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1. ABSTRACT 

Introduction: Many computer models for predicting the risk of prostate cancer have 

been developed, including models for prediction of biochemical recurrence (BCR). 

However, models for individual BCR-free probability at individual time-points after a 

BCR-free period are rare.  

Material and Methods: Follow-up data from 1575 patients who underwent 

laparoscopic radical prostatectomy (LRP) were used to develop an artificial neural network 

(ANN) to predict BCR and to compare it with a logistic regression (LR) model using clinical 

and pathologic parameters such as prostate-specific antigen (PSA). For individual BCR 

prediction at any given time after operation, additional ANN and LR models were calculated 

every 6 months for up to 7.5 years of follow-up.  

Results: The areas under the receiver operating characteristic (ROC) curve (AUC) 

for the ANN (0.754) and LR models (0.755) calculated immediately following LRP were 

larger than those for Gleason Score (GS) (AUC: 0.715; P = 0.0015 and 0.001) or PSA 

(AUC: 0.619; P always <0.0001) alone. The GS predicted the BCR better than PSA (P = 

0.0001), but there was no difference between the ANN and LR models (P = 0.39).  

Conclusions: This study may enable a more accurate prediction of BCR. A patient who 

has undergone LRP should be able to use our curves to estimate his individual BCR-free 

probability. Our research fills the gaps for the prediction of an individual’s BCR-free 

probability and in the application of ANNs for the prediction of BCR after LRP, thereby 

providing background for future investigations. 
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1. ABSTRAKT (Deutsch) 

Einleitung: Viele Computermodelle zur Vorhersage des Risikos von Prostatakrebs 

sind entwickelt worden, einschließlich die zur Vorhersage eines biochemischen Rezidivs 

(BCR). Modelle zur individuellen Vorhersage eines BCR zu verschiedenen Zeitpunkten 

nach einer BCR freien Zeit sind jedoch selten.  

Material und Methoden: Follow-up-Daten von 1575 Patienten, die eine 

laparoskopische radikale Prostatektomie (LRP) erhielten, wurden verwendet, um ein 

künstliches neuronales Netzwerk (ANN) zur Vorhersage eines BCR aufzubauen. Dieses 

wurde mit Modellen der logistischen Regression (LR) und mit klinischen und 

pathologischen Parametern wie dem prostataspezifischen Antigen (PSA) verglichen. Für 

eine individuelle BCR Vorhersage zu einem bestimmten Zeitpunkt nach der Operation 

wurden zusätzliche ANN- und LR-Modelle alle 6 Monate, bis zu 7,5 Jahren Follow-up 

berechnet.  

Ergebnisse: Die Flächen unter den ROC-Kurven (engl. area under the curve, AUC) 

die für das ANN (0,754) und LR Modell (0,755) unmittelbar nach LRP errechnet wurden, 

waren größer als die für den Gleason Score (GS) (AUC: 0,715, P = 0,0015 und 0,001) und 

PSA (AUC: 0,619; P immer <0,0001) allein. Der GS prognostiziert ein BCR besser als PSA 

(P = 0,0001), aber es gab keinen Unterschied zwischen den ANN- und LR-Modellen (P = 

0,39). 

Zusammenfassung: Die Ergebnisse dieser Studie können eine genauere 

Vorhersage eines BCR ermöglichen. Ein Patient, der sich der LRP unterzogen hat, sollte 

unsere Kurven nutzen können, um seine individuelle BCR-freie Wahrscheinlichkeit 

einzuschätzen. Unsere Forschung füllt die Lücken in der Vorhersage einer individuellen 

BCR-freien Wahrscheinlichkeit und die Lücken in der Anwendung von ANNs zur 

Vorhersage der BCR nach LRP. Dieses sind Voraussetzungen für zukünftige 

Untersuchungen. 
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2. INTRODUCTION  

 

2.1 Incidence trends and treatments for PCa 

Over the last few years, the prevalence of prostate cancer (PCa) has risen significantly, 

and PCa is now one of the most common malignant tumors of men globally, ranked second 

in incidence and sixth in mortality.1 In most countries, even low-incidence countries, the 

incidence of PCa is increasing. Patients with early PCa are usually asymptomatic upon 

presentation. By contrast, patients with advanced disease might present with urinary signs 

and symptoms or ostealgia. Patients with these manifestations of advanced disease have a 

poor prognosis. However, because of prostate-specific antigen (PSA) screening and 

improved treatments, the mortality rate of PCa is on a sustained downward trend.2 

Beside active surveillance and radiation therapy, many patients with localized prostate 

cancer undergo open or laparoscopic radical prostatectomy (LRP). The elevated PSA level 

of patients should decrease in 2 to 4 weeks after the LRP to clinically undetectable levels. 

