
Chapter 3

The (L)APW+lo Method

3.1 Choosing A Basis Set

The Kohn-Sham equations (Eq. (2.17)) provide a formulation of how to practically
find a solution to the Hohenberg-Kohn functional (Eq. (2.15)). Nevertheless also the
Kohn-Sham orbitals ϕi have to be expanded in some way. In principle it would be
possible to find a purely numerical solution, but in practice most applications of Kohn-
Sham density-functional theory use to date an expansion of the Kohn-Sham orbitals
ϕi into basis functions φµ

ϕi =
L∑

µ=1

cµiφµ . (3.1)

For L →∞ Eq. (3.1) would give an exact expression for ϕi. In reality the expansion
has to be truncated and the actually needed number of basis functions φµ to obtain
a good representation of ϕi strongly depends on the choice of the basis set. Whether
or not a basis set is a good choice again depends on the given problem. To begin
with one has to distinguish between calculations with or without periodic boundary
conditions. In this work density-functional theory is mainly applied to the calculation
of solids. Since solids are infinite in all three dimensions and therefore contain an
infinite number of atoms, periodic boundary conditions are used in most cases. The
following discussion is thus concentrated on basis sets that are favorable to periodic
boundary conditions.

In a crystalline solid the electrons are moving in a periodic, effective potential
Veff , that is created by the periodically arranged nuclei and consequently reflects the
symmetry of the crystal

Veff(r + Rn) = Veff(r) with Rn = n1a1 + n2a2 + n3a3 . (3.2)

Rn is the translational lattice vector and ai are the unit cell vectors of the crystal.
According to Bloch’s theorem the eigenfunctions, i.e. the electronic wave functions,
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resulting from a Schrödinger equation including a periodic potential in the Hamilto-
nian are described by a product of a planewave and a function, which exhibits the
periodicity of the crystal

ϕk(r) = eikruk(r) with uk(r + Rn) = uk(r) . (3.3)

Here, k is the wave vector within the first Brillouin zone. An obvious choice of
basis functions to expand the Kohn-Sham wave functions satisfying Eq. (3.3) are
planewaves. Planewaves are periodic and mathematically fairly simple. A disad-
vantage of an expansion in planewaves is the rather large number of basis functions
needed for a proper description of the valence wave functions. In contrast to the core
electrons, which are quite strongly bound and essentially confined to the core region,
the valence electrons have a much larger spatial distribution and are considered as
mainly determining the bonding between atoms. Outside of the atomic core region
the valence wave functions are rather smooth, whereas in the vicinity of the atomic
core they are strongly oscillating. These strong oscillations are induced by the or-
thogonalization of the valence wave functions to the wave functions of the inner core
electrons.

One approach to overcome this problem, which is widely used in the solid state
community, is the pseudopotential method [52]. Here, the inner core electrons are not
treated explicitly, but they are merged with the nuclei to form the so-called pseudopo-
tential. The wave functions of the valence electrons moving in such a pseudopotential
are then much smoother and can thus be described by a much smaller number of
planewaves.

Another approach, which in contrast to the pseudopotential method can include
all electrons, is the separation of real space into regions close to the nuclei and in
between them. The Kohn-Sham orbitals are then expanded differently in each region.
The augmented planewave method (APW) [53], which is used in this work, is such an
approach and will be described in more detail in the next sections.

