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Abstract

The critical problem in range-based indoor positioning is the severe ranging uncertainty, which typ-

ically resorts to the probabilistic perspective. Since there is no analytical solution to the nonlinear

and non-Gaussian positioning problem, the research trends have moved towards exploring sample-

based approximations in the probabilistic frame. However, the sample-based methods are generally

inaccessible for application not only because of the high complexity, but also for the sampling dif-

ficulty and divergence. This thesis studies the sample-based probabilistic positioning to achieve the

tradeoff in performance (accuracy and robustness), cost (time and space complexity), and usability

(in terms of the required number of samples and implementation difficulty).

The work of this thesis covers both the theoretical and practical sides of sample-based probabilistic

algorithms positioning. The proposed algorithms are tested by extensive simulations and real-world

experiments on the Nanotron platform. Specifically, the contributions of this thesis can be summa-

rized in the following:

• Chapter 3.3 characterizes the indoor TOF ranging, i.e., the relationship of the ranging error

to time, space, anchor connectivity and the ground truth of the ranging, etc. Then, intensive

distribution fitting, hypothesis test, and model verification of different parametric models are

carried out.

• Via the imposition of the state constraints from the most recent observation, four constrained

sampling methods are developed (see Chapter 4), with the advantages including: 1) effec-

tively reduce the sample size; 2) suppress sample degeneracy and impoverishment without

resampling; 3) no requirement of keeping all samples’ properties in memory.

• The NLOS mitigation proposed in Chapter 4 refines the measurement model as a positively

biased and right-tail distribution.

• Both the theoretical and practical anchor deployment are suggested in Chapter 4.

• To address the estimation instability and sparsity problems, the one time-step smoothing meth-

ods are incorporated in the sample-based Bayesian estimation.

Keywords Indoors positioning, target tracking, Bayesian filtering, Bayesian smoothing, sample-

based approximation, frequentist measurement modeling, NLOS mitigation, anchor deployment



Das grundlegende Problem von distanzbasierter Indoor-Lokalisierung, ist die hohe Ungenauigkeit

der Distanzmessungen. Die weit verbreitetste Strategie mit diesem Problem umzugehen, ist die

probalistische Schätzung. Da es für das nicht-lineare und nicht-gaussche Lokalisierungsproblem

keine analytische Lösung gibt, besteht ein wachsendes Interesse in der Untersuchung von Sample-

basierten Näherungen. Sample basierte Näherungen haben jedoch den Nachteil, dass sie Aufgrund

ihrer hohen Komplexität und des sampling-Aufwandes im Feld kaum anwendbar sind. Daher ist

es das Ziel dieser Arbeit Sample-basierte probalistische Lokalisierungsverfahren zu studieren und

einen Optimum zwischen Genauigkeit und Robustheit, Kosten (zeitliche und örtliche Komplexität)

und Anwendbarkeit (im Sinne der benötigten Sample-Zahl und Implementierungsaufand) zu finden.

Der wissenschaftliche Beitrag dieser Arbeit findet sich sowohl auf der anwendungs- als auch auf der

theoretischen Seite von probalistischen Lokalisierungsverfahren. Die Lokalisierungsverfahren wer-

den mittels aufwändiger Simulationen, sowie durch Experimente in realistischen Szenarien evaluiert.

Als Platform für die Experimente dient das funkbasierte Entfernungsmesssystem der Firma Nan-

otron. Im Detail lassen sich die Beiträge wie folgt zusammenfassen:

- Kapitel 3 charakterisiert die Besonderheiten von Time-Of-Flight basierter Indoor-Distanzmessung.

Beispielsweise die Abhängigkeit des Distanzehlers zu Messzeit und -ort, zu der Anzahl der Anker,

zur echten Position der Messung und Einflüsse des menschlichen Körpers usw. Im Anschluss wer-

den Fehlerverteilungsfunktionen an die Verteilung der Messdaten angepasst, ein Hypothesen-Test

sowie eine Model-Verifkation für verschiedene parametrische Modelle durchgeführt.

- Durch die Einführung von Zustandsbeschränkungen auf die aktuellen Messung werden vier beschränkte

Sample-Methoden entwickelt (vgl. Kapitel 4), die folgende Vorteile bieten: 1. Reduzierung der

benötigten Samples. 2. Robustheit gegenüber Ausreißern oder Messlücken 3. Es ist nicht mehr

nötig alle Samples im Speichern

- das NLOS Abschwächungsmodell, welches in Kapitel 4 vorgestellt wird ändern das Fehlermodell

der Entfernungsmessung hin zu einer positiv verschobenen rechts auslaufenden Verteilungsfunktion

- In Kapitel 4 wird die theoretisch- sowie praktisch optimale Ankerplatzierung diskutiert

- Die vorgeschlagenen Algorithmen bieten eine allgemeine Plattform für sequentielle- und nicht

sequentielle Lokalisierungsverfahren

- Um Varianz-Probleme und Sampleausfälle zu unterdrücken wird ein Glättungsverfahren vorgestellt,

welches auf einem einstufigen Zustand mit Bayesianischer Schätzung beruht.
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Chapter 1

Introduction

1.1 What Makes Indoor Positioning Attractive?

With the popularity of mobile devices (i.e., portable sensor devices, personal digital assistants

(PDA), smart phones and tablets), indoor positioning and tracking have become increasingly in-

teresting for position-related applications and emergency services. Knowledge of the position of

mobile devices opens up a wide range of attractive applications as follows

• positioning and tracking of people and assets;

• emergency preparedness and response for public safety;

• intelligent transportation systems;

• resource-efficient protocols;

• location-nearby service and e-commerce;

• real-time navigation and path planning;

• location-based management;

• environment monitoring, i.e., air quality and temperature, etc.;

• other fields;

As a rule of thumb, people spend much more time in indoor scenarios than outdoors. Therefore,

indoor positioning of people or devices plays a more important role than outdoor positioning in

context-aware applications [32].

The most widely used positioning tools, like global positioning system (GPS) and cellular net-

works (GSM) positioning are the mainstream technology for outdoor positioning. However, in

indoor scenarios, GPS and cellular positioning may fail due to the issues of signal availability, delay

and path loss, e.g., the signals from satellite or base-station are often disturbed due to the heavy
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shadowing, fading and scattering loss of building structures; and these systems often take a long

processing time. Consequently, numerous dedicated indoor localization systems have explored been

explored using other techniques, i.e., radio characteristics form WLAN and Wireless Sensor Net-

works (WSNs), Inertial Measurement Unit (IMU), computer vision and infrared (IR) devices, etc.

1.2 Indoor Positioning Systems

Various indoor positioning systems have been developed for different requirements and operating

environments. Positioning systems can be classified based on the terms of 1) the measurement tech-

niques (the technique to observe measurements); and 2) position estimation methods (the method

of extracting the position information from measurements) (see Fig. 1.1). A positioning system

can use a single measurement technique and estimation method, while better performance can be

achieved by combining multiple methods.

Radio characteristics

Measurement techniques Positioning methods

Inertial sensor data

Infrared feature

Visual information

Range-based positioning

Fingerprinting

Dead reckoning

Computer vision

Acoustic measurement Map matching

Figure 1.1: Positioning system categories according to measurement techniques and position esti-
mation methods
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1.2.1 Positioning measurement techniques

Radio characteristics

A majority of indoor positioning systems explores Radio Frequency (RF) signals to indicate the

relationship between reference nodes and target [99, 167] using radio access techniques, i.e., WiFi

(IEEE 802.11), Bluetooth (IEEE 802.15.1), UWB (IEEE 802.15.3) or ZigBee (IEEE 802.15.4).

The RF signals from indoor networks are convenient to extract for positioning purposes, i.e.,

Received Signal Strength (RSS), Time-of-Flight (TOF), Angle-of-Arrival (AOA), etc. Thus, the ad-

vantage of RF-based indoor positioning that the system can be implemented with little or no change

in hardware and infrastructure. Other positioning techniques might require additional hardware or

infrastructure.

The major problem of RF based positioning is that radio propagation is highly sensitive to indoor

environment, which commonly observe rich multipath propagation and severe path loss. It has been

reported that Ultra wideband (UWB) performs much better narrow band RF measurements, but still

results in 10 meter errors [8, 151]. Unfortunately, the measurement accuracy of portable devices is

difficult to improve or very expensive.

Inertial Measurement Unit (IMU)

IMU [56] is a mobile unit equipped with multiple inertial sensors (i.e., magnetometers, gyro-

scopes, accelerometers, compasses or odometers), which can infer the turn rate, velocity or acceler-

ation to estimate the motion of an object. The advantage of IMU-based localization is that it does

not rely on the reception of external infrastructure-free, because the inertial sensors are embedded

in a single mobile device.

However, directly integrating acceleration measurements has been criticized for the error accu-

mulation of IMU [181]. Thus, the disadvantage of IMU measurement is that it is problematic due

to accumulated estimation errors. Generally, an IMU is necessary to be combined with an error

correction based on wheel encoder or other measurement techniques.

Infrared (IR) measurement

Infrared-based systems [66] use IR camera to observe IR signals to indicate distance to an infrared

light source (like an infrared LED). Infrared measurement accuracy is claimed to be in the magnitude

of cm or even dm. Furthermore, IR light is invisible to the human eye, which is less intrusive to

people’s daily life compared to visible light positioning [142].

The range of IR coverage is about 10 m, which is only suitable for very limited scenarios com-

pared to other positioning techniques. Thus, the performance of IR positioning depends on the
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density of infrared light sources. More important, IR signals require Line-of-Sight (LOS) propaga-

tion (IR signal cannot travel through common indoor obstacles i.e., people or furniture). Therefore,

IR systems often occur missed detection even within its coverage area.

Visual measurement

Visual measurement [148] explores visual sensors (i.e., laser-base range finder or infrared camera)

for distance estimation. Optical sensors provide a tremendous amount of information about a target

and the surrounding environment, which generally result in measurement accuracy in the magnitude

of cm. However, visual measurement takes a high cost on communication, processing, and storage,

etc. The other problem is that visual systems have a very limited coverage range [112], which is not

suitable for the large scale position with sparse sensors.

Other measurement techniques

There are a variety of other measured phenomenon that can be extracted for positioning purpose,

i.e., acoustic and ultrasonic measurements [112], visible light measurement, geomagnetic field mea-

surement and hybrid systems combining multiple techniques, etc. Since these methods either require

specialized and costly hardware or only work in LOS scenarios, they are suitable for some conditions

but lack of generality and affordability.

1.2.2 Positioning estimation methods

Given a certain positioning measurement technique, there are various estimation methods to im-

plement indoor positioning and tracking, to name a few as follows.

Range-based positioning

Definition 1.1. Range-based positioning is the methods that convert the measurements into point-

to-point estimated distance (range) or angle estimations for calculating location.

Range-based positioning contains two steps [35]: first, estimate the range or angle from measure-

ments between the target and reference nodes (know anchors or beacons) based on measurement

models; then, estimate the target position from the range or angle estimate by trilateration or tri-

angulation algorithms. Range-based positioning can provide fast, low-cost and absolute position

estimation in large scale environments.

Metric ranging techniques for the distance or angle estimation include TOA, TDOA, RSS and

AOA. If no metric ranging measurement is available, network connectivity (multi-hop range) can be

used to approximate the range estimation [128] (also known as range-free positioning [30]).

However, the estimated range is corrupted by shadowing and obstructions of indoor scenarios,

especially in NLOS conditions. Thus, range-based positioning often leads to large positioning errors
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subjected to large ranging errors.

Fingerprinting positioning

Fingerprinting positioning is a mapping of the measured data (called a fingerprint or data map),

which estimates position based on the pattern matching between real-time measurements and a pre-

viously stored data in the fingerprint [109]. Fingerprinting can use RSS, geomagnetic field signal and

other information. Fingerprinting methods are commonly used for RSS-based positioning, because

that the model of RSS measurements is difficult to obtained from indoor multipath environment.

Thus, fingerprinting positioning is suitable for indoor scenarios, which is not sensitive to multipath

and NLOS propagations.

In the offline step of fingerprinting system, RSS measurements from site survey of the interest

area are collected, calibrated, smoothed and saved in a training database of the fingerprint. In the

positioning stage, the online RSS is matched to the fingerprint; then the best matched point (e.g.,

probabilistic methods, k-nearest-neighbor or neural networks) is the estimated position. Finger-

printing makes use of the full knowledge of offline information. However, generating a fingerprint

is time-consuming and labor-intensive in large-scale indoor environments, which can be expensive

as well as dangerous in some scenarios [87].

Dead reckoning

Dead reckoning is a relative position estimation based on IMU data translated to speed, time,

course and motion [95], which can only provide a relative position. Furthermore, this method is

problematic for long-distance navigation because it suffers from accumulated estimation errors. As

a consequence, dead reckoning is necessary to be combined with other positioning approaches, i.e.,

map-matching methods [124], or range-based positioning [174]. However, combining exact map or

multiple sensor data generally require a centralized server, more infrastructure, a large scale database

or a high cost, etc.

Image-based positioning

Image-based positioning uses the idea of image processing on positioning measurements, i.e.,

vision-based positioning [148], RF tomography tracking [133] and map-matching method [118],

etc. The most important advantage of imaging positioning is the visualization of position data,

which enable humans to perceive, read and work with invisible data. The weakness is that the

data processing (i.e., image rotations, translations and feature extractions) of high resolution image

is not an easy task. A variety of imaging localization algorithms have been suggested to reduce

processing complexity. Popular approaches are pixel-based techniques that compute the correlation
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between images or feature-based methods that exploit typical properties of environments such as

linear structures [168].

1.2.3 Comparison of positioning systems

Different positioning applications have different requirements of positioning accuracy, robust-

ness, coverage, and complexity, etc. There is no unique answer to which positioning system is the

best. Table 1.1 summarizes the features of some positioning systems, showing different features,

requirements and limits from recent work [8, 86, 120, 165].

Table 1.1: Comparison of positioning systems

Positioning technique Typical accuracy /m Major drawback

RF fingerprinting 1-10 intensive offline calibration
Geomagnetic fingerprinting 1-100 complicated Geo-referenced training
RF range-based 1-10 susceptible to NLOS conditions
Computer vision 0.01-0.1 intensive feature extractions and processing
RFID benchmarking 0.1-1 short coverage
Acoustic or ultrasonic 0.1-1 might influence animals
Dead reckoning 1-10 high accumulation errors
Infrared scan 0.01-0.2 line of sight required
Tomography tracking 0.1-1 dense infrastructure

Any individual positioning technique alone may have difficulties for indoor positioning, while in-

tegration with multiple techniques can complement to a single positioning technique. Consequently,

a hybrid positioning system combining multiple techniques and estimation methods can provide

higher accuracy for all scenarios.

1.3 Practical Probabilistic Positioning Algorithms

Since the infrastructure of RF systems is the most common property, this study investigates RF

range-based positioning from WSNs. In order to enhance positioning performance, it can either up-

grade ranging techniques or optimize positioning algorithms. The hardware updating or combining

multiple positioning techniques is a costly engineering task, which is of less interest.

Instead of using the most advanced positioning technique, optimizing positioning algorithms is a

more potential and affordable way. Therefore, this dissertation deals with indoor positioning in the

algorithmic domain of a given ranging technique.
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1.3.1 Motivation

There are a number of range-based positioning methods, which are specific for certain purposes

or requirements. Generally, probabilistic positioning (such as Bayesian inference, max a posterior

and M-estimators [172,175]) captures more information than non-probabilistic positioning (like the

geometric positioning: circle overlapping [125, 182]; and connectivity-based positioning, i.e., the

centroid algorithm [127] and APIT [140], DV-hop [129] and weighted nearest neighbors [109,165]).

Consequently, probabilistic algorithms have been widely proposed for accurate positioning, but with

the modeling, computation and implementation problems arise from real-world scenarios.

Among various probabilistic positioning algorithms, some that have careful theoretical founda-

tions and convergence proofs but may work poorly in practice; and some with higher computation

and buffer are also less considerable. Agreeing with this quote,

"An approximate answer to the right problem is worth a good deal more than an exact

answer to an approximate problem."

–John W. Tukey

this dissertation aims to study the right questions of the practical indoor positioning:

1. to characterize and model the real indoor ranging, and verify the qualify the measurement

model;

2. to derive the sample-based approximation for positioning purposes, providing a general frame-

work for either non-sequential or sequential positioning;

3. to require a low cost for practical positioning rather than a mathematical optimization;

4. to adapt to the NLOS ranging errors;

5. to address the estimation instability, exploring smoothing schemes for real-time positioning.

1.3.2 Practical considerations

Non-Gaussian RF ranging error

The RF ranging measurement is the estimated distance between a target node (the position un-

known node) and a reference node (the position unknown node, also called an anchor or beacon).

Several anchors are scattered throughout the indoor environment, which know their own locations

by GPS receivers or manual configuration.

Most work states the fact that RF ranging is always severely afflicted by non-Gaussian measure-

ment errors [102,162,176], due to multipath propagations, NLOS environment or system noise, etc.

Thus, the challenge of range-based positioning is to evaluate the measurement error or make online

calibration. Despite the widely investigations of positioning algorithms, the studies on the features
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of real RF ranging are sparse. Thus, it is necessary to characterize the non-Gaussian indoor ranging,

including the model parameters, bounds and connections to the physical world.

Tradeoff between performance and cost

Complicated algorithms might enhance positioning performance, i.e., mixture models, intensive

online training, a large number of iterations or memory-involved smoothing. However, they are

very costly, which are out of less interest. The positioning algorithms should achieve satisfied per-

formance on lightweight computation and implementation.

Requirement on infrastructure deployment

A dense infrastructure deployment of positioning system can improve positioning accuracy, but

it is restricted to the indoor structure and system expense. On the other hand, sparse infrastructure

may result in an insufficient number of ranging measurements for position estimation. Thus, the

infrastructure density and deployment should be designed with the performance analysis in real

indoor scenarios. Furthermore, in order to allow large scale positioning and pervasive applications,

the positioning algorithms should be less dependent to the infrastructure deployment.

Additional knowledge

Additional knowledge can further refine positioning performance, i.e., map information of in-

door environment, prior information of the target’s position, the motion model for mobile tracking,

measurement database and other data. However, using these information may cause high communi-

cation, computation, memory and implementation difficulty, which is impractical to resource-limited

positioning devices. The challenge is how the information can be extracted and efficiently incorpo-

rated into the positioning framework.

1.4 Research Content

This dissertation focuses on probabilistic algorithms for range-based indoor positioning, with

the performance, robustness and limits analyzed by numerous simulations and real-world indoor

experiments. The following domains are primarily investigated, involving the methods proposed in

our previous work [166, 176–180].

1.4.1 Modeling the uncertainty of indoor RF ranging

The measurements of indoor positioning systems suffer from a number of inherent uncertainties,

i.e., the thermal noise, multi-path effect, NLOS propagations, interference, and system noise due to

clock jitters, drifts and system calibration. The fundamental theorem of probabilistic estimation is
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to derive the state probability from measurements, given the measurement model. Therefore, prior

to developing a positioning algorithm, the properties and model of real-world ranging should be

analyzed.

The ranging measurement model serves as a connection between the physical world and the posi-

tioning algorithm. This work holds that the problem of the measurement modeling is not to design a

perfectly accurate model, but an appropriate model transmitting into the probabilistic frame. In the

majority work of range-based positioning, the measurement model can be far too complex or not

nearly well enough to represent the characteristics of indoor RF ranging. Thus, this thesis focuses

on the model representativeness and efficiency rather than the model optimization.

1.4.2 From non-sequential to sequential positioning

Chapter 4 proposes algorithms for both non-sequential to sequential positioning. The distinction

between non-sequential and sequential positioning are whether sequential measurements or prior

are needed for each positioning request.

Non-sequential position estimation

Definition 1.2. Non-sequential positioning is the position estimation only involving the measure-

ments observed at the moment of one positioning request.

Non-sequential positioning is very important, as unstable ranging often encounters situations that

no history measurements are available. Another reason is that many positioning applications are

event-driven services, e.g., the position is only estimated when the user demands. In these applica-

tions, it is not desirable to keep all the history measurements in memory. Thus, for non-sequential

positioning, the iterative methods on the current measurements are often employed.

Sequential position estimation

Definition 1.3. Sequential positioning is the time-series estimation in sequence given (also known

as the position filtering), making use of time-series ranging measurements.

A variety of positioning applications are able to provide time-series ranging measurements, and

request to continuously tracking the target at every time step, e.g., indoor navigation and rescue sys-

tems. Given the sequential measurements and target motion model, continuous position estimation

can be derived. Sequential positioning can achieve better accuracy than non-sequential positioning,

as the history measurements and estimations are powerful to remove uncertainty [121].

1.4.3 NLOS mitigation and smoothing

Further, NLOS mitigation and smoothing approaches are explored to refine the position estima-

tion.
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NLOS mitigation

The performance of probabilistic estimations highly depends on the fitness of the measurement

model [92]. Unfortunately, the NLOS ranging always violates the common assumed models [10,

170], which easily misleads the estimate. Thus, the NLOS problem has been extensively studied,

which can be categorized into NLOS identification and NLOS mitigation.

The main weaknesses of existing NLOS identification and mitigation are: 1) there is always the

possibility of false identifications of the NLOS measurements; 2) the loss of information due to

the hard decision of discarding the NLOS ranges; 3) incurring additional latency, computation and

memory; 4) difficulty in calculating the joint probability from the complex measurement model.

More important, there is still a lack of efficient NLOS mitigation methods on the sample-based

algorithms.

Smoothing

For sequential positioning, smoothing methods have been applied to reduce the variance of esti-

mation. The definitions of the Bayesian filtering and smoothing are

• Filtering (p(xt|z0:t)): is to estimate the state conditionally to the observations up to time t.

• Smoothing (p(xt|z0:Tsmoothing)): is to estimate the state conditionally to the observations up to

time Tsmoothing (with Tsmoothing ≥ t).

The Bayesian optimal smoothing consists of a forward filtering and backward update. The com-

plexity of the smoothing algorithm is proportional to how many time-steps of the future measure-

ments are involved in the backward update step. Since the goal is real-time positioning, this thesis

investigates the smoothing algorithms using only one time-step backward update.

1.5 Thesis Outline

The outline of this thesis is organized as follows:

Chapter 2 reviews the basic probabilistic framework, which are the mathematical foundation of

the existing algorithms for range-based positioning and tracking.

Chapter 3.3 discusses one of the contributions of this thesis, the frequentist modeling of real

indoor TOF ranging. It presents the idea of statistical distribution fitting, and the models are verified

by hypotheses testing.

Chapter 4 presents the detailed design and implementation of seven sample-based approximation

and NLOS mitigation algorithms on the probabilistic framework, and verifies them in both simu-

lations and real-world experiments. These results are the major contribution of this thesis, which
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enhance the performance and usability for sample-based probabilistic positioning.

Chapter 5 implements the smoothing scheme to suppress the estimation variance and sparsity

problems, with the innovation that the one time-step smoothing imposes a low cost on real-time

positioning.

Chapter 6 concludes this thesis and proposes the future perspectives. It also suggests the possible

improvements and implementations for practical indoor positioning.
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Chapter 2

Existing Probabilistic Approaches for
Range-based Positioning

After choosing a ranging technique, the positioning problem becomes an algorithmic optimiza-

tion procedure. Probabilistic estimation is the most widely-used strategy to deal with observation

uncertainty. This chapter reviews literature on the typical probabilistic methods for range-based

positioning.

2.1 Bayesian Range-based Positioning

There are two broad branches of the interpretations of probability: Bayesian inference and fre-

quentist inference. Frequentist interprets the probability of an event as the relative frequency of a

large number of trials. Bayesian inference provides a generalization of model-based probability,

combing both a priori information and observed evidence.

Bayesian inference is widely used to deal with dynamic and non-Gaussian uncertainty, with the

variations as Maximum A Posteriori (MAP) estimations, Maximum Likelihood (ML) estimations, or

other M-estimators [42] (M-estimator is defined to obtain the minimum or maximum of an objective

function of the data).

2.1.1 Basis of Bayesian inference

Bayesian inference is based on Bayes’ theorem

Pr(A|B) =
Pr(B|A)Pr(A)

Pr(B)
, (2.1)
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where

• Pr(A|B) stands for the conditional probability of A given B;

• Pr(B|A) is the likelihood of observations based on an observation model;

• Pr(A) is the unknown variable before the evidence is seen;

• Pr(B) is a normalization factor representing evidence, which can be derived as

Pr(B) =

∫
Pr(B|A)Pr(A)dA

.

In the context of two dimensional (2D) scenario, the positioning problem is defined:

Definition 2.1. The state space of range-based positioning is the target’s position coordinates (a

hidden state)

x = (x, y), (2.2)

with x ∈ R2.

Definition 2.2. The measurable space of range-based positioning is the ranging measurement set

from Nanc anchors

z = {rl}
Nanc
l=1 . (2.3)

The space-limited indoor scenario causes rich multipath signals, then, the ranging measurements

observe high uncertainty.

Definition 2.3. The ranging measurement is the estimated distance between the lth anchor (al =

(axl, ayl)) and the target

rl = r̄l + εl
r, l ∈ {1, 2, · · · ,Nanc} , (2.4)

with r̄l = ‖x − al‖ denoting the ground truth and εl
r for the lth ranging error.

Definition 2.4. The object of positioning is to derive the posterior of the state conditional to the

measurements. Equation (2.1) is expressed by substituting x for A and z for B:

p(x|z)︸︷︷︸
Posterior

=

Likelihood︷︸︸︷
p(z|x)

Prior︷︸︸︷
p(x)

p(z)︸︷︷︸
Evidence

, (2.5)

where the denominator is the evidence according to the ranging measurements

p(z) =

∫
x

p(x)p(z|x) dx , (2.6)
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and

• p(x|z) is the posterior of 2D position (x) given a set of measurements (z);

• p(z|x) denotes the likelihood of observing z;

• p(x) is the prior of x before seeing z.

For the ranging measurements given the state value, it is often assumed that each measurement is

conditionally independent. Thus, the joint likelihood is the product of the conditional density of all

the measurements

p(z|x) =

Nanc∏
l=1

p(rl|x) . (2.7)

Since the denominator of (2.5) is independent of the state and serves as the normalization factor,

it does not need to be known. Then, the full Bayesian inference can be spelled out in words apart

from the normalizing constant

Posterior ∝ Likelihood · Prior , (2.8)

where ∝means being proportional to. Equation (2.8) decomposes the posterior into two information:

the prior and likelihood.

Prior p(x) The prior allows a guess with models using subjective experience before

obtaining the observation

Prior = Belief using subjective experience before the observation .

(2.9)

Likelihood p(z|x) The likelihood evaluates the guess on how well the measurements agree with

the prior.

Then, the posterior combines the prior and observations, which is

Posterior = Belief corrected by observations . (2.10)

Once the posterior distribution is available, any features of x can be analyzed by a particular estima-

tion algorithm. Bayes’ Theorem can also be formed in the log scale

log(Posterior) ∝ log(Prior) + log(Likelihood) . (2.11)
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2.1.2 Dynamical models of Bayesian inference

Bayesian inference for range-based positioning is a model-based posterior conditionally to the

known motion and ranging models. Since the real-word is dynamic in nature, Bayesian algorithms

may then use dynamical models to adapt to reality instead of static models from statistics. The

probability density in (2.5) is the posterior with a model parameterized of θ [157, 171]

pθ(x|z)︸ ︷︷ ︸
Posterior

=

Likelihood︷       ︸︸       ︷
Nanc∏
l=1

pθ(rl|x)

Prior︷︸︸︷
p(x|θ)

pθ(z)︸︷︷︸
Evidence

, (2.12)

Definition 2.5. The hyperparameter (θ) is the parameters of the transition or observation models,

which are assumed constant or to be dynamically estimated together with the state.

In theory, learning the models is to estimate the posterior over the hyperparameters [113]. Similar

to the derivation of the posterior of the state (2.6), one can obtain the posterior of the hyperparame-

ters involving the coming observations

p(x|z) =
p(z|x)p(x)

p(z)
=

p(z|x)p(x)∫
x p(x)p(z|x) dx

(2.13)

⇒ p(θ|z) =
p(z|θ)p(θ)

p(z)
=

p(z|θ)p(θ)∫
θ

p(θ)p(z|θ) dθ
. (2.14)

This is for the purpose of adapting the model after obtaining the observations, i.e., the values of the

parameters or the models depending on the posterior of the hidden state.

Once the hyperparameters θ are learned, the Bayesian frame can accurately represent the dynamic

process. Similar to (2.13), the posterior of x given the observations and the learning models can be

extracted

pθ(x|z) =
pθ(z|x)pθ(x)

pθ(z)
=

pθ(z|x)pθ(x)∫
x pθ(x)pθ(z|x) dx

. (2.15)

If the model (θ) is static, then Eq.(2.15) is equal to Eq.(2.13).

