
Chapter 2

Theory

This chapter reviews the theoretical concepts of this work: First, the Hamiltonian

describing a molecule coupled with an external electric field is introduced in sec-

tion 2.1. In section 2.2 the adiabatic and diabatic representation of the time de-

pendent Schrödinger equation are introduced. The topics of the following sections

are rotational averaging (section 2.3), time dependent calculation of spectra (sec-

tion 2.4), pump-probe ionization spectroscopy (section 2.5), and the calculation of

the initial nuclear wave function (section 2.6). In section 2.7 the applied propaga-

tion schemes are described and section 2.8 deals with methods for finding an ap-

proximate solution of the electronic Schrödinger equation. Finally, our approach

of calculating the kinetic couplings is presented in section 2.9.

2.1 Schrödinger equation, molecular Hamiltonian

and coupling with the laser field

Time dependent Schrödinger equation
The time evolution of a state vector

���������
	
is governed by the Schrödinger equa-

tion, �
���� � ���������
	�� �� ���������������
	��
(2.1)

where
�� �����

is the Hamilton operator of the system. In this work the Hamilton

operator consists of two parts: The first part describes the molecule without any

external field and neglecting relativistic effects. The second part expresses the

influence of the electric field (laser pulses in this work).

Molecular Hamilton operator
Assuming no interaction with the environment the non-relativistic time-

independent Hamilton operator of a molecule,
��������

, with � nuclei and  
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electrons is given by!"�#�$�%'&)( !*,+,-/.0( !12+,-/.0(,!354 -/.�(6!784 -:9<; !=>&)( !*,+,-/.0(,!354 -:9@? !AB&C( !1D+,-/.�(6!784 -:9E. (2.2)

where !=>&)( !*�+F-/.0(,!3G4 -:9<;IH JK+5LNMPO QRTS + !* Q+ H UK V L 4 O QR:WYX !3 Q4 (2.3)

describes the kinetic energy of the nuclei and electrons and!AZ&)( !1D+F-/.0(6!784 -:9<; [\:]_^a` b H UK 4 LNM JK+5LNM c +6d Qe !784 H !1D+ e ? UK 4gfih d Qe !784 HI!78h e ? JK+ fkj c + c j d Qe !1D+ZH !1 j eml
(2.4)

accounts for the electron-nuclei, electron-electron and nuclei-nuclei interactions,

respectively, and represents the potential energy of the molecule in the absence of

external time-dependent fields. In the above equations
!1D+

is the position operator,!*�+
the momentum operator,

S +
the mass and c + the atomic number of the nuc-

leus n . Likewise
!784 and

!3G4 are the operators of the position and momentum of the

electron o and
WYX

is the electron mass.

Coupling with the Laser Field

The applied laser pulses used in this work can be described classically for they

have a high photon density. The electric field is a function of time p and space
1

and can be written asq &r1 . p 9�;sd t q ` tau/& p 9vt d Vmwyx 1 z|{:}�~ ?�d z Vmw�x 1 z|{a}�~R .
(2.5)

where
d

denotes the polarization vector, q ` is the amplitude,
u/& p 9 defines the shape

of the pulse,

x
is the wave vector and � is the central frequency of the field. The

term
d V�x 1

can be expanded in a Taylor series:d Vyx 1 ; [ ?�� x 1 ?��8�8�@�
(2.6)

Since the spatial extension of a typical molecule is of the order of � 10 Å whereas

the wave lengths of the applied lasers are around 400 nm (= 4000 Å) the Taylor

expansion (2.6) can be truncated after the first term turning the electric field inde-

pendent of

x
and

1
: q & p 9�;�d t q ` t�u/& p 9�t d V {a} ?�d z V {a}R �

(2.7)

or: q & p 9<; q ` tau/& p 9vt��E��u/& ��p 9E. where q ` ;�d t q ` � (2.8)
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It can be shown that, if the wave length of the electromagnetic field is much

smaller than the extension of the molecule, the light-molecule interaction con-

sists of an electric dipole, a magnetic-dipole and an electric-quadrupole part [50].

The latter two are by the order of the dimensionless factor 1/137 smaller than the

electric-dipole term [50]. This means that the electric-dipole term - if it does not

vanish at all - is the dominant one and the other two can be neglected. In this so-

called electric-dipole approximation [50, 51] the operator, ��������
, describing the

interaction of the molecule with the electric field is given by��������<�I�2� �����g�_�� � �� � (2.9)

where �� is the electric dipole operator and
��

is the rotation matrix that connects the

space-fixed coordinate system of
� �����

with the molecule-fixed coordinate system

of �� . In this work it will be approximated by classical averaging (see section 2.3).

To describe the molecule-laser interaction the total Hamiltonian �� is written

as a sum of the molecular Hamiltonian ����v��� and the coupling with the external

electric field �� �����
: ��¡�����<� ��������/¢ �� �����E£

(2.10)

Describing the electric field classically (cf equation (2.9)) and the molecule

quantum-mechanically (cf equation 2.2) is often referred to as the semiclassical

dipole approximation.

2.2 Adiabatic and diabatic representation of the

time-dependent Schrödinger equation

For a numerical treatment of the Mn-CO photodissociation the time-dependent

Schrödinger equation will be represented in the adiabatic basis in section 2.2.1 and

2.2.2. In section 2.2.3 the time-dependent equations of an alternative representa-

tion, the diabatic picture, will be derived. The probability of dissociation can be

used to determine life times of excited states. It will be defined in section 2.2.6

after the Born-Oppenheimer approximation has been introduced in section 2.2.5.

2.2.1 Derivation of the adiabatic representation

It is assumed that the eigenvectors ¤�¥�¦0§ and eigenvalues ¨ª© �¦ of the electronic

Schrödinger equation �� © � ¤�¥�¦E§ � ¨ © �¦ ¤�¥�¦0§ � (2.11)
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where«¬®­'¯±°³² ´µ ¶
·N¸ ¹|º»:¼ ­ «½ º¶�¾ ¿À�ÁFÂ�ÃÅÄ ² ´µ Æ ·5¶ÈÇµÉ ·N¸ Ê É6Ë ºÌ «Í ¶ ² «Î É Ì ¾ ´µ ¶gÏiÐ Ë ºÌ «Í ¶ ² «Í Ð ÌÒÑ (2.12)

is the electronic Hamiltonian, are known for fixed positions of the nuclei Ó °¿TÔÕÔ�Ô×Ö
. In reality, exact solutions of (2.11) exist only for very simple systems.

In section 2.8 methods for an approximate solution of the electronic Schrödinger

equation are discussed.

Since the repulsion between nuclei,¿À�ÁFÂ
Ã Ä ÇµÉ ÏkØ Ê É Ê Ø Ë ºÌ «Î É ² «Î Ø Ì ÑÚÙ
is a constant for fixed nuclear coordinates it can be added to the electronic Hamilto-

nian «¬ÜÛ­'¯ ° «¬®­�¯ ¾ ¿À�Á@Â
ÃÜÄ ÇµÉ ÏkØ Ê É Ê Ø Ë ºÌ «Î É ² «Î Ø Ì ÑÚÙ (2.13)

or to the electronic energy yielding the adiabatic potential energy ÝiÞ :Ý/Þ�ßCà «Î ÉFá:â °�ã ­'¯Þ ßCà «Î ÉFá:â ¾ ¿À�ÁFÂ�Ã Ä ÇµÉ ÏkØ Ê É Ê Ø Ë ºÌ «Î É ² «Î Ø Ì Ñ Ô
(2.14)

With these definitions the molecular Hamiltonian reads as«¬�ä�å�¯±°I² ÇµÉ ·N¸ ¹/º»Tæ É «ç ºÉ ¾ «¬ Û­'¯ Ô
(2.15)

In the adiabatic representation the total wavefunction
Ì�è ß�é â
ê is expanded in

the basis of the electronic wavefunctions
Ì�ëíì ê which diagonalize the electronic

Hamiltonian

«¬®­�¯
:´0îkï à Î É á Ì�è ß�é â
ê ° µ Þñð Þ:ß)à Î É á Ù é â Ì�ë Þaß)à Î É á:â
ê ­�¯ Ô (2.16)

The multiplication of
Ì�è ß�é â�ê with ´0îiï à Î É á Ì on the left side of equation (2.16) de-

scribes a projection of the total wavefunction on the basis of the nuclear coordin-

ates. The index ” Ëóò ” in (2.16) denotes the dependence of the electronic wavefunc-

tions
Ì�ë Þ ê on the electronic coordinates. This index will be skipped in the follow-

ing equations. In equation (2.16) - the so called Born-Oppenheimer ansatz - the

time-dependent coefficients ð Þ�ß�é â can be interpreted as the nuclear wave functions.