Patients with adverse pathology or advanced or metastatic disease receive other 

treatments, including radiotherapy, endocrine therapy, and chemotherapy.  

 

2.2 Definition of BCR and the predictors of BCR 

A PSA level that does not decrease clearly after radical prostatectomy indicates that 

the patient already had metastatic disease before surgery. An undetectable serum PSA 

level that gradually increases after LRP to 0.1 or 0.2 ng/mL is defined as biochemical 

recurrence (BCR).3 This increase is usually considered to be a prognostic sign for the 

development of clinical recurrence and metastasis.4 Clinical recurrence or metastasis will 

not occur without the prior development of BCR.4 In addition, for patients whose PSA has 

dropped after LRP, the amount of time to appearance of BCR is clinically significant. A 

postoperative PSA level that increases rapidly from an undetectable level over a few weeks 

or months after LRP is also considered as a sign of metastatic disease.  A PSA level that 
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decreases to an undetectable level and remains undetectable for 2 to 4 years after surgery 

before increasing may be evidence of local recurrence.5 In patients with LRP that develop 

clinical recurrence or metastatic disease, the PSA level starts to increase 6 to 48 months 

before clinical symptoms may appear.6 About 77.0%, 16.6%, 4.9%, and 1.5% of BCR 

patients develop BCR within 5 years, between 5 to 10 years, between 10 to 15 years, and 

longer than 15 years after LRP, respectively.7 Therefore, early identification and treatment 

of BCR are very important for increasing a patient’s probability of long-term survival. 

The Gleason score (GS), preoperative PSA level, margin status, and pathological stage 

(pT) are currently the main parameters used for BCR prediction.8 Chay and Smith9 found 

that the best predictors of BCR at 5 years after LRP are margin positivity, GS ≥8, and 

seminal vesicle invasion, with the respective accuracies ranging from 50% to 70%, 55% to 

95%, and 35% to 65%. A positive margin was the strongest risk factor for local recurrence, 

and seminal vesicle invasion was the strongest risk factor for metastasis and death. 

Babaian et al.8 reported that the strongest prognostic factor for BCR was pT. The 

combination of pT with the Gleason score provides the greatest likelihood of identifying 

high-risk patients who require further treatments. 

Some investigators have also evaluated the GS of biopsy tissue,10 the clinical TNM 

stage,10 preoperative prostate-specific antigen velocity,11 PSA doubling time,12 serum 

testosterone level,13 and analysis of iconography data14 as predictive factors. Several 

biomarkers, including heterochromatin protein 1 gamma,15 vesicular monoamine 

transporter 2,16 karyopherin alpha 2,17 and prostate specific membrane antigen,18 have also 

been found to be significantly associated with BCR. 

 

2.3 Prediction models for PCa 

Several multivariate programs, including logistic regression, linear or penalized 

discriminant analysis, support vector machines (SVMs), classification and regression trees, 

learning vector quantification, and artificial neural networks (ANNs) have been used for the 

diagnosis and evaluation of malignancies, including prostate cancer, during the last few 
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years; and some have been found to be helpful for estimating patient outcome. These 

programs have acted to provide support for clinical decision making and as powerful 

computational tools for categorizing patients. They identify matching patterns in datasets 

and forecast outcomes by evaluating a set of ‘inputs’ that contain patient-specific 

information such as serum PSA level, prostate volume, and percent free PSA (%fPSA). The 

methods increase the chance that the health of an individual patient will be reflected in the 

results generated by the program.  

The diagnosis and prediction of a malignant disease traditionally were based on 

univariate factors such as individual biomarkers. However, unlike the traditional methods, 

the multivariate methods listed in the previous paragraph are believed to have improved the 

sensitivity, specificity, and accuracy of tumor diagnosis and classification, as well as the 

ability to estimate the prognosis of a patient with cancer.  