Given the Bayesian inference of x and z, we can refine the model parameter θ [14]

p(θ|z, x) =
pθ(z|x)p(θ|x)

p(z|x)
=

pθ(z|x)p(θ|x)∫
θ

p(θ|x)pθ(z|x) dθ
. (2.16)
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Numerous work offers a comparative review of the possible choices available for parameter estima-

tion, such as the expectation maximization (EM) algorithms used to learn the model parameters by

maximizing the log likelihood function [58, 90].

Dynamical models from (2.14) to (2.16) consists of working out three Bayesian estimations

• p(θ|z): calculate the posterior over the model parameters given the observations (2.14);

• pθ(x|z): calculate the posterior over the state given the current model parameters (2.15);

• p(θ|z, x): calculate the posterior over the hyperparameters given the state posterior (2.16).

Refining the Bayesian estimation of both the state density and hyperparameters is an iterative

procedure until reaching convergence, which falls into a chicken-and-egg problem: a good state es-

timation can refine the hyperparameters; and good hyperparameters result in a good state estimation.

The on-line estimation of the model parameters is formulated as an iterative procedure, whereas, its

high computation and long processing time are critical issues for practical applications.

2.2 Approximation to Bayesian Positioning

Applying the full Bayesian frame may arise difficulties, such as specifying rigorous state propa-

gation and measurement models. Therefore, approximations to Bayesian inference are studied [37],

aiming for less requirements on the modeling procedure and computation. The simplest approx-

imation is a point estimation from the posterior to find a solution with the maximum possibility,

i.e., the posterior mean (MMSE estimation), the MAP estimation, ML estimation and Least Square

estimation (LS estimation).

2.2.1 Minimum Mean Square Error (MMSE) estimation

Better estimate in mean squared sense is the posterior expectation, known as an estimate of Min-

imum Mean Square Error (MMSE estimator) [145]

x̂MMSE = E[x|z, θ] =

∫
x

xpθ(x|z) dx (2.17)

=

∫
x xpθ(z|x)pθ(x) dx

pθ(z)

=

∫
x xpθ(z|x)pθ(x) dx∫
x pθ(x)pθ(z|x) dx

. (2.18)
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The generalization of MMSE estimators (2.18) can be succinctly expressed as the expectation of a

function of interest g(x) over the posterior [139]:

ĝ(x)MMSE = E[g(x)|z, θ] =

∫
x

g(x)pθ(x|z) dx (2.19)

=

∫
x g(x)pθ(z|x)pθ(x) dx∫

x pθ(x)pθ(z|x) dx
. (2.20)

The MMSE estimator of Eq. (2.20) is the estimator of the function g(x) resulting in minimum mean

square error

E[‖ ε
(
ĝ(x)MMSE

)
‖2] =

∫
x
‖ g(x) − ĝ(x)MMSE ‖

2 p(x) dx . (2.21)

The mean square error of the estimation ĝ(x) is

E[‖ ε
(
ĝ(x)

)
‖2] = E[

(
g(x) − ĝ(x)

)T (
g(x) − ĝ(x)

)
] (2.22)

= E[g(x)T g(x) − 2ĝ(x)
T
g(x) + ĝ(x)

T
ĝ(x)]

= E ‖ g(x) ‖2 −2ĝ(x)
T
Eg(x) + ĝ(x)

T
ĝ(x) . (2.23)

Differentiate (2.23), we get ĝ(x)MMSE = E[g(x)]. The MMSE estimation procedure is most naturally

expressed in terms of statistical decision theory [16], as it is easy to handle in the case of analytical

posterior distribution.

2.2.2 Maximum A Posteriori (MAP) estimation

Given the posterior distribution, the most probable point value is given by the maximum of the

posterior distribution (MAP estimation). As x is a random point in the state-space, the MAP estimate

is defined as the maximum of the posterior distribution.

x̂MAP = arg max
x

pθ(z|x)pθ(x)
pθ(z)

. (2.24)

Since the denominator of (2.5) is independent of the state, the MAP estimate can be

x̂MAP = arg max
x

pθ(z|x)pθ(x) . (2.25)

For a convex posterior, the MAP estimation approximates the MMSE estimation. The posterior me-

dian may also be used as an estimate minimizing the expected absolute error. But MAP estimation

can be very difficult because the posterior density is not expressible in terms of a fixed number of
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parameters and cannot be maximized easily. Furthermore, MAP cuts out all the benefits of learning

other possibilities.

2.2.3 Maximum Likelihood (ML) estimation

When the priori density of p(x|θ) is unknown, one can use a non-informative prior or a uniform

prior. With a uniform prior, the MAP estimate is called the maximum likelihood (ML) estimate [5]

x̂ML = arg max
x

pθ(z|x) . (2.26)

Because the ML estimation does not consider a proper prior; the posterior may be improper.

To seek the value of the state which maximizes the likelihood or log-likelihood, the ML solution

can be obtained by setting
∂L
∂x

= 0 . (2.27)

where

L = log pθ(z|x) . (2.28)

Although the method of finding the most likely point estimation is the conceptually simplest, it is

the most brutal approximation to Bayesian inference. The lack of the prior precludes the opportunity

for smoothing and converging the object function of L. Hence, the likelihood estimation often sticks

to the local maxima. In particular, ML estimation is sensitive to NLOS ranging measurements as the

large measurement error plays a crucial effect in the object function of MLE.

2.2.4 Least-square (LS) estimation

By assuming a Gaussian measurement error and unknown prior, the MAP turns to be the least

squares (LS) estimation. With a set of measured ranges (z) between the target (x = (x, y)) and

anchors (a =
⋃Nanc

l=1 al =
⋃Nanc

l=1 (axl, ayl)), the target’s position satisfies a set of circles:

(x − axl)2 + (y − ayl)2 = (rl)2, l ∈ {1, 2, · · · ,Nanc}. (2.29)

The nonlinear least-squares (NLS) estimation of the target’s position is the point minimizing the

object function of the sum of squared residuals (SSR) [26]
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x̂NLS = arg min
x

Nanc∑
l=1

Resl2(x)

 (2.30)

= arg min
x

Nanc∑
l=1

(rl − ‖x − al‖)2

 , (2.31)

where Resl(x) is the residual between rl and ‖x − al‖.

Minimizing S S R can be achieved by exhausted searching or iteration methods [67]. To reduce the

computation of searching the minimum values of the object function (2.30), a linearization can be

used, known as the linear least-squares (LLS) estimation [177] by subtracting the f th measurement

equation (2.29), with j ∈ {1, 2, · · · ,Nanc} and j , f :

x̂LLS =
1
2

(ATA)−1ATP , (2.32)

where

A =



(ax1 − ax f ) (ay1 − ay f )

(ax2 − ax f ) (ay2 − ay f )

· ·
· ·
· ·

(axNanc − ax f ) (ayNanc − ay f )


, (2.33)

and

P =



a2
x1 − a2

x f + a2
y1 − a2

y f − r2
1 + r2

f

a2
x2 − a2

x f + a2
y2 − a2

y f − r2
2 + r2

f

·
·
·

a2
xNanc
− a2

x f + a2
yNanc
− a2

y f − r2
Nanc

+ r2
f


. (2.34)

Both NLS and LLS assume a Gaussian measurement error and treat all the measurements equally

as in (2.30) and (2.32), with the larger ranging error takes a stronger role in the minimization of

SSR. Thus, LS estimation behaves badly when the error is biased and non-Gaussian. Unfortunately,

the real-world ranging error is non-normal distributed, biased and heavily right-tailed as in [164].

In the case that indoor ranging measurement observes a severe NLOS error, the performance of LS
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estimation is significantly degraded.

2.3 Sample-based Probabilistic Positioning

In principle, the full Bayesian inference provides the optimal probabilistic solution from the pos-

terior. The computation of the integrals involved in the Bayesian equations (2.20) can only be

tractable in linear Gaussian conditions. However, the closed form expression of (2.53) turns out to

be impossible in the case of nonlinearity and non-Gaussian of indoor range-based positioning, as it

can be NP-hard [40]. An approximate alternative to Bayesian inference is numerical Bayesian meth-

ods, including sample-based methods and interpolatory methods [135]. Among different numerical

strategies, the most straightforward method is a sample-based approximation using grid-based in-

terpretation, Monte Carlo sampling or importance sampling (IS). Rapid development in computing

technologies gradually makes these computation-intensive numerical approximations feasible.

2.3.1 Gaussian-sum approximation

The non-Gaussian posterior can be approximated by a Gaussian-sum approximation [152], where

each Gaussian component represents one hypothesis of the state. The positioning problem is ex-

pressed by M single Gaussian components

Samples

p(x) ≈ pN (x) =

M∑
i=1

αiN(x; mi, Pi) , (2.35)

where αi is the mixing weight of the ith Gaussian component (N(x; mi, Pi)).

Posterior

p(x|z) =

M∑
i=1
αi N(x; mi, Pi) pθ(z|x)

λ
, (2.36)

with λ as a normalizing constant.

From the additivity property of integrals, the MMSE of the density p(x) (2.20) is

ĝ(x)MMSE ≈
̂g(NM)MMSE

=

∫
x

M∑
i=1
αi g(x) N(x; mi, Pi) pθ(z|x)

λ
dx , (2.37)

where λ is the denominator of the posterior.
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The Gaussian-sum approximation can represent any density p(x) by a few Gaussian compo-

nents [82]. However, the computation cost increases exponentially with the number of the state

dimension [9, 94].

2.3.2 Grid-based approximation

The grid-based representation of the position probability is developed as [24]. The grid-based

method, also known the point-mass method, divides the state-space into equally spaced grid-cells

with a small side length. The weight of each cell refers to the probability of the cell for the target

to locate in. With a fine enough resolution of the grid cells, a good approximation accuracy can be

achieved.

The posterior can be numerically approximated by grid cells associated with weights [19]

pθ(x|z) ≈
Ng∑
i=1

wiδ(x − xi) , (2.38)

where wi denotes the weight associated with ith cell center (xi), and δ(·) is the Dirac delta measure;

Ng is the number of grid cells. In the most basic version of grid-based positioning algorithms, the

grid space and Ng are time-invariant; thus, each grid cell is of the same size [155].

The grid-based estimation is expressed as

Prior The prior probability p(xi|θ) on the set of grid cells G = {xi}i=1:Ng .

Posterior The weight vector w = {wi}i=1:Ng is formed

wi =
pθ(z|xi)pθ(xi)

λ
, i ∈ {i}i=1:Ng . (2.39)

Letting Ng → ∞, the grid-based interpretation (2.38) can approximate the con-

tinuous density arbitrarily well.

The MMSE of the density g(x) of interest is derived as

ĝ(x)MMSE ≈ ĝ(G)MMSE

=
∑
x∈G

g(x)pθ(x|z)

=

Ng∑
i=1

g(xi)wi . (2.40)

However, a number of issues arise when implementing grid localization. The grid state space and

the grid resolution (the size of grid cells) need to be predefined: a finer grid resolution can result in a
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better numerical approximation, but the computation and memory complexity grows exponentially

with the dimension of the integration over all grid cells [46].

2.3.3 Markov chain Monte Carlo methods

Markov Chain Monte Carlo (MCMC) methods [72] provide a numerical solution of calculating

the integrals in form of Eq. (2.18), which are especially useful when dealing with high dimen-

sional integrals. Monte Carlo sampling refers to a general class of methods, where the continu-

ous state-space is represented by discrete samples drawn by inversion sampling, rejection sampling

or MCMC methods (Gibbs sampling and Metropolis-Hastings sampling) [60]. In (perfect) Monte

Carlo approximation, independent random samples can be drawn from the posterior density:

Samples
xi ∼ pθ(x|z) , i ∈ {i}i=1:Ns , (2.41)

where Ns is the number of samples.

Posterior Differing from the grid-based representation, the MCMC method is described by

a set of equally weighted samples

pθ(x|z) ≈
Ns∑
i=1

δ(x − xi) , (2.42)

where xi is the ith sample drawn from pθ(x|z).

By the strong law of large numbers, the MMSE is estimated

ĝ(x)MMSE =

∫
x

g(x)pθ(x|z) dx

≈
1
Ns

∑
x

g(x) (2.43)

=
1
Ns

Ns∑
i=1

g(xi) , xi ∼ pθ(x|z) , (2.44)

with Ng denoting the number of grid cells.

Monte Carlo methods are superior when the dimensionality of the state is high. The convergence

of Monte Carlo approximation is guaranteed by the central limit theorem as discussed in [114]. Del-

laert et al. introduced the Monte Carlo method into the field of mobile localization in [46], namely,

Monte Carlo Localization (MCL). However, the state sampling arises difficulties. The amount of

samples needed to adequately explore the state is exponential of the state dimensionality [37].
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2.3.4 Importance sampling

In most applications, it is impossible to directly sample from the posterior. Importance sam-

pling [61] is an alternative method of estimating the target distribution with samples from a proposed

density, namely, the importance density (q(x)).

The difference to the direct Monte Carlo sampling is that the state samples are drawn from the

proposed density (q(x)), then the posterior is

pθ(x|z) = pθ(x|z)
q(x)
q(x)

= q(x)
pθ(x|z)
q(x)

≈

Ns∑
i=1

pθ(xi|z)
q(xi)

δ(x − xi), xi ∼ q(x) . (2.45)

with Ns denoting the number of samples. The weight assigned to each sample is called importance

weight

wi =
pθ(xi|z)
q(xi)

. (2.46)

Thus, we can describe the state as

Samples
xi ∼ q(x) , i ∈ {i}i=1:Ns , (2.47)

Posterior The state-space is described by a set of weighted samples

pθ(x|z) ≈
Ns∑
i=1

wiδ(x − xi) , (2.48)

where xi is the ith sample drawn from pθ(x|z).

Since the samples are not from the true posterior, each particle uses a weight to correct the dif-

ference between the true posterior and the importance density. Then, the MMSE is the estimate

expectation

ĝ(x)MMSE =

∫
x

g(x)pθ(x|z) dx

=

∫
x

q(x)
g(x)pθ(x|z)

q(x)
dx . (2.49)
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According to (2.43) and (2.49), we can obtain the MMSE estimate based on Monte Carlo sampling

using the importance density

ĝ(x)MMSE ≈
1
Ns

∑
x

g(x)pθ(x|z)
q(x)

(2.50)

=
1
Ns

Ns∑
i=1

g(xi)
pθ(xi|z)

q(x)
, xi ∼ q(x) . (2.51)

Importance sampling is the basis of a wide variety of sample-based algorithms. The importance

density can differ from the shape and location of the true posterior, usually has a very simple form for

easy sampling. If the importance density fails to concentrate the true state, the sample distribution

can diverge from to the true state. Thus, the main difficulty of importance sampling is in the selection

of the importance density.

2.4 Sequential position estimation

For most positioning applications, time-series ranging measurements are available, such as object

tracking and navigation, etc. This positioning problem is to sequentially estimate the target’s posi-

tion at each discrete instance of time given all the available observations, namely sequential position

estimation.

Let p(zt|xt, z1:t−1) be the dynamical observation model conditional on the current state and the

history observations (the following uses the subscript {·}1:t to refer to all events up to time t). The

vector of the current observations (zt) from Nt
anc reachable anchors ({at

l = (at
xl, a

t
yl)}l=1:Nt

anc
) is

zt = {rt
l}l=1:Nt

anc
, (2.52)

with rt
l the ranging measurement from the lth anchor at t. Then, the posterior (pθt (xt|z1:t)) is sequen-

tially calculated

pθt (xt|z1:t) =
pθt (zt|xt, z1:t−1)pθt−1(xt|z1:t−1)

pθt (zt|z1:t−1)
, (2.53)

where the denominator p(zt|z1:t−1) is a normalization constant (the following denoted by λ)

pθt (zt|z1:t−1) =

∫
pθt (zt|xt)pθt−1(xt|z1:t−1)dxt . (2.54)

The prediction density (the prior p(xt|z1:t−1)) of the Bayesian frame in (2.53) can be accomplished
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by applying the Chapman-Kolmogorov equation [11]

pθt−1(xt|z1:t−1) =

∫
pθt−1(xt|xt−1, z1:t−1)pθt−1(xt−1|z1:t−1)dxt−1 . (2.55)

where pθt−1(xt|xt−1, z1:t−1) is the density of the current state given the previous state and history

observations.

The Eq. (2.53), (2.54) and (2.55) form the complete sequential Bayesian solution of the position

tracking problem. The main weakness is that the state transition model (pθt−1(xt|xt−1, z1:t−1)) and

the measurement model (pθt (zt|xt, z1:t−1)) require to store the full history observations (z1:t−1). To

improve the efficiency of the sequential estimation, certain approximations are described in the

following subsections.

2.4.1 Bayesian frame of hidden Markov model

To perform on-line filtering of the Bayesian frame (2.53), it essentially applies a hidden Markov

model (HMM) [155]. Thus, the prior is able to recur at each time step.

Definition 2.6. The positioning models assuming Markov process of order one

Transition model
xt = f θt−1(xt−1,qt) , (2.56)

where qt denoting the measurement noise. It is the state propagation from

time t − 1 to t as pθt−1(xt|xt−1, z1:t−1) ≈ pθt−1(xt|xt−1), assuming the state at

time t is stochastically dependent on the state at time t − 1.

Measurement model
zt = gθt (xt,nt) , (2.57)

with nt being the measurement noise. It assumes the observation at t is

conditionally independent given the state at t as pθt (zt|xt, z1:t−1) ≈ pθt (zt|xt).

Hidden Markov model is a widespread assumption for recursive positioning, which is visualized

in Fig. 2.1. Then, the sequential position estimation can be proceed into the classic two-steps

filtering: the iterative prediction and update structure

Prediction Compute the prior pθt−1(xt|z1:t−1) by the Chapman-Kolmogorov equation knowing

pθt−1(xt−1|z1:t−1).

pθt−1(xt|z1:t−1) Markov
=

∫
pθt−1(xt|xt−1)pθt−1(xt−1|z1:t−1) dxt−1 . (2.58)
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· · · xt−1 xt xt+1 · · ·

zt−1 zt zt+1

pθt−2(xt−1|xt−2) pθt−1(xt|xt−1) pθt (xt+1|xt) pθt+1(xt+2|xt+1)

pθt−1(zt−1|xt−1) pθt (zt|xt) pθt+1(zt+1|xt+1)

Figure 2.1: Hidden Markov Model (HMM) of the hidden state (x) given the observations (z)
xt denotes the unobserved state;
zt is the observation;
Pθt−1(xt|xt−1) is the state propagation model of the Markov chain, with t ≥ 1;
pθt (zt|xt) is the conditional probability of zt given xt

Update Obtain the posterior pθt (xt|z1:t) knowing pθt (zt|xt) by the Bayes’ rule

pθt (xt|z1:t)
Markov

=
pθt (zt|xt)pθt−1(xt|z1:t−1)

pθt (zt|z1:t−1)
. (2.59)

This two-steps framework (2.58) and (2.59) are known as a Bayesian filter, which is illustrated in

Fig. 2.2: the prediction step guesses the new state given the old observations, with the initial density

state as p(x0); then, the update step corrects the guess by the new observation. An integrated version

of the prediction and update recursion is formulated as

pθt (xt|z1:t) =

∫
pθt (x0:t|z1:t) dx0:t−1

=
pθt (zt|xt)

∫
pθt−1(xt|xt−1)pθt−1(xt−1|z1:t−1) dxt−1∫
pθt (zt|xt)pθt−1(xt|z1:t−1)dxt

(2.60)

∝ pθt (zt|xt)︸    ︷︷    ︸
Likelihood

∫
pθt−1(xt|xt−1)︸         ︷︷         ︸

State transition density

pθt−1(xt−1|z1:t−1)︸              ︷︷              ︸
Old posterior

dxt−1

︸                                                  ︷︷                                                  ︸
Prior

. (2.61)

This recursion of the posterior in (2.60) is a conceptual solution, but it only has analytical solutions

in a restrictive set of cases. In the other cases, numerical methods are needed to solve the complete

prior and likelihood. The key concern in implementing this probabilistic recursion is the continuous

nature of the states x, and the noisy measurements z. The algorithms described in the following
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Figure 2.2: Classic two-steps Bayesian filtering with Markov models and constant θ: the iterative
prediction-update structure

subsections are based on the two-steps filtering, including the Kalman filter, grid-based filter and

particle filter.

2.4.2 Kalman Filter (KF)

The recursion (2.60) can be solved analytically in the case of linear and Gaussian models, as the

Kalman filters [88].

Standard Kalman filter

The standard Kalman filter assumes the posterior at any time step is Gaussian variable. It has been

proved that if pθt−1(xt−1|z1:t−1) in (2.58) is Gaussian, then pθt (xt|z1:t) in (2.59) can be also Gaussian

under certain assumptions [75]:

• the model noise q in (5.3) and n in (5.4) are Gaussian with known parameters;

• f (xt,nt) in (5.3) and g(xt,nt) in (5.4) are known linear functions.

Thus, to obtain pθt (xt|z1:t) we only need to characterize its mean and variance. The linear Gaussian

state-space can be solved explicitly using the standard Kalman filter, but for the 2D positioning, the

state is a nonlinear and non-Gaussian process. Alternative ways are to use the ranging measurements

to estimate another variable which is linearly related to the target’s position, such as a temporary
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position estimation or the target’s velocity.

Let y denote the observation linear to the state; x is the state vector. Then the tracking models of

(5.3) and (5.4) are expressed as

State transition model
xt = Fxt−1 + qt−1 with qt−1 ∼ N

θt−1(0,Qt−1) (2.62)

Measurement model
yt = Hxt + nt with nt ∼ N

θt (0,Rt) (2.63)

where

• the matrices F, H are the system and measurement matrices respectively;

• q and n are the covariance matrix of the process and measurement noise;

• the matrices F, H, q, n are called the state-space matrices. The state-space model is said to

be time-variant when the state-space matrices are time varying;

• the initial condition is

x0 ∼ N (µ0, P0) . (2.64)

Since xt|· is a Gaussian random variable, it is sufficient to keep the prediction and update stages of

(5.26)-(2.64) by the following computations at each time t:

Prediction

xt|t−1 = Fxt−1|t−1 (2.65)

Pt|t−1 = FPt−1|t−1FT + Qt−1 (2.66)

Update

Kt = Pt|t−1HT
(
HPt|t−1HT + Rt

)−1
(2.67)

xt|t = xt|t−1 + Kt
(
yt − Hxt|t−1

)
(2.68)

Pt|t = Pt|t−1 − Pt|t−1HT
(
HPt|t−1HT + Rt

)−1
HPt|t−1 (2.69)
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with the matrix K called Kalman gain matrix, and the following notation:

xt|t = E
[
xt|y0: t

]
Pt|t = E

[(
xt − xt|t

) (
xt − xt|t

)T
|y0: t

]
xt|t−1 = E

[
xt|y0: t−1

]
Pt|t−1 = E

[(
xt − xt|t−1

) (
xt − xt|t−1

)T
|y0: t−1

]
The Kalman filter can address the state estimation of linear models. But the function of the

ranging measurement to the 2D positioning process is non-linear.

Extended Kalman Filter (EKF)

In the nonlinear conditions, the Extended Kalman filter is often used, which expresses the transi-

tion model (5.3) and measurement model (5.4) as

State transition model
xt = f (xt−1) + qt−1 with qt−1 ∼ N

θt−1(0,Qt−1) (2.70)

Measurement model
zt = h(xt) + nt with nt ∼ N

θt (0,Rt) (2.71)

where the non-linear function h(·) in (2.71) relates the target’s position to the ranging measurements.

Extended Kalman filter represents the distribution of the state given the observations by a Gaus-

sian approximation

pθt (xt|z1:t) ≈ N(xt|t, Pt) . (2.72)

Similar to Kalman filter, EKF propagate the state density in two steps

Prediction

xt|t−1 = f (xt−1|t−1) (2.73)

Pt|t−1 = Fx(xt−1|t−1)Pt−1|t−1Fx(xt−1|t−1)T + Qt−1 (2.74)
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Update

vt = zt − h(xt|t−1)

S t = Hx(xt|t−1)Pt|t−1Hx(xt|t−1)T + Rt

Kt = Pt|t−1HT
x (xt|t−1)S −1

t (2.75)

xt|t = xt|t−1 + Ktvt (2.76)

Pt|t = Pt|t−1 − KtS tKT
t , (2.77)

where the matrices Fx(xt−1|t−1) and HT
x (xt|t−1) are the Jacobins of f and h with the elements [85]

[Fx(xt−1|t−1)] j, j′ =
∂ f j(xt−1|t−1)

∂x′j
, |x=xt−1|t−1 (2.78)

[Hx(xt|t)] j, j′ =
∂h j(xt|t−1)

∂x′j
|x=xt|t−1 . (2.79)

The EKF formally requires the measurement model and state model functions to be differen-

tiable. Another KF variation called Unscented Kalman Filter (UKF) makes use of the unscented

transformation to deal with the nonlinearity of the system, with more theoretical details in [159].

2.4.3 Grid-based Filter (GF)

Grid-based Bayesian filter (GF), also known as the point-mass filter [20], allows the inference of

the full posterior via Bayesian filtering in nonlinear and non-Gaussian conditions.

The GFs have been demonstrated to yield accurate positioning with easy implementations [55].

It performs numerical integration by uniformly discretizing the continuous state-space into a finite

number (Ng) of evenly spaced grid of points (grid cells or a piecewise function). Let Gt denote the

grid cells at t

Gt = {xi
t}i=1:Ng . (2.80)

Based on a Markov process of order one, the density of (2.61) is solved by

pθt (xt|z1:t) ∝ pθt (zt|xt)
Ng∑
j=1

pθt−1(xt|x
j
t−1)pθt−1(x j

t−1|z1:t−1) . (2.81)
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The state posterior (pθt (xt|z1:t)) is represented by the weighted grid cells [19]

pθt (xt|z1:t) ≈
Ng∑
i=1

wi
t|tδ(xt − xi

t), (2.82)

where δ(·) is the Dirac delta measure and wi
t|t for the weight associated with the ith cell center. The

prediction and update steps of the GF are defined as [11]

Prediction

wi
t|t−1 ,

Ng∑
j=1

pθt−1(xi
t|x

j
t−1)w j

t−1|t−1, i ∈ {i}i=1:Ng (2.83)

Update

wi
t|t ≈

pθt (zt|xi
t)w

i
t|t−1

Ng∑
j=1

pθt (zt|x
j
t )w j

t|t−1

=
pθt (zt|xi

t)w
i
t|t−1

λ
, i ∈ {i}i=1:Ng , (2.84)

where the denominator denoted by λ is for normalization.

In the Bayesian framework, Eq.(2.83) specifies the prior on the state, and the likelihood is updated

in (2.84). Similar to (2.40), the MMSE of the GF at each time step can be approximated by

ĝ(x)MMSE ≈

Ng∑
i=1

g(xi
t)w

i
t|t . (2.85)

The GF is very simple and powerful, which can approximate arbitrary density. However, it

strongly relies on dense grid cells over the complete state-space. The computational overhead grows

exponentially as the grid number increases, thus, the GF is prohibitive in fast positioning.

2.4.4 Particle Filter (PF)

The particle filter (PF), also known as a sequential Monte Carlo (SMC)) approach, bootstrap filter

and condensation algorithm [68, 91], is a popular alternative to the Bayesian estimation of dynamic

models. The main idea of PF is to generate more particles in the region with a high probability but

less in low probable region.