Equation (2.16) is exact as long as the electronic basis à Ì�ë Þ:ß)à Î É á:â�êEá is not trun-

cated. Inserting (2.16) in the time dependent Schrödinger equation (2.1) with the

total Hamiltonian (2.10) leads to:ô ¹>õõ é µ Þñð Þ�ßCà Î É á Ù é â Ì�ë ÞaßCà Î É á:â�ê °
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ö ÷øùûúNüþý|ÿ��� ù � ù ø � � ���	��
 ù �
��������� ������
 ù �����
������ "! �	��
 ù ��� ø � � ���	��
 ù �
��������� ���	��
 ù �����

ö$# � ���&%(') %*�+ �	��
 ù ��� ø � � ���	��
 ù �
�����,�-� ���	��
 ù �����/.
Multiplying by 0 �21 ����
 ù ����� on the left and integrating over the electronic coordin-

ates, one obtains 3 ý 44 � ø � � ������
 ù �
����� 0 �21 ����
 ù �����-� ������
 ù �����5 687 9:<; = >
ø � ?@A 0 �21 �	��
 ù ���,�-� ���	��
 ù �����5 687 9:B; = ÷øùûúNü2C ö ý ÿ��� ù � ù � ���	��
 ù �
�����ED$F8GH

�JI � % ø � ÷øù5úNü ö ý/ÿI ��� ù ?@@A 0 �21 �	��
 ù ������K�ùL�-� ���	��
 ù �����5 687 9MONQPSR; =UT VXWZY\[ V ]\^ %ZK�ù � ������
 ù �
����� F8GGH
� ø � ?@@A � ������
 ù �
�����_% ÷øù5úNü ?@@A ö ý/ÿ��� ù 0 �21 �	��
 ù ���,� � ù`��� ���	��
 ù �����5 687 9M NbacR; =UT VXWdY\[ V ]\^ F GGH F GGH

� ø � ?@A 0 �21 �	��
 ù ����� ���� U! �	��
 ù ������� ������
 ù �����5 687 9e = WZY\[ V ]\^gf :B; = % � ���	��
 ù �
�����	F8GH
ö$# � ���/% ') % ø � ?@@A 0 �21 ����
 ù ���,���+ �	��
 ù ������� ������
 ù �����5 687 9h ; = WZY\[ V ]\^ % � ���	��
 ù �
����� F8GGH �

where 0 �21 ����
 ù �����-K�ùi�-� ���	��
 ù ����� (2.17)
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and j\k2lEm�n�oqp r�s,t�uvpit-kxw�m	n�oqp r�s�y
(2.18)

are the matrix elements of the kinetic coupling matrices z {S|U} and z {�~	} , respectively.� l
corresponds to the adiabatic potential of the � -th electronic state, forming a di-

agonal element of the adiabatic potential matrix
�

that is diagonal in the adiabatic

picture. Finally, � l-w m	n�oqp r�s are the matrix elements of the adiabatic dipole matrix� � . With these notations the resulting adiabatic time dependent Schrödinger equa-

tion becomes:�E��������
l	m	n�o$p r
� � si���_� ��p�� | � ~��� p uvp�� � l	m�n�oqp r�s	� �

l	m	n�o$p r
� � s� � w � ��pX� |
� � ~� p z {�|U}l-w	� p m�n�oqp r�s�����p�� �

w�m	n�oqp r
� � s �� � w � ��p�� |
� � ~��� p z {Q~	}l-wE� p m�n�oqp r�s � �

�
w�m�n�oqp r
� � s�q� m � s/�(�� � � w � l-w m	n�oqp r�s_� �

w�m	n�oqp r
� � s/  (2.19)

2.2.2 Adiabatic description of the Mn-CO ¡8¢ photodissociation

Taking into account the Mn-CO £E¤ stretching coordinate ¥8£ with the corresponding

reduced mass �¦£ , �¦£ � §©¨�ª/«q¬ { ¨®­ }S¯ � §©¨®­§ ¨�ª/«q¬ { ¨®­ }�¯ � §©¨®­ �
(2.20)

and neglecting all other nuclear degrees of freedom, equation (2.19) gets

�	� ������
l�m ¥8£ � � sL� °±±±² � � ~� �¦£ � ~� ¥ ~£

� � l	m ¥³£ s´ µ8¶ ·¸O¹ {Qº<»¼}
½8¾¾¾¿ �

l	m ¥8£ � � s´ µ8¶ ·
Born-Oppenheimer dynamics (section 2.2.5)� � ~�¦£ � w z {�|U}l-w m ¥8£ s_� �� ¥8£

�
�
w�m ¥8£ � � s_� � ~� �¦£ � w z {�~	}l-w m ¥³£ s_� �

w�m ¥³£ � � s´ µ8¶ ·
kinetic coupling terms



Theory 25À$Á Â<Ã�Ä/ÅÇÆÈ Å/É�ÊÌË Í Ê Â<Î8Ï8Ä_Å,Ð Ê Â<Î8Ï�Ñ�Ã�ÄÒ Ó8Ô Õ
coupling by electric field

Ñ (2.21)

where ÖØ×�ÙUÚÍ Ê ÂBÎ8Ï8ÄiÛÌÜ\Ý Í ÂBÎ³ÏÞÄ,ßáàà Î8Ï ß-Ý Ê ÂBÎ³ÏÞÄ�â (2.22)

and Öã×Qä	ÚÍ Ê Â<Î8Ï8ÄiÛÌÜ\Ý Í ÂBÎ8Ï8Ä�ß à äà Î äÏ ß�Ý Ê Â<Î8Ï8Ä�â³å (2.23)

The last equation describes the nuclear motion of a (pseudo-)diatomic molecule

along the internuclear bonding coordinate Î8Ï , where Ð Ê Â<Î8Ï�Ñ�Ã�ÄãÛæÐ(ç Í�èÊ ÂBÎ8Ï�Ñ�Ã�Ä is the

vibrational part of the nuclear wave function. The rotational and translational mo-

lecular degrees of freedom are separated by a product ansatz,Ð2Â<Î8Ï Ñ¼éëê ÄLÛìÐ ç ÍZè ÂBÎ8Ï³Ä_Å,Ð(í�î"ï�ÂBðÞÏ�Ñ¼ñòÏ³Ä_Å,ÐóïZí ÏEôÞõ ÂUéqê Ä/Ñ (2.24)

where Î8Ï is the relative and éëê is the center of mass coordinate.

It is helpful to write equation (2.21) in matrix notation,öE÷ àà Ã Ð Û�À ÷ äø Ë¦Ïúù à äà Î äÏ Ð ûýü Ð À ÷ äË¦Ï Ö ×�ÙUÚ àà Î³Ï Ð À ÷ äø Ë¦Ï Ö ×�ä	Ú Ð ÀþÁ ÂcÃ�Ä/Å¦ÆÈ Å�ÿ Ë Ð å
(2.25)

In the adiabatic representation the potential matrix ü is diagonal with the potential

energy curves ü Í ÂBÎ8Ï³Ä of the
ö
-th electronic state as diagonal elements:ü Û ��� ü Ù Â<Î8Ï8Ä � åÞåÞå� ü ä Â<Î8Ï8Ä

...

���� å (2.26)Ö ×�ÙUÚ
and

Ö ×�ä	Ú
define the off-diagonal part of the kinetic energy operator in the adia-

batic representation. In section 2.9 it is shown that

Ö ×�ÙUÚ
is antisymmetric with di-

agonal elements equal to zero,Ö ×�ÙUÚ Û ��� � Öã×SÙUÚÙBä ÂBÎ³ÏÞÄ åÞåÞåÖ ×�ÙUÚä�Ù ÂBÎ8Ï8Ä �
...

���� Ñ with

Öã×SÙUÚÍ Ê ÂBÎ³Ï8ÄLÛ À Öã×�ÙUÚÊ Í ÂBÎ³ÏÞÄ&Ñ (2.27)

whereas

Ö ×Qä	Ú
is neither symmetric nor anti-symmetric:Ö ×�ä	Ú Û ���

ÖØ×Qä	ÚÙ�Ù ÂBÎ8Ï³Ä Öã×�ä	ÚÙBä ÂBÎ³ÏÞÄ åÞå8åÖ ×Qä	Úä�Ù ÂBÎ8Ï³Ä Ö ×�ä	Úä�ä ÂBÎ³ÏÞÄ
...

���� å (2.28)
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Finally, the coupling with the laser is given by (2.9). In the symmetric matrix � 	
the diagonal elements are the dipole moments of the molecule on the correspond-

ing potentials and the off-diagonal elements are the transition dipole moments con-

necting the electronic states:

� 	 
 ��
 	 ������������	 �����������������	 ��� ��������	 ��� �������
...

��� "! with 	 #%$&������� 
 	 $'#'�������(� (2.29)

2.2.3 An alternative description: The diabatic picture

Starting with the adiabatic time dependent Schrödinger equation (2.25) the deriv-

ation of the diabatic representation follows mainly the paper by Baer [52]. Yet, in

opposition to the latter article the equations are formulated one-dimensional and

time-dependent including interaction with an electric field in the electric dipole ap-

proximation. The diabatic basis can be obtained from the adiabatic one by a unitary

transformation, )* , of the electronic wave functions +%, #�- :+ . #�- 
 )*0/ +%, #�- � (2.30)

The kets + . #1- form the diabatic basis, and equation (2.30) defines the unitary trans-

formation )* of the adiabatic into the diabatic basis set. Both, the total wavefunc-

tion expressed in the diabatic basis,2�35476980: ; +=< �1>?� - 
A@ #CB # � 6980: ; ! >?� + . # � 698D: ; � - (diabatic) ! (2.31)

and the total wavefunction in the adiabatic basis,2�354'6980: ; +%< ��>?� - 
 @ #FE # � 6980: ; ! >?� +%, # � 6980: ; � - (adiabatic) ! (2.32)

have to be identical. This defines the relation between the diabatic nuclear wave-

function B and the adiabatic one, E :

E 
 * B ! (2.33)

From equation (2.33) it follows thatGG ��� E 
 GG ��� * B H * GG ��� B ! (2.34)

and G �G � �� E 
 G �G � �� * B HJI GG ��� * GG ��� B H * G �G � �� B � (2.35)
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Substitution of the last three equations, (2.33), (2.34) and (2.35), in the adiabatic

representation of the time-dependent Schrödinger equation (2.25) yieldsK7LNMMPORQ S TVU LXWY[Z]\_^ ` M WMba W\ Q S c YdMMea \ Q MMba \ S cdQ M WMba W\ S fgcJh Q S
U Y L WY9Z]\Ri jlknmo` MMea \ Q S cdQ MMea \ S f U L WY[Z]\Ri j W m Q S Ugp q O?r0stvuZ Q S
TVU LRWY[Z]\ ^ Q M WMba W\ S cJh Q S U Y LRWY[Z]\ ` MMba \ Q c i jlknm Q f MMba \ S

U LXWY[Z]\w` Y i jxknm MMba \ Q c i j W m Q c M WMba W\ Q f S Uyp q O?r stvu Z Q S z (2.36)

By definition, the kinetic coupling terms are replaced by potential coupling in the

diabatic representation. It will be proved that, if Q fulfills the differential equation

(2.37): MMba \ Q c i jlknm Q T|{~} (2.37)

also the term Y i jlknm MMba \ Q c i j W m Q c M WMba W\ Q (2.38)

vanishes.

