
Appendix A

Calculation of absorption spectra by
time-dependent methods

The following derivations are presented here for reasons of self-consistency of this

thesis. Original derivations have been given in the literature, using, in part, differ-

ent notations, e.g. Heller [65].

A.1 Derivation of a microscopic expression for the

absorption cross section using time dependent

perturbation theory

The intensity I (energy crossing through a unit area per unit time) of a light beam

passing in z-direction through a gas of molecules which absorbs electromagnetic

energy and converts it into internal (for example vibrational) energy decreases ac-

cording to Beer’s law [41], ���������	��

�������������������
(A.1)

In equation (A.1), � is the density (number of molecules per volume) and  �"!#� is

the molecule-characteristic and frequency- (but not intensity-) dependent absorp-

tion cross section.
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For the derivation of the theoretical absorption cross section by time-dependent

perturbation theory we start with the one-dimensional time-dependent Schrödinger

equation in the Born-Oppenheimer approximation:$�%'&&)(+* ,�-/.0	1�243+5 (76�8 9;: %=<>+? 3 & <& 2 <3A@CB 0 1D243 67EF G4H IJLKNM * ,O-�.0	1�2�3�5 (76
:QP 1 (76SR+T�U ? 0 U 1D243 6F G4H IJLV)WYXZ\[�]_^ R * ,O-�.U 1D243+5 (76 5 (A.2)

In equation (A.2) the interaction with the electric field is described within the elec-

tric dipole approximation. The real dimensionless parameter ` is much smaller

than one to assure a small perturbation by the electric field ab 1 (76 in comparison

with the unperturbed Hamiltonian c\d .
In the case of the time-independent Hamiltonian c\d , the formal solution of the

time-dependent Schrödinger equation is* 0 1 (76�8fe�g - K [h] g ] M ^_ikj * 0 1 ( d 6ml (A.3)

The eigenfunctions of the operator c\d , n ,O-�.,po , withacqdrn ,O-�., o 8fs , o n ,O-�., o (A.4)

can be used to expand the time-dependent vibrational nuclear wavefunction* ,O-�.0 1 (76 : t * ,O-�.0 1 (767uY8 Twv oLx v o 1 (76
t n ,O-�.v o u 5 (A.5)

where

x v o 1 (76�8zy n ,O-�.v o t * ,O-�.0	1 (767u�l (A.6)

Expansion (A.5) holds for a discrete and complete eigenbasis:T ,ko
t n ,O-�.,po u{y n ,O-�.,ko t 8}| l (A.7)

Only bound-bound transitions are considered in this section. A generalization to

bound-free transitions is given by Schinke [41]. Multiplication on the left withy n ,�-/.,po t yields (index 243 denotes an integration over 2�3 in coordinate space):$O% &&)( x , o 1 (76�8~s , o R x , o 1 (76 @ ` R T�U�T v�� x v�� 1 (764y n ,O-�., o
t=� :�P 1 (76 ? 0 U�� t n ,�-/.v�� u7�D��l (A.8)
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An electronic two-level system is assumed where the initial ( � ) state (� = � ) (e.g.

the electronic ground state) is coupled with only one final ( � ) state ( � = � ) (e.g. an

electronic excited state) by an electric field. The time-dependent equation for the

final state � reads then as:�O�\��)���r�O�=� �7���f� �p�����r�O�=� �7����� �+���¡ ¢� ��  � �7�4£¥¤ �O¦�§�p�©¨=ª�«�¬ � �7� ��­ ® ¦�¯ ¨ ¤ �O¦�§�� �°7±D²+³ (A.9)

where ­ ® ¦ is the transition dipole moment that connects the initial ( � ) with the final

( � ) state. In the absence of the electric field ( �´�~µ ) the solution of the last equation

is very simple:

�r�O�=� �7���~¶ �p�=� �O·m��¸�¹ ¦�º¡» �+¼�½ ¹ ½¿¾�ÀÂÁkÃ�Ä (A.10)

With this solution equation (A.5) becomes

¨ Å ® � �7� ° � � �O� �r�O��� �O·��7¸�¹ ¦�º�» �+¼�½ ¹ ½ ¾ À_ÁkÃ ¨ ¤ ��¦/§�O� ° (A.11)

which is a coherent superposition of eigenstates (i.e. a wavepacket). Substituting