3.2 The APW Method

The augmented planewave (APW) method was formulated by Slater in 1937 [54].
Starting from the so-called muffin-tin approximation he constructed a basis set, which
consists of a combination of planewaves in regions of a slowly varying potential and
atomic orbital like functions in regions of faster varying wave functions. In the muffin-
tin approximation the crystal is divided into the muffin-tin (MT) region and the
interstitial (I). The muffin-tin region consists of non-overlapping spheres centered
around each atom. The potential can then be defined as

VMT(r) ≡

{
constant r ∈ I

V (rα) r ∈ MTα

(3.4)
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Figure 3.1: Schematic illustration of the muffin-tin potential approximation. Space is divided into
muffin-tin spheres (MTα) centered at each nuclei and the interstitial region (I). (After Ref. [55])

Here α is the index for counting the spheres and rα is the length of the local position
vector rα = r−τα (cf. Fig. (3.1)). The potential VMT(r) is constant in the interstitial
and spherical in the muffin-tin region. The APW basis functions can be written as

φAPW
k+G (r, ε) =

{
Ω−1/2ei(k+G)·r r ∈ I∑

lm Aα,k+G
lm ul(rα, ε)Ylm(r̂α) r ∈ MTα

(3.5)

where Ω is the unit cell volume, Ylm is the spherical harmonic function and r̂α is
the angular part of the local vector rα. Alm is an expansion coefficient to match the
function φ at the boundary between the muffin-tin and the interstitial and ul is the
regular solution of the radial Schrödinger equation

− 1

r2

d

dr

(
r2dul

dr

)
+

[
l(l + 1)

r2
+ V (r)− ε

]
rul = 0 , (3.6)

with the spherical potential V (r) from Eq. (3.4). Each basis function is connected to
a special k-point k and a reciprocal lattice vector G.

In the APW method the augmenting function ul(r, ε) corresponds to the exact
muffin-tin potential eigenstate of eigenenergy ε. Because of this energy dependence of
the function ul(r, ε) the eigenvalue problem will be non-linear in energy and has to be
solved iteratively. This is, however, computationally very costly. On the other hand,
any eigenstate of a different eigenenergy will be poorly described without adapting ε.
To overcome this problem linearized versions of the APW method have been devel-
oped, where the energy ε is set to a fixed value ε1 and the basis functions are modified
to gain extra flexibility to cover a larger energy region around their linearization en-
ergy. The linearized APW method (LAPW) and the APW+ local orbitals (APW+lo)
method will be discussed in more detail in the next two sections.
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3.3 The LAPW Method

The traditional way of linearizing the APW method is the LAPW method, which was
developed in the beginning of the 1970s [53, 56]. In this approach the basis functions
are expanded in the same way as in Eq. (3.5) in the interstitial, but inside the muffin-
tin the basis functions do not only depend on ul(r, ε1), but also on its derivative
u̇l(r, ε1) ≡ ∂ul/∂ε,

φLAPW
k+G (r, ε1) =

{
Ω−1/2ei(k+G)·r r ∈ I∑

lm[Ak+G
lm ul(r, ε1) + Bk+G

lm u̇l(r, ε1)]Ylm(r̂) r ∈ MT .
(3.7)

Here and also in the further equations, the sphere index α has been omitted for clarity.
The LAPW’s are thus more flexible than the APW’s, since for any linearization energy
ε1, that differs only slightly from the real eigenenergy ε, the radial function ul(r, ε)
can be obtained by a Taylor expansion

ul(r, ε) = ul(r, ε1) + (ε− ε1)u̇l(r, ε1) + O((ε− ε1)
2) . (3.8)

The additional term O((ε − ε1)
2) leads to a second order error in the wave function

and a fourth order error in the eigenenergy. However, the two coefficients Ak+G
lm and

Bk+G
lm are not fixed through the Taylor expansion, but by matching both the value and

the slope of the augmenting function to a planewave at RMT. Due to the matching
constraints the shape of the function resulting from the linear combination of ul(r, ε1)
and u̇l(r, ε1) will in general not resemble the physical solution ul. By linearizing
the APWs the problem of having energy dependent basis functions is resolved, but
the optimal shape of the basis functions inside the muffin-tin sphere is sacrificed (cf.
Fig. (3.2)).