Sequential Importance sampling (SIS)

The sequential importance sampling (SIS) algorithm [12] is the basis of most particle filters, and

other improved versions of PFs are based on the SIS proposing better importance sampling. Particle

filters discretely approximate the joint posterior by a set of random samples (particles)
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pθt (x0:t|z1:t) ≈
∑

i=1:Ns

wi
tδ(x0:t − xi

0:t), (2.86)

where wi
t is the normalized weight associated with the ith particle at t. According to Eq. (2.46), the

importance weight of the ith particle is assigned

wi
t ∝

pθ0:t (xi
0:t|z1:t)

q(xi
0:t|z1:t)

. (2.87)

The joint posterior given the observations up to t is derived

pθ0:t (x0:t|z1:t) =
pθ0:t (z1:t|x0:t)pθ0:t (x0:t)

pθ1:t (z1:t)

=
pθ0:t (zt|z0:t−1, x0:t)pθ0:t−1(z1:t−1|x0:t)pθ0:t (x0:t)

pθt (zt|z1:t−1)pθ1:t−1(z1:t−1)

=
pθ0:t (zt|z1:t−1, x0:t)pθ0:t−1(x0:t|z1:t−1)pθ1:t−1(z1:t−1)pθ0:t (x0:t)

pθt (zt|z1:t−1)pθ1:t−1(z1:t−1)pθ0:t (x0:t)

=
pθ1:t (zt|x0:t)pθ0:t−1(xt|x0:t−1, z0:t−1)

pθt (zt|z1:t−1)
pθ0:t−1(x0:t−1|z1:t−1) (2.88)

∝ pθ0:t−1(zt|x0:t)pθ0:t−1(xt|x0:t−1, z1:t−1)pθ0:t−1(x0:t−1|z1:t−1) . (2.89)

Applying Markov process of order one, the joint posterior is

pθ0:t (x0:t|z1:t) =
pθt (zt|xt)pθt−1(xt|xt−1)

pθ0:t−1(zt|z1:t−1)
pθt (x0:t−1|z1:t−1) (2.90)

∝ pθt (zt|xt)pθt−1(xt|xt−1)pθ0:t−1(x0:t−1|z1:t−1) . (2.91)

The importance density q(x0:t|y0:t) (introduced in Subsection 2.3.4) is defined as

q(x0:t|z1:t) = q(xt|x0:t−1, z1:t)q(x0:t−1|z1:t−1) . (2.92)

Then, the weight is formulated by substituting (2.92) and (2.90) to (2.87) [11]

wi
t =

pθt (zt|xi
t)pθt (xi

t|xi
t−1)pθ0:t−1(xi

0:t−1|z1:t−1)

pθt (zt|z1:t−1)q(xi
t|xi

0:t−1, z1:t)q(xi
0:t−1|z1:t−1)

= wi
t−1

pθt (zt|xi
t)pθt−1(xi

t|xi
t−1)

pθt (zt|z1:t−1)q(xi
t|xi

0:t−1, z1:t)
. (2.93)
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Since the pθt (zt|z1:t−1) in (2.93) does not depend on the state, the weight is

wi
t ∝ wi

t−1

pθt (zt|xi
t)pθt−1(xi

t|xi
t−1)

q(xi
t|xi

0:t−1, z1:t)
. (2.94)

Note that wi
t in (2.94) needs to be normalized at each time step. And the filtered density (pθt (xt|z1:t))

can be approximated by the finite mixture of weighted Dirac masses given measurements (z1:t) up

to time t

pθt (xt|z1:t) ≈
∑

i=1:Np

wi
tδ(xt − xi

t) . (2.95)

The two-step filter framework of SIS filtering is

Prediction The new particles ({xi
t}i=1:Np) is generated from q(xt|z0:t−1) by propagating the

previous sampling density q(xt−1|z0:t−1).

Update the weights with the new observations as (2.94).

The MMSE of the function g(xt) at each time step can be calculated by

ĝ(x)MMSE ≈

Np∑
i=1

g(xi
t)w

i
t . (2.96)

Equation (2.94) provides the very core of SIS updating the weights of particles from the impor-

tance density at each time step. However, the SIS practically appears particle degeneracy after a

few iterations, which is often solved by a resampling step to remove the particles with very low

weights [52, 100] and replicate the particles with large weights.

Resampling

Particle filters have been criticized of the particle degeneracy problem, hence, a resampling pro-

cedure is most often employed. Resampling enables the particles to distribute naturally in areas

of high posterior, nevertheless, the problem is the sample impoverishment [27] due to the loss of

diversity in the particle population.

1) Resampling schemes

The idea of the resampling is to depress the samples with very small weights and duplicate par-

ticles with large weights, i.e., multinomial resampling, residual resampling, residual systematic re-

sampling, stratified resampling and systematic resampling [52].

Systematic resampling is the most favorable both in resampling quality and computational com-

plexity [76], with the details given in Algorithm 1. Used on the SIS filter, it leads to the well-known

Sampling Importance Resampling (SIR) filter. A trivial implementation for such simulations re-
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quires first to draw u1
t from a uniform distribution and then compare the CDF to find the resampling

particles. Other resampling schemes also appear to be popular.

Algorithm 1 Resampling

Output and input:
[
{x j∗

t , w j
t }

Np

j=1

]
= Resampling

[
{xi

t, wi
t}

Np

i=1

]
Setting: Construct CDF of the sample weights {ci}

Np

i=1
Initialization: u1 ∼

1
Np

U[0, 1], i = 1

1: FOR j = 1 : Np
2: WHILE u1 + 1

Np
( j − 1) > ci

3: i = i + 1
4: END WHILE
5: Update new samples x j∗

t = xi
t

6: Assign weights w j
t = 1

Np

7: END FOR

2) Selective resampling

Resampling brings extra random variance to the state estimation and causes a high computa-

tion [51,51]. Instead of executing resampling at every time step, a solution is to perform resampling

unless it reaches a given threshold [115], known as selective resampling or adaptive resampling [65].

A popular measure of the sample degeneracy is the so-called effective sample size (Neff) [97]

Neff =
Np

1 + Cov[wt(xt)]
=

Np

E[w2
t (xt)]

. (2.97)

This quantity is usually numerically approximated by the following estimate

N̂eff =
1∑Np

i=1(wi
t)2
. (2.98)

It ranges from Np (reached when all the particles share equal weights of value 1) to 1 (reached when

only a single particle is given the whole probability mass as a weight of 1).

The Shannon entropy of the importance weights, ranging from log Np to 0, is sometimes also used

to estimate the effective sample size. The measure of one (or more) of these criteria is evaluated at

each time-step, with the sampling procedures taking place if and only if the criterion reaches a

certain threshold. The most common threshold found in literature is Neff
threshold = 0.5Np.
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2.5 Summary

This chapter reviews the basic probabilistic methods appearing in literature for range-based posi-

tioning, which differ in the model requirements, performance and cost. The fundamental stumbling

block of applying these Bayesian inference methods to real applications can be either a prohibitive-

complexity, inappropriate measurement models or poor adaption ability to reality. e.g., the Kalman

filter and its variation methods do not work for the non-Gaussian problems; the Grid-based methods

need to predetermine the grid cells; the particle based methods may lead to particle divergence and

particle degeneracy problems.

Aiming at practical Bayesian estimations on range-based positioning, sample-based methods are

potential. Furthermore, the positioning accuracy can be related to multiple factors, i.e., the measure-

ment model, prior, estimation approximation and anchor deployment, etc. The following chapters

will discuss the two most important aspects: the measurement model of indoor TOF ranging and the

estimation approximation in the probabilistic perspective.
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Chapter 3

Characteristics and Frequentist
Modeling of Indoor Ranging Uncertainty

The problem of range-based indoor positioning has long been regarded as the imprecise ranging

measurements. Characterizing and modeling the ranging error are crucial for understanding posi-

tioning behaviors and optimizing positioning algorithms. The time-of-arrival (TOA) ranging error

differs from the commonly used signal-to-distance propagation models. On the other hand, fre-

quentist modeling offers simplicity as needing only incomplete statistical information from a small

experimental dataset. However, the existing statistical TOA models have less attention to the ranging

characteristics and their effect on positioning performance. In this chapter, we present the statistics

of TOA ranging measurements from indoor sensor testbed (with six ranging experiments carried

out in classrooms and corridors), and model the ranging errors by distribution fitting. This chapter

reports extensive statistics of indoor TOA ranging errors, with the contributions in threefold.

1. Summarize the characteristics of indoor TOA ranging errors and remark that the TOA error

follows a biased and right tailed distribution.

2. Perform frequentist modeling of both single-distribution and mixture-distribution models by

distribution fitting from real-world indoor experiments.

3. Validate the modeling results by KS test [119], the maximum entropy principle [80] and the

performance difference between simulations and real positioning.

The results reveal that the statistical modeling is capable to describe the multipath and the non-

line-of-sight (NLOS) errors of indoor-specific TOA ranging; moreover, its simplicity allows com-

putationally efficient positioning.
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3.1 TOA Ranging Uncertainty

The ranging techniques typically explore Radio Frequency (RF) properties to measure distance

or angle (either narrow band or UWB), which can also be implemented by other kinds of signals

such as acoustic, ultrasound, laser and infrared, etc. There are four main ranging techniques: time-

of-arrival (TOA), received-signal-strength (RSS), time-difference-of-arrival (TDOA) and angle-of-

arrival (AOA). Since our system employs TOA ranging, other ranging techniques will not be dis-

cussed.

Wireless environment is a fading channel with intrinsic temporal and frequency variations, thus,

the radio ranging error is a common and non-negligible phenomenon. Modeling the ranging uncer-

tainty provides foundations in several aspects of range-based positioning:

• Components of positioning algorithms, i.e., likelihood-based estimations and Bayesian meth-

ods.

• Simulation setup: the better the model imitates the real ranging, the more reasonable the

simulation representing for practices.

• Derivations of valuation criteria, i.e., Cramér-Rao Lower Bound (CRLB) [156] and geometric

dilution of precision (GDOP) [29].

• System configuration: a useful model helps to refine system deployments and calibrations.

3.1.1 Related work

Radio ranging of indoor positioning systems always suffer from a number of inherent uncertain-

ties, arising from thermal noise, multi-path effects, NLOS propagations, wireless interference, and

system noise [63, 101]. Since positioning performance highly depends on ranging accuracy, it is

crucial to characterize and model the ranging error.

Range-based positioning resorts to the statistical models from existing expertise or experimental

data, including the parametric models of a single probability density (a single-distribution model) [4,

5,62,161,162], a mixture of multiple probability density (a mixture-distribution model) [6,8,71,157]

and empirical models [48,84,166]. Mostly, TOA-based positioning assumes the ranging model as a

Normal distribution [4,7,161,162]. However, a non-negligible proportion of TOA errors violate the

Normal distribution, as indoor scenarios (especially NLOS conditions) lead to a high failure rate of

detecting direct path (DP) signal. There are also other probability distributions claimed for indoor

TOA models, i.e., the Uniform distribution [4], the negative Exponential distribution [7, 8, 62, 71],

the Weibull distribution [138] and the Lognormal distribution [5, 7, 8], etc.

Several theoretical analysis, simulations and experiments have analyzed that radio ranging mea-

surements are pretty noisy in indoor radio channels [8, 43, 71]. TOA ranging not only tolerates the
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attenuation of the signal amplitude by the effect of path loss, but also depends on the shape of the re-

ceived multipath signals according to the limited bandwidth [4, 6, 122]. However, the existing radio

models for telecommunication systems [7] cannot be used for the TOA uncertainty, as they mainly

focus on the path loss and packet delivery rate but not the time delay for ranging. The ray tracing

(RT) method has been used to analyze indoor radio propagations, nevertheless, it requires complete

knowledge of wireless channel and is site-specific [73]. Also, the TOA error differs from the com-

monly used signal-to-distance propagation models [43, 163]. Modeling based on the relationship

between multipath signal and bandwidth [6, 43] is impracticable for ability-limited sensor networks

in large scale environments. We consider that no model can fully represent indoor ranging errors,

whereas some are adequate for certain applications. For meter-level indoor network positioning, we

prefer an efficient statistical model over a complicated analytical model.

3.1.2 Error sources of TOA ranging

The major sources of ranging noises are listed in Table 3.1. Radio interference affects on whether

a packet can be successfully received rather than the delay of the signal; thus, it is ignored for the

TOA ranging error. Propagation error depends on the ability of detecting the direct path (DP) signal.

System error is caused by processing delay, inaccuracy of the time-estimating algorithm, clock drift

and jitter, and device diversity, etc. Thermal noise is random errors, varying with temperature and

humidity, etc.

Table 3.1: Main error sources of indoor TOA ranging noise

Error source Model

Radio interference ignored

Propagation error non-normal noise with large variance

Calibrated system error normal noise with unknown mean and variance

Thermal noise normal noise with zero mean and small variance

System errors and thermal noises are caused by a variety of unknown factors; according to the

central limit theorem, they can be approximated as a Gaussian error with the magnitude relatively

steady in a given scenario. Then, the entire ranging error (εr) is expressed as

εr = r − r̄ = nr + εpropagation(r), (3.1)

where the propagation error (εpropagation(r)) is the dominant component in εr.
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3.1.3 Analytical form of TOA ranging error

The multipath signal at the receiver of indoor limited space is usually formulated as [8]

h(τ) =

K∑
k=1

βk exp ( jφk)δ(τ − τk), (3.2)

where K denotes the number of multipath signals; βk, φk, and τk are the amplitude, phase and

propagation delay of the kth signal, respectively. The actual ranging is the propagation time of the

DP signal (τ1). Then, the ranging error depends on which path in (3.2) is chosen to be estimated as

the DP, with the chosen path denoted by D̂P.

There are three main methods to estimate the DP signal [8, 44]: 1) the time of the first peak (FP)

of the channel profile above a detection threshold; 2) the first trigger time (FT) over a threshold;

3) the time of the strongest path (SP) above a threshold. The module of our test-bed uses the FP

method, thus, the measured range is rFP. Then, the ranging error εr is expressed as

εpropagation(r) = εFP
DP(r) = rFP − rDP . (3.3)

Based on the time-distance relationship and wave propagation speed, the range is proportional to the

signal travel time. Thus, modeling ranging error becomes to model the delay between DP and FP,

which converts (3.1) to

εr ∝ ε(τ) = nτ + εFP
DP(τ) , (3.4)

where the propagation delay is

εFP
DP(τ) = τ̂1 − τ1 = τFP − τDP , (3.5)

with τ̂1 denoting the estimated propagation time of DP. The delay εFP
DP(τ) depends on the quality of

τ̂1, which is affected by the mean square delay spread, the capability of detecting FP (according to

path loss and detection threshold), and etc.

The IEEE indoor channel model summarizes a clustering phenomenon [123]: signals arrive at the

receiver in groups. The clustered model is similar to the SV (Saleh-Valenzuela) multipath model [28,

122],

hcluster(τ) =

L∑
c=1

Kc∑
k=1

Pk,cδ(τ − Tc − τk,c) , (3.6)

where L denotes the number of all observed signal clusters; Kc is the number of signals in the cth
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cluster; Pk,c is the power of the kth signal in the cth cluster; Tc is the arrival time of the peak of the

cth cluster; τk,c represents the delay of the kth signal in the cth cluster.

The first cluster (FC) is the cluster containing the main power of the DP signal; T1 is the delay

of FC, which is very close to the DP delay (τ1). If the cth cluster is detected as FC, Eq. (3.4) is

rewritten as

ε(τ) = nτ + ε
τk,c
τ1,c(τ) + εTc

FC(T )

= nT + εTc
FC(T ) , (3.7)

where ετk,c
τ1,c(τ) denotes the delay of taking the kth signal as the first signal in the cth cluster; εTc

FC(T ) is

the delay between the cth cluster and the FC; nT measures the sum of nτ and ετk,c
τ1,c(τ). Compared with

the delay of losing FC, ετk,c
τ1,c(τ) is relatively small. Therefore, nT is deemed as a Gaussian variable

nT ∼ N(nT ; 0, σT ). (3.8)

The cluster arrival model is commonly defined as a Poisson arrival process model [122]. The

interval between two neighbored clusters is expressed as

∆Tc = Tc − Tc−1 , c = 2, 3, · · · ,C, (3.9)

with ∆T1 = T1 − τDP being the delay of FC. Thus, the waiting time ∆Tc between a pair of neighbor-

hood clusters is an exponential variable ∆Tc ∼ EXP(∆Tc; µc) with the density function

EXP(∆Tc; µc) =
1
µc

exp (−∆Tc
µc

) , c = 1, 2, · · · ,C. (3.10)

Then εTc
FC(T ) is written in the form of ∆Tc:

εTc
FC(T ) = TC − T1

≈

C∑
c=2

(Tc − Tc−1) =

C∑
c=2

∆Tc . (3.11)

The multipath signals compose several clusters and each cluster peaks depending on the main

signals in that cluster. The clustering phenomenon is stochastic due to the complex indoor environ-

ment, thus, all ∆Tc can be considered independent. The difference among the clusters is the power
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decaying by the path loss of all member signals, which has a small effect on the peaking time. Thus,

∆Tc can be deemed as identically distributed. Since ∆Tc is an i.i.d exponential variable, εTc
FC(T )

follows a Gamma distribution εTc
FC(T ) ∼ Γ(εTc

FC(T ); C, θT1):

Γ(εTc
FC(T ); C, θT1) =

1
θC

T1
Γ(C)

(εTc
FC(T ))C−1 exp (−

εTc
FC(T )

θT1

) , (3.12)

where Γ(C) is the gamma function with C, and θT1 for the shape and scale parameters, respectively.

Since nT and εTc
FC(T ) are independent, ε(τ) in (3.7) obeys the convolution of the normal PDF and

Gamma PDF

ε(τ) ∼ N(nT ; 0, σT ) ∗ Γ(εTc
FC(T ); C, θT1). (3.13)

The model of (3.13) is an analytical form of the TOA error, nevertheless, it still requires a com-

prehensive knowledge of the channel for the multi-parameter configuration and the clustering phe-

nomenon related to channel frequency and bandwidth. Consequently, we resort to statistical model-

ing for the TOA ranging error.

3.2 Testbed Description and Experiment Setup

Six TOA ranging experiments are carried out, considering two typical indoor scenarios: a class-

room and a corridor in our Computer Science building during daytime. The experiment platform

uses nanoPAN 5375 RF module and Microcontroller LPC 2387 [1, 2], with the reported ranging

accuracy of 2 meters indoors (see more details in [146,177]). Four stationary experiments (with the

target node placed at fixed test-sites) and two mobile experiments (with the target node carried by a

mobile robot) are described as follows.

• F1: the stationary experiment in the classroom, ranging between one target and one anchor at

25 fixed test sites

• F2: the stationary experiment in the classroom, ranging from one target to 5 anchors at 25

fixed test sites

• F3: the stationary experiment in the corridor, ranging between one target and one anchor at

28 fixed test sites

• F4: the stationary experiment in the corridor, ranging from one target to 10 anchors at 28 fixed

test sites

• M1: the mobile experiment in the corridor, ranging from one target to 17 anchors along 100

meters trajectory
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• M2: the mobile experiment in the corridor, ranging from one target to 17 anchors along 80

meters trajectory

Figure 3.1 depicts the indoor scenario and experiment device; Figure 3.2 shows the setup of each

experiment, with the area size, anchor deployment and test sites or mobile trajectories.

(a) Test-bed device (b) Indoor scenario (c) Floor plan of the experiment area (40 × 70 meter2)

Figure 3.1: Experiment device and indoor scenarios

3.3 Characteristics of Indoor Ranging Uncertainty

The TOA error is a stochastic process, whereas it exhibits certain characteristics related to the

measuring time and space, the geometric relation between the target and anchors, the ground truth

of the range, etc. To characterize the indoor TOA error, the basic statistics of real experiments are

explored.

3.3.1 Typical statistics

The typical statistics of the ranging error are analyzed in Table 3.2. The ranging error is denoted

by εr; µεr , σεr , Minεr and Maxεr are the mean, standard deviation, minimum and maximum of the

ranging error, respectively; Avgr is the average range; Nsmp is the sample size of each experiment.

The multipath effect of indoor environments causes a remarkable positive bias [13, 39, 164] to

time-based ranging. Specifically, the ranging error in the NLOS condition is severely larger than

the one in a line-of-sight (LOS) condition. Hence, the skewness (S ) is also evaluated. If S gets a

positive value, the distribution observes a tail on the right side; otherwise, it presents a left-side tail.

S εr =
E((εr − µεr )

3)
σ3
εr

. (3.14)

Table 3.2 summaries as follows.
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Figure 3.2: Experiment setup: the experiment area (the length and the width of each sub-figure), and
the anchor deployment (denoted by 4). (a)-(d) describe the stationary experiments with the target
fixed at each test site (•). (e)-(f) are the mobile experiments carrying the target by a mobile robot,
with the true trajectory depicted by the solid line.

Table 3.2: Typical values of the ranging error (εr) in real-world experiments (/meter)

Experiment µεr σεr Minεr Maxεr Avgr S εr Nsmp

F1 3.04 2.56 -1.56 10.83 7.52 0.60 49495

F2 2.58 2.97 -1.80 14.08 5.99 0.84 234923

F3 2.27 2.76 -1.97 17.12 16.10 1.22 1803

F4 2.47 7.26* -2.57 116.97* 15.97 9.85* 154270

M1 2.42 3.57 -3.31 74.18 18.16 3.37 22901

M2 2.20 3.71 -3.70 63.39 18.18 5.11 17277
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1. The indoor TOA ranging obtain severe uncertainty, as the large values of µεr and σεr .

2. All the experiments get a positive skewness S εr , confirming a right tail of the error distribution.

Consequently, a skew model is more reasonable.

3. All the experiments obtain a positive bias as the positive µεr , which is introduced by the

multipath and NLOS effect.

4. The experiment F4 obtains a much larger value of σεr , Maxεr and S εr marked by ∗ of F4 in

Table 3.2. The reason is that: 1) the experiment is carried out by a human, whose motion and

the way of holding the device cause a larger variance than a robot; 2) the human body has a

great influence on the signal strength and propagation time of RF signals, which is confirmed

as the body shadowing effect [54, 130].

5. There are a few negative ranging errors due to thermal noise, clock jitter and system calibra-

tions.

6. It seems that the device diversity enlarges the ranging uncertainties, e.g., the experiments with

one anchor obtain smaller σεr than the ones with multiple anchors.

Overall, Table 3.2 gives an impression that the ranging error of the same scenario observes similar

statistics. Therefore, the ranging error of a given scenario can be interpreted by a statistical model.

Additionally, the model should be able to represent the positive bias, right-tail, and a few negative

values of the ranging error.

3.3.2 Non-Gaussianity

The TOA error is commonly assumed as a Gaussian error, untruly, extensive evidences have

interpreted a strong non-Gaussian and non-linearities of the ranging errors. Figure 3.3 depicts the

Normal Probability Plot: from 0 to 5 meters on x-axis, the sample distribution is close to the Normal

fitting line (the dashed line), revealing that most ranging observes Gaussian errors; the samples in

the upper-right side extremely deviates from the fitting line, which is often referred to the NLOS

error. Thus, it confirms that the indoor TOA error violates the Gaussian model.

3.3.3 Ranging variation with time and space

The ranging variation over time and space are plotted in Fig. 3.4 and Fig. 3.5.

The scatter plot in Fig. 3.4 illustrates the wide variation of the indoor TOA error. The mixture

Gaussian fitting demonstrates that the ranging error severely varies with time, even from one anchor

and the same test-site at close time. This is because that the channel is influenced by time-varying

noise, such as a short-term or a long-term interference.

Figure 3.5 interprets the high variation of TOA ranging over space, by reason that the reflections,

refractions, diffractions and scattering vary with the indoor environment. Additionally, the ranging
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Figure 3.3: Normal Probability Plots of the TOA ranging error of F3. The dashed line represents the
Normal fitting, and the marker ’+’ denotes one sample of the ranging error. Deviations of samples
from the fitting line represent the difference of the ranging error to the Normal distribution.

error is related to the antenna irregularity in different directions, which is verified by the field studies

on Berkeley mote platform [59].

3.3.4 Ranging error versus distance

Generally, RSS decreases proportionally with the distance. Unfortunately, the relationship of

TOA errors versus the true range is hard to know. Figure 3.6 presents two points: 1) with the increase

of the true distance between the anchors and the target, the number of successfully obtained ranging

measurement decreases; most of the obtained ranging measurements are within the distance of 30

meters; 2) the linear fitting implies the ranging error is not proportional to the true distance; as one

can see, except the few outliers, the ranging error with a larger distance is not necessarily larger than

the one with a small distance.

Table 3.3: Correlation (ρεr ,r̄) between the ranging error and the ground truth distance

Experiments F1 F2 F3 F4 M1 M2

ρεr ,r̄ 0.32 0.46 0.20 0.18 0.13 0.22

Table 3.3 lists the correlation between the ranging error and the true distance in the six experi-

ments: F1 and F2 obtain a little bit higher correlation, while there is no significant relevance in the

other experiments. The reason is that the true ranges are very short in F1 and F2 (the classroom
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Figure 3.4: TOA ranging error varying over time at one test-site, with the measurements between
one anchor and the target fixed at one test-site in F1
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Figure 3.5: TOA ranging error varying with space, with the ranging between one anchor and the
mobile target from M1
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Figure 3.6: TOA ranging error (εr) versus the true distance (r̄), with the ranging of multiple anchors
and the moving target from M1.

scenario); thus, the very large measurements are more likely to have a large error. It can be con-

cluded that if the anchors are spread widely, the correlation between the TOA error and the true

distance is very low, which differs from the assumption that the ranging error is proportional to the

distance [7, 8].

3.3.5 Ranging variation of device diversity

Device diversity is a common problem in such low-cost sensor systems, which can lead to in-

consistent ranging measurements. Figure 3.7 depicts the boxplot of the ranging error from eight

anchors, with the anchors placed at the same position.

Through Fig. 3.7, the dispersion of the ranging errors from eight anchors is not the same. The

ranging from some devices observes larger median errors than the others. In this case, an on-

line/offline calibration is feasible, e.g., the work [131, 132] explores the device diversity to enhance

positioning, which corrects the device diversity via a dissimilarity function like Kullback-Leibler

divergence.

3.3.6 Positive and negative ranging errors

Real TOA ranging observes an asymmetric distribution of the negative and positive errors. In

our indoor TOA experiments, about 80%-90% measurements observe positive errors, similar to the

studies [8, 164]. The scatter plot of Fig. 3.8 demonstrates this negative and positive ranging errors.

From Fig. 3.8, most of the ranging errors are positive, whereas the negative errors are around
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Figure 3.7: TOA ranging error of device diversity, with the ranging between one mobile target and
eight anchors (placed at the same site).
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Figure 3.8: Lower bound (the 5% percentile) and upper bound (the 95% percentile) of the TOA
ranging errors, with the ranging between mobile target and multiple anchors in M1
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10% of all the samples. The positive error is mainly introduced by multipath effect and NLOS

propagations, whereas the negative error can be caused by calibration, system errors and thermal

noise. Hence, the ranging model needs to represent both the positive and negative errors.

3.3.7 NLOS errors

Indoor TOA ranging inherently has a high occurrence of NLOS errors. Figure 3.9 illustrates the

NLOS errors can be present at any test-site, indicating that the NLOS error is not strongly spatially

correlated. Additionally, the minimum error at each test-site is always small, implying that accurate

positioning is possible by these ranging with small errors.
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Figure 3.9: Maximum, mean and minimum of the ranging error, with the ranging between one
mobile target and multiple anchors in M1

Figure 3.10 describes that the variance of the ranging error is large around the 820th sequence,

but small around the 860th sequence. It demonstrates that the variance of the ranging errors varies

significantly, even at the neighborhood time and space. Consequently, the variance weighted algo-

rithms [69] cannot indicate the quality of the TOA ranging.

3.4 Frequentist Modeling

The above statistics present that the TOA ranging is highly affected by multiple factors. Unfortu-

nately, it is difficult to know the contribution of each factor on the timing-based ranging error. On

the other hand, it is feasible to use a frequentist modeling by distribution fitting on a small sample
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Figure 3.10: Moving variance of the ranging error, with the ranging between one mobile target and
one anchor in M1

set of experimental data.

3.4.1 Statistical models

Most current work of indoor positioning refers the ranging error to a rich class of statistical models

through existing expertise or an experimental data set. These models are often simplified into two

categories: a single-distribution model and a mixture-distribution model.

Single-distribution models

To simplify the TOA error model, it is commonly assumed as a single probability distribution,

such as

• Gaussian N : the Normal distribution

• Lognormal: the Lognormal distribution

• Exponential EXP: the negative Exponential distribution

• Rayleigh: the Rayleigh distribution

• Gamma: the Gamma distribution

Most research assume the TOA error as a Gaussian distribution. As a matter of fact, the Gaussian

model is insufficient to represent the positively skewed distribution [81]. Some studies explore the

possibilities of skewed models, i.e., the Negative Exponential distribution, Lognormal distribution,

Weibull and Gamma distribution, which have not been intensively compared with experimental data.

51



CHAPTER 3. CHARACTERISTICS AND FREQUENTIST MODELING OF INDOOR
RANGING UNCERTAINTY

Mixture-distribution models

Besides the single-distribution models, the models combining multiple probability distributions

(a mixture model) are also proposed.

The ranging error is separated into the LOS error (εLOS) and the NLOS error (εNLOS). The NLOS

part is controlled by a random variable ξ, such as a Bernoulli variable taking the value of one when

an NLOS condition is present and zero otherwise:

εr = εLOS(r) + ξεNLOS(r) . (3.15)

The εLOS(r) and εNLOS(r) can be modeled in different ways [49, 71, 157], e.g., a weighting method

of the LOS and NLOS components

εr = WNNLOS(r) + WEXPEXPNLOS(r) . (3.16)

With an appropriate setting of WN and WEXP, this model can fit the real ranging error well.