To prove the last statement, equation (2.37) is differentiated,M WMba W\ Q TVU MMba \ i jxknm Q U i jlknm MMba \ Q } (2.39)

and substituted into equation (2.38):Y i jlknm MMba \ Q c i j W m Q U MMba \�i jxknm Q U i jxknm MMba \ Q T|{ (2.40)

� i jxknm MMba \ Q c i j W m Q U MMba \ i jxknm Q T|{5z (2.41)

Inserting (2.37) into the last expression leads toU i jlknm i jlknm Q c i j W m Q U MMba \�i jxknm Q T|{~z (2.42)

It can be shown that the termU i jlknm i jlknm Q c i j W m Q U MMba \ i jxknm Q (2.43)
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vanishes identically. The proof is given in section 2.9.3. It is therefore shown that,

if � satisfies the differential equation (2.37) the kinetic coupling terms � �x�n� and� ���'� , defined in equations (2.22) and (2.23), respectively, vanish and the time de-

pendent Schrödinger equation (2.36) is expressed as:�7����P� � � ��� � ��[����� � � ��e� �� � ��� � � �g� � �?�(�]�  ��¡ � � � ¢ (2.44)

By multiplication of the last expression with � £ the final result is obtained:�'� ��P� � �¤� � ��[�]� � � ��b� �� � �d� £ � �¥ ¦�§ ¨© ªn«­¬ � �g� � �?�®� �  � � £ ¡ � �¥ ¦�§ ¨¯ ° ª±«=¬ � ¢ (2.45)

In the last expression � �A� £³²
is the diabatic nuclear wavefunction,� £'� � �|� ´�µ � (2.46)

denotes the diabatic potential matrix which is in general not diagonal and� £ ¡ � � � ¡ � ´�µ � (2.47)

defines the diabatic dipole matrix.

2.2.4 Comparison between the adiabatic and the diabatic rep-

resentation

In the adiabatic representation the potential matrix is diagonal, whereas the kinetic

energy has coupling terms, � �l�n� and � �¶�'� . In the diabatic picture the kinetic coup-

lings are replaced by potential couplings, therefore, the diabatic potential matrix

has off-diagonal elements which couple the different states. Both representations

are equivalent in the physical sense [53] and are connected by the unitary matrix� that defines the transformation of the nuclear and electronic wavefunction, the

potential and kinetic energy and the transition dipole moment (see previous sec-

tion). In this work, the adiabatic potentials and transition dipole moments come

from quantum chemistry calculations and the kinetic coupling terms � �l�n� and � �¶�'�
have been numerically evaluated from the ab initio data (chapter 3).

The physical interpretation of the adiabatic representation is straightforward:

The potentials and transition dipole moments are computed for fixed positions

of the nuclei using approximate methods for the solution of the electronic
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Schrödinger equation (section 2.8). The kinetic couplings are only large around

avoided crossings which mark the break-down of the Born-Oppenheimer approx-

imation (= a strict separation of the electron and nuclear motion). The Franck-

Condon principle implies that electronic transitions are vertical transitions mean-

ing that the electronic (adiabatic) potentials do not change during the transition.

This principle allows the calculation of the absorption spectra.

In the diabatic case, the potentials and consequently the excitation energies dif-

fer from the adiabatic ones. Therefore, it is not clear how the diabatic excitation

energies can be interpreted (i.e. if they can be related to experiment). For that

reason the adiabatic representation in dynamics simulations was used throughout

this work. This was possible because the kinetic couplings are smooth enough

to use them as non-adiabatic couplings in the numerical calculations. Neverthe-

less, the use of the potential couplings (i.e. diabatic picture) is inevitable in all

cases where the kinetic couplings defined by (2.22) and (2.23) are very sharply

peaked around avoided crossings causing numerical difficulties. These computa-

tional problems of the adiabatic representation can be avoided by transforming into

the diabatic basis, where the kinetic couplings are replaced by potential coupling

functions which are usually smooth [54].

The problem of transforming the adiabatic into the diabatic representation has

been treated in recent studies [55, 56, 57]. The diabatic representation has been

used to treat atom-atom collisions [54, 58], atom-molecule interactions [52, 59],

photodissociation of OH [60], photodesorption [61] and photodissociation of or-

ganometallic compounds [34], amongst some applications. In the latter two art-

icles by Saalfrank and coworkers a diabatization procedure is applied which makes

use of the fact that the kinetic coupling terms can be approximated by Lorentzians

[62] if numerical results are not available.

2.2.5 Born-Oppenheimer dynamics

In the Born-Oppenheimer approximation [63] the kinetic coupling terms ·¹¸lºn» and· ¸�¼'» in equation (2.21) are neglected. The first term of the left-hand side of equa-

tion (2.21) defines the Born-Oppenheimer dynamics (without coupling due to the

electric field). Within this approximation the one-dimensional time-dependent

Schrödinger equation is given by:

½7¾N¿¿bÀ9ÁÃÂ7Ä�Å�Æ9Ç À?ÈÊÉ ËÌÌÌÍÏÎ ¾ ¼Ð[Ñ Æ ¿ ¼¿ Å ¼ÆNÒ�Ó Â�Ä�Å�Æ ÈÔ Õ�Ö ×Ø�Ù ¸�Ú�Û�»
Ü�ÝÝÝÞ ÁÃÂ'Ä�Å�Æ[Ç À?È®ß (2.48)
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The infinitesimal change of the electronic wavefunction when changing the inter-

nuclear distance, àà(á�â�ã%äæå�ç , vanishes when the electrons follow the nuclei instantan-

eously. The Born-Oppenheimer approximation breaks down in the case of avoided

crossings of electronic potential curves of the same symmetry and spin. The kinetic

couplings are the larger the smaller the reduced mass is, i.e. when light particles are

involved (for example hydrogen atoms), and the higher the momentum, èêé7ëyàà®á âíì å ,
of the particles is.

2.2.6 Population and probability of dissociation

The normalization condition for a wave function in one dimension, for example in

the Mn-CO stretching coordinate î�ï , isð±ñ ã ñ ç á âóòVôíõ (2.49)

In the adiabatic picture the total wave function, ã ñ÷ö�ø?ù ç , is expanded in terms of the

electronic wave functions ã=äûú1ç :ð î�ï ã ñ÷ö�ø?ù ç ò|ü ú ì ú ö î�ï[ý ø?ù ã=äûú1ç?þ±ÿ õ (2.50)

Under the assumption that the electronic wave functions are orthonormal,ð äûú�ã%äæå�ç ò�� ú=å ý (2.51)

the normalization condition gets:ô ò ü ú ������ � î�ï ì	�ú ö î�ï�ý ø?ù ì ú ö î�ï�ý ø?ù õ (2.52)

The population 
 ú of the é -th electronic state can be then defined as the part of the

total norm (which is equal to one) calculated by:
 ú ö�ø?ù ò � ���� � î�ï ì	�ú ö î�ï[ý ø?ù ì ú ö î�ï[ý ø?ù õ (2.53)

Furthermore, the vibrational part of the nuclear wave functions ì�� ú�
ú can be expan-

ded in terms of the vibrational eigenfunctions � � ú�
��� (a numerical method for calcu-

lating them is given in section 2.6):ì � ú�
ú ö î�ï[ý ø?ù ò ü ����� ��� ö1ø?ù � � ú�
��� ö î�ï ù õ (2.54)

Then the population of the é -th electronic state is given by the sum of the popula-

tions on the different vibrational eigenstates:
 ú ö�ø?ù ò � ���� � î�ï ü�� ��� �� � ö�ø?ù � � ú�
��� � ö î�ï ù ü ����� ��� ö1ø?ù � � ú�
��� ö î�ï ù



Theory 31���������! ���"$#���&%('*) "  ��,+ %�'*).-0/�11 2  ,3�4�5���6%�7$89) 2  ,3�4 ��:%�7;8;)*<=7;8?> (2.55)

Assuming that the eigenfunctions form an orthonormal set,-0/�11 2  ,3�4�5��� %�7;8$) 2  ,3�4 �� %�7$89)&<=7;8 ��@ ���A ��&B (2.56)

equation (2.55) becomesC 3 %�'*) � �  ���"D# ��*%�'*) "  �� %('*) � �  ��FEG"  �� %�'*) E H (2.57)

and the population of the I -th vibrational level of the J -th electronic state is defined

by the coefficients " 3LK  : C 3M %('*) �NEG" 3M %�'*) E H > (2.58)

Similarly, in one dimension it is possible to define the probability of dissociation

of the system in a certain electronic state as the part of the population which lies

between a defined dissociation point O and the asymptotic region of the considered

potential: CQP 4�R3N%�'*) � -S14 T #3 %�7$8 B '*) T 3 %�7;8 B '*)*<=7;8U> (2.59)

Usually a pragmatic, yet reasonable, choice for the dissociation point O is a value

of three times the equilibrium distance of the reaction coordinate. An alternative

way to define O is to chose the point at which the orbitals of the fragments are pure,

meaning that no orbitals with contributions centered at both fragments at the same

time are present. If the wavepacket or a part of it can move towards dissociation

(and is not trapped by a barrier) the probability of dissociation yields a rising signal

from which a decay time V of the excited state can be calculated. It must be pointed

out that a computation of V using (2.59) only makes sense if the applied laser pulses

are much shorter than V . In this work, dissociation probabilities and corresponding

life times have only been calculated for infinitesimal short @ -pulses (see section

