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Chapter 1

Introduction

This thesis is concerned with revealing regulation of gene expression. The basic motivation
behind our work is that gene regulation can be better resolved when analyzed in a cellular
context of the upstream signaling pathway and known regulatory targets. Our source
of data are perturbation experiments, which are performed on pathway components and
induce changes in gene expression. In such a way, they connect the signaling pathway to
its downstream target genes. This chapter starts with an introduction to the cellular con-
text considered in the thesis (section and the principles of perturbation experiments
(section . We end with a concise summary of three approaches that comprise this
thesis. The approaches tackle various problems in the process of revealing context-specific
regulatory networks (section . We deal with differential expression analysis of the per-
turbation data, enhanced with known transcription factor targets serving as examples of
differential genes (chapter Q) pathway model-based planning of informative perturbation
experiments (chapter(3), and finally, with deregulation analysis, i.e., comparing changes
in gene regulation between two different cell populations (chapter @)

1.1 Signaling pathway and downstream gene
regulation

Basic biological notions  Following a comprehensive book by Alberts et al. [3], we
shortly introduce the basic components and processes present in the cell that are im-
portant for this thesis. We analyze eukaryotic cells of yeast and human. A simplified
scheme of an eukaryotic cell in Fig[T.T| A presents the surrounding plasma membrane,
the interior cytoplasm and nucleus in the center (we ignore other organelles). The
nucleus stores a deoxyribonucleic acid (DNA) molecule, which is the cellular carrier
of genetic information, inherited by the daughter of a dividing cell in a process of
replication. Chemically, DNA is a helical structure built from two long polymers,
called DNA strands. Each strand is composed of a sequence of four basic molecules,
called nucleotides: adenine, guanine, cytosine and thymine. Each nucleotide on one
strand forms a bond with only one other nucleotide on the other strand. This is
called sequence complementarity. Within the nucleus, DNA is organized into long
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structures called chromosomes. This chromosomal DNA is differentiated from sepa-
rate DNA molecules in the cell, like plasmids. A plasmid is a double-stranded DNA
molecule, which is not part of the chromosomal DNA, but it can survive and be
replicated independently in the cell.

The central dogma of molecular biology postulates that portions of the chromosomal
DNA, called genes, serve as templates for production of messenger RNA (mRNA).
An enzyme called RNA polymerase transcribes the sequence of the gene into the
mRNA sequence. The amount of mRNA defines the level of gene expression. Ex-
periments performing thousands of simultaneous measurements on a population of
cells are called high-throughput. For example, we analyze data from high-throughput
gene expression experiments, also called genome-wide experiments. The process of
translation utilizes the mRNA sequences to produce proteins. Proteins play a role in
almost all processes in the cell.

Signaling pathways  The cell membrane acts as a filter to the outside environment,
transmitting selected stimulatory cues. Examples of such stimulation are hormones,
growth factors, cytokines or chemokines. The stimulation may also come from the
inside of the cell. Stimulation is recognized by receptors, which include G-protein
coupled receptors (recognizing e.g., chemokines) or receptor tyrosine kinases, (e.g.,
growth factor receptors), and many other types. Activated receptors in turn induce
activation of a signaling pathway, which conveys the signal further through a cascade
of interactions between cellular molecules. In this thesis, we focus on a broad class
of signaling pathways with protein components, which regulate each other’s activity,
for example by phosphorylation. We say that the regulating and the regulated pro-
teins are in a signaling relation. The signal is commuted down to a special kind of
proteins: transcription factors, which then regulate expression of genes. Therefore,
transcription factors (abbreviated TFs throughout the text) are the biological con-
nection between the signaling pathway and the genes. Fig[I.1] A presents a simple
signaling pathway with three components, A, B and C' in the cytoplasm, A and C
being TFs. Four exemplary genes g;—¢g4 are shown in the nucleus, with the TF A
regulating ¢g; and g3. We say that the gene regulation occurring due to activation of
a certain signaling pathway happens downstream of the pathway and determines the
response of the cell to the signal. The signaling pathway is said to be upstream of
this gene regulation. Below we describe the details of this process.

Transcription factors Transcription factors control expression of genes by rec-
ognizing and binding to specific sequences of DNA, called binding motifs, in the
promoter or enhancer regions of the genes. Those regions are portions of the DNA,
placed adjacent or distant to the gene, respectively, and are together called requlatory
regions. Binding of TFs to regulatory regions influences recruitment of RNA poly-
merase to the gene. The control of RNA polymerase recruitment is not due to the
TF alone, but requires involvement of a complex of many other proteins. Transcrip-
tion factors are distinguished from the other members of this complex by domains,
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Figure 1.1: Problems in resolving context-specific gene regulation. (A) The cellular context
of gene regulation. The oval is a schematic representation of an eukaryotic cell with a signal-
ing pathway (solid edges) and its downstream regulatory relations (dashed edges, pointed
arrows indicating activation and blunted arrows indicating inhibition). In our studies, we
deal with populations of such cells. AA — an experiment, where A is perturbed. Genes are
colored according to the effect of the perturbation. In this example, the perturbation is a
knockout or a knockdown, where the regulator A is repressed. In such a case gene g1, which
is activated by A, is down-regulated by the perturbation (colored in blue), where as gene
g3, which is inhibited by A, is up-regulated (colored in yellow). Genes not dependent on A
do not change their expression (marked in white). (B—D) Problems solved in chapters
In each problem, the question is illustrated with green items. Items marked in red represent
parts of the cellular context which are known and given as input. Black items are part of
the context but are neither known nor asked. (B) Partially supervised differential expres-
sion analysis of the perturbation data (chapter . For some of the TF's their regulatory
relations are known (e.g., here we know that A inhibits g3 and C activates g3). We are
given data from each performed perturbation experiment. The task is to analyze the data
and correctly identify up- and down-regulated genes. Note that here the pathway structure
is ignored. (C) Planning of pathway-targeted perturbation experiments (chapter |3)). The
regulatory relations in the pathway are given. The question is which perturbation experi-
ments to perform in order to unambiguously recover downstream regulatory relations. (D)
Deregulation analysis (chapter. We consider two different cell populations, knowing both
their pathway topologies, and the regulatory relations for selected TFs. We are given data
from perturbations of each pathway component in both cell populations. Our aim is to
characterize changes in gene regulation that occur between the populations.
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which enable binding to the DNA in the regulatory regions. Combinatorial regulation
happens when several TF's bind together and collaborate to control expression of a
specific gene.

A gene regulated by a given TF is referred to as its target gene. We say that the
gene and the TF are in a regulator-target relation or, shortly, in a regulatory relation
(as we shall see in section [1.2] also proteins in the signaling pathway may act as
regulators). The actual effect the activity of a TF has on its target gene’s expression
is described by a requlatory mechanism. A bound TF may act as gene expression
activator or inhibitor, by either promoting or repressing the RNA polymerase. There
are different ways in which activation or inhibition is carried out, either by a single,
or by several TFs. Thus, the regulatory relations state “who regulates who” and the
regulatory mechanisms state “how”.

Gene regulatory networks In this thesis, a gene regulatory network refers to
regulatory relations for a set of TFs and their target genes. Note that in general, a
gene activated by a given TF may code for a TF itself and regulate transcription of
many other genes. Regulatory networks show such hierarchy of regulatory relations.

1.2 Pathway-targeted perturbation experiments

Perturbation experiments considered in this work are molecular interventions in the
form of single gene knockout, knockdown or overexpression, combined with high-
throughput gene expression measurement (referred to as perturbation data). Gene
perturbation changes expression of the gene: knockdown and (more drastically)
knockout decrease its expression level, while overexpression increases it. The ex-
pression of genes which are either directly or indirectly regulated by the perturbed
gene also changes. To determine this effect, the accompanying genome-wide expres-
sion measurement is always a comparison between the populations of perturbed and
normal cells. In chapters 2| and [3] we analyze perturbation data from yeast, where
compendia of knockouts [92], 57] or overexpressions [21] of multiple genes are avail-
able. In chapter 4| we work with knockdown data in human cells [32].

Basic experimental techniques [3] Most perturbation experiments are carried
out with the use of plasmid vectors. Plasmid vectors are DNA sequences artificially
engineered from natural plasmids that occur in bacterial cells or in viruses. They
contain DNA sequence fragments, inserted into the plasmid at wish of the researcher.
Plasmid vectors, which serve as means to introduce a specific gene into target cells are
called expression vectors. Expression vectors carry inserted DNA fragments coding
for the gene itself and for its promoter region, from which expression of the gene may
be very efficiently controlled.
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The desired DNA fragments can be introduced into the plasmid by a cutting and
sealing machinery of the cell, carried out by the restriction endonucleases and DNA
ligases, respectively. Restriction nucleases are bacterial enzymes, which cut the DNA
at specific sites, called recognition sites, defined by a local sequence of nucleotides.
Some of the nucleases make “uneven” cuts, leaving single-stranded tails hanging at
the end of each fragment. Those tails are called cohesive ends, as they can bind to any
other complementary tail produced by the restriction nuclease. To insert a specific
DNA fragment into the plasmid, both the inserted fragment and the plasmid have
to have recognition sites for the same restriction nuclease. First, the fragment has to
be cut out from a larger portion of DNA using the restriction nuclease. Second, the
restriction nuclease has to cut the plasmid. Finally, the complementary cohesive ends
of the plasmid are bound by complementarity with the ends of the DNA fragment.
The resulting recombinant molecule is then covalently sealed together by the DNA
ligase.

To increase the efficiency of inserting the desired DNA fragment into the plasmid, the
fragment can be multiplied via a polymerase chain reaction (PCR). PCR, carried out
in vitro, generates an exponential number of copies of the given DNA fragment. First,
two short DNA sequences, called primers, which flank the fragment are identified.
Two sets of these primers are next synthesized by chemical methods. The DNA is
then heated in order to separate its strands. Primers bind to ends of the cloned DNA
fragment on both strands, thereby initiating synthesis of complementary strands by a
DNA polymerase. These steps of DNA synthesis are repeated in rounds, each round
doubling the DNA fragments serving as templates for the next (hence the term “chain
reaction”).

Insertion of a plasmid vector into the target cell is called transfection. Accordingly,
the target cells are called transfected. Once the vector is placed inside the cell, cellular
machinery takes up its replication, and, in case of expression vectors, expression of
the carried gene and production of the protein. To select for transfected cells in a
larger mixture, the mixture is treated with a selective agent. The selective agent is a
substance normally able to kill or suppress cellular growth. An example of selective
agent used for bacterial cells is an antibiotic, to which the cells are sensitive. The
selection is made possible by a selectable marker gene carried by the plasmid vector.
The selectable marker (e.g., a gene for the antibiotic resistance) protects the cells
which contain the vector from the selective agent. From the mixture of cells, only
those that either took up the plasmid vector, or inherited it, survive the treatment
with the selective agent.

Before transfecting the final target cells, (e.g. yeast), the vectors may be replicated to
obtain their multiple copies in bacterial cells. Bacterial cells, which are competent to
accept exogenous DNA are transfected with the plasmid vector. Next, in a natural
process of bacterial growth and division, the inserted plasmids are replicated. As
a result, the number of plasmid vector copies may be doubled every 30 minutes.
Finally, the resulting mixture of cells is treated with a selective agent to select for
those bacterial cells, which contain a copy of the plasmid.
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Knockout A gene knockout is a genetic mutation method in which the gene is
forced to loose its function. A knockout experiment can be carried out in two ways:

1. Gene deletion Gene deletion is a construction of a mutant cell that is missing the
gene. To establish a gene deletion mutant in yeast [I31] the following procedure
is employed: First, short regions of DNA surrounding the perturbed gene are
identified. In the next step, an expression vector is constructed, which contains
the identified surrounding regions and a selectable marker gene in between. Finally,
this expression vector replaces the perturbed gene in the yeast genome in a natural
cellular process of homologous recombination. In short, the replacement is enabled
by the fact that the regions at the ends of the selectable marker gene on the vector
match the regions surrounding the original gene to be deleted. As a result, more
than 95% of the resulting yeast cells have the expression vector in place of the
perturbed gene. As a selective agent is added to the pool of all cells, only the ones
which carry the deletion remain.

2. Promoter replacement In contrast to gene deletion, the promoter replacement ex-
periment maintains the gene itself in the DNA. An expression vector carrying a
promoter sequence, which enables easy control of the gene’s expression is placed
instead of the original gene promoter in the genome. In yeast, a tetracycline-
regulatable promoter is applied [39], and gene repression can be controlled by
addition of doxycycline (a member of the tetracycline antibiotics group) to the
growth medium.

Overexpression  To overexpress a gene in yeast, expression vectors containing this
gene and an easily controllable promoter region are utilized. Exemplary expression
vectors [143], [T42] contain the promoter of a gene GALI incorporated alongside the
sequence of the gene. The promoter of GAL1 is induced and starts transcription of
the nearby gene at high rate in the presence of galactose, and is shut down, repress-
ing transcription, in a glucose medium. Galactose induction results in an intensive
production of the protein coded by the gene carried by the expression vectors.

Knockdown Gene knockdown is a perturbation technique which reduces the ex-
pression of the perturbed gene by a mechanism other than genetic modification. Here
we discuss gene knockdown experiments, which degrade the gene’s mRNA transcript,
exploiting the process of RNA interference (RNAi) [48]. RNAIi utilizes a double-
stranded RNA (dsRNA) with a sequence similar to the gene to be knocked down.
Once the dsRNA enters the cell, a RNAi pathway proceeds in four steps. First, an
enzyme named Dicer recognizes and cleaves the long dsRNA molecules into short
fragments of around twenty nucleotides, called short interfering RNAs (siRNAs). In
each resulting fragment, one of the two strands can be distinguished as the guide
strand. In the second step, the guide strand is incorporated into so-called RNA-
induced silencing complez (RISC). In the third step this strand “guides” RISC to the
mRNA that is transcribed from the gene to be knocked down. To this end, the guide
strand binds by complementarity to the mRNA molecule. Knockdown of the gene
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is obtained in the fourth step by cleavage of its mRNA molecule, carried out by the
catalytic component of the RISC complex called Argonaute.

In mammalian cells introduction of dsRNA may result in an anti-viral interferon
response, disturbing protein synthesis in the cell [9]. To avoid this problem, syn-
thetic siRNAs, already around twenty nucleotides in length, can be used instead.
Finally, transfecting the cells with vectors expressing so called small hairpin RNAs
(shRNAs) has been shown to induce gene knockdown effects on longer time scales.
The name comes from the fact that the structure of shRNAs makes a sharp hair-
pin turn. Such expression vectors are equipped with easily controllable promoters
(e.g., the tetracycline-regulated U6 promoter), which ensure that the shRNAs are
abundantly expressed [91].

Basis for regulatory network reconstruction  In our work, perturbation experi-
ments are at focus because of their applicability in the task of gene regulatory network
reconstruction [86, 85, 121]. The basic principle is that genes, being in a regulatory
relation with a TF, respond by showing an effect in their expression when this TF is
perturbed.

Importantly, transcriptional effects of perturbation are observed also on target genes
that are indirectly connected to the perturbed gene through a series of direct signaling
or regulatory relations. When the perturbed gene is not a TF, but codes for any
component of a signaling pathway, its perturbation has an effect first on TFs and
next on the target genes downstream of the pathway. In general, in this thesis
we define a set of regulators, which is the subset of all pathway components and
represents proteins having a direct or indirect transcriptional control over response
of target genes. In this generalized view we assume that the regulators may be in a
regulatory relation with a target gene and control its expression via the same palette
of regulatory mechanisms as TF's (see section .

Table summarizes the expected effect of a target gene depending on the type of
perturbation of the regulator and on the type of regulatory mechanism (here, for two
simple mechanisms of activation and inhibition) controlling the gene’s expression.
The possible effects are assessed by comparison of expression level of the target gene
upon the regulator perturbation with the expression level in wild-type cells. The effect
can either be down-regulation of the gene (when its expression goes down compared to
wild-type), or up-regulation (expression goes up), or, finally there can be no effect (the
expression is unchanged in comparison to wild-type). For example, as illustrated in
Fig. A, if the TF A is knocked-out, its activated target gene g; is down-regulated.
More advanced regulatory mechanisms are considered in chapter
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Perturbation of a | Regulatory mechanism | Perturbation effect on
regulator the target gene
knockout or knockdown | activation down-regulation
inhibition up-regulation
overexpression activation up-regulation
inhibition down-regulation

Table 1.1: Summary of perturbation effects depending on the type of regulator perturbation
and regulatory mechanism. Such effects are expected for the target genes of the regulator
which is perturbed.

1.3 Interconnected problems faced in this thesis

The primary goal of this thesis is discovering regulatory relations, taking into account
available knowledge about their cellular context: the upstream signaling pathway
and TF targets (Fig. A). In chapters we tackle three different problems, each
dealing with different aspects of this general goal.

Differential expression analysis with examples  High-throughput gene expression
experiments allow for a comparison between two different experimental conditions.
The measurements need to be analyzed statistically in order to determine sets of
genes that are up-, or down-regulated, or unchanged in a chosen condition. Re-
searcher’s expertise, often based on literature knowledge and experimental intuition,
can suggest examples of genes which may belong to one of these sets. Established dif-
ferential expression analysis tools [27, [1T3], 114] do not take such imprecise examples
into account. In chapter [2| we put forward a novel methodology that systematically
incorporates imprecise knowledge into differential expression analysis. We use par-
tially supervised mixture modeling that separates one-dimensional expression data
into clusters of differentially expressed and unchanged genes, and utilizes imprecise
examples to find these clusters.

The proposed methodology is of special importance for the analysis of perturbation
data. Here, the sets of genes that are up-regulated, down-regulated and unchanged
upon the perturbation are interpreted as genes that are inhibited, activated, or not
dependent on the perturbed gene, respectively. Researchers can often provide ex-
amples from the sets of up-/down-regulated, or unchanged genes in the analyzed
experiment. This knowledge is rarely certain and can rather be quantified in distri-
butions over those sets. Fig. B presents the setup of the problem presented in the
cellular context assumed in this thesis. In a particular cell population under study,
some of the TFs may be believed to bind promoters and regulate some of the genes.
Expression of such genes is expected, but not sure, to change after their believed
transcription activator is knocked out. The methodology introduced in chapter
is an important step towards utilizing this knowledge for the reconstruction of the
remaining regulator-target relations.
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Planning perturbation experiments In chapter [3] we introduce an algorithm
called MEED (model expansion experimental design). MEED is meant to guide ex-
perimentalists who focus their research on a chosen signaling pathway and are in-
terested in the regulation of its downstream targets. We assume that the researcher
has initial qualitative knowledge about the signaling relations in the studied pathway
and wishes to systematically perturb the pathway components to characterize the
response of the downstream target genes. In contrast to large compendia of pertur-
bation data, such experimental studies [104, 138, O7] are focused on perturbing a
specific signaling system to infer its downstream regulation mechanisms. Gat-Viks
and Shamir [41] improve this inference using a formal model of the perturbed pathway
in their approach called model expansion.

All these approaches heavily depend on which and how particular pathway compo-
nents were perturbed. In chapter [3| we bring up and tackle the problem of ambiguity
in the identification of regulatory relations. For example, it is possible that a TF
is not affected and remains inactive in all experiments and therefore its targets can-
not be revealed. Alternatively, consider two TFs located in different parts of the
signaling pathway, with a different role and different target genes. In a given set of
experiments, if their target genes have similar expression profiles, they will be falsely
considered as co-regulated. Moreover, taking any of the two TFs as the common
regulator of these targets will be equally supported by the experimental data, lead-
ing to ambiguous hypothesis about their transcriptional regulation. To avoid such
problems, the experiments must generate enough information to draw unambiguous
conclusions about regulatory relations.

Fig. C presents the biological setup of the problem solved in chapter Here,
we know the relations between components of the upstream signaling pathway and
we want to know which perturbation experiments to perform. Given a model of the
pathway, the MEED algorithm aims to select the smallest number of experiments,
which together allow for unambiguous identification of regulatory relations down-
stream of the pathway. In the end, the experiments designed using MEED are used
in a model expansion procedure. Building on ideas of Gat-Viks and Shamir [41],
the procedure reconciles experimental data with model predictions to elucidate the
regulatory relations downstream of the given pathway model.

Deregulation analysis In chapterwe put forward an approach for joint deregulation
analysis, abbreviated JODA. Our aim is to delineate deregulation, defined as changes
in gene regulation between two different populations. Extant deregulation analysis
approaches [84) 120}, B34, 56, [134] do not take the cellular context of these changes
into account.

JODA combines cell-specific perturbation data and knowledge presented in Fig. [I.1]D.
The data comes from perturbation experiments that need to be performed on the same
genes in both cell populations. We assume that knowledge about the cellular con-
text of gene regulation is given by: signaling relations in the upstream pathway and
established relations between the TFs in the pathway and their target genes. This



Chapter 1 Introduction

cellular context is provided for both cell populations. The approach combines ideas
introduced in the previous chapters. The known TF targets are utilized as exam-
ples of up- or down-regulated genes in the partially supervised differential expression
analysis of the perturbation data (chapter . Information about the topology of the
signaling pathways active in the two cell populations is formalized in two simple mod-
els. Next, the models are used for reconstruction of regulatory relations as described
in chapter [3

1.3.1 Software

Our partially supervised mixture modeling approach is implemented in an R package
bgmm, freely available from http://bgmm.molgen.mpg.de, together with the data
used for the analysis presented in the thesis. The package provides practical support
in the application of our methodology to differential data analysis.

The MEED framework software is freely available from http://meed.molgen.mpg.
de/. The software supports:

e building a logical model of the signaling pathway under study, and using it to
provide predictions for a set of candidate experiments,

e selecting perturbation experiments on the pathway components from the set of
candidates,

e clucidating gene regulation downstream of the pathway.

The steps of the JODA algorithm are implemented and available in an R package
joda, available from http://joda.molgen.mpg.de.

10
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Chapter 2

Introducing knowledge into
differential expression analysis

This chapter discusses our novel knowledge-based methodology for differential expression
analysis. The approach is implemented by two partially supervised mixture modeling
methods: a newly introduced belief-based modeling, and soft-label modeling, a method
proved efficient in other applications. Our methodology benefits from knowledge about
genes that should be up- or down-regulated in the analyzed expression data. To introduce
the theory, we bring together variants of utilizing labeled data by extant mixture modeling
methods, including the soft-label method (section[2.1)). Next, we describe our belief-based
modeling (section . To introduce the application, we first cover existing mixture
model-based methods for differential expression analysis (section . Next, we show
how the soft-label and belief-based methods can be applied for this task (section .
In section the performance of the two partially supervised methods is validated on
synthetic data. Finally, we show three applications of the methods to gene expression data:
first, identification of targets of Stel2 from knockout data in yeast, given knowledge from
a Stel2 DNA-binding experiment (section ,' second, distinguishing miR-1 from miR-
124 human target genes based on expression data from transfection experiments of either
microRNAs, with the use of their predicted targets (section @ third, clustering of cell
cycle genes based on their time-course expression profiles (section @)

2.1 Mixture modeling variants: the aspect of
incorporating knowledge

In the problem of clustering, a dataset of observations X = {zy,...,zx} is given,
and one looks for an assignment of the observations to clusters in ) = {1,...,K}.
In this thesis we assume that the number of clusters K is known, and that the data
points x; € X are one-dimensional. In our application the clusters correspond to
differentially expressed (shortly, differential) or unchanged genes, and data consist of
expression ratios comparing measurements from two conditions. To find the clusters,
mixture modeling is applied. Mixture modeling associates each cluster with a model
component, which is defined by an underlying distribution estimated from the data.

11
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Mixture modeling variants differ in the way they utilize additional knowledge. We
assume the knowledge is available for a subset of first M observations {x1, ...,z },
called ezxamples. The knowledge about an example can either be precise and give
exactly one cluster the example belongs to, or can be imprecise and described by a
probability distribution over the clusters in ). The precisely assigned cluster or the
most probable cluster for an example is also called a label, and the examples are also
referred to as labeled data.

Mixture modeling assumes that the cluster labels are realizations of random variables
Y1, ..., Yy that take values in ) and follow a multinomial distribution M (1, 7y, ..., 7k ),
som, = P(Y; = k), fori € {1,...,N} and k& € ). The ms are called mizing
proportions, or priors, and satisfy Zszl m, = 1. The observations in X are as-
sumed to be generated by continuous random variables X7, ..., Xy with values in R
and a conditional density function f(z;|Y; = k) = f(x;;0k), where i € {1,..., N},
k € Y, while 0, denotes the parameters of the density function. We are con-
cerned with Gaussian mixtures, where 0y, = (i, 07). The model parameters, denoted

U = {m,...,7g, b1, ...,0k }, are usually estimated from the data.
Unsupervised mixture modeling In unsupervised modeling, no cluster labels
are known for the input data X = {zy,..,ay}. Figl2.]] A shows a graphical

representation of this model. Model parameters are estimated by maximizing the log
likelihood of the data given the model, referred to as the incomplete data likelihood:

(W, X) = 3 log (Y- mif (i) (2.1)

To estimate the model parameters, the Expectation Maximization (EM) algorithm [29]
144] is applied. The algorithm starts by initializing the parameters in step 0. Next,
the E and M steps are iterated until stop criteria are met. The standard stop criteria
are given by user-defined parameters: a (small) interval € and a (large) number Q.
The iterations stop either when the consecutive incomplete likelihood values differ
by less than ¢ or when the number of iterations exceeds ). In the E step of the
(¢ + 1)—th iteration we compute the posterior probabilities for each data point z; to

belong to cluster k:
Gy _ (s 67)
by = —x ? O (2.2)
Do M f (i 07

In the M step we update the parameters, assuring that with the new values the incom-
plete likelihood will be higher than in the previous step. For the mixing proportions
and the Gaussian parameters the update formulas are:

N
m = N, (2.3)
i=1
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Figure 2.1: Graphical representation of mixture model variants discussed in this chap-
ter. Graphical model representation [16] illustrates random variables (or sets of random
variables) as open nodes, and parameters as small solid nodes. Here, 8 = {01, ...,0x} de-
notes the set of Gaussian parameters for all components, m = {1, ..., g} denotes the set
of mixing proportions, b = {b1,...,bx} the set of beliefs, and p = {p1,...,px} the set of
plausibilities. Apart from user-defined b and p, all parameters are estimated from the data.
Directed edges point either from nodes corresponding to variables on which the distribution
of the target node is conditioned, or from the parameters of the target node’s distribution.
Large rounded box called a plate denotes a set of nodes, with one of them shown explicitly.
The set of nodes is defined with the running index indicated with a label in the lower part
of the plate. Here, the index 4 always satisfies ¢ > 1. Shaded nodes represent random vari-
ables that are set to their observed values. (A) The unsupervised mixture model, where
all variables {Y1,..., YN}, representing cluster labels assigned to the data points, are not
known. (B) The fully supervised mixture model, with all label variables set to their known
values. (C) The semi-supervised mixture model, with the variables Y; (i < M), represent-
ing cluster labels assigned to the examples, set to their known values, and the remaining
variables (¢ > M) not known. (D) The soft-label mixture model, with all label variables not
known, but with their prior weighted by the plausibilities. (E) Graphical representation of
the belief-based mixture model, with all label variables not known, but with priors for the
example label variables Y; (i < M) changed to their belief values.
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Chapter 2 Introducing knowledge into differential expression analysis

N

S+ thmﬂ )/(S 1), (2.4)

=1

N N

(@ = (ot — ) (o). (2.5)

=1 =1

For parameter initialization two procedures are applied. First, EM algorithm can
be run many times with random initial parameters, possibly reaching different local
incomplete likelihood maxima. Second, in the case of multivariate data, initial pa-
rameters can be computed from clusters obtained by hierarchical pre-clustering of
the data. Univariate data can simply be divided into quantiles [137].

Fully supervised mixture modeling  In the fully supervised variant, at input all
observations have precise labels, as represented in a graphical form in Fig[2.1] B. The
input dataset can be defined as X*® = {(x1, 1), ..., (zn, 2n5)}, where for observation
x; the function z;, given as argument cluster k, returns value 1 if Y; = k, and value 0
otherwise. We denote this value z;,. Given the z; functions, the log likelihood, called
here the complete data likelihood, can be written as:

=2 D zilog (mf (2 0r)). (2.6)

=1 k=1

In the fully supervised case, it is easy to give the maximum likelihood estimates of
the model parameters. For a mixture of Gaussians, we simply calculate the mean of
all observations that are in each cluster k, i, = (ZZ Tizik)/ ( >, %ik), their variance
or = (X zm(xi — w)?)/(X; zi) and their number in proportion to the number
of all observations 7, = > . zix/N. McLachlan and Peel [89] as well as Zhu and
Goldberg [144] provide more details about the fully supervised mixture modeling.