Differing from the models of (3.15) and (3.16) generating the NLOS component through a random

variable or constant weights, Alavi in [6] uses a function (ξW(r)) as

εr = log(1 + r)NLOS + ξW(r)NNLOS, (3.17)

where ξW(r) depends on the distance. However, it is difficult to form ξW(r) if without enough

knowledge of the multipath propagation and the limited bandwidth effect [160]. Therefore, the

mixture models are less applicable than the single-distribution models due to the problems of the

multi-parameter configuration and requiring a complete knowledge of the channel.

3.4.2 Distribution fitting

The aforementioned single-distribution models are fitted to the experimental data by the parameter

estimation tool of Matlab. We add two probability distributions because of their abilities to appear

a skew and a right-tailed distribution, which have not been considered by the current studies of

TOA modeling: the Gamma distribution and the Rayleigh distribution. Note that these probability

distributions, which only provide positive values, need a translation based on the Minεr in Table 3.2,

i.e., the Exponential distribution, Gamma distribution, Lognormal distribution and etc. Additionally,

two mixture models are also compared: NLOS + ξEXPNLOS [6] andNLOS + ξNNLOS [157] of (3.15)

with ξ being a Bernoulli random variable.

Table 3.4 gives the distribution fitting results, with the meaning of the parameters explained in
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Matlab Statistics Toolbox. As one can see, the fitting results of the six experiments obtain similar

results, except F4 with the raw data. By removing outliers in F4, the result of F4 is similar to that of

the others. It implies that, without severe outliers, the statistical model has a good generality in the

similar scenarios.

Fig. 3.11 plots the normalized histogram regarding the ranging error from M1. The histogram

depicts a positive biased and heavily right-tail distribution. The positive bias is because of the delay

spread of multipath signals of indoor scenarios. The right-hand tail is mostly due to the NLOS prop-

agations, which cannot be handled by a Gaussian model. Then, it also plots the statistical models by

distribution fitting. For the single-distribution models, the two best results from distribution fitting

are drawn: the Lognormal distribution and the Gamma distribution. It is found that the Lognormal

distribution, the Gamma distribution and N + ξN tend to fit to the histogram well.
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Figure 3.11: Normalized histogram and distribution fitting models on the real TOA error, with data
from the experiment M1 (17 anchors).

Overall, the observations from the statistical models give us an expression that a skewed model

has the ability to imitate the ranging features (the biased and tailed appearance).

3.5 Model Validation

The distribution fitting results do not reveal insights about the model quality, thus, further verifi-

cations are investigated.
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3.5.1 Kolmogorov-Smirnov (KS) test

How well each statistical model matches the real ranging is evaluated by Kolmogorov-Smirnov

(KS) goodness-of-fit hypothesis test. Let CDF(ε) be Cumulative Distribution Function (CDF) of

the experimental ranging error and ĈDF(ε) for the hypothesized model. Then, the KS statistic is the

distance between the real CDF and the modeled CDF:

KS (ε) = |ĈDF(ε) −CDF(ε)|. (3.18)

The smaller KS (ε), the better the model is. If the experimental samples exactly follow the hypoth-

esized model, then
∞∑
ε=0

KS (ε) converges to zero. Table 3.5 gives the average KS statistic AvgKS =

mean(KS (ε)) and the maximum maxKS = max(KS (ε)) of the models in Table 3.4.

The top two goodness-of-fit of AvgKS in each experiment is marked by ’*’. The KS statistics of

six experiments almost agree that the Lognormal distribution and the Gamma distribution (with a

translation of the Minεr in Table 3.2) fit well the measurements. The Exponential distribution is the

worst, and the Gaussian distribution also obtains a low goodness-of-fit. In addition, the KS statistics

of F4 differ much by removing the outliers. Thus, a preprocessing is necessary for mitigating the

influence of the outliers but needs careful consideration.

3.5.2 Maximum entropy principle

The maximum entropy principle has been exploited to model wireless propagations [45] but not

for the TOA ranging. The maximum entropy principle chooses the distribution (p ⊆ P) that maxi-

mizes the entropy (H) given a set of constraints [79]

Pmax(H) = arg max
p⊆P

H . (3.19)

The distribution with the maximum entropy (Pmax(H)) is derived by Lagrange multipliers as (3.20)-

(3.27), which is a constrained optimization of the objective function

H = −

∫ ∞

−∞

p(εr) ln(p(εr)) dεr , (3.20)

on the basis of the fact that the integral of a PDF is one∫ ∞

−∞

p(εr) dεr = 1 . (3.21)
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To get the constraints on the ranging error distribution (p), we investigate the ranging stability

by a simple moving average method. Figure 3.12 displays the moving average, Moving Geometric

Mean (M-GeoM) and Moving Standard Deviation (M-STD) of the ranging error of M1, with two

window sizes for the moving subset Nmov = 11 and Nmov = 101. It demonstrates that, by averaging

a few samples (more than ten samples), the moving average, M-GeoM and M-STD of the ranging

error almost maintain at a stable level. At some points, the moving average and the M-STD display

a fluctuation. These statistical behaviors are used to construct the constraints on p as follows.

Constraint of a lower bound (LBεr ) and a upper bound (UBεr )

It sets the limits on the ranging error

LBεr ≤ εr ≤ UBεr , (3.22)

The LBεr is often a negative value, while UBεr is positive due to the fact that the ranging measure-

ments of losing the DP signal are always larger than the actual range.

Constraint of a stable value of the expectation

Figure 3.12(a) illustrates that the TOA error obtains approximately a stable moving average of a

certain scenario, because the main reflectors like the walls and ceilings are the same. Thus, we make

the constraint of a constant expectation

µεr =

∫ ∞

−∞

εr p(εr) dεr . (3.23)

Constraint of a stable geometric mean

Figure 3.12(b) describes a stable M-GeoM, posing another constraint

νεr =

∫ ∞

−∞

ln(εr)p(εr) dεr . (3.24)

Based on the constraints of (3.21)-(3.24), the Lagrangian L is

L = −

∫ UBεr

LBεr

p(εr) ln p(εr) dεr + C1

(∫ UBεr

LBεr

p(εr) dεr − 1
)

+ C2

(∫ UBεr

LBεr

εr p(εr) dεr − µεr

)
+ C3

(∫ UBεr

LBεr

ln(εr)p(εr) dεr − νεr

)
.

(3.25)
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Figure 3.12: Scatter plot of the ranging error with about 22901 samples of M1. The moving average,
moving geometric mean (M-GeoM) and moving standard deviation (M-STD) are averaged by a
moving window of Nmov measurement samples.
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Differentiate L with respect to p, one can get

ln p(εr) = −1 + C1 + C2εr + C3ln(εr). (3.26)

As a result, the ranging error distribution with max(H) subject to the constraints (3.21)-(3.24) is

p(εr) = exp(C1 − 1) exp(C2εr)ε
C3
r . (3.27)

which turns out to be PDF of the Gamma distribution with unknown constants. Therefore, the

distribution of the maximum entropy and constraints (3.21)-(3.24) is a Gamma distribution.

Alternatively, one can assume other reasonable constraints, e.g., the most likely distribution, sat-

isfying (3.21)-(3.23) and a stable M-STD as Fig. 3.12(c), is a Lognormal distribution.

The proof of entropy enhances the distribution fitting results of Table 3.5, e.g., it explains why the

Gamma distribution and Lognormal distribution fit well in the KS test, according to the fact that the

TOA error is finite and statistically stability of the moving average and M-GeoM/ M-STD.

3.5.3 Influence of ranging models on positioning

To examine how the error model influences positioning performance, a nonlinear least-squares

(NLS) positioning algorithm [69] is implemented in the experiment M1 and the simulations using

the above models. The simulations employ the same setup as M1 (i.e., the anchor deployment and

the received ranging rate, etc.).

Table 3.6 shows the basic statistics of positioning of the experiment and simulations, where µp,

maxp and PCT95 denotes the mean, the maximum and the 95th percentile of the positioning error,

respectively. The positioning error of the experiment serves as a benchmark for the simulations. In

other words, the higher similarity of the simulated positioning performance to the experiment, the

more similar the model is to represent the real ranging. Figure 3.13 plots CDF of the experimental

and simulated positioning errors.

Table 3.6 and Fig. 3.13 demonstrate the difference between the experiment and the simulations of

different ranging error models. The results are mostly consistent with the KS statistics in Table 3.5.

The worst fitting model in the KS test (the Exponential distribution) leads to the largest difference

to the experimental positioning; on the other hand, the better fitting models (the Lognormal and the

Gamma distribution) obtain more similar positioning errors to the experiment results. It also finds

that the modelN+ξEXP also gets a high positioning similarity, indicating that the mixture model can

also represent the ranging error. Note the highest difference between the simulated and experimental

positioning CDF in Fig. 3.13 is more than 20%, which implies that an improper ranging model can
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Figure 3.13: CDF of the positioning error of M1 and the simulations (with the same setup to M1)
using different models

Table 3.6: Positioning error (/meter) of M1 and the simulations (with the same setup to M1) using
different models

Ranging method Ranging error model µp maxp PCT95

M1 \ 4.61 23.42 9.40

Simulations of M1

Gaussian 5.59 15.78 10.66

EXP 6.02 26.11 12.98

Lognormal 4.96 17.18 11.04

Gamma 4.65 17.21 11.14

Rayleigh 5.50 13.51 10.57

N + ξEXP 4.45 14.58 10.53

N + ξN 5.22 15.47 10.69
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definitely lead to a wrong simulated evaluation of positioning.

3.6 Summary

Based on the exhaustive TOA ranging measurements, we present the mathematical analysis, char-

acteristics and statistical models of indoor ranging error. The frequentist modeling procedure indi-

cates that the TOA error can be fitted well by a statistical model, either the single-distribution models

or the mixture-distribution models. Considering the limits faced by portable devices, a positively

skewed single-distribution is preferable, e.g., the refined Gamma distribution or Lognormal distri-

bution is rational, as they satisfactorily imitate the positive bias and right-side tail of the TOA error

distribution in the mixed LOS and NLOS conditions; on the other hand, the mixture models are less

flexible due to the multi-parameter configuration problem. Then, the KS test, maximum entropy

principle and simulations validate the efficiency of a proper statistical model to reality. Furthermore,

modeling via distribution fitting does not require the complete information of wireless channel.

Overall, we recommend frequentist modeling for TOA range-based positioning. As future work, we

will consider introducing the ranging characteristics and modeling results to optimize positioning

algorithms.
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Chapter 4

Sample-based Probabilistic Estimation
for Indoor Positioning

The nonlinear and non-Gaussian positioning problem does not exist an analytical solution, thus,

sample-based approximations are generally employed. The two key questions about applying sample-

based Bayesian methods are:

• how to generate appropriate samples for the nonlinear and non-convex state;

• how to alleviate the effect of ranging uncertainty.

The majority of recent papers of the sampling of Bayesian frame solely rely on the prediction

density [153]. From a practical point of view, the sampling from a prediction density suffers from

the assumption of the correctly known prior. There is effort in resampling methods to alleviate the

sample degeneracy, which have been criticized for losing sample diversity and high complexity [18].

The Bayesian filters in [17,19] suggest to use noninformative prior or flat-tailed measurement model,

unfortunately, they are ineffective if the likelihood is also vague. Machine learning approaches (i.e,

clustering, splitting and merging) are possible to cope with estimation divergence [106], but they

face implementation difficulty.

Specific for indoor scenarios, the NLOS ranging is too arbitrary to be modeled or to be removed

(see Chapter 3.3). Some effort has been made to introduce NLOS identification and mitigation,

which increases the complexity and may lead to an overfitting problem.

This chapter focuses on three terms: 1) positioning error analysis 2) constrained sampling; 3)

NLOS mitigation. Seven sampling and NLOS mitigation algorithms are proposed, which are com-

pared with grid-based estimations, Gaussian filters and particle filters.

63



CHAPTER 4. SAMPLE-BASED PROBABILISTIC ESTIMATION FOR INDOOR
POSITIONING

4.1 Aspects of Range-based Positioning

4.1.1 Error propagation from ranging to positioning

An analytical description of the positioning uncertainty under the noise ranging can be elaborated

by the error propagation analysis [110]. The function of the position estimation with regard to the

ranging measurements is denoted as f . Let x be the actual target’s position and z for the ranging

observations, and the ground truth of the position with the ideal ranging measurements is

x = f (z) . (4.1)

Given the noise ranging measurements, the estimated position is x̂ = f (z). Then, the positioning

uncertainty (σx) is determined by the ranging uncertainty (σl)

σ2
x =

Nanc∑
l=1

(
∂x
∂rl

)2

σ2
l . (4.2)

Here, the positioning uncertainty is analyzed in two cases: the one dimensional (1D) and two

dimensional (2D) positioning as follows.

One dimension case
If f is an unbiased estimation, the 1D position function is

x = f (z) =
1

Nanc

Nanc∑
l=1

(axl ± rl) . (4.3)

According to (4.2), the uncertainty of 1D positioning is derived with

σ2
x−1D =

Nanc∑
l=1

(
±

1
Nanc

)2

σ2
l =

1
N2

anc

Nanc∑
l=1

σ2
l . (4.4)

Assuming that the ranging uncertainty of all anchors is equally deviated σ2
εr

= 1
Nanc

Nanc∑
l=1

σ2
l , then, we

can obtain

σ2
x−1D =

1
Nanc

σ2
εr
, (4.5)

with σ2
εr

being the average variance of the ranging errors from all anchors.

Two dimension case

64



4.1. ASPECTS OF RANGE-BASED POSITIONING

The 2D range-based positioning is defined

(x, y) =
(

fx(z), fy(z)
)
. (4.6)

Similarly, the uncertainty of x-axis and y-axis state estimation is

(σ2
x, σ

2
y) =

Nanc∑
l=1

(
∂ fx

∂rl

)2

σ2
l ,

Nanc∑
l=1

(
∂ fy
∂rl

)2

σ2
l

 . (4.7)

The 2D positioning error is derived from the x-axis and y-axis estimation errors as

εp−2D =

√
ε2

x + ε2
y . (4.8)

Equation (4.2) of 2D positioning is expressed as

σ2
x−2D =

 εx√
ε2

x + ε2
y


2

σ2
x +

 εy√
ε2

x + ε2
y


2

σ2
y

=(
ε2

x

ε2
x + ε2

y
)

Nanc∑
l=1

(
∂ fx

∂rl

)2

σ2
l + (

ε2
y

ε2
x + ε2

y
)

Nanc∑
l=1

(
∂ fy
∂rl

)2

σ2
l

≈σ2
εr

Nanc∑
l=1

 ε2
x

(ε2
x + ε2

y)

(
∂ fx

∂rl

)2

+
ε2

y

(ε2
x + ε2

y)

(
∂ fy
∂rl

)2 . (4.9)

In comparison with the 1D positioning, the uncertainty of the 2D positioning is a complex non-

linear problem:

• the variance of 1D positioning simply depends on the ranging uncertainty (σ2
εr

) and the num-

ber of ranging measurements (Nanc);

• the uncertainty of the 2D positioning is related to the ranging uncertainty (σ2
εr

), the number of

observed measurements (Nanc), the positioning function ( fx, fy) and the value of positioning

error (εx, εy). The function ( fx, fy) and positioning error (εx, εy) are depending to the relative

relation between the target to each anchor (x − axl, y − ayl).

These factors of the 2D positioning error are depicted in Fig. 4.1. As a consequence, to enhance

the probabilistic positioning, one needs to refine the model of the ranging uncertainty, the anchor

placement and the positioning algorithm.
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Figure 4.1: Factors of positioning error derived from the error propagation analysis

4.1.2 Anchor placement

The error propagation analysis has concluded that an appropriate anchor placement is essential for

the potential performance of range-based positioning. The anchor placement of indoor positioning

is constrained by several practical factors, i.e., sensing coverage, system cost, existing infrastructure

and environment characteristics (such as the perimeter and corner of the floor). Therefore, the

anchor deployment is an engineering problem, whereas, the mathematical optimization of the anchor

placement provides a suggestion for practice

Cramér-Rao Lower Bound (CRLB) has been used to study the anchor placement [21, 69, 116]

and the anchor selection [111] for optimizing the positioning performance. Thus, the geometry

influence of the anchor deployment on the positioning error is described by a 2D distribution of the

best achievable MMSE according to CRLB, namely CRLB-2D.

Cramér-Rao Lower Bound (GRLB)

The Cramér-Rao Lower Bound (CRLB) is known as a lower limit for the variance of an unbiased

estimate. The CRLB for 2D position estimation requires the following factors:

• the anchors’ position {al = (axl, ayl)}
Nanc
l=1 ;

• the ground truth of the target’s position x = (x, y);

• the model of lth ranging measurement, such as a Gaussian model N(0, σ2
l ).

The CRLB matrix is defined as the inverse of the Fisher information matrix (Jx), then an unbiased

position satisfies

Cov(x̂) = E[(x̂ − x)(x̂ − x)
T
] ≥ [Jx]−1 . (4.10)
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where E stands for the expectation and T denotes the transpose of a matrix. The element of [Jx] is

defined as

[Jx]i j = −E[
∂2 log p(x, z)

∂xi∂x j
] , (4.11)

where i and j is the index of the state dimension. If the prior of the state is unknown, then Eq. (4.11)

can be rewritten into

[Jx]i j ≈ −E[
∂2 log p(z|x)
∂xi∂x j

] , (4.12)

Then, the Fisher matrix can be calculated [69]

Jx =


∑Nanc

l=1 (σ2
l )−1 (xl−axl)2

(xl−axl)2+(yl−ayl)2

∑Nanc
l=1 (σ2

l )−1 (xl−axl)(yl−ayl)
(xl−axl)2+(yl−ayl)2∑Nanc

l=1 (σ2
l )−1 (xl−axl)(yl−ayl)

(xl−axl)2+(yl−ayl)2

∑Nanc
l=1 (σ2

l )−1 (yl−ayl)2

(xl−axl)2+(yl−ayl)2 .

 (4.13)

In 2D positioning, the MMSE of the position estimation is indicated by the diagonal terms of the

CRLB matrix

E[(x̂b − x)2] ≥ [Jx]−1
bb , b = x, y . (4.14)

with

[Jx]xx = −E[
∂2 log p(z|x)

∂x∂x
] (4.15)

and

[Jx]yy = −E[
∂2 log p(z|x)

∂y∂y
] . (4.16)

Thus, the best achievable MMSE of positioning errors is the 2CRLB

CRLB − 2D = trace[J−1
x ] . (4.17)

2D distribution of GRLB

The geometry influence of the anchor deployment is characterized by the distribution of CRLB-

2D (4.17) in Fig. 4.2. There are six constellations of the anchor deployment being considered:

1. Sparse interior case1 (Fig. 4.2(a)): four anchors lie in the interior part of the playing field;

2. Sparse borderline case (Fig. 4.2(b)): four anchors are located on the borderline of the field;

3. Sufficient entire-field case (Fig. 4.2(c)): eight anchors are spread all over the playing field,

with comparable density as the experiments;

1The average number of reachable anchors in our experiments is 7.5; the anchor density lower than the experiment
density is defined as the sparse anchor deployment; otherwise, it is defined as the sufficient anchor deployment
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4. Sufficient borderline case (Fig. 4.2(d)): eight anchors are placed on the borderline of the field;

5. Sufficient irregular case (Fig. 4.2(e)): the anchor placement is an irregular constellation;

6. Sufficient even case (Fig. 4.2(f)): the anchors are deployed evenly in the field.

Figure 4.2 illustrates that

• from the sparse and sufficient cases: the denser anchor placement, the better performance of

a positioning algorithm can theoretically approach to, e.g., the CRLB is considerably reduced

with the anchor number increasing from four to nine;

• from the interior and borderline case: the borderline case deployment is superior than placing

anchors in the interior region, as Fig. 4.2(b) almost outperforms Fig. 4.2(a) all over the field;

• from the entire and borderline case: the borderline case is better than the entire-field case, as

Fig. 4.2(d) almost outperforms Fig. 4.2(c) everywhere of the playing filed;

• from the irregular and even case: the irregular anchor placement achieves the similar perfor-

mance as the even placement, as the small difference of the GRLB values between Fig. 4.2(e)

and Fig. 4.2(f).

• through Fig 4.2(d) to Fig. 4.2(f), the CRLB values of the even case and the irregular case is

smaller than the borderline case (averagely 0.2 unit), because of involving one more ranging

measurements.

Summarily, the 2D GRLB infers that the better anchor deployment is to place sufficient anchors

on the borderline of the positioning field, rather than the even style or interior style deployment.

Practical anchor placement

Although the distribution of CRLB-2D demonstrates the guideline of the anchor placement for the

best positioning performance, the anchor deployment is an engine problem rather than a theoretical

optimization. According to our field experience, the following suggestions are made for a practical

anchor placement:

• to ensure that there are sufficient anchors placed on the borderline of the positioning field;

• to be aware of the NLOS region, such as corners or blind areas (such as behind a metal door)

of indoor environments;

• the anchors should not cluster in parts of the positioning field;

• it is also necessary to place anchors in the interior field, in case that the borderline anchors

may be out of the communication range or fail to sense measurements.

4.1.3 Probabilistic positioning methods

Given the anchor deployment and ranging measurements, the positioning problem turns to an al-

gorithmic optimization. This chapter aims to derive sample-based approximation about the position
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(a) Sparse interior case (four anchors) (b) Sparse borderline case (four anchors)

(c) Sufficient entire-field case (eight anchors) (d) Sufficient borderline case (eight anchors)

(e) Sufficient irregular case (nine anchors) (f) Sufficient even case (nine anchors)

Figure 4.2: Geometric illustration of CRLB-2D with six anchor constellations: the size of the play-
ing field is 40×40 units2 represented by 100×100 discrete points; the CRLB-based MMSE at every
discrete point is calculated, with the values being read from the color bar; the anchors are denoted
by 4; the ranging error follows a Gaussian model N(0, 32).

69



CHAPTER 4. SAMPLE-BASED PROBABILISTIC ESTIMATION FOR INDOOR
POSITIONING

estimation given the noisy ranging data, either through a non-sequential estimator (p(xt|zt)) or a

sequential estimator (p(xt|z1:t)). Seven sample-based positioning and NLOS mitigation algorithms

are proposed, which are compared with six popular algorithms.

The proposed algorithms

Equation (2.5) of the posterior position estimation is formulated as

pθ(x|z) ∝ pθ(z|x)︸ ︷︷ ︸
Likelihood of ranging

· pθ(x)︸︷︷︸
Prior of 2D position

, (4.18)

indicating that, both the prior and the likelihood interchangeably determine the posterior. Therefore,

for the success of the sample-based probabilistic positioning, this chapter proposes enhancements in

both the prior and the likelihood:

Prior For non-sequential estimation, the prior depends on the distribution of the state

samples; for sequential estimation, the prior is conjointly determined by a motion

model and the previous state. The high-dimension motion model (i.e., velocity,

acceleration, orientation, and angular velocity) [150, 155] are particularly trou-

blesome, thus, the following simplify the motion model as a random Gaussian

walk with fixed mean and variance. To enhance the prior, Section 4.2 proposes

four sampling methods.

Likelihood Model-based likelihood is sensitive to the measurement model, especially when

state samples are insufficient to interpret the complete state-space [17]. The clas-

sical ranging model uses a Gaussian model, which is not suited for the NLOS

ranging. The complex ranging models mentioned in Chapter 3.3 are inconve-

nient due to the requirements of exhausted experiments and careful data training,

multi-parameter configuration, limitations to a particular scenario and etc. Con-

cerning the NLOS errors, Section 4.3 develops nonparametric bias models and

an adaptive measurement model.

The compared algorithms

For performance comparison, six popular positioning algorithms are chosen.

1) Grid-based Filter (GF)

The straightforward approach to nonlinear and non-Gaussian Bayesian filtering is a Grid-based

Filter, as introduced in Subsection 2.3.2. The pseudo-code of Grid-based Bayesian Filter is in Algo-
rithm 2.
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Algorithm 2 Grid-based filter (GF)

Output and input:
[
x̂t,Gt, {wi

t}i=1:Np

]
= GF

[
zt,At, x̂t−1,Gt−1, {wi

t−1}i=1:Np

]
Setting: Ng, p(xt|x̂t−1), p(r| ‖x − a‖)

Initialization: x̂0,
{
wi

0|0 = 1
Ng

}
i=1:Ng

, G0 and t = 1

1: Predefine grid samples Gt = Gt−1
2: Assign weights {wi

t}i=1:Ng (4.39)
3: Position estimation x̂t (4.33)
4: Set t = t + 1 and iterate to item 1.

2) Sampling Importance Resampling (SIR) filter

The first particle filter is sampling importance resampling (SIR) filter (also know as bootstrap

filter) proposed by Gordon et al. in 1993 [64]. There are variations of PFs be applied to sequential

positioning in both simulations [11] and real-world experiments [38]. The pseudo-code of SIR filter

is in Algorithm 3. Simply note that in all of our simulations of PFs, the systematic resampling

method in Algorithm 1 is used.

Algorithm 3 Sampling Importance Resampling (SIR) for filtering

Output and input:
[
x̂t, {xi

t}i=1:Np , {w
i
t}i=1:Np

]
= SIR

[
zt,At, {xi

t−1}i=1:Np , {w
i
t−1}i=1:Np

]
Setting: Np, p(xt|xt−1), p(r| ‖x − a‖)
Initialization:
• p(x0)
• Importance sampling

{
xi

0 ∼ p(x0)
}
i=1:Np

• Assign weights
{
wi

0 = 1
Np

}
i=1:Np

• t = 1
1: Importance sampling

{
xi

t ∼ p(xt|xi
t−1)

}
i=1:Np

2: Assign weights
{
wi

t = wi
t−1 p(zi

t|xi
t)
}
i=1:Np

and normalization

wi
t =

wi
t

Np∑
j=1

w j
t


i=1:Np

3: Resampling using Algorithm 1[
{xi

t}i=1:Np , {w
i
t}i=1:Np

]
= Resampling

[
{xi

t}i=1:Np , {w
i
t}i=1:Np

]
4: Estimate position x̂t (4.19)
5: Set t = t + 1 and iterate to item 1.

3) Generic Particle Filter (Generic-PF)
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Differing from the SIR filter sampling from the motion model, Generic-PF algorithm suffices to

sample from arbitrary proposed density. Furthermore, it employs selective resampling (also known

as adaptive resampling), which only executes resampling when the particle weights get too degen-

erated. The particle degeneracy is simply evaluated by the effective sample size (Neff) [154]. The

estimated position is the MMSE of the sample-based density.

x̂t = E(p(xt|z1:t)) =

Np∑
i=1

xi
tw

i
t . (4.19)

The pseudo-code of the Generic Particle Filter is in Algorithm 4.

Algorithm 4 Generic Particle Filter (Generic-PF)

Output and input:
[
x̂t, {xi

t}i=1:Np , {w
i
t}i=1:Np

]
= Generic − PF

[
zt,At, {xi

t−1}i=1:Np , {w
i
t−1}i=1:Np

]
Setting: Np, p(xt|xt−1), p(r| ‖x − a‖), q(xt|xt−1, zt) and Neff

threshold = 0.5Np
Initialization:
• p(x0) and q(x0)
• Importance sampling

{
xi

0 ∼ q(x0)
}
i=1:Np

• Assign weights
{
wi

0 =
p(x0)
q(x0)

}
i=1:Np

and normalization

wi
0 =

wi
0

Np∑
j=1

w j
0


i=1:Np

• t = 1
1: Importance sampling

{
xi

t ∼ q(xt|xi
t−1, zt)

}
i=1:Np

2: Assign weights
{
wi

t = wi
t−1

p(zt |xi
t)p(xi

t |xi
t−1)

q(xi
t |xi

t−1,zt)

}
i=1:Np

and normalization

wi
t =

wi
t

Np∑
j=1

w j
t


i=1:Np

3: Estimate N̂eff (2.98)
4: If N̂eff < Neff

threshold, then Resampling using Algorithm 1[
{xi

t}i=1:Np , {w
i
t}i=1:Np

]
= Resampling

[
{xi

t}i=1:Np , {w
i
t}i=1:Np

]
5: Estimate position x̂t (4.19)
6: Set t = t + 1 and iterate to item 1.

4) Auxiliary Particle Filter (Auxiliary-PF)

The weakness of SIR and Generic-PF is that the importance sampling does not take the current

observations into account, leading to filter divergence. Pitt and Shephard propose the Auxiliary-PF

to involve the latest observations via an auxiliary sampling procedure [137]. However, the auxiliary
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sampling increases complexity. The pseudo-code of the Auxiliary Particle Filter is in Algorithm 5.