ANNs are currently developing rapidly and are known to be ideal methods for 

diagnosing PCa. What exactly is an ANN? In a nutshell, it is an adaptive computational 

model. It aims to replicate the processes performed by interwoven brain neurons; an ANN 

learns from external and internal input data, changes its properties accordingly, and the 

correct results produced by an ANN reinforce the processes that led to those results.19 

An ANN can reduce the need for both initial and repeat biopsies that are performed for 

the diagnosis of PCa. One of the biggest advantages of ANNs is that for any given 

sensitivity (e.g. 90% or 95%), an ANN can improve the specificity and decrease the 

false-positive rate of any parameter used for the diagnosis of PCa.20-23  

The development of a model usually begins with the training or learning phase. 

Back-propagation networks are trained or learn using a dataset that contains both input and 

output data. Once the trained model is able to perform calculations with these inputs, it can 

take in a new input message, perform data analysis, assign weight to the data, and forecast 

the output. The output value ranges between 0 and 1, and indicates the chance of 

developing a specific disease. As a case in point, the decision to perform a prostate biopsy 

is largely made based on exceeding a defined threshold value, which relies on a predefined 
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value for sensitivity (or sometimes specificity). Therefore, if the cut-off value (at 95% 

sensitivity) is 0.3, then a value<0.3 will be interpreted as no indication for biopsy. However, 

if the calculated output value equals 0.5, a biopsy will be recommended. After the training 

phase, the model will be assessed or validated.  

An external validation is needed to guarantee the authenticity of the model. In other 

words, the entire external validation process must be performed based on a single premise, 

which means all datasets must be independent of the training data. The following important 

parameters will be employed to assess a model’s discriminatory power (distinguishing 

correctly between two classes): specificity, sensitivity, positive or negative predictive values, 

and the area under the receiver operating characteristic (ROC) curve (AUROC or AUC). 

The AUC curve graphically depicts the performance of a system. 

The last step in the development of the model is the so-called calibration step, which 

uses a graphical tool to reveal the similarity of the predictions to the true probabilities. 

Detailed methodological descriptions of models,24,25 ANNs,26,27 comparisons of models,31 

and the limitations of these processes (including decision-curve analysis)28 have been 

published elsewhere.29 

Age, PSA, %fPSA, prostate health index (Phi), prostate volume, digital rectal 

examination (DRE) status, prostate cancer gene 3 (PCA3), TMPRSS2:ERG (T2:ERG) 

fusion gene, and prostate imaging findings have now all been adopted as markers for early 

detection, which can be entered into high-powered computational models to enable a more 

comprehensive diagnosis. These models have been found to provide improved sensitivity 

and accuracy.30,31  

Most of the previous prediction models for prostate cancer are based on LR, and ANNs 

only make up a small proportion of the array of models available for prediction. Many LR 

models have been established for BCR prediction,32 by contrast, only a few ANNs are 

available, and no ANN is available free online, and models that can predict outcomes at 

many time points after LRP have to date not been explored.30 Our ANNs are particularly 

applicable for calculating a patient’s risk of developing BCR at various time points after the 



10 

LRP.33  

Many studies have found that ANNs have obvious advantages over the use of any 

single biomarker for the detection of PCa, including reduction in the number of unnecessary 

biopsies, better prediction of BCR or recurrence, and better estimation of the probability of 

survival.23,34-38 In a relatively large study of 928 patients, Stephan et al. developed and 

tested an ANN with input data that included serum PSA, %fPSA, patient age, prostate 

volume, and DRE status, and found that it was superior to PSA.39 The ANN evaluated 

patients stratified into groups with the following PSA ranges: 2-4 ng/mL, 4.1-10 ng/mL, and 

10.1-20 ng/mL. At 90% sensitivity, the ANN performed better than PSA in all ranges, with 

increased specificities ranging from 32% to 44%.39 

 

2.3.1 Working principles and development of ANNs 

An ANN is usually divided into 3 parts: the input, hidden, and output layers (Fig. 1). 