4.3).
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2.3 Rotational averaging

In this work freely rotating (i.e. not oriented) molecules are considered. The di-

pole moment and the electric field are defined in two different coordinate systems:

The space fixed coordinate system is chosen such that the W -axis is parallel to the

electric field vector X Y(Z*[ , whereas the dipole moment is given in the molecule or

body-fixed coordinate system with the z-axis pointing in a different direction (e.g.

parallel to the dissociation coordinate [41]). The rotation matrix (2.61) connects

the body-fixed coordinate system (which rotates with the molecule) with the space

fixed one. In the semiclassical dipole approximation the interaction of two elec-

tronic states \ and ] is given by^`_ba Y�c$d efZ*[,g a Y�c;d efZ*[ihkjlX Y�Z*[nmpoq msr _ba Y�c$d [tm9g a Y�c$d efZ*[ne (2.60)

where oq is the rotation matrix [64]oq h uvw qyxzx qyxz{ qyxn|qy{*x qy{&{ qy{*|q}|�x qQ|�{ qQ|,| ~;�� (2.61)

connecting both coordinate systems, in this work, approximated by rotational av-

eraging of oq . To derive the working equations three electronic states will be con-

sidered ( \th���e9��en� ). Only transitions from the ground state ( \�h�� ) to the excited

states ( \6h ��en� ) are taken into account. Therefore, the transition dipole matrix

reads as: � r h uvw � r �f��r ���r ��� � �r ��� � �
~;���� (2.62)

The Born-Oppenheimer dynamics of this three-state-system is governed by the fol-

lowing set of three coupled differential equations:\,�Q�� Z g _ Y�c;d efZ*[ih���j � ���r�d � �� c �d���� _ Y�c$d [&�`g _ Y�c$d efZ*[�j�X Y�Z*[Dm oq�� a r _ba Y�c$d [�m�g _ Y�c;d efZ*[ne
\�h ��e9��en� � (2.63)

Consider an ¡ -polarized laser pulse which propagates along the z-axis. Then,^`_ba Y�c;d efZ*[,g a Y�c$d efZ*[ih
j uw X x e¢X {£U¤;¥U¦§ � e¨X |£U¤;¥U¦§ � ~� m©uvw qyxzx qyxz{ qyxn|qy{&x qQ{&{ qQ{*|qQ|�x q}|�{ qQ|,| ~;�� m©uvw r _ba,ª xr _ba&ª {r _ba&ª |

~;�� m�g a



Theory 33

«�¬�­¯®&°²±�³y°z°=´!®*°µ±?³Q°z¶U´z®&°l±?³y°n·n¸t±º¹»¼ ½�¾b¿&À °½Á¾b¿&À ¶½�¾G¿&À ·
Â;ÃÄ ±;Å ¿

«k¬Æ­¯®*°l±?³y°z°©± ½�¾b¿&À °©±�Å ¿tÇ ®*°l±?³Q°z¶:± ½�¾b¿&À ¶È±�Å ¿�Ç ®&°l±?³y°n·É± ½�¾b¿,À ·É±�Å ¿ ¸�Ê (2.64)

Let us now assume that the system is photodissociated by a Ë -pulse, i.e. we use® ­�Ì*¸i« ® for Í}Î Ì Î0Ë Ì® ­(Ì*¸i« Í else, (2.65)

where Ë Ì is a sufficiently short time interval, such that it allows one to approximate

the time derivative in equation (2.63) by a finite difference:ÏÏ Ì Å ¾�Ð Å ¾ ­ Ë Ì*¸t¬FÅ ¾ ­(Ìi« Í ¸Ë Ì Ê (2.66)

Using the last expression with the initial conditions,ÅÒÑU­�Ìi« Í ¸i«�ÓÔÑ�Õ9´Å�ÖD­�Ìi« Í ¸�« Í ´Å	×�­�Ìi« Í ¸�« Í ´
where ÓÔÑ�Õ is the vibrational and electronic ground state, in equation (2.63) one

obtains (neglecting the term Ø ½ Ñ�Ñ ):ÙÚ&Û�Ü ¬ Û ×Ý ½pÞ Ï ×Ï.ß ×Þ ÇSà ÑzáâÓÔÑ�Õ Ð ÅÒÑU­ Ë Ì*¸�¬�ÓÔÑ�ÕË Ì ã ÅÒÑU­ Ë Ì*¸i«�ÓÔÑ�Õi¬ Ë Ì�± ÚÛ ±?ä©Ñ�ÕÉ±UÓÔÑ�Õ Ð ÓÔÑ�Õ9´ÙÚ,Ûæå ¬²® ±pç³ ± ½ Ö�Ñnè ÓéÑ�Õ Ð ÅtÖ;­ Ë Ì*¸Ë Ì ã ÅtÖ;­ Ë Ì*¸i« Ë Ìt± ÚÛ ±?® ±�ç³ ± ½ Ö�Ñ ±UÓéÑ�Õ;´ÙÚ,Û å ¬²® ± ç³ ± ½ ×�Ñ è ÓéÑ Õ Ð ÅÒ×?­ Ë Ì*¸Ë Ì ã ÅÒ×U­ Ë Ì*¸�« Ë Ì�± ÚÛ ±?® ± ç³ ± ½ ×�Ñ ±UÓéÑ Õ Ê (2.67)

Substituting equation (2.64) into equation (2.67), the population at time Ì�« Ë Ì is:

For
Ú « Íëê�ì Ñ?­ Ë Ì*¸ Ð�íïî ß Þ ÓéðÑ�Õ ÓÔÑ�ÕÈ« Ù Ê

For
Ú « Ù ´ Ý ê�ì ¾ ­ Ë Ì*¸ Ð



Theory 34ñfòó²ôUõ÷ö=ø;ù�ú�û ózó û ózóýü þ�ÿ���� ó������ ü ò
	 û ózó û ó�� ú þÁÿ���� ó
��������� ú þ�ÿ���� ��������� 	 û ózó û ó�� ú þ�ÿ���� ó���������� ú þ�ÿ���� ���������
	 û ó�� û ó���ü þ�ÿ���� ����� � ü ò 	 û ó�� û ózó ú þ�ÿ���� ����� � � � ú þ�ÿ���� ó
��� � � 	 û ó�� û ó�� ú þ�ÿ���� ����� � � � ú þ�ÿ���� ����� � �	 û ó�� û ó�� ü þ�ÿ���� ������� ü ò 	 û ó�� û ózó ú þ�ÿ���� ��������� � ú þ�ÿ���� ó�������� 	 û ó�� û ó�� ú þ�ÿ���� ��������� � ú þ�ÿ���� �������������
Averaging over angles:û ózó û ó���� û ózó û ó���� û ó�� û ó����! #"û ózó û ózó�� û ó�� û ó��$� û ó�� û ó����&%' " (2.68)

leads to(*) ú,+
- �/. ñ òó ô õ ö=ø;ù %'10 ü þ ) ��� ó���� � ü ò 	 ü þ ) ��� ����� � ü ò 	 ü þ ) ��� ����� � ü ò�2 (2.69)

( ò ú3+�- �*. ñ òó ô õ ö ø$ù %'40 ü þ ò ��� ó
��� � ü ò 	 ü þ ò ��� ����� � ü ò 	 ü þ ò ��� ����� � ü ò�2 � (2.70)

Therefore, the initial excited state wave packet is given by the ground state wave

function ��� � multiplied by the corresponding transition dipole moment func-

tion. After the + -pulse, the populations of the electronic states do not change

and the wave packet in each excited state is governed by equation (2.63) (Born-

Oppenheimer dynamics).

2.4 Time dependent calculation of absorption spec-

tra

According to Heller [65] the total absorption spectrum 57698:6 ú<; � , which measures

the capability of the molecule to absorb radiation with a frequency ; is obtained

from the Fourier transformation of the total autocorrelation function,57698:6 ú<; �/= õ!>@?? A ÿCBED � ��F7G�HJI 6LK G�M 698:6 úN- � öO- " (2.71)

where P � � is the energy of the vibrational ground state of the electronic ground

state and Q ; is the energy of the absorbed photon [41]. The total autocorrelation

function
M 698:6 ú<- � is defined as the sum of the individual autocorrelation functionsMSR ú<- � of the electronic states T .M 698:6 ú<- �/�VU R MSR úN- �*�WU RYX,Z R ú<- �W [�?ü Z R ú<- ��\ (2.72)
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The autocorrelation function describes the overlap between the wave function]
^`_<a�b and the initial wavefunctions ]c^d_<a*eWfOb as a function of time t. In this work,

the initial wave function of the excited states g is calculated by multiplying the vi-

brational ground state wave function of the electronic ground state hjilk�mn�o with the

transition dipole moment that connects the ground state with the state p :q ] ilk�m^ _<a n eWf[b�r*ets n ^vu w�x:yvx{z}| q h ilk�mn o r (2.73)

A derivation of equation (2.71) is given in the appendix A.

2.5 Pump-probe ionization spectroscopy

Two steps are involved in a pump-probe ionization scheme. In a first step a laser

pulse, called pump pulse, excites the molecule. In a second step, after a certain

time delay, another laser pulse, the probe pulse, is employed to ionize the molecule.

The theoretical pump-probe signal of the parent ion is determined here as the part

of the population which is trapped in a certain ionic state, whereas the yield of the

parent and the daughter ions correspond to the non-dissociative and the dissociat-

ing parts of the ionic states population, respectively. The pump-probe ionization

spectrum reflects the nuclear dynamics of the electronic excited state as a function

of the delay between the pulses.

