Appendix A

Calculation of absorption spectra by
time-dependent methods

Thefollowing derivationsare presented herefor reasons of self-consistency of this
thesis. Original derivations have been given in the literature, using, in part, differ-
ent notations, e.g. Heller [65].

A.1 Derivation of a microscopic expression for the
absor ption cross section using time dependent
perturbation theory

The intensity | (energy crossing through a unit area per unit time) of alight beam
passing in z-direction through a gas of molecules which absorbs electromagnetic
energy and convertsit into internal (for example vibrational) energy decreases ac-
cording to Beer’s law [41],

I(z) = Iy - e 7=, (A1)

In equation (A.1), p isthe density (number of molecules per volume) and o(w) is
the molecule-characteristic and frequency- (but not intensity-) dependent absorp-
tion cross section.
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For the derivation of thetheoretical absorption cross section by time-dependent
perturbation theory we start with the one-dimensional time-dependent Schrodinger
equation in the Born-Oppenheimer approximation:
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—e(t) - D 11,(40) X5 (40, 1), (A.2)

= +;W(t)

In equation (A.2) theinteraction with the electric field is described within the el ec-
tric dipole approximation. The real dimensionless parameter A is much smaller
than one to assure a small perturbation by the electric field W (t) in comparison
with the unperturbed Hamiltonian H,.

In the case of the time-independent Hamiltonian H,, the formal solution of the
time-dependent Schrodinger equationis

xi(t) = e M0/ Ry (40). (A.3)
The eigenfunctions of the operator Hy, ©3, with
H,0u" = E, 05" (A4)
can be used to expand the time-dependent vibrational nuclear wavefunction
vib
Xi (t):

Q) = cu ()]O0), (A.5)

wy

where

cur (1) = (O X" (1)) (A.6)
Expansion (A.5) holds for a discrete and complete eigenbasis:

Z |(_)mb @mb' — 1 (A7)

Only bound-bound transitions are considered in this section. A generalization to
bound-free transitions is given by Schinke [41]. Multiplication on the left with
(O] yields (index ¢, denotes an integration over g, in coordinate space):

ih%cw(t)— ey () + A - ZZ% @mb( ()Hlj) O, (A8)
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An electronic two-level system is assumed where the initial (i) state (j = 7) (e.g.
the electronic ground state) is coupled with only onefinal (f) state(l = f) (e.g. an
electronic excited state) by an electric field. The time-dependent equation for the
final state f readsthen as:

a Vi v
i o, (1) = By - e, () + A chl @b( (),Eﬁ)\@wm, (A.9)

where [ isthe transition dipole moment that connectstheinitial (z) with the final
(N state I ntheabsenceof theelectricfield (A = 0) the solution of thelast equation
Isvery simple:

Cuy () = by, (to)e For 1)/, (A.10)
With this solution equation (A.5) becomes

|Xf chf tO zEuf (t—to /h|@mb> (All)

which is a coherent superposition of eigenstates (i.e. a wavepacket). Substituting
(A.11) into (A.3), one obtains

ZC tO —zEvf (t—to /ﬁ‘@’l}’Lb) *ZH(t to)/hzc tO —zEvf(to to)/h |®mb>
vy C
vy =1
x;(rto)
— —zH t—to)/h chf @mb (A12)

This means that the propagator e~i2(t—t0)/h can be replaced by the relative phase
factors e~**s(o=")/  Only if the initial state is an eigenstate (e9. cy, =
1, ¢,; = 0forwy # vy) thetime evolution is described by a global phase factor,
—ifl(t—to)/n — =1 (-10)/h \with no physical importance.

