
Appendix A

Derivation of the rate constant of the

stepwise mechanism of the proton

transfer reaction in porphycene.

Figure A.1: Scheme representing the stepwise mechanism of the proton transfer

reaction in porphycene. A,B = H or D

In this appendix we will provide a step-by-step derivation of Eq. (3.7). For

the stepwise mechanism shown in Scheme A.1 one can use the traditional kinetic

analysis and write the rate law for the interconversion between the two trans tau-
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Derivation of the rate constant of the stepwise mechanism of the proton transfer

reaction in porphycene.

tomers (T1 and T2) as follows:

d[T1]

dt
= −kA

1 [T1] − kB
1 [T1] + kA

−1[C1] + kB
−1[C2], (A.1)

where C1 and C2 are the cis tautomers of porphycene and k’s are the rate coef-

ficients shown in Scheme A.1. Since C1 and C2 are considered as intermediates

for the stepwise mechanism, the steady state approximation can be applied.

d[C1]

dt
= kA

1 [T1] − kB
2 [C1] − kA

−1[C1] + kB
−2[T2] = 0, (A.2)

and
d[C2]

dt
= kB

1 [T1] − kA
2 [C2] − kB

−1[C2] + kA
−2[C2] = 0. (A.3)

Therefore:

[C1] =
kA

1 [T1] + kB
−2[T2]

kB
2 + kA

−1

, (A.4)

and

[C2] =
kB

1 [T1] + kA
−2[C2]

kA
2 + kB

−1

. (A.5)

It follows from Eqns. (A.1), (A.4) and (A.5) that:

d[T1]

dt
= −kA

1 [T1] − kB
1 [T1]

+ kA
−1

kA
1 [T1] + kB

−2[T2]

kB
2 + kA

−1

+ kB
−1

kB
1 [T1] + kA

−2[C2]

kA
2 + kB

−1

. (A.6)

On rearranging Eq. (A.6), one gets:

d[T1]

dt
=

−kA
1 kA

−1 − kA
1 kB

2 + kA
−1k

A
1

kA
−1 + kB

2

[T1]

+
−kB

1 kB
−1 − kB

1 kA
2 + kB

−1k
B
1

kB
−1 + kA

2

[T1]

+

(
kA
−1k

B
−2

kA
−1 + kB

2

+
kB
−1k

A
−2

kB
−1 + kA

2

)
[T2]. (A.7)

Accordingly,

d[T1]

dt
= −

(
kA

1 kB
2

kA
−1 + kB

2

+
kB

1 kA
2

kB
−1 + kA

2

)
[T1]

+

(
kA
−1k

B
−2

kA
−1 + kB

2

+
kB
−1k

A
−2

kB
−1 + kA

2

)
[T2]. (A.8)

Finally one can write the rate of reaction as follows:

d[T1]

dt
= −kAB

SM [T1] + kAB
SM [T2], (A.9)
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where index SM stands for stepwise mechanism. Therefore,

kAB
SM =

kA
1 kB

2

kA
−1 + kB

2

+
kB

1 kA
2

kB
−1 + kA

2

. (A.10)

Consider the symmetric case of porphycene (i.e. A = B = H), then Eq. (A.10)

becomes

k
HH/DD
SM = k

H/D
1 . (A.11)

Furthermore, the asymmetric case of porphycene (i.e. A = H and B = D) results

in

kHD
SM =

kH
1 kD

2 + kD
1 kH

2

2(kH
2 + kD

2 )
. (A.12)
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reaction in porphycene.



Appendix B

Empirical q1/q2 approach.

The values of q1 and q2 cannot be obtained directly from the NMR experiment.

However, one can correlate the NMR chemical shifts of the deuterated and normal

species with the geometrical parameters q1 and q2. According to the valence bond

order concept of Pauling [171] and Brown [172], one can define the valency pij

(ij = AH) as follows:

pij = exp(−(ri − ro
i )/bi), (B.1)

where bi is the bond decay parameter and ro
i is the distance when p1 = 1. pi

becomes zero at infinite distance. The distances r1 and r2 are shown in Fig. 1.8.

Dunitz extended the valence bond order to cover the hydrogen bonded systems

[173]:

p1 + p2 = exp(−(r1 − ro
1)/b1) + exp(−(r2 − ro

2)/b2) = 1. (B.2)

Hence, the two bond distances r1 and r2 can not be varied independently since

one can use Eq. (B.2) to express r1 as a function of r2 or q1 as a function of q2.

