Chapter 2
Theory

This chapter reviews the theoretical concepts of thiswork: First, the Hamiltonian
describing a molecule coupled with an external electric field isintroduced in sec-
tion 2.1. In section 2.2 the adiabatic and diabatic representation of the time de-
pendent Schrodinger equation areintroduced. The topics of the following sections
are rotational averaging (section 2.3), time dependent cal culation of spectra (sec-
tion 2.4), pump-probeionization spectroscopy (section 2.5), and the cal culation of
theinitial nuclear wave function (section 2.6). In section 2.7 the applied propaga-
tion schemes are described and section 2.8 deals with methods for finding an ap-
proximate solution of the electronic Schrodinger equation. Finally, our approach
of calculating the kinetic couplingsis presented in section 2.9.

2.1 Schrodinger equation, molecular Hamiltonian
and coupling with the laser field

Time dependent Schrodinger equation
The time evolution of a state vector |¥(t)) is governed by the Schrodinger equa-
tion,

0 A
iho [U(2)) = H({)[P(0)), (2.1)

where H(t) is the Hamilton operator of the system. In this work the Hamilton
operator consists of two parts: The first part describes the molecule without any
external field and neglecting relativistic effects. The second part expresses the
influence of the electric field (laser pulsesin this work).

Molecular Hamilton operator

Assuming no interaction with the environment the non-relativistic time-
independent Hamilton operator of a molecule, H,,, with N nuclei and n
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electronsis given by

f{mol({PA}? {RA}a {ﬁa}a {TAG}) = T({pA}’ {ﬁa}) + V({RA}v {fa})’ (22)

where
18> = n? 52 R 2
T({Pa}, {Pa}) = —; o A Z s (23)
describes the kinetic energy of the nuclei and electrons and
N N
ZAe ZAZ362
R Ta P —
V({Ra}, ) = ( ZZ Zm—m MZBmA—RB\)

(2.4)

accounts for the electron-nuclel, electron-electron and nuclei-nuclei interactions,
respectively, and represents the potential energy of the molecule in the absence of
external time-dependent fields. In the above equations 12 4 isthe position operator,
P, the momentum operator, M 4 the mass and 7 4 the atomic number of the nuc-
leus A. Likewiser, and p, arethe operators of the position and momentum of the
glectron a and m,, isthe € ectron mass.

Coupling with the Laser Field

The applied laser pulses used in this work can be described classically for they
have a high photon density. The electric field is afunction of time ¢ and space R
and can be written as

e"(& E*‘Ut) + eii(E B*Wt)
9 )

e(R,t) =e-e-s(t)- (2.5)

where e denotes the polarization vector, ¢, isthe amplitude, s(t) defines the shape
of the pulse, & is the wave vector and w is the central frequency of thefield. The
term e’% 2 can be expanded in a Taylor series:

¢ER 14 ik R+, (2.6)

Sincethe spatial extension of atypical moleculeis of the order of ~ 10 A whereas
the wave lengths of the applied lasers are around 400 nm (= 4000 A) the Taylor
expansion (2.6) can be truncated after the first term turning the electric field inde-
pendent of £ and R:

eiwt + 6—iwt

et)=e-€-s(t) - 5

2.7)

or: €(t) = € - s(t) - cos(wt), whereey = e - €. (2.8)
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It can be shown that, if the wave length of the electromagnetic field is much
smaller than the extension of the molecule, the light-molecule interaction con-
sists of an electric dipole, a magnetic-dipole and an el ectric-quadrupol e part [50].
The latter two are by the order of the dimensionless factor 1/137 smaller than the
electric-dipole term [50]. This means that the electric-dipole term - if it does not
vanish at all - is the dominant one and the other two can be neglected. In this so-
called electric-dipole approximation [50, 51] the operator, 1 (t), describing the
interaction of the molecule with the electric field is given by

~

W(t) = —e(t) D i, (29)

where [ isthe el ectric dipole operator and B istherotation matrix that connectsthe
space-fixed coordinate system of ¢(t) with the molecule-fixed coordinate system
of 4. Inthiswork it will be approximated by classical averaging (see section 2.3).

To describe the molecule-laser interaction the total Hamiltonian H is written
as a sum of the molecular Hamiltonian H,,,, and the coupling with the external
electric field W (¢):

H(t) = Hpo + W(2). (2.10)

Describing the electric field classically (cf equation (2.9)) and the molecule
quantum-mechanically (cf equation 2.2) is often referred to as the semiclassical
dipole approximation.

2.2 Adiabatic and diabatic representation of the
time-dependent Schrodinger equation

For a numerical treatment of the Mn-CO photodissociation the time-dependent
Schrodinger equation will be represented in the adiabatic basisin section 2.2.1 and
2.2.2. In section 2.2.3 the time-dependent equations of an alternative representa-
tion, the diabatic picture, will be derived. The probability of dissociation can be
used to determine life times of excited states. It will be defined in section 2.2.6
after the Born-Oppenheimer approximation has been introduced in section 2.2.5.

2.2.1 Derivation of the adiabatic representation

It is assumed that the eigenvectors |®;) and eigenvalues E' of the electronic
Schrodinger equation

H,|®;) = ES'|®;), (2.11)
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where

. L N 7€ - e?

Hy=— b, T~ = 2.12
T 2o, 4( DNy gm—rbi) &2

is the electronic Hamiltonian, are known for fixed positions of the nuclei A =
1...N. Inredlity, exact solutions of (2.11) exist only for very simple systems.
In section 2.8 methods for an approximate solution of the electronic Schrodinger
equation are discussed.

Since the repulsion between nuclei,

1 i‘f: ZuZpe?
dmeg ‘RA_RB| ’

A<B

isaconstant for fixed nuclear coordinatesit can be added to the el ectronic Hamilto-
nian
, 1 (L ZaZpe?
H,=H,+—— g (Z m) , (2.13)
A<B I1tA B
or to the electronic energy yielding the adiabatic potential energy V;:
N 2
Vil{Ra}) = B (RaD) + (ZB éfﬁ)  ew

With these definitions the molecular Hamiltonian reads as

~ j 22N ~
Hpo == P:+ H, (2.15)

In the adiabatic representation the total wavefunction |¥(t)) is expanded in
the basis of the electronic wavefunctions |®, ) which diagonalize the electronic
Hamiltonian H,;:

nu({Ba}|V(?) ZX; {Ba},1)|®;({Ra}))er- (2.16)

The multiplication of |¥(t)) with nu({&}\ on the left side of equation (2.16) de-
scribes a projection of the total wavefunction on the basis of the nuclear coordin-
ates. Theindex "el” in (2.16) denotes the dependence of the electronic wavefunc-
tions|®;) on the electronic coordinates. Thisindex will be skipped in the follow-
ing equations. In equation (2.16) - the so called Born-Oppenheimer ansatz - the
time-dependent coefficients y, (¢) can beinterpreted asthe nuclear wave functions.
Equation (2.16) is exact as long as the electronic basis {|®,({R4}))} isnot trun-
cated. Inserting (2.16) in the time dependent Schrodinger equation (2.1) with the
total Hamiltonian (2.10) leads to:

n% > ({Ba} )19, ({Ba))) =
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N

-3 QZAAAZXJ-(@}J>|¢]-<@}>>

+Hy({Ra}) ) xi({Ra}, )| @;({Ra}))

—<(t)- D-i({Ra}) D2 ({Ba}, )|, ({Ra}))