If the perturbation by the electric field is small, the solution of equation (A.9)
iscloseto solution (A.10), i. e. the solution in the unperturbed case. The solution
for small perturbations can be predicted to be

€ =€

Coy (1) = by, ()e AP, (A.13)

where in opposition to equation (A.10) the coefficient b, (¢) is afunction of time.
Substituting (A.13) into (A.9), one obtains:
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= Ey, by, (t)e AT Z @”b < uﬁ) O o+ i (2) - e~ #Bu;t.
(A.14)

Multiplying both sides of the last equation by e* % |eads to:

’Lh 0 b = \- waz @’uzb ( ( ) . Hfz> | UZb)qa % Evf—Ewi)t.
(A.15)

For ¢t < 0 the system isassumed to be represented by the vibrational eigenfunction
@&iibzu (e.g. thevibrational ground state (i; = 0) of the electronic ground state (i =
0)). The only non-vanishing coefficient isb,,,—;,(t < 0) = 1 which isindependent
of time, since there is no perturbation of the system:

by,=i;(t <0) =1, by, (t <0) =0€else

and b,, (t < 0) =0, (A.16)
and therefore:

xs(t < 0)=0. (A.17)

For ¢t > 0 equation (A.15) may be solved by first-order perturbation theory [51].
As the perturbation is increased from zero to a finite value, the new energy and
wave function must also change continuously, and they can be written asa Taylor
expansion in powers of the perturbation parameter .

bu(t) = A0 6O () + X b0 (2) + A2 - b (t) + ... (A.18)

Substituting this expansion into (A.15), one obtains:

0 P P
AT+ iR b (8) + A ihis b)) () + A7 - dh b (1) + . = (A.19)
A- )\0 Zb @mb ( g(t) . Hfz) QZJi:))qa . e%(E“‘f Eu,)t i

A O (0 1,) O



Appendix A: Time dependent perturbation theory 132

PEPLE Zb em”( e(t) - uf) Qi) - ehFu~Fudl (A 20)

Collecting terms with the same power of \ gives:

?
0 (r=0) : 0 (4
AN (r=0) : m@tb”f() 0
? . o
1 _ I 1 _ 0 vib vib (R, —Ew,)t
N r=1) s i) = DU (O3] (~e) 1, ) 100, e
A" (r=mn) : (,%bg; § B0 (O3] (—e(t) - 1y, ) 1O3)g, - ehFer Pl

The zeroth-order (r=0) solution for t > 0O is identical with the initial conditions
(A.16):

bus—iy(t > 0) = 1, by, (t > 0) = 0 elsg,

and b, (t > 0) = 0. (A.21)

This result permits one to write the first-order (r=1) solution in the form:
0 vi vi itwy i,
b, (1) = (OL] (—e(t) - 1) [OF)g, - 0%, (A.22)
where

(Efv B E%)
s = Ao = ) (A23)

IS the transition frequency (Bohr frequency). The first-order solution is valid for
small coupling elements or more precisaly, if
h
(@ (=e(t) - 1,,) 193]

wheret isthetime duration of the perturbation. Within thisapproximationit is ex-
plicitly assumed that the populations of theinitial and thefinal state do not signific-
antly changewhilethelight beamisswitchedon, i. e. (A.21) holds approximately.
If the electric field is described by a cosine-function,

> t, (A.24)

€(t) = eoe - cos(wt) = € - cos(wt), (A.25)
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with ey = |¢| and e being the unit vector in the direction of the electric field, one
obtains:

. 6 v V1 W pis e
zhabvf (t) = (@Wb (—go -gfz.) 1©7),, - €15 - cos(wt)
_ W . iwvfii‘t_ 1( iwt+ —iu)t) (A 26)
=Wy, -e 2 e e , .
where the shorthand notation
Woio = (O] (=€ - 11,,) 16, (A.27)

was introduced. Integration of (A.26) yields[41]:

vaii (1 _ ei(wvfii"‘ul)t + 1 _ ei(wvfiiw)t>

by, (1) = 57 (A.28)

w’Ufii +w wvfii —Ww

For w & w,,;, the second term of (A.28) is dominant L, Thefirst term can be neg-
lected under the condition that

1

~ 1 x T <« t, (A.29)
Wa p4;

T°5¢ being the oscillation period of the electromagnetic field. Thisiscalled thero-

tating wave approximation (RWA) and implies that during the interval [0, ¢] many

oscillations of €(t) are possible, i. e. €(t) acts as a cosine-perturbation with a cer-

tain oscillation period. Combining conditions (A.24) and (A.29), it follows:

