
Chapter 4

DFT And Thermodynamics

Density-functional theory has nowadays become a standard tool for electronic struc-
ture calculations. Using this technique a detailed insight into the microscopic regime
can be obtained. On the other hand one would like to understand and describe mate-
rial science problems, like in this work heterogenous catalysis, which are clearly on a
macroscopic time and length scale. To explain macroscopic phenomena on the basis
of a microscopic understanding a huge range of time and length scales needs to be
covered. To find an appropriate linking between the micro-, meso- and macroscopic
regime is referred to as multiscale modeling approach [27, 28]. In Fig. 4.1 the time
and length scales for the different regimes are schematically shown. Also the different
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Figure 4.1: Schematic representation of the time and length scales for the micro-, meso- and macro-
scopic regime. Several methods have been developed to tackle problems within a certain regime.
In the multiscale modeling approach an appropriate linking between the different regimes is devel-
oped, so that information obtained in the microscopic regime can, e.g., be transferred into the meso-
and macroscopic regime (from Ref. [27]). The present study concentrates on a linking between the
electronic and macroscopic regimes.
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Chapter 4. DFT And Thermodynamics

methods used in this work to describe the different regimes are indicated. As already
mentioned DFT is used for the electronic (microscopic) regime. The results from DFT
are then combined with concepts from thermodynamics and statistical mechanics to
reach the meso- and macroscopic regime. Since the results obtained within DFT do
not rely on semi-empirical or fitted parameters they are referred to first principle or
ab initio. Using DFT or other first-principle electronic structure theory results as
input to macroscopic theories is similarly classified as first-principle (ab initio).

This Chapter focuses on the linking between DFT and thermodynamics, whereas
in Chapter 5 a combination of DFT and statistical mechanics is described.

4.1 Ab Initio Atomistic Thermodynamics

In results obtained from electronic structure calculations temperature and pressure
effects are not included, i.e. all evaluated physical quantities are strictly only valid
at T = 0K and p = 0atm. The effect of temperature on the atomic positions can
be obtained, though, by evaluating the total energy as a function of the nuclear
positions, {RA}, on the Born-Oppenheimer surface (cf. Section 2.1). The result-
ing Born-Oppenheimer potential energy surface can then be used to extract further
information as e.g. vibrational modes. To now actually describe situations of finite
temperatures and pressures the results from DFT calculations can be used as an input
to thermodynamic considerations [70–73]. The appropriate thermodynamic functions
can then be evaluated over the whole temperature and pressure range.

The key quantity in studying a (T, p)-ensemble is the Gibbs free energy G

G(T, p) = Etot + F vib − TSconf + pV . (4.1)

The leading term is the total energy Etot, which is directly obtained from the electronic
structure calculations. The second term F vib accounts for the vibrational contribu-
tions (with F vib = EZPE − TSvib being the vibrational free energy). The third term
TSconf includes configurational entropy and the last one is the pV -term. An evalua-
tion of the different contributions to the Gibbs free energy will be exemplified below
for the calculation of the surface free energy and the Gibbs free energy of adsorption.

The combination of DFT and thermodynamics is applicable to systems, that are in
thermodynamic equilibrium. This implies another important concept. A system in
thermodynamic equilibrium can be divided into smaller subsystems, which again are
in thermodynamic equilibrium with each other. In the atomistic thermodynamics ap-
proach every subsystem can then be treated separately within DFT. This is especially
useful, if infinite but homogeneous subsystems, such as bulk or gas phases acting e.g.
as a reservoir, are involved [8, 9, 74–77].

The general concept of atomistic thermodynamics is exemplified here once for the
calculation of the surface free energy and once for the Gibbs free energy of adsorption.
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Chapter 4. DFT And Thermodynamics

4.2 Surface Free Energy

In equilibrium, a one-component system can be fully described by its internal energy
E, which depends on the entropy S, the volume V and the number of particles N in
the system

Ebulk = TS − pV + Nµ , (4.2)

with µ being the chemical potential. If a homogeneous solid is cleaved, two surfaces of
size A are being created. Since this process does not occur spontaneously the internal
energy of the system has to increase by an amount proportional to A. The constant
of proportionality is defined as the surface energy γ [78], so that the internal energy
of a cleaved crystal can be written as

Esurf = TS − pV + Nµ + γA . (4.3)

Introducing again the Gibbs free energy G = E − TS + pV and rearranging Eq. (4.3)
the surface free energy for a one-component system is defined as