Multiplying by (®;({R4})| ontheleft and integrating over the electronic coordin-
ates, one obtains

ity S x({Ra), ) (@ (Ra)) 2, ({Ra)) =

v~

(—jj\;mm({m,w))

WE

b
l

Z( {({Ra))|®;({RA})

6”

S 3) g (@z({m})vmg({m})g -vAxJ({RA},t))
7oA T, ({Ra)

+3 (xa({RA},t) >3 (2]’; @({RADAA@]({MQ))

7 ({Ra})

R

ﬁ

i({RaD)IHU({RA})|®;({RA})) X]({RA},t))

VJ({RA})

Z ( i({Ra})|a({RA})|® ({RA})Z-XJ({RA}J)) ,
7 g, ((Ra))

where

(Di({Ra})|Va|®;({Ra})) (2.17)



Theory 24

and

(@i({Ra})|Aa|®;({Ra})) (2.18)

arethe matrix elements of thekinetic coupling matrices 7" and 7, respectively.
V; corresponds to the adiabatic potential of the i-th electronic state, forming a di-
agonal element of the adiabatic potential matrix V' that is diagonal in the adiabatic
picture. Finaly, 1 ({R4}) arethe matrix elements of the adiabatic dipole matrix

E. With these notations the resulting adiabatic time dependent Schrodinger equa-
tion becomes:

N 2

m%xi({&}, t) = (— ; 2;@ Ay + Vz-({&})) Xi({Ba}, )

+Z (Z —TZ(JIL({RA}) Va- Xj({@}at))

+2 (Z——Tzz ({&})) - Xi({£a}, 1)

~et) DY p ({Ra}) - s ({Ra}. ). (2.19)

2.2.2 Adiabatic description of the Mn-CO,, photodissociation

Taking into account the Mn-CO,,, stretching coordinate g, with the corresponding
reduced mass i,

McpMn(CO)y * MCO (2.20)

Ha = )
McpMn(CO), T Mco

and neglecting all other nuclear degrees of freedom, equation (2.19) gets

h2 82
T2, 02
Hi(qa)

Born-Oppenheimer dynamics (section 2.2.5)

.0
ZhaXi(Cla,t)= Vi(ga) | Xi(¢a,t)

h2
I Z T(l Qa ' Xj(Qaa t) - % Z Tz(j2) (qa) * X (qau t)
J

—~
kinetic coupling terms
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Z Zj - X;j(¢a, 1), (2.21)
N J -
coupling by electric field
where
0
T () = (@laa) 5 -125(aa) (2.22)
and
@ 0°
T (qa) = <<I>i(qa)\a—q2\<1>j(qa)>- (2.23)

The last equation describes the nuclear motion of a (pseudo-)diatomic molecule
along the internuclear bonding coordinate g,, where x;(¢,,t) = X;”b(qa, t) isthe
vibrational part of the nuclear wave function. The rotational and translational mo-
lecular degrees of freedom are separated by a product ansatz,

X(4a; Rs) = X" (4a) - X" " (0a, ©a) - X" (Rs), (2.24)

where ¢, istherelative and Ry isthe center of mass coordinate.
It is helpful to write equation (2.21) in matrix notation,

In the adiabatic representation the potential matrix V. isdiagonal with the potential
energy curves V;(q,) of the i-th electronic state as diagonal elements:

<
o
o
—
=)
IS
~—

(2.26)

Y and T(Q) define the off-diagonal part of thekinetic energy operator inthe adia-
batlc representation. In section 2.9 it is shown that T is antisymmetric with di-
agonal elements equal to zero,

O Tl(gl)(qa) .
70 = T () 0 , With T (g0) = — T3 (¢a),  (2:27)

whereas T is neither symmetric nor anti-symmetric:

7@ = | T(w) T3 (¢a) . (2.28)
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Finally, the coupling with the laser is given by (2.9). In the symmetric matrix E
the diagonal elements are the dipole moments of the molecule on the corr&pon(;
ing potentialsand the off-diagonal elementsarethe transition dipole momentscon-
necting the electronic states:

Py, (@a) 1y, (4a)
By (4a) oy (da) , With g (da) = 1, (da)- (2.29)

=4
|

2.2.3 An alternativedescription: Thediabatic picture

Starting with the adiabatic time dependent Schrodinger equation (2.25) the deriv-
ation of the diabatic representation follows mainly the paper by Baer [52]. Yet, in
opposition to the latter article the equations are formulated one-dimensiona and
time-dependent including interaction with an electric field in the el ectric dipole ap-
proximation. Thediabatic basiscan be obtained from the adiabatic one by aunitary
transformation, U, of the electronic wave functions |®;):

&) = UT |®;). (2.30)

Thekets |¢;) form the diabatic basis, and equation (2.30) defines the unitary trans-
formation U of the adiabatic into the diabatic basis set. Both, the total wavefunc-
tion expressed in the diabatic basis,

nu({ R} ¥ (t) Zm {Ra}, 0)|&:({Ra})) (digbatic), (2.31)

and the total wavefunction in the adiabatic basis,

nu{{Ra} () sz {Ra},t)|®:({R4})) (adiabatic), (2:32)

have to be identical. This defines the relation between the diabatic nuclear wave-
function n and the adiabatic one, X

x=Un, (2.33)

From equation (2.33) it follows that

0 0 0
— 2.34
0g.~ 8qagﬂ+U3q L (234)
and
2 2 2
0 0 0 (2.35)

02X = 521 255,55, 0 Lo
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Substitution of the last three equations, (2.33), (2.34) and (2.35), in the adiabatic
representation of theti medependent Schrodinger equation (2.25) yields
8 ( 0? o .0 82

P LA Rl o

A2 02 A2 )
=— VUnR-2 U+1YU
h2
Il g ireuy Ty )y DAUun  (239)
2, \ = 0¢,— = = 0¢2= )~ ===

By definition, the kinetic coupling terms are replaced by potential coupling in the
diabatic representation. It will be proved that, if U fulfillsthe differential equation
(2.37):

9 U+TWU =0, (2.37)
0g— = =
also theterm
o0 9y +TOU + > U (2.38)
vanishes.
To prove the last statement, equation (2.37) is differentiated,
2
T y= g0y 70 2y (2.39)

0¢;=  0¢a— = = 0g¢u—
and substituted into equation (2.38):

0 Py yroy - o0 ly—o (240
= = = T 0= = T 00—
Y @ _ 9
:>T U+TYU - —TWU =0. (2.41)
0= = = 0¢.= =
Inserting (2.37) into the last expression leads to
-TWTWU + T®U - aa 70U = 0. (2.42)
- - - - = 9a—
It can be shown that the term
_TWTOy 4 7Oy — 0 rypr (2.43)
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vanishesidentically. The proof isgivenin section 2.9.3. Itistherefore shown that,
if U satisfies the differential equation (2.37) the kinetic coupling terms T and
T, ), defined in equations (2.22) and (2.23), respectively, vanish and the time de-
pendent Schrodinger equation (2.36) is expressed as.

o+ Y Un—e(t) D-LUn (2.44)

ma P UtV - () D-ULU (2.45)
gdia I_;dm,
In the last expression
n="U'x

is the diabatic nuclear wavefunction,

U'vu=y4 (2.46)

denotes the diabatic potential matrix which isin general not diagonal and

—dia

= [ (2.47)

-
u'e

IIQ

defines the diabatic dipole matrix.