Kt K

wfuii WU = hwvfii - Evf - EZZ > vaii- (ABO)

£l

Thismeansthat the energy difference E,, — E;; must be much larger than the coup-
ling element W, ;.. If (A.30) isfulfilled, the first-order solution and the rotating
wave approximation are valid and the population of the final state can be written
as[50, 41]:

Wi, ) ¢ sin?[(@opi —w) - /2] (A31)

Pyi(t) = ‘b”f(t)‘Q - < h (Wopi; — w)?

where the index 7; denotes the dependence of the population of the final state on
theinitial state ¢;. Using

n?[(wWy,i — w) - t/2
lim S [(w t w) / ] = g -t- 5(wvfi¢ - (U)a (A32)

t—o0 Wy si; — w)?

1The reverse holds for stimulated emission where w, i < 0[41]. Here, only absorption,
wy,4; > 0, isconsidered.
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equation (A.31) reads as

W’U ii 2 m
Pyi(t) = (Tf) gt (Wi — w)- (A.33)

P, i, (t) issometimes called the transition probability. According to (A.33) it rises
linearly with time. The transition rate is defined as the time-derivative of P, ., (t)
and therefore is time-independent:

d vaii 2 Vs
kvf’ii - %P’Ul’ii - ( h ) : 5 ) 5(wvfi¢ - CL)) (A34)
Equation (A.34) yields the constant transition probability per unit time. The de-
crease of intensity I of alight beam passing through a gas of absorbing molecules
can be written as [41]:
dl 2

= S hwy, -k
dz psoc e

1. (A.35)

vl |€O|2

o(w)

Inserting equation (A.34) into (A.35) leads to the microscopic expression of the
phenomenol ogical partial absorption cross section defined in equation (A.1):

™

G”fii(w) = ha—oc " Wi

B(wpi, — @) (O] (—D) [OF0) 2, (A36)

where u(e) = e 1, denotes the transition dipole moment in the direction of the
electric fleld (unit vector e). The cross section defined in equation (A.36) is an
example of the Fermi’s Golden Rule. The total absorption cross section resulting
from excitation to the electronic state f is just the sum of the individual partial
cross sections of different vibrational levelsv;:

of(w) =Y 00 (). (A.37)

If more than one excited (final) state is involved, the absorption spectrum results
from the summation over al electronic states:

ol (w Z ot (w) (A.38)

A.2 Time-dependent calculation of the absorption
cross section: The autocorrelation function

The aim of this section isto show how the absorption spectrum can be calculated
using time-dependent wavepackets. The central quantity in this business is the
autocorrel ation function which will be defined bel ow.
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Accordingto (A.36) and (A.37) thetotal absorption crosssection of afinal elec-
tronic state f isgiven by

ot (w) = ngm Z - - wy i, (O3 ( ) 1O7)g. |7 - 6wy, — w)
vy
(A.39)

In the first step of the derivation we use the symmetry of the Dirac’s é-function,

6 (Wi, — w) = 6(wi; +w —wy,),
—_——

wl
and the possibility to writeit as

1 o[t
S(w' —wy,) = > / dte ™ —wvs), (A.40)

Substituting this into equation (A.39), one gets

OtOt(w)—L-il'/+wdtZ E
fis - hieoc 21 B photon
—_————

PSS o
=const h(w”f —wi;)

(O] (~1)) @5~ P MO (~1) 08", -0 (A4

Using expressions (A.7) and (A.12 ), equation (A.41) becomes

+oo
tot _
o (w) = const - Eppoton - /

—0o0

dt(( ) ori| e—EHt| ( “fz ) o), - o't

o

(x}l (0)] Ix’”b(t))
(A.42)

The essentia step for the calculation of the absorption spectrum by wavepacket
propagationsisthefollowing ansatz for theinitial wavefunction inthe excited state

f
X4 (0)) = |u$05,). (A.43)

The autocorrelation function is defined as

Sy(t) = (G O)IXF () (A.44)

Finally, substituting this definition into (A.42) yields:

