
Chapter 3

The effects of heterogeneities on

seismic images - Numerical Studies

Deep seismic reflection imaging improved the knowledge on the lithospheric structure

and the understanding of geodynamic processes. A number of projects investigated the

crustal structures throughout the past decades such as DEKORP (Deutsches Kontinen-

tales Reflexionsseismisches Programm), COCORP (Consortium for Continental Reflection

Profiling), BIRPS (The British Institutions Reflection Profiling Syndicate), Lithoprobe

and others. Thereby, the lithosphere was revealed as a complex fabric containing hetero-

geneities and scattering structures over large scales. The influence of heterogeneities on

seismic wave propagation was therefore studied intensively by numerical modelling exper-

iments in combination the application to real data. From these studies it was revealed

that the coherency loss of reflections in heterogeneous media becomes rapidly large with

increasing frequencies (Raynaud, 1988). Some authors noted that seismic imaging in het-

erogeneous media suffer from apparent attenuation due to multiple scattering (Gibson

and Levander, 1988). Other studies showed that multiple scattering can produce coherent

signatures in migrated sections which cannot be correlated with real structures in the

medium (Emmerich et al., 1993). Estimates of the reflectivity of deeper structures are sig-

nificantly influenced by the transmission loss and amplitude fluctuation in heterogeneous

layers (Henstock and Levander, 2000). It was also revealed that in the presence of complex

reflector a polarity analysis becomes difficult and unreliable due to the superposition of

reflected and scattered waves in the seismic response. Numerical studies investigating the

coherency loss of seismic images due to scattering showed that the degree of the image

distortion is mainly dependent on the standard deviation of the velocity fluctuations in the
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medium (Martini et al., 2001). They also showed that an excellent control of migration

velocity and the application of prestack depth migration techniques are required to reduce

the image distortion to an acceptable level.

Considering these results certain questions arise, e.g. ”how severe is the image distortion

if the target is located at large depths, where amplitude and travel time fluctuations be-

come large?”. Also, it seems of interest whether the image distortion of deep reflections is

only dependent on the standard deviation of the velocity fluctuation or whether the dis-

tortion is also dependent on the correlation lengths of the heterogeneities. The frequency

dependent reflection and scattering behaviour suggest that images obtained from different

frequency bandwidths contained in reflection data will provide different reflection images

(Imhof, 2003; Sato and Fehler, 1998; Hong, 2004). Certain frequencies are less affected

by scattering and coherency loss and will provide less distorted reflector images compared

to other frequency ranges. It is assumed that these narrow-frequency-band images will

extract reflections, which are covered in the broadband frequency range. The resulting

key questions, which by the means of numerical simulations are studied and analysed in

the following, are:

• How severe is the effect of scattering in a heterogeneous layer on the reflectivity and

the coherency of the reflections below?

• Do narrow frequency band images provide additional structural information on deep

reflectors located below heterogeneous regions?

• How severe is the distortion of the reflector shape when wrong migration velocities

are used?

To discuss these questions numerical experiments were carried out. Synthetic depth sec-

tions obtained from forward modelling and prestack depth migration were studied in the

context of the stated problems. The velocity models consisted of a heterogeneous layer

located above a deep reflector. The standard deviations of the velocity fluctuations and

the correlation lengths of the heterogeneities in the medium were varied. The synthetic

data were analysed with respect to the observed reflectivity in the heterogeneous layer and

along the deep reflector. This analysis was carried out in dependence on the ratio between

the dominant wavelength and the horizontal correlation length of the heterogeneities. The

Reflection Image Spectroscopy (RIS) method was invented to recover reflections in narrow-

frequency-band images, which were not recognised in the broadband frequency image. The

reflection images are band-pass filtered and migrated. The reflection images are compared
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and analysed to reveal additional structural details on the medium, e.g. spatial distri-

bution and concentration of the scatterers. Also, the correlation between the frequency

content, the structural parameters in the heterogeneous layer and the apparently domi-

nant structures in the depth images were analysed. Finally, the influence of errors in the

migration velocity on the reflector was studied. Depth images were calculated for different

velocities to reveal whether wrong migration velocities influence the coherency and the

reflectivity of the image.

This chapter is structured as follows: First, an introduction to the numerical work tools

will be given. In the second part, the numerical modelling studies, corresponding results

and a discussion will be presented. Finally, the chapter will be closed by a summary and

conclusion.

3.1 Seismic modelling and imaging - The work tools

In the following a description of the numerical work tools will be given. First, the finite

difference forward modelling scheme and modelling constraints will be discussed. Second,

an introduction to Kirchhoff migration and travel time calculation will be given.

3.1.1 FD forward modelling using the rotated staggered grid

Numerical modelling of seismic wave propagation in real media is an important tool used

in earthquake and exploration seismology. It has been used to support interpretations of

field data, to provide synthetic data for testing of processing techniques and acquisition

parameters, and to improve the understanding of seismic wave propagation for seismolo-

gists as well as for geologists. A general overview of different techniques and applications

can be found in Carcione et al. (2002) and references therein. Since the widely used

finite-difference (FD) approaches are based on the wave equation without physical ap-

proximations, the methods account not only for direct waves, primary reflected waves,

and multiply reflected waves, but also for surface waves, head waves, converted reflected

waves, and waves observed in ray-theoretical shadow zones (Kelly et al., 1976).