2.2.4 Comparison between the adiabatic and the diabatic rep-
resentation

In the adiabatic representation the potential matrix is diagonal, whereas the kinetic
energy has coupling terms, 7" and T®). In the diabatic picture the kinetic coup-
lings are replaced by potential couplings, therefore, the diabatic potential matrix
has off-diagonal elements which couple the different states. Both representations
are equivalent in the physical sense [53] and are connected by the unitary matrix
U that defines the transformation of the nuclear and electronic wavefunction, the
potential and kinetic energy and the transition dipole moment (see previous sec-
tion). In this work, the adiabatic potentials and transition dipole moments come
from quantum chemistry cal culations and the kinetic coupling terms7(") and 7
have been numerically evaluated from the ab initio data (chapter 3).

The physical interpretation of the adiabatic representation is straightforward:
The potentials and transition dipole moments are computed for fixed positions
of the nuclel using approximate methods for the solution of the electronic
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Schrodinger equation (section 2.8). The kinetic couplings are only large around
avoided crossings which mark the break-down of the Born-Oppenheimer approx-
imation (= a strict separation of the electron and nuclear motion). The Franck-
Condon principle implies that el ectronic transitions are vertical transitions mean-
ing that the electronic (adiabatic) potentials do not change during the transition.
This principle allows the cal cul ation of the absorption spectra.

In the diabatic case, the potential sand consequently the excitation energies dif-
fer from the adiabatic ones. Therefore, it is not clear how the diabatic excitation
energies can be interpreted (i.e. if they can be related to experiment). For that
reason the adiabatic representation in dynamics simulations was used throughout
this work. This was possible because the kinetic couplings are smooth enough
to use them as non-adiabatic couplings in the numerical calculations. Neverthe-
less, the use of the potential couplings (i.e. diabatic picture) is inevitable in all
cases where the kinetic couplings defined by (2.22) and (2.23) are very sharply
peaked around avoided crossings causing numerical difficulties. These computa-
tional problemsof the adiabatic representation can be avoided by transforminginto
the diabatic basis, where the kinetic couplings are replaced by potential coupling
functions which are usually smooth [54].

The problem of transforming the adiabatic into the diabatic representation has
been treated in recent studies [55, 56, 57]. The diabatic representation has been
used to treat atom-atom collisions [54, 58], atom-molecule interactions [52, 59],
photodissociation of OH [60], photodesorption [61] and photodissociation of or-
ganometallic compounds [34], amongst some applications. In the latter two art-
iclesby Saalfrank and coworkersadiabatization procedureis applied which makes
use of the fact that the kinetic coupling terms can be approximated by L orentzians
[62] if numerical results are not available.

2.2.5 Born-Oppenheimer dynamics

In the Born-Oppenheimer approximation [63] the kinetic coupling terms 7™ and
T® in equation (2.21) are neglected. The first term of the left-hand side of equa-
tion (2.21) defines the Born-Oppenheimer dynamics (without coupling due to the
electric field). Within this approximation the one-dimensional time-dependent
Schrodinger equation is given by:

h? 02
24, 0q

2
a
~~

.0
lhaxi(qa,t)= + Vi(ga) | xi(4a, ). (2.48)

Hi(qa)
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The infinitesimal change of the electronic wavefunction when changing the inter-
nuclear distance, 5 - \(I) ), vanisheswhen the el ectronsfollow the nuclei instantan-
eously. TheBorn- Oppenhei mer approximation breaks down in the case of avoided
crossingsof electronic potential curvesof the samesymmetry and spin. Thekinetic
couplingsarethelarger thesmaller thereduced massis, i.e. whenlight particlesare
involved (for example hydrogen atoms), and the higher the momentum, —ih% X
of the particlesis.

2.2.6 Population and probability of dissociation

The normalization condition for awave function in one dimension, for examplein
the Mn-CO stretching coordinate g, iS

(T|T),, = 1. (2.49)

In the adiabatic picture the total wave function, |V (#)), isexpanded in termsof the
electronic wave functions |®;):

(9a D(1)) = 3 Xi(da 1) [ @i)er (2.50)
Under the assumption that the electronic wave functions are orthonormal,
(®i|®;) = dij, (2.51)
the normalization condition gets:
1= Z /oo - dqaX; (da; 1) Xi (s T)- (2.52)

The population P; of the i-th electronic state can be then defined as the part of the
total norm (which is equal to one) calculated by:

Pi(t) = / 4o (g0 D) (0 ). (2.53)

o0

Furthermore, the vibrational part of the nuclear wave functions x?* can be expan-
ded in terms of the vibrational eigenfunctions ©% (anumerical method for calcu-
lating them is given in section 2.6):

mb qm Z Cv @mb (254)

Then the population of the i-th electronic state is given by the sum of the popula-
tions on the different vibrational eigenstates:

r=[ dio 32 40O 0 S enl007 )
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=3 ) c (B 1) / N O (¢4)0%" (¢4) da- (2.55)

wi; U

Assuming that the eigenfunctions form an orthonormal set,

/ O (¢a) %" (qa)dda = Gusu; (2.56)
equation (2.55) becomes

P(t) =) ¢, (tew(t) =Y lew() (2.57)

and the popul ation of the v-th vibrational level of thei-th electronic stateis defined
by the coefficientsc; ,:

Py (t) = |cin(t) [ (2.58)

Similarly, in one dimension it is possible to define the probability of dissociation
of the system in a certain electronic state as the part of the population which lies
between a defined dissociation point b and the asymptotic region of the considered
potential:

PO(t) = / X (0o )X (0 ) . (2.59)
b

Usually a pragmatic, yet reasonable, choice for the dissociation point b is avalue
of three times the equilibrium distance of the reaction coordinate. An aternative
way to define b isto chosethe point at which the orbitals of the fragmentsare pure,
meaning that no orbital swith contributions centered at both fragments at the same
time are present. If the wavepacket or a part of it can move towards dissociation
(andisnot trapped by abarrier) the probability of dissociationyieldsarising signal
fromwhich adecay time 7 of the excited state can be calculated. It must be pointed
out that acomputation of 7 using (2.59) only makes senseif the applied | aser pulses
are much shorter than . Inthiswork, dissociation probabilitiesand corresponding
life times have only been calculated for infinitesimal short §-pulses (see section
4.3).
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2.3 Rotational averaging

In thiswork freely rotating (i.e. not oriented) molecules are considered. The di-
pole moment and the electric field are defined in two different coordinate systems:
The space fixed coordinate system is chosen such that the z-axis is parallel to the
electric field vector ¢(t), whereas the dipole moment is given in the molecule or
body-fixed coordinate system with the z-axis pointing in adifferent direction (e.g.
parallel to the dissociation coordinate [41]). The rotation matrix (2.61) connects
the body-fixed coordinate system (which rotates with the molecul€) with the space
fixed one. In the semiclassical dipole approximation the interaction of two elec-
tronic states: and j isgiven by

Wi (dar X5 (dar ) = —€(8)- D +11,(0) - X; (0 ), (2.60)

where B isthe rotation matrix [64]

<~
p=| b, D, D, (2.61)

connecting both coordinate systems, in this work, approximated by rotational av-
eraging of B To derive the working equations three electronic states will be con-
sidered (7 = 0, 1, 2). Only transitions from the ground state (: = 0) to the excited
states (i = 1,2) are taken into account. Therefore, the transition dipole matrix
reads as.