Semi-supervised mixture modeling In the semi-supervised mixture modeling vari-
ant (Fig[2.1]C), we know the precise labels for the first M observations. Therefore the
likelihood for the input set X** = {(x1,21), ..., (Tam, 201), Tags1s -, T} IS @ mixture
of the complete (Eq2.6) and the incomplete (Eq[2.1)) log likelihoods [144]:

M K
(T, X)) = Y zilog (mf (2i:6)) (2.7)
=1 k=1
N

+ > log (Zﬂkf(ifz’; 0)).

k=1

i=M+1

Accordingly, in the E step of the EM algorithm, the posterior probabilities are ob-
tained by setting ¢;; = 2z for examples (i € {1,..., M'}), and using Eq.(2.2)) for the
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2.2 Partially supervised belief-based mixture modeling

remaining observations. Having this, the update equations in the M step are the

same as in Eq.(2.3H2.5)).

Soft-label mixture modeling  Soft-label mixture modeling was recently introduced
in machine learning by Come et al. [22] and shown to improve model-based clustering
of general benchmark datasets. It formulates the given imprecise knowledge with
belief functions [I10]. In our application, each observation is labeled with a single
cluster. In general, the soft-label method allows labels defined as subsets of clusters.
Therefore, we consider only a particular case in their approach. In this case, the
input dataset is defined as X? = {(x1,p1),..., (xn,pn)}, where for an example z;
(1 < M), a plausibility p;, for each cluster k is given, satisfying 25:1 pix = 1. For
the remaining observations (i > M) it is assumed that this distribution is uniform,
ie., pg. = 1/K. Come et al. use the plausibilities to weight the priors. This model
variant is represented in Fig[2.1]D. In this case, the log likelihood for the input dataset
reads:

(T, XP) Zlog szkwkf 25 0)). (2.8)

Therefore, in the E step of the EM algorlthm we compute:

g __ pam? £ 6) (2.9)
Z S piem ) 0.

The update equation for the mixing proportion in the M step reads:

mit = Zt WD N (2.10)

i.e., the mixing proportions are computed based on the posterior probabilities of all
data points, including the examples. The Gaussian parameters are updated as in

Eq. and Eq. .

2.2 Partially supervised belief-based mixture
modeling

We propose our own partially supervised mixture modeling method that handles
imprecise knowledge about the examples. The idea of the method is to set an equiv-
alent of the prior m; differently for each example z; (i < M) to the value of our
belief, understood as the certainty about the example belonging to a particular clus-
ter k. The belief is defined as a probability distribution over the clusters in ),
given by a vector b;, where by, = P(Y; = k), satisfying Zszl bix = 1. The belief-
based model variant is represented in Figf2.1] E. The input set to our method is
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Chapter 2 Introducing knowledge into differential expression analysis

X = {(x1,b1), ..., (@ar,bar), Tarsas - o b Accordingly, the log likelihood for this
dataset reads:

(v, X% = Zlog(zbikf(xi;ek)) (2.11)

N K
+ Z IOg(Zka(xi;gk))'
i=M-+1 k=1

The maximum likelihood estimate of the parameters ¥ is obtained using the EM
algorithm. In the E step of the (¢ 4+ 1)-th iteration the posterior probabilities are
computed by:

birf (253 047) ) Sy b f (235040, i < M
£t — (2.12)

. f (i3 0 q))/Zk’ 1 Wk’f(mwgl(c’)) i > M.

In the M step, in contrast to soft-label modeling, the update equation for the mixing
proportions does not depend on examples and reads:

a0t = Z £ /(N — M), (2.13)

i=M+1

The Gaussian parameters are updated using the equations Eq.([2.4) and Eq.(2.5).

Key differences to soft-label modeling The two partially supervised belief-based
and soft-label methods differ in the way they incorporate imprecise knowledge. Belief
values should be interpreted as the actual certainties with which the examples belong
to each particular cluster. The plausibilities weight the mixing proportions, giving
higher weights to more likely clusters. Consider a model with two components of
equal proportions and variances, but different means (as on Fig A). A belief value
0.5 for an example indicates that in the data this example lies exactly in the middle
between the two means. The plausibility value 0.5 states that there is no certainty
about the cluster which the example belongs to, and does not suggest any likely
position for the corresponding data point.

The difference in mixing proportion estimation between the belief-based and soft-label
modeling (Eq. versus Eq. has a crucial practical consequence. In the case
of soft-label modeling, examples with high plausibilities have higher influence on the
estimation than the remaining observations. In the case of belief-based modeling, only
the remaining observations are used to estimate the mixing proportions. This implies
that the soft-label method is susceptible to bias in the proportion of given examples,
whereas belief-based modeling is susceptible to bias in the remaining observations’
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2.2 Partially supervised belief-based mixture modeling

proportions. Consider a dataset with two clusters of 1000 elements each (cluster size
proportion 1:1, mixing proportions (0.5,0.5)). For very low example numbers it is
easy to give biased example proportions affecting the soft-label model estimation. For
instance, 10 examples for one and and 100 for the other cluster gives a 1:10 example
proportion (and a 99:90 proportion between the remaining observations, close to the
desired 1:1). On the other extreme, taking 990 and 900 known examples for the
two clusters respectively, hampers the belief-based model estimation in two ways.
First, the sample of remaining observations may be too small for proper estimation
of the mixing proportions, and in turn, other model parameters in the EM iterations.
Second, the remaining observations’ proportion 10:1 is biased. Note here that when all
examples for a given cluster are known, the belief-based method is not even applicable.
To summarize, in comparison to soft-label modeling, belief-based modeling is tailored
for the more realistic input sets where the number of examples is small, compared to
the amount of unlabeled data required for robust estimation of mixing proportions.
However, for high example numbers soft-label modeling should be applied.

Parameter initialization of the supervised methods The semi-supervised and the
partially supervised methods take as input examples with cluster labels. Implicitly,
they require that the user assumes an order on the clusters to be found in the data.
The user labels each example with the number of its believed cluster in the assumed
order. On the other hand, the EM algorithm estimates the model components (i.e.,
clusters) in the order of their initial parameters. Consequently, for the EM algorithm
to utilize the examples properly, the initial parameters of each component k should
correspond to the cluster labeled k& by the user, k € ). There are various ways of
defining the initial parameters. We describe two of them.

One way is to compute the initial parameters from the examples. For a Gaussian
mixture model component k one can compute the mean, variance and proportion of
the examples labeled k. Automatically, the initial parameters of component k will
correspond to examples from cluster k. However, initialization from examples is not
always the best choice, especially when there are only a few of them. Also, for some
clusters there might be no example available.

Another common way is to run the same initialization procedures as for unsupervised
modeling (section , returning parameters for clusters in an order not necessarily
the same as the one assumed by the user. Next, initial parameters for the EM
algorithm are obtained from this clustering. Given any such initialization procedure
(in this thesis initialization using quantiles for univariate data), we run the EM
algorithm for all possible permutations of initial parameters, and the estimated model
with the highest likelihood is returned.
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Chapter 2 Introducing knowledge into differential expression analysis

2.3 Mixture model-based clustering

Re-clustering ability  In mixture model-based clustering, once the model is esti-
mated, each observation is assigned to its most probable cluster (from equally prob-
able, one is chosen at random). Note that by this maximum a posteriori (MAP)
criterion, semi-supervised modeling clusters the examples always in the same way as
they are labeled in the input (see section . In contrast, the partially supervised
methods are able to “re-cluster” the examples: an example, although assigned with
the highest certainty to a particular cluster k, can have as a result of the EM algo-
rithm the highest posterior probability to belong to a cluster k' # k. In the case of
soft-label modeling, the posterior probability to belong to cluster £ can be low for
an example x; if the mixing proportion 7, or the density function f(x;;60x) are small,
even if the plausibility p; is high (see Eq. . Belief-based modeling does not take
into account the mixing proportions when deciding the cluster label. For a given
example, the belief about the example “competes” only with the value of the den-
sity function (see Eq. [2.12). In summary, semi-supervised model estimation is most
strongly influenced by the examples and, unlike the partially supervised methods,
cannot correct for mislabeled examples. Thus, if the data group into clear clusters,
the given examples are in ideal proportions and constitute a representative sample
from each component, then the semi-supervised method is expected to perform best
in estimating the true model. In the more realistic case the knowledge is imprecise
and uncertain, and both belief-based and soft-label methods are applicable instead.

Evaluation of clustering accuracy  Note, that after assigning to the most proba-
ble clusters the clustering is no longer probabilistic but partitional. Thus, when true
clustering is available, we evaluate the model-based clustering using standard accu-
racy (number of correctly labeled observations over the number of all observations)
or adjusted Rand index [55]. The latter measure takes values in the (0, 1) interval,
and for random clusterings gives values close to 0. High values of the Rand index
indicate significant agreement of a given clustering with the correct clustering. Cal-
culating the agreement on any pair of observations, the measure scores: (i) the fact
that the observations are clustered together in both clusterings, and (ii) the fact that
the observations are not clustered together in both clusterings.

2.4 Extant mixture modeling methods in application
to differential expression analysis

High-throughput gene expression measurements provide for a comparison between
two experimental conditions. After proper normalization, sets of up- or down-regulated
genes (together: differentially expressed) can be determined. Established differential
expression analysis tools are based on examining the fold-change of gene expression
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level and/or performing a t-test [27, [IT3] 114]. Typically, a threshold cutting off the
differentially expressed genes in the resulting ranked gene list is determined based on
the false discovery rate (FDR, [122]). We do not cover the most standard differential
analysis approaches as t-test, SAM [122], Cyber-T [7], and LIMMA [115].

Before we describe methods for differential expression analysis, which we either apply
or compare to in this thesis, we note application of mixture modeling in related areas.
Mixture modeling was widely used in multidimensional clustering of gene expression
profiles [137, 90, [43], 31], proving that it is well suited for expression data. In this field
of gene expression clustering several approaches extend mixture modeling to include
prior knowledge. Costa et al. [24, 25] and Pan et al. [10I] incorporate pairwise
constraints known for a subset of the observations and perform penalized mixture
modeling ensuring that the constraints are not violated. In a second paper, Wei
Pan [99] takes into account a grouping of genes, defined by functional relations on
top of the clustering. Alexandridis et al. [4] perform semi-supervised model-based
clustering and tumor sample classification using tumor samples whose classes are
known precisely. None of these methods, however, can easily be adapted to utilize
imprecise examples in differential expression analysis. Below we provide details about
extant differential expression analysis approaches, which all differ from our partially
supervised methodology by the fact that they do not benefit from labeled data.

NorDi The Normal Discretization (NorDi) algorithm, proposed by Martinez et
al. [87], identifies differential genes by normalizing and discretizing gene expression
measures in a given experiment into under-expressed, unexpressed and over-expressed
classes. This algorithm first fits the data to a single Gaussian component, iteratively
removing outliers, and next calculates the under- and over-expressed thresholds. In
each step of the iterative normalization procedure, outliers detected by the Grubbs
outliers method [46] are removed from the data, and the Jarque-Bera normality test
[61] is performed. The procedure runs until no significant outliers are detected or
there is a lower goodness-of-fit with the normal distribution than in the previous
iteration. The normality of the obtained distribution is assessed using the Lilliefors
normality test [79]. Having the normalized data, and setting a 1 — a confidence
degree, the thresholds for under- and over-expression cutoffs for data discretization
are defined using the lower and upper a/2 quantiles. Finally, these cutoffs are used
to discretize all values of the initial sample. NorDi is reviewed here and compared
to mixture-model based methods in the result sections 2.7 and 2.9 becouse of its
distinctive way of modeling the data. Mixture model-based approaches assume that
the differentially expressed genes have a different distribution than the unchanged
genes. In contrast, NorDi defines differentially expressed genes as those lying on the
tails of a distribution common for all genes.

Unsupervised model-based clustering  Here we cover the approach proposed by
Pan et al. [100], which is one of many methods [40, 05, [30] that use unsupervised
model-based clustering for the task of detecting genes differentially expressed between
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two conditions. First, a two-sample t-statistic for each gene is computed. Next, for
a given K, unsupervised mixture modeling of the obtained t-statistics into K com-
ponents is performed (Eq2.2H2.5 in section 2.1)). Finally, the genes are clustered by
their posterior probabilities to the most probable model components. The approach
does not a prior: set the number of model components K. Instead, to determine K,
Pan et al. apply model selection criteria, namely the Akaike Information Criterion
(AIC [1]) and the Bayeasian Information Criterion (BIC [107]):

AIC = —2(Vg, X)+2[Vk]
BIC = —=2l(Vg,X)+2log(|X]),

where W is the set of model parameters with the number of components fixed to K,
X is the input data (here, the computed t-statistics), and [(Wy, X) is the incomplete
log likelihood (Eq. To apply the criteria, first series of model estimations for
different component numbers are performed, and next the K resulting in the least
AIC or BIC is chosen. By freeing the number of clusters, Pan et al. may obtain a
model, which better fits the underlying data, but is more difficult to interpret. In
our results section we fix the number of clusters so that the results are comparable
with our approach.

POE  The Probability Of Expression (POE) method consists of a gene expression
mixture model together with a Bayesian estimation approach, and is described in
detail by Garret and Parmigiani [40]. Here we cover the basics of the mixture model.
POE is applied to multiple-experiment data, with the assumption that the expression
is different for different subsets of the experiments. Thus, the input data matrix X
consists of G rows for the genes and F columns for the experiments. Matrix entry
z;; is the intensity of expression measurement of gene ¢ € {1,...,G} in experiment
j €{1,..., E'}, or a transformation of this entity, for example log expression ratio with
respect to some control. The dataset X is assumed to be normalized and preprocessed.
Three latent categories for z;; are defined:

ei; = —1if gene ¢ has abnormally low expression in experiment j
e;; = 0 if gene ¢ has baseline expression in experiment j
ei; = 1 if gene ¢ has abnormally high expression in experiment j

The baseline expression is identified by a large class of experiments with relatively
low variability.

For each gene i the uniform distributions are used to model the “abnormal” expression
and a normal is used to model the “baseline” expression:

P(xyl(ei; = —1)) ~ U(=k; + o5+ pi, 05 + 1)
P(xi|(e;; =0)) ~ N(aj+ ps,07)
P(zijl(ei; = 1)) ~ Uloy + s, a5 + s + K,
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where o; + p; is the center of the baseline expression distribution for gene 7 in ex-
periment j, with y; measuring the gene effect and o; measuring the sample effect for
normal expression levels of gene i in experiment j. The parameters k; and x; denote
the lower and upper limits for the abnormal distributions of gene 7. A constraint is
added that both x; > ro; and k; > ro;, for a user-defined r, ensuring that the uni-
form distributions are able to capture differential expression (in practice, r satisfies
r>5).

The model parameters are given hierarchical distributions (see Garret and Parmigiani
[40] for the distribution functions) and the obtained Bayesian hierarchical model is
estimated using a Metropolis-Hastings MCMC approach to obtain posterior distri-
butions of the parameters.

The basic difference to our approach is that POE gains power from estimating the
parameters using the entire data matrix over multiple experiments. It proved efficient
in our application to large datasets of yeast knockout data (chapter . For a lower
number of experiments, as the ATM pathway dataset in Human (chapter , we apply
our partially supervised methods, gaining from known examples instead.

2.5 Partially supervised differential expression
analysis

Input data Our approach takes as input data and imprecise examples of differ-
ential and unchanged genes. The data are log expression ratios computed for two
conditions, referred to as treatment and control, respectively. When replicate ex-
periments are available, log mean ratios or ¢-statistics should be analyzed. Negative
observations refer to lower, while positive observations refer to higher expression val-
ues in treatment versus control. The differential genes comprise a small fraction of all
genes and their observations are expected to lie on the extremes of the data range.

Analysis There are two analysis scenarios supported: first, clustering into two
clusters of differential and of unchanged genes, and second, clustering into three clus-
ters of down- , up-regulated and unchanged genes. Practically, in the first scenario,
the differential cluster is defined as the one with the higher variance. In the second
scenario, we sort the three estimated model components increasingly by their means.
The down- and up-regulated clusters have the lowest and the highest mean, respec-
tively. Our implementation in an R package bgmm ( http://bgmm.molgen.mpg.de)
provides support for fitting a mixture modeling method of choice in both scenarios.
As a result, the estimated model parameters, probabilities of belonging to each clus-
ter, and a label of the differential cluster are returned. Additionally, the user can
plot the obtained model to verify whether the data clusters as expected. We use the
first scenario of two clusters throughout this thesis.
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2.6 Validation on synthetic data

In this section we validate the performance of our approach on synthetic data, where
the true labels for all observations are known. We compare our partially supervised
methodology to other methods in two different aspects: (i) accuracy of model-based
clustering and (ii) differential expression analysis.

2.6.1 Evaluation of model-based clustering

First, we evaluate the accuracy of model-based clustering by three methods that
utilize labeled data: the partially supervised belief-based and soft-label (section ,
as well as semi-supervised modeling (section [2.1).

Input data and examples We consider two different Gaussian mixture models
(Model 1 and Model 2), with two components each (Figl2.2] A, C). In both models
the mixing proportions are equal, 7 = (m,m) = (0.5,0.5). The Gaussian model
parameters are denoted 6 = (uy, po,0%,03). We run three tests on 1000 random
samples of 1000 observations each: first, assuming Model 1 and choosing a pool of 14
examples per component, second, Model 2 and 14 examples per component, and third,
Model 2 and 450 examples per component. The examples are given belief/plausibility
of belonging to their cluster equal to 0.95, and of belonging to the other cluster equal
to 0.05. In each test, to generate one sample from the assumed model, we draw
the number of observations in the first component from the binomial distribution
N1 ~ B(1000, ), and set the number in the second component to Ny = 1000 — Nj.
Next, we draw N; observations from the normal distribution N '(p1,0?) and N, from
N (p2,03). For every observation in the sample its true label is derived: observations
are assigned to the most probable cluster under the assumed model (either Model 1
or 2). Note, that a true label of a given data point is not the true component label,
but the true cluster label. It does not necessarily agree with the original model
component used to generate the data point. Instead, it agrees with the the cluster
to which this point is assigned by the original model. The compared methods make
their predictions of the true labels by first estimating the model of the data sample,
given the examples, and next model-based clustering of the data. In each test, the
accuracy of assigning true labels to observations that are not used as examples is
averaged over the 1000 samples.

Advantage of partial supervision  The first test (Figl2.2] A, B) shows advantage
of considering imprecise knowledge (discussed theoretically in section . Model 1
(Fig. A), with well separated components and sets of examples per component,
is easy to estimate. Using all given examples correctly labeled, all methods find
true cluster labels accurately (first three bars in Figl2.2] B). In contrast to semi-
supervised modeling, both partially supervised belief-based and soft-label methods
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Figure 2.2: Partially supervised model-based clustering of simulated data. (A) Model 1
assumed in the first test, with two well separated components (drawn in black and gray),
gaussian parameters as indicated on the plot, and separated sets of 14 examples per com-
ponent (marked below). (B) y-axis: average accuracy of belief-based, soft-label and semi-
supervised methods in putting data into the same clusters as the true model in A. z-axis:
different accuracy bar plots for increasing number of examples that are mislabeled (out of
the pool of 14 per component). Both partially supervised methods deal significantly better
with mislabeled examples than the semi-supervised method. (C) Model 2 assumed in the
second test, with overlapping components and small example sets (14 per component), plot-
ted as in A. (D) The plot as in B, but the z-axis shows the numbers of examples, correctly
labeled, used per component (from those indicated in C). The example numbers proportions
(from left to right 1:1, 1:2, 1:3 and 1:4) are increasingly biased with respect to the model
mixing proportions (1:1). Applied to cluster the data from the model in C, belief-based
modeling is more resistant to such bias than both soft-label and semi-supervised modeling.
(E) Model 2 with a large number of 450 examples per component assumed in the third
test, ploted as in C. (F) The plot as in D, but here the increasing bias is introduced in the
proportions of observations that are not used as examples (from left to right 1:1, 2:3, 1:2,
2:5). Applied to cluster the data from the model in E and given large example numbers,
belief-based modeling less accurately estimates the model and is less resistant to such bias
than both soft-label and semi-supervised modeling.
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are highly accurate even when examples are mislabeled by switching their labels to
other clusters (remaining bars in Fig[2.2] B).

Belief-based versus soft-label modeling Figl2.2] C-F shows on Model 2 the
differences in performance between the belief-based and soft-label modeling (discussed
theoretically in section . The components of Model 2 largely overlap, and we use
overlapping subsets of examples per component. In the second test, for small example
numbers (Fig. C) and equal example proportions the model is well estimated
by all methods (first three bars in Fig[2.2] D). However, when the example number
proportions disagree with the assumed model mixing proportions, only belief-based
modeling achieves high clustering accuracy (remaining bars in Fig[2.2]D). In the third
test, with large example numbers (Fig. E) and equal example proportions, the
belief-based method lacks enough observations to estimate the model as good as the
soft-label and semi-supervised methods (first three bars in Figl2.2| F). Additionally,
the larger the bias in representation of observations not used as examples, the poorer
the accuracy of the belief-based method (remaining bars in Fig. F). In both cases
soft-label modeling behaves similarly to semi-supervised modeling.

2.6.2 Partially supervised differential expression analysis

Next, we show the improvement obtained by using our partially supervised approach
in differential expression analysis.

Input data  We generated 100 datasets, each simulating expression of 200 differen-
tial and 1800 unchanged genes in the control and treatment conditions. Each dataset
consists of two data matrices, control and treatment, both with three columns (ex-
perimental repeats) and 2000 rows (genes). The basal gene log intensity values in
the control matrix are drawn from a normal distribution N'(10,1). The values in the
treatment matrix for the unchanged genes come from the same basal distribution,
whereas for the differential genes are drawn from A/(10, 16). This reflects the biolog-
ical reality where the differentially expressed genes change their expression between
the control and treatment condition, but each to a different extent.

Compared methods On these synthetic datasets we compare the partially su-
pervised and semi-supervised modeling with standard differential analysis methods:
t-test, SAM [122], Cyber-T [7], and LIMMA [I15]. Additionally, we run unsupervised
mixture model-based clustering of t¢-statistic, proposed by Pan et al. (section .
The standard differential analysis approaches are applied directly to the simulated
control and treatment matrices and return p-values of differential expression. Next,
we set the commonly applied p-value thresholds 0.01 and 0.05 to define the differ-
entially expressed genes. The unsupervised clustering is applied to the t-statistic
computed using LIMMA. The partially supervised and semi-supervised methods are
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Figure 2.3: Partially supervised differential expression analysis on synthetic data. Given 8
examples of differential and 72 examples of unchanged genes (a 0.04 fraction of all elements
in each cluster), the partially supervised belief-based and soft-label methods, as well as semi-
supervised modeling achieve superior accuracy (red boxplots) over the standard differential
analysis approaches (light blue for the 0.01 p-value cut-off and dark blue for the 0.05 cut-
off). Increasing the number of examples used by the supervised methods to 50 and 450 (a
0.25 fraction; brown boxplots) yields similar results. Belief-based method maintains high
performance also when the known examples are given in reversed proportion 9:1 (orange
boxplots), or are mislabeled (25 examples switched between the 50 differential and 450
unchanged genes, respectively; violet boxplots).

applied to log mean treatment versus control intensity ratios (section . Appli-
cation of those methods to the t-statistic yielded the same results and is thus not
reported. Examples for the supervised methods are uniformly drawn at random from
the set of differential and unchanged genes and assigned belief/plausibility values of
belonging to their true clusters equal 0.95.

Accuracy of differential expression analysis = We evaluate the compared methods
by their accuracy (measured with the adjusted Rand index, Section of identifying
the true differential and unchanged genes. Fig[2.3] shows the adjusted Rand index
distributions obtained over the 100 synthetic datasets. Given correct examples in true
proportions, the partially supervised and semi-supervised methods most accurately
classify the differential and unchanged genes by their simulated expression values.
Proportional increase in the number of given examples did not change the results;
we show performance with 0.04 (8 for the differential and 72 for the unchanged
genes) and 0.25 (50 and 450) of all elements in a cluster used as examples. The
unsupervised clustering of the ¢-statistic performs worse, showing the improvement
gained with incorporating knowledge in the analysis. Recall that the model-based
methods perform MAP clustering (section and do not require setting cut-off
thresholds. In contrast, the accuracy of the standard methods depends on p-value
cut-off used. For example, the accuracy obtained by SAM with a p-value cut-off 0.01
is the highest among standard approaches, but it drops dramatically for the p-value
0.05. Finally, we show two extreme cases of misleading input example settings that
hamper the accuracy of the soft-label, and to a higher extent, the semi-supervised
method (section . First, we give the examples in proportion 9:1, inverted with
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Chapter 2 Introducing knowledge into differential expression analysis

respect to the actual proportion of cluster sizes. Second, we again give 50 and 450
examples for the differential and unchanged genes (a 0.25 fraction), but we mislabel
25 of them by switching their labels to the other clusters. The belief-based method
proves robust to both misleading input settings.

2.7 Finding Stel2 target genes

Next, we apply the partially supervised approach (section to identify pheromone
environment-specific target genes of Stel2, a transcription factor in yeast.

Input data  We use expression data from four types of cells: untreated wild-type
and Stel2 mutants, as well as wild-type and Stel2 mutants treated with 50nM of «-
factor treatment for 30min [104]. To focus on transcriptional changes triggered by
pheromone stimulation, we limit the analysis to 602 genes that show a 1.5 fold
up- or down-regulation upon pheromone treatment of wild-type cells. The ana-
lyzed data consists of log, expression ratios, pheromone-treated Ste12 mutants versus
pheromone-treated wild-type cells. In this dataset, we seek to distinguish the set of
differential genes from a set of genes that remain unchanged.

Input examples  We utilize high-throughput experiments to define examples from
the set of differential genes: we take 42 genes that have their promoter bound by
Stel2 in pheromone environment with a p-value of 0.0001 [49], and that are at least
two-fold up-regulated upon pheromone treatment as compared to wild type [104].
We further use the significance of Stel2-DNA binding to reflect the level of certainty
about those examples in the belief/plausibility values. The Stel2-DNA binding p-
values of the example genes correlate with the logarithm of the changes in expression
upon Stel2 knockout in pheromone environment (Pearson correlation coefficient 0.42,
p-value 0.0045). We set the belief/plausibility of belonging to the set of differential
genes accordingly: the belief values lie in the (0.5,0.95) interval and are proportional
to the log binding p-values. We do not use any examples for the second cluster of
unchanged genes.

Compared methods For a comparison to the partially supervised belief-based
(section and soft-label modeling, we test also the semi-supervised and unsuper-
vised mixture modeling (section[2.1)). All these methods are initialized using quantiles
(section and applied to find two clusters: one for the differential genes, and one
for the unchanged. Additionally, we compare to the single-Gaussian NorDi algorithm
(section . To compare to the traditional differential expression analysis, we use
the p-values for the genes provided by Roberts et al. [I04]. Based on the p-values, we
define two sets of differential genes, first with the common p-value threshold 0.01, and
second with the threshold 0.05. Using each threshold, we first select only genes that
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Figure 2.4: Biological validation of identified Stel2 targets. Enrichment p-values (shades
of gray) of the sets of Stel2 targets identified by the compared methods (matrix rows; 0.01
and 0.05 denote cut-offs applied to differential expression p-values provided by Roberts et
al. [104]; set sizes are given in brackets) in GO biological process terms (columns). Each
presented term is enriched in at least one Stel2 target gene set with a p-value < 0.01 and
FDR< 0.01. Significant enrichment represents distinct behavior of the target genes com-
pared with the rest of all genes. The belief mixture modeling identified a set of Stel2 target
genes with the lowest product of all p-values. Abbreviations: Un, unsupervised; CF, cellu-
lar fusion; M-ORG, multi-organism, Res., response; PH, pheromone; MG, morphogenesis;
Reg.; regulation; CRP, coupled receptor protein; Sig. trans., signal transduction; w. with;
d., during.

are differential under pheromone treatment in wild-type cells. Next, from those we
select genes that are differential under Stel2 knockout in pheromone-treated cells.