(A.11) into (A.3), one obtains

� �O� �m�p��� �O·���¸ ¹ ¦�º » � ¼�½ ¹ ½ ¾ ÀÂÁkÃ ¨ ¤ �O¦�§�O� ° �f¸ ¹ ¦�ÆÇ ¼h½ ¹ ½ ¾ À_ÁkÃ � �O� �m�O��� �O·��)¸ ¹ ¦�º » � ¼�½ ¾ ¹ ½ ¾ À_ÁkÃÈ É4Ê ËÌÎÍ ¨ ¤ �O¦�§�O� °È É4Ê ËÏ � ¼h½¿¾�À�~¸ ¹ ¦ ÆÇ ¼�½ ¹ ½¿¾�ÀÂÁkÃ � �p� �r�O��� �O·�� ¨ ¤ �O¦�§�O� ° Ä (A.12)

This means that the propagator ¸ ¹ ¦ ÆÇ ¼�½ ¹ ½ ¾ À_ÁkÃ can be replaced by the relative phase

factors ¸�¹ ¦�º » � ¼h½ ¾ ¹ ½ ¾ À_ÁkÃ . Only if the initial state is an eigenstate (e.g. � � � �Ð ³ �m�O� �}µ for Ñ ®ÓÒ�ÕÔ ® ) the time evolution is described by a global phase factor,¸ ¹ ¦ ÆÇ ¼�½ ¹ ½ ¾ ÀÂÁkÃ �f¸�¹ ¦�º�Ö � ¼�½ ¹ ½ ¾ ÀÂÁkÃ , with no physical importance.

If the perturbation by the electric field is small, the solution of equation (A.9)

is close to solution (A.10), i. e. the solution in the unperturbed case. The solution

for small perturbations can be predicted to be

�m� � � �7���f¶ � � � �7��¸�¹  × º » ��½ ³ (A.13)

where in opposition to equation (A.10) the coefficient ¶ �O�=� �7� is a function of time.

Substituting (A.13) into (A.9), one obtains:��� � ¸�¹  × º�» � ½ � ��)� ¶ �O�=� �7��� ��� � ¶ �O�=� �7� � ��)� ¸�¹  × º�» � ½È É4Ê ËÌ º » � § » � ¼h½_À¿Ø�Ù  ×{Ú » �4Û
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çè4é�ê ß�ëíìCîðï+ñDò çYókô ÞOõ�öÞOß#÷=ø�ù�ú â�ã7ä ï�û ü õ�ý ÷ ô ÞOõ�ö
ò ç�þ7ÿ�� ï à ò ç âDã7ä ï å æ
çè4é�� ç ë �

(A.14)

Multiplying both sides of the last equation by å � çè é�ê ß ë leads to:���
		 ã àrÞ ß âDã7ä�Ü î ï ñDò ç à
ò ç âDã7ä ï ókô ÞOõ�öÞ ß ÷ ø ùQú âDã7ä ï�û ü õ"ý ÷ ô ÞOõ�ö

ò ç þ7ÿ � ï å�çè��hé ê ß æ é � ç 
 ë �
(A.15)

For ã���� the system is assumed to be represented by the vibrational eigenfunctionô ÞOõ�ö
ò ç�� õ ç (e.g. the vibrational ground state (

� õ = 0) of the electronic ground state (
�

=

0)). The only non-vanishing coefficient is à ò ç�� õ ç â�ã�����ä�Ü�� which is independent

of time, since there is no perturbation of the system:à ò ç�� õ ç â�ã�����ä�Ü����Yà ò ç â�ã�����äYÜ�� else �
and àáÞ ß â�ã�����ä�Ü���� (A.16)

and therefore: � õOâ�ã�����ä�Ü ô ÞOõ�ö
ò ç� ü âDã�����ä�Ü � � (A.17)

For ã"!#� equation (A.15) may be solved by first-order perturbation theory [51].

