cell,

• the Fourier transform in z direction to compute the transmission of the solar
cell,

• the electric field energy density integration to compute absorption in the sub-
domains of the solar cell.

21 Fourier modes are propagating in z direction and 45 in -z direction. The quadratic
output quantity “electric field energy” is computed for the seven subdomains. We
will commonly refer to these quantities by the corresponding post process names in
JCMsuite: FourierTransform and DensityIntegration.
The training set Dtrain used for the Greedy searches initially comprises 20×116

sampling points in an equidistant grid along λ and dirl axis. This corresponds to a
5 nm sampling of the wavelength interval and a 1 nm sampling of the dirl interval
and should be sufficiently dense to resolve the optical phenomena.
The EIM approximation is carried out using a tolerance level of 2 · 10−7 as a

threshold. The statistics of the approximation are listed in Table 6.8. The em-
pirical interpolation of the system matrix requires QA = 15 snapshots with an
estimated approximation error of δAEIM =1.566 · 10−7 over the training set Dtrain.
The quadratic post process requires the approximation of the permittivity tensors
in the different subdomains. Using the same training set Dtrain and error threshold
this requires QPP = 11 with an estimated error of δPPEIM =1.716 · 10−7. Due to the
constant incidence angle and polarization, the right-hand side does not depend on
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Figure 6.20.: Snapshot positions in parameter space are marked as crosses. The color
of the marker indicates sequence of snapshot selection from darker to
lighter colors. The first snapshot chosen is the center of the parameter
domain. The distribution of snapshots follows the boundaries of the
parameter domain. A clustering along the wavelength axis can be
observed.

the parameters. Hence a single snapshot is sufficient to approximate all right-hand
sides.
In the offline phase 80 snapshots are computed to form the reduced basis for

the parameter space D. The Greedy search employs the same initial training set
Dtrain of cardinality 2320 as the EIM approximation. In Figure 6.20 the locations
of the selected snapshots are depicted as crosses. The color coding indicates the
sequence in which they were chosen from darker to lighter colors. The first snapshot
is positioned in the center of the parameter domain. All subsequent snapshots are
chosen by the Greedy algorithm. The chosen snapshots follow the boundaries of D
and cluster for small values of dirl but are almost uniformly distributed along the
λ-axis. Out of the first 10 snapshot locations chosen by the Greedy strategy, 7 have
a dirl coordinate less then 11. Two more are located in the extreme positions in the
corners at dirl=60 nm.
The Greedy algorithm 3 (cf. Section 5.6.1) determines the selection of snapshots

according to the reduced basis error estimate (cf. Section 5.4.2) over the training
set Dtrain. The selection of the worst resolved parameter location in every iteration
leads to a decrease of the error estimated. We observe a monotonic decrease in the
estimated error depicted in Figure 6.21. Here the normalized residual error estimate
(black line) is shown in a semi-logarithmic plot, indicating the expected exponential
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Figure 6.21.: Error estimates with increasing reduced basis dimension in a semi-
logarithmic plot. The residual error estimate (thick black line) is nor-
malized with the estimate for N = 1. The errors ηl(N) and ηq(N) for
the FourierTransforms (red, green) and DensityIntegration (blue) are
measured in the L∞-norm (see Section 5.4.2 for definitions of the error
estimators). An exponential fit of the residual error is shown as a thin
black line.
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6.3. Intermediate reflector layer optimization with a reduced basis

decrease in the error with increasing reduced basis dimension N . The maximum
of the error estimate in the first Greedy iteration is used as a normalization factor.
The graph exhibits a steep decrease followed by an increase at N = 6. Subsequently,
it follows an exponentially decaying function f(N) = 0.096 · 10−0.0545·N . The graph
of this function is shown as a thin, black line.
The dashed red and green lines for the FourierTransform in -z and z directions

and the blue line for the DensityIntegration depict the errors estimates ηl(N) and
ηq(N) defined in Section 5.4.2 in the L∞-norm. The graphs start at N = 2 as
the errors estimates ηl(1), ηq(1) are not defined. All three graphs exhibit an expo-
nential reduction of the error estimate over the training set. The decay rates are
comparable to the residual error estimate although in different norms. The Fourier-
Transform in z direction exhibits a significantly lower error. As the modeled cell is
illuminated from the bottom not much light is transmitted by the structure at all,
deviations here are minimal and are usually neglected anyway. The error estimate
of the FourierTransform in -z direction, describing the reflected light field, and the
DensityIntegration error estimate are almost parallel and finish with an estimated
error of approximately 3 · 10−4 and 3 · 10−3.