Accuracy of identifying Stel2 targets = We define the set of Ste12 targetsidentified
by each method as those genes from the obtained set of differential genes, which are
down-regulated in the Stel2 mutants (Stel2 is a transcriptional activator [69]). We
evaluate the identified sets of Stel2 targets by testing whether the proteins encoded by
the targets take part in Stel2-dependent processes induced by pheromone (Fig2.4)).
To this end, for each target set we computed the p-values for its enrichment in Gene
Ontology annotations (GO [5]), using the TermFinder tool by Boyle et al. [17].

The set of Stel2 targets identified by the belief-based modeling method has the high-
est enrichment in the GO annotations related to Stel2 activity upon pheromone
stimulation [50]: mating and conjugation with cellular fusion. Similarly strong evi-
dence for the same functionality is shown for the set of Stel2 targets of comparable
size, identified by the soft label modeling method. Unsupervised mixture modeling
and the NorDi algorithm identify Stel2 target sets that are smaller than the sets iden-
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Figure 2.5: Different impact of examples on the models estimated by different supervised
methods. Model estimated by the partially supervised belief-based (A), and by the semi-
supervised mixture modeling (B). The plots as in Fig A.

tified by the two partially supervised methods, leaving out many genes that are func-
tionally related to the pheromone-triggered and Stel2-dependent processes (Fig.
Semi-supervised modeling, in contrast, includes all given examples in the cluster of
differential genes. As opposed to belief-based modeling, the semi-supervised method
shifts this cluster towards low change in expression upon Stel2 knockout (Fig.
Therefore, its set of identified Stel2 targets contains half of all analyzed genes, and in-
corporates most superfluous genes, e.g. genes taking part in the transposition process.
Also relatively big, the sets of Stel2 targets identified using the two p-value cut-offs
have better enrichment scores than the set identified by semi-supervised modeling,
but worse than the sets identified by the partially supervised methods (Fig..

2.8 Distinguishing miR-1 from miR-124 targets

To further evaluate the partially supervised mixture modeling methods, we check
their accuracy of distinguishing miR-1 from miR-124 target genes in human, based
on two expression datasets from transfections of these microRNAs (shortly, miRNAs
[81]) and knowledge from computational miRNA target predictions.

Input data and examples = We use the subset of the genes measured by Lim et al.
[81], which can be divided into two distinct clusters with rigorous experimental ver-
ification: 90 miR-1 targets [108, 141], and 35 miR-~124 targets [127, [75, 63]. Among
them, we use as examples 16 miR-1 and 11 miR-124 target genes that have compu-
tationally predicted binding sites of miR-1 and miR-124, respectively. We take only
the examples that are predicted as respective targets by both computational methods
that we used: MirTarget2 [126], [125] and miRanda [I3]. The belief/plausibility values
for examples to belong to their clusters are set to 0.95.

Accuracy of distinguishing miR-1 from miR-124 target genes In both trans-
fection datasets, we expect to see down-regulation of one miRNA’s target genes (e.g.,
miR-1 targets upon miR-1 transfection) and the other target genes unchanged by the
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Figure 2.6: Accuracy of distinguishing miR-1 from miR-124 targets. (A) The adjusted Rand
index (z-axis) indicates whether the different mixture modeling methods (y-axis) clustered
the data correctly into true groups of known miR-1 and miR-124 targets. Analyzed expres-
sion data come from the miR-1 transfection experiment. The semi- and partially supervised
methods utilized 16 computationally predicted examples of miR-1, and 11 of miR-124 tar-
gets. (B) Plot as in A, but for the data obtained under the miR-124 transfection. (C)
Box-plots show the adjusted Rand index distribution (z-axis), obtained by the methods
(y-axis) in 1000 tests, where 16 examples were drawn from all miR-1 targets, and 11 drawn
from all miR-124 targets at random, and the data came from miR-1 transfection. (D) Plot
as in C, but for the data from miR-124 transfection.

transfection. Therefore, for each dataset we apply the partially supervised modeling
methods and, for comparison, the remaining mixture modeling methods to find two
clusters. The obtained clusterings are validated with the two true clusters of miR-1
and miR-124 target genes using the adjusted Rand index (section . The examples
are not included in computing the index.

The measurements from the miR-124 transfection are easier to cluster than the mea-
surements from the miR-1 transfection (for miR-124 the clusters are more separated;
data not shown). Accordingly, the estimations of the model are less accurate for the
miR-1 transfection data (Fig[2.6/ A versus B). As expected (section [2.3), in the easier
case of miR-124 transfection, the semi-supervised modeling achieves better results
than others. On the contrary, in the more difficult case of the miR-1 transfection,
the semi-supervised method performs worst, and the partially supervised methods
achieve the highest accuracy. The same is observed when randomly chosen sets of
examples are used instead of the computationally predicted ones (Fig. C, D).

2.9 Clustering cell cycle gene profiles

Finally, we make use of partially supervised mixture modeling in the task of clustering
cell cycle gene expression profiles [20)].
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Figure 2.7: Cell cycle gene clustering. The probability of up-regulation estimated for each
cell cycle gene (rows; ordered by their true cluster labels), in each time-point (columns) by
three methods: NorDi, as well as unsupervised and belief-based mixture modeling, applied
to each time point data separately. Belief-based mixture modeling, which uses examples
of up-regulated and of unchanged genes in each time-point (marked in pink and green),
achieves most clearly visible distinct gene expression profiles, characteristic for five cell
cycle phase clusters.

Input data and examples  Based on expression measurements over 17 time points,
which cover two cell cycles, 384 genes fall into five disjoint clusters. Each cluster
contains genes peaking at a particular cell cycle phase: early Gy, late G, S, Gg, or
M [20]. Following Yeung et al. [I37] we take this five-phase criterion as the true
clustering of genes in this dataset. For each phase cluster we take seven examples of
genes known to be active in this phase (first seven listed for that cluster in et al. [20]
Tab.1, excluding genes active in more than one phase), together 35 examples.

Clustering procedure The partially supervised, unsupervised, semi-supervised
mixture modeling, as well as NorDi are applied to cluster the 384 genes in a two-step
procedure:

1. Clustering of data from each time point into two clusters. In the data from each time
point ¢ separately, find two clusters, one of which corresponds to the up-regulated
genes. Use seven genes known to be active in the phase corresponding to this
time point as examples for the up-regulated cluster, with belief/plausibility values
0.95. Similarly, use the remaining 28 examples for the second cluster of genes
that are unchanged or down-regulated. Output the probability pg of each gene g
to belong to the cluster of up-regulated genes (the posterior probability for the
mixture modeling methods, and one minus the p-value of differential expression
for the NorDi algorithm).

2. Clustering of genes into five clusters. For each cell cycle phase cluster construct
a binary profile reflecting the known default “activity” of genes from this cluster
over the 17 time points. The activity profile ;. of a phase cluster ¢ has a value 1
in entry t if genes from this cluster peak in the time point ¢. Otherwise the entries
are 0. For each gene g, take the vector of its estimated up-regulation probabilities
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Figure 2.8: The accuracy of cell cycle gene clustering. From all compared methods, the
partially supervised have higher accuracy (measured by adjusted Rand index, y-axis) in
grouping genes into five cell-cycle gene clusters, than the semi-supervised and unsupervised
methods. The partially supervised modeling methods were initialized in two ways: either
quantile or example-based (section .

Dy = (p;, ...,pg) from step 1, and assign g to the cluster with the most similar
activity profile. Formally, we assign gene g to cluster

¢t = arg max (UCTpZ +(1—-7)"(1 - p_g}))v

where 1 denotes a vector of length 17 filled with 1s.

Advantage of supervised methods Fig[2.7] compares the clusterings obtained
in the first step by the unsupervised algorithms, to the clusterings obtained by our
belief-based modeling. The examples used by our method help to clearly distinguish
patterns of genes from each phase cycle peaking at their characteristic time points.

Fig[2.8 shows that all supervised modeling methods, regardless of the parameter ini-
tialization, outperform the unsupervised methods in clustering cell cycle gene profiles
using the two-step procedure. For comparison, we applied also a one step analysis
with multidimensional Gaussian mixture modeling ([I37], denoted Un(nD)) to sep-
arate the entire dataset at once into five clusters. Interestingly, multidimensional
clustering obtained the least accuracy, measured with the adjusted Rand index (sec-
tion . Best results are obtained for the two-step procedure, using either belief-
based or soft-label modeling in the first step.

2.10 Discussion

Mixture modeling is an established technique in machine learning, and proved suc-
cessful in the field of gene expression analysis. The two partially supervised methods
presented in this paper extend mixture model-based clustering, adding the ability
to utilize imprecise examples. In contrast to other mixture modeling methods that
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incorporate knowledge, both belief-based and soft-label modeling can be customized
for differential expression analysis guided by examples of genes that are believed to be
up, down or unchanged. The known examples usually constitute only a small subset
of all genes and are themselves not 100% certain. The presented applications show
a rich variety of possible knowledge sources for examples: high-throughput TF-DNA
binding experiments, computational predictions of miRNA targets, and literature
knowledge of genes active in different cell cycle phases. The known examples are
traditionally used to verify experimental outcome after it is defined by differential
expression analysis. Our partially supervised methodology incorporates such prior
biological knowledge into the analysis itself, making the outcome more reliable.

The methodology enables confronting available uncertain knowledge with the data.
On the one hand, the partially supervised methods profit from the examples to better
cluster the remaining data. On the other hand, they use the entire data to verify the
knowledge about the examples. For instance, the signal in the data may contradict
the prior belief about a gene to be up-regulated in a knockout experiment. Both
partially supervised methods may “re-cluster” the examples with such improbable
initial cluster labels. In this way, they are more flexible than semi-supervised mixture
modeling, which assumes that the example labels are fixed.

The application of the proposed methodology to the problem of differential analysis
imposes two natural restrictions, which could easily be abandoned for the needs of dif-
ferent applications. First, here we analyze only one-dimensional data, but in general
the approach can as well be extended to multidimensional clustering given examples
with imprecise cluster labels. Similarly, we restrict ourselves only to consider two-
or three-component models, although it is common to use tools of model selection to
choose out of models with arbitrary numbers of clusters. Here it is also dictated by
the nature of the problem: we assume the clusters to be interpreted, and the known
examples to be assigned to each of the clusters. Intuitively, we expect examples of
differential or unchanged genes (two clusters), alternatively, of up-, down-regulated,
or unchanged genes (three clusters). It would be difficult to assign those examples to
clusters in a model with more than three components.
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Chapter 3

Elucidating Gene Regulation With
Informative Experiments

This chapter puts forward a framework for elucidating gene regulation downstream of a
given signaling pathway using an optimal set of experiments. The framework, introduced
in sections[3.143.7, benefits from prior knowledge about the pathway formalized in a log-
ical model (section . The model predictions are utilized by our experimental design
(ED) algorithm called MEED (sections[3.343.6). Section|3.7 describes how the measure-
ments in the experiments proposed by MEED are matched with the model predictions
in order to elucidate the regulator-target relations downstream of the modeled pathway.
In section we cover alternative ED approaches, which we compare to our MEED
framework on synthetic data (section @) and in application to a signaling pathway in

yeast (section [3.10).

3.1 The MEED framework

The proposed framework consists of three components: modeling of the studied sig-
naling pathway, an experimental design algorithm MEED and an expansion pro-
cedure. The framework aims to discover regulatory relations and mechanisms of
transcriptional control downstream of the given signaling pathway using an optimal
set of perturbation experiments (see sections and for biological semantics
of these notions). Software implementing our framework is freely available from
http://meed.molgen.mpg.de/.

The first component, the model, formalizes prior knowledge about signaling relations
between the molecules in the given pathway. The model is predictive: For a given
experiment (i.e., extracellular stimulation and genetic perturbation), the model pre-
dicts the activation states of the regulators in the pathway. Here, we assume that
both the signaling and regulatory relations are discrete logical functions and that
the model describes the steady state of the system after exposure to the experiment.
In addition, we predefine a repertoire of logical functions that formalize regulation
mechanisms, such as activation or repression (regulation by only a single pathway

33


http://meed.molgen.mpg.de/

Chapter 3 Elucidating Gene Regulation With Informative Experiments

component is considered). By applying all predefined logical functions to the model-
predicted state of a given regulator under a given experiment, we obtain predictions
about all possible readouts of the regulator’s target genes. This is done for all regu-
lators and all candidate experiments. In this way, we calculate predicted expression
profiles for all potential targets of the regulators. The modeling formalism applied
here was introduced by Gat-Viks et al. [42]. The expansion procedure utilizing a
given signaling pathway model for predicting expression profiles was proposed by
Gat-Viks and Shamir [41].

Our contribution consists of proposing a model expansion experimental design (MEED)
algorithm, and embedding it in the general framework. The MEED algorithm aims
to select from the set of candidate experiments optimizing two objectives: (i) to
minimize the number of selected experiments and (ii) to maximize diversity between
the predicted expression profiles. The second condition aims to avoid an ambiguous
situation in which two genes with distinct regulatory mechanisms attain the same
expression profile under the suggested experiments. Only in the case in which the
two genes have two distinct expression profiles, it is possible to distinguish their reg-
ulatory mechanisms. Next, the chosen experiments should be carried out in a lab
and used to identify regulator—target relations. To this end, the expansion procedure
matches the model-predicted expression profiles of putative targets for the set of ex-
periments selected by MEED with real expression measurements observed under the
same experiments. The building blocks of our framework are illustrated in Figf3.]]
and described in sections B.IH3.7l

3.2 Predictive logical model of Gat-Viks et al.

First, we formalize the available qualitative information about a given pathway in
a logical model (Figl3.1] A, left) with discrete variables, proposed by Gat-Viks et
al. [42]. A model M consists of a set V of variables, a set U = {uy, ..., u; } of discrete
states that the variables may attain, and a set of discrete logical requlation functions
fo 1 UPOl & U for each v € V. f, defines the state of variable v as a function
of the states of a subset Pa(v) of all variables, referred to as the set of parents of
v. A graphical representation of the model is a digraph G = (V, A), where each
node v € V is connected by incoming edges in A with the nodes in Pa(v), i.e.,
(w,v) € Aiff w € Pa(v). The set of stimulators I includes all variables with zero
indegree.

Biological semantics of the model  The model formalizes signaling relations in a
given pathway. The set of model stimulators I represents the environmental signals,
which trigger the pathway. Remaining model variables correspond to the signaling
molecules. In our analysis (sections |3.943.10.4]), we assume that all variables may
have three states: 1 (activated), —1 (deactivated) or 0 (unchanged).
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Figure 3.1: (A) Logical modeling. Left: a toy model. S — a stimulator variable representing
the environmental signal, P — a variable representing a signaling molecule. A, B — regula-
tors representing transcription factors. max, not: regulation functions. Right: prediction
of regulator states. e — experiment, in which environmental signal is medium (stimulation
S = 0) and the signaling molecule is knocked out (perturbed variable P, perturbation state
—1). (B) Our MEED algorithm. Right: three exemplary regulation functions, fi, fo and
f3, represented by a truth table, in which the first column contains the states of a regulator,
and each other column i contains the predicted responses of a target gene controlled by
the regulator using f;. For example, f; determines that activated (state = 1) regulator
up-regulates (state = 1) its target, and deactivated (state = —1) regulator down-regulates
(state = —1) its target. Left: matrix of predicted responses. Rows — regulatory programs,
each represents a chosen regulator (A or B) acting on a target gene through a chosen regu-
lation function. Columns — predicted model states s1—sg in the set of candidate experiments
given as input to MEED. The predicted states of regulators A and B appear below. For
example, the third column corresponds to a model state s3 predicted for experiment eg,
with predicted states A = 0 and B = 1. A matrix entry — a predicted response of a potential
target gene assuming it is regulated by its row’s regulatory program in its column’s exper-
iment. Hence, each row of the matrix is a predicted profile for a given regulatory program.
If the predicted profiles are different, they are referred to as distinguished. MEED aims to
find the smallest subset of candidate experiments, which distinguishes between the same
pairs of regulatory programs as the full set of candidate experiments. Here, MEED chooses
three out of the candidate experiments: es, e3, and eg, which distinguish all regulatory
programs (the remaining ones are marked as deleted). (C) The expansion procedure. The
experiments proposed by MEED are carried out and the measurements are used in the
expansion procedure. Left: the measurements of gene expression in the chosen experiments
are referred to as observed profiles of the genes (rows). Middle: a matrix as in B, including
only experiments chosen by MEED. The expansion procedure identifies regulatory programs
for the genes by matching of predicted and observed profiles (marked as dashed gray lines).
Right: genes matching identical regulatory programs constitute regulatory modules. Here,
two regulatory modules are found: the regulatory program f3(A) controls the module of gy
and g5, and regulatory program f;(B) controls gg.
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Figure 3.2: (A) Left: A toy logical model with cycles. Right: Predicted model states for
exemplary experiments. There are two model states, s3 and s3, predicted for experiment es.
(B) Matrices of predicted responses, as in Fig B. Each matrix corresponds to one model
state predicted for ey (in the left matrix, the second column corresponds to s}, in the right
matrix to s%) The regulators, their predicted states as well as the candidate experiments are
taken from A. Regulation functions are the same as in Fig[3.1] B. Note that in this example,
each regulatory program has two possible predicted profiles, one for each matrix. (C) Each
predicted model state induces a partition on the set of regulatory programs according to
their predicted response. Left: the partitions T'(sl) and T'(s3). T(s}) corresponds to a
column marked in yellow in the left matrix in B. It divides regulatory programs into two
blocks {r1,r3,74,76}, and {rs,r5}, which have predicted response 0 and 1, respectively.
Therefore, r1 and r4 are not distinguished by s%, as opposed to ro and rg. The partition for
an experiment is a supremum over partitions for its predicted model states. Here, T'(e3)
is given on the right. (D) The partition for a set of experiments is the intersection of the
partitions for each of the experiments. Left: partitions for candidate experiments e;—eg.
The partition T'(e;) for each experiment except es (x € {1,3,4,5}) equals the partition for
its predicted model state T'(s;). Right: partitions obtained in each step of MEED. In the
first step, MEED considers partitions for all candidate experiments and chooses the one
that has the highest entropy score (in this example, e1). In the second step, it extends the
list of chosen experiments by adding an experiment that provides the highest entropy gain
(e4). The joint ability of experiments e; and ey to distinguish between regulatory programs
is represented by an intersection of their partitions. Adding es further partitions the block
{rs,r¢} into single-variable blocks. The partition for the chosen experiments ej, e4, and ej
has only single-variable blocks. Therefore, in this example it is possible to distinguish all
regulatory programs using the chosen set of experiments.



3.2 Predictive logical model of Gat-Viks et al.

Representation of experiments in the model  An experiment on the model M is
formalized by defining: (i) stimulation — an assignment of states to all model stim-
ulators in I (fixed according to the levels of environmental signals applied in the
experiment); (ii) perturbed variables — a set P C V' \ I of model variables that are
subject to perturbation; and (iii) perturbation states — fixed states of the perturbed
variables, which represent the type of experimental manipulation, such as knockout
(perturbation state is -1) or over-expression (perturbation state is 1). In this the-
sis, we consider only experiments, in which either none or exactly one variable is
perturbed. Assuming in general that k& perturbation states are possible for each vari-
able, having || stimulators and | P| variables that can be perturbed in the model M,
the number of all possible experiments on M is k!l(|P|k +1). There are k!l possible
stimulation states, |P|k ways of perturbing one variable, and one where no variable
is perturbed.

Model states A model state s (illustrated in Fig3.1] A right), is an assignment
of states to each of the variables in the model, s : V' — U. We say that s agrees
with the model M on variable v if the state s(v) of variable v equals the output
of its regulation function when applied to its parents’ states, f,(s(Pa(v))) = s(v).
For a given experiment e, we call a model state s, predicted for experiment e if (i)
the stimulators in [ are assigned their stimulation and the perturbed variables in
P are assigned their perturbation state as defined by e, and (ii) the state s.(v) of
each variable v € U \ I \ P agrees with M on v. The state s.(v), assigned to each
variable v € V' by a given model state s predicted for e, is called an e-predicted state
of the variable v. A predicted model state for a given experiment is a prediction
about a steady state of the biological system, describing the states of the pathway
components under this experiment.

In the case when the model M is acyclic, each experiment e on M has exactly one
possible model state s, predicted for e, defining a unique e-predicted state for each
variable. In this case, the unique model state s. can easily be computed (claim 1
in Gat-Viks et al. [42]). s. is calculated iterating over the variables v € V' \ I \ P
in a topological order defined by the acyclic model graph, and obtaining the state
of each v by applying f, to its parents’ states. The first variables will have their
parents’ states fixed according to stimulation and perturbation states defined by the
experiment e. The running time of this procedure is linear in the number of nodes
plus the number of edges: O(|V| + |A|), which is the time required to compute the
topological order [23].

However, for a model whose graph contains feedback loops, it is possible to obtain
zero, one or several possible predicted model states (see Fig. A for an example).
In this case, in order to compute the predicted model states, the cyclic model M is
first transformed into an acyclic model Mg using its feedback set. A feedback set in
a directed graph is a set of nodes whose removal renders the graph acyclic [35]. To
obtain Mg, given a feedback set F' in M, the regulation functions of the variables in
F' are changed to null, and the edges incoming to F' in the model graph are removed
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accordingly. Note that for a given experiment e, if a state s, of the new model Mp
predicted for e agrees with M on every variable v € F, s, is also a predicted state
of the model M. Given a state of the model Mp, it is easy to check the agreement
by calculating f, for each v € F. Following Gat-Viks et al. [42], we provide the
procedure for computing the states of M predicted for a given experiment e, using
its feedback set F' and a topological ordering on the model graph.

Generate each possible state assignment to F'. For each assignment sp : F' — S:

e Generate an experiment €’ for Mg by joining the stimulation in e with sp.
e Use a topological ordering to compute a (unique) model state s, predicted for ¢’.

o If s, agrees with M on every v € F', add it to the set of states of M predicted for
e.

The procedure runs in O(kIFI(|V| + |A])) time, since it requires checking kl!*l state
assignments to F', and for each assignment computing a unique model state as de-
scribed before. Thus, the restrictive element for the efficiency of this procedure is
the size of the feedback set. Computing a minimal feedback set is NP hard [64], and
Gat-Viks et al. [42] use known heuristics [109] for this task.

Discrepancy between the predicted and observed model states For a given
experiment e on model M, Gat-Viks et al. [42] define an observed partial state eg
as a set of measurements for some of the model variables during the experiment,
where eg(v) = null for those variables v that were not observed. The model M
can be used to compare the possible model states predicted for e with the observed
partial state. In the case when more than one predicted model state exists, we expect
the correct one to be the most similar to the observed partial state. To assess this
similarity, a discrepancy D(s., e) between the experiment e and a given model state
se predicted for e is measured: D(se,€) = 3 cy vy (5e(v) — es(v))?. The state
with the smallest discrepancy is considered the unique model state predicted for the
experiment e, with the assumption that this state corresponds to the steady state
reached by the biological system when e is performed.

3.3 Regulatory programs and their predicted profiles

Discrepancy compares predicted and observed states of the variables in the model.
Here, we introduce a tool to connect predicted model states with observed states
of variables that represent target genes and are not included in the model, but are
potentially transcriptionally regulated by the modeled pathway components. Below
we formalize the particular mechanisms of this regulation.

Regulators and a repertoire of regulation functions  First, we define a set V' of
requlators, which is the subset of all model variables, V' C V' and represents proteins
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having transcriptional control over response of target genes. Next, we predefine a
set of regulation functions F that describe biologically relevant logical relationships
between a subset of regulators and its target. Here, we consider transcriptional control
by only a single regulator, which can attain one of three possible states u € {—1,0,1}.
Thus, we adapt six biologically relevant functions introduced by Yeang and Jaakkola
[136] to define a repertoire F = {ay, as, ap, in,is,ip} of six one-argument regulation
functions with the following formulas and biological semantics:

e MNecessary activation
—1,iffu=-1
0 otherwise.
Deactivation of the regulator forces down-regulation of the target. The target
remains unchanged upon the activation of the regulator.

as(u):{ Liffu=1 (3.2)

0 otherwise.

e Sufficient activation

Activation of the regulator forces up-regulation of the target. The target remains
unchanged upon the deactivation of the regulator.
e Activation both
ag(u) =u (3.3)
Both the deactivation of the regulator forces down-regulation of the target, and
the activation of the regulator forces up-regulation of the target.

o Necessary inhibition
1, iffu=-1
0 otherwise.

Deactivation of the regulator forces up-regulation of the target. The target remains
unchanged upon the activation of the regulator.

is(u):{ —1,iffu=1 (3.5)

0 otherwise.

e Sufficient inhibition

Activation of the regulator forces up-regulation of the target. The target remains
unchanged upon the deactivation of the regulator.

e [nhibition both
ig(u) = —u (3.6)

Both the deactivation of the regulator forces up-regulation of the target, and the
activation of the regulator forces down-regulation of the target.

Regulatory programs A regulatory program r = (v, f) consists of a regulator
v € V' from the model and a regulation function chosen from the repertoire F.
The regulator tells “who” regulates, whereas the regulation function formalizes the
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regulatory mechanism and tells “how” (e.g., F ig B). For a given model state s,
predicted for an experiment e, the value f(s.(v)) defines an (e, r)-predicted response
of a potential target gene to the regulatory program r in experiment e. Biologically,
the predicted response specifies whether the target gene is in state 1 (up-regulated),
—1 (down-regulated) or 0 (unchanged) in the experiment e. Finally, a vector of pre-
dicted responses in a given ordered set of experiments F defines an (E, r)-predicted
profile. Assuming the model is correct, the predicted profile reflects the transcrip-
tional response of a potential target gene controlled by the program r in the given
set of experiments E. Given the set of regulators V' and the repertoire of regulation
functions F, the set of predicted profiles R contains V' x F elements. Fig[3.1] B left
presents the set of predicted profiles as rows of a matrix, referred to as a matriz of
predicted responses. The columns of this matrix correspond to predicted model states
for a set of experiments, and entries to predicted responses.

In a general case, one experiment may define several predicted model states, giving
several predicted states per regulator. Given that there are at most m model states
predicted for each experiment in E, there are pessimistically m!®! different predicted
profiles for each regulatory program. These predicted profiles are determined by the
different combinations of model states predicted for experiments in E. Fig[3.2] B
illustrates two predicted profile sets as two matrices of predicted responses, one per
each of the two model states predicted for experiment e, (the remaining experiments
induce unique model states).

3.3.1 Requirements for the experiments

For a given set of experiments E and a set of regulatory programs R, the expansion
procedure (section matches the (E,r)-predicted profiles, for all » € R, with the
observed profiles of the measured genes. For the matching to proceed unambiguously,
two requirements need to be satisfied:

1. A single predicted profile per regulatory program Before designing and carrying out
experiments, we cannot anticipate which combination of their predicted model
states will fit best the steady states reached in the biological system. In our
framework, this problem is overcome by the MEED algorithm by taking into ac-
count all possible sets of predicted profiles (section . However, the expansion
procedure requires a single set of predicted profiles. In the input to the expansion
procedure the measurements in the designed experiments are already available.
The required single profile set can be obtained using the experimental measure-
ments to choose the predicted model states with the least discrepancy with the
observed states.

2. All pairs of regulatory programs, in all combinations of predicted model states, should
have different predicted profiles. We deal with this requirement using the MEED
algorithm (section [3.5). To this end, below (section we introduce auxiliary
notions of distinguishability between two regulatory programs.
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3.3.2 Distinguishing regulatory programs

We start by defining how a given pair of regulatory programs is distinguished by a
predicted model state, next we extend the definition for a single experiment (which
might induce several predicted model states), and finally, we generalize by stating
how two programs are distinguished by a set of experiments.

Distinguishing by a predicted model state  Recall that a model state s, predicted
for a given experiment e assigns to each regulator its e-predicted state (section .
From this state we can compute the (e,r)-predicted response for each regulatory
program r € R. In this way, state s, induces a natural partition of R. The partition
contains two regulatory programs r; = (v, f1) and 79 = (ve, f2) in the same block
if and only if fi(sc(v1)) = fa(Se(v2)), i.e., they have the same e-predicted responses.
Regulatory programs contained in different blocks of this partition are said to be
distinguished by the predicted model state s. (exemplified in Fig[3.2] C).