As the perturbation is increased from zero to a finite value, the new energy and

wave function must also change continuously, and they can be written as a Taylor

expansion in powers of the perturbation parameter
î

.à%$íâDã7ä�Ü î'&Yï à � & 
$ âDã7ä ì�î)(Sï à � ( 
$ âDã7ä ì�î'*�ï à � * 
$ â�ã7ä ì ����� (A.18)

Substituting this expansion into (A.15), one obtains:î+&�ï �,� 		 ã à � & 
ÞOß âDã7ä ìCî-(Sï �,� 		 ã à � ( 
ÞOß âDã7ä ìCî+*�ï ��� 		 ã à � * 
ÞOß â�ã7ä ì ����� Ü (A.19)îðï+î'&�ï ñ ò ç à � & 
ò ç âDã7ä ï ókô ÞOõ�öÞOß ÷ ø ùQú âDã7ä ï�û ü õ�ý ÷ ô Þ�õ/öò ç þ7ÿ�� ï å çè��hé¡ê ß æ é�� ç 
 ë ìîðï+î)( ï ñDò ç à � ( 
ò ç âDã7ä ï ókô ÞOõ�öÞ ß ÷ ø ùQú âDã7ä ï�û ü õ�ý ÷ ô Þ�õ/öò ç þ7ÿ � ï å�çè��hé ê ß æ é � ç 
 ë ì
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Collecting terms with the same power of
.

gives:.+g >Yhji klBnm8o,prqq @ 7 9 g <G L >�@CBsi k. ; >Yh8iut1Bnm"o,p qq @ 7 9�;=<G L >�@CBvi 4A5w6 7 9 g <5�6 >�@CB /?DxE G�IKJG LyM N OHP >A@CB /[R S I�T M E G�IKJ5�6 VCW�X /1Z 6\ 9z] _ L1` ] a 6 <Kb
....'{ >�h|i�}~B�m�o�p qq @ 7 9���<G�L >�@CBsi 4 5�6 7 9z� ` ;=<5�6 >�@CB /�DxE G�IKJG�L M N OHP >A@CB /[R S IAT M E G�IKJ5�6 VCW�X /1Z 6\ 9^]�_ L�` ]wa 6 <Kb

The zeroth-order (r=0) solution for t � 0 is identical with the initial conditions

(A.16): 7 5�6�� I 6 >�@ � k�Bvi�t�� 7 5w6 >A@ � klBvi k else

�
and
7 G�L >�@ � klBvi k f (A.21)

This result permits one to write the first-order (r=1) solution in the form:o,p qq @ 7 G�L >�@CBvi DFEHG,I^JG�L�M?N�OQP >�@CB /:R S IAT M EHG�IKJI 6�V,WYX /1Z I^b�� � _ L 6 6 � (A.22)

where � G L I 6 i >=� S G O � I 6 Bp
(A.23)

is the transition frequency (Bohr frequency). The first-order solution is valid for

small coupling elements or more precisely, ifpM DFE G�IKJG�L M?N�OQP >�@CB /[R S IAT M E G,I^JI 6 VCW�X M�� @�� (A.24)

where

@
is the time duration of the perturbation. Within this approximation it is ex-

plicitly assumed that the populations of the initial and the final state do not signific-

antly change while the light beam is switched on, i. e. (A.21) holds approximately.

If the electric field is described by a cosine-function,P >A@CB3i P g Z /1����� > � @CBvi P g /1����� > � @CB�� (A.25)
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with ������� ��� � and � being the unit vector in the direction of the electric field, one

obtains:  ,¡r¢¢e£�¤¦¥�§?¨ £C© �«ªx¬ ¥�­K®¥�§ �?¯�°H� �s±[² ³ ­A´ �µ¬ ¥�­K®­^¶H·,¸Y¹ ± � ­zº1» § ¶ ¶F¼ ½ ±1¾�¿�À ¨AÁ £C©
�ÃÂ ¥ § ­K¶ ± � ­zº[» § ¶ ¶x¼ ½ ±~ÄÅ ¨ � ­�º ½'Æ ��Ç ­zº ½ ©�È (A.26)

where the shorthand notationÂ ¥�§�­^¶ �ÉªF¬ ¥�­K®¥�§ � ¯ °H� � ±[² ³ ­�´ �Ê¬ ¥�­K®­K¶Q·C¸�¹ (A.27)

was introduced. Integration of (A.26) yields [41]:¤¦¥�§?¨ £C© � Â ¥�§�­K¶Å ¡ ±sË Ä °�� ­�Ì�º1» § ¶ ¶YÍ º�Î ½ÁÏ¥ § ­K¶ Æ Á Æ Ä °�� ­�ÌÐº1» § ¶ ¶ Ç º�Î ½ÁÑ¥ § ­K¶ ° Á ÒÔÓ (A.28)