For the symmetric case A-H· · ·A, where b1 = b2 = b and ro
1 = r0

2 = ro it follows

that [28]

q2 = r1 + r2 = 2ro + 2q1 + 2b · ln(1 + exp(−2q1/b)). (B.3)

Steiner et al. obtained an experimental correlation between q1 and q2 based on

neutron diffraction data for various N-H· · ·N hydrogen bonds [22, 174]. Limbach

et al. modified this correlation (using the anharmonic correction of the ground

state vibrations of the hydrogen or deuterium) and obtained a better fit to experi-

mental data (NMR and neutron diffraction), especially in the region of symmetric

and quasi-symmetric hydrogen bonds (where q1 is close to 0) [42, 43]. An empir-
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ical correction for the valence bond order has been proposed by Limbach [42, 43]:

pL
NH = pNH − cL(pNH − pHN)f (pNH − pHN) − dL(pNHpHNg) (B.4)

pL
HN = pHN − cL(pNH − pHN)f (pNH − pHN) − dL(pNHpHNg), (B.5)

where c, d, f and g are isotope sensitive empirical parameters. The chemical shifts

can be written as a function of the valence bond orders as follows: [175, 176]

δ(1H) = ∆H(4p1p2)
m + δo

1p1 + δo
2p2, (B.6)

where, ∆H is the excess chemical shift of the quasi symmetric complex and δo
1

and δo
2 are the limiting chemical shifts for distances ro

1 and ro
2 respectively. m is an

empirical fitting parameter with value close to 1. For the N-H...N case, Eq. (B.6)

can be simplified, as δo
1 = δo

2,

δ(1H) = ∆H(4p1p2)
m + δo. (B.7)

Using this equation, the valence bond order and some systems with known geome-

tries and similar core, one can establish a correlation between the experimentally

measured chemical shifts and the geometrical changes q1 and q2. From the empir-

ical q1 and q2, one can then calculate the primary and secondary geometric H/D

isotope effects.



Appendix C

Input files for MCTDH.

The used relaxation input file (HH case)

for the calculation of the ground state

wave function.

RUN-SECTION

name = file name

relaxation

tfinal=100.0

tout= 10.

overwrite

update

output

psi

end-run-section

OPERATOR-SECTION

opname = op file name

end-operator-section

SBASIS-SECTION

q1,q2 = 4

q3,q4 = 4

end-sbasis-section

PBASIS-SECTION

q1 HO 64 xi-xf -0.56 0.56

q2 HO 64 xi-xf -0.56 0.56

q3 HO 128 xi-xf -6.5 6.5

q4 HO 64 xi-xf -1.5 1.5

end-pbasis-section

INTEGRATOR-SECTION

CMF/fix

BS/spf = 10 , 1.0d-8

SIL/A = 40 , 1.0d-8

end-integrator-section

INIT WF-SECTION

build

q1 gauss 0.000 0.0 0.1

q2 gauss 0.000 0.0 0.1

q3 gauss 0.000 0.0 0.1

q4 gauss 0.000 0.0 0.1

end-build

end-init wf-section

end-input

The used operator input (HH case) file

for MCTDH calculations.

OP DEFINE-SECTION

title

4D system

end-title

end-op define-section

PARAMETER-SECTION

mass q1 = 1.0, AMU

mass q2 = 1.0, AMU

mass q3 = 1.0, AMU

mass q4 = 1.0, AMU

B 00 = 7.9931978d-07

B 01 = 7.7293359d-06

B 10 = -3.5433424d-04

B 02 = 1.5984175d-01

B 11 = -1.4398189d-04

B 20 = 1.5973074d-01

B 03 = -8.1598779d-05

B 12 = 4.9461731d-01

B 21 = 1.8665123d-04

B 30 = 1.6605993d-01

B 04 = 9.1543319d-02

B 13 = 1.3718024d-03

B 22 = 5.1391203d-01

B 31 = 1.2697971d-03

B 40 = 8.8016621d-02

B 05 = 2.2341013d-04

B 14 = 2.4508811d-01

B 23 = -1.6313050d-03

B 32 = 4.7206428d-01

B 41 = -1.1472811d-03

B 50 = 4.4487777d-02

B 15 = -3.1575315d-03

B 24 = 2.4057259d-01

B 33 = -1.0786550d-02
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B 42 = 2.5612118d-01