I
p=| p, 0 0 |. (2.62)
Hoy 00

The Born-Oppenheimer dynamicsof thisthree-state-systemisgoverned by thefol-
lowing set of three coupled differential equations:

1 gt = (22 Ly, £) — e(t)- D t
elans) = (g o+ Vi) ) ol ) — (0 B SRR

i=0,1,2. (2.63)
Consider an z-polarized laser pulse which propagates along the z-axis. Then,

Wij(4as )X (das ) =

D;c;c Dwy Dwz ,uij,;c
- €z, \ey/a €2 : Dyw Dyy Dyz ’ ,uz],y ) XJ
-0 =0 Dzw D Dzz IU’ZJ,Z
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Hij,z
= - (Gw : D:wveac : Dwy; € - Dccz) : Hijy * X
Hij,z
= - (ez : Dmm * Hijx * X5 + € Dmy *Hijy X5 + €t sz * Mgz Xj) . (264)
L et us now assume that the system is photodissociated by a )-pulse, i.e. we use

e(t)=¢ for 0 <t <4t

€t) =0 ese, (2.65)

where ot isasufficiently short timeinterval, such that it allows oneto approximate
the time derivative in equation (2.63) by afinite difference:

9 xi(6t) —xi(t =0)
ot < 5t

Using the last expression with theinitial conditions,

. (2.66)

XO(t = O) = @007
Xl(t = 0) = 07
Xg(t = 0) = 0,

where Oy, is the vibrational and electronic ground state, in equation (2.63) one
obtains (neglecting the term o< 10):

1 h2 82 X (5t) -0 ;
E <_2,Ulaa—qg * Vb) 600 ~ % = XO(ét) = @00 — 0t - ﬁ . EOO . 600 ~ @00’
L D ~ Xl(dt) . 7 <
B (—g. D -glo) O, ~ T x1(6t) = 6t - Lo Dopyy Oo,,

1 > ot [ &
E (_6' D 'HQO) @00 ~ % = X2(5t) = 5t . ﬁ - € D .HQ() . @00. (267)

Substituting equation (2.64) into equation (2.67), the population at time ¢ = 6t is:

Fori=0: P0(5t) ~ /dqa®30®00 =1.

Fori=1,2: P(dt) ~
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Ei ) /an(wawa|ui0,w®00‘2 + D:c:chy(,U'iO,acGOO)*(N’iO,yGOO) + waD;vz(ﬂiO,w@Oo)*(/j’iO,z@Oo)

+DmyDzy‘Ui0,y@00 ‘2 + Dy Dy (UiO,y@%)*(ﬂiO,m@%) + Dmme(,uiO,y@Oo)*(NiO,z@Oo)

+Dsz:cz‘,U’i0,z®00‘2 + Dsz:w(,u’iO,zGOO)*(/j’iO,w@Oo) + Dszwy(,uin,ZGOO)*(ﬂ'io,y@%))-

Averaging over angles:

1
leads to

1
Py(6t) ~ € - /an§ (|,U10,z900|2 + |1110,4O0, |” + |M10,z@00|2) (2.69)

1
Py(6t) = €2 - /dqag (120,006 ” + | 120,4O06|” + | 1420,:O0, ) - (2.70)

Therefore, the initial excited state wave packet is given by the ground state wave
function ©,, multiplied by the corresponding transition dipole moment func-
tion. After the §-pulse, the populations of the electronic states do not change
and the wave packet in each excited state is governed by equation (2.63) (Born-
Oppenheimer dynamics).

2.4 Time dependent calculation of absor ption spec-
tra

According to Heller [65] the total absorption spectrum oy, (w), Which measures
the capability of the molecule to absorb radiation with a frequency w is obtained
from the Fourier transformation of the total autocorrelation function,

Otot ((,U) X / ei(EOO +mu)t/h‘stot(t)dta (271)

where Ey, is the energy of the vibrational ground state of the electronic ground
state and Aw is the energy of the absorbed photon [41]. The total autocorrelation
function S, (t) is defined as the sum of the individua autocorrelation functions
S¢(t) of the electronic states f.

Stor(t) =Sy (1) = {xp(t = 0)|xs(t)) (2.72)
f

f
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The autocorrelation function describes the overlap between the wave function
x7(t) andtheinitial wavefunctions x s (¢ = 0) asafunction of timet. In thiswork,
theinitial wave function of the excited states f is calculated by multiplying the vi-
brational ground state wave function of the electronic ground state @gff’ with the
transition dipole moment that connects the ground state with the state i:

‘X?ib(to = 0)> = Hofz/y/z " ‘@8;b> (273)

A derivation of equation (2.71) isgiven in the appendix A.

2.5 Pump-probeionization spectroscopy

Two steps are involved in a pump-probe ionization scheme. In afirst step alaser
pulse, called pump pulse, excites the molecule. In a second step, after a certain
timedelay, another laser pul se, the probe pul se, isemployed toionizethemolecule.
The theoretical pump-probe signal of the parent ion is determined here as the part
of the population which is trapped in a certain ionic state, whereas the yield of the
parent and the daughter ions correspond to the non-dissociative and the dissociat-
ing parts of the ionic states population, respectively. The pump-probe ionization
spectrum reflects the nuclear dynamics of the electronic excited state asafunction
of the delay between the pulses.

In this work the vibrational ground state of the electronic ground state, ©,
is chosen as the initial wavefunction. Since this is an eigenstate of the system,
the corresponding expectation values (for example of the position operator) do
not change with time (stationary state). The pump pulse, however, creates awave
packet in the excited state which is a coherent superposition of stationary states
[41]. Being not an eigenstate, the wave packet moves governed by the time-
dependent Schrodinger equation. Consequently, the wave packet islocated at dif-
ferent areas of space at different times. That isthe reason why theionization prob-
ability will depend on the delay time [66].

The electron removed during the ionization process has a continuous spectrum
of allowed kinetic energies of the detached electron[67, 68, 69, 70, 71, 72, 73, 74].
However, for a numerical treatment the kinetic energy spectrum has to be dis-
cretized. Aspointed out in refs. [75, 76] the ionization occurs very rapidly with
approximate conservation of the nuclear kinetic energy and the contribution of
a single optimal selected photon energy already defines the dominant features
of the total transient ionic signal. Hence, in the approach of this work it is as-
sumed that the electron removed during the ionization process has zero-kinetic-
energy (ZEKE). Thelaser-induced transitionsto ionic states are then treated in the
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same way asto neutral states. However, it isimportant to avoid unphysical back-
transformation (dump) of ionic state population by the applied lasers. Thiscan be
achieved by means of small intensities of the pump and (more importantly) the
probe pulse. (e.g.: In thiswork the intensities were chosen such that the pump
pulse transfers about 10 % of the ground state population to an electronic excited
state and the probe pulse produces an ionic state population of lessthan 1 %.)

2.6 Calculation of the initial wave function: The
Fourier Grid Hamiltonian (FGH) method

Within the Born-Oppenheimer approximation (eguation (2.48)) the one-
dimensional time-independent nuclear Schrodinger equationis:

— i(Ga v2(qa) = Fy, 05 (qa)- 2.74
(-0 5z * (00 ©5°(a) = £.6% (0 @)

~

=H;(qa)

The nuclear wavefunctions ©2(q,) are the vibrational eigenfunctions of the
Hamiltonian H;(q,). The eigenvalues E,,, are the allowed total energies (neglect-
ing the rotational and tranglational contributions) of the one-dimensional system.
Both, the energies E,, and the wavefunctions ©4% of the i-th electronic state are
labeled by the index v;, the vibrational level corresponding to state .