For
ÁÖÕ ÁÑ¥�§�­^¶

the second term of (A.28) is dominant 1. The first term can be neg-

lected under the condition that ÄÁÑ¥�§C­^¶ Õ ÄÁu×�Ø�Ù�ÚYÛÝÜ £�È (A.29)Ø ÙFÚ=Û being the oscillation period of the electromagnetic field. This is called the ro-

tating wave approximation (RWA) and implies that during the interval ÞÊß È�£�à many

oscillations of � ¨ £C© are possible, i. e. � ¨ £C© acts as a cosine-perturbation with a cer-

tain oscillation period. Combining conditions (A.24) and (A.29), it follows:ÄÁ ³ » ­K¶yÜ £ Ü
¡
Â ¥�§�­K¶yá ¡ ÁÑ¥ § ­K¶ ��â ¥ § °Öâ ­K¶äã Â ¥ § ­K¶ Ó (A.30)

This means that the energy difference â ¥�§ °�â ­K¶ must be much larger than the coup-

ling element Â ¥�§%­^¶ . If (A.30) is fulfilled, the first-order solution and the rotating

wave approximation are valid and the population of the final state can be written

as [50, 41]:å ¥�§�­K¶,¨ £C© �æ� ¤%¥�§l¨ £C© � ç��éè Â ¥�§�­K¶¡ ê ç ± À  xë ç Þ ¨�ÁÑ¥�§�­K¶ ° Á © ± £Cì Å à¨AÁÑ¥�§�­K¶ ° Á © ç È
(A.31)

where the index

  ­
denotes the dependence of the population of the final state on

the initial state

  ­
. Usingí�î�ï½�ð�ñ À  xë ç Þ ¨�ÁÑ¥�§�­K¶ ° Á © ± £Cì Å à¨AÁÑ¥ § ­K¶ ° Á © ç �#ò Å ± £ ±1ó ¨AÁÑ¥�§�­K¶ ° Á ©�È (A.32)

1The reverse holds for stimulated emission where ôeõFö�÷�ø)ùûú [41]. Here, only absorption,ôeõ ö ÷zø�üýú , is considered.
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equation (A.31) reads asþäÿ��������	��
���
�� ÿ������� ������� ��� � ��� ���Ñÿ������ �!�"
$#
(A.33)þÑÿ�����������


is sometimes called the transition probability. According to (A.33) it rises

linearly with time. The transition rate is defined as the time-derivative of
þäÿ������%����


and therefore is time-independent:& ÿ������'� (( � þÑÿ����)�*� 
 � ÿ����)�� � ��� � �+��� ���Ñÿ����)�,�!�"
-#
(A.34)

Equation (A.34) yields the constant transition probability per unit time. The de-

crease of intensity . of a light beam passing through a gas of absorbing molecules

can be written as [41]: ( .(0/ �1�32 � �46587 � �Ñÿ � ��� � & ÿ � ��� �:9;=< 5 ; �> ?A@ BCEDGFIH � . # (A.35)

Inserting equation (A.34) into (A.35) leads to the microscopic expression of the

phenomenological partial absorption cross section defined in equation (A.1):J ÿ � �������"
K� �� 4L5�7 � �Ñÿ � ��� ��� �M�Ïÿ � ���N�O�"
 ;QPSR ÿ���Tÿ � ;0U �WV DYXSHZ �\[ ;]R ÿ���T���3^�_	` ; �ba (A.36)

where
V D)XcHZ � �ed � V Z � denotes the transition dipole moment in the direction of the

electric field (unit vector
d
). The cross section defined in equation (A.36) is an

example of the Fermi’s Golden Rule. The total absorption cross section resulting

from excitation to the electronic state f is just the sum of the individual partial

cross sections of different vibrational levels g Z :JNhQijhZ ��� ���"
k�ml ÿ�� J ÿ������%���"
-# (A.37)

If more than one excited (final) state is involved, the absorption spectrum results

from the summation over all electronic states:JNhQich��� ���"
k�ml Z JNhQichZ �)� �M�"
$# (A.38)