Algorithm 5 Auxiliary Particle Filter (Auxiliary-PF)

Output and input:
[
x̂t, {xi

t}i=1:Np , {w
i
t}i=1:Np

]
= Auxiliary − PF

[
zt,At, {xi

t−1}i=1:Np , {w
i
t−1}i=1:Np

]
Setting: Np, p(xt|xt−1), p(r| ‖x − a‖)
Initialization:
• p(x0)
• Importance sampling

{
xi

0 ∼ p(x0)
}
i=1:Np

• Assign weights
{
wi

0 = 1
Np

}
i=1:Np

• t = 1
1: Deterministically predict the particles

{
µ

j
t = f (x j

t−1) ≈ E(xt|x
j
t−1)

}
j=1:Np

2: Assign weights
{
v j

t = w j
t−1 p(z j

t |µ
j
t )
}

j=1:Np
and normalization

v j
t =

v j
t

Np∑
k=1

vk
t


j=1:Np

3: Resampling using Algorithm 1[
{µ

j
t } j=1:Np , {v

j
t } j=1:Np , i

j} j=1:Np

]
= Resampling

[
{µ

j
t } j=1:Np , {v

j
t } j=1:Np , {x

j
t−1} j=1:Np

]
4: Importance sampling

{
x j

t ∼ p(xt|xi j

t−1)
}

j=1:Np

5: Assign weights
{

w j
t =

p(z j
t |x

j
t )

p(z j
t |µ

i j
t )

}
j=1:Np

and normalization

w j
t =

w j
t

Np∑
k=1

wk
t


j=1:Np

6: Estimate position x̂t (4.19)
7: Set t = t + 1 and iterate to item 1.

5) Gaussian Particle Filter (Gaussian-PF)

Even though the resampling procedure can efficiently concentrate the state samples, it consumes

much computation. It is usually interesting to avoid the resampling step, such as the Gaussian

Particle Filter [98]. The Gaussian Particle Filter approximates the prior by a single Gaussian density

p(xt|z1:t) =
p(zt|xt)p(xt|z1:t−1)

γ
(4.20)

≈
p(zt|xt)N(xi

t; µt,Σt)
γ

. (4.21)

The Gaussian Particle Filter skips the resampling, which significantly reduces the complexity. On
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the other hand, Gaussian-PF loses the advantage of PFs representing arbitrary sample density. The

pseudo-code of Gaussian-PF is in Algorithm 6.

Algorithm 6 Gaussian Particle Filter (Gaussian-PF)

Output and input: t[x̂t] = Gaussian − PF
[
zt,At, µt−1,Σt−1

]
Setting: Np, p(xt|xt−1), p(r| ‖x − a‖)
Initialization:
• µ0, Σ0
• Sampling

{
xi

0 ∼ N(xi
0; µ0,Σ0)

}
i=1:Np

• Assign weights
{
wi

0 = 1
Np

}
i=1:Np

• t = 1
1: Sampling

{
xi

t−1 ∼ N(xi
t−1; µt−1,Σt−1)

}
i=1:Np

2: Prediction
{
xi

t ∼ p(xt|xi
t−1)

}
i=1:Np

3: Assign weights
{
wi

t = p(zi
t|xi

t)
}
i=1:Np

and normalization

wi
t =

wi
t

Np∑
j=1

w j
t


i=1:Np

4: Estimate position x̂t (4.19)
5: Gaussian approximation

µt =

Np∑
i=1

xi
tw

i
t

Σt =

Np∑
i=1

(xi
t − µt)(xi

t − µt)Twi
t

6: Set t = t + 1 and iterate to item 1.

An alternate version of the Gaussian Particle Filter is also given in the work [98], namely Gaus-

sian Particle Filter Alternate (Gaussian-PF2). The pseudo-code of Gaussian-PF2 is described in

Algorithm 7, differing from Gaussian-PF in the way of propagating the state samples to the next

iteration. The Gaussian-PF is more efficient than Gaussian-PF2 in space complexity.

5) Annealed Particle Filter (Annealed-PF)

The Annealed Particle Filter proposed by Neal [126] modifies the sample weights through an

anneal function (also referred to a cooling schedule). The effect annealed sampling is to avoid

samples cluster to a single point.

There are various annealing schemes differing in the annealing rate, and the annealing function

(βk) can be variational [34]. For simplicity, we use a deterministic annealing as a negative exponen-
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Algorithm 7 Gaussian Particle Filter Alternate (Gaussian-PF2)

Output and input:
[
x̂t, {xi

t}i=1:Np , {w
i
t}i=1:Np

]
= Gaussian − PF2

[
zt,At, {xi

t−1}i=1:Np , {w
i
t−1}i=1:Np

]
Setting: Np, p(xt|xt−1), p(r| ‖x − a‖)
Initialization:
• µ0, Σ0
• Sampling

{
xi

0 ∼ N(xi
0; µ0,Σ0)

}
i=1:Np

• Assign weights
{
wi

0 = 1
Np

}
i=1:Np

• t = 1
1: Prediction

{
xi

t ∼ p(xt|xi
t−1)

}
i=1:Np

2: Estimate position x̂t (4.19)
3: Gaussian approximation

µt =

Np∑
i=1

xi
tw

i
t

Σt =

Np∑
i=1

(xi
t − µt)(xi

t − µt)Twi
t

4: Sampling
{
xi

t ∼ N(xi
t; µt,Σt)

}
i=1:Np

5: Assign weights
{
wi

t = p(zi
t|xi

t)
}
i=1:Np

and normalization

wi
t =

wi
t

Np∑
j=1

w j
t


i=1:Np

6: Set t = t + 1 and iterate to item 1.
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tial function

βk = e−k , (4.22)

with k being the index of the annealing runs (k = {KAnn, · · · , 0}), and the scalar 0 < βKAnn < · · · <

β0 = 1). The pseudo-code of Annealed-PF [104] is in Algorithm 8.

4.1.4 Evaluation criteria

This chapter evaluates the positioning algorithms by multiple evaluation criteria, i,e., are the po-

sitioning performance, cost and positioning behavior.

Performance

Positioning performance is investigated in terms of accuracy, precision and robustness.

1) Accuracy

The most important evaluation criterion of a positioning system is accuracy, indicating the near-

ness of the estimated position to the true position. It is commonly measured by Mean Absolute Error

(MAEp)

MAEp =
1

NT

NT∑
t=1

‖xt − x̂t‖ , (4.23)

and the Root Mean Square Error (RMSEp) of positioning

RMSEp =

√√√
1

NT

NT∑
t=1

‖xt − xt‖
2 . (4.24)

2) Precision

The estimation precision is indicated by the inverse standard deviation

Precisep =
1√

1
NT

NT∑
t=1

∥∥∥xt −MAEp
∥∥∥2

=
1
σp

. (4.25)

Furthermore, σp also interprets the estimation variability.

3) Robustness

Robustness is an crucial aspect in the practical estimation process. If the robustness is too low,

the estimation indeed becomes questionable for applications. As a result, the positioning accuracy

is supplemented with a confidence level [86], e.g., the upper limit of the 90% confidence level is the
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Algorithm 8 Annealed Particle Filter (Annealed-PF)

Output and input:
[
x̂t, {xi

t}i=1:Np , {w
i
t}i=1:Np

]
= Annealed − PF

[
zt,At, {xi

t−1}i=1:Np , {w
i
t−1}i=1:Np

]
Setting: Np, p(xt|xt−1), p(r| ‖x − a‖), KAnn, {βk}k=1:KAnn

Initialization:
• µ0, Σ0
• Importance sampling

{
xi

0 ∼ N(xi
0; µ0,Σ0)

}
i=1:Np

• Initial weights
{
wi

0 = 1
Np

}
i=1:Np

• t = 1
1: Importance sampling

{
xi

t ∼ q(xt|xi
t−1, zt)

}
i=1:Np

2: Assign weights similar to Generic-PF
{
wi

t = wi
t−1

p(zt |xi
t)p(xi

t |xi
t−1)

q(xi
t |xi

t−1,zt)

}
i=1:Np

, and normalizationwi
t =

wi
t

Np∑
j=1

w j
t


i=1:Np

3: Resampling using Algorithm 1[
{xi

t}i=1:Np , {w
i
t}i=1:Np

]
= Resampling

[
{xi

t}i=1:Np , {w
i
t}i=1:Np

]
4: Annealing

Initialization:
{
xiKAnn

= xi
t

}
i=1:Np

FOR k = KAnn − 1 down to 0
Annealed importance sampling

{
xik ∼ q(xk|xik+1, zt)

}
i=1:Np

Assign annealed weights
{
πi

k = (wi
t)
βk p(xik ||x

i
k+1 |)

q(xik |x
i
k+1,zt)

}
i=1:Np

Normalization

πi
k =

πi
k

Np∑
j=1
π

j
k


i=1:Np

Resampling using Algorithm 1[
{xik}i=1:Np , {π

i
k}i=1:Np

]
= Resampling

[
{xik}i=1:Np , {π

i
k}i=1:Np

]
END FOR

5: Update weights
{
wi

t = πi
0

}
i=1:Np

and particles {xi
t = xi0}i=1:Np

6: Estimate position x̂t (4.19)
7: Set t = t + 1 and iterate to item 1.
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95th percentile of the positioning error (PCT95p).

Another perspective of robustness is that the positioning algorithm should work well in some

tough conditions, i.e., the sparse density of anchors, the small number of samples, the impropriate

models and imprecise initialization, etc.

Cost

The cost is a critical issue of whether the positioning algorithms are actually applicable or not, in

terms of complexity, implementation, memory and etc.

1) Computation complexity

The computation trend of the algorithms can be easily compared using their execution times or

the Big-O notation.

2) Space complexity

In sample-based estimation, space complexity is also important, which is defined as essentially

the number of memory cells needed.

3) Implementation

The implementation difficulty is quantified by measuring the number of multiplication, division

or generating random numbers for sampling and resampling.

4.2 Constrained Sampling Methods

The state probabilistic density is represented by a set of weighted discrete samples

p(x|z, θ) ≈
Ns∑
i=1

wiδ(x − xi) . (4.26)

The accuracy of the sample-based representation is dominated by two factors: the density of the

state samples and how closely the samples approach the true state [143]. However, dense samples

pose high demands are prohibitive for the low-end devices. Even worse, a severe mismatch between

the sampling density and the true state can produce many irrelevant samples, leading to sample

divergence (all the samples diverge from the true position [134]).

There is much work on the state sampling methods. For efficient sampling, a tight sampling

density is preferred [98], e.g., the kernel mean-shift sampling [31] is efficient but may lock to local

optima; the adaptive sampling [96, 149, 153] averagely reduces the sample size, but the sampling

quality cannot be improved. To keep sample diversity, the samples should be representative for
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all the possibilities of the complete posterior, e.g., a flat sampling density allows the samples to

be spread widely, however, it has been criticized for a low effective sample size [11, 17]; although

sampling from mixture models prevents a single mode of the sample density [14, 158], it causes

difficulty in maintaining the mixture components. The resampling procedure duplicates the samples

with high weights and remove the ones with low probability, however, it brings additional variance

on the state estimation [52]. However, the resampling methods

This section concers the main problem of the sample-based positioning is the lack of constraint

on the sample-space, which results in numerically intractable solutions and severely deteriorates the

posterior. It is hold that the constraints can be extracted from physical laws (such as the construc-

tion of indoor environments), the simply upper and lower limits of ranging models or the motion

estimation, etc. This section proposes four constrained sampling methods, including

• a sensible bound on the sample-space to reduce the size of samples;

• a geometric sampling to produce geometrically meaningful samples;

• a polar sampling to retain the sampling diversity;

• a gradual Gaussian sampling to incrementally relocate the samples to the true posterior.

4.2.1 Bounded grid-based approximation

Since the prior may be erroneous, it is interesting to uniformly generate the samples, such as the

grid-based sampling.

Problem statement

Generally, the choice of the sampling density is rather subjective. Since the state density is un-

predictable, nonlinear and non-Gaussian, the subjective prior cannot be accurate, e.g., our previous

work reveals that sampling with informative priors does not work out well [180]

Grid-based position estimations have been successfully used for the multi-modal state densi-

ties [25, 47]. The conventional grid-based positioning explores the grid covering a large region,

i.e., the whole indoor area [53] or the maximum range of RF communication [135], which poses

three problems: 1) the estimate can be easily misguided by the NLOS ranging; 2) a high memory

and computation exponentially growing with the grid-space; 3) the estimate is dominated by the

likelihood which strongly relies on a precise measurement model.

Since what constitutes the grid region is far from clear, this subsection proposes an instantaneous

upper bound and a recursive upper bound that the state must satisfy.
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Bounded Grid-based Estimation (BGE)

Inspired by the definition of a positioning error bound in literature [84], a bounded Grid-based

estimation (BGE) is proposed, assuming an upper bound from the current ranging measurements.

1) Instantaneous grid region (Rt)

The bound is derive with the algebraic inequality relationships by the Bounding-box algorithm [103,

162]. The Bounding-box algorithm, also known as Min-Max algorithm, is a simple and straightfor-

ward method. The Bounding-box algorithm builds a square (a bounding box) around each anchor

using its location (al = (axl, ayl)) and the ranging measurement (rl), instead of the circles with the

radius of rl (see Eq. (4.30) and Fig. 4.3).

gj

}

vl vt

vl vb

vr vt

vr vb

Figure 4.3: Circles/boxes intersection for the instantaneous grid region (Rt) with three ranging mea-
surements

The target’s position satisfies every ranging box, thus the position is inside the box intersection

region with four vertices

V = {(vl, vb), (vr, vb), (vl, vt), (vr, vt)} , (4.27)

and the center of the box intersection is ( vl+vr
2 , vt+vb

2 ).

The Bounding-box intersection at each instance of time is calculated as

Rt =

Nt
anc⋂

l=1

{at
xl − rl

t, a
t
xl + rl

t, a
t
yl − rl

t, a
t
yl + rl

t} , (4.28)
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where Nt
anc denotes the number of anchors at time t and with

vt
l = max{at

xl − rl
t}l=1:Nt

anc

vt
r = min{at

xl + rl
t}l=1:Nt

anc

vt
t = min{at

yl + rl
t}l=1:Nt

anc

vt
b = max{at

yl − rl
t}l=1:Nt

anc
.

(4.29)

The circle intersection region is particularly difficult to calculate; moreover, all the range circles

often fail to overlap due to ranging errors [36]. In comparison with the circles overlap, the Bounding-

box intersection is computationally efficient. The Bounding-box intersection has been found as a

highly probable region for the true position to lie inside [69, 182].

Suppose the ranging measurements only observe positive errors, then the target is guaranteed to

be within the intersection. Due to the multi-path effect, most of the measured ranges are larger than

the actual distance2. Moreover, the box has a larger area than the corresponding range circle. Even

though the ranging measurements are imprecise, the target is very likely to resist in Rt or be close to

Rt. Consequently, the Bounding-box intersection is a highly probable region, which can be used as

an instantaneous upper bound for the grid region.

In the case of large negative ranging errors, the Bounding-box intersection may not cover the

target. Thus, it is extended by a constant (negar)

vt
l = max{at

xl − rl
t − negar}l=1:Nt

anc

vt
r = min{at

xl + rl
t + negar}l=1:Nt

anc

vt
t = min{at

yl + rl
t + negar}l=1:Nt

anc

vt
b = max{at

yl − rl
t − negar}l=1:Nt

anc
.

(4.30)

The value of negar should be carefully chosen: if negar is too small, it is not robust in the case of

large negative ranging error; in contrary, it is computationally inefficient since more grid cells are

needed to accommodate the large bound. We set the constant negar as the absolute value of the 5th

2Indoor ranging statistically observes positive errors, as the percentage of the positive ranging errors is 80%-90%
in our indoor experiments; there are only a few negative ranging errors with the absolute value at the most about three
meters; especially, NLOS ranging errors can be tens of meters [178].

81



CHAPTER 4. SAMPLE-BASED PROBABILISTIC ESTIMATION FOR INDOOR
POSITIONING

percentile3 of the experimental ranging errors. It is easy to understand that the target has a high

probability to be inside Rt, as the large negative ranging errors are removed.

2) Grid-based approximation without a prior

The continuous state-space bounded in Rt is uniformly decomposed into Ng grid cells (Gt =

{xi
t}i=1:Ng), as illustrated Fig. 4.4 [19].

Xi

}}
Nx

Ny

r1

a) External circles b) Externally Tange

Non-linear constraint

Figure 4.4: Bounded grid-based sampling: the bounded grid region (R) is decomposed into uniform
grid cells (Ng = Nx × Ny)

The state density at each time instance is approximated by the weighted grid cells as (4.26). The

weight of each grid cell is estimated by the likelihood (p(zt|xi
t)) with in the bound

wi
t =

p(zt|xi
t)

γ
, i ∈ {i}Ng

i=1, (4.31)

where γ is the normalization factor. The joint likelihood of ranging from Nt
anc reachable anchors at

t (A = {al}
Nanc
l=1 ) is

p(zt|xi
t) =

Nt
anc∏

l=1

p(rl
t |
∥∥∥xi

t − al
t

∥∥∥), i ∈ {i}Ng

i=1 , (4.32)

with the measurement model obtained from measurement statistics.

The position is commonly estimated by the expectation of p(xt|zt) w.r.t. the grid and the normal-

ized weights

x̂t = E[p(xt|zt)] = wt ·Gt. (4.33)

The pseudo-code of BGE is given by Algorithm 9.

3Ignoring the 5th percentile of the ranging errors is a reasonable compromise for setting the lower limit of the negative
errors, whereas, other values are also applicable.
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Algorithm 9 Bounded Grid-based estimation (BGE)

Output and input: [x̂t] = BGE [zt,At]
Setting: Ng, p(r| ‖x − a‖) and negar

1: Derive instantaneous bound Rt by (4.29) or (4.30)
2: Grid-based sampling Gt from Rt

3: Assign weights {wi
t}i=1:Ng (4.31)

4: Estimate position x̂t (4.33)

Incorporation of the instantaneous upper bound on the grid region greatly reduces the sample

size required for accurate positioning. The idea is that, rather than predefining the grid region or

involving the history measurements, the bound R is derived from the ranging measurements of each

positioning trial.

Recursively Bounded Grid-based Filter (RBGF)

In sequential estimation, the time-series measurements, position estimation and motion infor-

mation are potential to refine the bound. Thus, the posterior of the target’s position is recursively

evaluated by the weighted samples in the bounded region, namely, a recursively bounded Grid-based

filter (RBGF).

1) A recursive upper bound (Bt)

Grid-based filter sequentially performs numerical integration by uniformly discretizing the con-

tinuous state-space into a finite number (Ng) of an evenly spaced grid of points. The sample-space

at t is confined by an intersection operation of Bt−1 and Rt (see Fig. 4.5(a)), based on the assumption

the target motion is slow

Bt = Bt−1 ∩ Rt . (4.34)

The true state probably lies inside Bt, as the target has a high confidence to be inside in both Rt and

Bt−1.

Obviously, the size of the bound (Bt) by (4.34) can only decrease with time. To avoid the bound

to be too small after a few recursions, we take a union operation of (4.34) and Rrobust(x̂t−1) (a square

with the side length of lrobust and the center at the previous estimated position x̂t−1)

Bt = (Bt−1 ∩ Rt) ∪ Rrobust(x̂t−1) . (4.35)

As illustrated in Fig. 4.5(b), the bound (Bt) of (4.35) is the minimum box which covers both Bt−1∩Rt

(4.34) and Rrobust(x̂t−1). The Rrobust(x̂t−1) should take a reasonable size. If lrobust is too large, then

Bt might involve much posterior tail and cause higher computation. On the contrary, Bt can be
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(a) The Bt of Eq. (4.34)
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(b) The Bt of Eq. (4.35)

Figure 4.5: Recursive bound (Bt) on the grid-space derived from both the current ranging measure-
ments and the previous position estimation

unrepresentable for the important posterior. Additionally, lrobust should be larger than the average

motion of the target, as the target’s movement has not been considered in Bt−1 ∩ Rt.

Then, the state-space is recursively bounded by Bt and decomposed into uniform grid-based sam-

ples (Gt = {xi
t}i=1:Ng). Since the bound maintains a reasonable size and focuses on the important

posterior, the sample impoverishment problem does not exist. Moreover, the cells at each recursion

are around the actual position as considering both the old estimation and the new observation. More

importantly, the worst positioning error of NLOS ranges can be bounded inside Bt.

2) Grid-based Bayesian recursion

With the samples drawn from Bt, the weight of each grid cell is

wi
t|t =

p(zt|xi
t, z1:t−1)wi

t|t−1

γ
, i ∈ {i}Ng

i=1 , (4.36)

where the denominator (γ) is for normalization. Assuming current measurements are independent

of the previous, we have

p(zt|xi
t, z1:t−1) = p(zt|xi

t) . (4.37)

Similar to (2.83), the prior of the grid-based filter is numerically approximated into

wi
t|t−1 ≈

Ng∑
j=1

p(xi
t|x

j
t−1)w j

t−1|t−1, i ∈ {i}Ng

i=1 . (4.38)
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Then, the weight vector is expressed as

wt = {wi
t|t}i=1:Ng , wi

t|t = p(zt|xi
t)

Ng∑
j=1

p(xi
t|x

j
t−1)w j

t−1|t−1 , (4.39)

and a normalization

wi
t|t =

wi
t|t

Np∑
i=1

wi
t|t


i=1:Np

.

The tracking estimate is the MMSE estimation of p(xt|z1:t)

x̂t = E[p(xt|z1:t)] = wt ·Gt =

Ng∑
i=1

(
xi

tw
i
t|t

)
. (4.40)

The pseudo-code of RBGF is given by Algorithm 10.

Algorithm 10 Recursively Bounded Grid-based Filter (RBGF)

Output and input: [x̂t, Bt, {wi
t}i=1:Ng] = RBGF [zt,At, x̂t−1, Bt−1,wt−1]

Setting: Ng, lrobust, p(xt|xt−1), p(r| ‖x − a‖) and negar

Initialization: B0 = R1, x̂0,
{
wi

0|0 = 1
Ng

}
i=1:Ng

and t = 1

1: Recurse Bt (4.35)
2: Grid-based sampling Gt from Bt, and Gt−1 from Bt−1
3: Assign weights {wi

t|t}i=1:Ng (4.39)
4: Estimate position x̂t (4.40)
5: Set t = t + 1 and iterate to item 1.

Note that the prior at each grid sample according to (4.38) is calculated by the integral over the

whole previous grid; consequently, the very small old weights cannot severely influence the prior,

which combats the sample degeneracy. Moreover, only a small number of grid cells are needed to

represent the posterior as the grid region is the recursive bounded.

3) Bounded Grid-based Filter with Approximated-prior (BGF-A and RBGF-A)

According to Eq. (4.38), calculating the prior of each grid cell needs to be integrated over the

previous state samples. Obviously, if the prior of each grid sample can be approximated instead of

the integral in (4.38), the computation can be substantially reduced. Therefore, the approximation is

taken
Ng∑
j=1

p(xi
t|x

j
t−1)w j

t−1|t−1 ≈ p(xi
t|E[p(xt−1|zt−1)]) ≈ p(xi

t|x̂t−1) . (4.41)
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Then, the prior of (4.38) is approximated as

wi
t|t−1 ≈ p(xi

t|x̂t−1) , (4.42)

with a time-invariant model p(xi
t|x̂t−1) ∼ N(µprior, σ

2
prior): µprior describes the average target motion

between two time-steps, and σprior for the movement uncertainty.

The weight vector using an approximated prior is

wt = {wi
t|t}i=1:Ng , wi

t|t =
p(zt|xi

t)p(xi
t|x̂t−1)

γ
. (4.43)

The BGF-A or RBGF-A is more efficient in the weight update. Meanwhile, it can be expected

that the approximation (4.41) will approximate the Chapman-Kolmogorov equation when the prior

distribution has one significant mode. The pseudo-code is given by Algorithm 11.

Algorithm 11 Bounded Grid-based Filter with Approximated-prior (BGF-A/ RBGF-A)

Output and input: [x̂t, Bt] = BGF − A/RBGF − A [zt,At, x̂t−1, Bt−1]
Setting: Ng, lrobust, p(xt|x̂t−1), p(r| ‖x − a‖) and negar

Initialization: B0 = R1, x̂0,
{
wi

0|0 = 1
Ng

}
i=1:Ng

and t = 1

1: Obtain Rt (4.30) or Bt (4.35)
2: Grid-based sampling Gt from the grid bound
3: Assign weights {wi

t|t}i=1:Ng (4.43)
4: Estimate position x̂t (4.40)
5: Set t = t + 1 and iterate to item 1.

4.2.2 Geometric sampling

This subsection develops a sampling method based on the geometric relation of the current rang-

ing measurements, namely geometric sampling. The key idea is to obtain the crossing points of

every pair-wise ranging circles.

Motivation

Figure 4.6 illustrates the likelihood of the position estimation with three simulated ranging. The

ranging measurements in Fig. 4.6 (a) is the true range; while the ranging in Fig. 4.6 (b) observes a

an additive Gaussian error (N(3, 32)). The likelihood is calculated using a Gaussian modelN(3, 32).

Figure 4.6 indicates that, no matter whether the ranging is ideal (Fig. 4.6 (a)) or noisy (Fig. 4.6

(b)), the state density is extremely non-Gaussian and non-convex. As a consequence, direct Monte

Carlo sampling encounters difficulty of the non-Gaussian and nonlinear state space. Furthermore,
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(b) Probability with three noisy ranges

Figure 4.6: Probability distribution of 2D positioning with three ranges in the playing field of 40×40
unit2 represented by 100 × 100 discrete points: two ranging cases are considered as the ideal (Fig.
4.6 (a)) and noisy (Fig. 4.6 (b)); ’*’ at the center ([20,20] unit) denotes the true position of the target;
’4’ for the anchors. The color of each point describes the probability of the target being located at
the point: the darker the color is, the higher the probability is.

sampling from a prediction density can be questionable because of overlooking the newly arrived

observations [17]. The bounded grid-based sampling introduced in the previous subsection remark-

ably improves the efficiency, but it still contains some irrelevant samples.

The geometric relation of one trial experimental ranging is depicted in Figure 4.7: among the six

measurements, some observe LOS errors, whereas, the others get NLOS errors; as one can see, the

true target position is close to some crossing points of the LOS circles, and far away from the other

crossing points of the NLOS circles. It implies that the crossing points of LOS range circles can be

good samples of the state estimation of the target’s position. Therefore, the samples can be naturally

drawn from the constraints of the current ranging geometry, instead of using the prediction density

or grid-search.

Geometric Position Estimation (GeoE)

1) Geometric sampling

We hold that in the presence of a few line-of-sight (LOS) ranging, the state space can be effec-

tively confined by the geometries of ranging measurements. These geometric points are obtained

based on the relationship between a pairwise range circles, which is categorized into five types as

shown in Fig. 4.8. There are five types of the two circle geometry, including the external circles,
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True position
Anchor

Figure 4.7: Geometry of one trial of real-world ranging: the circles represent the disk model of the
ranging; 4 denotes the anchors and ’*’ for the true position

internal circles, externally tangent, internally tangent and secant circles (the concentric circles are

not considered, because the anchors are generally not deployed at the same place).

Linear constraint

Non-linear constraint

Intermediate position
Constraint

gj

}}

m

n

r2

r1

r3

a) External circles b) Externally Tangent c) Secant circles d) Internally Tangent e) Internal circles

Figure 4.8: Geometry of two ranging circles

Let A = {al}
Nanc
l=1 be the 2D rectangular coordinates of Nanc reachable anchors, thus, the distances

between two anchors is

dmn =
∥∥∥am − an

∥∥∥ , m ∈ {·}N
t
anc

1 , n ∈ {·}N
t
anc

1 , m , n . (4.44)
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Then, the geometric relationship can be derived with dmn and the anchor deployments

if dmn > rm + rn, then Fig.4.8(a)

elseif dmn == rm + rn, then Fig.4.8(b)

elseif dmn < rn + rm

if dmn > |rn − rm|, then Fig.4.8(c)

elseif dmn == |rn − rm|, then Fig.4.8(d)

else Fig.4.8(e)

endif

endif

(4.45)

t-1

t

a) PF b) GF

a) External circles b) Internal circles

Figure 4.9: Two nearest points (the solid dots) of the external/internal circles

The geometric points of Fig. 4.8 (b), (c) and (d) are the solutions of the two circle equations.