Distinguishing by an experiment  An experiment e may in general define a number
of model states predicted for e (section [3.2). We consider a partition T'(e) of the set
of regulatory programs R induced by an experiment e as the supremum over the
set of partitions induced by its predicted model states. To compute the supremum,
we first generate a relation, where two regulatory programs are related when they
are contained in a common block of at least one partition. Next, we compute a
transitive closure of this relation. The resulting equivalence relation has equivalence
classes which define the blocks of the supremum partition. The regulatory programs
contained in different blocks of T'(e) are called distinguished by the experiment e. By
the definition of a supremum over partitions, the following holds:

e If two regulatory programs are distinguished by an experiment, they are distin-
guished by all its predicted model states. For example, in Fig. C, T'(e2) contains
ro and r¢ in separate blocks, implying that they are distinguished by e; and by both
model states predicted for e;. This fact is essential for the correctness of our ap-
proach (see “Importance of distinguishing regulatory programs in our framework”
below).

e The fact that two regulatory programs are distinguished by all predicted model
states of an experiment does not always imply that they are also distinguished
by the experiment itself. For example, consider a set of regulatory programs
{z,y, 2}, and partitions for hypothetic predicted model states T} = {z,y}{z}
and To = {x,z}{y}. 2z and y are distinguished by both these predicted model
states. The supremum over 77 and T is {x,y, 2z} and it contains z and y in a
common block. From the second implication it follows, that our MEED algorithm
(section , which selects experiments that are needed to distinguish between
pairs of regulatory programs, may choose experiments that are superfluous for
the requirement of differentiating between all their possible predicted profiles (sec-
tion . This may happen only in the case of cyclic models, which can generate
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more than one predicted model state for an experiment.

If an experiment has no predicted model states, it is not informative and its partition
includes only one block containing all regulatory programs.

Distinguishing by a set of experiments  We call a pair of regulatory programs
distinguished by a set of experiments E = {ey,...,e,} if and only if they are distin-
guished by at least one of its experiments. Equivalently, we say that E distinguishes
between regulatory programs that are contained in separate blocks of a partition
S(E) = T(e1) N...NT(e,) (exemplified in Fig[3.2) D). The partition for an empty
set of experiments is a full, one-block partition containing all regulatory programs.
Regulatory programs contained in the same block of the partition S(F) are not dis-
tinguished by any of the experiments, whereas regulatory programs in different blocks
are distinguished by at least one experiment. We say that an experiment set E dis-
tinguishes all regulatory programs, if its corresponding partition S(E) contains only
single-element blocks.

Importance of distinguishing regulatory programs in our framework  Note that
if F distinguishes between two regulatory programs r; = (v, f1) and o = (vg, fa),
their predicted profiles will be different (i.e., have at least one different predicted
response) in all possible combinations of model states predicted for experiments in
E. Indeed, by the definition of distinguishing by a set of experiments, there exists
an experiment e € F, which distinguishes between r; and r,. Take any possible
model state s, predicted for e. By the definition of distinguishing by an experiment
f1(se(v1)) # fa(Se(v2)). Therefore, the predicted profiles for r; and ry are also differ-
ent in any combination of predicted model states (since they always differ by at least
one component, which corresponds to the experiment e). This essential fact ensures
that the predicted profiles of any two regulatory programs, which are distinguished
by a given set of experiments F, are also different for the predicted model states
used by the expansion procedure (chosen by the least discrepancy and corresponding
to the steady states the biological system has reached under the experiments; see
sections and . Thus, by maximizing the number of distinguished regulatory
programs, MEED (section maximizes also the diversity of predicted profiles used
in the expansion procedure.

The FUP score In sections (3.9 we report the performance of a set of
experiments F with the fraction of undistinguished pairs (FUP). The score is given
by the proportion of regulatory program pairs undistinguished by E out of all possible
pairs of regulatory programs:

- 1)
FUPE) = TR/~ 1)

where n, is the size of the c¢-th block of the corresponding partition S(E) of the set of
regulatory programs R. FUP(E) attains values between 0 (all regulatory programs
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are distinguished) and 1 (no pair of regulatory programs is distinguished). The more
pairs of regulatory programs distinguished by a given set of experiments, the smaller
its FUP score. Unlike the ambiguity score (section , which evaluates the results
of expansion utilizing experimental data, FFUP evaluates a given ED method based
only on model predictions.

3.4 The Experimental Design problem

The task for our algorithm is to select an economical subset of a given set of candidate
experiments F that under a given pathway model M yields different (E,r)- and
(E, ry)-predicted profiles for each pair of regulatory programs r; and 7 in a given
set R, regardless the combination of model states predicted for the experiments in
E. The candidate experiments contain a full set of experiments to choose from; for
example, only those experiments that can be conducted in a lab.

Formulation of the ED problem To fulfill the task, MEED aims to select the
smallest subset of the candidate experiments, which can distinguish all regulatory
programs in R. From the previous section we know that for cyclic models
such a subset of experiments may be superfluous, but it guarantees that predicted
profiles of two different regulatory programs will be different in any combination
of predicted model states. In the case when the candidate experiments themselves
cannot distinguish all regulatory programs, the identified subset should distinguish
between the same pairs of regulatory programs as the full candidate set. We formalize
this problem and show that its decision version is NP-complete. To be more general,
we relax the setup kept in our analysis. We allow all model variables to have a
number of states, which can be different than three, and all regulatory programs to
have several (i.e., also more than one) regulators.

Problem 1. ED(M, R, E,l)

INSTANCE: A logical model M, a set of regulatory programs R with regulators from
the model, a set of candidate experiments £ on M, and a number [ < |E)|.
QUESTION: Is there a subset of size [ of E which distinguishes all regulatory pro-
grams in R.

Proposition 1. The ED problem is NP-complete.

Proof. 1t is easy to see that EDENP, since a nondeterministic algorithm would only
need to guess a subset £/ C E of size [, in polynomial time construct a partition
S(E") (section [3.3.2)) and verify whether it is an identity partition on R.

We show that the ED problem is NP-complete by reduction of the 3-DIMENSIONAL
MATCHING (3DM) problem [38]. An instance of 3DM is defined by a set M C
X XY xZ where XNY =XNZ=YNZ=0and | X|=|Y|=1Z] =m. A
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Figure 3.3: Construction of the ED problem for the 3DM problem. (A) The
model. The nodes correspond to variables and arrows to regulation functions. S — the
stimulator variable. There are triplet variables corresponding to the triplets in M and two
additional variables (X, zo) and (Y,yp). id — the identity function. (B) The regulatory
programs. Left column of the table — identifiers of the programs, right column — their
regulation functions and regulators (specified as function arguments). < x;, e, @ > denotes
all (possibly several) triplet variables with x; on the first coordinate.

solution to 3DM is a matching for M of size m, i.e., a subset M’ C M such that no
elements of M’ agree on any coordinate. Let X = {xzy,...,zn}, Y ={v1,...,ym} and
Z ={z1,..., zm}. For a given 3DM problem we define an instance (M, R, E,m + 2)
of the ED problem and prove that there exists a matching of size m if and only if
there exists a set of m 4 2 experiments in E for M which distinguish all regulatory
programs in R.

We now define an instance M, R, E,; m + 2 of the ED problem for a given instance
M of the 3DM problem. The set of variables V' in model M contains stimulator
variable S, a set of |M| variables corresponding to the triplets in M (referred to
as the triplet variables) and two additional variables, labeled (X,zo) and (Y, o),
V=MU{S,(X,z0), (Y,y0)}. All variables can be in one of the two states: 0 and 1.
The regulation functions are defined in Boolean logic. The states of the stimulator S
determine the states of all remaining variables through an identity function, i.e., for
a given model state s, f,(s(S)) = s(S), for each v € V' \ {S} (Fig3.3| A). We define

the set of regulators to be all variables in the model.

Next, we define a set R of 3m + 3 regulatory programs for the model M, each
with the same regulation function: the Boolean alternative (logical “V”). Intuitively,
the regulatory programs correspond to the elements in the sets X, Y, and Z and
three additional entities denoted g, yo and zy. Each regulatory program denoted z;,
1 <i < m, has a set of regulators: S, (X, zg) and all triplet variables, which have x;
on the first coordinate. The regulatory program z, has two regulators: S and (X, o).
Each regulatory program denoted y;, 1 < j < m, has the regulators: S, (Y,y,) and
all triplet variables, which have y; on the second coordinate. The regulatory program
Yo has two regulators: S and (Y,yo). Finally, each regulatory program denoted z;,
1 <1 < m has the regulators: S, and all triplet variables, which have z; on the third
coordinate. The regulatory program z, has one regulator S (Fig[3.3)B).
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Finally, we define the set of candidate experiments F on the model M. Recall from
section that an experiment is given by the stimulation, perturbed variable and its
perturbation state. We assume that the set P = V'\{S} of all non-stimulator variables
can be perturbed. Since S determines by identity the state of all other model variables
and is an alternative regulator in all regulatory programs, the following experiments
do not distinguish between any pairs of regulatory programs: for v € P and i € {0, 1},
the experiments of the form: S = i, () (an experiment with any stimulation i, where no
variable is perturbed), as well as S = 1,v =i (an experiment where the stimulation is
high, with any perturbed variable v and any perturbation state i), and S = 0,v = 0.
Thus, from all possible experiments, it suffices to consider only the set of candidates
E ={e":v € P}, where ¢” denotes an experiment of the form: S =0,v = 1.

Assume there exists a 3D-matching M’ = {t4,...,t,,} for M. We show that in this
case the set of m + 2 experiments E' = {e"1, ..., etm, eX:20) Vw0)l on the model M
distinguishes all regulatory programs in R. Indeed, the experiments e(*X:%) and e(¥v0)
together induce a partition S({e(*%0) ¢(Y'#0)}) on R into three blocks: {xg,x1,...zm},
{Y0, Y1, -, Ym}, and {29, 21, ..., Zm }. Since M’ is a 3D-matching, for each z; € X it
contains a single triplet ¢t =< x;,y,2z >€ M’ with z; on the first coordinate. The
corresponding experiment ¢/ € E’ induces a partition T'(¢) on R into two blocks:
{z;,y,2} and R\ {;,y,2}. Intersecting T(e!) with S({e(%0) e(Y'¥0)1) results in a
partition which contains a singleton {z;}. Since all regulatory programs with labels
from X have their corresponding experiments in FE’, they are distinguished by E’
from all other regulatory programs, in particular from zy. Similar argument holds
for any regulatory program with labels from Y or Z.

Assume there exists a set of m + 2 experiments £’ C E distinguishing all regulatory
programs in . We show that in this case there exists a matching of size m for the
3DM problem. Note that e(X?0) ¢ B/ and e¥'¥0) € E’. Otherwise either the regula-
tory program xy would not be distinguished from z; or yg would not be distinguished
from zp. In the remaining m experiments the triplet variables are perturbed. Denote
the set of m perturbed triplets as M’ = {t € M : ¢! € E'\ {eX:@0) (V011 Suppose
that for some x € X there exist no triplet in M’ with x on the first coordinate. Then
the regulatory programs x and xz( are not distinguished by E’, which contradicts our
assumption. Similar argument holds for any y € Y and z € Z on the second and
third coordinate, respectively. Thus M’ contains m triplets that together have all m
elements from X on the first, all elements of Y on the second, and all elements of
Z on the third coordinate. Thus, the triplets in M’ do not agree on any coordinate,
and M’ is a solution to the given 3D M.
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3.5 The MEED algorithm

Notions of entropy used in the algorithm To evaluate the ability of a set of
experiments to distinguish regulatory programs, MEED uses an entropy score. Let
E be a given set of experiments and R a set of regulatory programs. Assume that
E induces a partition S(E) of R into C' disjoint blocks (section [3.3.2)). The score is
defined as

c=1

where n, is the number of regulatory programs in block ¢, 1 < ¢ < C. If all regulatory
programs are distinguished by the set of experiments F, then C' = |R| and the cor-
responding score is H(E) = log(|R|). If all regulatory programs are undistinguished
by E, there is only one block in the partition, C' =1 and H(E) = 0. Intuitively, the
higher the entropy score, the higher the ability of the set of experiments to distinguish
between the regulatory programs. Accordingly, an entropy gain H(e|E) is given by
H(elE) = H(EUe) — H(E), where S(EUe) = S(E)NT(e) (ie., the additional
experiment introduces a finer partition of the set of regulatory programs). Entropy
gain evaluates how much the joint ability to distinguish between regulatory programs
improves when the experiment e is added to the set of experiments F.

The algorithm To obtain a practical solution for the untractable ED problem,
MEED implements a greedy approximation algorithm.

MEED(E, R)
1 E*«0

2 while H(E*) < log(|R|)

3 do e« argmax.cp H(e|E*)
4 if H(e|E*) =0

5 then break

6 E*«— E*Ue

7 return E*

The algorithm takes as input a set of candidate experiments E to select from, and
the set of regulatory programs R that it has to distinguish (indicated in the head-
ing). The procedure starts from an empty set of experiments E*, corresponding to
a full partition on the set of regulatory programs (line 1), and keeps choosing new
experiments one by one. In each greedy step, experiment e that maximizes the en-
tropy gain for the current experiment list £* is chosen (line 3) and added to E* (line
6; equivalently, its corresponding partition is intersected with the partition for E*).
The iteration finishes either when all regulatory programs are distinguished (line 2)
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or when no additional experiment can give improvement (line 4). The latter case
means that the selected list E* does not distinguish all regulatory programs, but the
same as the candidate experiments in £. The output of MEED is the ordered subset
E* C F of chosen experiments.

The upper bound computational cost of this algorithm is O(|R| * |E|*). This es-
timation assumes a pessimistic scenario that the iteration does not end until all
experiments from F are added one by one to E*, and that in each step all unused
experiments are tried to select the best one. The factor |R| comes from the fact that
in order to compute the entropy gain, intersection of two partitions of the set R needs
to be generated, which can be implemented in O(|R]).

3.6 Approximation factor of the MEED algorithm

In this section we prove the correctness of our algorithm MEED and derive its ap-
proximation factor. Below we refer to the optimization version of the experimental
design problem as ED(M, R, E).

Proposition 2. For a given instance (M, R, E) of the ED optimization problem,
the MEED algorithm returns a set E* C FE of the candidate experiments, which
distinguishes the same pairs of regulatory programs as E. Moreover, |E*| < |E°P!|(1+
In(|R|) + In(log(k))), where E°" is the smallest-size solution of the ED problem and
k is the number of states each variable can have.

By Proposition 2 it holds that if F distinguishes all regulatory programs in R, also
E* will distinguish all regulatory programs in R.

To prepare grounds for the proof of Proposition 2, we define an auxiliary optimization
problem on partitions. Adapting the reasoning schema of Konwar et al. [74], we
propose a generic heuristic GENERIC-GREEDY solving the partition problem and
derive its approximation factor. Our proof of Proposition 2 relies on the fact that ED
can be viewed as the problem on partitions and that the MEED algorithm implements
this generic heuristic.

Notation and basic notions  Let P denote a set of partitions of a given set R and
let P* be the closure of P under finite intersections. The intersection of all partitions
from a set P is denoted by [|P. We keep the following convention: T, T, T" range
over P and S, 5", S” range over P*. Full (one block) partition of R is denoted {R}
and the identity partition into singletons is denoted idr. For two partitions 7" and
T" we write T" < T" and say T" is included in T" if for any block T € T", there
exists a block 77 € T" such that T} C T} (see example illustrated in Fig.. Note
that, for any pair of partitions S and 7', SNT < S.
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TB":Tzr

Figure 3.4: Partition inclusion. Example. 77 and T” are partitions of set R satisfying
" <7

Let @ : P — {z € R: 2z > 0} be a given strictly increasing function, which satisfies
the following conditions:

(A0) ®(S) =0« S =1idp.

(A1) For each T € P and S € P, let Ap(S) = ®(S) — ®(SNT) be a gain function
determined by ®. If Ap(S) > 0, then Ar(S) > 1.

Note that by definition Ay is strictly increasing.

An auxiliary problem on partitions
We now define an auxiliary optimization problem on partitions.

Problem 2. PARTITION(P, R)
INSTANCE: A set P of partitions on a set R.
QUESTION: Find a subset P°" C P of minimal size such that (P = " P.

Of course, a solution P?" of a given instance (P, R) of the PARTITION problem
satisfies [ PP = idg if and only if (P = idg.

A greedy heuristic for solving the PARTITION problem Below we present a
generic greedy heuristic for solving the PARTITION problem for a given set P of
partitions of a set R.

GENERIC-GREEDY (P, R)
P10
S« {R}
while ®(S) > 0
do T + argmaxpep Ap(S)
if Ap(S)=0
then break
S+ SNnT
P*«— P*U{T}
return P*

© 00 N Tk W
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3.6 Approximation factor of the MEED algorithm

Lemma 1. Given an instance (P, R) of the PARTITION problem, the GENERIC-
GREEDY algorithm finds a set of partitions P* C P, which satisfies: (i) (P* =[P
and (i) |P*] < 1+ In(A™*), where P is the smallest-size solution of the PARTI-
TION problem and A" = maxrep Ar({R}).

Proof. (i) We show that GENERIC-GREEDY stops and returns a set of partitions
P* with () P* = [ P. The case of |R| = 1 is trivial: the while loop of the algorithm
is never entered since at the entry ®(S) = ®({R}) = 0 and P* = P = {R}.
Consider |R| > 1. By condition (A0), in this case ®(S) > 0 and the loop is entered.
Assume first, that the condition in line 5 is never satisfied. In this case, in each
greedy step a partition 7" € P giving a positive non zero Ar(S) for the current
partition S can be found (line 4; if several T' maximize Ar(S), the algorithm chooses
one at random). Intersection of the current S with the found 7" will give a new S
that is included in the previous one (line 7). Thus by the monotonicity of ® the
value of ®(S) decreases. Therefore the while loop terminates in a finite number
of steps, and upon termination we have ®(S) = 0. By (A0) we know that then
(\P* =S =idg. Since P* C P, then also (P = idg and (i) holds. Next, assume
otherwise, that at some point of the iteration the condition in line 5 is satisfied and
the break statement is executed. With this assumption for any 7" € P it holds that
P(O\P*) —S(NP*NT)=Ar(NP*) =0. Since \P*NT <(P* and P is strictly
increasing then (\P*NT = (P*. Thus we have (P =(P*N(P\P*) = P* and
(i) holds.

(ii) To prove the approximation factor for the GENERIC-GREEDY algorithm, we
first introduce notions needed to evaluate the cost of the optimal and greedy solutions
PPt and P*. Let |PP| = n and |P*| = m. For 1 < g < m, T, denotes the partition
selected in the g-th step of GENERIC-GREEDY, whereas T/”, 1 < i < n, is the
i-th element of the optimal solution, taking any order on P%*. For 1 < g < m we
consider the intersections of g partitions selected by the greedy algorithm, denoted by
S, = T1N...NT,. Similarly, for the optimal partitions we define S = T7*'N...NT",
where 1 <i<n. Weset Sp= 5" = * = {R}. We denote the gain for the greedy ChOlCe
of T, in the g-th step of GENERIC-GREEDY towards a given intersection of greedy
and optlmal partitions by Ay = Aq, (Sy—1 N Sfpt), where 1 < g <mand 0 <i < n.
Similarly, let the gain for the optimal choice of T;” " towards the intersection of the
greedy and optimal partitions be denoted 07 = A op (S, N SF)), where 1 < i < n,
and 0 < g < m. '

Note that Ay > AY > ... > A9 =0 for 1 < g < m. Indeed, for every such g and
0 <i<n-—1, by the fact that S,_; N Sfftl < S,-1 N Sfpt, and by the monotonicity
of A we have A | = Ar, (S;1 N SPY) < Ag, (Sg-1 NS = AL

Similarly, 6 > ... > §™ = 0 for every 1 < i < n.

Moreover, the following inequalities hold:

AF > Agor(Sg-1) = Agor(Sy1 N SP) = 677 (3.7)
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for every 1 < g < m and 1 < ¢ < n. The first inequality follows from the fact that
A§ = A, (Sy-1) is obtained by the greedy partition selection in the g-th step of the
GENERIC GREEDY algorithm and thus must be at least as high as Ap(S,_1) for
any T € P, also T;” " The second inequality follows from the monotonicity of A.

For the analysis of the size of the greedy solution as compared to the optimal one,
we assign a cost to each pair of optimal and greedy partitions 7, LT s

(69" —n(69) if 677 > 67 > 0

)

=< (") +1 if 6971 > 69 =0

(3 3

0 if 6971 =67 =0

By definition every ¢ when positive, is higher than 1 (condition (A1)), and thus every
cost is nonnegative.

From now on, our reasoning can follow exactly the one of Konwar et al. [74]. Since
o™ = 0, the total cost assigned to a given optimal partition 7% " is a telescopic sum
Z oy ¢ = 14+1In(d7) < 1+In(A™). The cost of all partitions of the optimal solution
is the same, so the overall cost of the optimal solution is at most n(1 + In(A™*)).
We show that at the same time the cost of each greedily chosen 7} is at least equal to
1. By Eq.( . for every 1 < i < n it holds that ¢/ > (69" (59)/Ag (refer to Figure
3 by Konwar et al. [74] for a graphical explanatlon) By 677" — 67 =AY, — A? and
A9 =0, we have > i ¢ > >0 (AY, — AY)/AT =1.

Thus, m-1 <3700, 320 ¢ =300, > o1 ¢ < n(1+In(A™)), which completes the
proof.
]

An example function satisfying conditions (AQ0) and (A1) In the following, we
will use a function p : PT — {z € R : z > 0}, defined as p(S) = chzl n.log(n.),
where partition S contains C' blocks and n. is the number of elements in block ¢ (1 <

c<(O).

Proposition 3. For every instance (P, R) of the PARTITION problem the function
p satisfies (A0) and (Al).

Proof. The function p satisfies (A0) and (A1) for any P. p is related to an entropy
measure H(T') for a partition of the set R into C' blocks:

- s () = 1ost) ~ ot &

Thus, small values of p are equivalent to high partition entropy. We base on the
properties of entropy (see Cover and Thomas [20]) to prove the properties of p.

20



3.6 Approximation factor of the MEED algorithm

For any partitions T and 7", such that T" < T’, the properties of entropy imply
that H(T) > H(T"), and by Eq.(3.8) p(T) < |R|log(|R|) — |R|H(T") = p(T"), which
proves that p is strictly increasing. For the identity partition we obtain p(idg) =
Z'm log(1) = 0. For any partition T, if p(T') = 0, then the entropy obtains its
maximum value H(7T') = log(|R|) and this is true only for T = idg. Therefore, p
satisfies (A0).

By monotonicity of p, functions A determined by p assume only nonnegative values.
Let S € P* be such that p(S) > 0. For any T € P if S = T then Ap(S) = 0. For
S # T, Ar(S) > 0. The gain Ap(S) can be obtained by a sum of the gains on
the separate blocks of S when intersected with 7. Thus the minimal non-zero gain
is obtained when only one block of S contributes the smallest possible nonzero gain
when intersected with 7" # S. Let ¢ be the index of such a block of S of size n.
which by the intersection is divided into B blocks of size n, each, 1 < b < B and
Zle ny = n.. Note that such a division into blocks defines a partition 7° on a set
of elements in the c-th block. Then the minimal nonzero gain

B

min Az.g(S) = n.log(n.) anlog ny) = —ncz log ( ) =nH(T°).
C nC

b=1

By relation of entropy to the maximum probability (Property 1.24 in the book by
Tanieja [119]) H(T) > 1 — pmas > 1/n.. The second inequality holds since in
our case Pmar can at most be equal to (n.—1)/n. (the ratio of the size largest
possible block of the partition T to the size of the whole c-th block of S). Therefore
min Ar.g(S) > 2 which proves that p satisfies the condition (Al).

]

MEED implements GENERIC-GREEDY Having Lemma 1 and Proposition 3,
we prove Proposition 2.

Proof. Proposition 2. Recall from section that every experiment e on a given
model defines a partition T'(e) on the set of regulatory programs R and a set of
experiments E defines a partition S(F). Therefore a given instance (M, R, E) of the
ED problem, where E = {ey, ..., e,}, defines an instance (P, R) of the PARTITION
problem, where P = {T'(e;), ..., T'(en) }.

We show line by line that the MEED algorithm (section implements the GENERIC-
GREEDY algorithm. The set E* returned by MEED corresponds to P* returned by
GENERIC-GREEDY and S(E*) corresponds to S. With S(}) = {R}, line 1 in the
former algorithm implements lines 1 and 2 in the latter. As shown in the proof of
Proposition 3, p belongs to the class of functions &. First by definition, the en-
tropy score (section D satisfies H(E*) = log(|R|) — (S(E*)), i.e., H is only a
linear function of p. erefore the conditions of the W ile statements in the two
algorithms are equivalent: H(E™*) reaches its maximum value log(|R|) if and only if
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p(S(E*)) = 0. Note also, that H(e|E*) = ﬁAT(e)(S(E)), where the function Ap
is determined by p. Therefore the lines 3—5 of the MEED algorithm implement the
lines 4-6 in GENERIC-GREEDY. Line 6 in our algorithm implements lines 7 and 8
in the generic heuristic: adding e to E* corresponds to P* U T (e) and S(E*) NT(e).

Therefore, by Proposition 3 and Lemma 1, MEED stops and finds an approximate
solution. To derive the approximation factor, we calculate A™** = maxy Ar({R}),
determined by the function p, knowing that T = T'(e) for some experiment e €
E. Recall that each of the regulators in a given model can have k possible states.
Therefore also for each regulatory program there can be k possible responses of its
potential target and for any experiment e, its partition 7'(e) can divide R into at most
k blocks. By the relation to entropy, for a given e, p(T'(e)) obtains minimal value
for partition 7'(e) having maximum entropy. By the maximality property of entropy
(Property 1.15 in the book by Tanieja [119]) A™** = p({R}) — p(T'(e)), where T'(e)
is a partition into k sets of equal sizes. Thus A™* = |R|log(|R|) — |R|log(|R|/k) =
|R|log(k) and from Lemma 1, 1 4+ In(|R|log(k)) is the approximation factor for our
algorithm. O]

3.7 Expansion procedure

The expansion procedure aims to detect which of the genes measured in a given set of
experiments E could be regulated by the predefined regulatory programs in a set R.
The procedure applies probabilistic matching between each (E,r)-predicted profile
(r € R), and the observed expression profiles of the measured genes. Let P(7, = ¥)
denote the probability of a match between a given observed profile Z, of a gene g
and a given (FE,r)-predicted profile i of a certain regulatory program r in a set of
experiments E. This probability depends on probabilities of a match between the
observed and predicted responses to experiment e in F:

where Z,(e) and y(e) denote the observed and the predicted response to experiment
e, respectively. For the expansion procedure, we can assume that there is a unique
predicted response to each experiment. The response is defined by the model state

with the least discrepancy to the observed state (sections [3.2] and [3.3.1)).

The probabilities P(Z,(e) = y(e)) are estimated using the probabilities of differential
expression in experiment e, given by the POE method (section . The outcome of
applying POE to the data are the probabilities of low, baseline and high expression
of each gene ¢ in experiment e, which we directly translate to probabilities of g
being: down-regulated in e (denoted pg_é), unchanged (pg’e), and up-requlated (p;,e),
respectively. The probabilities satisfy min (p, !, p; ) = 0 and p) , = 1—max (p,;,p; )
Having this, we sct P(Z,(e) = gi(e)) = pi.
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3.8 Alternative ED approaches

For each gene g, we find the (E,r)-predicted profile § that matches its observed
profile #, with the highest probability P(Z, = ). We conclude that the gene is
controlled by r if this probability exceeds a threshold defined as p!?l, where p is
a user-defined parameter that corresponds to the cut-off for matching probability
of each of the responses and |F| is the profile length (in our analysis, we set the
parameter p = 0.7). In such a case, we say that the regulatory program matches
the gene. A group of genes that match the same regulatory program constitutes a
regulatory module (Fig[3.1] C). Hence, a regulatory module corresponds to a cluster
of genes that are co-expressed and are predicted to be co-regulated by the same

regulator in the model and through a common regulatory mechanism.

Of course, matching of profiles in the expansion procedure can be hampered. If any
two regulatory programs cannot be distinguished by the input experiments (section
, their predicted profiles are identical. In such a case, a single observed profile
of genes in a regulatory module could match more than one predicted profile, making
it impossible to identify a unique regulatory program for this module. Such regula-
tory module is called an ambiguous module. To evaluate expansion quality, we use
an ambiguity score reporting the average number of regulatory programs that were
identified for each gene. Intuitively, the more regulatory programs matching each
ambiguous module, and the more genes it contains, the higher the overall ambiguity
score.

In our framework, to uniquely identify regulatory modules downstream of a given
model, the expansion procedure uses experiments £* suggested by MEED (Fig. B,
C). Both MEED and the expansion procedure utilize the same model and regulatory
programs. Therefore, if experiments in E* distinguish between all pairs of regulatory
programs, all identified regulatory modules are unambiguous.