6.3.4. Approximation errors

The reduced basis should approximate the truth solution itself more accurately with
increasing reduced basis dimensions as indicated by the error estimate in Figure
6.21. In order to quantify errors introduced by the reduced basis approximation
we compute a set of reference solutions. The parameter locations µi ∈ Ξ ⊂ D are
chosen at random. We compare the results of the reduced basis approximation and
the full FEM problem without any approximation. These reference solutions thus do
not fulfill the truth approximation 8 on page 78 with the affine expansion resulting
from the empirical interpolation procedure but the truth approximation 6 on page
65. We distinguish between errors in the output quantities and the field solution
itself.

Field solution We begin the analysis of the approximation errors by comparing
the fields. In Figure 6.22 the convergence of the mean and maximum of the error
in the H(curl,Ω) norm is shown in addition to the relation between the reduced
basis error estimate and the H(curl,Ω) error. The mean and maximum of the error
over Ξ have identical trends and fit those of the output quantities shown in Figure
6.23 discussed hereafter. The errors decreases by about two orders of magnitude up
to N = 30. The maximum subsequently stagnates at a level of 0.77 · 101 beyond
N = 40. The mean error exhibits a similar decrease up to N = 40 before the
stagnation is observed.
The scatter plot in Figure 6.22 relating estimated error and H(curl,Ω) error

demonstrates the reasonable performance of the error estimate for large errors. As
the approximation by the reduced basis becomes more accurate the estimated error
and the H(curl,Ω) errors are no longer correlated for all parameters in Ξ. This is

131



6. Numerical Examples

truth approximation without empirical interpolation

max Ξ
mean Ξ

H
(c

ur
l) 

er
ro

r

100

101

102

103

104

reduced basis dimension
0 20 40 60 80

es
tim

at
ed

 e
rr

or

109

1010

1011

1012

1013

1014

1015

1016

1017

H(curl) error
10−3 0.01 0.1 1 10 100 1000104

Figure 6.22.: Maximum and mean error of Ξ ⊂ DN
train in H(curl,Ω) norm over

the reduced basis dimension (left) and estimated reduced basis error
over the error in H(curl,Ω) norm (right). The error is measured with
respect to the reference solutions fulfilling the truth approximation 6
on page 65 without empirical interpolation.
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Table 6.9.: Statistics of the H(curl,Ω) norm of the reference solutions over Ξ

mean min max median standard deviation
1807.4 1507.1 2216.1 1741.2 213.6

reflected in the correlation coefficient ρ = 0.62 over all data points. At some param-
eter locations the H(curl,Ω) norm of the error does not decrease beyond ∼1 · 101.
In relation to the norm of the solution, the approximations are orders of magnitude
better than indicated by the absolute error shown here. In relative terms, the error
is still below 1 · 10−3 when considering the magnitudes of the H(curl,Ω) norms of
the reference solutions listed in Table 6.9. As seen in the previous example in Sec-
tion 6.1.4 the stagnation for some parameter values can be attributed to the error
introduced by the empirical interpolation. As noted there, the reduced basis and the
reference solutions fulfill different truth approximations and this additional error is
not accounted for by the error estimate shown here. This results in the observed
deviation from the diagonal in this plot.

Output quantity The output functionals are continuous functions of the field
solution. Hence we expect a similar results in studying the errors in the output
quantities. For this example, the transmission, the absorption within the air and
IRL layer are negligible. The maximum and mean of the relative errors over Ξ for the
remaining quantities are depicted in Figure 6.23 as red and blue dashed lines. The
relative errors decrease in all quantities with increasing reduced basis dimension.
The density integration in the ZnO and Ag layer exhibits a distinctive drop at
N = 26. This corresponds to the inclusion of a snapshot at 650 nm. Subsequently
this parameter location is much better resolved and the errors decrease. Overall we
observe a stagnation in the errors beyond N = 40. This fits the discussion above
where the field error was observed to be large for specific parameter location. The
stagnation of the errors in the output quantities can be attributed for the most part
to these specific locations as well.
The slight difference of the reference problems used here (these solve Problem 6)