Additionally, the tangent point is duplicated as two geometric samples. For the external and the

internal cases in Fig. 4.8 (a) and (e), the line through the two circle centers makes four crossing

points with the two circles (see Fig. 4.9). The two nearest points between the two circles are more

rational to be close to the target. Hence, the pair of the crossing points nearest to each other are

selected as the geometric samples. With Nanc ranging circles, one can obtain Nanc × (Nanc − 1)

tangent points, crossing points or nearest points, which are defined as the state samples.

2) Geometric position estimation (GeoE)

Based on the geometric samples ({xi
t}i=1:Nt

anc(Nt
anc−1)), the position estimation in (4.26) is evaluated
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with the associated weights (wt = {wi
t}i=1:Nt

anc(Nt
anc−1)):

p(xt|zt) ≈
Nt

anc×(Nt
anc−1)∑

i=1

wi
tδ(xt − xi

t) , (4.46)

where xi
t is the ith samples based on the range geometry and the sample size (Nt

anc×(Nt
anc−1)) varies

at different time. The weights are the normalized likelihood

wi
t =

p(zt|xi
t)

Nt
anc×(Nt

anc−1)∑
j=1

p(zt|x
j
t )

, i ∈ {·}N
t
anc×(Nt

anc−1)
1 . (4.47)

The likelihood (p(zt|xi
t)) is the joint probability of Nt

anc measurements as (4.32).

The position is estimated by the weighted geometric samples

x̂t = E(p(xt|zt)) =

Nt
anc×(Nt

anc−1)∑
i=1

xi
tw

i
t . (4.48)

The pseudo-code of GeoE is described in Algorithm 12.

Algorithm 12 Geometric Position Estimation (GeoE)

Output and input: [x̂t] = GeoE [zt,At]
Setting: p(r| ‖x − a‖)

1: Geometric sampling {xi
t}

Nt
anc×(Nt

anc−1)
i=1 (4.45)

2: Weights assignment {wi
t}i=1:Np (4.32) and (4.47)

3: Estimate position x̂t (4.48)

Geometric Bayesian Filter (GeoF)

In sequential state estimation, the state propagation trusting the previous state density can be

problematic. The geometric interpretation of the latest ranging measurements is an intuitive solution

to predict the state. Applying the geometric sampling on the filter frame, it is similar to other

Bayesian filters in the numerical integration but differs in the way of drawing the samples.

1) Geometric Bayesian filter (GeoF)

Given the ranging measurements (zt) up to t, the posterior density of the target’s position at t

is numerically approximated by Nt
anc(Nt

anc − 1) geometric samples associated with weights (wi
t) as

(4.46). The weights are jointly determined by the measurement model (p(rl
t |xi

t)), the state propaga-
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tion model (p(xi
t|x̂t−1)) and the old posterior (p(xi

t−1|x̂t−1))

wi
t ≈

p(zt|xi
t)p(xi

t|z1:t−1)
γ

, i ∈ {·}N
t
anc×(Nt

anc−1)
1 , (4.49)

with γ denoting the normalization constant over all the weights. The likelihood is the joint proba-

bility of Nt
anc measurements as (4.32). By assuming the state propagation as a Markov process of

order one, we obtain

p(xi
t|z1:t−1) =

Nt−1
anc×(Nt−1

anc−1)∑
j=1

p(xi
t|x

j
t−1)w j

t−1, i ∈ {·}N
t
anc×(Nt

anc−1)
1 . (4.50)

Then the position of GeoF is the posterior expectation as (4.48), with the pseudo-code in Algorithm
13.

Algorithm 13 Geometric Bayesian Filter (GeoF)

Output and input:
[
x̂t,

{
xi

t,w
i
t

}Nt
anc×(Nt

anc−1)

i=1

]
= GeoF

[
zt,At,

{
xi

t−1,w
i
t−1

}Nt−1
anc×(Nt−1

anc−1)

i=1

]
Setting: p(xt|xt−1), p(r| ‖x − a‖)
Initialization: {xi

0,w
i
0}

N0
anc×(N0

anc−1)
i=1 and t = 1

1: Geometric sampling {xi
t}

Nt
anc×(Nt

anc−1)
i=1 (4.45)

2: Weights assignment {wi
t}i=1:Nt

anc×(Nt
anc−1) (4.50), (4.32) and (4.49)

3: Estimate position x̂t (4.48)
4: Set t = t + 1 and iterate to item 1.

The probabilistic estimation turns to interpret and evaluate these geometric points, which effi-

ciently reduces the sampling complexity the and skips resampling. One can expect that a majority

of the geometric samples will be present nearby the true target’s position.

2) Geometric Filter with Approximated-prior (GeoF-A)

Similar to the prior approximation in (4.41), the integral over the previous samples can be avoided

by

p(xi
t|z1:t−1) =

Nt
anc×(Nt

anc−1)∑
j=1

p(xi
t|x

j
t−1)w j

t−1|t−1 ≈ p(xi
t|x̂t−1) . (4.51)

Compared with GeoF, GeoF-A neither keeps all the samples in memory nor updates for integral

of (4.50), which is more efficient. The pseudo-code of GeoF-A is described in Algorithm 14.

The downside of the geometric sampling is that it causes high computation, and the sampling
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Algorithm 14 Geometric Bayesian Filter with Approximated-prior (GeoF-A)

Output and input: [x̂t] = GeoF − A [zt,At, x̂t−1]
Setting: p(xt|xt−1), p(r| ‖x − a‖)
Initialization: x̂0 and t = 1

1: Geometric sampling {xi
t}

Nt
anc×(Nt

anc−1)
i=1 (4.45)

2: Weights assignment {wi
t}i=1:Np (4.51), (4.32) and (4.49)

3: Estimate position x̂t (4.48)
4: Set t = t + 1 and iterate to item 1.

solely depends on the current observation rather than all the history observations. Thus, the valuable

history information is thereby ignored. It is hoped that the prior in (4.50) or (4.51) can be an

informative density (such as a peaked distribution), so as to make a good evaluation of the geometric

samples.

4.2.3 Polar sampling

The state density of 2D position estimation is a highly complex distribution requiring a greater

number of samples to correctly represent [19]. Even if the measurement error is assumed to be

Gaussian, the constellation of the state density can be significantly multi-modal, as depicted in Fig.

4.10.
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Figure 4.10: Multi-modal state-space of 2D positioning

The commonly used sampling density is a unimodal density, failing to represent the highly ir-

regular state density. Additionally, the resampling step always tends to cluster to one mode and
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becomes cumbersome in NLOS conditions. Instead of rendering the state in rectangular coordinate,

this subsection proposes to sample in polar coordinate, namely, polar sampling. The very aim of the

polar sampling is to maintain a multi-modal sampling density.

Polar coordinates of 2D positioning

The model structure of polar sampling is represented by the polar coordinates (ρ, ϕ)

ρ =

√
(x − axl)2 + (y − ayl)2 (4.52)

ϕ = arctan
(

y − ayl

x − axl

)
, (4.53)

where ρ is the ranging measurement, and ϕ is the angle of the state with each anchor’s position being

the pole.

The uncertainty in polar coordinate is

ρ̂ = ρ + u (4.54)

ϕ̂ = ϕ + v , (4.55)

where u and v are assumed as the measurement error model and the motion model, respectively.

The model transformation from polar coordinate to rectangular coordinate is

x =

 x = ρ cos(ϕ) + axl

y = ρ sin(ϕ) + ayl
. (4.56)

with (axl, ayl) be the rectangular coordinates of the anchors.

Sequential estimation with polar sampling

For sequential estimation, the optimal sampling density p(xt|xt−1, zt) is transformed into polar co-

ordinate with two independent components (p(zt), p(ϕt|ϕt−1, zt)). The first component is the ranging

measurement, which can be easily sampled in radial coordinate; the second one is the motion model

(p(ϕt|ϕt−1)) in angular coordinate. Thus, the polar coordinates of the sequential state given the lth

range measurement at t is expressed as

ρl
t = rl

t + u, l ∈ {·}N
t
anc

1 , (4.57)

ϕl
t = f (ϕl

t−1) + v, l ∈ {·}N
t
anc

1 . (4.58)
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Known the models of u and v, the state samples in polar coordinate are generated as

ρl,i
t ∼ rl

t + u, l ∈ {·}N
t
anc

1 , i ∈ {·}Nr,ϕ

1 (4.59)

ϕl,i
t ∼ p(ϕl

t|ϕ
l
t−1), l ∈ {·}N

t
anc

1 , i ∈ {·}Nr,ϕ

1 . (4.60)

where Nr,ϕ is the number of samples per ranging measurement. Then, the state samples are trans-

formed into rectangular coordinate

xl,i
t =

 xl,i
t = ρl,i

t cos(ϕl,i
t ) + axl, l ∈ {·}N

t
anc

1 , i ∈ {·}Nr,ϕ

1

yl,i
t = ρl,i

t sin(ϕl,i
t ) + ayl, l ∈ {·}N

t
anc

1 , i ∈ {·}Nr,ϕ

1

. (4.61)

The polar sampling is illustrated in Fig. 4.11(a). To reduce the total sample size, determinis-

tic sampling is employed in radial coordinate, which takes only two values: the current ranging

measurements and the predicted ranges

ρl,i
t = {rl

t, r̂
l
t}, l ∈ {·}N

t
anc

1 , i ∈ {·}Nr,ϕ

1 , (4.62)

where r̂l
t = ‖x̂t−1 − al

t‖ is the predicted range. The polar sampling with deterministic sampling in

radial coordinate is depicted in Fig. 4.11(b).
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(a) Random sampling in both angular coordinate and
radial coordinate assuming Gaussian models
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sured range (rt) and the predicted range (r̂t)

Figure 4.11: Polar sampling of one ranging measurement in 2D rectangular coordinate

94



4.2. CONSTRAINED SAMPLING METHODS

Since the velocity of the target is small, the state propagation in angular coordinate is defined to a

Gaussian model p(ϕl
t|ϕ

l
t−1) ∼ N(ϕl

t−1, σ
2
ϕ)

σϕ = arctan(σxt |xt−1/r) , (4.63)

where σxt |xt−1 is the standard deviation of p(xt|xt−1) in rectangular coordinate.

Then, the sample set in polar coordinate is {{rl
t, r̂

l
t}, ϕ

l,i
t }{i=1:Nr,ϕ, l=1:Nt

anc}
. This sample set are con-

verted into rectangular coordinate (4.61)

{xl,i
t }{i=1:2×Nr,ϕ, l=1:Nt

anc}
. (4.64)

On the Bayesian frame, the samples in rectangular coordinate is weighted as

wl,i
t =

p(zt|xl,i
t )p(xl,i

t |z1:t−1)
γ

, l ∈ {·}N
t
anc

1 , i ∈ {·}2×Nr,ϕ

1 , (4.65)

with γ denoting the normalization constant. The likelihood of the (l, i)th sample is

p(zt|xl,i
t ) =

Nt
anc∏

k=1

p(rk
t |

∥∥∥xl,i
t − al

t

∥∥∥), l ∈ {·}N
t
anc

1 , i ∈ {·}2×Nr,ϕ

1 , (4.66)

where al
t is the rectangular coordinates of lth anchor. The prior with a first-order Markov chain over

the state propagation is

p(xl,i
t |z1:t−1) =

Nt−1
anc∑

k=1

2×Nr,ϕ∑
j=1

p(xl,i
t |x

k, j
t−1)wk, j

t−1, l ∈ {·}N
t
anc

1 , i ∈ {·}2×Nr,ϕ

1 . (4.67)

The pseudo-code of the Bayesian Filter with Polar Sampling (PolarF) is in Algorithm 15.

2) Bayesian Filter with Polar Sampling and Approximated-prior (PolarF-A)

According to (4.41), the prior is approximated

p(xl,i
t |z1:t−1) ≈ p(xl,i

t |x̂t−1) . (4.68)

The pseudo-code of PolarF-A is described in Algorithm 16.
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Algorithm 15 Bayesian Filter with Polar Sampling (PolarF)

Output and input:
[
x̂t,

{
xl,i

t , wl,i
t

}
{i=1:2×Nr,ϕ, l=1:Nt

anc}

]
=

PolarF
[
zt, At,

{
xl,i

t−1, wl,i
t−1

}
{i=1:2×Nr,ϕ, l=1:Nt−1

anc }

]
Setting: p(xt|xt−1), p(r| ‖x − a‖)
Initialization:

{
xl,i

0 , wl,i
0

}
{i=1:2×Nr,ϕ, l=1:N0

anc}
and t = 1

1: Polar sampling
{
xl,i

t , wl,i
t

}
{i=1:2×Nr,ϕ, l=1:Nt

anc}
(4.61)

2: Assign weights {wi
t}i=1:Nt

anc×2×Nr,ϕ (4.67), (4.66) and (4.65)
3: Estimate position x̂t (4.48)
4: Set t = t + 1 and iterate to item 1.

Algorithm 16 Bayesian Filter Polar Sampling with Approximated-prior (PolarF-A)

Output and input:
[
x̂t,

{
xl,i

t , wl,i
t

}
{i=1:2×Nr,ϕ, l=1:Nt

anc}

]
= PolarF − A [zt, At, , x̂t−1]

Setting: p(xt|xt−1), p(r| ‖x − a‖)
Initialization: x̂0 and t = 1

1: Polar sampling
{
xl,i

t , wl,i
t

}
{i=1:2×Nr,ϕ, l=1:Nt

anc}
(4.61)

2: Assign weights {wi
t}i=1:Nt

anc×2×Nr,ϕ (4.68), (4.66) and (4.65)
3: Estimate position x̂t (4.48)
4: Set t = t + 1 and iterate to item 1.
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4.2.4 Gradual Gaussian approximation

In the case of vague prior or likelihood, sample-based probabilistic solutions are subject to the

problem of sample divergence. Thus, the Gradual Gaussian sampling (GGS) is developed, using an

iteration method with a small step size.

Gradual Gaussian Sampling (GGS)

After obtaining the p(xt|zt), the posterior can be refined by the gradual sampling as

p(x∗t,k|zt) =
p(zt|x∗t,k)

∫
p(x∗t,k|xt)p(xt) dxt

γ
, (4.69)

where k ∈ {·}NGradu
k=1 is the index of the gradual iteration; x∗t,k is the state samples of the kth gradual

iteration.

The key idea of the gradual sampling is to gradually converge the samples from the prediction

density to the true posterior by a series of sampling. To keep a simple implementation, the gradual

sampling should employ an easy-to-sample-from density. Thus, this subsection uses the Gradual

Gaussian Sampling (GGS).

At each time-step of positioning, the GGS-based position estimation consists of two components:

1. A general probabilistic frame: the state samples are generated and evaluated by a sample-

based probabilistic frame, such as the Generic-PF (without resampling) in Algorithm 4;

2. GGS: the state ({x∗it,k, w∗it,k}i=1:Ns) are iteratively approximated by a Gaussian density.

Firstly, the Gaussian density is obtained (N(µ∗t,k, σ
∗2
t,k))

µ∗t,k =

Ns∑
i=1

x∗it,kw∗it,k , (4.70)

σ∗2t,k =

Ns∑
i=1

w∗it,k

∥∥∥x∗it,k − µ
∗
t,k

∥∥∥2
. (4.71)

Then, the state samples are drawn fromN(µ∗t,k, σ
∗2
t,k). On the Generic-PF frame, the weights is

assigned w∗it,k = wi
t−1

p(zt|x∗it,k)p(x∗it,k|x
i
t−1)

N(x∗it,k; µ∗t,k, σ
∗2
t,k)


i=1:Ns

. (4.72)

The illustration of GGS is depicted in Fig. 4.12, as the sample cloud gradually moves to the true

state by a Gaussian approximation. The pseudo-code of Gradual Gaussian Estimation (GGE) is in

Algorithm 17.
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Figure 4.12: Gradual Gaussian sampling: the samples gradually converge to the true state (xt)

Algorithm 17 Gradual Gaussian Estimation (GGE)

Output and input: [x̂t,
{
xi

t, wi
t

}Ns

i=1
] = GGE[zt, At,

{
xi

t−1, wi
t−1

}Ns

i=1
]

Setting: Ns, NGradu, p(r| ‖x − a‖), p(xt|xt−1)

1: Obtain
{
x∗it , wi

t

}Ns

i=1
from the sample-based estimation, i.e., Algorithm 6

2: Initialization for the gradual sampling step
{
x∗it,0, w∗it,0

}Ns

i=1
=

{
xi

t, wi
t

}Ns

i=1
,

3: Gradual Gaussian approximation, initializing k = 1
FOR k = 1 to NGradu

Gaussian sampling
{
x∗it,k ∼ N(µ∗t,k, σ

∗2
t,k)

}
i=1:Ns

(4.70) (4.71)

Assign weights {w∗it,k}
Ns
i=1 (4.72)

Weights normalization

w∗it,k =
w∗it,k

Ns∑
j=1

w∗ j
t,k


i=1:Ns

END FOR
4: Modify the state samples and weights

{
xi

t, wi
t

}Ns

i=1
=

{
x∗it,NGradu

, w∗it,NGradu

}Ns

i=1
5: Estimate position x̂t (4.19)
6: Set t = t + 1 and iterate to item 1.
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In fact, the GGS aims to incrementally converge the mean of the gradual samples to the true

position, rather than representing the complete state density. Note that, the step 3 in Algorithm 17

recursively runs until reaching up to NGradu or the sample-based posterior is evaluated to converge

to the true posterior. The number of the iteration should be set to a small number.

4.2.5 Results and analysis

The aforementioned sampling methods are evaluated in the experiment M1.

Positioning performance

The quantitative results of the sample-based positioning through different sampling algorithms

are listed in Table 4.1. The MEANp and RMSEp represent the positioning accuracy, σp describes

the positioning precision; MAXp and PCT95 stand for the estimation robustness. For the compared

algorithms the sample size is set to be Ns = 100, and the proposed methods averagely have Ns = 494.

It presents that RBGF achieves the best results considering the accuracy, precision and robustness;

whereas, LLS is the worst as its linearization step can be severely affected by the noise ranging. The

ML estimation remarkably outperforms NLS as considering the positive bias of the real ranging error

into the measurement model. Except the conventional GLE and GF, all the sample-based algorithms

result in an acceptable accuracy, e.g., GLE and GF can be improved by taking finer resolution or the

bound grid-space as BGE, BGF and RBGF.

Comparing ML, BGE and GeoE with BGF and GeoF, one can know that mobility causes no

damage to the positioning performance. In fact, the sequential positioning benefits from mobility

and exploits it to enhance the efficiency and accuracy.

Note that the Gaussian-PF greatly outperforms the other PFs, although the PFs are often consid-

ered to be better [145]; it is because that the Gaussian sampling has a very low variance which limits

the effect of the NLOS error. This Gaussian-PF seems sensible at first, however, it is questionable if

the posterior is highly non-Gaussian.

The improved versions of PF (Auxiliary-PF and Annealed-PF) are theoretically sound, but they

achieve almost no improvements compared with SIR and Generic-PF. It is explained that the auxil-

iary sampling only emphasize the good parent samples, but it does not allocate the samples to the

true state. The Annealed-PF relocates the samples by annealing, nevertheless, it inevitably leads to

lose the prior power at the first few annealing steps.

Compare with the conventional grid-based representations (GLE and GF), the bounded grid-based

sampling markedly improves the efficiency by adding only a few arithmetic operations. The benefits

4The average anchor connectivity throughout our experiments is 7.5, thus, the size of the geometric samples is N t−1
anc ×

(N t−1
anc − 1) ≈ 48.75; the ; for the performance comparison, all the other proposed sampling methods set Ns = 49.
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Table 4.1: Comparison of the sampling methods in positioning error (/meter) of M1, employing a
Gaussian measurement model (εr ∼ N(2.5, 32))

Category Algorithms MEANp RMSEp σp MAXp PCT95p

NLS 4.49 5.35 2.69 30.39 9.40

Non-sampling LLS 6.88 10.79 8.31 120.94 19.21

ML 2.10 2.67 1.65 20.65 5.23

EKF 3.37 3.83 1.83 11.65 6.74

GLE (Ng = 10 × 10) 2.37 2.78 1.45 11.74 5.12

GF (Ng = 10 × 10) 2.34 2.60 1.13 6.20 4.72

SIR (Ns = 100) 1.57 1.82 0.94 6.66 3.22

Compared sampling Generic-PF (Ns = 100) 1.57 1.81 0.90 6.56 3.27

Auxiliary-PF (Ns = 100) 1.51 1.77 0.91 7.03 3.11

Gaussian-PF (Ns = 100) 1.30 1.46 0.68 5.06 2.63

Annealed-PF (Ns = 100, NAnn = 3) 1.53 1.77 0.90 6.84 3.19

BGE (Ng = 7 × 7) 1.74 2.08 1.14 10.04 3.83

BGF (Ng = 7 × 7) 1.36 1.57 0.80 6.37 2.71

RBGF (Ng = 7 × 7) 1.19 1.36 0.70 4.92 2.34

Proposed sampling GeoE (averagely Ns = 49) 1.87 2.34 1.41 11.78 4.60

GeoF (averagely Ns = 49) 1.53 1.95 1.21 8.21 4.02

PolarF (averagely Ns = 45) 1.10 1.30 0.68 6.20 2.38

GGE (Ns = 49, NGradu = 3) 1.25 1.41 0.62 3.44 2.46
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of the bounded grid-based sampling are 1) a deterministic sampling; 2) relatively easier to imple-

ment; 3) robust to the error of the prior, as it does not assume any other knowledge of the state than

in the grid region. It is believed that, in the case of an erroneous prior, a predictive sampling density

is problematic; thus, it is better to use the uniform sampling within a bounded region.

The geometric sampling obtains a satisfied accuracy, but it is not robust as the values of MAXp

and PCT95 are large. It is because that the NLOS measurements generate irrelevant samples far

away from the true state, which severely affect the posterior approximation.

The PolarF obtains better accuracy but higher MAXp than RBGF and GGE, by reason that the

polar sampling can neither bound the state-space nor reduce the sample divergence.

Both the Annealed-PF and GGE employ three steps of iteration, but the GGE is superior because

it samples from the gradually refined posterior. GGE obtains the best robustness, indicating that the

gradual sampling can address the sample divergence in NLOS conditions. If NGradu = 0, the GGF is

the same as Gaussian-PF. Additionally, the GGS is similar to the idea of Annealed-PF, which splits

the sampling into a sequence of progressive sampling. The GGS uses a Gaussian approximation on

the posterior, whereas, Annealed-PF is based on the annealing function and the prediction density.

Therefore, the GGS is suitable for point estimation.

Overall, the proposed constrained sampling requires a small sample size, and yields satisfied

results by taking into account the latest observation.

Sampling quality

The performance of the sample-based estimation is dominated by the quality of the state sam-

ples. A good sampling method should work well in the aspects: the sample efficiency, divergence

and diversity, as illustrated in Fig. 4.13. Figure 4.13 (a) depicts that good sample density should

concentrate most samples around the true state, meanwhile, is should maintain sufficient sample di-

versity. Figure 4.13 (b), (c) and (d) represent the sampling degeneracy, divergence and low diversity

problems, respectively.

1) Sampling degeneracy

The sampling degeneracy happens when the sampling density is non-informative rather than a

peaky density. Figure 4.13 (b) depicts a sample density with low efficiency, as the samples spread

widely rather than concentrating to the true state. As a consequence, a large computational effort

is wasted on updating the samples with very small probability. The sample efficiency is usually

indicated by the effective sample size (Neff) via (2.98). The Neff of Generic-PF and RBGF (bounded

grid sampling) with the time sequence is plotted in Fig. 4.14.

From Fig. 4.14, the Neff of the sampling methods varies with time: 1) the Neff of Generic-PF
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Figure 4.13: Illustration of the sample quality: the true state is denoted by the filled circle, and the
state samples as the small dots
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(b) The Neff of RBGF (bounded grid sampling)

Figure 4.14: Effective sample size (Neff) of the sampling algorithms varying over time, with the
sample size Ns = 49
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shows cyclical fluctuations with time, by reason that the resampling is carried out when Neff de-

creases to Neff
threshold; 2) Neff of RBGF is not periodically changes, and the average Neff is compa-

rable to Generic-PF. Thus, RBGF can mitigate the sampling degeneracy without resampling.

In order to measure the sample degeneracy of sampling with different sample sizes, the effective

sample rate (kNeff
) is defined

kNeff
=

Neff

Ns
, (4.73)

with the results listed in Table 4.2.

2) Sampling divergence

Even if the sampling is effective, the samples cannot be guaranteed to converge to the true state,

as shown in Fig. 4.13 (c). Thus, another crucial criterion is the sample divergence (div) defined as

the average distance between the samples and the true state

div =

∥∥∥∥∥∥∥x −
1
Ns

Ns∑
i=1

xi

∥∥∥∥∥∥∥ . (4.74)
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(b) The div of RBGF (bounded grid sampling)

Figure 4.15: Sample divergence (div) of the sampling algorithms varying over time, with the sample
size Ns = 49

The sample divergence of the selective sampling and bounded grid sampling is described in Fig.

4.15, which presents an averagely improvement of BRGF in comparison with Generic-PF in the

sampling divergence.

3) Sampling diversity
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With good sampling efficiency and convergence, the sample-based estimation can become quite

representative regarding the true state density, and require a small sample size. On the other hand,

it may be problematic in robustness, due to the loss of sample diversity. The sample diversity is

defined as the standard divination of the state samples

diversity =

√√√√√
1
Ns

Ns∑
i=1

∥∥∥∥∥∥∥∥xi −

Ns∑
j=1

x jw j

∥∥∥∥∥∥∥∥
2

. (4.75)
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Figure 4.16: Sample diversity (diversity) of the sampling algorithms varying over time, with the
sample size Ns = 49

As can be seen in Fig. 4.16, the bounded sampling of RBGF maintain a very low sample diversity.

Thus, it interprets that RBGF should extend the bound in the case of extremely uncertain prior or

the target with a high velocity.

The sampling quality of the experiment M1 is shown in Table 4.2, indicating that:

• The effective sample size (kNeff
) is inversely proportional to sampling diversity (div); in other

words, kNeff
can be improved at the expense of losing the sample diversity, e.g., the Gaussian-

PF conquers sample degeneracy, but may stick to a single mode due to its low diversity; the

GLE and GF can represent an arbitrary posterior, but they are severely ineffective.

• According to the corr(εp, div), if kNeff
is high, the positioning accuracy is more dependent on

div; otherwise, the sample divergence does not necessarily leading to estimating divergence.

• With the same kNeff
, the sampling with the smaller div obtains a better accuracy;

• The PolarF achieves good accuracy, high kNeff
and sufficient diversity, which is more desirable
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Table 4.2: Sampling quality of the sampling algorithms in the experiment M1: the effective sample
rate (kNeff

), divergence (div) and diversity

Algorithms kNeff
(%) div (m) diversity (m) corr(εp, div)

GLE (Ng = 10 × 10) 1 20.97 32.92 -0.02

GF (Ng = 10 × 10) 2 20.97 33.07 -0.08

SIR (Ns = 100) 75 1.56 1.28 0.99

Generic-PF (Ns = 100) 75 1.56 1.29 0.99

Auxiliary-PF (Ns = 100) 83 1.50 1.55 0.98

Gaussian-PF (Ns = 100) 86 1.28 1.02 0.96

Annealed-PF (Ns = 100, KAnn = 3) 75 1.52 1.28 0.99

BGE (Ng = 7 × 7) 49 2.08 3.72 0.53

BGF (Ng = 7 × 7) 21 2.08 3.85 0.24

RBGF (Ng = 7 × 7) 53 1.12 1.62 0.83

GeoE (averagely Ns = 49) 25 2.57 12.51 0.24

GeoF (averagely Ns = 49) 11 2.57 12.62 -0.01

PolarF (averagely Ns = 45) 65 1.41 2.56 0.87

GGE (Ns = 49, NGradu = 3) 76 1.27 0.52 0.99
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for a practical positioning.

To conclude, the performance of the sample-based estimation is conjointly determined by how

closely the samples mimics the true state and the sample diversity and the sampling degeneracy.

4.2.6 Discussion

The effect of the sample size

The selection of the sample size is the key factor of the efficiency of sample-based estimations.

The sample size is typically fixed, whereas, some work adaptively determines the sample size [135].

We believe that the real number of samples needed can be much smaller than it is commonly set.

The experiments confirm this as the positioning accuracy is slightly dependent on the sample size

(see Fig. 4.17).
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Figure 4.17: Positioning error versus the sample size

Figure 4.17 plots the mean accuracy of the sample-based positioning over different sample sizes:

except the GLE and GF, the accuracy of the other algorithms reports small improvements as increas-

ing the sample size from 16 to 400. It is explained that the kNeff
of GLE and GF is too low and their

grid resolutions are too coarse to represent the continuous posterior; the other algorithms retain a

sufficient kNeff
, thus, their estimation accuracy highly relies on the sample divergence rather than
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εr ∼ N(2.5, σ2
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)

how dense the samples are. Therefore, to enhance the sample-based positioning, a more efficient

way is to reduce the sample divergence rather than setting a large number of samples.