In this work the vibrational ground state of the electronic ground state, hjilk�mn�o ,

is chosen as the initial wavefunction. Since this is an eigenstate of the system,

the corresponding expectation values (for example of the position operator) do

not change with time (stationary state). The pump pulse, however, creates a wave

packet in the excited state which is a coherent superposition of stationary states

[41]. Being not an eigenstate, the wave packet moves governed by the time-

dependent Schrödinger equation. Consequently, the wave packet is located at dif-

ferent areas of space at different times. That is the reason why the ionization prob-

ability will depend on the delay time [66].

The electron removed during the ionization process has a continuous spectrum

of allowed kinetic energies of the detached electron [67, 68, 69, 70, 71, 72, 73, 74].

However, for a numerical treatment the kinetic energy spectrum has to be dis-

cretized. As pointed out in refs. [75, 76] the ionization occurs very rapidly with

approximate conservation of the nuclear kinetic energy and the contribution of

a single optimal selected photon energy already defines the dominant features

of the total transient ionic signal. Hence, in the approach of this work it is as-

sumed that the electron removed during the ionization process has zero-kinetic-

energy (ZEKE). The laser-induced transitions to ionic states are then treated in the



Theory 36

same way as to neutral states. However, it is important to avoid unphysical back-

transformation (dump) of ionic state population by the applied lasers. This can be

achieved by means of small intensities of the pump and (more importantly) the

probe pulse. (e.g.: In this work the intensities were chosen such that the pump

pulse transfers about 10 ~ of the ground state population to an electronic excited

state and the probe pulse produces an ionic state population of less than 1 ~ .)

2.6 Calculation of the initial wave function: The

Fourier Grid Hamiltonian (FGH) method

Within the Born-Oppenheimer approximation (equation (2.48)) the one-

dimensional time-independent nuclear Schrödinger equation is:�S���d����S�4� ���� ���������� � ������ ��� ����������N���  j¡ ��¢¡ � � �
���*£t¤

¡ �  
�
¡ � � �

����¥
(2.74)

The nuclear wavefunctions   ¡ ��¢¡ � � �
���

are the vibrational eigenfunctions of the

Hamiltonian ¦ �l� � ��� . The eigenvalues
¤
¡ � are the allowed total energies (neglect-

ing the rotational and translational contributions) of the one-dimensional system.

Both, the energies
¤
¡ � and the wavefunctions   ¡ ��¢¡ � of the § -th electronic state are

labeled by the index ¨ � , the vibrational level corresponding to state § .
By solving the nuclear Schrödinger equation (2.74) for the electronic ground

state potential ��©
� � ��� the stationary states   ¡�ª � �
���

and corresponding energies
¤
¡�ªin the Born-Oppenheimer approximation are obtained. The Fourier Grid Hamilto-

nian method [77], whose principles are described in this section, has been em-

ployed to solve the above equation. An alternative method to get at least the en-

ergetically lowest eigenfunction, not applied in this thesis though, is the so-called

”propagation in imaginary time” from Kosloff and Tal-Ezer [78].

In equation (2.74) ¦ � is represented in coordinate space:« ��¬�d­@®¦ � ­ � ��¯°£ « �
¬�d­
®± � ­ � ��¯ � « �
¬�`­�®��� ­ � ��¯�¥ (2.75)

The potential operator �7� is a function of the position operator
®²

with eigenvalues� � and eigenvectors
­ � ��¯ : ®² � ­ � ��¯}£ � � ­ � ��¯�¥ (2.76)

Its ”matrix elements” in the coordinate representation are then [51]:« � ¬� ­�®�7� ­ � ��¯°£ ����� � ����³ � � ¬� � � ����¥ (2.77)
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The action of ´µ�¶ in coordinate space is a simple multiplication of the wave function·¹¸Nº�»�¼
with the potential energy function

µ�½ ¸,º�»�¼
, as expressed in equation (2.74).

On the other hand, the matrix elements of the kinetic energy operator ´¾¿¶ in the mo-

mentum representation are given by,À{Á`Â{Ã ´¾�¶ ÃÄÁ7Å*ÆÈÇ Á@ÉÊÌË »`Í ¸ Á`Â`ÎÏÁ ¼�Ð
(2.78)

where
ÃÄÁ#Å

are the eigenvectors and
Á

the eigenvalues of the momentum operator´Ñ : ´Ñ ÃÄÁ#Å}ÆtÁcÃÄÁ#Å�Ò
(2.79)

The completeness relation holds for the coordinate and momentum eigenstates:ÓYÔÕ Ô Ã º�» Å�À º�» Ã Ö[×ØÆ ´Ù (2.80)

and Ó ÔÕ Ô ÃÄÁ7Å�À{ÁcÃÚÖ`ÁÛÆ ´Ù Ò (2.81)

Inserting (2.81) and (2.77) in equation (2.75) yieldsÀ º Â» Ã ´Ü�¶ Ã º�» Å*Æ ÓYÔÕ Ô À º Â» Ã ´¾�¶ ÃÄÁ7Å�À{Á�Ý º�» Å�Ö@Á�Þ µ�¶ ¸,º�»�¼ Í ¸Nº Â» Î º�»�¼
Æ Ó ÔÕ Ô À º Â» ÃÚÁ7Å Ç Á ÉÊÌË » À:ÁcÃ º�» Å�Ö@ÁßÞ µ�¶ ¸,º�»�¼ Í ¸Nº Â» Î º�»�¼

(2.82)

The transformation matrix elements between the coordinate and the mo-

mentum representation are À º Â» ÃÄÁ7Å}Æ Ùà Ê�á$â ¶�ã�ä:åæ (2.83)

and À{ÁcÃ º�» Å°Æ Ùà Ê�á$â Õ ¶�ãvä æ Ò (2.84)

Therefore, (2.82) getsÀ º Â» Ã ´Ü�¶ Ã º�» Å*Æ ÙÊ�á ÓYÔÕ Ô â ¶�ã�çEä åæ Õ ä ævè Ç Á@ÉÊÌË » Ö`ÁßÞ µ7¶ ¸Nº�»�¼ Í ¸,º Â» Î º�»�¼ Ò
(2.85)

The last equation is the heart of the FGH method. To get the eigenfunctions of´ÜÛ¶ the position operator ´é is discretized by substituting the continuous coordinate

values
º�»

by a discrete set
º�ê»

:º ê» Æ!ëSì º�»�Ð ëíÆ Ù Ð ÒîÒLÒ Ð�ï Ò
(2.86)
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denotes the spacing in coordinate space and N is the number of grid points.

Finally, the following expression for the matrix elements of ôõ�ö is obtained [77]:õÛ÷ùøûú üðÛñ�óÛý þÿ÷�� � þ
� ö�÷����	��
 � ø���
 þ� ��� ÷����7ö�� ñ 
ó���� 
�ø�� � (2.87)

with � ÷�ú ! �"$# � �&% ð(' � � � ð(' ú "$)+* � ðÛñ�ó$,
(2.88)

Diagonalizing the N � N matrix of the Hamilton operator (2.87) yields the eigen-

vectors and eigenvalues of ôõÛö on the chosen grid.
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2.7 Propagation schemes for the time dependent

Schrödinger equation

The commonly used propagation schemes are critically analyzed in a review article

by Leforestier et al. [79] and recapitulated by Balakrishnan et al. [80]. Nonethe-

less, for the sake of completeness, the basic equations are presented in this section.

In addition, it will be shown how the kinetic coupling terms introduced in section

2.2 can be included in the second order differencing (SOD) algorithm.

The Hamilton Operator in equation (2.2) is a sum of the kinetic energy oper-

ator -. and the potential energy operator -/ . The evaluation of -/10 in coordinate

space is straightforward, since -/ is diagonal in this representation and its action

consists of a simple multiplication. The bottleneck of all quantum time-dependent

propagations is the calculation of -.20 , which is diagonal only in the momentum

representation. Kosloff and Kosloff [81] introduced the fast Fourier transforma-

tion technique (FFT), in combination with a second order differencing scheme, to

evaluate the action of the kinetic energy part of the Hamiltonian in the momentum

space. Using the fast Fourier transformation algorithm the second derivative of the

wave function is calculated in three steps:

1. Inverse Fourier transformation (IFT) to momentum space:30547698;:=< >?$@BADCE C 054GF�HI8�J E�KMLON&PIQ F�H (IFT) R
2. Multiplication with S 6�T (

6
= wave number),

3. Fourier transformation (FT) to coordinate space:054&FIH�8;:=< >?$@ ADCE C 3054U698�J KMLON&P Q 6 (FT) V
If the Hamilton Operator is time-independent, the formal solution of (2.1) is [51]:W 054GX�8�YZ: -[\4]X R X�^_8 W 054GX�^`8�YZ:aJ EcbdZef;g�h E hjilk W 0(4]X�^`8OY R (2.89)

where
[m4GX R X�^�8 is the time-evolution operator. An electric field makes the Hamilton

Operator time dependent. If, however, the time step is chosen so small that the

change of the electric field is negligible, the Hamilton operator can be treated time

independent and (2.89) is still valid. In this work the split operator [82, 83, 84] and

the second order differencing scheme [81] were used to solve the time dependent

Schrödinger equation numerically. Since both methods require short time steps

(which are also needed for handling time-dependent Hamiltonians) they are a good
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choice in the presence of molecule-laser-interactions. Both algorithms are unitary

and norm preserving. The SOD method conserves the energy whereas the split

operator does not. Moreover, the split operator technique cannot be applied when

space-momentum mixed terms - for example kinetic coupling terms - appear in

the Hamiltonian [79]. Therefore, in this work, the split operator was used when

the kinetic couplings were neglected as a first approximation, while when these

couplings were included, the time dependent Schrödinger equation was integrated

by means of the second order differencing scheme.