and the corresponding problems approximated by the reduced basis (solving Problem
8) explains the observed approximation errors in the field solution and the output
quantities. These observations are identical to the discussion in Section 6.1.4 where
the same stagnation is observed and could be attributed to the different reference
solutions. This explanation is strengthened by the convergence properties of the
second type of reference solutions fulfilling the truth approximation 8 with empirical
interpolation over the set Ξeim used in the next sections. The maximum and mean of
the relative errors over Ξeim with respect to these reference solutions are depicted in
Figure 6.23 as red and blue solid lines. Both mean and maximum errors convergence
exponentially with a rate of approximately 10−.036 which is identical to the estimated
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Figure 6.23.: Relative error in the output quantities over the reduced basis dimension
measured between the reduced basis approximation and two reference
solutions. There is one plot per output quantity which is indicated
in the upper right of each axis. The maximal (red dashed) and mean
(blue dashed) relative errors to the references fulfilling the truth ap-
proximation 6 without empirical interpolation over the set Ξ stagnate
beyond N = 15. The maximal (red solid line) and mean (blue solid
line) relative errors to the reference solution fulfilling the truth approx-
imation 8 with empirical interpolation over the set Ξ2 are smaller and
stagnate at a lower error level for large N .
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rate derived from Figure 6.21.

6.3.5. Error analysis

The approximation errors observed in the previous section are generally reduced
with increasing dimension of the reduced basis. In the following we thus investigate
the sources of the errors further. We determine the inf-sup constant first to justify
its neglect (cf. Sections 5.4.2 and 5.4.3) and then investigate the errors introduced
by the empirical interpolation of the system matrix and right-hand side in more
detail.

Inf-sup constant estimation The residual error estimator does not account for the
inf-sup constant β. In this example the inf-sup-constant varies marginally between
0.1 and 0.7. The distribution of β overD shown in Figure 6.24 depends mainly on the
wavelength. The distribution exhibits three distinct areas with rugged boundaries
instead of the sharp boundaries observed in Figure 6.7 for another example. This
is likely an artifact of the interpolation of the coarser sampling points. Below ca.
615 nm the values of β are larger than .45 independently of the value of dirl. Similarly
above 645 nm the values are again larger than .45. In between β has values between
.1 and .2. The histogram exhibits two clusters: one between β = .1 and β = .2
and one between β = .45 and β = .7. We conclude that the neglect of the inf-sup
constant is not a great loss in accuracy as the variations in β are limited to at most
a factor of 7.

Empirical interpolation error The error introduced by the affine expansion of the
sesquilinear form a(·, ·;µ) and linear form f(·;µ) with the Empirical Interpolation
Method in Section 5.5.1 is measured and controlled in the L∞ norm. In Section 6.3.4
we found the errors in the H(curl,Ω) norm to be much larger than the estimated
L∞ errors of the EIM approximation listed in Table 6.8. We investigate the errors
defined in Section 6.1.5 related to the EIM approximation for a set Ξeim ⊂ D of 100
parameters.
The computed errors over Ξeim are shown in Figure 6.25 on logarithmic scales as

scatter plots together with histograms. ∆1 (Figure 6.25a) exhibits errors larger than
1 · 10−1 over the whole parameter domain except for the central frequency where the
errors are below 1 · 10−8 independent of dirl. Outside this line this absolute error is
quite large and the relative error δ1 takes values between 1 · 10−4 and 1 · 10−2 with a
mean of 1.6 · 10−4. The histogram Figure 6.25e shows this split between the 9 data
points at the central wavelength and the other data points. The median of log10(δ1)
is −2.97.
The distribution of ∆2 over Ξeim in Figure 6.25b differs distinctly from the distri-

bution of ∆1 (Figure 6.25a). We do not observe any structure in the distribution.
The errors differ between 2 · 10−10 and 6 · 10−8. The relative error distribution in
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Figure 6.24.: The false color plot of the inf-sup constant β distribution in parameter
space D computed at the snapshot locations (indicated by crosses).
The color bar axis coincides with the histogram on the right showing
the clustering of β for the 80 data points.

Figure 6.25d is almost identical, albeit with error levels three magnitudes smaller.
The median and mean of log10(δ2) in Figure 6.25f are approximately −11.5.
The distribution of∆1, ∆2 can in part be explained by the location of the empirical

interpolation snapshots for the matrix (blue diamonds in Figures 6.25a-(d)) and the
right hand side (a single blue square in the center). The error ∆2 measures the error
introduced by the empirical interpolation of the right hand side as detailed in (6.1)
on page 107. As in this study the incidence angle is kept constant and only the
wavelength is varied, the right hand side does not depend on the parameter and the
empirical interpolation requires only a single snapshot. Subsequently the errors are
negligible. The system matrix A depends on the geometrical parameter dirl as well
as the wavelength. Even though its entries are approximated well by the empirical
interpolation the induced error ∆1 is substantial if the wavelength does not coincide
with the empirical interpolation snapshots for both the system matrix and the right
hand side.