3.3.1 Semi-Core States

In the LAPW method there is only one linearization energy ε1 for every l quantum
number. This leads to a problem in systems with states having the same l quantum
number, but different n quantum number and therefore also clearly different energies.
The problem occurs mainly for systems with so-called semi-core states, which do not
lie in the valence region, but also not as low in energy as the core states. Semi-core
states are treated by introducing local orbitals in the LAPW method. Local orbitals
do not depend on k and G, but only belong to one atom and have a specific l character.
They are called local, since they are confined to the muffin-tin spheres and thus zero
in the interstitial

φLO =

{
0 r ∈ I

[Alm ul(r, ε1) + Blm u̇l(r, ε1) + Clm ul(r, ε2)]Ylm(r̂) r ∈ MT .
(3.9)

Inside the muffin-tin spheres local orbitals involve an additional radial function eval-
uated at a new linearization energy ε2. Two of the coefficients are determined by
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Figure 3.2: Radial part ul of the l-composition of an APW basis function (left) and the linear
combination of ul and u̇l of the l-composition of an LAPW basis function (right) for a specific
k-point. The planewaves are expanded into Bessel functions.

the conditions that the value and first derivative of the local orbitals go to zero at
the sphere boundary. The third one can be set to some fixed number, e.g. unity (a
modification is used for lattices with inversion symmetry, cf. Section 5.9 in Ref. [53]).
The resulting LAPW+LO basis set can be used to describe both the valence region
and the already quite localized semi-core states appropriately.

3.4 The APW+lo Method

An alternative method to linearize the APW method is the APW+local orbitals
method [55, 57, 58]. Also in this method the eigenvalue problem is linearized by choos-
ing a fixed linearization energy ε1. However, the necessary gain in flexibility is not
obtained by adding an additional term to the original APW basis functions, but by a
complementary set of local orbitals

φlo1 =

{
0 r ∈ I

[Alm ul(r, ε1) + Blm u̇l(r, ε1)]Ylm(r̂) r ∈ MT .
(3.10)

Each local orbital is matched to zero value at the sphere boundary having no restric-
tion on the derivatives at the muffin-tin boundaries. Thus, a surface term for the
kinetic energy has to be taken into account [53]. The complete APW+lo basis set
consists therefore of two different types of basis functions, the APWs (Eq. (3.5)) at a
fixed linearization energy ε1 and the lo’s (Eq. (3.10)), so that the basis set is defined
as

φi =

{
φAPW

i i ≤ NAPW

φlo1
i i > NAPW .

(3.11)

Here, NAPW is some integer number, which depends on the total basis set size and
the number of included local orbitals. The advantage of this alternative linearization

19



Chapter 3. The (L)APW+lo Method

compared to the LAPW method is, that the optimal shape of the basis functions
inside the muffin-tin is maintained (cf. Fig. 3.2), which leads to a better description
of the eigenstate and therefore to a smaller basis set size to reach the same accuracy.

3.4.1 Semi-Core States

Just as in the LAPW method there is only one linearization energy ε1 per l quantum
number, which leads to a problem in the description of semi-core states. In the
APW+lo method these semi-core states are treated by a second set of local orbitals

φlo2 =

{
0 r ∈ I

[Alm ul(r, ε1) + Clm ul(r, ε2)]Ylm(r̂) r ∈ MT .
(3.12)

Here again the local orbital is introduced with a second linearization energy ε2, which
can be chosen to lie in the semi-core region, so that eigenstates with the same l
quantum number but different principle quantum number n can be treated properly.
Also these local orbitals are matched to zero value at the sphere boundary without
any restriction on the first derivative.