γ =
1

A
[Gsurf −Nµ] , (4.4)

where Gsurf is the Gibbs free energy of the cleaved crystal. For a multi-component
system being in equilibrium with atomic reservoirs (e.g. a surrounding gas or liquid
phase environment, or a macroscopic bulk phase) the expression for the surface free
energy can be written more general as

γ(T, pi) =
1

A

[
Gsurf −

∑
i

Niµi(T, pi)

]
. (4.5)

Gsurf is again the Gibbs free energy of the solid including the surface and µi(T, pi) is the
chemical potential of the various species i present in the system. In the following the
application of Eq. (4.5) to metal oxides in equilibrium with a surrounding oxygen gas
phase is discussed (cf. Fig. 4.2). All presented equations can be applied similarly to
any other two-component system or easily be extended to multi-component systems.
In the case of a metal oxide the surface free energy is a function of the chemical
potential of the metal µM and the oxygen µO

γ(T, p) =
1

A

[
Gsurf(T, p,NM, NO)−NMµM(T, p)−NOµO(T, p)

]
(4.6)

Here, NM and NO are the number of metal and oxygen atoms within the finite part
of the total (infinite) system, Gsurf , that is influenced by the created surface. With
increasing distance from the surface the solid as well as the gas phase part of the
total system will become equivalent to the homogeneous solid and gas phase systems
represented by µM and µO. By subtracting the respective amount of the homogeneous
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Bulk oxide

Surface

Gas Phase

Figure 4.2: Surface in thermodynamic equilibrium with a surrounding gas phase and the underlying
bulk phase. If the different phases are in thermodynamic equilibrium, their chemical potentials have
to be equal. Thus the system can be divided into three subsystem, bulk oxide, surface and gas phase,
the energetics of which can be treated separately within DFT.

systems from the total system these parts are effectively canceled out, so that the sur-
face free energy can sufficiently be determined by the finite part containing NM metal
and NO oxygen atoms. Because the surface is in equilibrium with the underlying bulk
oxide, the two chemical potentials µM and µO can not be varied independently. They
connect via the Gibbs free energy of the bulk oxide. In thermodynamic equilibrium
this is determined by

xµM + yµO = gbulk
MxOy

(T, p) , (4.7)

where the small g denotes the Gibbs free energy per formula unit. Substituting
Eq. (4.7) into Eq. (4.6) one obtains the surface free energy depending only on the
chemical potential of the oxygen µO

γ(T, p) =
1

A

[
Gsurf(T, p,NM, NO)− NM

x
gbulk
MxOy

(T, p)− (NO −
y

x
NM)µO(T, p)

]
.

(4.8)
The chemical potential is fully determined by the temperature and pressure conditions
of the surrounding oxygen gas phase. Using Eq. (4.8) the surface free energy of any
given metal oxide surface can be calculated and their thermodynamic stabilities can
be compared with respect to the given gas phase conditions.

Range Of Allowed Chemical Potentials

Although the oxygen chemical potential µO can theoretically be varied from minus
to plus infinity, it only makes sense within certain boundaries. For a metal oxide a
suitable lower boundary of µO, which will be called the O-poor limit, is defined by the
decomposition of the oxide into the pure metal and gas phase oxygen. In terms of
thermodynamic quantities this point is reached, if the chemical potential of the metal
in the considered oxide system, µM, becomes larger than its Gibbs free energy in the
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metal bulk, gbulk
M . This upper bound of µM,

µM ≤ gbulk
M (4.9)

can be transformed into a lower bound of µO by utilizing Eq. (4.7)

µO(T, p) ≥ 1

y

(
gbulk
MxOy

(T, p)− xgbulk
M (T, p)

)
. (4.10)

A reasonable upper bound of the chemical potential for a system describing a surface
in equilibrium with a gas phase is given by such gas phase conditions, in which the
gaseous component is so highly concentrated, that condensation will start on the
sample at low enough temperatures. Again, for the example of a metal oxide in
equilibrium with an oxygen gas phase this O-rich limit will be defined here as

µO ≤ 1/2Etot
O2

, (4.11)

with Etot
O2

being the total energy of the oxygen gas phase. Combining Eq. (4.10) and
Eq. (4.11) the range of evaluated oxygen chemical potential is given by

1

y

(
gbulk
MxOy

(T, p)− xgbulk
M (T, p)− y

2
Etot

O2

)
︸ ︷︷ ︸

' ∆Gf
MxOy

(0, 0)

≤ µO(T, p)− 1/2Etot
O2︸ ︷︷ ︸

∆µO(T, p)

≤ 0 . (4.12)