During the training phase, by changing the weight coefficients and the threshold values, the 

ANN analyzes and weighs the input data, and “learns” the relationships between inputs 

(variables) and outputs (prediction results). Thereby it gradually reduces the number of 

prediction errors.  
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McCulloch and Pitts40 proposed the first back propagation model in 1948, Hebb41 

introduced the learning rules in 1949, and Rosenblatt42 first introduced the clinical use of 

ANNs for radiology in 1958. Over 3 decades passed until Baxt43 described and analyzed 

the working conditions of ANNs for the diagnosis of myocardial infarction. Increasing 

numbers of applications followed, with ANNs used for the diagnosis of diseases such as 

PCa, and breast and colorectal carcinoma and others.44,45  

 

2.3.2 ANNs for detection and other aspects of PCa 

This chapter summarizes the most important data on different ANNs applied to PCa, 

which were previously reviewed in detail by our group of investigators.30 In 1994, Snow et 

al.45 used first a neural network to predict the outcomes of prostate biopsy and the 

prognosis after radical prostatectomy for PCa. Finne et al.20 found that at 95% sensitivity, 

their multilayer Perceptron ANN achieved not only better specificity than LR or %fPSA 

(respectively 33%, 24%, and 19%), but also higher forecast accuracy than LR (p <0.001) in 

biopsies of 656 patients. As mentioned previously, an ANN that was developed by Stephan 
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et al.39 to calculate an individual patient’s risk of a positive prostate biopsy improved 

specificity by 32%-44% at 90% sensitivity over a range of PSA values.  

The newly developed screening techniques combined with ANNs were found to lead to 

reduction in the large number of unnecessary biopsies. One study of 151 biopsied men 

revealed that 62.3% of prostate biopsies (71 of 114 men without cancer) would have been 

unnecessary if an ANN had been adopted. At 92% sensitivity, an ANN achieved a higher 

specificity than %fPSA (62% versus 11%, respectively) for detection of PCa.46 Clinically, 49% 

of all biopsies in the study (74 out of 151) would have been unnecessary. A later study by 

our working group found that in groups of PCa patients stratified according to biopsies and 

PSA distribution, the ANN model established with only 2 variables, Phi and PCA3, obtained 

the largest AUC, compared with ANNs established with other variables.31
 In the repeat 

biopsy group, the ANN yielded an even better AUC (0.78) with the addition of a third 

variable, T2:ERG.31  

For patients with PCa, an ANN can be used immediately after LRP to predict which 

patient belongs to the around 30% of patients who might develop recurrence.47 One study 

showed that an ANN that used the GS, WHO grade, and maximum tumor diameter as 

variables predicted the outcome of 40 patients with pT2N0 PCa with an accuracy of 85%.48 

Benefited from the contribution of the morphometric features of prostate cancers, including 

the volume and surface area of the epithelial tumor component and of the lumina of the 

neoplastic glands per unit tissue volume, the same ANN predicted PCa progression with 93% 

accuracy.48 Compared with other models (principal component analysis, decision-tree 

analysis, and stepwise logistic regression), an ANN gained the highest AUC (0.80) and had 

a sensitivity of 0.74, specificity of 0.78, positive predictive value (PPV) of 0.71, and negative 

predictive value (NPV) of 0.81.49 

With respect to predicting the complications of radiotherapy, an ANN trained on clinical 

data was found to predict biochemical control and complications in the rectum or bladder. 

However, the sensitivity and specificity were only around 55%.50 The sensitivity of another 

ANN could be increased if the input data were carefully classified, based on the degree of 
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severity of the complications in the bladder and rectum.51 In contrast with support vector 

machines (SVMs) with an AUC of 0.7, an ANN with an AUC of 0.7 had higher accuracy.51 

Currently, only limited data have been used to build an ANN to evaluate the effects of 

radiotherapy, or the possibility of BCR after radiotherapy.52,53  

As described in the previous paragraphs, a suitable ANN can reflect and predict the 

situation of BCR. In this study, we assessed the ability of ANN and LR models to predict 

BCR. We also analyzed ANN and LR models for assessing the risk of BCR every 6 months 

after LRP. This process provides a more precise estimate of BCR risk over any time period 

after surgery. ANN is considered to be a good option for not only the Cox models but also 

other regression models.54 From a practical standpoint, considering an already elapsed 

recurrence-free interval, tools for estimating the probability of recurrence-free postoperative 

survival at certain time points are greatly needed. 
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3. MATERIALS AND METHODS 

 

3.1 Patient Selection  

According to the database of our institution, 1897 patients with PCa underwent LRP 

from 1999 to 2007. Among those patients, 322 were lost to follow-up or were excluded 

because of neo-adjuvant hormonal therapy. The remaining 1575 patients were divided into 

2 separate groups: the non-BCR group consisting of 1300 patients (82.5%) and the 

BCR-group consisting of 275 patients (17.5%). The median follow-up period was 82.1 

months (range 0.2 to 129.5 months).  