3.8 Alternative ED approaches

In this section we first cover alternative ideas for selecting experiments based only on
the prior model of a given signaling pathway. Next, we compare our ED framework
to extant ED approaches, which build models of the system and utilize perturbation
data.

3.8.1 Alternative ways of model-based ED

Independent entropy-based experiment scoring Recall that MEED scores a
subset of experiments according to their joint ability to distinguish between regulatory
programs. In the results sections|3.9 we compare our algorithm to independent
experiment scoring, referred to as INDEP. INDEP ranks the experiments according
to the same score as MEED (the entropy score, section , but the score is assigned
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Chapter 3 Elucidating Gene Regulation With Informative Experiments

only to each experiment independently and experiments are ordered by decreasing
score. For example, in Fig[3.1| B experiment e, has the best (i.e., the highest) entropy
score, whereas experiments ey, es, e5 and eg all have equal entropy scores, lower than
the entropy score of e; but higher than of e4. Here, INDEP prioritizes the experiments
in the following way: es, next ey, e3, e5 and eg in random order, and last, es. Note
that experiment es, with the second best score, is dispensable given the first chosen
experiment ep: the pairs of regulatory programs distinguished by e; are a subset of
pairs distinguished by es (compare the predicted responses in respecting columns for
es and e; in Fig. B). In this way, INDEP prioritizes highly informative experiments,
but several of them might be redundant and distinguish between the same pairs of
regulatory programs. In contrast, after choosing ey as the first experiment, MEED
discards e since it gives no entropy gain when added to ey (i.e., no improvement in
distinguishing regulatory programs, section |3.3)).

Network-based ED methods. MEED is also compared to network-based meth-
ods, which prioritize the perturbed variables according to key topological features
of the model graph: in- and out-degree, total number of connections, topological
and reverse topological order (referred to as IN-DEGREE, OUT-DEGREE, CON-
NECTIONS, TOPOL and REV-TOPOL, respectively). In each step, an experiment
chosen in a given order includes exactly one perturbed variable and there are no two
experiments with the same perturbed variable. In case of ties (e.g., in IN-DEGREE,
if two nodes have the same number of incoming edges and therefore the same rank-
ing), the variables are chosen at random. The topological order on a cyclic graph is
computed following the standard zero-indegree algorithm for topological sorting on
directed acyclic graphs [23], with the exception that when a cycle is detected (i.e.,
there are no zero-indegree nodes), a randomly chosen node from the cycle is first
added to the order, and next removed from the graph together with all its adjacent
edges, and the standard iteration is continued.

In each step of experiment selection, the order on model variables assumed by a given
network-based method defines only the variable to be perturbed in this step. To fully
define the experiment in this step, the stimulation and perturbation states need to
be fixed. With this respect, we divide the network-based methods into two types:

e random network-based methods assign the perturbed variable a random perturba-
tion state and pick random stimulation,

e hybrid network-based methods follow the reasoning and scoring of our algorithm
MEED: first, a set of all those experiments that perturb the specified variable is
collected. From this candidate set, the hybrid methods choose the experiment that
gives the highest entropy gain when added to the previous experiments.
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Extant “on-line” ED frameworks MEED “batch mode” framework
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Figure 3.5: MEED framework versus extant ED frameworks

3.8.2 Comparison to extant ED approaches

Here, we discuss the differences between our MEED framework and the approaches
of Barrett and Pallson [10], Ideker et al. [59], Yeang et al. [136], and Vatcheva et al.

[124].

An “on-line” framework of the extant ED approaches versus a “batch mode”
of the MEED framework Fig[3.5] summarizes the general differences between
our MEED framework and the solutions common to the extant ED frameworks. In
a standard systems biology framework, readily available data is gathered to gener-
ate initial alternative models of the biological system (for the method of Barrett
and Pallson (2006), there is only one initial model). Next, an experiment selection
method (specific for each approach) is used to rank each individual candidate exper-
iment. The common framework is an iterative “on-line” learning process: The top
ranked experiment is chosen to be performed in a lab and the outcome is utilized to
re-compute the model(s). The MEED framework extends this common approach by
taking advantage of a prior model. MEED can design experiments solely based on the
model predictions without access to previous experimental data. Most importantly,
the algorithm works in a “batch mode”: it provides a whole set of non-redundant, in-
formative experiments that can be performed together in a lab and finally utilized by
the expansion procedure. Results of the expansion can be iteratively improved by ap-
plying MEED to choose from a different set of candidate experiments to complement
those that were already performed.

Differences in the ED algorithms  Tab. summarizes in detail the basic prin-
ciples of MEED and the extant ED procedures. The main methodological difference
between the MEED algorithm and other ED approaches that also use the notion of
entropy (all reviewed here but Barrett and Palsson, 2006) is the following: MEED

25



Chapter 3 Elucidating Gene Regulation With Informative Experiments

% _
53 s
g9 =
< & o
5|8 ke
Mm — —
Method | ¥ | A | Model | A | Selecting next experiment e | Stop criterion
MEED | + | + | Logical | - | e maximizes entropy gain of the | Chosen set of experiments
current set of experiments, in- | has the maximum entropy
creasing the diversity of states | score, /no unused exper-
predicted by the model for po- | iment gives entropy gain,
tential target genes. /all experiments used.
Barrett ODEs, , | eis a change of environment and | All unused experiments
and rFBA, a knockout of a group of TF's involve environments
Palsson, Boolean that are most interconnected activating TF's without
2006 and differentially activated in | predicted target genes,
these environments. /all experiments used.
Ideker Boolean e gives maximum expected No unused experiment
et al., decrease in entropy of alternative | gives entropy decrease,
2000 models.  Computed based on | /all experiments used.
model states predicted for e on
each of the models.
Yeang Physical | B, | Expected information gain: Minimum entropy on
et al., network | P, | e maximizes difference in models: One model has
2005 models entropy of alternative models be- | high, whereas other mod-
fore and after performing e. Cal- | els have zero probabil-
culated based on model predic- | ity, /no unused experi-
tions of change of model states | ment gives entropy reduc-
upon e. tion,
/all experiments used.
Vatcheva Semi— Expected information increment: | Minimum entropy on
et al., quanti- e maximizes expected difference | models: One model
2006 tative in entropy of alternative models | reaches cut-off, whereas

before and after performing e.
Calculated based on model e.
predictions for the temporal

evolution of the system state.

others have probability
Z€ro,

/no unused experiment
gives entropy reduction,
/all experiments used.

Table 3.1: Comparison table of MEED and extant the ED algorithms. The table summa-
rizes the methods by the following features: Batch mode — taking into account dependen-
cies between the experiments and the ability to provide a non—redundant set of experiments
on output, Prior model — utilizing a prior model of the studied system in the decision
process, Model — the modeling mathematical formalism (rFBA — regulated Flux Balance
Analysis, ODEs — Ordinary Differential Equations), Prior data — experimental data (B —
binding, E — expression, P — protein-protein interactions, V — varies depending on the appli-
cation of the theoretical approach; in the original case study the data consisted of amount
of phytoplankton biomass and concentration of the remaining substrate) required prior to
ED procedure and for each next experiment to be selected, Selecting an experiment e
— a criterion for selecting the next experiment, and a Stop criterion for the algorithm.
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3.8 Alternative ED approaches

pre-calculates a set of possible regulatory programs and requires from the new exper-
iment to increase the entropy of the set of experiments (so that the extended set of
experiments imposes the most “even” partition on the set of regulatory programs),
while the other approaches work with an ensemble of alternative models and aim to
decrease the entropy of this ensemble (so that, with the new experiment, one or few
models have significantly higher probability than the remaining ones).

Implementation of the methods by Ideker et al. (2000) and by Barrett and
Pallson (2006). To perform comparative analysis in section we imple-
mented two extant ED methods, introduced by Ideker et al. (2000) and by Barrett
and Pallson (2006). The two methods have their own modeling approach and differ
in the way they utilize prior experimental data and measurements from each selected
experiment. To focus the comparison exclusively on experimental design (Tab[3.1]
“Selection of next experiment ¢” and “Stop criterion”), we utilized the expansion
procedure to unify the modeling part of the two methods. First, to give initial infor-
mation required by both methods, we took the regulatory modules identified by model
expansion using the four highest priority experiments proposed by MEED. Second,
the regulator-target relations required in each “on-line”iteration were re-calculated
by the expansion procedure after selecting each experiment and given as input to the
next design iteration. Note that the additional information coming from expansion
at each step is not utilized by MEED, which designs the whole set of experiments at
once, solely based on the prior model of the signaling pathway (Fig.

3.8.3 Future work: solution by integer programming

Recall from section [3.3] that for a given set of candidate experiments F and a given set
of regulators R, predicted profiles for the regulators in R can be presented in matrices
of predicted responses. Each matrix is defined by one combination of predicted model
states for the experiments in £ and corresponds to a set of predicted profiles that
need to be distinguished. For those matrices, the requirement for experiments in
section can be formulated in terms of selecting the smallest-size common subset
of columns (i.e., experiments). Consider matrices with columns restricted to the
selected subset. Each such matrix is required to have all rows pairwise different
(assuring that the predicted profiles for each combination of predicted model states
are different).

Simple ED problem For a simple case, when there is a unique model state pre-
dicted for each experiment in FE, there is only one matrix of predicted responses.
Denote this matrix P. We now formally define the requirement in this simple case.

Problem 3. SIMPLE ED(P)
INSTANCE: An integer matrix P with columns indexed by the elements of a set
and rows with the elements of a set R.
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QUESTION: Find a minimal subset £* C E such that in a matrix with the columns
restricted to E* each pair of rows is different.

Let M be an m x n matrix, where m = (‘};') and n = | F|. Denote the i-th row of M
by M; (1 <1i < m). The rows of M are the absolute values of the differences of rows of
the matrix P. That is, for each pair Py, P; of rows of P ((k,l) € R x R), there exists
a row M; in M such that M; = |P, — P;|. Let x € R". A straightforward integer
linear programming (ILP) formulation of the SIMPLE ED problem in a canonical
form [102] is defined by:

min ) _ .,
Mz > 1, (3.9)
x>0,

Z integer

We are looking for solutions where x is a binary vector with entries x. equal to 1 if
and only if e € E* (1 < e < n). The inequalities assure that each pair of rows
of the matrix P differs by at least one entry. Such formulated ILP problem can be
solved by the branch and bound strategy [93].

Known problems similar to SIMPLE ED  The SIMPLE ED problem resembles a
general group of test set problems, defined by Berman et al. [I2]. One such problem is
the classical MINIMUM TEST SET described by Garey and Johnson [38]. Informally,
the test set problems deal with an universe of objects, a group of subsets (“tests”)
of the universe and a notion of “distinguishability” of pairs of objects of the universe
by a set of the tests. The goal is to select a minimum size subset of the tests, which
distinguishes every pair of elements of the universe. Note that the instance of a test
set problem can be represented as a matrix, with rows corresponding to the universe
and columns to the tests. The entries of this matrix denote inclusion of objects in
the tests. Unlike the matrix P given as input to our problem, this matrix is binary.
Berman et al. [I12] review the test set problems which arise in Bioinformatics. For
example, Karp et al. [65] challenge experimental design (with an experimental design
objective that is different than ours), and formulate a subproblem, which we here
describe in matrix terms:

Problem 4. CONDITION COVER(P,¢)

INSTANCE: A binary matrix P with columns annotated by the elements of a set F
and rows with the elements of a set R, and a cost function ¢ : E — N, assigning a
natural number or 0 to each column.

QUESTION: Find a minimal cost subset E* C FE, such that in a matrix with the
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columns restricted to E*, for each pair of rows, there is (i) at least one entry for which
they disagree and (ii) at least one entry for which they agree.

The problem of Karp et al. [65] is an extension of ILP for the SIMPLE ED problem,
with two inequalities per each pair of rows: inequality identical to for the
requirement (i) and an additional inequality for requirement (ii). To solve the problem
they use the branch and bound approach.

In addition to the problems reviewed by Berman et al. [12], Klau et al. [71, [72]
deal with a problem of probe selection. They first consider an easier version of the
problem, which we refer to as SIMPLE PROBE SELECTION and which also belongs
to the class of the test set problems. We formulate this problem abstracting from its
biological meaning;:

Problem 5. SIMPLE PROBE SELECTION(P, ¢, h)

INSTANCE: A binary matrix P with columns annotated by the elements of a set
and rows with the elements of a set R, parameters ¢ and h.

QUESTION: Find a minimal subset £* C FE, such that in a matrix with the columns
restricted to E*, (i) for each pair of rows there are at least d entries for which they
disagree, and (ii) each row has at least ¢ entries equal to 1.

Here, we do not compare to the full PROBE SELECTION problem, which not only
requires that each pair of rows is different on d entries, but also that pairs of small
groups of rows are different.

The ILP of Klau et al. [T1], [72] minimizes the same objective function as our program
and includes two sets of inequalities. To satisfy requirement (i), a set of inequalities
for all pairs of rows of P is similar to (3.9) and given by:

Mx > d,

where M is the same as defined for our ILP, and d € R™ is a vector with all entries
equal to the distance parameter d. For requirement (ii), a set of R additional in-
equalities is added. Klau et al. [71], [72] solve the full PROBE SELECTION problem
using a branch-and-cut strategy [132], which can shortly be described as a branch
and bound with dynamic adding of violated inequalities.

Future work: the full ED problem In the general case, there are several matrices
of predicted responses. The matrices have different entries but the same row and
column annotations (the elements of a set E for rows and the elements of a set
R for columns). The ED problem is then to find the smallest-size common subset
of columns, which solves the SIMPLE ED problem for each matrix. The number
of matrices is pessimistically exponential in the number of experiments. Due to this
major obstacle we do not discuss integer programming-based solution to this problem,
leaving it as an open challenge.
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Chapter 3 Elucidating Gene Regulation With Informative Experiments

3.9 Experimental design validated on synthetic data

To assess the performance of our algorithm, we first compare it with alternative ED
methods in four tests on 1000 synthetic inputs each (Fig .

Synthetic input  To define the input for the ED methods in each test, we generate
a random model, a repertoire of regulation functions, a set of regulators, and a set of
candidate experiments on the model (section 3.3)):

e Random model Construction of a model requires a definition of its structure and
regulation functions. First, to assure that the topologies of the randomly generated
models have realistic biological properties, we obtain them based on the graph of
the canonical human Tumor Necrosis Factor (TNF) pathway [45]. Each topology
is generated by a hundred edge-switching operations on the TNF pathway graph
in such a way that the nodes preserve their degrees [0, [88]). Each resulting model
graph has one stimulator node, which corresponds to the node in the TNF pathway
that does not have incoming edges. All variables are assumed to have three possible
states. Next, for each variable in the randomized model, its regulatory function
is drawn at random from a uniformly distributed set of possible logical functions.
We use only functions whose number of inputs exactly equals to the in-degree of
the variable’s node. The logical functions were restricted to ensure that the output
is dependent on each input.

e A repertoire of regulation functions The repertoire of regulation functions for the
regulatory programs contains only the activation both function ap (Eql3.3).

e A set of regulators We assume that all variables are regulators, except for the
stimulator variables.

e A set of candidate experiments on the model For each generated model we take all
the possible experiments as the set of candidates. Given that a model generated
based on the TNF pathway graph contains nineteen nodes, has one stimulator,
and that perturbation can be done on any regulator, but at most one at a time,
there are in total 165 possible experiments on this model (section .

Evaluation of the proposed experiments  The experiments proposed by the an-
alyzed methods were evaluated with respect to their efficiency in distinguishing be-
tween regulatory programs using the F'UP score (section . Preferably, a given
ED method not only proposes an experiment list containing a small number of ex-
periments with the minimal FUP score, but also obtains low FUP scores for each
number of only highest priority experiments from this list. This overall performance,
referred to as cumulative FUP, is evaluated as the sum of FUP scores over all groups
of the highest priority experiments.

Performance of MEED Fig A, B presents the FUP score averaged over all
random models, obtained by experiments suggested by MEED and the alternative ED
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Figure 3.6: Comparative performance analysis on random models. The comparison is car-
ried out on 1000 cyclic models generated by random reshuffling of the TNF canonical human
signaling pathway. (A, B) z-axis: the number of highest priority experiments used from the
compared experiment lists to distinguish between regulatory programs, y-axis: the FUP
score averaged over the 1000 random models (only the results with average FUP < 0.35
are reported). The lower the averaged cumulative FUP, the higher the performance of
a given ED method. (A) Comparison with the INDEP method. Our MEED algorithm
has significant advantage over independent experiment scoring. (B) Comparison with the
network-based methods. The network-based methods choose the perturbed variables ac-
cording to key features of the structure, whereas stimulations and perturbation states are
chosen either at random (the random methods, R-prefixed, green shaded) or following our
MEED algorithm (the hybrid methods, M-prefixed, blue shaded). (C) Box plots of the FU P
scores (y-axis) for groups of 3, 9 and 15 highest priority experiments from the experiment
lists proposed by all analyzed methods (z-axis). The results show that MEED consistently
outperforms other methods on the tested random models. In general, the hybrid methods
have a better performance than the random methods. This evident tendency implies that
even allowing MEED to decide only on stimulations and perturbation states, regardless the
way the perturbed variables were chosen, can still provide significant improvement.
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Chapter 3 Elucidating Gene Regulation With Informative Experiments

methods. MEED proposes only a few experiments on average and obtains the lowest
average cumulative FFUP (the area under curve). Next, we investigate the distribution
of FUP scores over the 1000 synthetic inputs (Fig C). With increasing number
of highest priority experiments used from the list proposed by MEED to distinguish
regulatory programs, its F'UP variance quickly declines and becomes negligible.

Advantage of MEED over INDEP The first compared method, called INDEP
(section , applies the same measure as MEED, but the score is assigned to each
experiment independently, ignoring potential dependencies between experiments. In
contrast to INDEP, each consecutive experiment designed by MEED radically in-
creases the number of distinguished regulatory program pairs. With this ability,
MEED significantly outperforms INDEP, showing the importance of scoring a set of
experiments together rather than each experiment independently (Fig A C).

Advantage of MEED over network-based methods  Next, MEED is compared
with network-based ED methods, which choose the perturbed variables according
to key topological features of the model structure (section . These methods
are divided into random (prefix R) and hybrid (prefix M), according to how they
determine stimulation and perturbation states for a predefined perturbed variable:
either at random, or with the use of reasoning and scoring of our MEED algorithm,
respectively. Fig B, C shows the advantage of our algorithm over all network-
based methods, indicating that MEED reduces the amount of experimental effort
required to distinguish between regulatory programs. Notably, the hybrid methods
perform better than the random methods (e.g., both the hybrid method M-TOPOL
and the random method R-TOPOL prioritize the variables to be perturbed based
on topological order, but M-TOPOL has better performance). Hence, even having
predetermined specific molecules to be perturbed, the experimenter can still gain from
consulting MEED regarding the type of perturbation and the level of stimulation.

3.10 The MEED framework applied to a yeast
signaling model

A yeast signaling model In this section we utilize our framework for the inves-
tigation of the yeast cellular response to hyperosmotic and pheromone triggers. The
response is mediated by signaling cascades that involve the PKA pathway, as well
as the HOG and mating/pseudohyphal growth pathways. The model of the system
(based on Gat-Viks and Shamir [41]) is referred to as the yeast signaling model or, in
short, the yeast model. Fig[3.7]shows the model graph and Appendix Fig. [.I] presents
its regulation functions. The model contains two stimulators: environmental osmotic
concentration (EOC) and pheromone. In this study, we focus on the regulation of
the immediate response, exploring only the system state before the potential feedback
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B
# Stimulation Perturbation
1. [0.5M KCI1 40min —
2. skol
3. [0.5M KCI 40min pbs?2
4. |50aF 30min fus3D
5. sinl
6. [0.5M KCI 40min hogl
7. [0.5M KCI 40min sskl
8. |0.5M KCl1 40min shol
9. STE12
10. |0.5M KCI 40min stel ]
11. MSN2

Figure 3.7: Experiment list proposed by MEED for the yeast signaling model. The model
is depicted on the left as a network with nodes (ovals) corresponding to environmental
conditions (dark gray) and signaling components (light gray). Arrows represent signaling
relations. The list of experiments designed by MEED is given in a table on the right, listing
stimulation (Control — YPD) and perturbation (green: knock-out and red: over-expression).

mechanisms affect the signaling pathway. Therefore, the model does not contain sev-
eral possible mechanisms of feedback control (e.g., Hogl protein phosphatases whose
production is stimulated after the osmotic shock, or glycerol production that leads to
restoration of turgor pressure and stops further activation of the HOG pathway [52])
and we utilize only measurements that were made shortly after stimulation.

Regulators and regulatory functions We consider only transcriptional control
by single regulators. With this restriction, there are 27 (3%) possible one-argument
regulation functions reflecting different means of regulation. To avoid the problem
of overfitting (described by Gat-Viks and Shamir [41]), we limit ourselves to six
biologically relevant regulation functions (section . We take all variables (apart
from the Hog-scaffold variable; altogether fifteen variables) as the set of regulators.
In total, we consider 90 regulatory programs (six for each regulator).

3.10.1 Experimental design on the yeast model

Candidate experiments  To have access to experimental data for expansion, we
restricted all analyzed ED methods to choose only from candidate experiments that
are available in microarray databases. Our candidate set of experiments consists of
25 genome-wide profiles that are reported in five publications [104] [47, [92] 07, 21],
and listed in Appendix Fig.
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Chapter 3 Elucidating Gene Regulation With Informative Experiments

Selected experiments  For the yeast model, MEED proposes a list of 11 out of
25 candidate experiments (Fig . Fig A and B shows that, similar to the
results obtained for random pathways, MEED distinguished regulatory programs
more efficiently than INDEP and the network-based methods (section [3.8)). For the
yeast model, M-TOPOL performs best from the network-based approaches. The set
of all 25 candidate experiments (therefore, also the experiments selected by MEED)
cannot distinguish between pairs of regulatory programs within five groups. Each of
the five groups contains three regulatory programs, with the same three regulators:
Hogl, Msnl, and Hotl. The regulation functions are the same for all regulatory
programs within each group: necessary activation in the first group, activation both in
the next, as well as sufficient inhibition, sufficient activation, and necessary inhibition
in the remaining groups. Accordingly, adding more experiments from this candidate
set to the experiment list designed by MEED does not enable to distinguish between
more regulatory programs.

3.10.2 Expansion of the yeast signaling model

To test our framework in practice, we performed expansion of the yeast model us-
ing the measurements from the 11 experiments chosen by MEED. In the expansion
procedure, genes were assigned to regulatory modules by a probabilistic matching of
the observed profiles of the genes to the predicted profiles of the regulatory programs

(section [3.7).

Expansion using experiments suggested by alternative ED approaches For
comparison, we repeated the expansion procedure using experiments selected by in-
dependent experiment scoring (INDEP), the best-performing network-based method
(M-TOPOL; Fig. B), as well as two extant ED methods, introduced by Ideker
et al. (2000) and by Barrett and Palsson (2006) (section [3.8). Unlike MEED, the
two extant methods take as input high-throughput measurements (gene expression
or binding data) to build initial pathway models, and apply an “on-line” procedure,
that is, they use the data from each chosen experiment to propose the next one.
Both the initial and “on-line” data come from expansion. INDEP, MEED and M-
TOPOL were applied to choose from the same set of 25 candidate experiments. The
methods of Ideker et al. (2000) and Barrett and Palsson (2006) choose only from 21
candidate experiments, since four are used to provide data for their initialization (see

section [3.8).

Advantage over the alternative ED approaches For the yeast model, MEED
achieves better performance than the extant methods in distinguishing regulatory
programs (measured with FUP score, see section FigA). The method of Ideker
et al. (2000) reaches its stop criterion already after choosing three experiments.

As reported in Fig C, using the 11 experiments proposed by MEED), the expansion
procedure identifies 26 regulatory modules controlled by the yeast signaling pathway.
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Figure 3.8: Comparative performance on the yeast signaling model: FUP scores and am-
biguity of expansion. MEED (plotted in magenta) is compared to INDEP (gray), network-
based methods, as well as two extant ED approaches (Barret and Pallson (2006) - orange;
Ideker et al. (2000) - red). Since the two extant methods take as input results of expansion
using the first four experiments proposed by MEED, their report starts from the fifth exper-
iment. The method of Ideker et al. (2000) reaches its stop criterion already after choosing
three experiments (fifth to seventh experiment). x-axis in all plots (A—D): the number of
highest priority experiments. For comparison with MEED, we present up to eleven experi-
ments chosen by the other methods. (A,B) FUP scores. y-axis: the FU P score measuring
the ability of the experiments to distinguish between regulatory programs (only the re-
sults for FUP < 0.35 are reported). With the lowest FUP for every number of highest
priority experiments, MEED outperforms all alternative methods. The best performing of
the network-based methods is M-TOPOL. (C) Regulatory modules. y-axis: the number of
modules identified in expansion. The proportion of ambiguous modules is marked in gray.
In comparison with the method of Barret and Pallson (2006), more modules are obtained
using the same number of highest priority experiments proposed by MEED (the results for
the method of Ideker et al. (2000) are similar to the results of MEED and are not plotted
for clarity). (D) Ambiguity of expansion. y-axis: ambiguity score (i.e., the average number
of regulatory programs per gene; plotted in log scale). With lower ambiguity score for most
numbers of highest priority experiments, MEED outperforms M-TOPOL and the method

of Barret and Pallson (2006) on the yeast model. 65
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More regulatory modules are identified using any number of highest priority exper-
iments proposed by MEED than the same number of experiments proposed by the
method of Barrett and Palsson (2006). Moreover, the eleven experiments chosen by
MEED enable lower percentage (2 out 26) of ambiguous modules (modules that were
matched to more than one regulatory program). The method of Ideker et al. (2000)
achieves similar results as MEED (not shown).

The quality of expansion is further evaluated by the ambiguity score (section [3.7),
reporting the average number of regulatory programs that were identified for each
gene. Unlike the FUP score, which evaluates a given ED method based only on
model predictions, the ambiguity score evaluates results of expansion, which utilizes
experimental data. Fig D indicates that MEED outperforms M-TOPOL and
(except when the six highest priority experiments are used) the extant methods with
respect to ambiguity scores. Taken together, the presented results indicate practical
applicability as a strong advantage of MEED, which performs comparably or better
than the extant approaches although it does not require the data from each chosen
experiment to propose the next one (section .

Model specificity of MEED  In Fig. we use the ambiguity score to show the
specificity of the set of experiments chosen by MEED for the particular yeast model.
To this end, we compare the ambiguity of the regulatory modules obtained in expan-
sion of the original yeast model with the expansion of its randomized version using
the same experiment list proposed by MEED for the original model. Structure and
regulation functions of the randomized model were obtained as in section [3.9f The
nodes of the randomized model are the same as in the original model and the set
of regulatory programs is also identical. Expansion of the original model results in
strikingly less ambiguous regulatory modules as compared to the modules identified
for the randomized model. This result indicates high specificity of our algorithm
in choosing experiments for a particular model. The regulatory modules identified
for the original model obtain better ambiguity scores than the regulatory modules
found for the randomized model. This tendency can be explained by the fact that
the randomized model does not represent the true signaling pathway. For all ex-
periments, the randomized model predicts states of regulators in the pathway that
are not “compatible” with the actual measured gene response. As a consequence,
there is a poor match between the model-dependent predicted profiles and the real
observed profiles, resulting in ambiguous regulatory modules. Moreover, the experi-
ments proposed by MEED for the original model cannot be expected to distinguish
the regulatory programs in the randomized model.

Stability of model expansion  Next, we validate the expansion of the yeast path-
way by conducting expansion with additional experiments on top of the eleven ex-
periments suggested by MEED. In this way, we test the stability of gene assignment,
that is, whether with more experiments there is a dramatic rearrangement of genes
between regulatory modules, or whether the genes are added to or removed from the
modules.
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Figure 3.9: Model-specificity of MEED. Ambiguity of the regulatory modules obtained
in expansion of the original yeast model (SPECIFIC, magenta circles) and its randomized
version (NONSPECIFIC, blue squares,) using the same experiment list proposed by MEED
for the original model. z-axis: the number of highest priority experiments from the list
used in the expansion procedure. y-axis: ambiguity score, measuring the average number
of regulatory programs predicted for each gene (plotted in log scale).

