
Chapter 5

Simulation Methods

Because of the complexity of systems embedded in an environment and the large

number of degrees of freedom arising from this fact, full quantum mechanical

calculations are not feasible. On the other hand classical dynamics calculations

will be suitable to describe the motion of the nuclei, but they do not include elec-

tronic state transitions, which have been observed by experiments [78]. One way

to deal with this problem is to derive the potentials from methods like DIM and

to perform some exact quantum mechanical calculations on them. These exact

calculations will lack the influence of the other host atoms, which will play an

important role in the course of the dynamics, but they will take into account the

correct behaviour of the wavepacket, decoherence and state transitions. In this

work classical dynamics were performed and the results will be compared to the

quantum simulations performed by Dr. Mikhail Korolkov (Minsk, FU-Berlin),

based on selected DIM potential surfaces. Also one- and two-dimensional calcu-

lations were performed and will be compared in section 6.8 for Cl � in argon and

in section 7.7 for ClF.

The classical simulations of this work were performed by first calculating the

energies and forces using the DIM method, and then the nuclei were propagated

using the Gear algorithm, utilizing the di2pag package from the IMSL library with

a timestep of 1 or 5 fs. At each timestep the energies and forces are recalculated,

taking into account the now changed geometry.
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(5.1)

The time dependence will result from the instantaneous positions of the nuclei

and gives the adiabatic potential surface
� � ����� �	���

. This method of calculating

all of the essential values at each time step on the fly, leads to an adiabatic
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potential surface, which includes the different form of the wavefunction and with

this reorientation effects of the molecular orbital. The nuclear motions are here

confined to a single adiabatic surface.

5.1 Classical Dynamics

Dynamical calculations of a system can be calculated by solving the equations of

motion for a system in a particular potential. A classical system with k indepen-

dent degrees of freedom or k independent coordinates can be described by 2 k

terms, for example by the generalized coordinates ��� and the generalized veloci-

ties �� � : �� � � �����	� � �
���
��������������� (5.2)�� � �������� �� � � ����
������� ������ (5.3)

The classical equations of motion can be expressed in the Lagrangian � form:�� � ��� �� ������! ��� �� ���"� �$#
(5.4)

with the Lagrangian function � (q,q̇) consisting of the kinetic and potential ener-

gies � �$% � �'&  %�( ���
and depending on the coordinates and the time derivatives

by % � �'& � )*
�,+ � *-�. /0. 132 �� . -�. /0. 1465 � (5.5)%�( ��� � *
�
* 708

�
� ��� � � � 7 � (5.6)

The potential energy is here just given as pair potentials of the system, in this work

we used the potential energy derived by the DIM method. Plugging these into the

Lagrangian equations of motion results in9 � �;: � � �� � �� (5.7)

with
: �

being the mass of atom < and the appropriate force working on this atom:9 � �>=@?BA � �  =@?BAC%�( � �
(5.8)
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For molecules the motion of the center of mass will be calculated,
9

in this case

representing the total force on the molecule.

The connection between generalized momentum and coordinate is given as

2 � � � �� ���� (5.9)

Using the Hamiltonian function

� � 2 �	� � � * � ���� 2 �  � � � � �� � (5.10)

the Hamiltonian form of the equation of motion can be calculated by performing

the total differential of the Lagrangian function, using the Hamiltonian function

additionally to the Lagrangian equations.���� � � �� 2 � (5.11)�2 � �  � �� ��� (5.12)

Note that
���� is assumed to be a function of the momenta 2 . When the potential

will be independent of velocities and time, as performed here by recalculating at

each time step, these equations get to their very simple form:�� � � 2 � � : �
(5.13)�2 � �  = ? AC% ( ��� � 9 �
(5.14)

By this way for computing some trajectories one has to solve a system of either

second-order differential equations 5.7 or a set of first-order differential equations

5.13 and 5.14. The standard method for that would be a finite difference approach

as invented by Verlet or Gear.

5.2 Finite Differences Method

In this work the Gear method was used for calculating the molecular dynamics of

the system. This method uses the finite differences method and with it a predictor-

corrector algorithm [67]. The principle behind this can be described as follows:

Starting at time
�
, where the general information about the system like coordinates

and momenta are known, trajectories are calculated for time-increments � �
, which
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should be sufficiently small. From this initial conditions the new coordinates,

momenta, accelerations etc. at time
��� � �

will be estimated by Taylor expansion

at time
�
: �� (� ����� � �	� � �� ��� �	��� � � �� ��� �	�����4 � � � �� ��� �	������ � � � �� �����	�	� ����� (5.15)�� (� ����� � �	� � �� ��� �	��� � � �� �����	�	�
�4 � � �� �����	��� ����� (5.16)�� (� ����� � �	� � �� �����	��� � � �� � � �	��� ����� (5.17)�� (� ����� � �	� � �� �����	�	� ����� (5.18)

With the index p means predicted value, and abbreviations �� � � � � � �� ��
and �� � �� �� � � � � �

. After performing this as a predictor step, the new coordinates �� ������� � �	�

will give rise to a new set of forces working on the system. The accelerations

resulting from these new forces are determined and compared to the predicted

ones by

� �� � � ��
�� � ��� � �	�  �� (� � ��� � �	�
(5.19)

with c denoting the correct values.