 

3.2 Data collection  

BCR was defined as serum PSA levels > 0.1 ng/mL at 2 successive time points. Prior to 

surgery, all of the blood samples were measured by Immulite® 2000 assays. The collected 

data included the following: age, PSA, %fPSA, pT, DRE status, prostate weight, margin 

status (positive surgical margin [PSM] or negative surgical margin [NSM]), and GS. 

Prostatectomy specimens were grouped according to the following pTs in order to assess 

the distributions of parameters: pT2, pT3/4; GS < 7, GS = 7, GS > 7; PSM or NSM; positive 

or negative DRE. PSA, margin status, pT, and GS were used for analyzing ANN and LR.  

The study protocol was approved by an ethics committee and was performed under the 

guidelines of Diagnostic Accuracy.55  

 

3.3 Statistical analysis 

MATLAB-software and the Neural Network Toolbox (Mathworks, Natick, MA, USA) 

were used for ANN and LR computations. The ANN had three layers: input layer, hidden 

layer and output layer. The input layer of an ANN had four neurons, the hidden layer had 

two neurons, and the output layer had one neuron, which indicated the probability of 

non-BCR. Follow-up data was collected every 6 months after LRP. The data were used for 
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reference in each model, and these models (ANN and LR) were used to assess the status 

of the non-BCR patients remaining at each time of data collection and the uncensored 

patients, and excluding the patients who developed BCR earlier. The leave-one-out method 

was applied to all models for internal validation. SPSS 19.0 (IBM, Chicago, IL, USA) and 

MedCalc 12.4.0 (MedCalc Software, Mariakerke, Belgium) were used for all comparisons of 

variables. ROC curves of specificity and sensitivity were constructed, and AUCs were 

determined. ROC curves were compared using the method of Delong et al.56 The prediction 

outcomes were analyzed by the Mann-Whitney U test for continuous variables and Fisher’s 

exact test for ordinal variables. P < 0.05 was considered statistically significant. 
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4. RESULTS  

4.1 Baseline characteristics 

Table 1 shows the clinical characteristics of patients and the distribution of 

clinicopatholological parameters of the BCR and non-BCR patients. As seen in Table 1，

none of the differences in the following parameters were significant for the two patient 

groups: age (P = 0.37), PSA (P = 0.12), %fPSA (P = 0.26), prostate volume (P = 0.33) and 

PSA density (P = 0.11). Differences in the GS (except for GS = 7, P = 0.12), margin status, 

and pT were significant. 
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Table 1. Clinical characteristics of the study populationa 

Characteristics Total Non-BCR BCR P  

Number 1575 1300 275  

Age (yr)    0.374
b
 

  Median (IQR25%-75%) 63 (59-66) 63 (59-66) 63 (59-67)  

  Range 43-75 43-75 43-75  

PSA (ng/mL)    0.115
 b
 

  Median (IQR25%-75%) 7.5 

(5.3-11.0) 

7.5 (5.2-10.4) 7.5 (6.3-14.1)  

  Range 1.3-50.7 1.3-50.7 1.7-50.6  

%fPSA    0.257
 b
 

  Median (IQR25%-75%) 9.35 

(6.51-13.1) 

9.60 (6.67-13.4) 8.0 (6.07-11.6)  

  Range 1.18-41.2 1.18-41.2 1.57-27.0  

PV (mL)    0.334
 b
 

  Median (IQR25%-75%) 35 (26-47) 35 (26-48) 30 (25-42)  

  Range 7-190 7-190 12-105  

PSA density(ng/mL/cc) 

nsity(ng/ml/cc) 

   0.108
 b
 

  Median (IQR25%-75%) 0.21 

(0.14-0.33) 

0.20 (0.13-0.31) 0.29 (0.18-0.44)  