Here, ∆Gf
MxOy

(0, 0) is the heat of formation of the corresponding bulk oxide at
T = 0K. By replacing µO with ∆µO the total energy of the oxygen gas phase,
1/2Etot

O2
, which marks the upper boundary, is set as a zero reference. This can be

done, because the total energy Etot
O2

does not depend on temperature and pressure.
All (T, p)-dependent terms are summarized in ∆µO, cf. Section 4.4. The lower bound
is thus approximated by the heat of formation at T = 0K. The temperature and
pressure dependence of the lower bound introduced by gbulk

MxOy
(T, p) and gbulk

M (T, p)
leads only to small deviations in the here discussed (T, p)-range. An additional ad-
vantage of defining the lower bound by ∆Gf

MxOy
(0, 0) is that the heat of formation is

a measurable quantity, which can then also be compared to experimental results.

Surface Free Energy In The O-poor And O-rich Limit

In Eq. (4.8) the dependence of the surface free energy on the chemical potential of
the oxygen gas phase is described. To substitute µO in Eq. (4.8) with the appropriate
upper and lower boundaries, Eq. (4.12) is rewritten as

1

y

(
gbulk
MxOy

(T, p)− xgbulk
M (T, p)

)
≤ µO(T, p) ≤

≤ 1

y

(
gbulk
MxOy

(T, p)− xgbulk
M (T, p)

)
− 1

y
∆Gf

MxOy
(0, 0) .

(4.13)
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Figure 4.3: Example of plotting the surface free energy γ vs. the chemical potential of the surrounding
gas phase ∆µO. The surface free energy of a stoichiometric surface composition will be independent
of the gas phase chemical potential (black line), a surface structure with an oxygen excess (red line)
will become more stable and with an oxygen deficiency (blue line) less stable with increasing gas
phase chemical potential. The range of allowed oxygen chemical potential is given by the stability
of the corresponding bulk oxide, 1

y ∆Gf
MxOy

.

The surface free energy in the O-poor limit is then obtained by inserting the left part
of the inequality (4.13) into the expression for the surface free energy (Eq. (4.8))

γO−poor(T, p) =
1

A

[
Gsurf(T, p,NM, NO)− NM

x
gbulk
MxOy

(T, p)

−
(1

y
NO −

1

x
NM

) (
gbulk
MxOy

(T, p)− xgbulk
M (T, p)

) ]
.

(4.14)

In the oxygen-rich limit using the right part of Eq. (4.13) yields similarly

γO−rich(T, p) = γO−poor(T, p) +
1

A

(
1

y
NO −

1

x
NM

)
∆Gf

MxOy
(0, 0) . (4.15)

Eq. (4.8) shows a linear dependence of the surface free energy on the chemical potential
of the oxygen gas phase. The slope of the resulting line, − 1

A
(NO − y

x
NM), is only

determined by the ratio and density of the two components in the system, i.e. in
a stoichiometric surface termination, the surface free energy will not depend on the
oxygen chemical potential, whereas an oxygen excess will lead to a lowering of γ
with increasing µO. Respectively, an oxygen deficiency will lead to an increase in the
surface free energy with increasing µO(cf. Fig. 4.3). The width of the stability range
is determined by the stability of the bulk oxide per oxygen atom, i.e. the heat of
formation 1

y
∆Gf

MxOy
(0, 0).
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Evaluating The Gibbs Free Energy

To quantitatively calculate the surface free energy in the O-poor and O-rich limit the
Gibbs free energies (as defined in Eq. (4.1)) have to be evaluated for the different com-
ponents. As already mentioned above the leading term is the total energy Etot, which
is obtained directly from the electronic structure calculations. In a first approach, an
order of magnitude estimate of the remaining terms, the pV -term, the configurational
entropy and the vibrational contribution to the surface free energy, is discussed in the
following.

The contribution of the last term in Eq. (4.1), the pV -term, can be approximated by
a simple dimensional analysis. Since the surface energy is calculated per surface area
the pV -term will be roughly [pV/A] =atm Å3/Å2∼ p [in atm]10−3 meV/Å2. Even
for pressures up to p ∼ 100 atm the pV -contribution will thus still be less than ∼
0.1meV/Å2, which in any case will be insignificant compared to the total energy
term. Therefore the contribution of the pV -term to the surface free energy can be
safely neglected.

The contribution arising from the configurational entropy is not as easy to estimate
and strongly depends on the investigated system. For a complete sampling of the
configurational space modern statistical methods, like Monte Carlo simulations, have
to be applied, which will be discussed in the following Chapter.