2.7.1 Second Order Differencing (SOD)

One way of solving the time dependent Schrödinger equation numerically is to ex-

pand the time dependent wavefunction in a Taylor series [85, 86]:n5oGprqtsmp�u;vwn5oGp�urqxs\p�y2zz p n5o]p�urq smp�{|�} y~z {z p { n5oGp�urq smp����} y2z �z p � n5oGp�u�y�y�y
(2.90)

or n5oGp���smp�uZvwn(o]p�u���smp�y2zz p n5oGp�urq smp {|�} y�z {z p { n5o]p�u�� smp ���} y~z �z p � n5oGp�u�y�y�y��
(2.91)

Subtracting equation (2.91) from equation (2.90) yieldsn5oGp�qtsmp�u��xn5oGp���smp�u�v | y�smp�y�zz p n5o]p�urq | y smp����} y2z �z p � n5oGp�u�y�y�y�� (2.92)

The resulting propagation scheme with a third order error in
smp

isn5oGp�qtsmp�u;vwn5oGp���smp�u�q | y�smp�y zz p n5oGp�urqt����smp �`� � (2.93)

This algorithm requires both the initial wave function
n(o&��u

and the wave function

at the first step
n5oUsmp�u

. The initialization scheme used in this work is the Runge-

Kutta propagation with the same accuracy (second order) as the SOD method:n(o&smp�uZvwn(o&��u�qxs\p�y2zz p n5o&��u�q smp {|�} y2z {z p { n5o&��u_� (2.94)

According to (2.1) the term �_���� reads, in atomic units,z nz p v������� nwv¡ ���D¢|	£�¤ z {z¦¥ {¤ �§��¨©o ¥ ¤ u�� ¢£�¤�ª¬«®­U¯ o ¥ ¤ u�y ¡ ���l° zz¦¥ ¤9± qx�t¢|	£�¤�ª¬« { ¯ o ¥ ¤ u ± n\² (2.95)
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where the potential operator ³´ contains the coupling with the electric field. The

kinetic energy operator ³µ and the momentum operator ³¶ act in momentum-space

as multiplications with ·¸�¹_º�» ¸ and » respectively. The following scheme can be

applied:

1. Inverse Fourier transformation to momentum space:¼5½&¾�¿IÀ IFTÁÃÂ Ä¼5½ » À_Å
2. Calculate the action of ³µ and ³¶ in momentum space:Æ�Ç�È�ÉÊÌË ºÎÍ ÊÁÃÂ Á~ÏÑÐ ³µ Ä¼5½ » ÀlÒ\ÅÈ ÍÁ�Â Ð ³¶ Ä¼5½ » À Ò Å
3. Fourier transformation of ³µ2¼ and ³¶�¼ to coordinate space

FTÁÃÂ Á�ÏÑÐ ³µ~¼5½&¾I¿ÓÀlÒ (term I)
Å

Ð ³¶Ô¼5½&¾�¿�À Ò Å
4. Calculate the action of all other operators in coordinate space:¼5½G¾�¿�À Æ�ÇjÕrÖØ× º�ÙÁ�Â Á�Ï ´©½G¾�¿�ÀO¼5½&¾I¿�À (term II)

Å
Ð ³¶�¼5½&¾I¿�À Ò Æ ÉË º	ÚÜÛ É�Ý ÖÞ× º ÙÁ�Â Áàßá ¿ µ Ö · Ù ½&¾I¿ÓÀ Ð ³¶�¼5½&¾I¿�À Ò (term III)

Å
¼5½&¾�¿�À Ç ÉÊÌË ºâÚ Û Ê Ý ÖØ× º�ÙÁÃÂ Ï ßã á ¿ µ Ö ¸�Ù ½&¾�¿�ÀO¼5½G¾�¿�À (term IV)

Å
5. Sum up terms I to IV to get Á�Ï�ä ¼wåàæ_çæ�è .
In accord with the uncertainty principle, the time step must not exceed the crit-

ical time step émê�ë]ì Ç è å íî�ï�¿�ð Å (2.96)

where the maximum energy î�ï�¿lð¬åñµòï�¿�ðôót´¦ï�¿lðÎõ
(2.97)

In the last equation
´¦ï�¿lð

is the maximum potential energy and
µÃï�¿lð

the maximum

kinetic energy of the grid defined asµÃï�¿�ðöå í ¸O÷r¸ã á ¿	½ émø À ¸ õ (2.98)

For practical calculations a time step five times smaller than the critical one is re-

commended [79].
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2.7.2 Split Operator

In this method the time propagation operator ùú\ûGü`ýOü�þ_ÿ of equation (2.89) is approx-

imated as [82, 83, 84]:ùúmûGü����mü`ýOü�ÿ����	��
��
����� ���	��
� ��
����� �	��
��
����� �	��
� ��
����� �������mü� "!�#
(2.99)

The propagator (2.99) leads to an error of third order in the time step as a con-

sequence of the noncommmutability of the kinetic and potential energy operators.

A slightly larger time step than that of the SOD method specified in section 2.7.1

can be used [80].

This method involves the following steps: The wave function is transformed

to momentum space and multiplied with
�%$'&+û�(*),+-/.10�2�3 �mü�ÿ . After transforma-

tion to coordinate space it is multiplied with
�%$'&+û4(5)+76 û98%:�ÿ;�mü�ÿ . The resulting

wave function is again transformed to the momentum space and multiplied by�%$'&+û4( ),+-/. 0 2<3 �mü�ÿ . A following Fourier transformation to coordinate space com-

pletes one evolution step. Since the factor
�%$'&�û4( ),+-/. 0 2�3 �\ü�ÿ is independent of the

step of the propagation, the left and the right part in (2.99) of two successive

propagation steps can be combined.

2.8 Solution of the electronic Schrödinger equation

using ab initio and DFT methods

Deriving the adiabatic representation in section 2.2 it was assumed that the solu-

tions of the electronic Schrödinger equationù=?>A@CBEDGFIH��KJ >L@F BMDGFNHIý
(2.100)

whereù=?>L@O�P( QR :TSVUXW 3Y[Z > �?:�� \]_^a` þcb ( QR ) Sd:*eRf SVU g f � 3B h : (ji f B � QR :lk<m � 3B h : (nh m Bpo (2.101)

is the electronic Hamiltonian in Cartesian coordinates, are known. In practice only

a limited number of electronic eigenfunctions are calculated and used as a basis to

describe the adiabatic behaviour of the molecule. How many electronic wave func-

tions are needed depends on the process to be described. In this work the photo-

dissociation under a femtosecond laser pulse excitation is investigated; therefore,

a sufficient representation must contain all states which are, directly or indirectly,

significantly populated after the applied pulse.

Nowadays, many sophisticated methods for an approximate solution of (2.100)

exist. In this section those which have been applied in this work will be explained
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in subsections 2.8.1 (ab initio methods) and 2.8.2 (DFT methods). Before, some

general remarks about the applied strategy concerning the quantum chemistry cal-

culations will be made.

The first step of modern quantum chemical applications is usually to determine

the geometry by an optimization of all degrees of freedom. Compared with single

point energy calculations the geometry can normally be obtained at a rather low

level of treatment [87], (e.g. in this work the CASSCF method was used for geo-

metry optimizations but the MS-CASPT2 - a more sophisticated method - was em-

ployed for energy computations.) In a second step, the vertical excitation energies

are calculated at the optimized geometry. (Here, MS-CASPT2 and TD-DFT cal-

culations have been performed.) These energies can be compared with the exper-

iment and the accuracy of the applied quantum chemistry method can be judged.

For a correct description of the quantum dynamics the accurate computation of po-

tential energy curves, which are obtained in the adiabatic representation (e.g. equa-

tion (2.21)), is an essential requirement. The potential energy curves of big mo-

lecules like organometallic compounds can only be described by highly-developed

quantum chemistry methods in a restricted number of degrees of freedom (because

of computational cost). Usually, only the reactive coordinates leading to dissoci-

ation are taken into account (here, the Mn-CO q4r stretching coordinate). Besides,

on an ultrafast time scale the rest of the molecule is supposed to stay at a fixed

geometry, supporting that very few degrees of freedom are necessary and IVR can

be neglected. The choice of the reaction coordinates is guided by the structure of

the primary products which can be obtained via geometry optimizations of the mo-

lecule in the ground state and relevant electronic excited states.

2.8.1 Standard quantum chemical (ab initio) methods

Standard quantum chemical (ab initio) methods are based on a Hartree-Fock (HF)

[88] treatment. The molecular ground state sEtGu1v of stable molecules (if the system

has an even number of electrons) is usually well-described by a single closed shell

Slater-determinant, s wxulv , containing the y (= total number of electrons) energetic-

ally lowest spin orbitals z (determined in a HF calculation):

sMtGu"v|{�}�~ q4�I�Lq�����V� s w?u1v�� �� y�� ���������
z���� �N� z��[� ��� �I�I� z��d� ���z����L� � z��[�A� � �I�I� z��d�A� ��%�I� �%�I� �I�I� �I�I�z����9y � z��N��y ���I�I� z�����y �

���������I� (2.102)

where the rows are labeled by electrons and the columns are labeled by spin or-

bitals. Using this ansatz for the electronic wavefunction to minimize the elec-

tronic energy ���A�� variationally leads to the Hartree-Fock equations. In a Restricted
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Hartree Fock (RHF) calculation [88] the spin orbitals � are a product of the spatial

orbitals � (depending on the spatial coordinate   ) and the spin function (depending

on the spin coordinate ¡ ), ¢ or £ :�¥¤�  ¦;¡G§©¨«ª ��¤�  §�¬N¢¥¤­¡G§ or��¤�  §�¬�£�¤­¡G§ .
(2.103)

With this ansatz the spin functions ¢ and £ can be integrated out. For a numerical

treatment the remaining spatial orbitals � are linearly expanded in a finite basis set®7¯"°N±
of dimension M: �O²�¤�  §³¨ ´µ °·¶ ² °�¯"° ¤�  §1¦ (2.104)

leading to the Roothaan-Hall equations [89]:¸ ¹ ¨�º ¹ » ¦ (2.105)

where
¸

is the Fock matrix, S is the overlap matrix,
¹

is coefficient matrix and
»

is the orbital energy matrix. The iterative solution of equation (2.105) is called the

Self-Consistent-Field (SCF) procedure.