6.3.6. Online evaluation and results

The figure of merit in optimizing the intermediate reflector layer thickness is the
gain in current density generated by the top cell. In [Kirner et al., 2014] our in-
vestigations were limited to 3 wavelengths (600 nm, 650 nm and 700 nm) and 7
values of dirl for every sample as every evaluation has computational costs of ca.
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(a) Error ∆1 (logarithmic scale) (b) Error ∆2 (logarithmic scale)

(c) Error δ1 (logarithmic scale) (d) Error δ2 (logarithmic scale)

(e) Histogram of log10(δ1) (f) Histogram of log10(δ2)

Figure 6.25.: (a)-(d): Scatter plots of the empirical interpolation error ∆1,2 (ab-
solute) and δ1,2 (relative) for the set Ξeim ⊂ D (see text for defini-
tions). The positions of the EIM snapshots for the matrix (diamonds)
and right-hand side (square) are marked blue. (e)-(f): Histograms of
log10(δ1) and log10(δ2).
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Figure 6.26.: Change in current density relative to a 5 nm thick IRL. The current
densities considered here are restricted to wavelengths between 600 nm
and 650 nm.

Figure 6.27.: Contour plot of the absolute gain in top cell EQE over the rectangular
parameter domain D. The gain is computed with respect to dirl=5 nm
instead of dirl=0 nm as in [Kirner et al., 2014]. The parameter locations
used in [Kirner et al., 2014] are marked as black squares.
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21.7 cpu hours or 1.43 hours total on a 16 core workstation. In the online phase
the reduced basis allows to evaluate the reduced order model for a sample in ap-
proximately 300 milliseconds instead of hours. The speed up factor compared to the
truth approximation is about 260 000 for this example. This allows to sample the
parameter domain with a high resolution. Figure 6.26 depicts the computed change
in implied photo current density generated between 600 nm and 650 nm wavelength
with increasing thickness of the IRL. In contrast to the cited reference the gains
and losses are computed with respect to the value for dirl=5 nm (jTCsc |650 nm

600 nm = 1.48
mAcm-2 and jTCsc |650 nm

600 nm = 2.01 mAcm-2) instead of dirl=0 nm as it is not part of the
parameter domain D. We observe an increase in top cell current density mirrored by
a decrease in bottom cell current density. The results are not directly comparable to
the experimentally obtained values as the current density here is only computed over
part of the spectrum resulting in smaller values but the observed trends are similar.
The wavelength resolved gain in top cell EQE is shown in Figure 6.27 over D. The
parameter locations used in [Kirner et al., 2014] are marked as black squares. We
observe almost horizontal contours for small values of dirl. For longer wavelengths
enough light reaches the IRL, is reflected and contributes substantially to the top
cell current by increasing the EQE at 648 nm by .195 up to .492. The maximum
top cell EQE for dirl=60 nm is found at 600 nm with .715.
The resulting EQEs over the parameter domain for the top cell and bottom cell

absorber are depicted in Figure 6.28 in the first two columns. The right column
depicts the absorptance of the IRL. The rows correspond to a reduced basis eval-
uation using N = {10, 20, 40, 80} snapshots. We observe the previously mentioned
trade-off in top and bottom cell absorption in all rows. Maxima in top cell absorp-
tion correspond to minima in bottom cell absorption and vice versa. The IRL is
non-absorptive beyond 610 nm wavelength. We do not observe larger differences for
different reduced basis dimensions in this quantity. In estimating the top an bottom
cell EQEs we find N = 40 to be a reasonable choice as there are distinct differences
in the shape of the contours for N = 10 and N = 20.
The area plots in Figure 6.29 depict the stacked EQEs of all layers in the solar

cell model and the reflectance. These plots are shown along two cross-sections
through the center of the parameter domain. The left column corresponds to fixed
dirl of 61 nm. The right column corresponds to fixed wavelength of 624 nm. The
central column shows the logarithm of the normalized error estimate of the reduced
basis approximation over the parameter domain. The cross sections are marked
as black lines through the center. The rows again show the approximation using
N = {10, 20, 40, 80} snapshots.
For the fixed wavelength of 624 nm we find a good approximation for all investi-

gated thicknesses. The error in energy conservation is relatively small as observed
by the small white areas where the EQEs and reflectance do not sum to one. In
these plots the shown reflection only accounts for the specular reflection such that
the real error in energy conservation is actually smaller than indicated. The trade-
off between top and bottom cell absorption is clearly visible and well approximated
even with a reduced basis dimension of N = 10. Conversely by keeping the thickness
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(a) N = 10