3.5 Mixed Augmentation

It has been shown by Madsen et al. [58] that the APW+lo method usually converges
much faster than the LAPW method. This means that the same accuracy in e.g.
the total energy is reached in the APW+lo method already with a smaller basis set
compared to the LAPW method. Normally additional lo’s are only needed for the
expansion up to the physical l quantum numbers (i.e. l quantum numbers contained
in the electronic configuration of the corresponding element), whereas the higher l
quantum numbers are sufficiently treated by pure APW’s. However, for some cases
also higher l quantum numbers require additional lo’s in the complementary basis
set, which lessens the gain in basis set size. On the other hand, radial functions of
physically not significant l-character do not have a particular advantage of the exact
shape of ul. Therefore a mixed augmentation has been proposed [58], where the
physically important l quantum numbers are treated by APW+lo and the higher l
quantum numbers are augmented using LAPW, the so-called (L)APW+lo method.
All results presented in this work were obtained using the mixed (L)APW+lo scheme.

3.6 The Full Potential (L)APW+lo Method

The accuracy of the (L)APW+lo method can be further improved by using the full
potential (FP), i.e. the muffin-tin potential in Eq. (3.4) is replaced by a non-constant
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potential in the interstitial and a non-spherical part inside the muffin-tin

V (r) =

{∑
G VG eiG·r r ∈ I∑
lm Vlm(r)Ylm(r̂) r ∈ MT .

(3.13)

These corrections are also called non-muffin-tin corrections. The choice of basis func-
tions in the interstitial is not effected by the non-muffin-tin corrections, but the ra-
dial functions ul as defined in Eq. (3.6) are no longer the exact solutions inside the
muffin-tin sphere. In principle the function ul would have to be evaluated using the
true crystal potential of the muffin-tin region, which is, however, not expected to
greatly improve the results, since the non-muffin-tin correction represent only a mod-
est change of the muffin-tin potential. In addition the basis functions in the linearized
APW methods should be flexible enough to describe the eigenstates altered by the
non-muffin-tin corrections as well as the ones in the muffin-tin potential [59].

3.7 Application To Solids And Surfaces

As already mentioned in Section 3.1 crystalline solids can be best described by ex-
ploiting their inherent symmetry and therefore using periodic boundary conditions.
Besides an appropriate choice of basis functions the integration over the Brillouin zone
is an important factor regarding both the accuracy and the computational cost. A
second point, that will be discussed in this Section is the treatment of semi-infinite
surfaces in periodic boundary conditions by applying the so-called supercell approach.
In the last part of this Section the calculation of surface core-level shifts within the
FP-(L)APW+lo method is described.

3.7.1 Integration Over The Brillouin Zone

To evaluate many of the physical quantities of a solid (e.g. electron density, total
energy, forces etc.) a summation over all occupied states has to be accomplished. For
a crystalline solid this leads to an integration over the Brillouin zone, resp. if the
symmetry of the system is considered, to an integration over the irreducible part of
the Brillouin zone. Numerically this is solved by replacing the integral by a sum over
a finite number of k-points ∫

BZ

1

ΩBZ

dk→
∑
k

ωk . (3.14)

Several methods have been suggested to obtain a most efficient summation over the
k-points, the two most prominent examples are the tetrahedron method [60] and the
special k-point method according to Monkhorst and Pack [61]. The results presented
in this work were obtained using the Monkhorst-Pack (MP) method. In this method
a weighted summation over a grid consisting of representative k-points is performed.
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These special k-points are identified by the following steps: (1) generating a homoge-
neous grid over the full Brillouin zone, (2) combining symmetry related k-points into
groups, (3) choosing one representative k-point out of every group of equivalent k-
points and assigning the proper weight ω(k). ω(k) is given by the number of k-points
in a specific group divided by the total number of k-points.

In the case of metals one has to cope with an additional problem. Since in metals
the bands are crossing the Fermi level εF the occupation and therefore also the inte-
gration over the Fermi surface is discontinuous. This can lead to difficulties in the
convergence of the self-consistent field cycle. One solution to overcome this problem
is the implementation of a Fermi distribution at a finite temperature to artificially
broaden the Fermi surface. After the integration the free energy will be extrapolated
again to T = 0K .