By solving the nuclear Schrodinger equation (2.74) for the electronic ground
state potential V5 (g, ) the stationary states ©,, (¢, ) and corresponding energies E,,
inthe Born-Oppenheimer approximation are obtained. The Fourier Grid Hamilto-
nian method [77], whose principles are described in this section, has been em-
ployed to solve the above equation. An alternative method to get at least the en-
ergetically lowest eigenfunction, not applied in this thesis though, is the so-called
" propagation in imaginary time” from Kosloff and Tal-Ezer [78].

In equation (2.74) H; isrepresented in coordinate space:

(d,|Hilga) = (d}|Tilaa) + (g4|Vilga)- (2.75)

The potential operator V; isafunction of the position operator () with eigenvalues
q, and eigenvectors |q,):

Qa|Qa> = Qa|Qa>' (2.76)

[ts " matrix elements” in the coordinate representation are then [51]:

(@b Vil ga) = Vi(2a)3(dh — a)- 2.77)
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Theaction of V; in coordinate spaceisasimple multiplication of thewavefunction
©O(g.) With the potentia energy function V;(q.), as expressed in equation (2.74).
On the other hand, the matrix elements of the kinetic energy operator 7} in the mo-
mentum representation are given by,

hik?
24lq
where |k) are the eigenvectors and & the eigenvalues of the momentum operator
K:

(k'Ti|k) =

S(k' — k), (2.78)

K|k) = k|k). (2.79)

The completeness relation holds for the coordinate and momentum eigenstates:

/; |Qa><Qa|d~T =1 (2.80)

o

and

/ k) (k|dk = 1. (2.81)
Inserting (2.81) and (2.77) in equation (2.75) yields

o

(&, Fila) = / (G TR (ko) b+ Vi(ao)5(d — )

o0

-/ k) ’""jj (Klga)dk + Vi(ga)5(d, — aa) (2.82)

o0 2 Qa
The transformation matrix e ements between the coordinate and the mo-
mentum representation are

1

(gulk) = \/—Q—Wei’“fa (2.83)
and
(klga) = %Q_We“%. (2.84)
Therefore, (2.82) gets
@) = o [ o v -w). @89

The last equation is the heart of the FGH method. To get the eigenfunctions of
H; the position operator () is discretized by substituting the continuous coordinate
values g, by adiscrete set ¢

¢, = nAqq, n=1,..,N. (2.86)
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Agq, denotes the spacing in coordinate space and N is the number of grid points.
Finally, the following expression for the matrix elements of H; is obtained [77]:

q 1 N eil27r(nfm)/N T V™ 0 g7
lm_Aqa I_ZNT 1+ Vi(an)onm ¢ (2.87)
with
2
T, = Qh— C(AK)?, Ak =21/NAqg,. (2.88)
m

Diagonalizing the N - N matrix of the Hamilton operator (2.87) yields the eigen-
vectors and eigenvalues of H; on the chosen grid.
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2.7 Propagation schemes for the time dependent
Schrodinger equation

Thecommonly used propagation schemesarecritically analyzedinareview article
by Leforestier et a. [79] and recapitulated by Balakrishnan et al. [80]. Nonethe-
less, for the sake of compl eteness, the basic equations are presented in this section.
In addition, it will be shown how the kinetic coupling termsintroduced in section
2.2 can be included in the second order differencing (SOD) algorithm.

The Hamilton Operator in equation (2.2) is a sum of the kinetic energy oper-
ator 7' and the potential energy operator V. The evaluation of V¥ in coordinate
space is straightforward, since V' is diagonal in this representation and its action
consists of asimple multiplication. The bottleneck of all quantum time-dependent
propagations is the calculation of 7%, which is diagonal only in the momentum
representation. Kosloff and Kosloff [81] introduced the fast Fourier transforma-
tion technique (FFT), in combination with a second order differencing scheme, to
evaluate the action of the kinetic energy part of the Hamiltonian in the momentum
space. Using thefast Fourier transformation algorithm the second derivative of the
wave function is calculated in three steps:

1. Inverse Fourier transformation (IFT) to momentum space:

U (k) = \/; /oo U (qq)e*dg, (IFT),

2. Multiplication with —&2 (k = wave number),

3. Fourier transformation (FT) to coordinate space:

U(g,) = \/; /_ N U(k)e*adk (FT).

If the Hamilton Operator is time-independent, the formal solution of (2.1) is[51]:
[W(0) = Ut 10)[U(to)) = e #7¢) | (1g)), (289)

whereU (t, ty) isthetime-evolution operator. An electricfield makesthe Hamilton
Operator time dependent. If, however, the time step is chosen so small that the
change of the electric field is negligible, the Hamilton operator can be treated time
independent and (2.89) isstill valid. Inthiswork the split operator [82, 83, 84] and
the second order differencing scheme [81] were used to solve the time dependent
Schrodinger equation numerically. Since both methods require short time steps
(which are also needed for handling time-dependent Hamiltonians) they areagood
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choice in the presence of molecule-laser-interactions. Both algorithms are unitary
and norm preserving. The SOD method conserves the energy whereas the split
operator does not. Moreover, the split operator technique cannot be applied when
space-momentum mixed terms - for example kinetic coupling terms - appear in
the Hamiltonian [79]. Therefore, in this work, the split operator was used when
the kinetic couplings were neglected as a first approximation, while when these
couplings were included, the time dependent Schrodinger equation was integrated
by means of the second order differencing scheme.

2.7.1 Second Order Differencing (SOD)

Oneway of solving the time dependent Schrodinger equation numerically isto ex-
pand the time dependent wavefunction in a Taylor series[85, 86]:

0 At? 92 AP P
U(t+ At) = ¥(t) + At - Eq](t) + o ﬁ\ll(t) + T ﬁqf(t) e
(2.90)
or
0 At? 9? At® 93
U(t—At) =U(t) — At - qu(t) + o @\If(t) ST %\Il(t) cee
(2.92)
Subtracting equation (2.91) from equation (2.90) yields
0 A3 93
U(t+ At) —U(t — At) =2 - At - a\If(t) +2- E %\If(t) e (2.92)
The resulting propagation scheme with athird order error in At is
U(t+ At) =U(t — At) +2- At - 2xIJ(t) + 0 (At?). (2.93)

ot

This agorithm requires both the initial wave function ¥ (0) and the wave function
at the first step U(At). Theinitialization scheme used in this work is the Runge-
K utta propagation with the same accuracy (second order) as the SOD method:

0 At? 9?

U(A) = W(0) + At - U (0) + S - 25 (0).

5 (2.94)

According to (2.1) theterm %—‘f reads, in atomic units,

ov N
— = 3 HU =
ot "

( 1 & — iV(Qa) - iT’(l)(‘]a) : (—ihaia) +7;21 T(Q)(Qa)) \IJ’ (295)

—1
2414 Og2 Ha Ha
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where the potential operator V' contains the coupling with the electric field. The
kinetic energy operator 7" and the momentum operator P act in momentum-space
as multiplications with ﬁkQ and k respectively. The following scheme can be

applied:
1. Inverse Fourier transformation to momentum space:

U(ga) — U(k),

2. Calculate the action of 7" and P in momentum space:

jo—L k2

LT (T@(k)) ,

LN (P\T}(k)) ,

3. Fourier transformation of 7'¥ and P¥ to coordinate space

R (T‘If(qa)> (term 1),

(qu(Qa)> :
4. Calculate the action of all other operatorsin coordinate space:
V(qa) Vg -1V (qa)¥(qa) (term 1),
. —Lri(g) 1 .
(P\If(qa)) — —M—T(l)(qa) (P\Il(qa)) (term 111),

ig T (aa) | 1
\I] 2pa_> .
(qa) ? 2/»60,

7@ (q,)¥(q,) (term V),

. __ oy
5. SumuptermsltolVtoget i HV = 7.