Focusing here on the surface energy of a well-ordered, crystalline metal oxide, nev-
ertheless some approximations can be derived. Here the configurational entropy will
mainly result from some disorder, e.g. defects, at the considered surface. From sta-
tistical mechanics this configurational entropy is given by

Sconf = kB ln
(N + n)!

N ! n!
(4.16)

for a system with N surface sites an a small number of n defects or adsorbate sites,
so that n � N . With Asite being the surface area per site, i.e. A = NAsite, the energy
contribution from the configurational entropy can be written as

TSconf

NAsite

=
kBT

NAsite

ln
(N + n)!

N ! n!
. (4.17)

Applying the Stirling formula (ln N ! = N ln N−N) to Eq. (4.17), for n, N � 1, yields

TSconf

NAsite

=
kBT

Asite

[
ln

(
1 +

n

N

)
+

n

N
ln

(
1 +

N

n

)]
(4.18)

Assuming that in a moderately disordered surface the ratio of (n/N) stays within
10%, Eq. (4.18) gives

TSconf

A
≤ 0.34

kBT

Asite

. (4.19)

For temperatures up to T = 1000K and surface areas per site of about Asite ≈ 10 Å2

the configurational entropy will thus not contribute more than about 3meV/Å2 to the
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Gibbs free energy of the surface. To a first approximation this contribution is often
also neglected, since in comparing different surface free energies changes in this order
of magnitude are often insignificant. It is, however, important to note, that these
approximations will not hold for systems having highly disordered surface phases.
The atomistic thermodynamics approach as used in this work, on the other hand, is
a direct screening method, i.e. it can only be used to directly compare the stability of
all considered, i.e. of all plausible, structures, but not to sample the configurational
space of all, ordered and disordered, structures (as in Monte Carlo simulations). Thus,
highly disordered surface phases are usually not considered within this approach.

The remaining vibrational contribution F vib in Eq. (4.1) can in principle be cal-
culated using DFT. In practice this is a very time consuming procedure, since the
entire phonon density of states (phonon DOS) σ(ω) at the surface and in the bulk has
to be calculated. The free energy F contains an energy E and an entropy S term,
which can be calculated via the partition function Z of the system using statistical
thermodynamics [79], so that

F vib(T, V, NM, NO) = Evib − TSvib

= − ∂

∂β
ln Zvib − TkB(ln Zvib + βEvib)

= −kBT ln Zvib ,

(4.20)

with β = 1/kBT . The vibrational partition function of an N -atomic, solid system is
defined as [80]

Zvib =
3N∑
i=1

∫
dk

(2π)3

∞∑
n=0

e−[n+(1/2)]β~ωi(k)

=
3N∑
i=1

∫
dk

(2π)3

exp(−1/2β~ωi(k))

[1− exp(−β~ωi(k)]

(4.21)

where ωi(k) are the 3N vibrational modes. Inserting Eq. (4.21) into Eq. (4.20) and
using the phonon DOS σ(ω) the vibrational component of the free energy can then
be written as

F vib(T, V, NM, NO) =

∫
dωF vib(T, ω)σ(ω) , (4.22)

where the frequency dependent function F vib(T, ω) in Eq. (4.22) is then defined as

F vib(T, ω) =
1

2
~ω + kBT ln(1− e−β~ω) . (4.23)

Instead of calculating the full phonon DOS it might be useful to first obtain an esti-
mate of the magnitude of the phonon contribution to the investigated physical quan-
tity, like in this case to the surface free energy γ. Here, the vibrational contribution,
γvib, only enters as the difference in the vibrational energy of atoms in the surface
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(contributions to Gsurf(T, p,NM, NO)) and in the bulk (contributions to gbulk
MxOy

(T, p)

and gbulk
M (T, p)). This yield, e.g., in the O-poor limit

γvib
O−poor(T, V ) =

=
1

A

∫
dωF vib(T, ω)

[
σsurf(ω)− NO

y
σbulk

MxOy
(ω) +

(x

y
NO −NM

)
σbulk

M (ω)
] (4.24)

As a first estimate of the value of γvib
O−poor the phonon DOS can be approximated

by the Einstein model [80]. In the Einstein model the phonon DOS is simply a delta
function at one characteristic frequency ω̄. Here, one characteristic frequency for each
atom type is chosen, i.e. for the metal and the oxygen as well as for atoms in the bulk
ω̄bulk and at the surface ω̄surf . The vibrational free energy of the surface system can
then be expressed as a sum over the different atom types∫

dωF vib(T, ω)σsurf(ω) ≈ 3F vib,surf =

= 3
[
(NO −N surf

O )F vib(T, ω̄bulk
O ) + N surf

O F vib(T, ω̄surf
O )