The difference between the exact solution of the electronic Schrödinger equa-

tion (2.11), ¼ (Schr.), and the Hartree-Fock-limit energy, ¼ (HF-Limit), which is the solu-

tion of the Hartree-Fock equations [88] when using a complete basis expansion, is

defined as the correlation energy ¼¾½9¿AÀAÀ :¼¾½9¿AÀAÀ�¨�¼ (Schr.) Á ¼ (HF-Limit) Â (2.106)

The obvious way to account for the correlation energy is to use Configuration Inter-

action (CI). For a given basis set a Full Configuration Interaction (FCI) calculation

constitutes a benchmark by which computations of the correlation energy with the

same basis set can be judged, i. e. ”full CI is the best that one can do” [88]. If the

basis set reaches completeness, the FCI result will be the exact solution ¼ (Schr.). The

FCI expansion of an electronic state reads as [88]:ÃEÄGÅ�ÆdÇ1È ¨ÊÉ"Ë ÃMÌ Ë ÈaÍ µCÎ À É À Î ÃMÌ ÀÎ È�Í µÎ"Ï<ÐAÑ À Ï�Ò É À ÒÎ4Ð ÃMÌ À ÒÎ4Ð È�Í ÂÓÂÔÂOÂ (2.107)

In equation 2.107,
ÃMÌ Ë È stands for the ground state configuration and

ÃMÌ ÀÎ È denotes

a single excitation, i.e. a Slater determinant where the spin orbital � Î which is oc-

cupied in the ground state is replaced by the unoccupied (=virtual) spin orbital �aÀ .
Similarly,

Ã Ì À ÒÎ;Ð È is a doubly excited determinant where the orbitals � Î and � Ð are
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replaced by the virtual orbitals Õ�Ö and Õ�× . The number of Ø -tuply excited determ-

inants for n electrons and 2 M spin orbitals, M being the number of spatial basis

functions Ù , is given by ÚÜÛ
ØÞÝ

ÚKßàÛ ájâ
Ø Ýäã (2.108)

From this formula it is clear that the number of configurations in the expansion

(2.107) grows very rapidly with the number of electrons and basis functions mak-

ing the FCI method only applicable for very small molecules and reduced basis

sets. Only truncated CI methods like CIS or CISD, where Single (S) and Double

(D) excitations are considered, can be used in general, but they suffer from size-

consistency (e.g. a CISD calculation of two H å molecules separated by a large dis-

tance (say 100 Å) does not give twice the CISD energy of one H å molecule (which

is lower)). Furthermore, CIS gives poor excitation energies.

Due to their multiconfigurational character, electronic excited states can not

be described by a single Slater determinant and, therefore, a multiconfigurational

procedure is needed. A solution for computing electronic excited states or for

cases where a single determinant is not even a good zeroth order reference wave-

function is the so-called Multi-Configuration Self-Consistent Field (MCSCF) ap-

proach, which consists of a truncated CI expansion where not only the CI coeffi-

cients æGç in front of the Slater-determinants èMéêç9ëèEì¥íïîOð[îdñ�ë�òÊó ç æGç;èMéêç9ë (2.109)

are variationally optimized, but also the Molecular Orbital (MO) coefficients ôàçMõ in

the basis set expansion [90]. The practical problem lies on the choice of the relev-

ant configurations, èMéêç­ë . A popular solution consists of partitioning the molecular

orbitals in active and inactive spaces. This is the way how the selection of the con-

figurations is chosen in the Complete Active Space Self Consistent Field Method

(CASSCF) [91]. The inactive orbitals stay either doubly occupied or empty during

the calculation. Typically the active space orbitals consist of the highest occupied

and lowest unoccupied orbitals of a RHF wave function. In addition, calculations

of excited states of transition metal compounds containing metal atoms of the first

transition row have to deal with the problem of the öà÷ double shell effect: Two sets

of ÷ orbitals ( öà÷ and ø'÷ ) must be included in the reference space in order to obtain

accurate results [92]. Within the active orbitals a Full Configuration Interaction

(FCI) calculation is performed (figure 2.1). Therefore, the CASSCF method is on

the one hand a special MCSCF method, meaning that not only the CI coefficients

but also the orbital coefficients in (2.109) are optimized, and on the other hand a
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active 
space

All
excita-
tions

Figure 2.1: All the possible excitations within the active space define the config-

urations in a CASSCF calculation.

special case of the FCI method, meaning that all possible excitations within the

active space are taken into account.

The correlation energy (2.106) can be divided into two different contributions:

The static and the dynamical parts. The static part of the correlation energy ac-

counts for the effect of allowing the orbitals to be partly singly occupied, like in the

CASSCF description, instead of forcing double occupation, like in the HF approx-

imation. This allows the description of near-degeneracy effects of molecular orbit-

als which are especially important for organometallic compounds. The remaining

correlation energy is the dynamic correlation which describes the correlated mo-

tion of the electrons. The latter part is normally taken into account by subsequent

perturbation treatment, CASPT2 or by the Multi-Reference Configuration Interac-

tion (MRCI) method [93]. Conventional CI methods like CISD consider only con-

figurations generated by exciting electrons from a single determinant [94], usually

the ground state RHF wave function. A MRCI calculation is based on a previ-

ous MCSCF treatment, for example CASSCF. The critical step in this method is

the choice of the reference wavefunctions, which has to be consistent along the

process investigated [95]. The externally contracted version of the MRCI method

called MR-CCI, introduced by Siegbahn [96], was applied in this work to calculate

the potential energy curves, transition dipole moments and kinetic couplings.

The CASPT2 method applies second order perturbation theory to a CASSCF

reference wavefunction [97, 98]. This treatment includes a large amount of the
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dynamical correlation leading to very accurate results for excitation energies (nor-

mally the error is in the range 0.0-0.3 eV [92, 99]). However, the original version

of the CASPT2 method allowed the calculation of a single state at a time, which

made the description of curve crossing problems impossible. Recently, it was re-

placed by the Multi-State CASPT2 (MS-CASPT2) [100] method which make the

simultaneous treatment of more than one state possible.

Near-degeneracies in the zeroth-order Hamiltonian lead to the problem of in-

truder states. The solution of this problem is to increase the active space. However,

this is not always possible, since a larger active space increases the number of con-

figurations and therefore, the computational cost. A remedy to avoid intruders is

to introduce a level shift [101, 92], but then the amount of the correlation energy

included decreases.

For the chosen basis set and active space the CASPT2 method was not able to

describe dissociation correctly in CpMn(CO) ù . For that reason the MS-CASPT2

method was used in this work to calculate the vertical excitation spectrum, whereas

the CASSCF/MR-CCI method was applied for the calculation of the potential en-

ergy curves.

2.8.2 DFT methods

An alternative approach to the Hartree-Fock based methods is the Density Func-

tional Theory (DFT) which is based on the Hohenberg-Kohn theorems [102]. The

first Hohenberg-Kohn theorem (HK-I) states that there is a one-to-one mapping

between the external potential ú (i.e the Coulomb attraction of an electron by all

nuclei), the electron density û and the ground state wave function üGý :û?þÿú?þ üGý (HK-I) � (2.110)

This implies that all properties are functionals of the ground state density due to the

fact that they are calculated as expectation values of operators for the state vectorüGý � û�� corresponding to the density û . The second Hohenberg-Kohn theorem (HK-

II) states that the functional � � û������CüGý � û��
	��
 	EüGý � û���� , �
 being the Hamiltonian,

will have the exact ground state energy �������
���ý as a lower bound:� � û������ ���������ý (HK-II) � (2.111)

HK-II is equivalent to the variational principle. The so-called Kohn-Sham

Hamiltonian

 �

, which is applied in virtually all DFT applications, is just a sum

of one-electron operators (without electron-electron interaction):�
 � �"!$#&%�')(*,+.-0/�132�4 ú � /�152
6 � (2.112)
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Using ansatz (2.112) assumes that noninteracting electrons move in an external

local potential, called 798 , which has the property that its wave function - a single

Slater determinant of the lowest n (= number of electrons) orbitals - yields exactly

the same electron density as the exact interacting electron system with potential7 . This is correct, since the HK-I theorem states that 798 must be unique and this is

clearly independent of the form of the two electron interaction - totally neglected

in (2.112). The Kohn-Sham one-electron equations are::�;)<=,> ?A@�B5CED 7F8 @�B3C
GIHKJMLN OQP N HRJMLNTS (2.113)

It is not clear if the Kohn-Sham orbitals H JMLN have any other physical significance

than the property that the sum of their squares adds up to the exact electron density.

Their orbital energies can not be related to the ionization energies like the Hartree-

Fock orbital energies (previous subsection) - except for the energy of the highest

occupied orbital which equals the negative of the exact ionization energy. It is

therefore hazardous to compare DFT and Hartree-Fock calculations at molecular

orbital level.

For details about the DFT method the reader is referred to refs [102, 103, 104].