B 51 = -2.8569251d-03

B 25 = 3.5034979d-03

B 34 = -2.9169110d-01

B 43 = 1.1070784d-02

B 52 = -1.6425420d-01

B 35 = 2.2097963d-02

B 44 = 1.3973124d-01

B 53 = 2.2351428d-02

B 45 = -2.6136768d-02

B 54 = 1.1787250d+00

B 55 = -4.0642140d-02

C 00 = -2.2650727d-06

C 01 = -3.7847905d-05

C 10 = -3.2887795d-04

C 02 = 6.8344149d-04

C 11 = 4.6304580d-04

C 20 = 1.5968777d-01

C 03 = -3.2866822d-05

C 12 = 6.4528517d-04

C 21 = 1.6749939d-02

C 30 = 1.6909950d-01

C 04 = 3.1360993d-06

C 13 = -8.1750251d-05

C 22 = -5.7900864d-04

C 31 = 6.4529577d-03

C 40 = 8.8088825d-02

C 05 = -3.4328158d-07

C 14 = -4.1546759d-06

C 23 = 4.9147402d-05

C 32 = -1.7750873d-04

C 41 = 7.4013998d-03

C 50 = 3.1863647d-02

C 15 = 2.1952784d-06

C 24 = 1.7316971d-05

C 33 = 5.3656026d-04

C 42 = 8.1422455d-04

C 51 = 9.3004498d-03

C 25 = -3.6567606d-06

C 34 = -1.5143146d-05

C 43 = -3.6610023d-04

C 52 = 9.8114780d-05

C 35 = -1.6837232d-05

C 44 = -2.1172628d-05

C 53 = -1.4047898d-03

C 45 = 1.0491063d-05

C 54 = 6.4393302d-06

C 55 = 5.0687512d-05

D 00 = 5.5247855d-06

D 01 = -7.8402428d-05

D 10 = -7.1585523d-06

D 02 = 6.8415893d-04

D 11 = -1.0356638d-05

D 20 = 1.5965265d-01

D 03 = -2.7524981d-05

D 12 = -3.6908696d-07

D 21 = 1.5716953d-02

D 30 = 1.1170066d-04

D 04 = 3.1083738d-06

D 13 = 1.3367106d-06

D 22 = -6.9437147d-04

D 31 = 1.5124007d-04

D 40 = 9.2593109d-02

D 05 = -5.0340183d-07

D 14 = 3.1617117d-08

D 23 = 6.8821054d-05

D 32 = 5.3431909d-06

D 41 = 9.6246730d-03

D 50 = -3.4892401d-04

D 15 = -3.9751014d-08

D 24 = 2.4364829d-05

D 33 = -1.9424463d-05

D 42 = 8.5078288d-04

D 51 = -4.7542712d-04

D 25 = -3.8044434d-06

D 34 = -4.5875548d-07

D 43 = -5.6650714d-04

D 52 = -1.6799933d-05

D 35 = 5.7755402d-07

D 44 = -3.6613766d-05

D 53 = 6.1084772d-05

D 45 = 1.5782332d-05

D 54 = 1.4425556d-06

D 55 = -1.8162746d-06

#

K 4 4 = .339373253d-01

K 4 4 4 = -.502823646d-05

K 4 4 1 = .365091798d-03

K 4 4 2 = .189111447d-04

K 4 4 3 = .116589069d-03

K 1 1 4 = -.598802311d-05

K 2 2 4 = .449574615d-04

K 3 3 4 = .377082201d-05

K 1 2 4 = -.688581443d-01

K 1 3 4 = .190291849d-04

K 2 3 4 = -.298190256d-02

end-parameter-section

HAMILTONIAN-SECTION

modes | q1 | q2 | q3 | q4

1.0 |1 KE

1.0 |2 KE

1.0 |3 KE

1.0 |4 KE

#

B 00 | xq0 | xq0 | xq0

B 11 | xq1 | xq1 | xq0

B 12 | xq1 | xq2 | xq0

B 21 | xq2 | xq1 | xq0

B 13 | xq1 | xq3 | xq0

B 22 | xq2 | xq2 | xq0
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B 31 | xq3 | xq1 | xq0