In accord with the uncertainty principle, the time step must not exceed the crit-
ical time step

h
Aty = Emax’ (296)
where the maximum energy
Emaw = Tma:c + Vma;c- (297)

Inthelast equation V,,,,, isthe maximum potential energy and 7., the maximum
kinetic energy of the grid defined as

h2m?
Toaz = ————. 2.98
1o B0 (299
For practical calculations atime step five times smaller than the critical oneisre-

commended [79].
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2.7.2 Split Operator

In this method the time propagation operator U/ (t,to) of equation (2.89) isapprox-
imated as [82, 83, 84]:

Ut + At,t) = e #78 = o= i TAle—7VAL=5TA L O (AP).  (2.99)

The propagator (2.99) leads to an error of third order in the time step as a con-
sequence of the noncommmuitability of the kinetic and potential energy operators.
A dlightly larger time step than that of the SOD method specified in section 2.7.1
can be used [80].

This method involves the following steps: The wave function is transformed
to momentum space and multiplied with ewp(—ﬁkQAt). After transforma-
tion to coordinate space it is multiplied with exp(—3V (gq)At). The resulting
wave function is again transformed to the momentum space and multiplied by
exp(—ﬂkQAt) A following Fourier transformation to coordinate space com-
pletes one evolution step. Since the factor exp(—; _ih kQAt) is independent of the
step of the propagation, the left and the right part in (2.99) of two successive
propagation steps can be combined.

2.8 Solution of the electronic Schrodinger equation
using ab initio and DFT methods

Deriving the adiabatic representation in section 2.2 it was assumed that the solu-
tions of the electronic Schrodinger equation

I:Iel|(I)u> — Eﬁ’\@u), (2.100)
where
. " h2 Z p€? . e?
A, = — —] (2101
i (U A ) e
a= i=a 1 a<b

Isthe electronic Hamiltonian in Cartesian coordinates, are known. In practice only
alimited number of electronic eigenfunctions are calculated and used asabasisto
describe the adiabatic behaviour of the molecule. How many el ectronic wavefunc-
tions are needed depends on the process to be described. In this work the photo-
dissociation under a femtosecond laser pulse excitation is investigated; therefore,
a sufficient representation must contain all states which are, directly or indirectly,
significantly populated after the applied pul se.

Nowadays, many sophi sticated methodsfor an approximate solution of (2.100)
exist. In this section those which have been applied in thiswork will be explained
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in subsections 2.8.1 (ab initio methods) and 2.8.2 (DFT methods). Before, some
general remarks about the applied strategy concerning the quantum chemistry cal-
culations will be made.

Thefirst step of modern quantum chemical applicationsisusually to determine
the geometry by an optimization of all degrees of freedom. Compared with single
point energy calculations the geometry can normally be obtained at a rather low
level of treatment [87], (e.g. in thiswork the CASSCF method was used for geo-
metry optimizations but the M S-CASPT 2 - amore sophisticated method - wasem-
ployed for energy computations.) 1n a second step, the vertical excitation energies
are calculated at the optimized geometry. (Here, MS-CASPT2 and TD-DFT cal-
culations have been performed.) These energies can be compared with the exper-
iment and the accuracy of the applied quantum chemistry method can be judged.
For acorrect description of the quantum dynamicsthe accurate computation of po-
tential energy curves, which are obtained in the adiabatic representation (e.g. equa-
tion (2.21)), is an essential requirement. The potential energy curves of big mo-
leculeslike organometal lic compounds can only be described by highly-devel oped
quantum chemistry methodsin arestricted number of degrees of freedom (because
of computational cost). Usually, only the reactive coordinates leading to dissoci-
ation are taken into account (here, the Mn-CQO,,, stretching coordinate). Besides,
on an ultrafast time scale the rest of the molecule is supposed to stay at a fixed
geometry, supporting that very few degrees of freedom are necessary and IVR can
be neglected. The choice of the reaction coordinatesis guided by the structure of
the primary productswhich can be obtained via geometry optimizations of the mo-
lecule in the ground state and relevant electronic excited states.

2.8.1 Standard quantum chemical (abinitio) methods

Standard quantum chemical (ab initio) methods are based on aHartree-Fock (HF)
[88] treatment. The molecular ground state |®,) of stable molecules (if the system
has an even number of electrons) isusually well-described by a single closed shell
Slater-determinant, | D), containing the n (= total number of electrons) energetic-
ally lowest spin orbitals ¢ (determined in a HF calculation):

e1(1)  pa(1) en(1)
I R R
oi(n) @a(n) .. paln)

where the rows are labeled by electrons and the columns are labeled by spin or-
bitals. Using this ansatz for the electronic wavefunction to minimize the elec-
tronic energy E¢ variationally leadsto the Hartree-Fock equations. InaRestricted
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Hartree Fock (RHF) calculation [88] the spin orbitals ¢ are aproduct of the spatial
orbitals ¢ (depending on the spatial coordinate ) and the spin function (depending
on the spin coordinate w), o or 3:

_ |} #(r) - a(w)or
ol ) ‘{ H(r) - Blw) (2109

With this ansatz the spin functions « and 3 can be integrated out. For a numerical
treatment the remaining spatial orbitals ¢ arelinearly expanded in afinite basis set
{0,} of dimension M:

M
bi (f) = Z kijo; (f)a (2.104)

leading to the Roothaan-Hall equations [89]:
FK=SKe¢, (2.105)

where F' isthe Fock matrix, Sisthe overlap matrix, K is coefficient matrix and g
isthe orbital energy matrix. Theiterative solution of equation (2.105) iscalled the
Self-Consistent-Field (SCF) procedure.

The difference between the exact solution of the electronic Schrodinger equa-
tion (2.11), E&™, and the Hartree-Fock-limit energy, E®~-™ which is the solu-
tion of the Hartree-Fock equations[88] when using acomplete basis expansion, is
defined asthe correlation energy E.,,,:

Ecorr — E(Schn) o E(HF-Limit). (2106)

Theobviousway to account for the correl ation energy isto use Configuration Inter-
action (ClI). For agiven basis set a Full Configuration Interaction (FCI) calculation
constitutes abenchmark by which computations of the correlation energy with the
same basis set can be judged, i. e. "full Cl isthe best that one can do” [88]. If the
basi s set reaches completeness, the FCI result will be the exact solution E™, The
FCI expansion of an electronic state reads as [88]:

B7CTy = co| Do) + Y DIy + Y Dy + .. (2.107)

ar a<b,r<s
In equation 2.107, | D, ) standsfor the ground state configuration and | D?) denotes
asingle excitation, i.e. a Slater determinant where the spin orbital ¢, whichisoc-
cupied in the ground stateis replaced by the unoccupied (=virtual) spin orbital ¢,
Similarly, |D’?) isadoubly excited determinant where the orbitals ¢, and ¢, are
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replaced by the virtual orbitals ¢, and ¢,. The number of i-tuply excited determ-
inants for n electrons and 2 M spin orbitals, M being the number of spatial basis

functions ¢, is given by
(M)(QM,_N) (2.108)
7 7

From this formulait is clear that the number of configurations in the expansion
(2.107) grows very rapidly with the number of electrons and basi s functions mak-
ing the FCI method only applicable for very small molecules and reduced basis
sets. Only truncated ClI methods like CIS or CISD, where Single (S) and Double
(D) excitations are considered, can be used in general, but they suffer from size-
consistency (e.g. aCISD calculation of two Hy molecules separated by alarge dis-
tance (say 100 A) does not give twice the CISD energy of one H, molecule (which
is lower)). Furthermore, CIS gives poor excitation energies.