The Time Dependent DFT (TD-DFT) method which can be applied to calculate

excited states is based on ”the fact that frequency dependent linear response of a

finite system with respect to a time-dependent perturbation has discrete poles at the

exact, correlated excitation energies of the unperturbed system.” [103] The mean

polarizibility U @�VWC is frequency dependent and describes the response of the dipole

moment to a time-dependent electric field with frequency V . Its relation to the elec-

tronic excitation energies V N OYX�Z�[N ; X�Z\[] and corresponding oscillator strength ^ N
is given by: U @�VWC O"_ N ^ NV ?N ; V ? S (2.114)

It can be seen from equation (2.114) that the mean polarizibility U @�VWC has poles atV O V N (= the excitation energy). In the Kohn-Sham formalism the exact linear

response to the time-dependent perturbation with frequency V�@�`
C is expressed as

the linear density response. The ordinary Kohn-Sham orbitals (2.113) obtained in

a regular ground state calculation are involved. Their energy differences are shif-

ted towards the excitation energies (the poles in equation (2.114)) by a systematic

change in the perturbation frequency V . ”Hence, excitation energies are expressed

in terms of ground state properties and the problem whether density functional the-

ory can be applied to excited states is most elegantly circumvented.” [103] As long

as only low-lying valence states (not Rydberg states) are involved, the error of the

TD-DFT method is within a few tens of aAb . Therefore, the TD-DFT approach may
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rival more sophisticated and much more costly wave function based approaches

(like CASPT2). Yet, comparison between these two approaches is not often in the

literature and the real performance of TD-DFT is difficult to judge.

The TD-DFT method has been applied in this work for the calculation of ex-

citation energies to compare them with the corresponding MS-CASPT2 excitation

spectrum. Furthermore, CASSCF optimized ground state geometries have been

compared with DFT optimizations. The applied particular functionals and basis

sets applied in this work will be described in chapter 3.

2.9 Calculation of the kinetic coupling terms T c�dfe
and T c�ghe

This section deals with the numerical computation of the kinetic coupling terms

T ikjml and T ion�l using the CI and MO coefficients of a multiconfigurational wae func-

tion. In section 2.9.1 some general properties of T ikjml and T ipn�l are reviewed. In

section 2.9.2 our method of calculating T iqjml is presented and compared with dif-

ferent approaches found in literature. Finally, in section 2.9.3 it is described how

T ion�l can be calculated using T iqjml .
2.9.1 General Properties of T r�sut and T rwvFt
The one-dimensional Schrödinger equation (2.21) with coupling elements defined

by equations (2.22) and (2.23) is considered. It is assumed that the electronic wave

functions xzyW{0| are real and orthonormal} y�~�x�yW{u|�����~�{�� (2.115)

If � is equal to � it follows:������ } y�~�x�y�~�|�� } y�~�x ������ y�~�|�� } ������ y�~�xzy�~�|��Y��� } y�~�x ������ y�~�|��Q�
� } y�~�x ������ y�~�|����f� (2.116)

In the case that � is not equal to � the result is:������ } y�~$xzyW{0|�� } y�~�x ������ yW{A|�� } ��h��� y�~�x�yW{0|�� } y�~hx ������ yW{0|�� } yW{fx ������ y�~�|
�W�Y�
(2.117)

Since the x�yW{0| are real, � } y�~�x ������ yW{0|���� } yW{�x ������ y�~�|�� (2.118)
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This means that the matrix � �k �¡ is antisymmetric with diagonal elements equal to

zero. According to Baer [52], � �£¢¤¡ can be written as

� �o¢¤¡�¥ ¦¦h§�¨ � �k �¡© ª�« ¬¨�­�®p¯w°f±�²�³K³K´�®pµ\¯p¶
· � �q �¡�¸u� �k �¡© ª�« ¬±�²
³�³K´�®pµ5¯p¶T¹ (2.119)

This means that � �o¢¤¡ is neither symmetric nor anti-symmetric. Equation (2.119) is

derived in section 2.9.3.

2.9.2 Calculation of the kinetic coupling term T º�»0¼ using a mul-

ticonfigurational wave function

The electronic multiconfigurational wave function ½�¾W¿uÀ can be expressed as a lin-

ear combination of state configurations ½zÁÃÂ�À½z¾W¿�Ä §�¨�Å À�¥"Æ ÂÈÇ ¿3ÂFÄ §�¨�Å ½zÁÃÂFÄ §�¨�Å À�É (2.120)

where the Ç ¿3Â are the CI coefficients of the Ê -th electronic state.

Substituting equation (2.120) in equation (2.22) leads to [62]:� �k �¡Ë ¿ Ä §�¨�Å ¥ÍÌ Æ Â Ç Ë ÂFÄ §�¨�Å ÁÃÂFÄ §�¨�Å ½ ¦¦�§�¨ ÆÏÎ Ç ¿ Î Ä §�¨uÅ Á Î Ä §�¨uÅ À
¥ Æ Â Æ�Î Ç Ë ÂÑÐ ¦¦�§�¨ Ç ¿ ÎuÒ Ì\ÁÃÂÓÄ §�¨uÅ ½zÁ Î Ä §�¨�Å À© ª�« ¬ÔkÕ\Ö · Æ Â Æ�Î Ç Ë ÂFÄ §�¨�Å Ç ¿ Î Ä §�¨�Å Ì\ÁÃÂÓÄ §�¨uÅ ½ ¦¦�§�¨ Á Î Ä §�¨�Å À
¥�Æ Â×Ç Ë Â Ð ¦¦�§�¨ Ç ¿5Â Ò© ª�« ¬ØhÙoÚqÛÜmÝ

· Æ Â Æ�Î Ç Ë ÂFÄ §�¨�Å Ç ¿ Î Ä §�¨�Å Ì\ÁÃÂAÄ §�¨uÅ ½Þ¦¦�§�¨ Á Î Ä §�¨uÅ À© ª�« ¬ß Õ\Ö© ª�« ¬à ÙoÚqÛÜ
Ý ¹ (2.121)

In the last expression á �q �¡Ë ¿ is referred to as the CI term involving differentiation of

the CI coefficients and the term â �q �¡Ë ¿ contains derivatives of configurations or de-

terminants [62]. As will we shown in section 3.6.1, the â �k �¡Ë ¿ term ultimately leads

to integrals of the form Ì5ã�ä3½Kåå�æ�ç ½�ã ³ À where ã�ä and ã ³ are the orbitals by which the

determinants ÁÃÂ and Á Î differ and is, therefore, referred to as the MO term. Mat-

rix elements of determinants differing in more than two orbitals will vanish for the

following reason: Since åå�æ ç is a one-particle operator, according to the Condon-

Slater rules [88], the matrix elementsÌ\ÁÃÂFÄ §�¨�Å ½ ¦¦h§�¨ Á Î Ä §�¨�Å À
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are non-zero only if the determinants èÃé and èëê differ in less than two orbitals.

Furthermore, the determinants èÃé are assumed to be real and orthonormal:ì èÃé�ízèëê�î�ïQðmé
êFñ (2.122)

This leads to equations similar to the ones reported in (2.116) and (2.118) of the

previous section: ì èòé�íÞóó�ô�õ èÃé�î�ï�ö�÷ (2.123)

ì èÃé�í óó�ô�õ èëê0î�ïùø ì èëêfí óó�ô�õ èÃé�î�ñ (2.124)

Whether the CI, úòûkü�ýþ�ÿ , or the MO term, �.ûqü�ýþ�ÿ , is the dominant one is rather arbit-

rary. For instance, ”diabatic” CASSCF orbitals [105, 106] change as little as pos-

sible as a function of geometry. Using the invariance of the CASSCF and MRCI

energies with respect to unitary transformations, they are generated by maximiz-

ing the overlap of CASSCF orbitals at a displaced geometry with the orbitals at

the reference geometry. Consequently, the relative contributions of the orbital and

CI contributions to the matrix elements of T û � ý are modified: The orbital contribu-

tion is minimized, and to a very good approximation the matrix elements of T û � ý
could be obtained from the CI-vectors alone. Therefore, given this smooth set of

”CASSCF” orbitals, rapid variations of the total wave function are confined to the

CI coefficients and can then be eliminated for instance by block-diagonalization

yielding quasi-diabatic states and energies for CASSCF and MRCI wavefunctions.

This ”direct” diabatization scheme has been applied e.g. to the photodissociation

of ozone [105, 106, 107] and H � S [108].

2.9.3 Calculation of the kinetic coupling term T
�����

using T
�	�
�

Substituting equation (2.120) in equation (2.23) yields� û � ýþ�ÿ
� ô�õ � ï�� é�� þ é�� ó �óhô �õ � ÿ é������ é � ê � þ é � ô�õ � � ÿ ê � ô�õ ��ì èÃé � ô�õ � í ó �ó�ô �õ èëê � ô�õ � î
������� é � ê � þ é � ô�õ � � óó�ô�õ � ÿ ê � ô�õ � � ì èòé � ô�õ � í óó�ô�õ èëê � ô�õ � î�ñ (2.125)

Instead of evaluating the last equation the following expression taken from ref.

[52] and derived below was used in this work to calculate
� û � ý using

� ûkü�ý :� û � ý ï óó�ô�õ � ûkü�ý � � ûkü�ý � � ûqü�ý ñ (2.126)



Theory 52

Derivation of equation (2.126):
Equation (2.126) can be proved by looking at a matrix element of �  "!$# :%'&)(+*-, !,/. !0 &2143657 ,,8. 0 %9&)(/*
,,8. 0 &21
3;:=<?>�%9&)(@*A,,8. 0 & > 3B%9& > *
,,8. 0 &2143DC (2.127)

From (2.118) follows %9&)(/*
,,/. 0 & > 3 7FE %G,,8. 0 &)(@*H& > 3IC
Inserting the last expression in (2.127) leads to%9&)(+* , !,8. !0 &2143 EKJ %9&)(@* , !,8. !0 &21
3L:�% ,,8. 0 &)(+* ,,8. 0 &2143NM E < > E % ,,8. 0 &)(@*H& > 3B%'& > * ,,8. 0 &21
3O PRQ STVU W?XIY[Z\W]X
U ^+_
7 %9&)(@* , !,8. !0 &2143 E %9&)(/* , !,8. !0 &21
3 E % ,,8. 0 &)(@* ,,8. 0 &2143;:�% ,,8. 0 &)(+* ,,/. 0 &21B3�`7ba q. e. d.