A.2 Time-dependent calculation of the absorption

cross section: The autocorrelation function

The aim of this section is to show how the absorption spectrum can be calculated

using time-dependent wavepackets. The central quantity in this business is the

autocorrelation function which will be defined below.
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According to (A.36) and (A.37) the total absorption cross section of a final elec-

tronic state n is given byoNpQqcpr8s)t�uMv"wKxzyj{�| o {�| s�t u�v"w}xzyj{�| ~���6�8��� v {�| s�t8���S� { s)�{�| �0���3� �)�c�r�s�� �=� { s��s)t��%��� � � ��� u�v {�| s�t � v"w
(A.39)

In the first step of the derivation we use the symmetry of the Dirac’s � -function,� u�v {�| s�t,� v"wkx � u�v s�t�� v� �A� ��6� � v {�| w$ 
and the possibility to write it as� u�v�¡ � v {�| wkx ¢£ ~¥¤§¦©¨ª ¨

«�¬%­ s p � � � ª ��® | ��¯ (A.40)

Substituting this into equation (A.39), one getsoNpQqcpr8s)t�uMv"wkx ~���6�8� � ¢£ ~ ¢�� �A� �°�± qc²E³	p � ¤ ¦©¨ª ¨
«�¬ y {´| µ�¶-· qcpQqc²� �A� �°�¸ � � ® | ª � t t � ��S� { s��s�t � � �3� �)�c�r�s � �=� { s��{ | ��� � ­ ª s pQ¹ ® |bº ¸ �S� { s��{ | � � �W� �Y�S�r�s � �]� { s��s�t ��� � � ­ s � � p ¯ (A.41)

Using expressions (A.7) and (A.12 ), equation (A.41) becomeso,pQqcpr�s�t�uMv"wkx �¼»�½*¾A¬ � µ�¶-· qcpQqc² � ¤¿¦©¨ª ¨
«�¬ �L�I�3� �Y�S�r�sÀ� � { s��s)t �� �A� �ÁYÂ ® tGÃ| � � ��Ä ­ ª tÅ�ÆÇ p �0���3� �Y�S�r�s\� � { s��s�tW���	�� �A� �Ä Â ® tÈÃ| � p �ÊÉ � ­ s � � p ¯

(A.42)

The essential step for the calculation of the absorption spectrum by wavepacket

propagations is the following ansatz for the initial wavefunction in the excited staten ; � Ë { s��rÌu�Í�w���x � � �Y�S�r�s �Îs)t � ¯ (A.43)

The autocorrelation function is defined asÏ r u ¬ w�x ��Ë { s��rÌu�Í�w � Ë { s)�rÌu ¬ w��%� � ¯ (A.44)

Finally, substituting this definition into (A.42) yields:oNpQqcpr�s�t u�v"wkx �$»�½*¾A¬ � µ�¶-· qjpQqc² � ¤¿¦©¨ª ¨
«�¬ Ï r u ¬ w � ­ s � � p x �$»6½'¾A¬ � µ�¶-· qjpQqc² ��ÐÒÑ u Ï r u ¬ w�w ¯

(A.45)



Appendix A: Time dependent perturbation theory 136

Therefore, the total absorption cross section, Ó,ÔQÕcÔÖ�×�Ø�Ù�Ú"Û , equals (except for a constant

factor) the Fourier Transformation (FT) of the autocorrelation function Ü Ö Ù�Ý�Û . In

practice, the initial wavepacket (A.43) is propagated and the autocorrelation func-

tion is calculated according to equation (A.44). The spectrum is then obtained by

the Fourier Transformation of the autocorrelation function (cf equation (A.45)).

The initial condition (A.43) implies a spontaneous excitation ( Þ -pulse): The initial

(t=0) excited state wavefunction equals the wavefunction of the vibrational ground

state ( ßáàmâ ) of the electronic ground state ( ãäàmâ ) multiplied by the transition di-

pole function in the direction ( å ) of the electric field, æäçYèSéÖ8ê .