Model expansion using experiments designed by MEED is guaranteed to be correct
and perfectly stable under several ideal assumptions. Thus, changes in gene as-
signment upon adding new experiments in expansion would indicate a violation of
these assumptions. First, MEED needs to be given as input all biologically relevant
regulatory programs. Otherwise, it is possible that the given programs will not be
distinguished from the ones that were left out. In this case, genes regulated by a
program that was left out could erroneously be assigned to one of the identified mod-
ules. Using a proper additional experiment in expansion would cause those genes to
be removed from the false module. Second, the additional experiments may reveal
mistakes in the model or low quality of the measurements.

We tested the stability of gene assignment by applying expansion procedure to the
yeast pathway model using increasing experiment lists up to all 25 experiments from
the candidate set. The first eleven experiments were those proposed by MEED, and
were added to the list in the order they were chosen by the algorithm. This test
was repeated ten times; each time the remaining fourteen experiments were added
to the list in a different random order. Next, the results were averaged over the ten
random orders. Fig. A shows the total number of genes assigned to modules
across different numbers of utilized experiments. The initial five highest priority
experiments filter out majority of genes. After the 11 experiments proposed using
MEED, using additional ones in expansion only slightly decreases the total number
of assigned genes. A large fraction of those genes, which are assigned using the
experiments proposed by MEED and remain assigned using extended experiment
lists, is assigned to the same regulatory modules (Fig. [3.10| B). Therefore, there is
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Figure 3.10: Stability of assignment of target genes to regulatory modules. (A) Number
of target genes assigned to any regulatory module (red: using experiment lists up to the
eleven experiments chosen by MEED; green: using extended experiment lists, average over
ten random orders of adding extra experiments). z-axis: the number of experiments used
in the expansion procedure. y-axis: the number of identified target genes. Using only
a few experiments, expansion procedure identifies a large fraction of genes as regulatory
targets. The number of assigned target genes decreases for the chosen eleven experiments,
and stays in the same order of magnitude, but not on an equal level, when additional
experiments are added. Therefore the numbers of assigned targets do not change drastically
once reasonable length (more than just a few) experiment lists are used. (B) Rearrangement
of genes upon addition of experiments. We define commonly assigned genes as all genes
assigned to regulatory modules both with the extended experiment list and with eleven
experiments suggested by MEED. z-axis: the number of experiments used in the expansion
procedure. y-axis, blue: the fraction of commonly assigned genes out of all genes assigned
to any regulatory module with the extended experiment list (average over the ten random
orders). The fraction of commonly assigned genes goes down when more experiments are
used, which indicates that some new genes are added to the modules and some genes are
removed. y-axis, violet: out of the commonly assigned genes, the fraction of genes that
are assigned to the same regulatory module both with eleven and with more experiments
(average over the ten random orders, referred to as not rearranged). Remarkably, a large

fraction of commonly assigned genes is not rearranged between the modules when adding
additional experiments.

only little rearrangement between the modules when more experiments are used.

3.10.3 Regulatory modules in the yeast signaling model

To assess the biological findings resulting from application of our framework to the
yeast signaling model, we focused further analysis on the obtained regulatory mod-
ules. As small modules could have been generated at random, given the large number
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of potential regulatory programs, we restricted the analysis to fourteen modules con-
taining at least seven genes. Fig[3.11] presents a map of the expansion, including the
identified regulatory modules, their regulatory programs, predicted profiles and the
expression matrices of the target genes. The map clearly shows high agreement be-
tween predicted profiles and observed profiles. Cases of disagreement (e.g., observed
and predicted responses to the second experiment, skol mutant, in two regulatory
modules, inhibited by Kssl/Fus3 or Stel2, respectively) show faults in our under-
standing and incompleteness of the yeast signaling pathway model.

The identified versus known regulatory programs  The expansion analysis pro-
vides hypotheses regarding the regulatory relations and their mechanisms downstream
of the yeast signaling model. Tab[3.2]summarizes a detailed comparison between the
identified regulatory programs to known programs based on a comprehensive review
[52]. The known regulatory relations include four cases of transcriptional control by a
single regulator and four combinatorial regulations (not considered in this study). All
four single-regulator programs were detected by our analysis (activation by Msn2/4,
activation by Stel2, inhibition by Skol and activation by Hot1-here ambiguous with
Msnl and Hogl), confirming the quality of our predictions. In a number of cases, well-
characterized target genes were identified by the expansion analysis, thereby serving
as positive controls. For example, our analysis indicates that CTT1 and HSP12 are
activated by Msn2/4, and FUS1, FUS3 and FIG1 are activated by Stel2, both con-
sistent with the known transcriptional control of these target genes. In total, out of
sixteen target genes, known to be regulated by a single TF, eight genes have been
assigned correctly and no gene has been assigned to a wrong regulatory module. As
combinatorial regulation was not taken into consideration in our analysis, we expect
that target genes with more than one known regulator will not be assigned to any
of the regulatory modules. Indeed, all six combinatorially regulated target genes did
not match any of the regulatory programs.

Indirect gene regulation by kinases in the modeled yeast pathway Interestingly,
four kinases, including Kssl/Fus3, PKA, Shol and Ste7, were identified as gene
regulators (Fig.[3.11)). The hypothesized regulation might be explained by an indirect
influence on the target genes through alternative signaling pathways and downstream
TF's that are not part of the model. Several such alternative pathways are known but
were omitted from the model. For example, PKA regulates transcription through
the TFs Msn2/4 and Skol (part of the model) or through Adrl, Rapl and Crzl
[52], 138] (not modeled), Kssl/Fus3 mediates transcription through the Farl kinase
independently of Stel2 [94], and the SIn1/Ypd1 kinases regulate an alternative hypo-
osmotic stress pathway through the TF Skn7 [52] (not modeled). There is no known
alternative pathway downstream the signaling molecules Shol and Ste7. Our results
suggest that these signaling molecules have an indirect effect on gene expression
through an additional pathway, independent of the model.
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Figure 3.11: Expansion of the yeast signaling model using the experiments proposed by
MEED. The yeast model is depicted in the center of the figure. The identified modules are
presented, with additional dashed edges connecting the regulators in the pathway to their
regulatory programs (nodes labeled with regulators and having a boundary color-coded
according to their regulation function). The ambiguous modules, highlighted with dashed
yellow rectangles, are presented as gray-filled nodes, labeled with their size and connected
by edges to all their matching regulatory program nodes. The two ambiguous modules
were subject to an additional MEED iteration, which succeeds to distinguish their regu-
latory programs using only two additional experiments. A matrix showing the expression
measurements of target genes (rows) across the eleven experiments proposed by MEED
(columns) is presented only for the modules that contain at least seven genes. The columns
of the expression matrices are ordered from left to right according to the order proposed by
MEED. For clarity, only subsets of the large Stel2 and Kss1/Fus3 matrices are shown. The
predicted profiles appear as a separate row above the matrix. For most modules, the ex-
pression profiles agree well with the predicted profiles. Blue arrows exemplify experiments
where all module genes jointly disagree with the predicted profile.
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3.10 The MEED framework applied to a yeast signaling model

Known regulatory Predicted | Known gene | Predicted
Type program regulatory | target target
program
CHA1 not predicted
PHOS84 not predicted
activation by Hotl correct YGR043C correct™*
YGRO052W not predicted
YHRO8TW not predicted
CTT1 correct
HSP12 correct
single activation by Msn2/4 correct HSP26 not predicted
regulator DCS2 correct
GCY1 not predicted
inhibition by Skol correct AHP1 not predicted
HAL1 not predicted
FUS3 correct
activation by Stel2 correct FUS1 correct
(without Tecl) FIG1 correct
YPL192C correct
Skol+4Crz1* ENA1 not predicted
activation by Msnl+Hot1 STL1 not predicted
combinatorial activation by GPD1 not predicted
regulation Msn2/44+Msnl+Hot1 GPP2/HOR2 | not predicted
inhibition by Skol GRE2 not predicted
together with Hogl GLR1 not predicted

Table 3.2: Identified versus known regulatory programs. The table summarizes the pro-
grams reviewed by Hohmann [52], reporting whether they were rediscovered by our MEED
framework. Type — states whether the regulation is combinatorial or not. Known reg-
ulatory program — the known regulator(s) and the regulatory mechanism, Predicted
regulatory program — states whether the known regulatory program was correctly iden-
tified (does not refer to combinatorial regulation, which was not a subject of our analysis),
Known gene target — known target genes of the regulatory program, Predicted target
— states whether the known target gene was correctly included in the regulatory module
assigned to the regulatory program (genes marked as not predicted were not assigned to any
module). *Crzl is downstream to the PKA variable, therefore represents indirect regulation
of PKA independently of Skol. **assigned to an ambiguous module Hot1-Msn1-Hog1.

Biological evaluation of the regulatory modules = We evaluated all fourteen mod-
ules to test whether the proteins encoded by the target genes had a related function
or a shared transcriptional regulation. To that end, we scored each module according
to its enrichment in GO annotations (using the Ontologizer tool designed by Bauer
et al., 2008 [11]) and sets of transcription targets identified by protein-DNA binding
experiments [49] 103, 139] (computed using a hypergeometric test). Out of the four
large modules (containing at least 100 target genes), three modules obtained enrich-
ments below a p-value threshold 0.001 (Bonferroni corrected; Fig[3.12). All other
modules did not obtain significant enrichment, probably because of their small size
(each of these modules contains less than 26 genes, including genes that were not
annotated yet).
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Figure 3.12: Functional coherence of identified regulatory modules. Enrichment of the tar-
get genes from each of four large identified modules (rows) in various experiments (columns).
Significant enrichment (Bonferroni-corrected hyper-geometric p-value; indicated by shades
of red) represents distinct behavior of the genes in a module compared to the rest of the
genome. Enrichment p-values in TF-DNA binding targets [49, 103, [139] and gene ontology
annotation (GO [5]) are reported. The different data sets and experiments’ environmental
conditions are color-coded above and below the matrix, respectively. The profiles used
for the enrichment tests were not part of our original dataset. RPBc — Ribonucleoprotein
complex, BG — biogenesis, BS — biosynthesis.

The enrichment analysis supports and provides insights into the identified modules.
For example, it justifies the division of the genes downstream of the mating pathway
into two activation modules: a module activated by the transcription factor Stel2
and a module activated by the kinases Kss1/Fus3. According to our enrichment anal-
ysis, the genes activated by Stel2 are characterized by several annotations, which are
all related to the known functionality of Stel2 as a key TF of the mating pathway
(Fig[3.12)). However, the Kssl/Fus3 targets are not enriched in any of these anno-
tations, confirming that Stel2 does not control those targets. To provide additional
evidence that these two transcriptional modules are distinct, we performed promoter
sequence analysis using the Amadeus tool [82]. The known binding motif of Stel2 was
highly enriched in the module under sufficient activation by Stel2 (p-value < 10712),
whereas the module under sufficient activation by Kssl/Fus3 was not enriched in this
motif. Taken together, our analysis provides evidence for transcriptional regulation
by Kssl/Fus3, independently of Stel2 control.

We next asked what is the regulatory pathway mediating the regulatory program
of sufficient activation by Kssl/Fus3 on its gene targets. Kssl and Fus3 have no
preferential binding to the promoters of the Kss1/Fus3 module [I03] (data not shown),
ruling out the possibility that Kssl/Fus3 have a direct effect on their targets. One
potential indirect transcriptional control by Kss1/Fus3 is mediated through the kinase
Farl, which mediates cell-cycle arrest in response to pheromone, independently of
Stel2. However, our module is not enriched in cell-cycle annotations (Fig.,
indicating that Farl is unlikely to mediate the observed gene activation downstream of
Kss1/Fus3. As more experimental investigations of the pathway connectivity become
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3.10 The MEED framework applied to a yeast signaling model

available, the mechanisms by which Kss1/Fus3 control its targets should be further
revealed.

3.10.4 Ambiguity networks and iterative experimental design

Ambiguity network  To facilitate the inspection of ambiguous modules in a given
expanded model, we devised the concept of an ambiguity network. Recall that an
unambiguous module matches exactly one regulatory program, and an ambiguous
module matches strictly more than one program (section . We define an ambigu-
ity network as a graph whose nodes represent regulatory programs that matched one
of the regulatory modules. One additional node is added for each ambiguous module,
labeled by the number of genes it contains. There are edges between the ambiguous
module nodes and their matching regulatory program nodes. In this way, the am-
biguity network highlights the ambiguous modules and provides details on their size
and the alternative regulation hypotheses.

Ambiguity network versus ambiguity score  Fig[3.13] compares two ambiguity
networks for two sets of regulatory modules that differ significantly in their ambiguity
score. The networks were generated based on the yeast model expansion using two
groups of five and six highest priority experiments from the experiment list proposed
by M-TOPOL. Adding the sixth experiment (knockout of Pbs2 in high osmotic stress)
lowers the ambiguity of the identified regulatory modules (compare Fig D). Recall
that the ambiguity score is proportional both to the number of regulatory programs
matching each ambiguous module and to its size. Therefore, such a strong drop of
ambiguity score can be explained by the fact that with the added experiment, the
ambiguous modules either: (i) match fewer regulatory programs, or (ii) contain fewer
genes. As an example of the former case, using the five highest priority experiments,
the expansion procedure identifies one of the ambiguous modules to be controlled by
seven regulatory programs. With the sixth experiment added, this module is replaced
by two, matching four and three regulatory programs, respectively (Fig[3.13] red
rectangles). As an example of the latter case, consider the largest ambiguous module
containing 3233 genes in expansion performed using five experiments. With the sixth
experiment added, this module is replaced by two smaller modules. These modules
match three regulatory programs each and contain only 307 and 677 genes (Fig,
blue rectangles).

Iterative ED in our framework  Our framework can be used in iterations of the
MEED algorithm and expansion procedure. Experiments chosen by MEED from the
restricted set of 25 candidate experiments do not distinguish all regulatory programs
in the yeast model. Five groups of regulatory modules remain undistinguished (listed
in section [3.10.1)). Accordingly, expansion performed using these experiments gener-
ates two ambiguous modules (the remaining three groups of regulatory programs are
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Figure 3.13: Illustrating expansion results with ambiguity networks. Ambiguity networks
for regulatory modules obtained in expansion of the yeast model using the first five (A)
and six (B) experiments on the list proposed by M-TOPOL (i.e., A and B differ only by
one additional sixth experiment from the list). The ambiguity network provides a detailed
insight into the ambiguous modules. Each white-filled node represents a regulatory program
matching one of the identified modules. It is labeled with its regulator, and has a boundary
color-coded according to its regulation function. Unambiguous modules are presented only
by their unique matching regulatory program, without indicating their size. Ambiguous
modules are presented as gray-filled nodes, labeled with their size and connected by edges
to all their matching regulatory program nodes. Exemplary modules (highlighted with
dashed rectangles) are shown together with their predicted profile (colored vector above the
rectangle). Red rectangles: an ambiguous module controlled by seven regulatory programs
containing a large set of genes in A is replaced in B by two smaller ambiguous modules
controlled by four and three regulatory programs, respectively. The two modules differ in
the gene response to the additional sixth experiment. Matrices showing expression profiles
of the target genes (rows) across the experiments (columns) are plotted next to the modules.
Blue rectangles: A large ambiguous module whose genes did not respond in any of the first
five experiments (the corresponding predicted profile is filled with black in A). Using the
sixth experiment, the large module is replaced by two smaller ones in B. One module
contains genes that were down-regulated in the sixth experiment, whereas another contains
genes that were up-regulated (can be seen in green vs. red entries in the predicted profiles
of the modules). A large group of genes, whose expression has not changed in the sixth
experiment, does not match any profile and therefore is not contained in any regulatory
module.
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not predicted to control any modules). The ambiguous modules match three regula-
tory programs each (the regulators Hogl, Msnl and Hot1 as sufficient inhibitors and
the same regulators as sufficient activators, shown in (Figi3.11))).

3.11 Discussion

This chapter presents a general framework for discovering regulatory modules down-
stream of a studied signaling pathway. The framework guides the choice of experi-
ments in research on a particular signaling pathway and investigating the regulation
of the pathway’s target genes. The pathway is formalized in a logical model. Based
on the model’s predictions, the MEED algorithm chooses the experiments from a set
of candidates. The expansion procedure reconciles the predictions with the data from
the suggested experiments to identify regulatory modules downstream of the modeled
pathway.

If the candidate experiments distinguish all regulatory programs, using the experi-
ments selected by MEED in expansion will result in a set of unambiguous modules.
Ambiguous modules can be obtained in the case when only part of the experiment list
suggested by MEED is used in expansion or when the candidate experiments do not
distinguish all regulatory programs. In such a case, it is possible to analyze the ambi-
guity network and specify ambiguous modules that are subject to additional MEED
iterations (section [3.10.4). This follows the widely accepted iterative framework for
biological discovery in systems biology [58, [70], with the specific application of ex-
perimental design for discovering transcriptional regulation downstream of a given
pathway.

MEED does not suggest all experiments necessary for high-confidence assignment of
genes to regulatory modules. Rather, it tries to minimize the number of experiments
required to distinguish the input list of regulatory programs. Therefore, in practice,
model expansion will benefit not only from utilizing extra biological and technical
repeats of the suggested experiments, but also from extending the economical list
provided by MEED with additional available experiments. First, the new experiments
will bring new evidence to refine the assignment of genes to modules. Second, they can
be used to validate expansion results. In our study, upon adding experiments beyond
the eleven proposed by MEED, the total number of assigned genes remains on the
same order of magnitude. Moreover, only a small fraction of the genes is rearranged
between the modules (section . This provides strong support for the robustness
of the assignment of genes to modules downstream of the yeast signaling network.

Our modeling formalism was chosen to fit the available biological data and knowl-
edge. In contrast to detailed modeling approaches (e.g., ODE modeling), the logical
model does not require setting a large amount of parameters, which are unknown
for most signaling reactions. Other semiqualitative/qualitative modeling methods,
e.g., Boolean networks [44] [66], or qualitative differential equations [28], are dynamic
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Chapter 3 Elucidating Gene Regulation With Informative Experiments

modeling approaches that require time-course data. Here, unlike these approaches,
we assume that the regulatory relations are discrete logical functions and the model
describes the steady state of the system, thereby enabling to utilize single time point
expression measurements.

In the proposed framework, there is a distinction between the model-based exper-
imental design and data-based expansion procedure: The MEED algorithm selects
the experiments independent of the data and relies only on the non-stochastic model
predictions of discrete states reflecting responses of putative regulatory targets. The
stochastic nature of the data is considered only in the expansion, once the mea-
surements from the experiments proposed by MEED are available. We expect that
based on the proposed framework, it will be possible to develop techniques handling
stochastic model formalisms, such as a Bayesian network model, which represent the
prior belief in the logical functions (as implemented in Gat-Viks and Shamir [41]).

In this contribution, we considered only regulatory programs with single regulators
and experiments with perturbations of one molecule. Our approach is general and can
be extended to investigate combinatorial control by taking into account regulatory
programs with multiple regulators and experiments with more than one perturbed
variable. The MEED algorithm, which is linear in the number of regulatory programs,
will scale to the enlarged problem, with the condition that only a small selection
of a vast number of all combinatorial possibilities is considered. For example, for
two regulators, and three possible states of the variables, the number of all possible
regulation functions is 3¢ = 19683. Already in the case of single regulator programs
we choose six biologically relevant regulation functions (out of 27 possible). Applying
the same selection criteria, one could consider only a handful of biologically relevant
combinatorial functions (e.g., the combinatorial schemas proposed by Buchler et al.,
[19] or Yeang and Jaakkola [135]).
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Chapter 4

Gene deregulation revealed using
perturbation experiments and
knowledge

The approach presented in this chapter is designed for quantifying deregulation, i.e.,
changes of regulatory relations between two cell populations. In chapter[3 we showed
how to use known TF targets as examples of differentially expressed genes in the TF per-
turbation experiments. In chapter[3 we utilized a predictive pathway model for elucidating
regulatory relations downstream of the pathway. Our deregulation analysis, introduced in
section benefits from both these kinds of knowledge as well as perturbation data, col-
lected for the two compared cell populations. The approach was applied to deregulation
in response to DNA damage. Section presents a clustering of the deregulated genes
into functional clusters, reflecting the rich spectrum of biological activities in the DNA
damage response program. Section investigates the connectivity within the clusters by
analyzing enrichment in signaling pathways as well as known gene-regulatory and protein-
protein interactions. Section[4.4 reviews the genes with most extreme deregulation scores,
reporting their involvement in DNA damage response. Finally, in section we deter-
mine the indirect regulatory impact of the ATM pathway on the deregulated genes, and
in section we build a hypothetical hierarchy of direct regulation.

4.1 Quantifying deregulation

Overview The approach presented in this chapter is designed for quantifying
deregulation, i.e., changes of gene regulatory relations occurring between two given
populations of cells. It performs joint analysis of perturbation data from the two cell
populations, and is referred to as joint deregulation analysis (JODA) throughout the
text. The cell populations may correspond to healthy and diseased cells, or diseased
cells in two different stages, or, more generally, cells exposed to two different external
stimuli, with different cellular signaling and downstream transcriptional targets. We
consider only single gene perturbations that artificially down-regulate the gene, and
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Chapter 4 Gene deregulation revealed using perturbation experiments and knowledge

refer to them as knockdown experiments (although the approach is equally well appli-
cable to knockout data). Introduction to essential biological notions, e.g., regulatory
relation and mechanism, signaling relation and perturbation experiment are given in

sections [l and .2l

We distinguish two sets of genes: the requlators, and all remaining genes (shortly,
genes). The regulators are components of a signaling pathway, which is important
for the switch between the cell populations and may have a different topology in one
cell population than in the other. We require that each regulator is knocked down in
each cell population. The remaining genes show effects of the knockdowns in their
expression. We are interested in regulatory relations connecting regulators to the
remaining genes and how these relations change between the cell populations.

In addition to the knockdown data, for both cell populations separately, JODA takes
as input two kinds of qualitative knowledge, described in detail below: (i) a pathway
topology, which describes the signaling relations between all regulators within the
pathway, and (ii) regulator-target relations, between some regulators, which are also
transcription factors, and some remaining genes. The output of JODA are dereg-
ulation scores that quantify deregulation using the difference of knockdown effects
between the two cell populations. An up-regulation effect indicates (possibly indi-
rect) inhibition, and down-regulation indicates activation of the genes by the regula-
tor, which was knocked down. The most extreme deregulation scores are assigned to
those genes which switch regulatory mechanism and show different knockdown effects
between the cell populations.

Extant approaches Extant deregulation studies combine gene expression data
available for two compared cell populations with additional information. For ex-
ample, known pathways are incorporated into the deregulation analysis to explore
changing functionality [I5, 37, 54, 83, 128]. On a network level, the switch be-
tween cell populations was characterized by deregulated sets of gene interconnections
[84], 120}, 34, [56]. Analyzing deregulation, these extant approaches do not take into
account available knowledge about cellular signaling pathways nor their transcrip-
tional targets, which may differ between the cell populations. For example, Mani et
al. [84] and Taylor et al. [120] take as input a static interactome, which is not specific
for the two cell populations, to discover loss or gain of expression correlation between
its nodes. Workman et al. [134] showed extensive re-wiring of gene regulatory net-
works in yeast cells undergoing DNA damage using genome-wide measurements of
gene expression upon transcription factor (TF) knockdowns, as well as TF binding
to DNA. This advanced approach could be further improved by incorporating prior
information about the signaling pathways that are differentially activated upstream
of the re-wired gene regulatory network, and the complementarity between the TF
DNA-binding and the TF knockdown data.

Input pathway topologies  The first kind of knowledge are two pathway topologies,
which describe the signaling relations between all regulators within the pathway in the
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two cell populations. The set of the regulators is the same for the two cell populations,
but their signaling relations may be different. We assume that researcher’s expertise,
literature findings or external experimental data provide qualitative knowledge about
the signaling relations, describing “who signals to whom” in both cell populations.
This knowledge is given to the input of JODA in a form of two directed graphs (one
per each cell population). The nodes in the graphs correspond to the regulators
(pathway components). There is an edge between two nodes in a given pathway
topology whenever it is known that the pathway component corresponding to one
node activates the component corresponding to the other node.

We denote the set of regulators as V' = {vy,...,v,}. Formally, a pathway topology
in a cell population t is a graph Gy = (V, A;) with the set of nodes V' and directed
edges A;. Gy may be cyclic and may have several connected components. There is
an edge (v;,v;) € A; whenever it is known that the pathway component v; activates
v; in the cell population ¢. Examples of two given ATM pathway topologies, one in
the healthy cells (denoted h) and second in cells undergoing DNA damage (shortly,
damaged cells, denoted d), are illustrated in Fig. A.

Model predictions of knockdown effects In each cell population separately, the
known pathway topology can be utilized to predict effects of knockdown experiments.
Consider an experiment A'v, where a given regulator v is knocked down in a given
cell population ¢t. The regulator v together with all regulators, which are reachable
from v in the pathway topology t, are called affected by the experiment Alv. The set
of all experiments knocking down the regulators in V' in cell population ¢ is denoted
E;. The predictions of affected regulators for all knockdowns in E; are given by the
transitive reflexive closure G} = (V, Af) of the pathway topology G;. To compute G7,
we add an edge (v;,v;) € A; whenever there exists a directed path from v; to v; in the
pathway topology G; (allowing v; = v;, i.e., the path may be empty). The incidence
matrix for Gy is called the model matriz, or shortly, the model, and denoted M,.
There is an entry 1 in row v; and column v; of the model matrix when (v;, v;) € A*,
otherwise the entries are 0. In this way, an entry 1 tells that its row’s knockdown
affects its column’s regulator. Thus, the set E,; of all knockdown experiments that
affect regulator v in cell population ¢ is given by the rows of M; which have an entry
1 in column v:

E,, = {A'w € EJMY =1} (4.1)

In other words, the set of affecting experiments F,; contains both the knockdown
of the regulator itself, and knockdowns of its upstream activators in the pathway.
Assuming the model M, is correct, the experiments in E,; are expected to have
similar effect on the target genes of v. The effects on the genes, which are targets of
other regulators upstream of v, should be different between the experiments. Example
model matrices for the ATM pathway in the healthy and in the damaged cells are

shown in Fig[.1]| B.
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The input TF-targets The second kind of knowledge, the known TF-target re-
lations, is also given separately for each cell population. It originates from reports
about established individual TF targets, or from high-throughput TF DNA-binding
data. The known TF targets are expected to show an effect, i.e., either be up- or
down-regulated by the knockdown experiments. Those targets serve as examples of
genes that are differentially expressed upon their TF knockdown. This kind of knowl-
edge is rarely certain and in our approach is given as a belief (chapter [2) about the
TF-target relationships rather than a fixed statement.

Processing steps  JODA processes given data and knowledge in three steps (Fig.
B):

1. In the first step, we analyze the input data from each knockdown experiment to
estimate the effect of the knockdown on the genes. To this end, we apply our
belief-based differential expression analysis method (chapter [2)), implemented in
the R package bgmm [I18]. Our method assigns each gene a probability that it
was differentially expressed in the experiment. In this step, the knowledge about
the known TF targets is used. To improve the analysis for a knockdown of each
regulator v in each cell population ¢, the known targets of v in ¢ are given a high
prior of differential expression in this knockdown. We add a sign to each returned
probability to indicate whether the effect of the knockdown was up- or down-
regulation. The signed probability lies in the [—1, 1] interval. The resulting vector
of signed differential expression probabilities of the genes in a knockdown of v in
t is denoted p'. Together, we obtain 2|V| such vectors, one for each regulator in
V' and for each of the two cell populations.