Staggered grid FD operators are commonly used for the computation of derivatives in

the wave equations for elastic, viscoelastic and anisotropic media [e.g. Virieux (1986);

Levander (1988); Robertsson et al. (1994); Igel et al. (1995)]. One disadvantage is that the

standard staggered FD grid scheme according to Virieux (1986) can become unstable in the
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case where high contrasts of material properties are present. The boundary conditions of

the elastic wave field at a free surface, i.e. the high contrast discontinuity between vacuum

and rock, have to be defined in the FD algorithm [e.g. Robertsson (1996); Graves (1996);

Hestholm and Ruud (1998); Oprsal and Zahradnik (1999)]. By using the so-called rotated

staggered grid (RSG) technique (Saenger et al., 2000), discontinuities can be incorporated

without applying explicit boundary conditions and without averaging elastic moduli. For

this reason, the RSG is a powerful tool for studying strong multiple scattering effects of

wave propagation in highly heterogeneous media. All synthetic seismograms presented in

the following were calculated using the RSG with 2nd order time update operator and 8th

order spatial differentiation operator.

The applicability of FD modelling is limited due to three major numerical problems, i.e.

grid dispersion, stability and boundary reflections. During finite-difference modelling of

the wave field numerical phase and amplitude errors can occur. This is because numerical

operators that use Taylor polynomials are implemented to approximate the time and space

derivatives of the wave field. Phase errors, also called Numerical dispersion, occur in the

case of spatial undersampling of the wave field. Numerical errors due to interpolation

bias the calculated travel times towards lower values. To minimise these effects to an

acceptable level the spatial grid layout has to fulfill the following dispersion criterion:

10 ·max(∆x,∆z) <
vmin

fdom
= λmin(dom) (3.1)

Even if the dispersion criterion is fulfilled a small amount of dispersion effects still might

be present. A correction of dispersion effects was not applied to the data throughout this

thesis, as travel time errors due to numerical dispersion effects are assumed to be negligibly

small by applying the dispersion criterion (eq. 3.1).

Temporal undersampling can cause an exponential increase of amplitudes with every time

step and thus leads to amplitude errors. To avoid these numerical errors the sampling

rate has to be defined larger than a threshold value. The stability criterion defines the

minimum sampling interval ∆t in time according to the grid spacing ∆h and the P-wave

velocity vP in the velocity model. For the RSG the critical time step can be obtained by

(Saenger et al., 2000):

∆tvP

∆h
≤ 1/(

n
∑

k=1

| ck |) ≤ 1. (3.2)

Here, | ck | are the used finite difference coefficients (Holberg, 1987).
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3.1.2 Imaging using Kirchhoff prestack depth migration

Seismic migration consists of two steps: wave field extrapolation and imaging of the re-

flected field. Wave field extrapolation is the process where the wave field recorded at the

surface is back propagated in time and down into the subsurface. The propagated seis-

mic energy is imaged at the reflection point at the time of incident, i.e. the travel time

between the source and subsurface point. Back propagation methods of the wave field are

commonly based on three approaches: the finite difference method (Claerbout, 1976), the

frequency-wavenumber method (Stolt, 1978; Gazdag, 1978; Gazdag and Squazzero, 1984),

and the Kirchhoff integral migration method (Schneider, 1978). In this thesis Kirchhoff

prestack depth migration was used to obtain the synthetic and the real data depth sec-

tions. A short introduction to the Kirchhoff method will be given in the following. For

detailed theory of the Kirchhoff migration the reader is referred to e.g. Schneider (1978),

Müller (1989), and Schleicher et al. (1993).

Diffraction stack and Kirchhoff migration

The diffraction stack provided the basis of the Kirchhoff migration method and was pre-

sented by Hagedoorn (1954). The diffraction stack is based on the assumption that any

reflector can be regarded as a group of closely spaced scattering points. Reflections caused

by a single diffraction element in the subsurface are located on the so called diffraction sur-

face (Fig. 3.1). The shape of the diffraction surface is given by the sum of the travel time

ts from the source to the diffraction point and the travel time tr from the subsurface point

to each receiver. For a constant velocity medium the shape of the diffraction surface is a

hyperbola in 2D or a hyperboloid in 3D, respectively. The shape depends on the velocity

and the position of the regarded subsurface point. The diffraction curves caused by several

diffraction points will superimpose and the envelope of those diffraction curves gives the

respective reflector (Fig. 3.2). Diffraction stack is then carried out by calculation of the

diffraction surfaces for any given subsurface point, summation of the recorded amplitudes

along these surfaces and assigning the value to the respective subsurface point. Physically,

diffraction stack is a process where the scattered energy is led back to its scattering point.