+ (NM −N surf
M )F vib(T, ω̄bulk

M ) + N surf
M F vib(T, ω̄surf

M )
]

,

(4.25)

where N surf
O and N surf

M are the number of oxygen, resp. metal atoms right at the
surface. For the other terms the vibrational free energy is similarly

F vib,bulk
MxOy

≈ xF vib(T, ω̄bulk
M ) + yF vib(T, ω̄bulk

O ) (4.26)

and
F vib,bulk

M ≈ F vib(T, ω̄bulk
M ) . (4.27)

Substituting Eq. (4.25) – (4.27) into Eq. (4.24) results in the following expression for
the vibrational contribution to the surface free energy of a metal oxide

γvib
O−poor(T, V ) =

3

A

(
N surf

M

[
F vib(T, ω̄surf

M )− F vib(T, ω̄bulk
M )

]
+ N surf

O

[
F vib(T, ω̄surf

O )− F vib(T, ω̄bulk
O )

])
.

(4.28)

In Fig. 4.4 γvib
O−poor is shown for temperatures up to 1000K, using ω̄bulk

M = 20meV and
ω̄bulk

O = 70meV as a coarse estimate for the characteristic frequencies of the metal
and oxygen bulk atoms (considering as example for the characteristic frequencies
PdO [81]). Since the change of the vibrational modes at the surface might be quite
significant due to the change in coordination, the characteristic frequencies at the
surface are allowed to vary ±50% from the bulk values (two black, solid lines in
Fig. 4.4). The surface area A is set to 20 Å2 having one metal and one oxygen atom
at the surface, i.e. N surf

M = N surf
O = 1. Changing the characteristic frequencies for the

bulk atoms by ±50% does not change the magnitude of the vibrational contribution
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Figure 4.4: Estimate of the vibrational contribution to the surface free energy in the O-poor limit.
The Einstein model has been used to approximate the phonon DOS. To account for the change of the
vibrational modes of atoms at the surface compared to bulk atoms, the characteristic frequencies of
the surface atoms are varied ±50 % compared to the bulk frequencies. The dashed-red and dotted-
blue lines represent an additional ±50 % variation of the selected characteristic frequencies of the
bulk atoms.

very much, as can be seen from the dashed-red (-50%) and dotted-blue (+50%) curves
in Fig. 4.4. Here again the frequencies at the surface are varied by ±50% with respect
to the bulk value.

It becomes obvious, that even for temperatures up to 1000K the vibrational contri-
bution to the surface free energy is rather moderate. Nevertheless it has to be stressed,
that this might not in general apply to other surfaces. But the scheme for obtaining
a first coarse estimate of the order of magnitude of the vibrational contribution can
just as well be adapted to other systems. Also the accuracy needed in the surface free
energy is an important factor. If in any case the vibrational contribution turns out
not to be negligible, the calculation of the phonon DOS would become necessary to
include this contribution correctly.

The discussion shows that for the surface free energy of a metal oxide surface the
total energy Etot is indeed the leading term, whereas for the other contributions, F vib,
TSconf and pV , a rough estimate showed, that they are only of minor importance for
the present applications. Again it should be stressed, that this not necessarily valid
in general, but has to carefully tested for every new system.

4.3 The Gibbs Free Energy Of Adsorption

4.3.1 One-Component Gas Phase

As a second example for combining DFT and thermodynamics the Gibbs free energy
of adsorption ∆Gads for a metal surface in equilibrium with a surrounding gas phase is
evaluated in this Section. The Gibbs free energy of adsorption can be used to compare

36



Chapter 4. DFT And Thermodynamics

the stability of different adsorbate phases depending on the gas phase conditions. The
stability of the different adsorbate phases is compared with respect to the clean metal
surface. For an adsorbate phase in equilibrium with an oxygen gas phase, ∆Gads is
given by

∆Gads(T, p) = γM(T, p,N ′
M)− γO@M(T, p,NM, NO)

= − 1

A

(
Gsurf

O@M(T, p)−Gsurf
M (T, p)−∆NMµM(T, p)−NOµO(T, p)

)
,

(4.29)

where Gsurf
O@M is the Gibbs free energy of the metal surface with NO adsorbed oxygen

atoms, Gsurf
M is the Gibbs free energy of the clean metal surface and µO is the chemical

potential of the oxygen atoms. If the number of metal atoms in the adsorbate phase
and the clean surface are not equal, i.e. ∆NM = NM −N ′