The effect of ranging uncertainty

To characterize the effect of ranging uncertainty on the positioning, we conduct the simulation

with the same anchor deployment and connectivity as the real-world experiment. The simulation

sets the ranging error εr ∼ N(2.5, σ2
εr

), consequently, all the compared algorithms assumes the same

measurement model (N(2.5, σ2
εr

)). All the algorithms are set with the same sample size (Ns = 49)

and initialization, with the results depicted in Fig. 4.18.

The simulation results (Fig. 4.18) confirm the error propagation analysis in Subsection 4.1.1, as

the positioning error increases with the ranging error. In addition, the simulated results are almost

consistent with the real-world experiments, as the algorithms GGE, Gaussian-PF, RBGF and PolarF

achieve good performance. The Auxiliary-PF achieves higher improvement in the simulation than
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in the experiment, due to that the auxiliary sampling is more effective with Gaussian ranging errors.

Unexpectedly, the geometric sampling methods result in much worse accuracy. It is because that, in

the experiment, there are always good ranging measurements to produce good geometric samples,

which is not the case of the simulations using the model N(2.5, σ2
εr

). Consequently, it is suggested

to choose the sampling method according to the real-world measurement characteristics.

The effect of the state bound

Compared with the conventional grid-based methods in Table 4.1, the bounded ones significantly

improve the accuracy as the samples are concentrated in the probable grid-region. The derived

bound can also be applied to other sampling methods, with the idea that the weights of the samples

outside the bound is set to zero. Figure 4.19 and Algorithm 18 take the bound on the GeoF as an

example, namely bounded GeoF (GeoF-B).

True position
Anchor

Figure 4.19: Geometry of one trial of real-world ranging: the circles are the disk model of ranging;
4 represents the anchors and ’*’ for the true position; � is the bound derived from (4.35)

The sample-space with the box constraint derived from both the current ranging measurements

and the previous position estimation. Consequently, the GeoF-B not only takes into account the

current ranging geometry, but is also projected to the bound.

Unfortunately, if the bound is too tight, then the bounded sampling is dangerous, as the sample

diversity discussed in Table 4.2. The size of the instantaneous bound (R) of (4.30) and the recursive

bound (Rt) of (4.35) from the experimental positioning is illustrated in Fig. 4.20. It indicates that,

although the recursive bound retains a more stable and rational size, it can be too small. Therefore,

using Bt to constrain sampling, there might be no sample falling inside the bound, with the risk of
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Algorithm 18 Bounded Geometric Filter (GeoF-B)

Output and input: [x̂t] = GeoF − B [zt,At, x̂t−1]
Setting: p(xt|xt−1), p(r| ‖x − a‖)
Initialization: x̂0 and t = 1

1: Geometric sampling {xi
t}

Nt
anc×(Nt

anc−1)
i=1 from (4.45)

2: Select the geometric samples within Rt (4.30)
3: Weights assignment {wi

t}i=1:Np (4.51), (4.32) and (4.49)
4: Estimate position x̂t (4.48)
5: Set t = t + 1 and iterate to item 1.

losing track of the target. Thus, the bound should be carefully constructed, which is suggested to

retain a wide size.
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(a) The size of the instantaneous bound (Rt) of (4.30)
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(b) The size of the recursive bound (Bt) of (4.35)

Figure 4.20: Size of the bound of (4.30) and (4.35) over time

The bounded sampling scheme is applied to the aforementioned algorithms. The improvements

in the mean positioning error of bounding these sampling algorithms are plotted in Fig. 4.21. The

results demonstrate that, the bounded sampling improve the mean positioning, which verifies that the

bound effectively cancels the effect of the irrelevant samples. It seems that the higher the accuracy

of the algorithm is, the less the improvement of the bounded sampling obtains, due to that the better

sampling method has much less irrelevant samples.

Complexity

The time and space complexity of all the sample-based algorithms are compared in Table 4.3.

Since generating the random number and resampling are source-consuming, they are also used to in-
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Figure 4.21: Improvement of the bounded sampling compared with the corresponding unbounded
ones in the mean positioning error (/meter)

dicate the implementation difficulty. In comparison, the majority of the proposed sampling methods

avoid producing random numbers and resampling, which lead to an easy implementation. However,

they impose a larger time complexity arising from the integral over the complete state in (2.55).

Additionally, most aforementioned sampling methods cause a large memory burden proportional to

the sample size.

The complexity can be reduced by approximating the prior by a parametric density. Thus, the

Gaussian-PF, BGF-A, RBGF-A, GeoF-A and PolarF-A approximate the prior by a Gaussian density

as (4.41). The mean positioning accuracy of the algorithms using the Gaussian prior and their

original algorithms is illustrated in Fig. 4.22. The results demonstrate that the positioning accuracy

of exploring the Chapman-Kolmogorov equation (2.55) and the Gaussian prior (4.41) is almost the

same. The time complexity of the Gaussian-PF is linear of the sample size. Furthermore, the space

complexity is significantly reduced, as the Gaussian prior does not require to keep the sample and

the weight vector in memory.

Summary

The characteristics of the used sampling methods are concluded in Table 4.4. In conclusion, we

find that the proposed constrained sampling outperform the importance sampling and other methods

in the sampling efficiency and convergence, but at the expense of losing some sampling diversity.
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Table 4.3: Time, space and implementation complexity of the sampling algorithms

Algorithms Time Space Size of random number Resampling

GLE O(Ns × Nt
anc) O(1) 0 no

GF O(Ns ×max(Ns,Nt
anc)) O(Ns) 0 no

SIR O(Ns × Nt
anc) O(Ns) 3 ∗ Ns yes

Generic-PF O(Ns × Nt
anc) O(Ns) > 2 ∗ Ns yes

Auxiliary-PF O(Ns × Nt
anc) O(Ns) 5 ∗ Ns yes

Gaussian-PF O(Ns × Nt
anc) O(1) 2 ∗ Ns no

Annealed-PF O(Ns × Nt
anc × (1 + KAnn)) O(Ns) 3 ∗ (1 + KAnn) ∗ Ns yes

BGE O(Ns × Nt
anc) O(1) 0 no

BGF O(Ns ×max(Ns,Nt
anc)) O(Ns) 0 no

RBGF O(Ns ×max(Ns,Nt
anc)) O(Ns) 0 no

GeoE (Nt
s = Nt

anc × (Nt
anc − 1)) O(Nt

s ∗ Nt
anc) O(1) 0 no

GeoF (Nt
s = Nt

anc × (Nt
anc − 1)) O(Nt

s ∗max(Nt−1
s ,Nt

anc)) O(Ns) 0 no

PolarF (Nt
s = Nt

anc × 2 × Nr,ϕ) O(Nt
s ∗max(Nt−1

s ,Nt
anc)) O(Ns) 2 ∗ Nt

s no

GGE O(Ns × Nt
anc × NGradu) O(1) 2 ∗ Ns × NGradu no

BGF-A O(Ns × Nt
anc) O(1) 0 no

RBGF-A O(Ns × Nt
anc) O(1) 0 no

GeoF-A (Nt
s = Nt

anc × (Nt
anc − 1)) O(Nt

s ∗ Nt
anc) O(1) 0 no

PolarF-A (Nt
s = Nt

anc × 2 × Nr,ϕ) O(Nt
s ∗ Nt

anc) O(1) 2 ∗ Nt
s no

  BGF   BGF−A    RBGF   RBGF−A    GeoF   GeoF−A     PolarF   PolarF−A
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Figure 4.22: Comparison of the positioning error of using the prior form the Chapman-Kolmogorov
equation (2.55) and the Gaussian approximation (4.41)
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4.3 NLOS Mitigation

Chapter 3.3 has discussed that the NLOS error cannot be described as a Gaussian distribution, or

indeed any specific distribution. To suppress the NLOS effect, this section proposes three nonpara-

metric measurement models.

4.3.1 Existing NOLS mitigation

The simplest way is to identify and discard the NLOS measurements [22, 105]. However, there

is always the possibility of false identifications of the NLOS measurements. Even if the LOS and

NLOS ranges can be correctly distinguished, positioning with a hard decision of discarding the

NLOS ranges may lose much information (see Subsection 4.1.1). Moreover, if the number of LOS

measurements is insufficient, the NLOS ranges cannot be discarded. Thus, NLOS mitigation ap-

proaches are more promising, with a comprehensive overview in Table 4.5 [92, 117, 147].

From Table 4.5, these NLOS mitigation methods have one of the following requirements: 1) the

knowledge of the LOS or NLOS status; 2) the ranging error is well modeled; 3) redundant ranging

measurements; 4) large measurement database for online training and learning; 5) the radio environ-

ment is time invariant; 6) the channel condition is completely known. For practical positioning, the

NLOS mitigation methods are developed as follows.

4.3.2 Biased nonparametric measurement models

Considerable work [108,163,164] has accumulated that a biased ranging model tends to be more

robust than the frequently referred Gaussian model. Some literature employs a biased parametric

model, such as the Negative Exponential distribution [8,69,77] or Lognormal distribution [8]. These

parametric models often get overfitting due to arbitrary NLOS errors. To capture the feature of

NLOS errors, two biased models are formed from off-line statistics.

A triangular Membership Function (MF)

Chapter 3.3 has shown a statistical model can be a good interpretation of the ranging. Since it

is impossible to cache all the information about the frequency histogram, we construct a heuristic

model of the ranging error using a triangular Membership Function (MF).

1) Experimental frequency histogram

The first step to understand the ranging error is to build an experimental frequency histogram (see

Fig. 4.23 (a-b)) of the ranging error, and the typical properties are presented in Chapter 3.3.

2) MF Configuration
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Table 4.5: Existing NLOS mitigation approaches for range-based indoor range-based positioning

Facts Methods Drawbacks

the ranging errors ap-
pear a positively bi-
ased distribution

the mixture or nonparamet-
ric models from measure-
ment statistics [6, 8]

difficulty in determining the joint probabil-
ity distributions of the models; the algo-
rithm in [141] requires to know the num-
ber of NLOS ranging

the variance of
time-series ranging
increases in NLOS
conditions

the measurements with
a higher variance can be
excluded or given less
weights [22, 169, 170]

a running variance of time-series ranging
measurements cannot be estimated in a
short observation window

the ranging error de-
pends on channel con-
ditions or link quality

the channel impulse re-
sponse indicates the prob-
ability of the NLOS
error [15, 70, 77, 105]

it is difficult to obtain the complete knowl-
edge of the channel profile; it is not suit-
able for the scenario with unknown wire-
less interference

the NLOS ranging
causes considerably
larger residuals at the
true target’s position

the residual weighting algo-
rithms (RWGH) in [33, 107,
107] is a weighted combi-
nation of the partial position
estimates

the algorithms require redundant ranging
measurements, which is not available with
a sparse anchor density; a higher compu-
tation is imposed

the NLOS ranging is
not consistent with the
LOS measurements at
the true position

the methods [117, 173] use
machine learning to find
the most consistent candi-
date for position estimation

the training and learning procedures cause
high calculation and latency, which is pro-
hibitive in low-end networks

the NLOS error is re-
lated to the physical
environment

the calibration methods
comes from a signal
database of a given indoor
environment [15, 83]

the environment information is costly to
incorporate, i.e., the exact floor plan, wall
material, ray tracing results and signal
database, etc.; additionally, these methods
are inefficient in variable environments
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The triangular5 MF is a piecewise function as shown Fig. 4.23 (c-d), constructed from the exper-

imental frequency histogram. The procedure and one example of the MF configuration are summa-

rized in Algorithm 19. The strength of the MF configuration requires no mathematical derivation

of the ranging model.

Algorithm 19 Triangular MF configuration

Output [MFlow,MFmedian,MFup]
1: Get the sample pool of the ranging measurements, and then draw the frequency histogram of

the ranging error (εr) as Fig. 4.23 (a-b);
2: Compute the percentiles of 1%, 50% and 99%6 of εr as the lower limit (MFlow), the median

(MFmedian) and the upper limit (MFup) of MF, respectively; remove the left and the right-side
outliers as Fig. 4.23 (c-d);

3: Configure the MF with the three parameters [MFlow,MFmedian,MFup] as Fig. 4.23 (c-d).

Example of the MF configuration from the ranging measurements of M2

Step 1: Gather the sample set of εr, as the histogram in Fig. 4.23 (b);
Step 2: Compute MFlow = −1.97 meters, MFmedian = 2.29 meters and MFup = 13.19 meters
Step 3: Join dots (−1.97, 0), (2.29, 1), (13.19, 0) by straight lines, as the triangular profile in Fig.
4.23 (d)

3) MF-based likelihood (LMF)

Given the state samples ({xi}Ns
i=1), the [MFlow,MFmedian,MFup] converts the measurements to the

likelihood

p(rl|
∥∥∥xi − al

∥∥∥) =



(rl−‖xi−al‖)−MFup
MFmedian−MFup

+ εsmall if MFmedian ≤ (rl −
∥∥∥xi − al

∥∥∥) < MFup

(rl−‖xi−al‖)−MFlow
MFmedian−MFlow

+ εsmall if MFlow < (rl −
∥∥∥xi − al

∥∥∥) < MFmedian

εsmall otherwise

(4.76)

with l ∈ {·}Nanc
1 and i ∈ {·}Ns

1 . The constant εsmall is a very small number (εsmall = 0.0001) to avoid the

likelihood to be zero.

5The triangular MF is not the only shape for the heuristic model, as other shapes of the MF can be used, i.e., a
trapezoidal or rectangular MF. The triangular MF is conceptually simple and computational efficiency.

6There is no particular rule for choosing the three parameters of MF: for a 98% confidence level, we set the three
percentiles as 1%, 50% and 99%.
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Figure 4.23: Triangular MF configured from the frequency histogram of ranging errors, in the ex-
periments M1 and M2: Fig. 4.23 (a-b) depict the histograms, and Fig. 4.23 (c-d) illustrate the MF
configuration.
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Similar to the joint likelihood using a parametric model in (4.32), the MF-based likelihood can be

incorporated into the probabilistic positioning frame.

A bias function (b) on the measurement model

To imitate the NLOS bias, a bias function (b) is imposed on the lth ranging residual at the ith state

sample

Resb
l (xi) = Resl(xi) · b , (4.77)

where Resl(xi) = rl −
∥∥∥xi − al

∥∥∥ is the residual of the lth ranging at the ith state sample. The bias

function denoted by b is set as a negative exponential function adding a constant7

b = exp
{
−cb

1 ∗ Resl(xi)
}

+ cb
2 . (4.78)

The joint likelihood of Nanc ranging measurements is

p(z|xi) =

Nanc∏
l=1

p(Resb
l (xi)), i ∈ {i}Ns

i=1 , (4.79)

with p(Resb
l ) ∼ N(µεr , σ

2
εr

) · b.
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Figure 4.24: The fitted Gaussian model, the model tuned by the bias function, and the histogram of
the ranging errors with real-world measurements

Figure 4.24 illustrates the measurement model modified by the bias function: Fig. 4.24(a) is a

Gaussian model, and Fig. 4.24(b) is the model biased by b. It is explicit that the model with b

imitates the bias and tailed histogram, which tunes the likelihood in the following two ways

7The bias function is a negative exponential function parameterized (cb
1 = 1, cb

2 = 1), additionally, other parameterize
values or bias functions can be chosen according to the experiment statistics.
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1. The state samples with negative Res are probably not the actual position, whose likelihood is

deemphasized;

2. The large positive Res may be caused by the NLOS error; thus, the samples with large Res

are still possible to be the true state, whose likelihood is slightly emphasized.

Note that in statistics literatures, there are biased distributions for the measurement model, which

are impracticable due to either the multi-parameter configuration or high computation. While the

proposed bias function allows to enjoy the simplicity of a Gaussian model, meanwhile, flexibly

interpret the NLOS bias.

Algorithm 20 A bias function (b) on the ranging model

Output: [p(Resb
l )]

1: Get the sample pool of the ranging measurements, and then do distribution fitting to a Gaussian
model εr ∼ N(µεr , σ

2
εr

); as for our experiments, we take N(2.5, 32)
2: Configure the bias function (cb

1, c
b
2) according to statistical analysis; for our experiments, we

take cb
1 = 1, cb

2 = 1
3: Set the biased ranging error model as (4.77)

4.3.3 Adaptive measurement model

In most cases, the probabilistic positioning framework explores an adaptive prior but a fixed em-

pirical measurement model [17]. Since the presence of NLOS errors can vary drastically over time

and space, the fixed measurement model may seriously affect the performance. Hence, NLOS miti-

gation can be achieved by extending the measurement models to using adaptive parameters [136].

The idea is that if there is an initial position estimation (x̂initial) having much lower uncertainty

than the NLOS error, then x̂initial can be confident to help turning the NLOS ranging back into regular

ranging. Thus, an adaptive Gaussian model is proposed as

padapt(rl|x) ∼ N(rl − µl
adapt, (σ

l
adapt)

2), l ∈ {·}Nanc
1 , (4.80)

with the adaptive parameters (µl
adapt, σ

l
adapt). In this adaption, the ranging measurement is modified

by the residual (rl − r̂l) with a correction degree (ccorr)

µl
adapt = ccorr × (rl − r̂l) + (1 − ccorr) × µεr , (4.81)

with the predicted range r̂l =
∥∥∥x̂initial − al

∥∥∥. The larger ccorr is, the higher the leverage the correction
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has. The ccorr is a number between 0 and 1, which is defined as

ccorr =
σ2
εr

σ2
εr + σ2

εr̂

. (4.82)

with σ2
εr

denoting the uncertainty of the measured ranging and σ2
εr̂

for predicted one. Since the

measured and predicted ranges determine the likelihood and initial estimation, respectively, Eq.

(4.82) is approximated as

ccorr ≈
σ2

likelihood

σ2
likelihood + σ2

initial

, (4.83)

where σ2
initial and σ2

likelihood are the sample-based variance of the initial and likelihood density, re-

spectively.

The prior uncertainty is

σ̂2
initial =

Ns∑
i=1

wi
initial ‖x

i − x̂initial‖
2 , (4.84)

with winitial being the initial weighted.

The likelihood uncertainty is

σ̂2
likelihood =

Ns∑
i=1

p(rl|xi) ‖xi − x̂likelihood‖
2 , (4.85)

where x̂likelihood is the expectation of the likelihood weighted samples; the statistical measurement

model is p(r|x) ∼ N(r − µεr , σ
2
εr

).

The variance of the adaptive measurement model is a weighted mean of the ranging residual and

the statistical variance

(σl
adapt)

2 = ccorr × (rl − r̂l)2 + (1 − ccorr) × σ2
εr
, l ∈ {·}Nanc

1 , (4.86)

which describes that the larger the ranging residual is, the higher uncertain the measurement is.

As the measurements of neighboring time-steps are temporary and spacial correlated, the adap-

tive measurement model uses the difference between the likelihood and the prediction density to

parameterize the model of each ranging measurement. The pseudo-code of NLOS is described in

Algorithm 21.
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Algorithm 21 Adaptive measurement model for NLOS mitigation

Output and input: [
{
N(µl

adapt, (σ
l
adapt)

2)
}Nanc

l=1
] = [p(r|x)]

1: Obtain the initial state ({xi,wi
initial}

Ns
i=1) from a previous estimation or initial estimation

2: Calculate the sample-based likelihood from the statistical measurement model p(r|x)
3: Adapt the Gaussian parameters (µl

adapt, (σ
l
adapt)

2) from (4.81) and (4.86)

4.3.4 Results and analysis

The effectiveness of the proposed NLOS mitigation methods (the biased MF model, the bias

function (b) and the adaptive Gaussian model) is compared by applying on the used sample-based

algorithms, with the results shown in Fig. 4.25.

Through Fig. 4.25, one can find out the notable improvements of using the proposed biased

models (the MF and bias function), indicating that the bias model can imitate the NLOS errors well

enough. The other biased parametric models discussed in Chapter 3.3, i.e., the Log-normal, Gamma,

Weibull distribution or mixture distributions, have not been compared, due to the multi-parameter

and non-negative features. Thus, the two proposed biased models take the benefit of the flexibility

without parametric modeling. The adaptive approach also reduces positioning error, except for

applying on the GeoF algorithm. This deviation is because that using an erroneous prior to adapt the

measurement model can introduce extra uncertainty.

Comparing the simplicity of the three NLOS mitigation, the biased models (the MF and bias

function) are more effective in both the performance improvement and implementation efficiency.

The adaptive method allows for modifying the measurement model over time, unlike the biased

model being fixed over time.

The positioning behavior of the two basic filters (Generic-PF and RBGF) is plotted in Fig 4.26,

comparing with and without the NLOS mitigation. Compared with the original Generic-PF and

RBGF, the scatter plot of positioning using NLOS mitigation achieves a smaller variance. As marked

by an ellipse in each sub-figure, the ranging at that site is more likely to observe an NLOS error

due to the metal wall; from Fig 4.26 (c-h), the positioning behavior demonstrates that the NLOS

mitigation methods remove the large positioning errors.

4.3.5 Discussion

1) MF model

As one may question the generality of the MF model, the MF configuration is changed with

different confidence levels (from 90% to 99%). Additionally, a Gaussian model and two faulty MF
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Figure 4.25: Mean positioning error (/meter) of the proposed NLOS mitigation methods
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Figure 4.26: Positioning behavior of the proposed NLOS mitigation methods applied to Generic-PF
and RBGF, in the experiment M1 on the floor plan: the scatterplot is estimated trajectory; the solid
line is the true mobile trajectory; 4 denotes anchors; the location marked by the ellipse is nearby a
metal fire-protect wall which causes NLOS ranging.
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models (on purpose) are compared. The MF model is configured with the measurements from M2,

while, the positioning is performed in M1, with the results presented in Table 4.6.

Table 4.6: Effect of the MF parameters on BGF, with the positioning error (/meter) of the experiment
M1

MF Model (confidence level) Parameters [ηlow,MFmedian, ηup] MEANp RMSEp MAXp

MF 99% [-2.51, 2.07, 19.17] 1.16 1.30 4.29

MF 98% [-1.97, 2.29, 13.19] 1.19 1.32 3.90

MF 90% [-1.45, 1.85, 7.69] 1.29 1.51 6.37

Faulty MF 1 [-1, 0, 5] 1.52 1.86 9.32

Faulty MF 2 [-15, 0, 15] 1.61 2.18 9.84

Gaussian model N(2.5, 32) 1.36 1.57 6.37

Table 4.6 presents that: 1) the MF configured by the experiment M2 works well for positioning of

M1, which implies that the ranging model of the same building or similar scenarios can be stationary

and configured by a few statistics; 2) different MF configurations or even the faulty MF still lead to

acceptable results, telling that the performance of MF method is not sensitive to the three parameters;

the BGF with the Gaussian model performs worse, demonstrating that the MF solution is suitable

for non-Gaussian ranging errors. Nevertheless, a careful choice of the MF shape and MF parameters

are necessary for promising improvements.

2) Adaptive measurement model

The variable ccorr used to correct the NLOS error is adaptive in (4.83). To exam the effect of the

ccorr, the comparison of setting ccorr to fixed values is investigated, see Fig. 4.27. By varying the

values of the ccorr, the mean positioning are almost the same. Compared with the NLOS mitigation

with fixed ccorr and the Generic-PF without NLOS mitigation, the adaptive ccorr results in a notable

improvement. It implies that, the adaptive ccorr can feasibly indicate the quality of the measurement

and make a correction on the NLOS ranging.

Overall, the measurement model is the most important aspect for the NLOS mitigation purpose.

In NLOS conditions, the measurement model can be oversimplified (the Gaussian model) or overly

complicated (such as the mixture models, ray-tracing based models, empirical histogram models

and online data training). The strengths of proposed nonparametric models are that they are easy to

set up and require no analytical derivation.
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Figure 4.27: Positioning error of the Generic-PF using the adaptive measurement model, with the
fixed or adaptive ccorr in the experiment M1

4.4 Summary

The error propagation analysis implies that, the positioning performance is related to the an-

chor deployment, the position estimator, the number of measurements and the measurement model.

Therefore, this chapter investigates the practical anchor deployment, the sampling algorithms for

probabilistic positioning and the NLOS mitigation to refine the measurement model.

According to theoretical CRLB-2D analysis and the practical considerations to real-world indoor

scenarios, the anchor placement is suggested that: 1) it should first guarantee sufficient anchors be

placed around the borderline of the positioning field; 2) it is also necessary to deploy some anchors

in the interior field, corners or NLOS regions, in case that the borderline anchors are not reachable.

The key idea of the constrained sampling is to focus the samples on the probable region instead

of exhaustively covering all possibilities of the state. Therefore, the sample size is notably reduced.

Furthermore, the resampling step is avoided.

The weakness of the sample-based methods is that the samples’ properties have to be stored. The

algorithms BGF-A, RBGF-A, GeoF-A and PolarF-A achieve comparable accuracy, confirming that

the Gaussian prior works well and considerablely reduces the complexity.

To mitigate the NLOS effect, the choice of the measurement model should take into account the

features of indoor ranging. Thus, three measurement models are introduced: the two bias models are

able to parameterize the bias of the NLOS errors; the adaptive model optimizes the hyperparameters

based on the variance of the prediction density and likelihood. The proposed models achieve both

substantial improvements and good flexibility.
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Chapter 5

One Time-step Smoothing for Real-time
Positioning

Since the ranging uncertainty is severe, the positioning estimation observes a high amplitude of

variance. Specially, due to the high failure of RF communication, the sparse anchor deployment and

the NLOS conditions, indoor positioning often encounters the problem of sparse ranging measure-

ments. In non-sequential positioning, the estimation variance and sparsity problems can be solved

by data fusion after waiting for more measurements. For sequential estimation, the smoothing frame

is of particular interest as being able to make the state probability from not only the past and present

observations (z1:t) but also the future observations (zt:T , t < T ) [144].

Aiming of real-time positioning, it is impractical to apply the smoothing frame involving a high

dimension of the future observation. Therefore, this chapter focuses on the smoothing implemen-

tation with the measurements one time-step ahead, which includes: 1) the popular smoothing solu-

tions: Forward Filtering Backward Smoothing (FFBS) [93], Two-filter Smoothing (TFS) [57] and

Rauch-Tung-Striebel (RTS) smoothing [78]; 2) a new method the smoothed filtering (SF).

5.1 Motivation and Problem Statement

5.1.1 Motivation

To generate a smooth representation of the positioning trajectory, Bayesian smoothing methods

have been extensively studied. The smoothing frame (p(xt|z1:t)) is beneficial by deriving the state

probability from the past, present and future observations, which generally provides better approxi-

mations of marginal smoothing distributions compared with filtering methods [89, 94].
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Beside that the sense of a smooth representation of tracking trajectory, the smoothing frame has

more definite meaning for a relatively small number of observations of indoor ranging techniques. It

is defined as a sparsity problem of LOS ranging measurements, which is categorized into two types:

• scarce measurements: the number of ranging measurements is insufficient due to the sparse

anchor deployment or temporary packet loss;

• NLOS case: there are enough ranging measurements, but the LOS measurements are the

minority.

Figure 5.1 depicts the sparsity problem, indicating that the measurement sparsity only occurs in

a few ranging instances, e.g., the ranging neighboring the scarce instance can still obtain sufficient

measurements; moreover, the NLOS error appears randomly rather than presenting continuously.

Therefore, the sparsity problem is a temporary problem.
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Figure 5.1: Scarce LOS ranging measurements due to either the sparse anchor deployment or the
NLOS conditions: the samples surrounded by the dashed ellipse describe NLOS scenarios; the
samples circled by the ellipse represent the condition of sparse reachable anchors

The smoothing frame is likely to work well in the sparse conditions, as it computes the state by

conditioning not only on the observations up to current time but also on future ones.

5.1.2 Problem statement

The Bayesian smoothing approaches are promising in both smoothing the tracking trajectory and

solving the sparsity problem. The smoothing density is to estimate the state given past, present and

future observation

p(xt|z1:T ) , (5.1)
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where t ≤ T . In the case that the time-step size of the future observations is fixed, it is called as the

smoothing lag

4 T = T − t . (5.2)

To apply the smoothing frame in real-time range-based positioning, the challenge is twofold:

• Problem 1: Tractable solution

For 2D range-based positioning, it cannot typically generate an exact solution to the nonlinear

and non-Gaussian models. Particle methods (Monte Carlo methods) [50] offer an approximate

solution, unfortunately, they are intractable if the sample size is large.

• Problem 2: Implementation issue

If the smoothing recursion involves the observations many time-steps ahead (t � T ), it can be

computation, storage, and time consuming. In other words, it is impractical to obtain overall

smoothed estimates using the observations from the end to the beginning.