Kirchhoff migration is a weighted diffraction stack, where amplitudes are adjusted for

obliquity and geometrical spreading before the summation process. Mathematically the

Kirchhoff method is based on the Kirchhoff integral solution to the wave equation. The

Kirchhoff integral states that the wave field U(x, z, t) at any point in the subsurface p(x, z)

is given by spatial integration of the time differentiated and weighted wave field observed at

the surface. The migrated section M(x, z) can be obtained by taking the back propagated
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Figure 3.1: Principle of diffraction stack. The summation of the amplitudes along the

diffraction hyperbola in a finite-offset time section and assigning this value to the respective

subsurface point yields an image of the subsurface.

Figure 3.2: The diffraction envelope (Yilmaz, 1987). The envelope of diffraction curves

generated by a reflector consisting of several diffraction points yields the reflector itself.



3.1. Seismic modelling and imaging - The work tools 25

wave field U(x, z, t = tI) at time tI , when the wave is being reflected at the considered

subsurface point p(x, z):

M(x, z) = U [(x, z, tI (x, z)] = − 1

2πv

∫

∞

−∞

∫

∞

−∞

∂U(x′, 0, t′)

∂t′
W (x′ − x, t′ − tI)dt′dx′. (3.3)

In this equation W denotes the weighting function which adjusts the amplitudes for geo-

metrical spreading and obliquity. v presents the constant migration velocity.

The Kirchhoff prestack depth migration scheme as applied in this thesis is suitable for data

with irregular spatial sampling, e.g. irregular receiver spacing and crooked line geometry.

Furthermore it handles large differences in the elevation. The topography is taken into

account during travel time calculation and migration process, so that static corrections

are not necessary during data processing. Thus, errors due inappropriate corrections and

biasing of the data are minimised.

3.1.3 Travel time calculation

Computation of diffraction surfaces

As mentioned in the previous section, Kirchhoff migration is a weighted stack of the time

derivatives of the wave field measured at the surface along diffraction surfaces. For a

constant velocity medium the diffraction surfaces are given by hyperbolas (2D) or by a

hyperboloids (3D) and can be computed analytically. When the velocity model becomes

complex the calculation of the diffraction surfaces has to be carried out numerically.

Calculation of travel times

Fast and accurate computation of travel times is a central task of imaging. Besides clas-

sical ray based methods, e.g. paraxial and dynamic ray tracing, Gaussian beam methods

(Červený and Hron, 1980; Beydoun and Keho, 1987; Červený, 1986), finite difference so-

lutions to the eikonal equation (Vidale, 1988; van Trier and Symes, 1991; Podvin and

Lecomte, 1991) provide the base for a fast travel time calculation.

The eikonal equation describes seismic wave propagation based on a high frequency ap-

proximation of the wave equation. The approximation is valid if the wavelength is small

compared to the change of the elastic parameters or to the curvature of the reflector,

so that the latter can be approximated by a locally plane surface. Classical ray tracing

techniques use an asymptotic approximation of the wave equation at infinite frequency to
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propagate rays. In complex media ray tracing becomes a difficult task, as a large num-

ber of rays must be considered for one given subsurface point in order to obtain the first

arrival time. Moreover, there are subsurface regions that will not be illuminated by rays

propagating from the source, thus diffraction signals from secondary sources located in

those shadow zones have to be analysed in a very computing intensive procedure. Con-

sequently, these techniques often suffer from very expensive computing times. A finite

difference approximation of the eikonal equation was used in this thesis to calculate the

travel times. A comprehensive review of travel time computation methods and discussion

of their advantages and weaknesses is given in Leidenfrost et al. (1999).

The finite difference computation was performed using an algorithm proposed by Podvin

and Lecomte (1991). This approach improved Vidale’s finite difference algorithm (Vidale,

1988), which only considered the existence of single plane wave fronts. The algorithm is

based on a systematic application of Huygen’s principle, which considers the contribution

of three different wave propagation modes: transmitted, diffracted and head waves. The

first arrival is chosen using a minimum-time criterion. Travel time tables were calculated

for each surface-subsurface distance.

3.2 Numerical modelling studies

In this section the numerical modelling studies will be presented. The velocity models, the

experimental set-up and the results will be described separately for each experiment. The

analysis of the image distortion due to the heterogeneous overburden will be discussed

first. Then the RIS method, which analysis reflection images in narrow-frequency bands,

will be introduced and applied to synthetic data. Finally, the impact of the velocity model

on the accuracy of deep reflections images will be studied and discussed.

General remarks

A sufficient suppression of boundary reflections from the model side could not be realised

with the implemented standard exponential damping boundaries (Clayton and Engquist,

1977; Karrenbach, 1995). To minimise this numerical noise the model size was enlarged and

the receiver arrays were positioned in the central part of the model, such that boundary

reflections were recorded at later arrival times. The experimental set-up, i.e. the receiver

and the shot point spacing, the model size and its structural layout as well as the elastic

parameters were chosen following the ANCORP’96 experiment. A detailed description of

the ANCORP experiment and the data set will be given in section 4.2.2. The parameters