M 6= 0, the excess/deficiency
atoms are taken from/put into a bulk reservoir, represented by the gibbs free energy
of the bulk phase, gbulk

M . A is again the surface area. Substituting µO by ∆µO, cf.
Eq. (4.38), yields

∆Gads(∆µO) =− 1

A

(
Gsurf

O@M −Gsurf
M −∆NMgbulk

M −NO(1/2Etot
O2

+ ∆µO)
)

=− NO

A
∆Gbind

O@M +
NO

A
∆µO ,

(4.30)

with ∆Gbind
O@M being the binding energy per adsorbed oxygen atom. The Gibbs free

energy of adsorption shows a linear dependence on the chemical potential of the gas
phase. The slope depends only on the coverage, i.e. the number of oxygen atoms NO

per surface area A. A structure with a higher coverage will therefore depend more
strongly on the oxygen chemical potential than a structure with low coverage. The
Gibbs free energy of adsorption of the clean metal surface is independent of ∆µO and
serves as a zero reference (cf. Fig. 4.5). The y-axis intercept is given by the binding
energy per surface area, −NO∆Gbind

O@M/A, whereas the x-axis intercept is simply given
by the binding energy per oxygen atom, ∆Gbind

O@M. Since the most stable structure will
be the one with the lowest surface free energy, an adsorbate structure will be stable
with respect to the clean surface, if γO@M < γM, i.e. if ∆Gads > 0. For plotting
the Gibbs free energy of adsorption vs. the chemical potential of the gas phase the
y-axis as been inverted in Fig. 4.5, so that the most stable structure always exhibits
the lowest ∆Gads . For ∆µO = 0, i.e. for very oxygen rich conditions, the adsorbate
phase with the most strongly bound adsorbates will be the most stable one.

Range Of Chemical Potential

A meaningful range of ∆µO for plotting ∆Gads has to be found. As already mentioned
above the stability of the different structures is compared with respect to the clean
metal surface, i.e. any structure with a higher surface free energy (resulting in a
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Figure 4.5: Gibbs free energy of adsorption for a surface in equilibrium with a surrounding gas
phase. The clean metal surface serves as a zero reference, ∆Gads = 0. An adsorbate phase will
become stable, if its Gibbs free energy of adsorption is lower than the one of the clean metal surface
(∆Gads > 0). If there is more than one adsorbate phase, always the one with the lowest ∆Gads will
be the most stable one. Here, this is indicated by the red line. With increasing gas phase chemical
potential first the metal phase is stable, then the first and second adsorbate phases become stable.
Finally, if ∆µO > 1

y ∆Gf
MxOy

, the oxide will be more stable than any adsorbate phase on the metal
surface.

negative Gibbs free energy of adsorption, ∆Gads < 0) will not be stable under the
given gas phase conditions. Since all lines have a positive slope, every adsorbate
phase will eventually become unstable with decreasing gas phase chemical potential.
Therefore a meaningful lower bound for the gas phase chemical potential is given by
the last intersection of an adsorbate phase with the clean surface, i.e. below this ∆µO

the clean metal surface is always the most stable phase.

The upper bound for the oxygen chemical potential is given by the heat of formation
of the corresponding bulk oxide ∆Gf

MxOy
. Since the metal oxide contains basically an

infinite number of oxygen atoms, its stability range is marked by a vertical line. For
oxygen chemical potentials greater than the heat of formation (∆µO > 1

y
∆Gf

MxOy
)

any oxide phase would always be thermodynamically more stable than any adsorbate
phase on the metal surface.

Comparing this to the range obtained for the oxide surfaces (cf. Eq. (4.12)) it
becomes obvious, that the thermodynamic stability range of the adsorbate phases ends
at the point, where the stability range of the oxide surfaces begins (not considering
any metastable states or kinetic effects). For the case of a metal in thermodynamic
equilibrium with an oxygen gas phase one therefore usually finds the sequence metal
surface → adsorbate phase → oxide surface with increasing oxygen chemical potential.
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Evaluating The Gibbs Free Energy

The discussion of the different contributions to the Gibbs free energy is analogous to
the one for the surface free energy (cf. Sec. 4.2). For the pV -term the same arguments
hold, since also the Gibbs free energy of adsorption is normalized to the surface area,
i.e. the pV -term will be negligible small up to rather high pressures. Also for the
contribution from the configurational entropy the discussion is equivalent, since in this
work the Gibbs free energy of adsorption will only be compared for several well-ordered
adsorbate phases at low enough temperatures. Again for highly disordered phases the
configurational entropy becomes much more important and statistical methods to
sample the configurational space have to be utilized (cf. Chapter 5).