(b) N = 20

(c) N = 40

(d) N = 80

Figure 6.28.: Top and bottom cell EQEs (left and center column) and the absorption
of the IRL (right) over the parameter domain D. The rows correspond
to the evaluation of the reduced basis using 10 snapshots (a), 20 snap-
shots (b), 40 snapshots (c) and 80 snapshots (d).
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(c) N = 40

TCi
BCi
FTO
ZnO
Ag
Air
IRL
Ref

EQ
E

0

0.2

0.4

0.6

0.8

1

IRL thickness [nm]
10 20 30 40 50 60 70 80 90 100 110 120

TCi
BCi
FTO
ZnO
Ag
Air
IRL
Ref

EQ
E

0

0.2

0.4

0.6

0.8

1

wavelength [nm]
600 605 610 615 620 625 630 635 640 645 650

(d) N = 80
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Figure 6.29.: Area plots of layer resolved absorptance over wavelength (left column)
and IRL thickness (right column). The contour of the logarithm of the
normalized residual error estimate is shown in the central column. The
snapshot positions are marked as black squares. Additional black lines
indicate the cross-sections at dirl = 61 nm and λ = 624 nm depicted
left and right. The rows correspond to using N=10 snapshots (a),
N=20 snapshots (b), N=40 snapshots (c) and N=80 snapshots (d).
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constant we observe larger errors in energy conservation. This is best observed by
the oscillations in the plot for N = 10 in the left column. Using twice the number of
basis functions reduces the oscillations until they are no longer visible for N = 40.
Again, we do not observe visible differences between using a reduced basis dimension
of 40 and 80.
Especially for the very low dimensional reduced basis approximation depicted in

the first two rows, we observe an anisotropy in the estimate error. In part this may
serve as an explanation of the previously discussed errors in energy conservation.
At N = 10 the reduced basis exhibits larger errors below 610 nm and above 635 nm
along the cross-section dirl=60 nm. This corresponds to regions of larger oscillations
in the area plot. In contrast the errors are lower in the other parameter direction
which reflects in the smaller energy conservation error observed in the area plot.
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In silicon photovoltaics advanced cell concepts and photonic structures must be
found to trap light inside the solar cell absorber, as silicon based solar cells suffer
from insufficient absorption of the incident solar irradiation. Predictive simulations
of optical processes and complex nanostructured devices have become omnipresent
in recent years in several fields of current research and industrial applications, not
limited to the field of photovoltaics. In many applications devices or processes
are optimized with respect to a certain objective where the underlying physical
processes are described by partial differential equations. In the field of wave optics
electromagnetic fields are investigated which are governed by Maxwell’s equations.
In this work we developed a reduced basis method for the solution of the param-

eter dependent electromagnetic scattering problem with arbitrary parameters. The
method was developed with the specific challenges arising in optical simulations of
thin-film silicon solar cells in mind. These are generally large in domain size and have
a complex three-dimensional structure, making optimization tasks infeasible due to
high computational effort if a high accuracy of the electromagnetic field solution is
required.
The specific modeling demands of solar cells were addressed in this work. This

comprised the improvement of the reduced basis implementation to include also non-
geometric parameters such as the incidence angle or wavelength of the illumination
source by employing an empirical interpolation method. Its application allow for
parameters not only to vary geometries as before, but also material tensors and
source fields. Likewise, the non-linear post-processing steps of the electromagnetic
field to derive energy fluxes or volume absorption were developed and included. In
numerical examples the computational costs could be reduced by as much as five
orders of magnitude compared to efficient finite element solvers.
In addition, an efficient tailored domain decomposition algorithm was presented

in Chapter 4 allowing to model incoherent layers or illuminations in optical systems.
This is of particular interest for solar cells in superstrate configuration where the
absorber is illuminated through a glass substrate.
In this thesis we employed the developed methods in application examples taken

from collaborations with experimentalists from the Helmholtz-Zentrum Berlin für
Materialien und Energie active in the joint lab “BerOSE”1. The optical model of
a thin-film silicon multi-junction with incoherent light-trapping was characterized
in great detail in Section 6.2. The necessity to simulate three dimensional models
of thin-film solar cells for results with predictive power was demonstrated. The