2. In the second step, for each regulator v in each cell population ¢, we obtain a
vector R! of regulation scores that quantify the effect of v on the genes in ¢. In
this step, the input knowledge about the pathway topologies is used. Recall that
the pathway model M; defines the set E,; (Eq of knockdown experiments
that affect the regulatory activity of v in ¢. Each target gene of v is expected to
have pronouncedly high or low signed differential expression probabilities in the
knockdown of v that are consistent between all experiments in £}, ;. The regulation
scores (each lying in the [—1, 1] interval) reconcile the signed probabilities in the
experiments in E,; by taking an average:

t
R! — Zwe{vﬂAtviEEU,t} Py

g 42
B, (4.2)

For example, in Fig. B the regulation scores R% . for RelA in the damaged
cells are an average of the signed probabilities for the knockdowns of RelA and of
its upstream activator ATM. In the healthy cells, only its own knockdown affects
RelA, and its regulation scores R, are the same as its signed probabilities pf_ ;-
As explained above, under the condition that the model is correct, the experiments
affecting a given regulator should have a common effect on this regulator’s target
genes. In other words, each target gene is expected to have either high or low signed
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Figure 4.1: Method overview. (A) The ovals illustrate two different cells: a healthy cell h
in a neutral environment (left) and a damaged cell d treated with neocarzinostatin (right).
Inside each oval: a signaling pathway with regulators RelA, ATM and p53, and a set of
remaining genes gl—-g4. In d, ATM signals down to RelA and p53. In h the ATM pathway is
inactive. A RelA — an experiment, where RelA is knocked down. Genes are colored accord-
ing to the effect of the knockdown: up-regulation in red (indicating inhibition by RelA),
down-regulation in green (activation by RelA) and no change in white. Dashed edges con-
nect RelA to its target genes. (B) The JODA approach. Input: (i) knockdown data (here,
together six knockdown experiments, for three regulators in two cell populations, h and d),
(ii) known targets of those regulators, which are TFs and control gene expression directly,
and (iii) known pathway models encoded in matrices with an entry 1 when a knockdown
experiment (rows) affects the regulator (columns; otherwise the entries are 0). Experiments
affecting RelA are marked in blue. The input is processed for the healthy (left) and the
damaged cells (right) separately in three steps, until merged in deregulation scores, as indi-
cated by the white and yellow flow arrows, respectively. Examples on the right illustrate the
steps leading to deregulation scores for RelA. In the first step, we apply our method bgmm
(chapter [2; [118]), which utilizes the known TF targets to better identify probabilities of
differential expression of the genes in knockdown of each regulator v € {RelA, ATM, p53}
(denoted pf} and pff for the two cell populations h and d). The probabilities are signed to
indicate whether the effect of knockdown was down- (negative sign) or up-regulation (posi-
tive). In the second step we obtain regulation scores R? and Rff, which quantify the effect
of each regulator v on the genes in a given cell population. In the last step, we subtract
regulation scores in the healthy cells from regulation scores in the damaged cells to obtain
deregulation scores D,,, quantifying how strongly each regulator v deregulates the genes.
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probabilities of differential expression that are consistent between all affecting
experiments. Thus, taking an average yields either high or low regulation scores
for the true targets, and rules out those genes which respond to the perturbation
experiments in a model-independent manner.

Note that a negative regulation score indicates (possibly indirect) activation of a
target gene, and a positive score indicates inhibition. This rule, counter-intuitive
at first sight, is motivated by the fact that genes with positive regulation scores
have mostly positive probabilities of differential expression, i.e., tend to be up-
regulated in those perturbation experiments that affect their regulator. The genes
with negative scores have mostly negative probabilities, i.e., are down-regulated.
Accordingly, we define genes more activated in a given cell population (e.g., dam-
aged d), as having lower regulation score in this cell population than in the other
(e.g., healthy h). For example, genes g1 and ¢2 in Fig. are more activated in d.
g1 is (indirectly) inhibited by RelA in h, and (indirectly) activated by RelA in d.
g2 is (indirectly) inhibited by RelA in h, and does not depend on RelA in d.

3. In the third step, to quantify deregulation of genes by a given regulator v, we
define a vector D, of deregulation scores as the difference of the regulation scores
for v between the two cell populations. In this way, each deregulation score lies in
the [—2;2] interval. Figl4.1]illustrates these notions by a toy example. Two genes,
gl and g2, are deregulated between the healthy and damaged cells, while gene g3
stays regulated the same way, and g4 is unrelated to the pathway. Accordingly,
gl and ¢2 have dominant deregulation scores, which are well discriminated from
the scores of g3 and ¢4 (Fig B). Note that in the case when regulation scores
for cell population h are subtracted from scores for cell population d, genes more
activated in d (e.g., genes g1 and g2 in Fig obtain negative deregulation scores,
whereas genes more activated in h obtain positive scores.

4.2 Deregulated genes group into biologically relevant
functional clusters

JODA was applied to identify genes deregulated in response to DNA damage induced
by neocarzinostatin (NCS). NCS is a drug known to cause double strand breaks in
the DNA. Our analysis aimed at a biological verification of the deregulation scores
produced by JODA.

Input knockdown data  We analyzed transcriptional effects of silencing the reg-
ulators ATM, RelA and p53, performed by Elkon et al. [32] on the healthy and
the damaged cells. The raw dataset consists of 30 expression measurements, in nor-
mal and in NCS-treated human HEK293 cells, composed of three replicates for each
siRNA knockdown of ATM, RelA, and p53, and six for control, in both cell popula-
tions (GEO series GSE1676, with 8794 genes measured). The raw data was normal-
ized using quantile normalization and transformed into robust multi-array average
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expression values [60]. Quality of the expression measurements was assessed with
arrayQualityMetrics [67]. Four low-quality measurements were removed. We filtered
out all genes without an ENTREZ identifier. In the case of multiple genes with the
same identifier, we selected the one with the highest interquartile range (leaving 8498
genes). Consequent removal of outliers left 8463 genes. To provide input to JODA,
we calculated vectors of log mean expression ratios for each knockdown versus control
in both cell populations (averaging over repeats; together six).

Input knowledge Additionally, we provided two kinds of knowledge. First, the
ATM pathway topologies in the damaged and in the healthy cells. As presented in
Figl. 1] A, in the damaged cells NCS triggers a cellular pathway, where the central
kinase ATM signals down to TFs RelA and p53. This pathway is inactive in the
healthy cells [76]. Second, known target genes were collected for p53 in both healthy
and damaged cells, and for RelA only in the healthy cells. For p53 in the damaged
cells, we composed a set of 47 known targets by selecting genes that have a DNA
repair or chromatin modification function from experimentally verified p53 targets
collected by Horvath et al. [53], the direct p53 targets detected with ChIP-PET and
confirmed by expression analysis by Wei et al. [129], and finally by adding genes
targeted by p53 upon ionizing radiation [62]. For p53 knockdown in the healthy cells,
we took those verified targets of Horvath et al., and those direct p53 targets of Wei et
al., which were not selected as targets in the damaged cells. Finally, for the analysis
of RelA knockdown in the healthy cells we utilized a set of genes, identified using the
ChIP-PET technology by Lim et al. [80], whose promoters are bound by RelA and
contain an NF-xB consensus motif.

Analysis of the deregulation lists  Application of the approach resulted in three
lists of deregulation scores (shortly, deregulation lists), one for each of the regulators
RelA, ATM and p53. We sorted the lists decreasingly, so that the one extreme of
each list contains genes more activated in the healthy cells, and the other contains
genes more activated in the damaged cells. We performed Gene Set Enrichment
Analysis (GSEA [116]) with default parameters to identify gene sets significantly
overrepresented on the extremes of the sorted deregulation lists. Sets with fewer
than 15 and more than 500 genes were excluded from the analysis. Only results with
FDR < 0.01 and FWER < 0.5 were considered significant. We focused the analysis
first on Gene Ontology (GO [5]) term, and second on pathway enrichment (both
taken from the MSigDB database [116] that is utilized by GSEA). We discuss the
overrepresented MSigDB pathways in section

Functional clusters Fig. presents the identified overrepresented GO terms (to-
gether, 51) and their enrichment in the deregulation lists. The terms were grouped
by similarity into functional clusters. Similarity between the GO terms was assessed
using GOsim [36] with the 'relevance’ measure [105]. Next, the terms were hierar-
chically clustered by this similarity. We checked the possible clusterings with the
number of clusters from five to twenty (Figl.3] A,B). For an assumed number of
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Figure 4.2: Functional enrichment. The matrix shows GO terms enriched with high confi-
dence (FDR < 0.01, indicated in blue, and FWER < 0.5; identified using GSEA; [116]) in
the genes more activated in the damaged cells by ATM, RelA and p53 (left three columns)
and more activated in the healthy cells (right three columns). Each GO term shown is en-
riched in at least one column. The terms were grouped into functional clusters with names
indicated on the left, and sorted by the average enrichment in the first three columns.
The GO term enrichment is mutually exclusive for the genes more activated in the healthy
and in the damaged cells. Eleven functional clusters of terms are enriched exclusively in
genes more activated in the damaged, and two exclusively in the healthy cells. Abbrevi-
ations: mtbl, metabolic; nc, nucleo; pol, polymerase; reg, regulation; neg, negative; pos,
positive; proc, process; arch, architecture; nnnna, nucleobase, nucleoside, nucleotide, and
nucleic acid. The identified clusters confirm that the dominant deregulation scores are cor-
related with a functionality which is highly relevant to the switch between the compared
cell populations.
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Figure 4.3: Choice of the number of clusters. (A) The total number of unique genes shared
between the clusters, traced over all clusterings with the numbers of clusters from five to
twenty. The set of genes shared between the clusters is obtained as the union of all pairwise
cluster intersections. The number of shared genes increases with the number of clusters.
(B) The number of clusters in our functional clustering is selected from the [5;20] interval
so that the ratio of the number of clusters over the number of shared genes is maximized.
The more clusters, the more functions is represented in the clustering (one cluster groups a
set of GO terms). The less shared genes, the smaller overall overlap between the clusters.
Gray dashed line in A, B marks the selected cluster number (thirteen). (C) Functional
gene cluster sizes and overlaps. The matrix represents the clusters (rows), their sizes (Size
column), and their pairwise overlaps (Overlaps matrix). Columns of the overlaps matrix
correspond only to those clusters that do overlap with any other cluster. Entries show the
non-zero number of genes in the overlap and otherwise are empty.

clusters, the GO term clusters were formed by cutting the hierarchical clustering tree
on a corresponding level. Next, from the functional clustering of GO terms, we ob-
tained a functional clustering of genes, where each gene cluster corresponds to one
GO term cluster. To this end, we collected the deregulated genes that are annotated
with the terms from the GO term clusters, using the following procedure: First, for
each GO term, we collected the corresponding deregulated genes in three steps: (i)

85



Chapter 4 Gene deregulation revealed using perturbation experiments and knowledge

Identify the deregulation lists in which this term is significantly overrepresented. (ii)
From each identified deregulation list, collect the leading edge genes for this term,
i.e., genes that contributed to the enrichment of the term in this list [116]. (iii) Take
the intersection of the sets of genes collected from all lists identified for this term.
Next, for each cluster, we took a union of the sets of genes collected for the terms
in this cluster. The number of clusters in both GO term and gene clusterings was
set to thirteen, minimizing the overlap between the gene clusters. The resulting gene
clustering separates 611 genes. Each functional cluster was assigned a general name,
summarizing the GO terms grouped in this cluster (Fig C).

ATM RelA p53
1500 800 800
1000 600 600
400 400
500
200 200
0 0 0
oomemm - - ]- - ewew o o - - -"T1-- - -»m - ---C*T---+
r T T T 1 r T T T 1 r T T T T T T 1
-2 -1 0 1 2 -2 -1 0 1 2 -20 -10 0.0 1.0
Deregulation Deregulation Deregulation

Figure 4.4: Distribution of the deregulation scores. Histograms of the deregulation scores
of all measured genes for the regulators ATM, RelA and p53. Below each histogram, a
boxplot of the scores is shown.

Several functional clusters, e.g. DNA repair, Chromatin organization, Transcriptional
requlation and Cell cycle, indicate that our method assigns dominant deregulation
scores to genes playing crucial roles in response to DNA damage. Additionally, we find
enrichment of deregulated genes in RNA/MRNA and nucleotide processing, Complex
assembly, Protein folding, Transport as well as transcription- and translation-related
processes. This rich involvement of genes up-regulated in response to DNA damage
in various processes is in agreement with previous findings [112] [78].

Eleven functional clusters of GO terms are found for the genes more activated in the
damaged cells and only two in the healthy cells, even though the distributions of the
deregulation scores have the median of zero and are not biased in number towards the
negative values (Fig.. The eleven clusters more activated in the damaged cells are
shortly referred to as damage-activated, and the two more activated in the healthy cells
are called healthy-activated throughout the text. Strikingly, the regulators agree on
the functional processes they activate: no GO term overrepresented in the genes more
activated in the damaged cells is also overrepresented in the genes more activated in
the healthy cells. This shows the tightly coordinated way in which the ATM pathway
governs the downstream response to the damaging agent.

The main general function of each cluster is captured by its label. We used the Inge-
nuity Pathway Analysis software (Ingenuity Systems) to annotate the largest clusters
of genes with additional, secondary functions. Importantly, enrichment analysis of the
DNA repair, Transcription requlation and Chromatin organization clusters revealed
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that they also contribute to cell death, cell cycle, as well as cellular growth and prolif-
eration and DNA replication, recombination, and repair. These three clusters are also
significantly enriched in cancer-related genes. All three have strong enrichment for
tumorigenesis processes, leukemia-related genes, as well as other cancer types, which
agrees with the well known connection between DNA damage and cancer [51].

4.2.1 The deregulated functional clusters and pathways cannot
be found without prior knowledge or in separate analysis

We next verify whether the functional clusters of genes with extreme deregulation
scores given by JODA are significant. Figld.5] shows that the functional clusters of
genes have deregulation scores that stand out significantly from the background of
deregulation scores for all analyzed genes. The power of JODA becomes apparent
when comparing it to a separate analysis of the two cell populations, or an analysis
without incorporation of prior knowledge.

Advantage over separate analysis = We compare the deregulation scores to regu-
lation scores. Regulation scores are obtained in the second step of JODA, separately
for each cell population (Fig[d.1)). We thus refer to an analysis of the regulation scores
as a separate analysis. Several clusters, although performing functions important for
the switch between the healthy and damaging environment, are likely to be missed
when analyzing the cell populations separately. Consider an example of the DNA
repair cluster. Interestingly, positive regulation scores suggest strong inhibition of
genes in this cluster in the healthy cells. The regulation scores in the damaged cells
are distributed around zero and therefore do not indicate activation nor inhibition
(Fig. A). Based on the regulation scores in the damaged cells only, the genes in this
cluster cannot be significantly differentiated from all genes (Fig B). The separate
analysis misses gene sets that are only slightly down-regulated in one cell popula-
tion and slightly up-regulated in the other. Deregulation scores, being a difference
of the small but opposing effects, amplify them, making detection of such gene sets
possible.

Advantage over analysis without incorporation of knowledge  To compare our
knowledge-based JODA approach to analysis without incorporation of knowledge, we
assessed deregulation using decorrelation scores. To this end, for each analyzed gene
and each regulator (ATM, RelA, and p53) we computed Pearson correlation first
between the expression profiles of the regulator and the gene measured in the healthy
cells, and second between the profiles of the regulator and the gene in the damaged
cells. Strong positive correlation in a given cell population can be interpreted as an
activation of the gene by the regulator in this cell population, whereas strong negative
correlation can be interpreted as inhibition. To compute the decorrelation scores for
each regulator, we subtracted the correlation values for all genes in the damaged
cells from the correlations in the healthy cells. In this way, the decorrelation scores,
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belonging to the interval [—2,2], can be read similarly as the deregulation scores:
strongly negative decorrelation scores indicate more activation in the damaged cells,
and strongly positive indicate more activation in the healthy cells. The decorrelation
scores are a simple implementation of the ideas applied by Taylor et al. [120] and
Mani et al. [84]. Taylor et al. used Pearson correlation of interactome hubs to their
interaction partners to verify whether these interactions are context-specific. Mani et
al. investigated gain and loss of correlation between cell populations using a mutual
information-based approach.

Although interpreted in the same way, the deregulation scores differ from the decor-
relation scores by the ability to incorporate given prior knowledge about the known
cell population-specific pathway topology and target genes downstream of the path-
way. JODA outperforms also deregulation analysis assessed with the decorrelation
scores. Using the decorrelation scores, the same two clusters can be identified as
healthy-activated and eleven as damage-activated, but they are less significant than
when deregulation scores are used (Figld.5B).
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Figure 4.5: Significance of the deregulation scores. (A) Distributions of deregulation scores
of genes in the functional clusters (averaged over the three regulators, ATM, RelA and
ph3) strongly deviate from the distribution of averaged deregulation scores for all genes
(left plot). The distributions of average regulation scores in the healthy (middle left) and
in the damaged cells (middle right), as well as of average decorrelation scores (right) are
more similar to the distributions of the same scores for all genes. Gray dashed vertical lines
mark score 0 in each plot. Decorrelation scores do not incorporate prior knowledge and
assess the difference of expression correlations between the regulators and the genes. To
compare significance between the clusters, the mean of averaged cluster deregulation scores
(left, light gray crosses) can be used. The eleven damage-activated clusters are assigned
negative deregulation and decorrelation scores and have names printed in bold. Healthy-
activated clusters have positive deregulation and decorrelation scores. Separately for each
cell population, negative regulation scores indicate activation of the clusters, whereas pos-
itive regulation scores indicate inhibition. (B) A t-test comparing the cluster deregulation
scores with the deregulation scores for all genes (Deregulation; red squares) gives for major-
ity of the clusters the most significant p-values, when contrasted with: the p-values obtained
in a t-test comparing cluster regulation scores to regulation scores of all genes in the healthy
cells (Regulation, Healthy; blue pluses), and the same ¢-test but in the damaged cells (Reg-
ulation, Damage; light blue crosses), the p-values in a t-test comparing cluster regulation
scores in the healthy directly to regulation scores in the damaged cells (Healthy vs Damage;
green diamonds), and in a t-test comparing the cluster decorrelation scores with the decor-
relation scores for all genes (Decorrelation, yellow triangles). All tests are two-sided. The
p-values evaluate the differentiating power of the scores for each cluster. They depend on
cluster sizes and therefore should not be compared between the clusters. Taken together,
our joint and knowledge-based approach assigns more significant scores to the functior8l
clusters than a separate analysis, or analysis without incorporation of knowledge.
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4.3 Deregulated pathways and complexes elucidate
cooperation within functional clusters

Deregulated pathways and complexes  Since the genes in each cluster share the
same functionality, they may interact in a common cellular pathway or complex. To
determine these interactions we first identified pathways and complexes that are over-
represented on the extremes of the deregulation lists. Next, we checked their overlap
with the functional clusters. The enrichment in pathways was assessed using GSEA
(see section . The identified pathways are stored in the MSigDB database as sets
of genes, but their signaling relations are well described in the literature. Eleven iden-
tified MSigDB pathways significantly overlap with our functional clusters (Fig[4.6|A).
For example, the apoptosis pathway contains genes from the DNA repair and Tran-
scription requlation clusters. To test enrichment in complexes, we downloaded sets
of genes forming each complex from the Reactome database ([123]; together, 2816
complexes). For a set of genes in a given complex, and for a given deregulation list,
we performed higher-tail hypergeometric enrichment tests iteratively for a number
of 10 up to 500 most extreme (top or bottom) deregulated genes. Finally, the mini-
mum resulting p-value was selected to signify the enrichment of this complex in this
deregulation list. To focus on big complexes containing a considerable number of
deregulated genes, we excluded complexes with fewer than 15 genes, overlapping by
less than 10 with the current set of deregulated genes in each iteration. The size of
the universe was set to all genes analyzed on the array (8498). Only results with the
enrichment p-value < 107° were considered significant. We found the Ezon junction
complex and several spliceosome complexes (Fig B) significantly overrepresented
in the genes more activated in the damaged cells. Interestingly, these complexes
overlap (hyper-geometric higher tail p-value 1.1 -1072%) with the MRNA processing
cluster. Similarly as pathway interactions, membership in complexes explains the
way the genes in the clusters are connected and collaborate to exhibit the common
function.

Connectivity within the DNA repair cluster Finally, we focused on the DNA
repair cluster, which is of pivotal interest in the context of the switch between the
healthy and the damaged cells. We investigated physical relations connecting genes
within this cluster. The cluster is strongly enriched in eight canonical pathways
involved in the DNA damage response (p-values from 1.33-107% to 8.17-107!!; iden-
tified using SPIKE [32]). SPIKE is a database and an analysis tool, storing manually
curated pathways playing key roles in response to damage. The table in Figld.7 A
lists 51 genes from the DNA repair cluster, which belong to those canonical pathways
stored in SPIKE as well as three additional pathways, described in a comprehen-
sive review on DNA damage response by Wood et al. [I133]. The position of the
listed genes in the well known damage response pathways describes their role in the
response, as well as their interaction partners in the cluster.
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Figure 4.6: (A) Connectivity between genes in functional clusters explained with dereg-
ulated pathways stored in the MSigDB database. Matrix shows pathways enriched in
the genes more activated in the damaged cells (columns) that overlap significantly with
functional clusters (rows). Only pathways and clusters overlapping with higher-tail hyper-
geometric p-value at most 0.001 (indicated in red) are reported. Abbreviations of pathway
names: SI, snare interactions; U, ubiquitin. (B). Deregulated complexes. Top left: The
exon junction (EJ) complex and five spliceosome complexes (rows) are overrepresented in
the genes more activated in DNA-damage by the regulators ATM, RelA and p53 (columns).
Only complexes with a p-value at most 10~° (indicated in red) are reported. Genes in those
complexes overlap significantly with the functional cluster MRNA/RNA processing. Right:
Graph representation of the genes (round nodes shaded in violet by their average deregu-
lation scores) in the complexes (rounded square nodes). Edges represent gene - complex
membership. Abbreviations of complex names: EJ, exon junction; SA, spliceosomal A; SB,
spliceosomal B; SC, spliceosomal Active C/ spliceosomal intermediate C/ spliceosomal ac-
tive C with lariat containing 5-end cleaved pre-mRNP:CBC; ATAC B/C, ATAC B/ ATAC
C/ ATAC C with lariat containing 5-end cleaved mRNA (“/” lists complexes sharing com-
mon genes that have identical enrichment p-values and thus are abbreviated with the same
name). Pathways and complexes carry information about relations between their member
genes. Therefore, these enrichment results broaden our view on the connectivity within the
sets of genes in the functional clusters.

To further infer the cooperation between the 66 remaining genes in the DNA re-
pair cluster, we collected their interactions using SPIKE and Ingenuity (Fig B).
Together, we identified 126 relations connecting 52 of those genes either with each
other or with other intermediate genes, complexes and protein families. SPIKE was
applied to find all direct connections that are stored in the SPIKE database that join
the set of 66 genes, allowing connection via a single intermediate node not included
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in the set. The connections may represent membership in a complex or regulation
of different biochemical types, e.g. phosphorylation, protein-DNA (transcriptional)
regulation, activation and protein-protein interaction. Ingenuity was applied to find
interconnections between the 66 genes in two different ways, always restricting that
each relationship was reported for Human molecules, and that it is of one of the follow-
ing types: expression, transcription, protein-DNA (all summarized as transcriptional
regulation), activation, inhibition, membership, modification, phosphorylation, or
protein-protein interaction. We collected all such direct relationships that are stored
in the Ingenuity database. In addition, we applied Ingenuity to score known networks
based on their enrichment in the input set of genes and collected all direct interactions
present in the top three scoring networks (with scores 57, 45 and 18, respectively).
The top scoring networks are related mostly to DNA replication, recombination, and
repair, as well as tumor morphology, cell cycle and cell death. The networks have
additional nodes that are not included in the input set but are highly connected to
the genes in the set.

The analysis revealed a number of complexes, like the Origin of Replication com-
plex (ORC) containing five DNA repair genes, which join subsets of genes together.
Grouping the complexes by common functionality, we selected functional sub-parts
of the network. For example, we identified a sub-network of genes belonging to the
RFC, DNA polymerase epsilon, and the ORC complexes, which are involved in the
DNA replication process (marked with a light grey background in Fig[i.7] B).
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Figure 4.7: Cooperation of genes in the DNA repair cluster. (A) The matrix shows 51
out of 117 genes in the DNA repair cluster belonging (marked in red) to eleven known
pathways involved in DNA repair (columns; listed on the top). First eight of those pathways
are strongly enriched in the cluster (identified using SPIKE; [33]) and three other [133]
overlap with the cluster, but not significantly (p-values listed on the bottom). Many genes
are shared between the pathways. Abbreviations: ATM, ATM pathway; IC, repair of
interstrand crosslinks; DSB, repair of double strand breaks; BER, base excision repair; NER,
nucleotide excision repair; MR, mismatch repair; G1-S, G1-S pathway; pb3, pb3 pathway;
HR, homologous recombination; PD, polymerase; RAD6, RAD6 pathway. Such strong
enrichment in canonical DNA damage response pathways confirms the biological relevance of
the deregulated genes in the DNA repair cluster. (B) To identify interconnections between
the remaining genes in the DNA repair cluster, we searched for pathways of length at most
one connecting each pair of those genes in a protein-protein and protein-DNA interaction
network (using SPIKE and Ingenuity). The resulting graph connects 33 genes (remaining 33
are isolated and not displayed) and represents many complexes to which the genes belong.
Some of the complexes are involved in the same processes: DNA replication, apoptosis, cell
cycle, or telomere maintenance. The network explains connectivity within the cluster that
goes beyond the canonical pathways.
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4.4 Genes most activated in damaged cells work in
the damage response

Functionality of the top hundred most activated genes Functional clusters
contain deregulated genes that accumulate within the extremes of the deregulation
lists, but not on the strict top or bottom. We investigated the composition of three
sets of the strict top one hundred genes that are most activated in the damaged
cells by each regulator RelA; ATM and p53. All three sets are significantly enriched
in genes involved in transcription, with five common genes active in this process:
CHD4, RBM14, RCAN1, SMAD4, and UBNI1. Interestingly, some of the genes most
activated by RelA are interaction partners (for example, SMARCB1) of the genes
most activated by p53 (SMARCB4). Apart from transcription, the set most activated
by ATM is also enriched in cell death, cell cycle and growth and proliferation-related
genes. Additionally, both the sets of genes most activated by ATM and pb3 are
enriched in cancer-related genes.
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Figure 4.8: Network of genes most activated in DNA damage. A network of known regula-
tory and interaction relations (edges) connecting genes (nodes) from the lists of top twenty
most activated by RelA, ATM or p53 in DNA damage. The relations are collected from
the Ingenuity Pathway Analysis (Ingenuity Systems) database. The nodes are labeled with
gene names and colored according to gene functions, whereas relations are given edge styles
according to their type.

Regulatory relations between the top twenty most activated genes  Next, we
reviewed the individual examples out of three shorter lists of twenty genes, that are
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4.4 Genes most activated in damaged cells work in the damage response
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Figure 4.9: Summary of indirect deregulation and regulation of each functional cluster. (A)
Distributions of the deregulation scores (z-axis) of the genes in the functional clusters (y-
axis). (B) Distributions of the regulation scores (x-axis) in the healthy cells (drawn in green)
and in the damaged cells (drawn in blue) of the genes in the functional clusters (y-axis). In
A and B the score distributions are plotted separately for the three regulators, from left
to right: ATM, RelA and p53. The eleven damage-activated clusters are assigned negative
deregulation scores and have names printed in bold. Healthy-activated clusters have positive
deregulation scores. For each cell population separately, negative regulation scores indicate
activation of the clusters, whereas positive regulation scores indicate inhibition.

most activated in the damaged cells by RelA, ATM and p53. These shorter lists
contain together 51 unique genes. Fig[4.§| presents a network interconnecting 28 of
the 51 genes, for which regulatory interconnections are known. Both p53 and RelA,
with seven and five regulatory targets, respectively, are major regulators for the genes
in this network. Moreover, 10 out of the 28 genes in the network are transcription
regulators themselves. From all 51 most activated genes there are 12 transcription
regulators, 19 genes involved in apoptosis, 18 in proliferation and 6 in cell cycle
progression.
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Chapter 4 Gene deregulation revealed using perturbation experiments and knowledge

4.5 RelA and p53 are the key deregulators of genes in
functional clusters

Deregulation is inferred from knockdown effects, and as such can be due to an indirect
impact of the regulators on the genes. Here, we summarize these possibly indirect
effects on functional clusters of the deregulated genes identified by JODA.

Figld.9 reports deregulation and regulation scores of the genes in functional clusters,
for each regulator ATM, RelA and p53. The per cluster distributions of deregulation
scores for RelA and p53 are shifted further away from zero than for ATM, suggesting
a stronger deregulatory impact on the clusters (Figl.9] A). Indeed, Fig/4.9 B shows
that the distributions of regulation scores for ATM in the healthy and in the damaged
cells are generally less separated than for RelA and for p53. Interestingly, for all three
regulators, the regulation scores indicate that the damage-activated clusters are only
slightly (possibly indirectly) activated in the damaged cells. Instead, these clusters
are strongly (possibly indirectly) inhibited in the healthy cells both by RelA and
by p53, as indicated by the respective distributions shifted towards value 1. The
inhibitory impact of ATM on these clusters in the healthy cells is less prominent. In
the case of the two healthy-activated clusters, a strong, possibly indirect inhibition
in the damaged cells is observed for all three regulators. Distinctively, the Potassium
ion transport cluster is also (possibly indirectly) activated in the healthy cells by
RelA and p53.