By this, corrections will be applied to all the values in the system:�� �� ����� � �	� � �� ( � ����� � �	������� � �� ������� � �	�
(5.20)����� ����� � �	� � �� ( � ��� � � �� � � ��� � �	�
(5.21)�� �� ����� � �	� � �� ( � ����� � �	�	��� � � �� ������� � �	�
(5.22)�� �� ����� � �	� � �� ( � ����� � �	����� � � �� ������� � �	�
(5.23)

The coefficients
� �

have been tabulated and depend on the order of the differential

equation.

These prediction-correction steps can be performed in several loops, in this work

the di2pag package of the IMSL library was used with timesteps of either 0.001

or 0.005 fs.

5.3 Tabulation of the Potential

One way to reduce the complexity of evaluating the potential and force directly

is to tabulate their values. By this way on each time step the values of � � � ��
7

will be calculated for each pair of atoms and the potential, the first and the
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second derivative are interpolated from these tabulated values. In this work the

Newton-Gregory forward difference method was used.

Figure 5.1: Newton-Gregory forward difference method, [67]

Suppose a tabulated function � � � � with function values � � � 9 � ��� � , � � �

� � ��� �
, ��� � � � ��� �

, etc. at regular intervals � � . Now the forward differences will

be defined as:

��� � � � �	� �  � <�

����������������������� �"!#��!#$�%&! (5.24)

�
� � � � ��� �	� �  ��� � ��!#%&��$��������������������'�(!&��!#$)%#! (5.25)

�
&
� � � �

&+* � � �	� �  �
&+* � � �

(5.26)

Equally the backward differences are defined:

��� � � � �  � �,* � (5.27)

�
� � � � ��� �  ��� �,* � (5.28)

�
&
� � � �

&�* � � �  �
&�* � � � * � (5.29)

With

- � �  ��.
� � (5.30)

we get the Newton-Gregory forward polynomial:

� � � � � � � � - � 9 � � - � -  � �40/ � � � � � ����� � - � -  � � ����� � -  1 � � �1 / � & � � (5.31)

which is usually truncated after the quadratic term in
�

. By this way all the values

lying between � �
and � �	� � can be interpolated from the values of � �

, ��� �
and �

� � �
.
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For calculations of the forces
9

one uses the relation:9 � 7 �  = ? A � � ��� �
7
� � � � � (5.32)

� �
7

� � �  �
7

(5.33)9 � 7 �  �� �
7 � � � ��� �

7
�� � � 7 � � �

7
(5.34)

�  � ��� �
7
�

� ��
7 � �

7
(5.35)

Which is valid for pairwise potentials [67] and includes the virial function
�

.

Either one can tabulate these values separately or obtain them from differentiation

of equation 5.31:
� ��� �

7
�

� ��
7 � � � � �

�
� 4 � 9� � (5.36)

5.4 Periodic Boundary Conditions

Simulating the dynamics of matrix-embedded molecules has, as simulations of

large systems in general, the problem of surface effects. The lattice atoms on the

surface of the constructed cube will experience different forces than the enclosed

ones. This effect is quite dramatic, because for a cube consisting of 1000 atoms

nearly 50 � will lie on the surface. This effect is overcome by using periodic

boundary conditions. The box is repeated in space and by this a virtually infi-

nite lattice is formed. Calculations of interactions of an atom < at �������� ��� �	� �
then

means interaction of all the images of atom < in the duplicated boxes. Only the

coordinates of the central box will be calculated and then applied to the images in

the other boxes. Each particle will interact with particles in the same and in the

neighbouring boxes. The atoms in the central box will be enclosed and no surface

effects are appearing, but the computational costs will be cut down.

The size of the boundary box has to be determined very carefully. Of course it

should be large enough, so that the particles in the central box will not influenced

by the symmetry of the artificial lattice. For example, the halogen molecule in the

central box should not be able to sense its own image in the surrounding boxes.

Usually the size of the cell should be larger than 2 
 ��� ����
�
 , the cut-off distance.

This distance results from the range of the interactions and the pair potential � ��� �

is set to zero for all distances larger than 
 ��� ����
�
 . Usually the cutoff distance is
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Figure 5.2: Periodic boundary conditions

taken at least 2.5 times larger than the minimum distance (2.5 for Lennard-Jones

potentials) to include interactions of these length scale, but at this distance the

potential should already be near to zero.

The minimum image criterion has to be applied, which means that the atom i will

only interact with one image of atom j in the adjacent cell and not with its own

image.