Spectrum in the case of bound-bound transitions
Here, a transition from the bound ground state to a bound excited state ë is con-

sidered. The initial wavepacket (A.43) at Ý à Ý ê àìâ is real and can be written as

a linear combination of the (real) eigenfunctions:í Ö Ù�Ý ê àmâ Û àzîYï�ðòñ ï\ð Ù�Ý ê àóâ Û�ô�õ ×�öõ ð Ù	÷AøAÛ (A.46)

The discrete eigenfunctions and values are defined by equation (A.4) and the com-

pleteness relation (A.7) holds. Using the wavepacket equation (A.11) for Ý à Ý ê àâ and Ý à Ý , the expression (A.44) of the autocorrelation function results inÜ Ù�Ý�Û àmùûú0ü	ýÿþ� î ï ð ñ��ï ð Ù	Ý ê àóâ Û¼Ùcô õ ×�öõ ð Ù�÷¼øbÛ�Û ������ þ� î õ ð ñ õ ð Ù	Ý ê àóâ Û å	� ×�

� ð Ô���� ô õ ×)öõ ð Ù�÷AøAÛ ��
à î õ ð�� ñ õ ð Ù â Û � � å	� ×�
�� ð Ô���� (A.47)

From the last expression it is obvious that the autocorrelation fulfills the symmetry

relation Ü Ù�� Ý�Û àzÜ � Ù	Ý�Û (A.48)

which guarantees that the absorption spectrum (A.45) is real. This is a con-

sequence of the fact that the initial wavepacket (A.43) is real. Propagating till the

autocorrelation function is essentially zero, assures that the calculated absorption

cross section is positive [41].

According to equation (A.45) the resulting absorption spectrum isÓ ÔQÕcÔÖ�×�Ø ÙMÚ"Û àmñ������ Ý ��� �"! ÕcÔQÕ$# �6ù�%'&� & ú Ý î õ ð � ñ õ ð Ù â Û � � å	� ×�
 � ð Ô���� ��å ×�
 Ô����
àmñ������ Ý ��� �"! ÕcÔQÕ$# �6î õ ð � ñ õ ð Ù â Û � � ù�%'&� & ú Ý å × ç 
 � 
 � ð é Ô����
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where definition (A.40) of the P -function was applied. Therefore, the absorption

spectrum consists of discrete lines with energy 4 @ A and a height proportional toCE) @ A F;HVJ C K . In the case where W�XZY is a constant (Condon approximation), the C ) @ A F 0 J C K
are equal to C W�XZY C K times the so-called Franck-Condon factors. The result (A.49)

(except for a factor) can be also achieved by a population analysis of the initial

wavefunction (if the eigenfunctions and values are known).

Problem of light vs. molecule orientation

Normally the molecule is not oriented and it has to be classically averaged over

the different laser polarizations which implies a calculation of three spectra for x-,

y- and z-polarized light:[ :<9$:XZY�\ (^]_ [ :<9$:XZY�\ Fa`bJ�c ]_ [ :<9$:XdYe\ FafgJhc ]_ [ :<9;:XZY�\ F;iVJ�j (A.50)

If, however, there is only one dominant component of the transition dipole mo-

ment in the Franck-Condon window (e.g. W/XdYlk mon W XZYpk q�r�s ), the transition dipole

moment function can be replaced by its modulus at the Franck-Condon point (be-

cause the modulus is approximately equal to the dominant component).C W�XZY C	(ut W KXdv�k m c W K Xdv�k q c W K Xdv�k s (A.51)

Using a constant factor instead of the transition dipole moment function is known

as the Condon approximation.

If more than one electronic excited (final) state is involved, then, according to

equation (A.38), the spectrum equals the sum of the individual spectra of the statesw
: [ :<9$:Ye\ FyxzJ ({? X

[ :<9;:XZY�\ FyxzJ (*? X )�+�,�.10|2�4 6"8"9$:<9$=}2-~��'�� � � 0�� X F 0 J 2�� Y��	� : ()�+�,�.1032�476"8"9$:<9$=}2 ~ �'�� � � 0 ? X F � X F 0 J�J� �1� ������I�y� :�� 2e� Y��-� : ({)�+�,�.10�2�476"8"9$:<9$=}2��}��� ? X F � X F 0 J�J��DU
(A.52)

where
O x7� ( 4 Y�\ c O x

. This means that in the case of several final electronic

states the Fourier Transformation (FT) of the sum of the individual autocorrelation

functions, �b:<9;: F 0 J (S� X F � X F 0 J�J leads to the total electronic absorption spectrum.