1Berlin Joint Lab for Optical Simulations for Energy Research (BerOSE)
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computational gains through hybrid, hp adaptive finite elements were studied and
the incoherent domain decomposition algorithm applied to model a more realistic
light-trapping by the substrate.
The numerical examples of a hexagonal nano-hole array in Section 6.1 and multi-

junction solar cell with a tunable intermediate reflector layer in Section 6.3 showed
that the reduced basis method is well suited as a forward solver for modeling and
optimization tasks arising in photovoltaics and photonics. Reduced models for illu-
mination and geometric parameters can be be built with high accuracy compared
to the reference models, while providing savings in computational costs of roughly
three orders of magnitude. Even in the presence of resonance phenomena in the
hexagonal nano-hole array, representing a photonic crystal, the method worked well
and adapted itself automatically to a detected resonance in the field enhancement.
Here, the employed residual error estimator worked reasonably well and we found
high correlations between the observed and estimated errors.
The fast and efficient evaluation of the reduced model allowed to investigate the

effect of changes in the intermediate reflector layer thickness over a broad wavelength
spectrum and to compute changes in the current densities. This is in stark contrast
to the previously encountered restrictions for this model problem where simulations
were limited to a few wavelengths and thickness. A speed up of five orders of
magnitude allows for a much finer resolved wavelength scan and the computation of
short circuit current densities.
Future improvements are required on several fronts: Currently, the error estimator

does not account for the error introduced by the empirical interpolation. Thus work
is needed to develop a rigorous estimate to bound this error as well. Secondly, the
offline phase requires possibly large computer resources. Parallelization on comput-
ing clusters can save wall clock time in this step if efficient ways to employ their full
capacity are found.
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8. Zusammenfassung

Die Beschreibung elektromagnetischer Felder durch die Maxwell-Gleichungen in der
Wellenoptik ist beispielhaft für physikalische Prozesse, denen partielle Differential-
gleichungen zugrunde liegen. Häufig werden Parameter bezüglich eines Zielfunktio-
nals optimiert oder in inversen Problemen rekonstruiert. Die Parameterräume sind
oftmals groß und hochdimensional oder es bestehen Echtzeitanforderungen an die
Berechnung. Insbesondere für 3D-Probleme ist dies mit den verfügbaren Maxwell-
Lösern auf Basis der Finite-Elemente-Methode (FEM) häufig nicht erreichbar.
Durch Nanostrukturierung und Abstimmung der optischen Komponenten kann die

Einkopplung des Sonnenlichtes in Silizium-Dünnschichtsolarzellen verbessert wer-
den. Studien zur Optimierung dieser Zellen erforden daher neben genauen und
schnellen Simulationen die Behandlung spezifischer Eigenschaften des Sonnenlichts.
Im Fokus dieser Arbeit sind daher Methoden um die Optik nanostrukturierter So-
larzellen schnell und effizient zu simulieren.
In dieser Arbeit wird eine Reduzierte-Basis-Methode (RBM) für allgemeine Para-

meterabhängigkeiten des elektromagnetischen Streuproblems entwickelt. Sie erlaubt,
das parametrisierte Streuproblem in Echtzeit zu lösen, indem der Lösungsprozess in
zwei Phasen gegliedert wird: In der aufwendigen Offline-Phase wird das Problem ein-
malig für einige wenige Parameter gelöst und daraus eine niedrigdimensionale Basis
erstellt, die die Lösung über dem Parameterbereich gut approximiert. In der schnel-
len Online-Phase wird nur das reduzierte - von der FEM-Dimension unabhängige -
System gelöst. Eine verlässliche Schätzung und Kontrolle des Approximationsfehlers
ist im selbstadaptiven Aufbau der Basis unverzichtbar. Ziel der Nutzung der RBM
für Solarzellen ist die Berechnung der Absorptions- und Reflexionsspektren, wofür
reduzierte (nicht-)linearen Auswertefunktionale benötigt werden.
Des Weiteren wird eine Methode zur Modellierung von Inkohärenz präsentiert, die

auf Gebietszerlegung basiert. Sie kann genutzt werden um das durch Totalreflexi-
on gefangene Licht zu berücksichtigen. Direkte Simulation der spektralen Zerlegung
führt zu einer Vielzahl von Simulationen und Auswertungen von nichtlinearen Funk-
tionalen. Eine orthogonale Zerlegung zur beschleunigten Auswertung dieser Funk-
tionale wird beschrieben.
In Beispielen aus Kooperationen mit dem JointLab “BerOSE”1 werden die vor-

gestellten Methoden detailliert untersucht. Die Modellreduktion erlaubt eine um
Größenordnungen schnellere Berechnung der physikalischen Größen in einem Solar-
zellenmodell. Damit sind detailliertere Parameterstudien möglich, die aufgrund des
numerischen Aufwands zuvor nicht durchgeführt werden konnten.