  Range 0.02-1.66 0.02-1.66 0.04-1.64  

DRE positive 548 410 138 < 0.0001
c
 

R = 1 488 341 147 < 0.0001
 

c
 Gleason score    < 0.0001 

c < 7 (%) 549 (35) 509 (39) 40 (15)  

= 7 (%) 766 (49) 644 (50) 122 (44)  

> 7 (%) 260 (16) 147 (11) 113 (41)  

pT (%)    < 0.0001 

c pT = 2 (%) 1119 (71) 1004 (77) 115 (42)  

pT = 3 (%) 446 (28) 292 (22) 154 (56)  

pT = 4 (%) 10 (1) 4 (1) 6 (2)  

IQR: interquartile range; BCR: biochemical recurrence; DRE: digital rectal examination; %fPSA: percent free PSA; PSA: 

prostate‑specific antigen; PV: prostate volume; R1: margin status.  a Values in parentheses are IQRs or percentages of numbers of 

patients in the group or Total; b Mann–Whitney U test;  c Fisher’s exact test 
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4.2 ROC analysis of selected parameters 

According to the predicted results shown in Table 2, BCR specificities that were 

calculated by ANN and LR models using values of PSA, margin status, pT, and GS 

determined immediately after LRP, achieved peak specificities at both sensitivity cutoffs of 

90% and 95%. 

 

Compared with ANN and LR, GS and PSA have lower specificities and AUCs. In Fig 2, 

the two models show larger AUCs than GS and PSA. Table 3 shows pairwise comparisons 

of prediction models with other parameters, prediction models with each other, and GS with 

PSA. As shown in Table 3, the difference between ANN and LR was not significant (P = 

0.39); however, they achieved better predictions of BCR than PSA and GS (P = 0.0015 for 

ANN vs. GS; P < 0.0001 for ANN vs. PSA, LR vs. Gleason, and LR vs. PSA). 

Table 2. ROC analysis with ANN and LR prediction results at 90% and 95% sensitivity 

 90% Sensitivity  95% Sensitivity AUC 95% CI a 

  Spec CI  Spec CI   

ANN 35.1 32.6 - 37.8  20 17.9 - 22.3 0.754 0.721-0.786 

LR 36.5 33.9-39.2  18.8 16.8-21.1 0.755 0.723-0.787 

Gleason n.a.   8.92 7.4-10.6 0.715 0.680-0.750 

PSA 18.6 16.5-20.8  8.46 7.0-10.1 0.619 0.582-0.657 

GS: Gleason score; ROC: receiver operating characteristic; ANN: artificial neural network; AUC: area under ROC 

curve; CI: confidence interval; LR: logistic regression; PSA, prostate-specific antigen. a 95% confidence interval of the 

respective AUC 
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Fig. 2 ROC curves for the models and variables: ANN (AUC 0.754), LR (AUC 0.755), 

Gleason score (AUC 0.715), and PSA (AUC 0.619). 
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Table 3. Pairwise comparison of prediction methods 

Pairwise comparison of 

methods 

ANN 

vs. LR 

  ANN 

vs. Gleason 

ANN 

vs. PSA 

  LR  

vs. Gleason 

LR 

vs. PSA 

   Gleason 

vs. PSA 

AUC difference between 

areas 

0.001 0.039 0.134 0.040 0.136 0.096 

95% Cls 0.002 

-0.005 

0.014 -0.063 0.093 

-0.175 

0.016 -0.064 0.095 

-0.177 

0.048 -0.143 

P 
a
 0.39 0.0015 <0.0001 0.0001 < 0.0001 0.0001 

a
Delong test. 
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4.3 Biochemical recurrence-free survival (BCR-FS) curves.  

 

Fig.3 shows probabilities of BCR-FS at 2.5, 5, and 7.5 years after LRP for GS and ANN 

output for each category. PCa patients with GS < 7 show the highest probability for BCR-FS, 

while patients with GS = 7 or GS > 7 (Fig. 3A-C) have lower probability. ANN and LR 

showed similar predictive power for BCR-FS (LR data not shown). To identify patients with 

more urgent need for adjuvant radiation (and hormonal) therapy, we subdivided all patients 

into two groups based on the value of the ANN output (≥ median and < median). The 

median was calculated from 1575 ANN output values, with reference to the prevalence of 

non-BCR. Fig. 3D-F reveals the differences between the two groups of patients within 2.5, 

5, and 7.5 years. 
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Fig. 3. Probability of recurrence-free survival at 2.5, 5, and 7.5 years after LRP according to 

GS (A, B, C) and ANN output (D, E, F). The curves are based on Kaplan-Meier curves computed 

every 6 months after LRP for patients without BCR or for noncensored patients. 
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The analysis of individual ANN output values is not more accurate than GS alone for a 

patient with a GS < 7; however, for a GS ≥ 7, the prediction accuracy of ANN is improved. 