B 14 | xq1 | xq4 | xq0

B 23 | xq2 | xq3 | xq0

B 32 | xq3 | xq2 | xq0

B 41 | xq4 | xq1 | xq0

B 15 | xq1 | xq5 | xq0

B 24 | xq2 | xq4 | xq0

B 33 | xq3 | xq3 | xq0

B 42 | xq4 | xq2 | xq0

B 51 | xq5 | xq1 | xq0

B 25 | xq2 | xq5 | xq0

B 34 | xq3 | xq4 | xq0

B 43 | xq4 | xq3 | xq0

B 52 | xq5 | xq2 | xq0

B 35 | xq3 | xq5 | xq0

B 44 | xq4 | xq4 | xq0

B 53 | xq5 | xq3 | xq0

B 45 | xq4 | xq5 | xq0

B 54 | xq5 | xq4 | xq0

B 55 | xq5 | xq5 | xq0

C 10 | xq1 | xq0 | xq0

C 11 | xq1 | xq0 | xq1

C 20 | xq2 | xq0 | xq0

C 12 | xq1 | xq0 | xq2

C 21 | xq2 | xq0 | xq1

C 30 | xq3 | xq0 | xq0

C 13 | xq1 | xq0 | xq3

C 22 | xq2 | xq0 | xq2

C 31 | xq3 | xq0 | xq1

C 40 | xq4 | xq0 | xq0

C 14 | xq1 | xq0 | xq4

C 23 | xq2 | xq0 | xq3

C 32 | xq3 | xq0 | xq2

C 41 | xq4 | xq0 | xq1

C 50 | xq5 | xq0 | xq0

C 15 | xq1 | xq0 | xq5

C 24 | xq2 | xq0 | xq4

C 33 | xq3 | xq0 | xq3

C 42 | xq4 | xq0 | xq2

C 51 | xq5 | xq0 | xq1

C 25 | xq2 | xq0 | xq5

C 34 | xq3 | xq0 | xq4

C 43 | xq4 | xq0 | xq3

C 52 | xq5 | xq0 | xq2

C 35 | xq3 | xq0 | xq5

C 44 | xq4 | xq0 | xq4

C 53 | xq5 | xq0 | xq3

C 45 | xq4 | xq0 | xq5

C 54 | xq5 | xq0 | xq4

C 55 | xq5 | xq0 | xq5

D 00 | xq0 | xq0 | xq0

D 01 | xq0 | xq0 | xq1

D 10 | xq0 | xq1 | xq0

D 02 | xq0 | xq0 | xq2

D 11 | xq0 | xq1 | xq1

D 20 | xq0 | xq2 | xq0

D 03 | xq0 | xq0 | xq3

D 12 | xq0 | xq1 | xq2

D 21 | xq0 | xq2 | xq1

D 30 | xq0 | xq3 | xq0

D 04 | xq0 | xq0 | xq4

D 13 | xq0 | xq1 | xq3

D 22 | xq0 | xq2 | xq2

D 31 | xq0 | xq3 | xq1

D 40 | xq0 | xq4 | xq0

D 05 | xq0 | xq0 | xq5

D 14 | xq0 | xq1 | xq4

D 23 | xq0 | xq2 | xq3

D 32 | xq0 | xq3 | xq2

D 41 | xq0 | xq4 | xq1

D 50 | xq0 | xq5 | xq0

D 15 | xq0 | xq1 | xq5

D 24 | xq0 | xq2 | xq4

D 33 | xq0 | xq3 | xq3

D 42 | xq0 | xq4 | xq2

D 51 | xq0 | xq5 | xq1

D 25 | xq0 | xq2 | xq5

D 34 | xq0 | xq3 | xq4

D 43 | xq0 | xq4 | xq3

D 52 | xq0 | xq5 | xq2

D 35 | xq0 | xq3 | xq5

D 44 | xq0 | xq4 | xq4

D 53 | xq0 | xq5 | xq3

D 45 | xq0 | xq4 | xq5

D 54 | xq0 | xq5 | xq4

D 55 | xq0 | xq5 | xq5

#

K 4 4/2. |4 q2̂

K 4 4 4/6. |4 q3̂

K 4 4 1/2. |1 q |4 q2̂

K 4 4 2/2. |2 q |4 q2̂

K 1 1 4/2. |1 q2̂ |4 q

K 2 2 4/2. |2 q2̂ |4 q

K 1 2 4 |1 q |2 q |4 q

K 4 4 3/2. |3 q |4 q2̂

K 3 3 4/2. |3 q2̂ |4 q

K 1 3 4 |1 q |3 q |4 q

K 2 3 4 |2 q |3 q |4 q

end-hamiltonian-section

LABELS-SECTION

#

xq0 = 1

xq1 = q

xq2 = q2

xq3 = q3

xq4 = q4

xq5 = q5

end-labels-section

end-operator
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Appendix D

Coordinate transformation from old

”molecule” to new ”laboratory”

frames.