1Berlin Joint Lab for Optical Simulations for Energy Research (BerOSE)
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A.1. Coupling of two domains

Figure A.1.: Schematic of the coupling in a stack of two domains Ω1 and Ω2. Il-
lumination of the stack is only possible from the top and/or bottom
as indicated by the blue and red arrows. In each domain fields are
incident from both the bottom or the top (indicated by light blue and
orange arrows). The scattered fields excited by x0 and x1 equal x2.
Conversely, the scattered fields excited by x2 and x3 equal x1.

We consider the domain decomposition method introduced in Section 3.3 for most
simple case where the domain Ω is decomposed into two domains Ω1 and Ω2. This
case is depicted schematically in Figure A.1 where the notation used in the following
is introduced. For each domain we can compute scattering matrices T 1, T 2, respec-
tively. We only require the blocks T 1

2,1, T 1
2,2 and T 2

1,2, T 2
1,1 of the two scattering matri-

ces for the coupling as we must balance the field only across the common boundary.
The remaining blocks are used to determine the reflection and transmission of the
stack once the solution is computed. Using the abbreviations T1 = T 1

2,1,R1 = T 1
2,2

and T2 = T 2
1,2,R2 = T 2

1,1 to simplify notation of these matrix blocks, we obtain the
stack matrix

S =


I
−T1 −R1 I

I −R2 −T2
I

 (A.1)
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with the identity matrix I. Here T and R symbolize transmission and reflection of
the domains if fields are incident from the shared boundary.
The global illumination field Ein incident on the stack is encoded in x0 and x3

and can be expressed as sin = (x0, 0, 0,x3)
ᵀ. Exploiting the linearity of the system

we can restrict our consideration to the simpler case of a single incident field from
the top, i.e. a right-hand side sin = (i0, 0, 0, 0)

ᵀ. We find the following system for
x = (x0,x1,x2,x3) as a block equation system from Sx = sin

x0 = i0

x1 = R2x2

x2 = T1i0 +R1x1

x3 = 0

which is equivalent to

x2 = T1i0 +R1R2x2

⇐⇒ T1i0 = (I −R1R2)x2

=⇒ x2 = (I −R1R2)
−1T1i0

x1 = R2T1i0 +R2R1x1

⇐⇒ R2T1i0 = (I −R2R1)x1

=⇒ x1 = (I −R2R1)
−1R2T1i0

As CM is a Banach space and R1R2 is a linear (thus continuous and bounded)
operator in said space, the infinite Neumann series converges provided ‖R1R2‖CM <
1. Hence I −R1R2 is invertible (cf. Theorem II.1.11 in [Werner, 2011] and we have

(I −R1R2)
−1 =

∞∑
j=0

(R1R2)
j.

The infinite series shows a relation to iterative domain decomposition algorithms.
In terms of optical systems, it can be interpreted as a series of light passes through
the domains. In every pass light is reflected by one domain into the other. If no light
is lost, i.e. both domains contain a perfect mirror, the system does not converge,
but as long as there are losses a solution exists.

A.2. Absorption in layered media

The electric field energy in a layered media can be explicitly computed provided
we have a plane wave expansion of the electric field. In this case we have E(r) =∑

k⊥
Êk⊥e

ikz(k⊥)·r as detailed in Section 3.3.1. To compute the electric field energy
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contained in a bounded domain Ω with a twofold periodicity along grid vector a1

and a2 we have to compute∫
Ω

E ·D dr =

∫
z

∫
Ω⊥

E ·D dx⊥ dz (A.2)

where we assumed the computational domain to be oriented along the z axis and Ω⊥
is the unit cell spanned by a1,a2 in the z -hyperplane. The inner integral simplifies
in case of a Fourier plane wave basis as they form an orthogonal basis over Ω⊥. The
inner integral in (A.2) thus becomes

∫
Ω⊥

E ·D dx⊥ =

∫
Ω⊥

(∑
k⊥

Êk⊥e
ikz(k⊥)z+ik⊥·x⊥

)
·

ε∑
k′⊥

Êk′⊥
eikz(k

′
⊥)z+ik

′
⊥·x⊥

 dx⊥

=
∑
k⊥

∑
k′⊥

ei(kz(k⊥)−kz(k
′
⊥)z

∫
Ω⊥

Êk⊥ ·
(
εÊk′⊥

)
ei(k⊥x⊥−ik

′
⊥)·x⊥ dx⊥

= |Ω⊥|
∑
k⊥

Êk⊥ ·
(
εÊk⊥

)
ei(kz(k⊥)−kz(k⊥))z (A.3)