The second criterion for the box-size depends on the investigated subject. The

box should be sufficiently large to include the characteristic size of the important

features of the system or the length-scale of substantial effects. For investigations

of phonon modes, the cell length should be in principle larger than the mean free

path of the phonon, so that low-frequency phonon modes with large wavelengths

are difficult to implement within periodic boundary conditions. Investigations of

these kind of phonons in silicon showed that in this respect the results were better

without periodic boundary conditions. There are other methods, like dynamical

boundary conditions, which could circumvent this problem, but will not further

discussed here. If investigations of phonon modes need to be performed, one

should start with local modes, as a first step with the oscillations of the matrix

atoms directly involved in the dynamics.

There is another problem which was already mentioned: atoms with sufficient

kinetic energy to leave the box will reappear on the other side of it and proceed
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their way, but now in the reverse direction. As we will see in chapter 6.6.1.1, in

this case the dynamics of the whole system will be disturbed. So the box has also

to be of an appropriate length to cover long-time dynamics. This is also the case,

where long-time effects of the system will be important, like long-living phonon

modes observed in systems like I � or Br � in rare gas matrices. For reduction of

the periodic boundary box to a different, non-cubic size, like for calculating only

a slab with expansion mostly in the important direction, while reducing the other

ones, all these effects have to be considered carefully.

Summarising the task is to balance the high computational costs, which will

rise with the number of interactions and can be reduced by introducing periodic

boundary conditions, and the minimal number of atoms which have to be included

to reflect the characteristic features of the system.

5.5 State Transitions

In this work we have focussed solely on the classical molecular dynamics an sin-

gle adiabatic electronic states. The information about the coupling between dif-

ferent adiabatic states is contained in the coupling elements d � 7 between the states

k, j. Here we follow the procedure used in the simulations of F � in Ar [22] and

described in [25, 28, 27], which leads to the surface hopping algorithm. The

surface hopping method allows to include some quantum effects, like state transi-

tions, to the classical MD simulations of systems. The time dependent electronic

Schrödinger equation is solved along the classical propagation of the system and

calculation of the coupling elements allows the decision whether a ’hop’ from one

adiabatic surface to another may occur. The probability for a state transition at a

two-state avoided crossing can is dependent on the atomic velocity and the nona-

diabatic coupling vector. A transition can be expected when the so-called Massey

parameter � is in order of unity:

� � 
�� ���� � � �� �  � �

�� � (5.37)

and thus is dependent on the separation between the potential surfaces of the sys-

tem. Now let us assign r to the electronic and R to the atomic coordinates, with

the latter described classically along any trajectory R(t). The total Hamiltonian
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results as:

� ����� � � � � � � � �
(5.38)

with the electronic Hamiltonian
� � � � � � �

for fixed atomic positions and
���

is the

kinetic energy operator of the atomic motion. The matrix elements of
� �

can be

described as

� �
7
��� � ����� ��� �
	 � ��
 � � � � � � ��� 7 � �
	 � ���

(5.39)

which were derived here using the DIM method, see chapter 4, see equations 4.15,

4.85. The nonadiabatic coupling vector is defined as:��
 � ��� � ����� ��� �
	 � � 
 =���� 7 � ��	 � ���
(5.40)

The wavefunction, that describes the electronic state at time
�

is expanded in the

set of electronic basis functions� � � � �	� � * 7 �
7
� �	��� 7 � � � � ���	�	�

(5.41)

The coefficients are obtained from the differential equation

< � �� � � �	� � � � ���	��� � ��� �  < � *67 �
7
���	���� ���	� � 7 � � � �

(5.42)

and after using the chain rule, we get :

� � � 
 � � 7� ��� � �� ���	����� � ��� � � ��
 =���� 7 ��� � � �	�
(5.43)

� �� � ��� � � � �
(5.44)

The term d � 7 is derived, using the Hellman-Feynman theorem:� � 7 � ��� � � � � � 
 =�� �"!���� � � � ��
#� 7 � � � � ��� ?� 7
� � �  � � � � � (5.45)

Transitions between any of the electronic states are promoted now by two factors:

First, the off-diagonal elements of
�
7 � , which are in the method used here the

spin-orbit coupling terms and the coupling induced by interaction with the rare

gas atoms. Second, the nonadiabatic coupling term, which includes the velocity
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vector of the nuclei,
�� � ��� �

.

The simulation is carried out as follows: The nuclei are propagated classically

along the adiabatic surface
� � . At each point of the trajectory, the potential sur-

faces are constructed and the nonadiabatic couplings
�� � ��� �

are obtained. This

procedure is performed for an ensemble of trajectories, which can be described by

distribution in the ground state.

The probability for a ’hop’ from state j to state k depends on the populations of

the electronic states, �
7B7

� �
7
� � �
7

and the change in population, which can be

expressed in general as: �� �	� � *
���+ � � � � (5.46)

with
� � � being the change in population from state k to state l

� � � �  4 
�� � � �� � ��� ����� �
(5.47)

So for example, in two level system, a switch from state 1 to 2 is assumed to take

place if
� � � � �
� � � � � � (5.48)

with � being a uniform random number
#
	 � 	 � , compare to eq. 5.37. In this

work surface hopping was not applied beyond the determination of the nonadia-

batic coupling elements from eq. 5.45. Still this allows the prediction of a state

transition, based on the probabilities connected to the value of
� � �

.