In this Appendix an expression that relates the original coordinates r and φ to new

r′ and φ′ ones is derived. We recall that r and φ describe the P-S bond length

and the dihedral angle defined by the atoms OPSD, corresponding to the torsional

angle of the SD versus OPH2 fragments around the S-P bond, respectively (Fig.

D.1), whereas r′ and φ′ are defined as the distance between the c.o.m’s of the SD

and OPH2 fragments and the torsion of SD versus OPH2 fragments around the

line connecting the c.o.m’s of the SD and OPH2 fragments, see Figure D.1. It

is assumed that the line (r′) is oriented along the Z-axis, and the atoms O and P

remain in the X-Z-plane.

First, consider the situation where φ′ = φ′, the vector describing the S-D bond,

�rSD, can be defined as

�rSD = �rD − �rS, (D.1)

where the vectors �rD and �rS for the ”old” coordinates are

�rD =

⎛
⎜⎜⎝

1.34

0.00

2.19

⎞
⎟⎟⎠ , (D.2)

�rS =

⎛
⎜⎜⎝

0.00

0.00

2.12

⎞
⎟⎟⎠ . (D.3)
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Figure D.1: Schematic diagram showing the old (a) as well as the new (b) coordi-

nates. The polar angle θ and the different origins are also shown.

The center of mass of the fragment SD is defined as

�rc.o.m,SD = cD�rD + cS�rS, (D.4)

with

cD =
mD

mD + mS

& cS =
mS

mD + mS

. (D.5)

Likewise, the center of mass of the fragment H2PO is defined as

�rc.o.m,H2POSD = cO�rO + cP�rP + cHa�rHa + cHb
�rHb

, (D.6)

with

cO =
mO

mO + mP + mHa + mHb

,

cP =
mP

mO + mP + mHa + mHb

,

cHa =
mHa

mO + mP + mHa + mHb

,

cHb
=

mHb

mO + mP + mHa + mHb

,

(D.7)
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and, again in terms of the ”old” coordinates

�rO =

⎛
⎜⎜⎝

1.30

0.00

−0.71

⎞
⎟⎟⎠ , (D.8)

�rP =

⎛
⎜⎜⎝

0.00

0.00

0.00

⎞
⎟⎟⎠ , (D.9)

�rHa =

⎛
⎜⎜⎝

−0.84

1.09

−0.24

⎞
⎟⎟⎠ , (D.10)

�rHb
=

⎛
⎜⎜⎝

−0.84

−1.09

−0.24

⎞
⎟⎟⎠ . (D.11)

Using Eqns. (D.4) and (D.6), one can calculate �r′ as

�r′ = �rc.o.m,SD − �rc.o.m,H2POSD. (D.12)

Equations (D.1) and (D.12) are then used to calculate the angle θ′

θ′ = arc cos

(
�r′ · �r′SD

|�r| · |�rSD|
)

= 0.52π. (D.13)

In the following, it is assumed that the angle θ ′ is fixed. Let the c.o.m of the

(non-rotating) OPH2 fragment be now the origin of the new coordinates, i.e.

�r′c.o.m,OPH2
= �0. Then the vectors �r′P , �r′O and �r′OP can be calculated as shown

in section D (in a0) to be

�r′P =

⎛
⎜⎜⎝

0.74

0.00

0.45

⎞
⎟⎟⎠ , (D.14)

�r′O =

⎛
⎜⎜⎝

−1.72

0.00

−0.87

⎞
⎟⎟⎠ , (D.15)

�r′OP =

⎛
⎜⎜⎝

2.46

0.00

1.32

⎞
⎟⎟⎠ , (D.16)

and

�r′ = �r′c.o.m,SD − �r′c.o.m,OPH2
= �r′c.o.m,SD = cD�r′D + cS�r′S. (D.17)
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Also

�r′SD = �r′D − �r′S. (D.18)

From the matrix representation of eqns. (D.17) and (D.18)(
�r′

�r′SD

)
=

(
cD cS

1 −1

)(
�r′D
�r′S

)
, (D.19)

one can obtain(
�r′D
�r′S

)
=

(
1 cS

1 −cD

)(
�r′

�r′SD

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎝

0

0

�r′

⎞
⎟⎟⎠+ cS�r′SD

⎛
⎜⎜⎝

sinθ′cosφ′

sinθ′sinφ′

cosθ′

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0

0

�r′

⎞
⎟⎟⎠− cD�r′SD

⎛
⎜⎜⎝

sinθ′cosφ′

sinθ′sinφ′

cosθ′

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (D.20)

where θ′ is the polar angle defined by the Z-axis and the �r′SD, fixed to 0.52 π, see