As shown in Table 4, 235 (23%) of 1026 PCa patients with GS ≥ 7 developed BCR. Of the 

768 patients with an ANN output < median cutoff value, 127 (16.5%) developed BCR. Of 

the 258 patients with an ANN output ≥ median cutoff value, 108 (41.9%) developed BCR. 

Additional analysis of 260 patients with a GS of 8-10, showed that for an ANN output < 

median cutoff value, the proportion of patients who developed BCR declined from 43.5% 

(113 of 260) to 29.2% (28 of 96). It is notable that 51.8% of the patients with aggressive 

PCa and high ANN values developed BCR (85 of 164). 

 

 

 

 

 

 

Table 4. Proportion of patients with BCR depending of GS and ANN output. 

Table 5. Proportion of Patients with BCR depending of GS and ANN output.  All Patients Patients with BCR P
a
 

GS  7 - 10  1026  235 (22.9 %)   

     ANN output < cutoff  768  127 (16.5 %)   <0.0000

1      ANN output ≥ cutoff  258  108 (41.9 %)  

GS  8 - 10  260  113 (43.5 %)  

     ANN output < cutoff  96  28 (29.2 %) 0.0006 

     ANN output ≥ cutoff  164  85 (51.8 %)  

a
Calculated by Fisher's exact test. 
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5. DISCUSSION 

Today, various types of ANNs are widely employed for the management of PCa. 

Variables such as PSA, prostate volume, and DRE are used as input parameters for the 

diagnosis of PCa.23 ANN can aid in predicting the results of repeat prostate biopsies.49 

Although it can also assess the risk of lymph node metastasis in PCa patients,38 an ANN is 

seldom used for BCR prediction.  

 

Our data on BCR prediction show that ANN and LR models can identify significant 

relationships between variables and determine how the variables interact in the training set. 

Furthermore, these models estimate BCR more accurately than other variables for each 

individual patient with PCa.57 Some studies have confirmed the capacity of ANN models to 

improve the prediction of outcome for PCa patients after prostatectomy.45,49,58-60 The 

relevant data are shown in Table 5. One of the first studies in 1994 showed an accuracy of 

87%.45 
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Table 5. Comparison of ANNs with different parameters 

Study No. of 

pat. 

Variables Sens. 

(%) 

Spec. 

(%) 

Accuracy 

(%) 

AUCa 

Tewari 

et al.58
  

1280 Age, PSA, systematic 

biopsy-based, stage, perineural 

infiltration, GS, duration of follow-up in 

months 

76 85 76 0.831 

Ziada 

et al.37
  

309 TNM stage, prostate size, PSA, GS, 

percentage of positive biopsies, age 

79 81 80  

Potter 

et al.60  

214 GS, extraprostatic extension, surgical 

margin status, age 

88.2 61.1 74.3 0.713 

Potter 

et al.60 

214 DNA ploidy, the variance of 41 different 

nuclear morphometric descriptors 

74.5 85.2 80.0 0.74 

Potter 

et al.60 

214 GS, extraprostatic extension, surgical 

margin status, age, DNA ploidy, QNG 

(the variance of 41 different nuclear 

morphometric descriptors) 

84.3 72.2 78.1 0.735 

Potter 

et al.49  

196 Biopsy primary, secondary Gleason 

grade, biopsy Gleason sum, age, PSA 

74 78 81 0.80 

This 

study33 

1575 Age, PSA ,GS 40.7 87.5 79.3 0.754 

aAUC = area under receiver operating characteristic curve. QNG = quantitative nuclear grade 
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Although, the study by Tewari et al.58 resulted in the best AUC value of 0.83, their 

accuracy was lower than in some of the other studies. Potter et al.60 reached AUCs of 0.71, 

0.74, 0.74, and 0.80 with different input parameters, but gained relatively lower specificity 

compared with our current study. Regardless of the varied levels of sensitivity and 

specificity, the ranges in accuracy (74% to 81%) and AUC (0.71 to 0.83) for all the studies 

are comparatively small. In other words, the input parameters were not conducive to 

improved BCR prediction.  