The vibrational contribution to the Gibbs free energy of adsorption can also be esti-
mated in a similar way as for the surface free energy. As can be seen from Eq. (4.30),
in contrast to the surface free energy, where the vibrational contribution was mainly
determined by the difference between bulk and surface atoms, here the decisive con-
tribution will arise from a change in the vibrational energy of molecules in the gas
phase and adsorbed on the surface. This also depends on the mode of adsorption. In
the case of a dissociative adsorption, as for the oxygen molecule, the O-O vibration
would be changed into a O-M vibration, whereas for a unimolecular adsorption, as
e.g. carbon monoxide, the C-O vibration would be changed and an additional C-M
vibration would be introduced. In addition, if ∆NM 6= 0, also the change in vibra-
tional energy of metal atoms in the adsorbate structure, the clean metal surface and
the bulk reservoir has to be considered.

Depending on the magnitude of the vibrational contribution and the aspired accu-
racy the vibrational modes of the molecules and the phonon DOS of the adsorbate
phase and of the clean surface have to be evaluated to obtain the exact value. For the
problems investigated in this work, an estimate of the vibrational contribution will be
quantified explicitly in the second Part.

It should be stressed, that substituting the Gibbs free energy by only the total
energy is in principle not necessary. In practice though evaluating all contributions
to the Gibbs free energy is often too involved compared to the gain in accuracy.

4.3.2 Two-Component Gas Phases

Gibbs Free Energy Of Adsorption

The Gibbs free energy of adsorption can also be evaluated for surfaces in equilibrium
with more than one gas phase component. Here this will be exemplified for a gas
phase consisting of oxygen and carbon monoxide. Assuming in a first approach, that
the two gas phase components do not interact with each other, the Gibbs free energy
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of adsorption is given by

∆Gads(∆µO,∆µCO) =

=− 1
A

(
Gsurf

O,CO@M −Gsurf
M −∆NMgbulk

M −NO(1/2Etot
O2

+ ∆µO)−NCO(Etot
CO + ∆µCO)

)
=− 1

A
∆Gbind

O,CO@M +
NO

A
∆µO +

NCO

A
∆µCO .

(4.31)

Here, ∆Gbind
O,CO@M is the total binding energy of all adsorbed atoms/molecules on

the surface. For a gas phase of non-interacting components the surface is then just
independently in equilibrium with the two components. Since in Eq. (4.31) the Gibbs
free energy of adsorption depends on two variables, one obtains a 3D-plot with a plane
for each adsorbate structure instead of a line as in Fig. 4.5. The slope in x, resp. y
direction only depends on the coverage of the different species. For any additional gas
phase species Eq. (4.31) can simply be extended by adding the appropriate term.

To obtain the Gibbs free energy of adsorption for a surface in equilibrium with a
non-interacting multi-component gas phase is thus straightforward. It is important
to note that within this approach, as it is applied here, the gas phase components
are assumed to be non-interacting, which is also called a constrained equilibrium, i.e.
thermodynamic equilibrium is not considered between all the different subsystems.
In this example thermodynamic equilibrium is only assumed between the surface and
each of the two gas phases, but not between the two gas phases. If such a constraint
is justified and how it influences the interpretation of the obtained results has to be
discussed separately for every new system.

Bulk Oxide Stability

Considering again a metal in contact with an oxygen gas phase, the stability of the
corresponding bulk oxide does usually also depend on the second gas phase component.
In the case of CO as the second gas phase component, the metal oxide will eventually
be decomposed into CO2 and the metal with increasing CO content in the gas phase,
which determines its stability region [82]. In a pure CO environment the stability
condition of a metal oxide MxOy is given by

gbulk
MxOy

+ yµCO < xgbulk
M + yµCO2 , (4.32)

where g are the Gibbs free energies per formula unit. Approximating the chemical
potential of CO2, µCO2 , by only its total energy, Etot

CO2
, Eq. (4.32) can be rearranged

similar to the stability condition of a bulk oxide in the pure oxygen gas phase (cf.
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Page 30), yielding