Eq. D.13. The bond length, |�r ′
SD|, is fixed to 2.53 a0. Eqns. (D.14) and (D.20)

allow to calculate

�r′PS = �r′S − �r′P (D.21)

and finally to express r in terms of r′ and φ′,

r = rSP = |�r′S − �r′P |
=
√

(�r′SX
− �r′PX

)2 + (�r′SY
− �r′PY

)2 + (�r′SZ
− �r′PZ

)2. (D.22)

Next, an expression for φ in terms of r′ and φ′ is derived. For this purpose, one

notes from Fig. D.2 that φ is the angle between the OPS- and DPS-planes, i.e. φ

is also the angle between two vectors �a′ and�b′ perpendicular to these planes,

φ = arc cos

(
�a′ ·�b′
|�a′| · |�b′|

)
. (D.23)

Using eqns. (D.16), (D.18) and (D.21) one obtains

�a′ =
�r′OP × �r′PS

|�r′OP × �r′PS|
, (D.24)

and
�b′ =

�r′PS × �r′SD

|�r′PS × �r′SD|
. (D.25)
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Figure D.2: The torsional angle is represented as the angle between OPS- and

DPS-planes as well as the angle between the two vectors �a′ and �b′ perpendicular

to these planes.

Equations (D.17), (D.20) and (D.23)-(D.25) then allow to calculate φ in terms of

r′ and φ′.

This transformation from r and φ to corresponding values of r ′ and φ′ yields

e.g. the potential energy surface in the new coordinates:

V ′(r′, φ′) = V (r(r′, φ′), φ(r′, φ′)), (D.26)

The transformed potential V ′(r′, φ′) is then splined on a grid of ca. 74700 points

(415 × 180), which is written in a grid representation as:

V ′(r′i, φ
′
j) = V (r{r′i, φ′

j}, φ{r′i, φ′
j}). (D.27)
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Appendix E

Calculation of the reduced moment

of inertia of H2POSD.

In this appendix, the reduced moment of inertia I ′
SD,OPH2

(Eqn. (4.4)), which

appears in the 2D-Hamiltonian is calculated. As mentioned in the previous section

the origin is considered to be the center of mass of the fragment H2PO, see Fig.

D.1. The acute angles created by the Z-axis and the line connecting each atom

with the corresponding center of mass, as shown in Fig. E.1,

Figure E.1: Scheme representing the different θ’s that are used to calculate the

moment of inertia for the center of masses of the two fragments SD and H2PO

that is exploited in the 2D-Hamiltonian.

can be calculated as:

θD = arc cos

(
�rD · �rc.o.m,SD

|�rD| · |�rc.o.m,SD|
)

, (E.1)
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θS = 180 − arc cos

(
�rS · �rc.o.m,SD

|�rS| · |�rc.o.m,SD|
)

, (E.2)

θP = arc cos

(
�rP · �rc.o.m,OPH2

|�rP | · |�rc.o.m,OPH2|
)

, (E.3)

θO = 180 − arc cos

(
�rO · �rc.o.m,OPH2

|�rO| · |�rc.o.m,OPH2|
)

, (E.4)

and

θHa/b
= 180 − arc cos

(
�rHa/b

· �rc.o.m,OPH2

|�rHa/b
| · |�rc.o.m,OPH2|

)
. (E.5)

The normal line from each atom to the Z-axis are defined as

rD = cS · rSD · sin(θD), (E.6)

rS = cD · rSD · sin(θS), (E.7)

rP = |�P | · sin(θP ), (E.8)

rO = | �O| · sin(θO), (E.9)

and

rHa/b
= | �Ha/b| · sin(θHa/b

). (E.10)

Using Eqns. (E.6) and (E.7), one can calculate the moment of inertia of SD frag-

ment

ISD = mDr2
D + mSr2

S. (E.11)

Equations (E.8) to (E.10) allows us to calculate the moment of inertia of the frag-

ment H2PO

IOPH2 = mOr2
O + mP r2

P + mHar
2
Ha

+ mHb
r2
Hb

. (E.12)

Therefore, the reduced moment of inertia can be calculated as

I ′
SD,OPH2

=
ISDIOPH2

ISD + IOPH2

. (E.13)