Interestingly, %fPSA has been considered to be a useful marker in combination with 

PSA, DRE and biopsy findings to predict postoperative pathological stage and grade after 

prostatectomy;61 however, in our study, %fPSA did not show differences in outcome. The 

median %fPSA values of the non-BCR and BCR patients were similar (9.6 vs. 8.0%; P = 

0.26) (Table 1).  

Our ANNs have an additional merit for patients with aggressive PCa (GS ≥ 7). 

According to our study, 235 of 1026 (23%) patients with GS values from 7 to 10 developed 

BCR. Of 768 patients whose ANN values were less than the chosen cutoff (median of ANN 

values), 16.5% developed BCR (Table 4). However, among the patients with an ANN value 

greater than the cutoff, 41.9% developed BCR, which is almost 2-fold of all patients who 

developed BCR (23%) regardless of the ANN output value, and nearly 3-fold the proportion 

of patients with an ANN output value less than the cutoff. However, since only 40 of the 

patients developed BCR, it can be concluded that analysis of individual ANN output values 

was not beneficial for patients with GS <7 PCa. 

A further analysis of the 260 patients with a GS > 7 and with highly aggressive PCa 

revealed that the overall BCR rate decreased from 43.5% to 29.2% for patients with an 

ANN output value below the cutoff. In contrast, those patients with aggressive PCa and 

high ANN values had higher probability (51.8%; 85 of 164) of developing BCR. This 

individual risk estimation can be used to guide decision making for additional treatment, 

particularly for patients with high GS and ANN values.  

Particularly, at every 6 months after surgery, our models can estimate the BCR-free 
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probability of a patient at specific time-points after a BCR-free period. For example, as 

shown in Figs. 3B and C, the probability of BCR in a patient with a GS = 7 and a 

recurrence-free period of 3 years after LRP is 8% up to 5 years and 14% up to 7.5 years. 

Without considering the 3 BCR-free years, the estimated risk for BCR would be ~22%. 

Compared with risk values estimated immediately after prostatectomy, our models provide 

a more optimistic prognosis.  

This study has limitations. First, only internal validation results are available for all 

models. However, our aim was to determine the probability of improving BCR prediction for 

an individual patient at any time point after LRP. Second, the amount of available patient 

data decreased with increasing follow-up time. 

PSA, GS, and patient age were significant markers for predicting the outcome of 

PCa.4,62,63 These parameters, in addition to ANN output value, are currently the optimal 

choices for prediction of PCa recurrence. Furthermore, our ANN models enable prediction 

of BCR at an individual time point after LRP or for patients who have BCR-free timepoints. 

Other parameters such as %fPSA did not work as we had speculated. Although the %fPSA 

value is useful for the diagnosis of PCa, it is a relatively weak predictor of PCa and BCR. 

Therefore, it was excluded from our models.  
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6. CONCLUSION  

Our ANN and LR models were substantially stronger predictors of BCR than the single 

traditional parameters GS and PSA. They aid in the estimation of the probability of an 

individual patient’s BCR-free survival at any BCR-free timepoint after LRP. To improve the 

accuracy of BCR prediction, the GS can be combined with the ANN output value, which 

may enhance the precision of decision-making with regard to administering adjuvant 

therapy after prostatectomy, particularly for high-risk patients (GS ≥ 7). 
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7. LIST OF ABBREVIATIONS  

 

%fPSA free/total prostate specific antigen ratio    

ANN artificial neural network     

AUC area under the receiver operating characteristic  

BCR biochemical recurrence     

DRE digital rectal examination     

fPSA free PSA     

GS Gleason score     

LR logistic regression     

RP radical prostatectomy 

NPV negative predictive value  

PCa prostate cancer 

PCA3 prostate cancer gene 3     

Phi prostate health index     

pT pathological stage  

PPV positive predictive value    

ROC receiver operating characteristic     

SVMs Support vector machines     

T2:ERG TMRPSS2-ERG     

TMPRSS2 transmembraneprotease serine 2     

tPSA total PSA 
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