3.7.2 The Supercell Approach

The supercell approach is one possibility to model surfaces using periodic boundary
conditions. In principle it would be possible to use only two-dimensional periodicity,
but in the (L)APW+lo approach this would require an additional matching constraint
to determine the layer for the decay of the planewaves. For systems including e.g.
the adsorption of oxygen, as described within this work, such a two-dimensional ap-
proach is not necessarily advantageous. In the here applied method the surfaces are
modeled with periodic boundary conditions in all three dimensions. The semi-infinite
surface is described by slabs, that are infinite in the xy-direction, but only consist of
several layers in z-direction. The periodicity in z-direction is artificially maintained
by a supercell containing the slab and a vacuum region as shown in Fig. 3.3. To
obtain reliable results using a supercell two main parameters have to be considered,
the number of layers in the slab and the vacuum thickness. Having two surfaces at
the top and the bottom of the slab the number of layers has to be big enough to
avoid interactions between these two surface. Atoms in the center of the slab should
already exhibit the physical properties of atoms in the bulk. To avoid interactions
between the surfaces of consecutive slabs the vacuum region has to be large enough.
In planewave based methods, like the (L)APW+lo method, calculations of surfaces
can become computational very costly, since also the vacuum region is described by
the planewaves, which increases the basis set considerably.

A alternative approach, which is not based on periodic boundary conditions, is
the cluster method. Here, the surface is modeled by a large cluster. The decisive
parameter in this approach is the cluster size, which strongly influences both the
accuracy and the computational cost.

3.7.3 Surface Core-Level Shifts

Evaluating the results of a DFT calculation there are, besides the total energy, also
several other quantities available regarding the electronic structure of the investigated
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Figure 3.3: Schematic representation of the supercell approach for the calculation of a (100) surface
including adsorbate atoms. In the z-direction the supercell consists of a slab (containing several
atomic layers) and vacuum. Repeating the supercell periodically in all three dimensions results in
the shown figure.

system, which can then be compared to experimental findings. One of these quantities
is the surface core-level shift (SCLS), which results from the change in the core-level
position of a surface atom compared to the core-level of the corresponding atom in the
bulk. The respective SCLS is then given by the difference in energy, that is needed,
to remove an electron from the core-level of either a bulk or a surface atom [62, 63]

∆SCLS =
[
Esurf(nc − 1)− Esurf(nc)

]
−

[
Ebulk(nc − 1)− Ebulk(nc)

]
. (3.15)

Esurf(nc) is the total energy of the surface (slab) depending on the number of electrons
nc in the core-level c, Ebulk(nc) the respective total energy of the bulk system. In
the theoretical description it is possible to separate the total SCLS into an initial
and a final state contribution. The initial state contribution includes the change
in the electronic distribution before the excitation of the core electron and can be
approximated by a Taylor expansion of Eq. (3.15)

∆initial
SCLS ≈ −

[
εsurf
c (nc)− εbulk

c (nc)
]

. (3.16)

Here, εc is the Kohn-Sham eigenvalue of the core state c. Since the FP-(L)APW+lo
method used in this work is an all electron method it is particularly straightforward
to obtain the initial state contribution to the SCLS.
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In addition to this initial state contribution the experimentally measured SCLS also
contains a final state contribution, which arises from the different screening capabili-
ties of the valence electrons in the core-ionized system at the surface and in the bulk.
One possibility to determine the corresponding ionization energy is the calculation
of the total energy of an impurity with a core hole in the respective core state. The
difference in the total energies of the system with the impurity located at the surface
and of the one with the impurity in the bulk gives then the SCLS [64]. This differ-
ence can also be approximated within the Slater-Janak transition state approach [65].
Here, total energy differences are evaluated as

E(nc − 1)− E(nc) =

∫ nc−1

nc

∂E(n′)

∂n′ dn′ =

∫ nc−1

nc

εc(n
′)dn′ , (3.17)

and using the mean value theorem of integration∫ nc−1

nc

εc(n
′)dn′ ≈ −εc(nc − 1/2) , (3.18)

the total SCLS, including both initial and final state contributions, is then given by
combining Eq. (3.15) and Eq. (3.18)