The closed-form solution for 2D range-based positioning often does not exist, which is generally

necessary to resort to Monte Carlo sampling methods. Sequential Monte Carlo with importance

sampling [53] solves problems 1, which provide efficient solutions for nonlinear smoothing. How-

ever, the performance and applicability of the smoothing framework greatly depend on how much

and how the future observations are incorporated. Aiming at real-time position tracking, it is prefer-

able to formulate the smoothing density from the observations a few time-steps ahead. Overall, we

are interested in the smoothing density of one time-step recursion (p(xt|z1:t+1)) using SMC.

5.2 One Time-step Smoothing

The sequential position estimation or position tracking is defined as the time-series estimation

of the posterior given all the available observations. The 2D position can be estimated by either

filtering or smoothing frames.

• Filtering p(xt|z1:t): to estimate the distribution of the state xt conditionally to the observations

up to t.

• Smoothing p(xt|z1:T ): to estimate the distribution of the state xt conditionally to the observa-

tions up to T (with t < T ).

To recur the Bayesian frame, it essentially applies a hidden Markov model (HMM) of order

one [155] as follows.

State transition model

xt = f (xt−1,qt) , (5.3)
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where xt = (xt, yt) is the 2D coordinates; qt denotes the process noise. The state propagation from

t− 1 to t is p(xt|xt−1, z1:t−1) ≈ p(xt|xt−1), assuming that the state at time t is stochastically dependent

on the state at t − 1.

Measurement model

zt = g(xt,nt) , (5.4)

with nt being the measurement noise. It assumes the observation at t is conditionally independent

given the state at t, leading to p(zt|xt, z1:t−1) ≈ p(zt|xt). The vector of the current observations (zt)

from Nt
anc reachable anchors ({at

l = (at
xl, a

t
yl)}l=1:Nt

anc
) is

zt = {rt
l}l=1:Nt

anc
, (5.5)

with rt
l the ranging measurement from the lth anchor at t.

To smooth the estimated trajectory, improve accuracy, and deal with the sparsity problem, the

sequential smoothing can be promising. However, the complexity of the smoothing method is pro-

portional to the smoothing lag (4T ): the larger the 4T is, the higher the computation and latency are.

Consequently, two Bayesian smoothing methods are applied with one time-step future observation,

Forward Filtering Backward Smoothing (FFBS) and Two Filter Smoothing (TFS) [144]

4 T = 1 . (5.6)

Both these two smoothing methods compute the same sequence of conditional distribution p(xt|z1:t+1),

which is defined as one time-step smoothing.

5.2.1 Forward Filtering Backward Smoothing (FFBS)

The smoothing density can be deduced from a forward-backward recursive expression, namely,

Forward Filtering Backward Smoothing (FFBS) [23]. The smoothing density of FFBS on one time-

128
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step frame is

p(xt|z1:t+1) =

∫
p(xt, xt+1|z1:t+1) dxt+1

=

∫
p(xt+1|z1:t+1)p(xt|xt+1, z1:t+1) dxt+1

Markov
=

∫
p(xt+1|z1:t+1)p(xt|xt+1, z1:t) dxt+1 (5.7)

=

∫
p(xt+1|z1:t+1)p(xt, xt+1|z1:t)

p(xt+1|z1:t)
dxt+1

= p(xt|z1:t)
∫

p(xt+1|z1:t+1)p(xt+1|xt, z1:t)
p(xt+1|z1:t)

dxt+1

Markov
= p(xt|z1:t)

∫
p(xt+1|z1:t+1)p(xt+1|xt)∫

p(xt+1|xt)p(xt|z1:t) dxt
dxt+1 . (5.8)

The filtering density (p(xt+1|z1:t+1)) is computed by your favorite forward filter, such as the Generic

Particle Filter (GPF) [11] as

wi
t+1|t+1 ∝ wi

t|t p(zt+1|xi
t+1), i ∈ {·}Np

1 , (5.9)

where wi
t+1|t+1 is the filtering weight of the ith particle at t + 1.

The smoothing density (5.8) is numerically represented as

p(xt|z1:t+1) ≈
Np∑
i=1

wi
t|t+1δ(xt − xi

t) , (5.10)

with the ith smoothing weight

wi
t|t+1 ≈ wi

t|t

Np∑
j=1

w j
t+1|t+1

p(x j
t+1|x

i
t)

p(x j
t+1|z1:t)


≈ wi

t|t

Np∑
j=1

w j
t+1|t+1

p(x j
t+1|x

i
t)

Np∑
k=1

wk
t|t p(x j

t+1|x
k
t )

 , i ∈ {·}Np

1 . (5.11)
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Then, the position estimation at t by the smoothing density is

x̂t = E(p(xt|z1:t+1)) =

Np∑
i=1

xi
tw

i
t|t+1 . (5.12)

The FFBS (5.11) consists of the filtering distribution (p(xt|z1:t)) and the backward re-weighting

probability from the future (zt+1). The pseudo-code of FFBS is in Algorithm 22.

Algorithm 22 Forward Filtering Backward Smoothing (FFBS)

Output and input:
[
x̂t, {xi

t+1, wi
t+1|t+1}i=1:Np

]
= FFBS

[
zt+1, At+1, {xi

t, wi
t|t}i=1:Np

]
Setting: Np, p(xt|xt−1), p(zt|xt), Neff

threshold = 0.5Np
Initialization:
• p(x1)
•

{
xi

1 ∼ p(x1)
}
i=1:Np

•

{
wi

1 = 1
Np

}
i=1:Np

• t = 1
1: Importance sampling

{
xi

t+1 ∼ p(xt+1|xi
t)
}
i=1:Np

2: Update the filtering weights
{
wi

t+1|t+1

}
i=1:Np

(5.9) and normalization

wi
t+1|t+1 =

wi
t+1|t+1

Np∑
j=1

w j
t+1|t+1


i=1:Np

3: Assign the smoothing weights
{
wi

t|t+1

}
i=1:Np

(5.11), and normalization

wi
t|t+1 =

wi
t|t+1

Np∑
j=1

w j
t|t+1


i=1:Np

4: Estimate position x̂FFBS
t (5.12)

5: If N̂eff < Neff
threshold, then resampling

6: Set t = t + 1 and iterate to item 1

5.2.2 Two Filter Smoothing (TFS)

The two-filter smoothing (TFS) [41] is a well-established alternative to FFBS, which obtains the

smoothing density (p(xt|z1:t+1)) from two independent filters (the forward and the backward filters).
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Given observations up to t + 1, the smoothing density of TFS is

p(xt|z1:t+1) = p(xt|z1:t−1, zt:t+1)

=
p(xt, zt:t+1|z1:t−1)

p(zt:t+1|z1:t−1)

∝ p(xt|z1:t−1)p(zt:t+1|xt)

= p(xt|z1:t−1)p(zt|xt)p(zt+1|xt)

= p(xt|z1:t−1)p(zt|xt, z1:t−1)p(zt+1|xt)

∝ p(xt|z1:t)p(zt+1|xt)

∝ p(xt|z1:t)︸    ︷︷    ︸
Forward filter

∫
p(zt+1|xt+1)p(xt+1|xt) dxt+1︸                                 ︷︷                                 ︸

Backward filter

. (5.13)

The first filter is the forward filter, which calculates the posterior distribution p(xt|z1:t); the second

filter calculates a series of backward functions p(zt+1:T |xt), that in the one time-step case is p(zt+1|xt).

Together, these two filters construct the smoothing density of TFS.

An important requirement of TFS is that p(zt+1:T |xt) should be a probability density, in other

words, the integral of this function is finite. Thus, the smoothing density of (5.13) is rewritten as

p(xt|z1:t+1) =
p(xt|z1:t)

∫
p(zt+1 |xt+1)p(xt+1 |xt) dxt+1

λ2

λ1
, (5.14)

where λ1 and λ2 are the normalization factors of the smoothing and backward density, respectively.

The smoothing density is represented as (5.9) with the weights

wi
t|t+1 =

wi
t|t

Np∑
j=1

{
p(zt+1 |x

j
t+1)p(x j

t+1 |x
i
t)
}

λ2

λ1
, i ∈ {·}Np

1 . (5.15)

The pseudo-code of the TFS is described in Algorithm 23.

5.2.3 Smoothed Filtering (SF)

The FFBS and TFS formulate the smoothing density (p(xt|z1:t+1)) from the current (p(xt|z1:t))

and future (p(xt+1|z1:t+1)) density. They are theoretically sound, as taking into account the future

measurements. The shortcoming is that the smoothing density only influence the point estimation in

(5.12) rather than improving the density propagation.
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Algorithm 23 Two Filter Smoothing (TFS)

Output and input:
[
x̂t, {xi

t+1, wi
t+1|t+1}i=1:Np

]
= TFS

[
zt+1, At+1, {xi

t, wi
t|t}i=1:Np

]
Setting: Np, p(xt|xt−1), p(zt|xt), Neff

threshold = 0.5Np
Initialization:
• p(x1)
•

{
xi

1 ∼ p(x1)
}
i=1:Np

•

{
wi

1 = 1
Np

}
i=1:Np

• t = 1
1: Importance sampling

{
xi

t+1 ∼ p(xt+1|xi
t)
}
i=1:Np

2: Assign filtering weights
{
wi

t+1|t+1

}
i=1:Np

(5.9) and normalization

wi
t+1|t+1 =

wi
t+1|t+1

Np∑
j=1

w j
t+1|t+1


i=1:Np

3: Assign smoothing weights
{
wi

t|t+1

}
i=1:Np

as (5.15)

4: Estimate position x̂TFS
t (5.12)

5: If N̂eff < Neff
threshold, then resampling

6: Set t = t + 1 and iterate to item 1

Since FFBS and TFS have not incorporated the smoothing density into the state recursion, we

propose to propagate the posterior from the smoothing density, formulated as

p(xt+1|z1:t+1) =

∫
p(xt|z1:t+1)p(xt+1|xt, z1:t+1) dxt , (5.16)

namely, Smoothed Filtering (SF). Indeed, the only difference to FFBS and TFS is that instead of

propagating the posterior from the prediction density, the SF is derived from one time-step smooth-

ing density.

132



5.2. ONE TIME-STEP SMOOTHING

Form a Markov process of order one, it means that

p(xt+1|xt, z1:t+1) Markov
= p(xt+1|xt, zt+1)

=
p(xt+1, zt+1|xt)

p(zt+1|xt)

=
p(zt+1|xt+1xt)p(xt+1|xt)

p(zt+1|xt)

=
p(zt+1|xt+1)p(xt+1|xt)

p(zt+1|xt)

=
p(zt+1|xt+1)p(xt+1|xt)∫

p(zt+1|xt+1)p(xt+1|xt) dxt+1
. (5.17)

The factor p(xt+1|xt, z1:t+1) can be derived by (5.17), alternatively, by the approximation p(zt+1|xt+1) ≈

p(zt+1|xt) leading to

p(xt+1|xt, z1:t+1) ≈ p(xt+1|xt) . (5.18)

It is based on two facts of indoor RF positioning: 1) the difference of the state at neighborhood time-

steps is very small, in other words, the target has a low velocity; 2) the uncertainty of the ranging

measurements is much larger than that of the position estimation.

Similar to the TFS, the smoothing density of SF is

p(xt|z1:t+1) ∝ p(xt|z1:t)p(zt+1|xt) . (5.19)

Hence, Eq. (5.16) is reformulated as

p(xt+1|z1:t+1) ∝
∫

p(xt|z1:t)p(zt+1|xt)p(xt+1|xt) dxt . (5.20)

Note that the posterior p(xt+1|z1:t+1) in (5.16) is a filtering density derived from the smoothing den-

sity, which can be numerically represented as

wi
t+1|t+1 ≈

Np∑
j=1

{
wi

t|t+1 p(xi
t+1|x

j
t )
}
, i ∈ {·}Np

1 , (5.21)

with the smoothing density deduced from (5.19) as

wi
t|t+1 ∝ wi

t|t p(zt+1|xi
t) . (5.22)
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The p(zt+1|xt) in (5.20) can either be performed from the component of (5.14), or simply be approx-

imated p(zt+1|xt) ∼ N(µεr ,
∑2
εr

) as the target’s motion is slow.

Differing from that the FFBS and TFS estimate the state based on the smoothing density p(xt|z1:t+1),

the SF estimation is by the filtering density (p(xt|z1:t)) as

x̂SF
t = E(p(xt|z1:t)) =

Np∑
i=1

xi
tw

i
t|t . (5.23)

The pseudo-code of the SF is described in Algorithm 24.

Algorithm 24 Smoothed Filtering (SF)

Output and input:
[
x̂t, {xi

t+1, wi
t+1|t+1}i=1:Np

]
= SF

[
zt+1, At+1, {xi

t, wi
t|t}i=1:Np

]
Setting: Np, p(xt|xt−1), Neff

threshold = 0.5Np, p(zt|xt) ∼ N(µεr ,
∑2
εr

)
Initialization:
• p(x1)
•

{
xi

1 ∼ p(x1)
}
i=1:Np

•

{
wi

1 = 1
Np

}
i=1:Np

• t = 1
1: Estimate position x̂SF

t (5.23)
2: Assign smoothing weights

{
wi

t|t+1

}
i=1:Np

(5.22)

3: Importance sampling
{
xi

t ∼ p(xt+1|xi
t)
}
i=1:Np

4: Update filtering weights
{
wi

t+1|t+1

}
i=1:Np

(5.21) and normalization

wi
t+1|t+1 =

wi
t+1|t+1

Np∑
j=1

w j
t+1|t+1


i=1:Np

5: If N̂eff < Neff
threshold, then resampling

6: Set t = t + 1 and iterate to item 1

The smoothed posterior involves the future observations in the density propagation, which are

powerful information to mitigate the estimation instability and sparsity problem.

5.3 Combine Linear Smoother with Nonlinear Filtering Output

Nonlinear estimations are able to deal with nonlinear uncertainty, while linear smoother are good

at revealing low-frequency features and removing severe variance. Hence, it is interesting to add a

linear smoother to a nonlinear filter. The idea is that; take the output of GPF (x̂GPF) as an "observa-
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tion", which is smoothed by a linear smoother (Moving Average (MA) or Kalman smoother).

5.3.1 Moving average

The moving average is the simplest case of kernel filtering as

x̂MA
t =

Nwin∑
k=1

wkx̂GPF
t−k+d

Nwin
2 e

, (5.24)

by setting all the kernel weights equally ({wk = 1
Nwin
}
Nwin
k=1 , with Nwin being the moving window size).

The kernel filtering is able to reducing high-frequency errors, but unable to address the estimation

divergence. Also, the performance of MA highly relies on the window size.

5.3.2 Kalman smoother

The Kalman smoother [3] is well known to address the linear Gaussian problem. The uncertainty

of the GPF output can be deemed as linear dynamics, thus, we use the Rauch-Tung-Striebel (RTS)

smoother [74] (also known as two-pass smoother) to recursively obtain the Gaussian distributions

of the state

p(Xt|x̂GPF
t:t+4T ) (5.25)

where the vector Xt = [xt, yt, ẋt, ẏt]T denotes the Cartesian coordinates and velocities toward both

axes at t. The RTS smoother is an efficient two-pass algorithm: forward pass (a regular Kalman

filter) and backwards pass.

In our smoothing case, the Kalman models consist of the state transition model and the uncertainty

of the GPF estimation. The state transition model is expressed as

Xt = AXt−1 + Qt−1, (5.26)

where A is the state transition matrix

A =


1 0 4t 0

0 1 0 4t

0 0 1 0

0 0 0 1


with 4t = 1 as the time sequence is a dimensionless parameter; Qt−1 ∼ N(0,Q) for the process noise

at t − 1 and Q being the time-invariant covariance matrix. Assuming the acceleration as Gaussian
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noise (N(0, ca)), Q is the following matrix

Q = ca


1
44t4 0 1

24t3 0

0 1
44t4 0 1

24t3

1
24t3 0 4t2 0

0 1
24t3 0 4t2

 . (5.27)

Then, the x̂RTS
t is corrected by the Kalman update step with the measurement matrix

x̂RTS
t =

1 0 0 0

0 1 0 0

 Xt + rt , (5.28)

where rt ∼ N(0,R) is the GPF estimation error with the statistical covariance R.

The backwards pass recursively update the smoothed means (msmooth
t ) and covariances (Psmooth

t )

as following

m−t+1 = Amt,

P−t+1 = APtAT + Qt,

Kt = PtAT[P−t+1]−1, (5.29)

msmooth
t = mt + Kt[msmooth

t+1 −m−t+1],

Psmooth
t = Pt + Kt[Psmooth

t+1 − P−t+1]KT
t ,

with Kt being the smoothing gain at t.

Equation (5.29) represents that the recursion starts from the last time-step, as it needs to know

(msmooth
t+1 ,Psmooth

t+1 ) at t. To investigate the real-time behavior of RTS smoother, we also implement

it in the one time-step recursion (denoted by RTS-1). The RTS-1 calculates p(Xt|x̂RTS
t:t+1) at every

time-step except the last time-step.

5.4 Results and analysis

Beside the aforementioned nonlinear smoothers, we also investigate two linear smoothers com-

bined with GPF. All the smoothing algorithms are implemented in an indoor tracking test-bed as

introduced in our previous work [146], which consists of a robot and wireless sensor networks. The

ranging technique is Time-of-Flight (TOF) measuring. The experiment is carried out in a typical

indoor scenario, the corridor of our Computer Science building.
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5.4.1 Quantitative results

All the competing algorithms take the same initialization, particle size, Gaussian measurement

model, Gaussian random motion model and resampling strategy. The quantitative positioning re-

sults of the smoothing methods in the experiment are listed in Table 5.1, on the terms of both the

positioning performance and complexity.

Performance

Table 5.1 demonstrates as follows.

• The FFBS and TFS make almost no improvement compared with GPF. It is explained that the

smoothing density only influences the point estimation rather than the probability recursion;

thus, FFBS and TFS cannot be expected to modify the posterior.

• The proposed SF observes the lowest values of the MEANp, RMSEp, MAXp and σp (the

variance of the positioning errors indicates the estimation stability); this is a consequence

that the posterior propagation is derived from the smoothing density instead of the prediction

density.

• Combining the RTS smoother with GPF output achieves better accuracy than GPF, because

the GPF estimation error can be deemed as linear Gaussian models and be removed by the

linear smoother. The MA also ameliorate the GPF estimation, by reason that the target’s

positions at neighborhood time-steps are quite nearby.

• The drawbacks of GPF+MA and GPF+RTS are that they can only achieve a good accuracy

when the smooth lag or window size is sufficiently large. As setting 4T = 1 and Nwin = 2,

the performance of GPF+MA and GPF+RTS1 significantly degrades. Furthermore, it is well

known that the improvement of MA does not go infinitely by increasing the window size.

Complexity

The complexity column of Table 5.1 represents the computation and latency of the smoothing

algorithms, which are also important factors in practical applications. According to the algorithm

configuration (the particle size, the number of anchors, the smoothing lag and the MA window

size), FFBS causes the highest complexity while GPF and GPF+RTS1 are the lowest. However, the

GPF+RTS smoother requires a large smoothing lag to achieve effective smoothing. Moreover, SF

results in better performance with lower complexity than the nonlinear smoothers. Overall, the SF

makes a good tradeoff between the smoothing performance and complexity.
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Table 5.1: Comparison of the smoothing methods on SMC (Np = 49), with the positioning results
(/meter) of the experiment

Algorithms MEANp RMSEp σp MAXp Time complexity

GPF 1.57 1.84 0.94 7.19 O(Np × Nanc)

FFBS 1.54 1.79 0.92 6.58 O(N3
p )

TFS 1.57 1.83 0.94 6.77 O(N2
p × Nanc)

SF 1.29 1.46 0.69 3.95 O(Np ×max(Np,Nanc))

GPF+RST 1.37 1.58 0.78 5.86 O(Np × Nanc × 4T )

GPF+RST-1 1.55 1.72 0.94 6.72 O(Np × Nanc)

GPF+MA (Nwin = 10) 1.42 1.65 0.84 6.29 O(Np × Nanc × Nwin)

GPF+MA (Nwin = 2) 1.54 1.79 0.92 7.00 O(Np × Nanc × Nwin)

5.4.2 Positioning behavior and smoothness

Positioning behavior

Figure 5.2 depicts the estimated trajectory with or without the smoothing methods on the floor

plan. It demonstrates that FFBS and TFS perform almost similarly to the GPF estimated trajectory

(see Fig. 5.2(b) and Fig. 5.2(c)), which makes no improvements on approaching the true trajec-

tory. The GPF+RTS and GPF+MA obtain much clearer estimated trajectories, as the spreading of

the position estimation is much narrower; however, their estimated trajectories sometimes deviate

from the true trajectory. Despite the spreading of the SF estimation is slightly broader than that

of GPF+RTS and GPF+MA, it has much smaller divergence to the ground truth position (see Fig.

5.2(d)). Therefore, SF performs the best tracking to the true trajectory.

Smoothness

The smoothness of the estimated trajectory is depicted in Fig. 5.3. Figure 5.3(a) displays that the

estimation error of GPF fluctuates sharply over time. The FFBS (Fig. 5.3(b)) and TFS (Fig. 5.3(c))

obtain almost the same instability as GPF. The SF removes the extremely large positioning errors,

whereas, it keeps the fluctuation of the small errors. The GPF+MA (Fig. 5.3(e)) and GPF+RTS (Fig.

5.3(f)) obviously remove the high-frequency errors, however, the very large positioning errors (the

low-frequency errors) are not smoothed. Thus, the linear smoothers with a nonlinear filter are more

a sense to smooth the representation of the position estimation. Over the whole moving trajectory,

SF observes the satisfied smoothness and the best tracking behavior.
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Estimated trajectory
True trajectory
Anchor

(a) GPF

Estimated trajectory
True trajectory
Anchor

(b) FFBS

Estimated trajectory
True trajectory
Anchor

(c) TFS

Estimated trajectory
True trajectory
Anchor

(d) SF

Estimated trajectory
True trajectory
Anchor

(e) GPF+MA (Nwin = 10)

Estimated trajectory
True trajectory
Anchor

(f) GPF+RST

Figure 5.2: Positioning behavior of the smoothing methods on the floor plan: The solid line denotes
the ground truth of the mobile trajectory; the scatter plot ’+’ is the estimated position; ’4’ for the
anchors; the sample size of GPF is Np = 49.
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(a) GPF
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(b) FFBS
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(c) TFS
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(d) SF
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(e) GPF+MA (Nwin = 10)
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(f) GPF+RTS

Figure 5.3: Positioning smoothness over time of the smoothing methods: the sample size of GPF is
Np = 49.
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5.5 Summary

Due to the severe uncertainty of the indoor wireless environment and sensor system, range-based

position tracking often encounters the accuracy and sparse problem. To combat the uncertainty, the

smoothing frame is applied to the nonlinear non-Gaussian SMC models, including the FFBS, TFS,

SF, GPF+MA and GPF+RST. Furthermore, to be aware of the real-time constraint, we focus on

the smoothing frame using one time-step recursion. By validation in a real-world indoor tracking

experiment, we summarize that

• One time-step smoothing is particularly relevant for both reducing the uncertainty and smooth

the representation in real-time positioning.

• The nonlinear smoothers (FFBS and TFS) are not effective in one time-step recursion, by

reason that the smoothing density is not propagated into the state recursion.

• The SF achieves much better accuracy and stability, as the smoothing density influences not

only the position estimation but also the posterior recursion. In addition, its complexity is

lower than the other nonlinear smoothers.

• The linear smoothing methods (GPF+MA and GPF+RST) notably reduce the high-frequency

fluctuation of the positioning error, as removing the linear and Gaussian errors of the GPF es-

timation. However, they only work well when the smoothing lag or window size is sufficient.

Moreover, they are more a sense to improve the estimation representation rather than filtering

out the extremely large positioning errors. .

Our theoretical derivations and experimental verifications provide a better understanding of the

one time-step smoothing frame on 2D position tracking. The GPF+RTS and GPF+MA is more

a sense to improve the representation of the estimated trajectory, whereas, the SF filters out the

estimation bias. The SF algorithm fits the scenarios of typical motion (the mobile target with a

general acceleration) and high uncertainty. Since SF requires no other assumptions, offline training

or high complexity, it is practical for its efficiency and effectiveness.
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Chapter 6

Concluding Remarks

6.1 Conclusions

Real-world indoor experiments show that radio ranging observes a high uncertainty, which has

to resort to a probabilistic framework. For the nonlinear and non-Gaussian positioning problem,

a closed form estimation is impossible to be derived. Therefore, the probabilistic estimation often

explores a sample-based approximation. The fundamental ingredients of applying sample-based

probabilistic methods to practical indoor positioning are

1. to distribute the state samples properly, making a small sample size;

2. to specify a suitable measurement model, which should characterize the ranging reality.

The state sampling is a serious matter of the sample-based approximations, which should con-

cern three aspects: 1) for robustness, the state samples should spread widely enough to represent

the complete posterior; 2) for effectiveness, the samples should concentrate around the true state

rather than spreading across the whole positioning area; 3) for efficiency, it should be easy to be

implemented and the number of required samples should be reasonably small. The key idea of the

proposed methods is to constrain the sample-space rather than exhaustively exploring all possibili-

ties, thereby, the number of needed samples is small. More importantly, the constrained sampling

alleviates the sample degeneracy.

The indoor ranging statistics have emphasized the insufficiency of the measurement modeling

to reality, as the model can never be perfectly accurate. Concerning the NLOS effect, the modeling

problem is more severe: the NLOS error practically violates the model and leads to a large estimation

error or even loses the track. Chapter 3.3 finds that the indoor TOF ranging shows a positive bias and

right-tailed distribution, thus, two biased measurement models are proposed. As the NLOS error is
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time and space varying, an adaptive model is extracted from the previous position estimation or the

prior. The proposed NLOS mitigation allows more accurate positioning to be performed in mixed

LOS/NLOS conditions, with the advantage of requiring no analytical derivation.

In the case of the estimation instability and measurement sparsity, it is interested to apply the

backward smoothing. Keeping in mind that the original aim is real-time positioning, one time-step

smoothing is suitable. The two common smoothing frames (the FFBS and TFS) are ineffective in

one time-step smoothing. Thus, it is proposed to incorporate the smoothing density into the filtering

density, which notably improves the sequential positioning. Beside the smoothing frame, it is more

efficient to apply a KF on the sample-based filters, which can remove the Gaussian estimation errors.

This thesis compares the proposed sampling, NLOS mitigation and smoothing methods, with both

the simulations and a running test-bed validating the robustness, effectiveness and noise-tolerance.

These positioning algorithms achieve meter level accuracy with 95% confidence level for both se-

quential and non-sequential positioning. The novelty of the proposed NLOS mitigation methods is

their easy setup, thus, which significantly enhances the usability to other indoor scenarios. The one

time-step smooth is computationally inexpensive and implementationally affordable. Furthermore,

the proposed methods provide a general framework for either stationary or mobile positioning, and

can be combined to yield superior performance. Overall, this study emphasizes the practical is-

sues of probabilistic indoor positioning: the measurement models of reality, the tradeoff between

accuracy and cost, and the representation of the indoor environment, etc.

6.2 Suggestions

One can find that the sample-based positioning algorithms differ in the requirements of the mea-

surement models, parametric or nonparametric frames, computation and implementation complexity

or whether they can handle non-Gaussian noise. Therefore, this study holds that there is no best lo-

calization algorithm for all positioning situations, e.g., an algorithm can perform many levels of

performance in the conditions of different cost, scenarios, priori information. Some suggestions for

setting indoor positioning are given:

1. Measurement analysis is an important part of indoor positioning, which should be done before

choosing a positioning algorithm.

2. Anchor deployment is more an engineering problem than a theoretical analysis, which should

be practical and robust.

3. Reduce the terms of the probabilistic state: some algorithms involve penalty variables of the

state (i.e., the velocity, acceleration, orientation, and etc.), which is impractical for range-
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based positioning under severe uncertainty.

4. Achieve the tradeoff between the positioning performance and cost, e.g., for emergency pur-

poses, one can afford a high cost but require a high accuracy; in the case of goods tracking

/positioning in warehouses, the sub-optimal accuracy with a low cost is preferred.

5. Form approximate solutions to the optimal Bayesian frame: rigorous mathematical derivations

do not necessarily lead to the best performance. on the other hand, approximate derivations

can greatly reduce the cost.

6. Assume practical measurement models, motion models and the state density, including their

values, ranges and connections to physical world.

7. Make in a small number of the state samples: more attention should be paid to constrain the

state space.

8. Pre-computation can significantly reduce the computational burden of the sample-based eval-

uation.
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