∆µCO . −1

y
∆Gf

MxOy
(0, 0) + Etot

CO2
− Etot

CO −
1

2
Etot

O2

= −1

y
∆Gf

MxOy
(0, 0) + Ebind

CO2
− Ebind

CO − 1

2
Ebind

O2

= −1

y
∆Gf

MxOy
(0, 0) + ∆Emol ,

(4.33)

with ∆µCO = µCO −Etot
CO. Combining this equation with the stability condition for a

bulk oxide in a pure oxygen gas phase

∆µO &
1

y
∆Gf

MxOy
(0, 0) , (4.34)

gives the stability conditions in a constrained equilibrium with a gas phase containing
both oxygen and CO

∆µCO −∆µO < −2

y
∆Gf

MxOy
(0, 0) + ∆Emol . (4.35)

4.4 Gas Phase Chemical Potential

The surrounding gas phases are described as ideal-gas-like reservoirs. For an ideal gas
the chemical potential at a given temperature T and pressure p is given by

µ(T, p) =
G

N
=

F + pV

N
=
−kT ln Z + pV

N
, (4.36)

where Z is the partition function of N indistinguishable particles

Z =
1

N !

(
ztrans · zvib · zrot · ze · zn

)N
. (4.37)

z is the partition function of one gas particle. The translational, vibrational, rota-
tional, electronic and nuclear contribution to the chemical potential can be evaluated
using statistical thermodynamics [79]. Thus for any simple gas phase molecule (like
O2, CO, CO2 etc.) the chemical potential can be directly calculated within the ideal
gas approximation for any temperature and pressure. For more complicated molecules
the use of tabulated values [83] might be more favorable. Since the total energy con-
tribution to the chemical potential does not depend on temperature and pressure, it
can be useful to separate µ(T, p) into the total energy and the remaining part

µ(T, p) = Etot + ∆µ(T, p) . (4.38)

∆µ(T, p) contains then all the temperature and pressure dependent terms of µ.
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Figure 4.6: Temperature dependence of the relative oxygen chemical potential ∆µO(T, p) at p =
1 atm. Compared are the tabulated values from Ref. [83] (crosses) to the calculated ones within
the ideal gas approximation. Additionally shown are the sums of the individual contributions:
vibrational (dashed line, almost coinciding with the zero axis), vibrational+nuclear (dotted line),
vibrational+nuclear+rotational (dash-dotted line). The remaining large difference to the full result
(solid line) is due to the translational contribution (from Ref. [84])

The approximation of the real gas phase by an ideal gas will only introduce a
negligible error in the temperature and pressure range considered in this work, which
can be shown by comparing the calculated values within the ideal gas approximation
to the experimentally derived, tabulated ones [83]. In Fig. 4.6 this is illustrated for
the for the (T, p)-dependent part of the oxygen chemical potential ∆µO(T, p) at a
pressure of pO2 = 1atm and temperatures up to T = 1000K.

4.5 Summary

Combining DFT calculations with thermodynamic concepts provides a very useful
tool to extend the knowledge gained in the microscopic regime to the meso- and
macroscopic properties of a system. This approach can be used to describe systems
that are in thermodynamic equilibrium, but it does not contain information about
the kinetics involved to reach the final equilibrated state. Also open systems in a
steady state, which is governed by a continuous supply and removal of particles, can
not be described within this approach. Nevertheless identifying the thermodynamic
equilibrium state can often already provide a first, valuable insight into a given system.

The general concept of ab initio atomistic thermodynamics is illustrated using the
surface free energy and the Gibbs free energy of adsorption as example. In addition
the different contributions to the Gibbs free energy have been discussed. Here, it
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is important to note, that the magnitude of the different contributions has to be
carefully evaluated for every system. Usually a coarse estimate of an upper bound
of the contributions besides the total energy can be obtained rather easy, whereas
the exact calculation of all contributions to the Gibbs free energy can become fairly
involved.

The atomistic thermodynamics approach, as it is outlined here, is an indirect ap-
proach, i.e. it can only be used to compare different structures, but it will not predict
any new phases. Thus, having a given set of experimentally and/or theoretically pro-
posed structures their thermodynamic stability can directly be compared over a wide
range of temperature and pressure conditions. Also any new suggested structure can
then be included at a rather low computational cost. But all obtained results are only
valid within the restricted set of investigated structures, i.e. any configuration that is
not considered within this set of structures can also not appear as a stable structure.
Therefore, it is important to compare a rather large set possible configurations, at
least including all experimentally identified ones, but still it can not be excluded, that
an important structure might have been missed. Nevertheless the advantage of this
approach is the relatively small computational demand, so that a first insight from
the thermodynamic description can be obtained rather fast.

In the following Chapter an approach considering statistical mechanics is discussed,
which can overcome some of the drawbacks of the atomistic thermodynamics ap-
proach, but is usually much more costly.
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