4.6 Deregulation can be explained by a hierarchy of
direct TF-DNA binding events

Finally, we investigate the hierarchy of direct regulatory relations, which could explain
the effect of the ATM pathway on the deregulated target genes. The first expected
scenario would involve regulation by direct binding of the regulators in the pathway
to the gene promoters. Alternatively, the most parsimonious hierarchy would connect
the regulators to the genes via a single TF. To investigate these hypotheses, we follow
a two step procedure. In the first step we computationally predict the TFs directly
binding to the promoters of the genes. In the second step we verify whether the TFs
are the regulators themselves, or whether they are controlled by the regulators.

TF-DNA binding predictions To implement the first step, we applied Trans-
Find [68] to search the promoters of the genes in each functional cluster for over-
representation of high-affinity binding of human TFs, which is conserved in their
mouse orthologs (Fig[f.10] A). Since the genes in each cluster share the same func-
tionality, they can be expected to be directly regulated by a common TF. Given a set
of genes, TransFind predicts TFs with affinities to the gene promoters significantly
higher compared to a background set of genes (by default, all genes in the Ensembl57
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4.6 Deregulation can be explained by a hierarchy of direct TF-DNA binding events

database). Affinities are computed from a physical model, based on positional TF
weight matrices. We tested a reduced set of human TRANSFAC [130] matrices, con-
taining only a single, the most informative matrix for each TRANSFAC TF, setting
all parameters to default. TransFind assesses the significance of binding to the pro-
moters of a set of input genes with a multiple-testing-corrected (FDR) version of
the Fisher’s exact test. Only results with FDR < 0.05 were considered significant.
Among the identified TFs, CREB has binding sites significantly enriched in the pro-
moters of genes in the DNA repair cluster. Neither RelA nor p53 were predicted to
bind directly to the promoters of the genes in the functional clusters.

CREB as the intermediate factor in the hierarchy In the second step, we consider
the hypothesis of the parsimonious hierarchy. Here, we focus on CREB, leaving other
predicted TFs as candidates for future investigation. The hypothesis consists of a
deregulatory connection from the ATM pathway to CREB, implemented by RelA
or ph3 directly binding to CREB promoter in the damaged cells and not binding in
the healthy cells. To complete the picture, we collected the most likely direct target
genes of CREB. Based on high-throughput CREB binding data in HEK293T cells by
Zhang et al. [140], seven out of top twenty predicted CREB targets in the DNA repair
cluster bear evidence of CREB binding (Fig B). Additionally, we report two genes
outside of the cluster, PWP1 and NOLC1. Both are deregulated in our system, as
well as have yeast homologs, which according to the study by Workman et al. [134]
are deregulated by SKO1, an yeast homolog of CREB. PWP1 is also reported as
bound by CREB in HEK293T cells [140]. Figl4.10] C brings together these pieces
of evidence in a hypothetical regulatory network. The network shows a two-step
hierarchy, going from the ATM pathway, via CREB, to the nine most likely CREB
target genes, which are deregulated between healthy and the damaged cells.
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Figure 4.10: A hypothetical deregulatory hierarchy. (A) TFs with high affinity binding
overrepresented in the promoters of genes in the functional clusters and in promoters of
their mouse orthologs. Only binding predictions with FDR < 0.05 are shown. (B) Nine
deregulated genes with strong evidence of regulation by CREB (gene names are given in the
Name column; deregulation scores averaged over RelA, ATM and p53 in the AvgD column).
Seven genes belong to the DNA repair cluster and have a high affinity binding of CREB to
their promoters conserved in mouse (colored background). PWP1 and NOCL1 have yeast
homologs (given in the YH column; NA — homolog not known), which are deletion-buffered
(DB — deletion-buffering p-value; [134]) by SKO1, a CREB homolog in yeast. That means,
both genes change expression in wild-type cells in response to methyl-methanesulfonate
(shortly, MMS, a double-strand breaks-inducing drug) and do not change when SKO1 is
knocked down. Moreover, the promoters of PWP1 and NOLC1 homologs are not bound
by SKO1 in the healthy yeast cells (binding p-values for the SKO1 binding given in the
YPD column), and are bound by SKO1 in the cells damaged by MMS (p-values in the
MMS column). Promoters of all nine genes but NOLC1 are bound by CREB in HEK293T
cells (p-values, averaged over three time points of forskolin stimulation given in the CREB
column; [I40]). (C) Putative gene deregulatory network. Top: ATM pathway. Middle: The
pathway deregulating CREB. Below: CREB regulating its most likely gene targets (genes
with additional evidence shown in B). Genes are colored in shades of violet according to
their deregulation, averaged over the regulators RelA, ATM and p53. The hierarchy is a
hypothetical mechanistic explanation of deregulation of those genes, observed between the
healthy and the damaged cells. The ATM pathway indirectly deregulates the genes by
deregulating CREB.
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4.7 Discussion

4.7 Discussion

Reprogramming of cellular character manifests itself in different cellular signaling,
and, in a consequence, changes of the downstream regulatory relations. In this chap-
ter we presented an approach for quantifying these changes. JODA combines cell
population-specific data and prior information from the interconnected levels of the
pathway and of gene regulation.

The information about the pathway topology in a given cell populations is formalized
in a simple model. Note that neither the pathway topologies nor the pathway models
are intended to capture the dynamics and full spectrum of molecular interactions in
signaling pathways. Instead, they are static and limited only to activatory signaling
relations. The chosen modeling formalism is adjusted to the analyzed ATM pathway
and available qualitative knowledge. The model in a simplified way represents how
the perturbations interrupt the flow of activations in the modeled pathway. The per-
turbations are required to turn the targeted regulator down (i.e., we do not model
over-expressions). To relax these constraints the approach could be adapted to incor-
porate logical models introduced in chapter |3 formalizing a broad range of signaling
relations and allowing all possible perturbation experiments. Such extension would
require distinguishing the experiments affecting a given regulator into two classes:
one of experiments which down-regulate, and one of experiments which up-regulate
the target genes of this regulator. Logical models represent deterministic knowledge.
To incorporate a probabilistic formalism in our approach, a Bayesian network model
could be applied instead.

Note that, unlike numerous approaches inferring gene regulation from expression
data [86], 85], we do not measure the activity of the regulators from their expression
levels. Concluding activity from expression has several drawbacks. First, transcrip-
tion factors are often expressed on low mRNA levels and thus detection of their
activity profile based on expression measurements may fail due to noise in the data.
Second, regulator activity is modulated in many ways on post-translational level of
signaling, by phosphorylation, ligand binding, degradation, etc. Thus, we follow Gat-
Viks and Shamir [41] and Szczurek et al. [I17] and derive the regulator activity from
a given model of signaling pathway. The regulators are treated as proteins, and their
activity in a given perturbation experiment depends on the perturbation and on sig-
naling relations which exist on post-translational level. Thus, assuming the input
pathway topologies are correct, the pathway models should encompass all means of
influencing the regulators present in the two cell populations, such as phosphorylation
or ligand binding.

This dependence on the pathway models implies that the correctness of the models
is critical for the correctness of our results. JODA may fail when the input pathway
topologies are insufficient. To assure high quality of the pathway models, they should
first be confronted with available data and corrected using refinement procedures (see,
for example, refinement strategy introduced by Gat-Viks and Shamir [41]). Moreover,
the remaining genes (not the regulators) are measured from their expression levels,
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and their regulation is judged based on their transcriptional response to the perturba-
tions of the regulators. The current view of regulation of gene expression in molecular
biology [I11] is more complex and includes, for example, post-transcriptional degra-
dation by microRNAs. Ideally, our approach should integrate evidence of all means of
gene regulation. We hope such integrative methods will be developed in the future.

Importantly, our analysis can still be performed without any input knowledge. This
option is valuable particularly in non-model organisms or under unusual experimental
circumstances, where not much more is available other than newly generated expres-
sion data. In case when signaling relations between the regulators are not known,
the input topologies given to JODA should be fully disconnected graphs. This corre-
sponds to inferring regulator-target gene relations for each regulator independently,
only based on the perturbation data for this regulator. In case when no regulator-
target gene relations are given, JODA evaluates probabilities of differential expression
(see the first step of the algorithm above) using unsupervised, instead of partially su-
pervised mixture modeling. However, as we show below, incorporation of knowledge
greatly improves the quality of deregulation analysis. Therefore, even if only par-
tial information is available either about the signaling pathways, or about the target
genes, it is still beneficial to provide it as input to JODA.
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Chapter 5

Conclusions and discussion

In this final chapter we summarize the improvements brought by the solutions proposed
in this thesis. We contrast the simplifying assumptions made in the thesis with the
biochemistry of cellular processes. We conclude by placing our approach in the general
context of systems biology.

Advantages of our knowledge-based approach  Methods proposed in this thesis
bring several important improvements in different aspects of the solved problems.

In chapter [2| we develop a novel belief-based approach for partially supervised mixture
modeling. Partially supervised modeling utilizes examples of observations that are
labeled with their known mixture model component. The examples can be imprecise
and are treated as probable rather than certain. The newly introduced belief-based
modeling is compared to previously proposed soft-label modeling. The results favor
application of the belief-based method in case when there are only a few examples and
a large amount of unlabeled data. We show that the belief-based mixture estimation
is less susceptible to bias in numbers of examples per cluster than the soft-label
modeling. We demonstrate the advantage of both partially supervised methods over
other mixture modeling variants which differ with respect to incorporating knowledge:
from unsupervised and semi-supervised modeling to fully supervised modeling. In
contrast to the semi- and fully supervised methods, partially supervised modeling
handles even erroneous examples. Such examples may not fit with the rest of the
data in their believed cluster and can get “re-clustered” in the output. In this way,
partially supervised modeling tells which of the examples are incorrect according to
the data.

We propose the application of both belief-based and soft-label methods to partially
supervised differential expression analysis. The analysis utilizes given examples of
genes that are believed to be differentially expressed. The examples guide model-
based clustering to more precisely delineate genes that are down- or up-regulated
from genes that are unchanged in one experimental condition compared to the other.
Thus, the partially supervised approach itself decides on cut-off thresholds between
expression measurements of these clusters of genes, which otherwise have to be set
ad-hoc. Our results on synthetic and real data argue for the use of both belief-based
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and soft-label methods in determining the differentially expressed genes. We show
three applications of our partially supervised approach to gene expression data: First,
we identify targets of Stel2 using knockout data in yeast, given knowledge from a
Stel2 binding experiment. Second, we distinguish miR-1 from miR-124 targets based
on expression data from transfection experiments, with the use of computationally-
predicted targets of either microRNAs. Third, we improve the clustering of cell cycle
gene time-course expression profiles by using our approach in a pre-processing step:
data from each time point in a particular cycle phase is analyzed to find probability
of up-regulation, given literature examples of genes active in this cycle phase.

In chapter [3| we present a new systems biology framework guiding the choice of per-
turbation experiments in research on a particular signaling pathway, investigating
the regulation of the pathway’s target genes. The framework iterates design of ex-
periments and identification of regulatory relationships. To avoid ambiguity in the
identification process, the experimental design algorithm MEED chooses the experi-
ments that maximize diversity between expression profiles of genes regulated through
different mechanisms. MEED takes advantage of qualitative knowledge about signal-
ing relations in the pathway, formalized in a simple logical model. Basing on the
model predictions, the algorithm has the ability to choose experiments without ac-
cess to high-throughput experimental data. The novelty of MEED lies in considering
potential dependencies between the suggested experiments. With this innovative fea-
ture, unlike extant approaches, MEED can design at once a set of informative, non-
redundant experiments that can be efficiently performed together in a lab. MEED
instructs the researcher about both environmental conditions and eventual perturba-
tions to be performed on the pathway. The expansion procedure reconciles the model
predictions with the data from the designed experiments to provide rich regulatory
hypothesis: a set of identified target gene modules, their regulators in the pathway
and their regulatory mechanisms.

These features of our framework make up a practical research procedure, which was
extensively analyzed (both computationally and biologically) and applied to identify
gene regulatory modules downstream of interconnected yeast MAPK pathways. Our
results show that MEED can significantly reduce the amount of experimental work
required to elucidate regulatory mechanisms downstream of a given pathway. More-
over, we demonstrated that even having a predefined set of perturbed molecules, an
experimenter can significantly benefit from consulting MEED with regard to possible
environmental stimulations and the type of genetic perturbations. Taken together,
our approach opens the way to practical experimental design based on well-established
qualitative biological knowledge.

Deregulation analysis of knockdown data with JODA (chapter [4]) quantifies changes
of gene regulation between two cell populations. The practical benefit from our ap-
proach is that ut keeps the deregulation analysis in the strict biological context of
pathway-induced gene regulation in the cell populations under study. For each cell
population separately, the approach incorporates given information about: (i) sig-
naling topology active upstream of the studied regulatory relations and (ii) known
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relations between TF's in the pathway and their target genes. To our knowledge, we
are the first to consider that such prior information can be different for the compared
cell populations. JODA proceeds in three steps. In the first step, we employ the par-
tially supervised approach introduced in chapter [2| for differential expression analysis
of the knockdown data. Here, the known target genes are utilized as examples of
differential genes. In the second step, we use signaling pathway topologies, formal-
ized in two simple models, one per each cell population. The models tell which of the
knockdown experiments affect regulatory activity of a given regulator in the pathway:.
Given data from those experiments, we compute regulation scores summarizing the
regulatory impact of each regulator on the target genes downstream of the pathway.
In the third step, the regulatory signal from the two different cell populations is
joined into one deregulation score by taking a difference of the regulation scores. Our
results show advantage of JODA over investigating each cell population separately
or without incorporation of prior knowledge.

In our analysis we focused on deregulation between healthy cells and cells with NCS-
induced DNA double strand breaks. The obtained deregulation scores were further
analyzed, first validating their congruence with the existing biological knowledge and
next bringing new results. By finding functional clusters of the deregulated genes, we
showed that the method assigns dominant deregulation scores to the genes playing
important roles in the program of general response to DNA damage. Additionally, we
investigated cooperativity between these deregulated genes, identifying known path-
ways and complexes in which the genes participate. We reviewed the DNA-damage
related functionality of the genes with most extreme deregulation scores. Finally, we
analyzed the indirect regulatory impact of the regulators in the ATM pathway on
the genes in the functional clusters. An important advantage of our methodology
is that it leads to testable mechanistic hypotheses. Here, we proposed a hierarchy
of direct regulatory interactions by connecting the pathway to the deregulated DNA
repair genes via the transcription factor CREB. Our analysis shows that JODA is a
step forward to a systems level, mechanistic understanding of the of changes in gene
regulation between different cellular environments.

Our simplifying assumptions versus cellular biochemistry  In this work, we make
several simplifying assumptions.

e Known signaling pathway Both the MEED framework (chapter [3) and the dereg-
ulation analysis (chapter [4)) can fail when the input signaling pathway models
are insufficient. The models are always treating signaling as a part isolated from
the rest of the cell entity. In reality, there are many molecular interactions be-
tween both parts. To assure high quality of the input models, they should first
be confronted with available data and corrected using refinement procedures (e.g.,
introduced by Gat-Viks and Shamir [41]).

e Measurement errors Errors in gene expression data may distort the partially su-
pervised differential expression analysis proposed in chapter 2 The quality of the
data influences reconstruction of regulatory relations both by the MEED frame-
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work (chapter [3)) and the deregulation analysis (chapter [4)), where gene expression
measurements are processed using POE ([40]; section and the partially super-
vised approach, respectively.

e Separation of time scales Reasoning about gene regulation based on perturbation
data is limited to the immediate gene expression response that is secondary to
signaling. We rely on the assumption that the system state can be explored be-
fore transcriptional feedback mechanisms are activated and affect the pathway.
Indeed, in our case studies, the signaling models do not include slower temporal
processes such as feedback loops, and are integrated with expression profiles mea-
sured shortly after stimulation, during the immediate gene expression response.

e Gene regulation The current view of regulation of gene expression in molecular
biology [77, [IT1] is more complex than the pure dependence of mRNA levels on
transcription factor activity. Other means of regulation include, for example, post-
transcriptional degradation by microRNAs. Ideally, our approaches should inte-
grate measurements from high-throughput microRNA activity screens. Such data
is not available now, but hopefully will be a subject of future experimental studies.

Setting in systems biology  Systems biology paradigm states that the biological
function of a given system can only emerge from interconnection of basic system com-
ponents on multiple levels [2]. Bruggeman and Westerhoff [18] divide systems biology
into two classes of either bottom-up or top-down approaches. The approach admin-
istrated in this thesis belongs rather to the top-down class, extended by the input of
additional knowledge. In plain words, our approach can be described as “grasping a
basic system component by placing it in a bigger picture”. The basic component in
our focus is gene regulation. The bigger picture is the cellular context of upstream
signaling pathway and regulatory relations already established by previous studies
(see section [I.1). Information about this context is collected from various sources,
from literature reports about individual genes to high-throughput experimental mea-
surements of gene expression or transcription factor-DNA binding.

Empowered by the additional sources of knowledge, our approach naturally yields
increased biological specificity and robustness of our findings. Importantly, our
thinking leads beyond standard applications of modeling in systems biology. The
dominant holistic trend promotes building and improving elaborate models of the
biological system per se (e.g. series of ever advancing models of the EGF MAPK
pathway [106], 14, [73, 96, 08]). Such models are applied to provide experimentally
testable predictions of system behavior and are refined if the predictions do not agree
with the data [58] [70]. In contrast, our approach opens an opportunity to utilize
such optimized models to infer other components of the biological system. For ex-
ample, both in the MEED framework (chapter [3)) and in the deregulation analysis
(chapter {4)) we expand a given signaling pathway model with downstream regulatory
relations. Similarly, outcomes of numerous approaches for inferring regulatory net-
works [8, [86] may provide input knowledge for our partially supervised differential
expression analysis (chapter [2)).
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Figure .1: Regulatory functions in the yeast model. Regulation functions determine the
state of each variable (output, in red) given the states of its regulators (input, in black).
EOC — Environmental Osmotic Concentration.
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Performed Experiment Modeled experiment Experimental ED***
Study
# 3 |E
Stimulation***| Perturbation Stimulation Perturbation a Q|s gl 2
w|e|2e 2
|2 88 3
1] Control STE11 KO* |EOC:0 Pheromone:0|  Ste11:0 %gg?”s‘ etal,
2| control SLN1KO |EOC:0 Pheromone:0| SIn1Ypd1:0 (2'\(’)'82')'“”6*‘ otal, | 5|4 6
Control HOG1 KO [EOC:0 Pheromone:0 Hog1:0 (Hahn et al., 2004)
Control STE7KO |EOC:0 Pheromone:0|  Ste7:0 (2%82‘;”3 etal, 8
5 Control KSS1 KO EOC:0 Pheromone:0| Kss1/Fus3:0 (2%83?”5 etal,
6| Control STE12KO |EOC:0 Pheromone:0|  Ste12:0 (2%88?”3 etal,
7 Control STE12 OE |EOC:0 Pheromone:0 Ste12:2 (Chuaetal,2006)| 9 |10]| 6
8 Control MSN1 KO [EOC:0 Pheromone:0 Msn1:0 (Hahn et al., 2004) 11
9 Control SKO1 KO |EOC:0 Pheromone:0 Sko1:0 (Hahn et al., 2004) | 2 [12
10 Control MSN2 KO | EOC:0 Pheromone:0 | Msn2Msn4:0 |(Hahn et al., 2004)
11 Control MSN2 OE** [EOC:0 Pheromone:0 | Msn2Msn4:2 [(Chua et al., 2006) [ 11|13 11| 7
12| 50aF in 30min - EOC:0 Pheromone:2 - (2%88?'13 etal,
13| 50aF in 30min | STE20KO |EOC:0 Pheromone:2|  Ste20:0 (2%88‘)3”3 etal., 2|9
14| 50aF in 30min | FUS3D KO |EOC:0 Pheromone:2| Kss1/Fus3:0 (2%83‘)3”5 etal, 4109
15| 50aF in 30min | STE12KO |EOC:0 Pheromone:2|  Ste12:0 (2%88‘)3”3 etal, 5
0.125M KCl in . ) (O'Rourke and
16 20min - EOC: Pheromone:0 ) Herskowitz, 2004)
0.125M KCl in . ) . (O'Rourke and
17 20min STE11 KO [EOC:1 Pheromone:0 Ste11:0 Herskowitz, 2004)
0.125M KCl in . ) .~ |(O'Rourke and
18 20min SSK1 KO |EOC:1 Pheromone:0| Ssk1/2/22:0 Herskowitz, 2004) 10
0.125M KCl in . ) ) (O'Rourke and
19 >0min HOG1 KO |EOC:1 Pheromone:0 Hog1:0 Herskowitz, 2004)
0.5M KCl in . . (O'Rourke and
20 40min - EOC:2 Pheromone:0 - Herskowitz, 2004) 1
0.5M KCl in . ) . (O'Rourke and
21 40min SHO1 KO |EOC:2 Pheromone:0 Sho1:0 Herskowitz, 2004) 8 | 1
0.5M KCl in . . . (O'Rourke and
22 40min STE11 KO [EOC:2 Pheromone:0 Ste11:0 Herskowitz, 2004) 10 3 | 8
0.5M KCl in . . .~ |(O'Rourke and
23 40min SSK1 KO EOC:2 Pheromone:0| Ssk1/2/22:0 Herskowitz, 2004) 715
0.5M KCl in . . . (O'Rourke and
24 40min PBS2 KO [EOC:2 Pheromone:0 Pbs2:0 Herskowitz, 2004) 3|6
0.5M KCl in . ) ) (O'Rourke and
25 40min HOG1 KO |EOC:2 Pheromone:0 Hog1:0 Herskowitz, 2004) 67 |71|5

Figure .2: 25 candidate experiments on the yeast model. *KO — knock-out; **OE — over-
expression; ***The numbers indicate the order in which the experiments were chosen by
each method; ****The time point between 20 and 40min is the peak immediate gene ex-
pression response to the pathway.
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Notation and Definitions

All chapters
BGMM ........ belief-based Gaussian mixture modeling
MEED ......... model expansion experimental design
JODA.......... joint deregulation analysis
FDR........... false discovery rate
POE .......... Probability Of Expression
GO ............ Gene Onthology

Chapter [1]
DNA........... deoxyribonucleic acid
RNA........... ribonucleic acid
mRNA ......... messenger RNA
TF............. transcription factor
PCR........... polymerase chain reaction
RNAi.......... RNA interference
dsRNA......... double-stranded RNA
siRNA ......... short interfering RNA
shRNA......... small hairpin RNA
RISC........... RNA-induced silencing complex
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Chapter 2|
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Chapter {4

b cell population

V =A{vy,...,v,}  set of regulators

Gy = (V,A;).... pathway topology in a cell population ¢ with set of nodes V' and
directed edges A;

Aty .o perturbation of v in a given cell population ¢

Eeoooooo set of all experiments perturbing regulators in V' in cell popula-
tion ¢

Gy oo transitive reflexive closure of given pathway topology G,

My oo model matrix

Eppoooooiiiiio. set of all perturbation experiments that affect regulator v in cell
population ¢

hoooo population of healthy cells

d .............. population of damaged cells
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R o vector of regulation scores of the genes for regulator v in cell
population ¢
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Zusammenfassung

Die vorliegende Doktorarbeit befasst sich mit der Aufklarung der Regulierung von
Genexpression im Kontext von bekannten zellularen Signalwegen und regulierten
Genen. Wir analysieren Daten von experimentellen Interventionen, die auf Sig-
nalkomponenten zielen. Solche Experimente verursachen Anderungen in der Genex-
pression der durch den Signalweg regulierten Genen. Die in dieser Doktorarbeit en-
twickelten Ansétze 16sen verschiedene Probleme im Bereich der Kontext-spezifischen
Genregulierung.

In Kapitel |2l entwickeln wir eine Methode zur differentiellen Expressionsanalyse der In-
terventionsdaten, die vorgegebene Beispiele differentieller Gene nutzt. Hochdurchsatz-
Genexpressionsexperimente ermoglichen einen Vergleich zweier experimenteller Be-
dingungen. Die Messungen werden einer Analyse unterzogen, um die Gruppen von
Genen zu bestimmen, die unter einer der Bedingungen hoch- oder herunterreguliert
werden, oder deren Expression gleich bleibt. Mittels Expertenwissen konnen bes-
timmte Gene diesen verschiedenen Gruppen zuordnen werden. Zum Beispiel er-
wartet man, dass Gene, die von einem transkriptionellen Aktivator reguliert werden,
nach dem Ausschalten dieses Aktivators herunterreguliert werden. Etablierte Metho-
den zur differentiellen Expressionsanalyse ignorieren solch unprazise Beispiele, unsere
schlieit sie systematisch mit ein. Wir benutzen sogennante partially supervised Mis-
chmodellierung, die eindimensionale Expressionsdaten in Gruppen von differentiell
regulierten und unveranderten Genen aufteilt und dabei von unprazisen Beispielen
profitiert. Dieser Ansatz wird von zwei Methoden realisiert: einer neuen belief-based
Mischmodellierung, die wir hier vorstellen, und der frither entwickelte soft-label Mis-
chmodellierung. Tests zeigen, dass sowohl die belief-based als auch die soft-label Meth-
ode falsche Beispiele besser korrigieren als die semi-supervised Mischmodellierung.
Wir vergleichen unsere partially supervised Methodik auch mit alternativen Ansatzen
zur differentiellen Expressionsanalyse und zeigen, dass die Aufnahme von unpréazisem
Wissen bessere Ergebnisse erzeugt. Wir priasentieren verschiedene Anwendungen der
Methodik.

In Kapitel [3] befassen wir uns mit der Planung von Interventionsexperimenten fiir
einen gegebenen Signalweg. Fiir die systematische Rekonstruktion der Genregula-
tion durch einen Signalweg werden informative experimentelle Daten benotigt. Wir
stellen einen allgemeinen Ansatz fiir diese Rekonstruktion vor. MEED, eine experi-
mentelle Design-Komponente unseres Ansatzes, schliagt eine méglichst kleine Anzahl
von gezielten Interventionsexperimenten in dem Signalweg vor. Um Mehrdeutigkeit in
der Identifizierung der Regulierungsverhéltnisse zu vermeiden, maximiert die Auswahl
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Zusammenfassung

der Experimente den Unterschied zwischen Expressionsprofilen von Genen, die durch
verschiedene Mechanismen reguliert werden. Mittels eines pradiktiven logischen Mod-
ells bezieht dieser Ansatz auch Expertenwissen iiber die Signalwege mit ein. MEED
beriicksichtigt prognostizierte Abhéngigkeiten zwischen Experimenten und kann so
einen ganzen Satz Experimente vorschlagen, die gleichzeitig durchgefiihrt werden
konnen. Wir wenden unseren Ansatz auf verbundene Signalwege in der Hefe Sac-
charomyces cerevisiae an. Im Vergleich zu anderen Methoden schlagt MEED die
informativsten Experimente fiir unzweideutige Identifizierung von transkriptioneller
Regulation in diesem System vor.

In Kapitel [ stellen wir eine Anwendung zur Deregulationsanalyse vor, d.h., zum
Vergleich von Anderungen in der Genregulierung zwischen zwei Zellpopulationen.
Vorhandene Deregulationsstudien lassen verfiighares Wissen iiber den zellularen Kon-
text dieser Anderungen auBer acht. Wir untersuchen Deregulation mittels zellpopu-
lationsspezifische Interventionsdaten, und mittels zusatzlichen Wissens, das fiir beide
Zellpopulationen iiber der Signalweg-Topologien und Gene, die von diesem Signal-
weg reguliert werden, gegeben ist. Unser Ansatz verbindet Ideen aus den vorherigen
Kapiteln. Die bekannten regulierten Gene werden als Beispiele von differentiellen
Genen in der partially supervised differentiellen Expressionsanalyse der Interventions-
daten (Kapitel [2)) benutzt. Die Signalweg-Topologien werden als einfache Modelle
formalisiert und in der Rekonstruktion der Genregulierung wie in Kapitel |3| genutzt.
Wir quantifizieren Deregulation durch die Zusammenfassung von Regulierungssig-
nalen der zwei Zellpopulationen in einen Wert. Unser Ansatz, JODA, stellt sich als
vorteilhaft gegentiber separater Analyse der Zellpopulationen, sowie Analyse ohne
Aufnahme von verfiigharem Wissen heraus. Mittels JODA charakterisieren wir weit
verbreitete Verdanderungen der regulatorischen Netzwerke, die durch DNA Schéaden
in menschlichen Zellen verursacht sind.
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