400
U}? (w) = const - Ephoton / dtSf(t) - e = const - Ephoton - FT(Sf(t))'

(A.45)
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Therefore, thetotal absorption cross section, o' (w), equal's (except for aconstant
factor) the Fourier Transformation (FT) of the autocorrelation function Sy (¢). In
practice, theinitial wavepacket (A.43) is propagated and the autocorrel ation func-
tion is calculated according to equation (A.44). The spectrum is then obtained by
the Fourier Transformation of the autocorrelation function (cf equation (A.45)).
Theinitial condition (A.43) impliesaspontaneous excitation (6-pulse): Theinitial
(t=0) excited state wavefunction equal sthe wavefunction of the vibrational ground
state (v = 0) of the electronic ground state (: = 0) multiplied by the transition di-
pole function in the direction (e) of the electric field, ugfo)

Spectrum in the case of bound-bound transitions

Here, atransition from the bound ground state to a bound excited state f is con-
sidered. Theinitial wavepacket (A.43) att = t, = 0 isreal and can be written as
alinear combination of the (real) eigenfunctions:

chf =0)0""(¢a) (A.46)

The discrete eigenfunctions and values are defined by equation (A.4) and the com-
pletenessrelation (A.7) holds. Using the wavepacket equation (A.11) for ¢t =ty =
0 and t = t, the expression (A.44) of the autocorrelation function resultsin

/ “ (Z Cw, _ 0 @mb ) (Z Cvf —zEvft/h@mb( a)>

= Zlcw O (A47)

From thelast expression it is obviousthat the autocorrelation fulfills the symmetry
relation

S(—t) = 5*(t) (A.48)

which guarantees that the absorption spectrum (A.45) is real. This is a con-
sequence of the fact that the initial wavepacket (A.43) isreal. Propagating till the
autocorrelation function is essentially zero, assures that the calculated absorption
Cross section is positive [41].

According to equation (A.45) the resulting absorption spectrumis

+o0 ) _
o (w) = const - Eppoton - / dt Z |Co; (0)| 2 s t/h . Bt/

—0o0

+00 .
= const - Eppoton * Z |co, (0)|2/ dte' E—Eup)t/h

vf o0
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2
2

= const - Ephuton : Z ‘C'Uf (O)‘z i

vf

(E - Evf)7 (A49)

where definition (A.40) of the §-function was applied. Therefore, the absorption
spectrum consists of discrete lines with energy E.,, and a height proportional to
¢y, (0)[*. Inthe casewhere u; isaconstant (Condon approximation), the|c, . (t)|?
are equal to | f;|* times the so-called Franck-Condon factors. The result (A.49)
(except for a factor) can be also achieved by a population analysis of the initial
wavefunction (if the eigenfunctions and values are known).
Problem of light vs. molecule orientation
Normally the molecule is not oriented and it has to be classically averaged over
the different laser polarizations which implies a calculation of three spectrafor x-,
y- and z-polarized light:
tot 1 tot 1 tot 1 tot
Ofi; = 307 () + 30 (y) + goﬁi(z). (A.50)

If, however, thereisonly one dominant component of the transition dipole mo-
ment in the Franck-Condon window (e.9. fifix > i), the transition dipole
moment function can be replaced by its modulus at the Franck-Condon point (be-
cause the modulus is approximately equal to the dominant component).

|yl = \/ Khoa + Hioy + Mo, (A.51)

Using a constant factor instead of the transition dipole moment function is known
as the Condon approximation.

If more than one electronic excited (final) state is involved, then, according to
equation (A.38), the spectrum equal sthe sum of theindividual spectraof the states

f:

+o0
o (w) =) ofi(w) =) const Epoton - / dtS; (1) - 't =
! f —00
+00 .
const - Ephoton / dtz (S4(t)) - = const - Eppoton - FT Z (S;(0) |,
oo - f
—_———

Stot(t)

(A.52)

where iw' = E;, + hw. This means that in the case of several final electronic
statesthe Fourier Transformation (FT) of the sum of the individual autocorrelation
functions, Sy (t) = >~ (Sf(t)) leadsto the total electronic absorption spectrum.