Due to their multiconfigurational character, electronic excited states can not
be described by a single Slater determinant and, therefore, a multiconfigurational
procedure is needed. A solution for computing electronic excited states or for
cases where a single determinant is not even a good zeroth order reference wave-
function is the so-called Multi-Configuration Self-Consistent Field (M CSCF) ap-
proach, which consists of atruncated Cl expansion where not only the CI coeffi-
cients C; in front of the Slater-determinants | D;)

|®MEOSCF) =3 " Cy|D;) (2.109)

arevariationally optimized, but also the Molecular Orbital (MO) coefficientsk;; in
the basis set expansion [90]. The practical problem lies on the choice of therelev-
ant configurations, | D;). A popular solution consists of partitioning the molecular
orbitalsin active and inactive spaces. Thisistheway how the selection of the con-
figurationsis chosen in the Complete Active Space Self Consistent Field Method
(CASSCF) [91]. Theinactive orbitalsstay either doubly occupied or empty during
the calculation. Typically the active space orbitals consist of the highest occupied
and lowest unoccupied orbitals of a RHF wave function. In addition, calculations
of excited states of transition metal compounds containing metal atoms of thefirst
transition row haveto deal with the problem of the 3d double shell effect: Two sets
of d orbitals (3d and 4d) must be included in the reference space in order to obtain
accurate results [92]. Within the active orbitals a Full Configuration Interaction
(FCI) calculation is performed (figure 2.1). Therefore, the CASSCF method ison
the one hand a special MCSCF method, meaning that not only the CI coefficients
but aso the orbital coefficientsin (2.109) are optimized, and on the other hand a
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Figure 2.1: All the possible excitations within the active space define the config-
urations in a CASSCF calculation.

specia case of the FCI method, meaning that all possible excitations within the
active space are taken into account.

The correlation energy (2.106) can be divided into two different contributions:
The static and the dynamical parts. The static part of the correlation energy ac-
countsfor the effect of allowing the orbitalsto be partly singly occupied, likeinthe
CA SSCF description, instead of forcing double occupation, like in the HF approx-
imation. Thisallowsthe description of near-degeneracy effects of molecular orbit-
alswhich are especially important for organometallic compounds. The remaining
correlation energy is the dynamic correlation which describes the correlated mo-
tion of the electrons. The latter part is normally taken into account by subsequent
perturbation treatment, CASPT2 or by the Multi-Reference Configuration I nterac-
tion (MRCI) method [93]. Conventional Cl methodslike CISD consider only con-
figurations generated by exciting electronsfrom a single determinant [94], usually
the ground state RHF wave function. A MRCI calculation is based on a previ-
ous MCSCF treatment, for example CASSCF. The critical step in this method is
the choice of the reference wavefunctions, which has to be consistent along the
process investigated [95]. The externally contracted version of the MRCI method
called MR-CCI, introduced by Siegbahn[96], was applied in thiswork to calculate
the potential energy curves, transition dipole moments and kinetic couplings.

The CASPT2 method applies second order perturbation theory to a CASSCF
reference wavefunction [97, 98]. This treatment includes a large amount of the
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dynamical correlation leading to very accurate resultsfor excitation energies (nor-
mally the error isin the range 0.0-0.3 eV [92, 99]). However, the original version
of the CASPT2 method allowed the calculation of a single state at atime, which
made the description of curve crossing problems impossible. Recently, it was re-
placed by the Multi-State CASPT2 (MS-CASPT2) [100] method which make the
simultaneous treatment of more than one state possible.

Near-degeneracies in the zeroth-order Hamiltonian lead to the problem of in-
truder states. The solution of thisproblemistoincreasethe active space. However,
thisisnot always possible, sincealarger active space increasesthe number of con-
figurations and therefore, the computational cost. A remedy to avoid intrudersis
to introduce alevel shift [101, 92], but then the amount of the correlation energy
included decreases.

For the chosen basis set and active space the CASPT2 method was not able to
describe dissociation correctly in CoMn(CO)s. For that reason the MS-CASPT2
method was used in thiswork to cal culate the vertical excitation spectrum, whereas
the CASSCF/MR-CCI method was applied for the calculation of the potential en-
ergy Curves.

2.8.2 DFT methods

An alternative approach to the Hartree-Fock based methods is the Density Func-
tional Theory (DFT) which is based on the Hohenberg-Kohn theorems[102]. The
first Hohenberg-Kohn theorem (HK-I) states that there is a one-to-one mapping
between the external potential v (i.e the Coulomb attraction of an electron by all
nuclei), the electron density p and the ground state wave function ®:

p & v By (HK-D). (2.110)

Thisimpliesthat all propertiesare functional sof the ground state density dueto the
fact that they are calculated as expectation values of operatorsfor the state vector
®,[p| corresponding to the density p. The second Hohenberg-Kohn theorem (HK-
1) states that the functional E[p] = (®o[p]| H|®[p]), H being the Hamiltonian,
will have the exact ground state energy E£*** as alower bound:

E[p] > E&™ (HK-I1). (2.111)

HK-II is equivalent to the variational principle. The so-caled Kohn-Sham
Hamiltonian H,, which is applied in virtually all DFT applications, is just a sum
of one-electron operators (without electron-electron interaction):

Ho=>" (—%v%‘) + vs(i)) . (2.112)

i
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Using ansatz (2.112) assumes that noninteracting electrons move in an external
local potential, called v,, which has the property that its wave function - asingle
Slater determinant of the lowest n (= number of electrons) orbitals - yields exactly
the same electron density as the exact interacting electron system with potential
v. Thisiscorrect, since the HK-1 theorem states that v, must be unique and thisis
clearly independent of the form of the two electron interaction - totally neglected
in (2.112). The Kohn-Sham one-electron equations are:

(=570 + () 1 =gl @13

Itisnot clear if the Kohn-Sham orbitals X have any other physical significance
than the property that the sum of their squares adds up to the exact el ectron density.
Their orbital energies can not be related to theionization energies like the Hartree-
Fock orbital energies (previous subsection) - except for the energy of the highest
occupied orbital which equals the negative of the exact ionization energy. It is
therefore hazardous to compare DFT and Hartree-Fock calculations at molecular
orbital level.