In general E will not only contain upward or downward propagating components.
However, for these kz(k⊥) differs only by a sign to determine propagation direction.
The two plane waves do not necessarily have the same zero phase plane uniquely
fixed by z0, but instead zt and zb for top and bottom. In Section 3.3.4 this case
is depicted in Figure 3.4 by black dots marking the zero-phase points. In this case
(A.3) will take the following form for a fixed k⊥:(
Ê+

k⊥
eikz(k⊥)(z−zb)+Ê−k⊥e

−ikz(k⊥)(z−zt)
)
·
(
ε
(
Ê+

k⊥
eikz(k⊥)(z−zb)+Ê−k⊥e

−ikz(k⊥)(z−zt)
))

= Ê+
k⊥
·
(
εÊ+

k⊥

)
ei(kz(k⊥)−kz(k⊥))(z−zb)

+ Ê+
k⊥
·
(
εÊ−k⊥

)
ei(kz(k⊥)+kz(k⊥))z−ikz(k⊥)zb−ikz(k⊥)zt

+ Ê−k⊥ ·
(
εÊ+

k⊥

)
e−i(kz(k⊥)+kz(k⊥))z+ikz(k⊥)zt+ikz(k⊥)zb

+ Ê−k⊥ ·
(
εÊ−k⊥

)
e−i(kz(k⊥)−kz(k⊥))(z−zt)

= Ê+
k⊥
·
(
εÊ+

k⊥

)
Φ1(z)+Ê

+
k⊥
·
(
εÊ−k⊥

)
Φ2(z)+Ê

−
k⊥
·
(
εÊ+

k⊥

)
Φ3(z)+Ê

−
k⊥
·
(
εÊ−k⊥

)
Φ4(z)

(A.4)

To compute the integral over the z dependence we stick to integrating the Φi terms
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separately. We note that Φ2 and Φ3 are complex conjugates of each other.∫ z1

z0

Φ1(z) dz =

∫ z1

z0

ei(kz(k⊥)−kz(k⊥))(z−zb) dz =

∫ z1

z0

e−2Im(kz(k⊥))(z−zb) dz

=

{
1

−2Im(kz(k⊥))

[
e−2Im(kz(k⊥))(z1−zb)−e−2Im(kz(k⊥))(z0−zb)

]
if Im(kz(k⊥)) 6= 0,

z1−z0 if Im(kz(k⊥)) = 0.

(A.5)

∫ z1

z0

Φ2(z) dz =

∫ z1

z0

ei(kz(k⊥)+kz(k⊥))z−ikz(k⊥)zb−ikz(k⊥)zt dz

=

∫ z1

z0

e2iRe(kz(k⊥))ze−ikz(k⊥)zb−ikz(k⊥)zt dz

=

{
e−ikz(k⊥)zb−ikz(k⊥)zt

2iRe(kz(k⊥))

[
e2iRe(kz(k⊥))z1 − e2iRe(kz(k⊥))z0

]
if Re(kz(k⊥)) 6= 0,

e−ikz(k⊥)zb−ikz(k⊥)zt(z1 − z0) if Re(kz(k⊥)) = 0.

(A.6)

∫ z1

z0

Φ3(z) dz =

∫ z1

z0

e−i(kz(k⊥)+kz(k⊥))z+ikz(k⊥)zt+ikz(k⊥)zb dz

=

∫ z1

z0

e−2iRe(kz(k⊥))ze+ikz(k⊥)zt+ikz(k⊥)zb dz

=

{
e+ikz(k⊥)zt+ikz(k⊥)zb

−2iRe(kz(k⊥))

[
e−2iRe(kz(k⊥))z1 − e−2iRe(kz(k⊥))z0

]
if Re(kz(k⊥)) 6= 0,

e+ikz(k⊥)zt+ikz(k⊥)zb(z1 − z0) if Re(kz(k⊥)) = 0.

(A.7)

∫ z1

z0

Φ4(z) dz =

∫ z1

z0

e−i(kz(k⊥)−kz(k⊥))(z−zt) dz =

∫ z1

z0

e2Im(kz(k⊥))(z−zt) dz

=

{
1

2Im(kz(k⊥))

[
e2Im(kz(k⊥))(z1−zt) − e2Im(kz(k⊥))(z0−zt)

]
if Im(kz(k⊥)) 6= 0,

z1 − z0 if Im(kz(k⊥)) = 0.

(A.8)
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