∆total
SCLS ≈ −

[
εsurf
c (nc − 1/2)− εbulk

c (nc − 1/2)
]

. (3.19)

In the two described approaches the total SCLS is approximated by the energy dif-
ference of two ground states, which is only valid, if the screening is perfect, i.e. if the
excited electron contains the whole screening energy. For the actual calculation of the
total SCLS half an electron is removed from the core level of the respective atom, and
for metallic systems having a Fermi reservoir of electrons this half electron is then
again added at the Fermi level to simulate the effect of a perfect screening. Within
the supercell approach a further complication has to be considered. Here, the ionized
atoms can interact with their periodic images, so that the supercell has to be large
enough to avoid such an artificial interaction.

Considering these uncertainties, the total SCLS might not always fully agree with
the experimental results, but is still more suitable for a direct comparison than the
initial SCLS. Additional information can be obtained from the difference between
the initial and total SCLS, the screening, which might be related to the electronic
hardness and surface chemical activity of the system [66].

3.8 The WIEN2k Code

All DFT calculations presented in this work have been performed using the WIEN2k
software package [67]. The WIEN2k code is based on the full potential (L)APW+lo
method and was mainly developed for the use in solid state physics. Since calcula-
tions are only possible using periodic boundary conditions, all surface calculations are
performed within the supercell approach.
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The WIEN2k code consists of two parts, the initialization and the main selfconsistent-
field cycle. Each part again is composed of several independent programs, that are
linked via shell-scripts. In addition many analytical tools are implemented to calculate
e.g. band structure, density of states, charge densities etc.

Since the FP-(L)APW+lo method is considered one of the most accurate methods
in DFT, results obtained with this method are often taken as benchmark. However,
the prize for the high accuracy is the comparable high computational cost. For bulk
systems the WIEN2k code performs actually rather well, but for surface calculations
using a supercell the calculations become quite time consuming [68]. For this work it
was therefore also quite important, that a good parallelization is implemented in the
WIEN2k code. There are two kinds of parallelization available, the first one parallelizes
over the k-points, so that every k-point can be calculated separately on a single CPU.
This method needs only very little communication between the CPUs and scales quasi
linear with the number of CPUs, so that there is almost no loss of resources due to the
parallelization. On the other hand, in big systems the number of k-points becomes
small and therefore also the number of CPUs, that can be used for the paralleliza-
tion. For big systems with few k-points the second parallelization method becomes
very attractive. The so-called fine grained parallelization uses different strategies in
different parts of the program. The most important part is the parallelization of the
setup and diagonalization of the Hamilton and overlap matrices. This parallelization
is much more involved and requires a fast communication between the CPUs. The
efficiency of the parallelization depends strongly on the number of CPUs and the
matrix size [69]. The number of CPUs, NCPU, has to be NCPU = 2n, where n is an
integer number, and a minimum number of four CPUs, NCPU ≥ 4, should be used.
The matrix size, NMAT, should be NMAT ≥ 3000. The scaling (tsingle/(NCPU · tparallel))
can then be as good as ≈ 0.7, which means, that e.g. for a parallelization over 8 CPUs
the speed up is ≈ 5.6 compared to a single CPU. For a matrix size of NMAT ≈ 3000
the scaling becomes slightly less efficient for NCPU ≥ 32 due to the increasing amount
of communication compared to gain in computing time. For larger matrices, though,
also a larger number of CPUs can be used, for NMAT ≥ 10000 the scaling is efficient
up to NCPU ≤ 128 and for NMAT ≥ 22000 even up to NCPU ≤ 256.

In the WIEN2k code these two parallelization method can also be combined, so that
also quite big supercells can be calculated in a reasonable time provided that the
necessary computer resources are available.
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