For details about the DFT method the reader isreferred to refs[102, 103, 104].
The Time Dependent DFT (TD-DFT) method which can be applied to calculate
excited states is based on "the fact that frequency dependent linear response of a
finite system with respect to atime-dependent perturbation has discrete poles at the
exact, correlated excitation energies of the unperturbed system.” [103] The mean
polarizibility a(w) isfrequency dependent and describesthe response of thedipole
moment to atime-dependent electricfield with frequency w. Itsrelationtotheelec-
tronic excitation energiesw; = Ef — E¢ and corresponding oscillator strength f;
isgiven by:

a(w) = Z 2 Ji — (2.114)
It can be seen from equation (2.114) that the mean polarizibility «(w) has poles at
w = w; (= the excitation energy). In the Kohn-Sham formalism the exact linear
response to the time-dependent perturbation with frequency w(t) is expressed as
the linear density response. The ordinary Kohn-Sham orbitals (2.113) obtained in
aregular ground state calculation are involved. Their energy differences are shif-
ted towards the excitation energies (the polesin equation (2.114)) by a systematic
changein the perturbation frequency w. ”Hence, excitation energies are expressed
intermsof ground state properties and the problem whether density functional the-
ory can be applied to excited statesismost elegantly circumvented.” [103] Aslong
as only low-lying valence states (not Rydberg states) are involved, the error of the
TD-DFT methodiswithinafew tensof V. Therefore, the TD-DFT approach may
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rival more sophisticated and much more costly wave function based approaches
(like CASPT2). Yet, comparison between these two approachesis not often in the
literature and the real performance of TD-DFT isdifficult to judge.

The TD-DFT method has been applied in this work for the calculation of ex-
citation energies to compare them with the corresponding MS-CASPT2 excitation
spectrum. Furthermore, CASSCF optimized ground state geometries have been
compared with DFT optimizations. The applied particular functionals and basis
sets applied in thiswork will be described in chapter 3.

2.9 Calculation of the kinetic coupling terms T
and T®

This section deals with the numerical computation of the kinetic coupling terms
T and T using the Cl and MO coefficients of amulticonfigurational wae func-
tion. In section 2.9.1 some general properties of T and T(?) are reviewed. In
section 2.9.2 our method of calculating T is presented and compared with dif-
ferent approaches found in literature. Finally, in section 2.9.3 it is described how
T can be calculated using T,

2.9.1 General Propertiesof T® and T2

The one-dimensional Schrodinger equation (2.21) with coupling elements defined
by equations (2.22) and (2.23) isconsidered. It isassumed that the electronic wave
functions |®,) arereal and orthonormal

(P ®y) = - (2.115)
If 1 isequal tov it follows:
0 0 0 0
a—qa<q)u|q)u> = <(I)u‘a—qaq)u> + <a—qaq)u‘¢'u> =2 <(I)“‘6—qaq)”> =0
0
= <©u|a—qa@u> - 0 (2116)
In the case that 1 is not equal to v theresultis:
0 0 0 0 0
(B, |®,) = (D] =——B,) + (=—B,|®,) = (D,|—T,) + (B,|—,)* =
o (Bal®) = (Bl 1)+ (5 -0(80) = (B[ 5 -0,) + (2,5 -@,)" =0
(2.117)
Sincethe |®,) areredl,
0 0
Q,—P,) =—(D,|—D,). 2.11
= (@450 = ~(B,]5-2,) (2.118)
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This means that the matrix 7") is antisymmetric with diagonal elements equal to
zero. According to Baer [52], T can be written as

7@ = 90 Lo ) (2.119)
= 0= =
— symmetric

anti—symmetric

This meansthat 2(2) is neither symmetric nor anti-symmetric. Equation (2.119) is
derived in section 2.9.3.

2.9.2 Calculation of thekinetic couplingterm T® using a mul-
ticonfigur ational wave function

The electronic multiconfigurational wave function |®,) can be expressed asalin-
ear combination of state configurations | D;)

0(¢0)) =Y Cuj(4a)| Dj(qa)), (2.120)
J

wherethe C,; arethe ClI coefficients of the v-th electronic state.
Substituting equation (2.120) in equation (2.22) leads to [62]:

= (% Cuslan)Dial - 3 Corlan) D)

0k

-

- ; (aqa VJ) +ZZCH] Qa Cuk Qa < (Qa)‘aiank(qa». (2121)

7 v

A(l) ~ _

-~

B

In the last expression AE},,) isreferred to asthe Cl term involving differentiation of
the CI coefficients and the term B,(j) contains derivatives of configurations or de-
terminants [62]. Aswill we shown in section 3.6.1, the BS) term ultimately leads
to integrals of the form (¢, | % |ém) Where ¢; and ¢,,, are the orbitals by which the
determinants D; and Dy, differ and is, therefore, referred to asthe MO term. Mat-
rix elements of determinantsdiffering in more than two orbitalswill vanish for the
following reason: Since % IS a one-particle operator, according to the Condon-
Slater rules [88], the matrix elements

9 Dr(aw)

(D) 5

= 25 Cus (5. ) (D D) + I ICHLHAICTAT

Dy, (Qa»



Theory 51

are non-zero only if the determinants D; and Dy, differ in less than two orbitals.
Furthermore, the determinants D; are assumed to be real and orthonormal:

(Dj| D) = 6k (2.122)

This leads to equations similar to the ones reported in (2.116) and (2.118) of the
previous section:

0

<Dj|8—anj> =0, (2.123)
0 0
(Dj 90, Dy) = —(Dy| 90, D;). (2.124)

Whether the Cl, Af},,) or theMO term, Bfﬁ) isthe dominant oneisrather arbit-
rary. For instance, " diabatic’ CASSCF orbitals [105, 106] change as little as pos-
sible as afunction of geometry. Using the invariance of the CASSCF and MRCI
energies with respect to unitary transformations, they are generated by maximiz-
ing the overlap of CASSCF orbitals at a displaced geometry with the orbitals at
the reference geometry. Consequently, the relative contributions of the orbital and
Cl contributionsto the matrix elements of T are modified: The orbital contribu-
tion is minimized, and to a very good approximation the matrix elements of TV
could be obtained from the Cl-vectors aone. Therefore, given this smooth set of
"CASSCF”’ orbitals, rapid variations of the total wave function are confined to the
Cl coefficients and can then be eliminated for instance by block-diagonalization
yielding quasi-diabatic statesand energiesfor CASSCF and MRCI wavefunctions.
This”direct” diabatization scheme has been applied e.g. to the photodissociation
of ozone[105, 106, 107] and H,S[108].

2.9.3 Calculation of thekinetic coupling term T® using T®
Substituting equation (2.120) in equation (2.23) yields
52 82
7200 = 3 Co (550 ) + 2 3 Coala)Cor(0) (D300 55 Dula)
J a Jj k

a

#2- 23 Culad) g Coran) ) {Dswl g Duta). @329

Instead of evaluating the last equation the following expression taken from ref.
[52] and derived below was used in this work to calculate 7 using 7(:
0

T@ = 8—2(1) + 7. 7, (2.126)
- o™ T o
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Derivation of equation (2.126):
Equation (2.126) can be proved by looking at a matrix element of 7*):

(Bl % g Pl )+ SOl OOl ). (212D

From (2.118) follows

0 0
(@ulg 20 = =5 ~@ul®).

a

Inserting the last expression in (2.127) leads to

0? 0? 0
(@ul55P0) = ( (Pul55P0) + (5@ -> <I> 4 @) @A\ ®,)
qa, qG, qa /\ a P
Z|¢A;(r¢x| =1
0? 0? 0 0 0 0

o <I>,,)é0 g. e d.

= (q’u\a—ng’ﬁ - @u\a—qg‘bu) - <3—qa ”|8—qaq)"> + (79

A,



