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Abstract

The reconstruction of geometric shapes plays an important role in many
biomedical applications. One example is the patient-specific, computer-aided
planning of complex interventions, which requires the generation of explicitly
represented geometric models of anatomical structures from medical image
data. Only solutions that require minimal interaction by medical personnel
are likely to enter clinical routine. Another example is the planning of sur-
gical corrections of deformities where the target shape is unknown. Surgeons
are often forced to resort to subjective criteria. These applications still pose
highly challenging reconstruction problems, which are addressed in this thesis.

The fundamental hypothesis, pursued in this thesis, is that the problems
can be solved by incorporating a-priori knowledge about shape and other
application-specific characteristics. Here, we focus mainly on the aspect of
geometric shape analysis. The basic idea is to capture the most essential
variations of a certain class of geometric objects via statistical shape models,
which model typical features contained in a given population, and restrict the
outcome of a reconstruction algorithm (more or less) to the space spanned by
such models.

A fundamental prerequisite for performing statistical shape analysis on a set
of different objects is the identification of corresponding points on their associ-
ated surfaces. This problem is particularly difficult to solve if the shapes stem
from different individuals. The reason lies in the basic difficulty of defining
suitable measures of similarity. In this thesis, we divide the correspondence
problem into feature and non-feature matching. The feature part depends on
the application, while the non-feature part can be characterized by a purely
geometric description. We propose two different approaches. The first ap-
proach has proved useful in many applications. Yet, it suffers from some
practical limitations and does not yield a measure of similarity. Our second,
variational, approach is designed to overcome these limitations. In it, we pro-
pose to minimize an invariant stretching measure, constrained by previously
computed features. An important property, which sets our method apart from
previous work, is that it does not require the computation of a global surface
parameterization.
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Zusammenfassung

Die Rekonstruktion geometrischer Formen spielt eine wichtige Rolle in vielen biomedi-
zinischen Anwendungen. Ein Beispiel ist die patientenspezifische, computergestiitzte
Planung komplexer Interventionen, die die Erzeugung explizit reprasentierter geo-
metrischer Modelle anatomischer Strukturen aus medizinischen Bilddaten erfordert.
Nur Losungen, welche geringster Interaktion durch das medizinische Personal be-
diirfen, konnen den Weg in die klinische Routine finden. Ein anderes Beispiel ist
die Planung chirurgischer Korrekturen von Missbildungen, bei denen die Zielform
unbekannt ist. Chirurgen sind haufig gezwungen, auf subjektive Kriterien zuriickzu-
greifen. Anwendungsszenarien dieser Art werfen schwierige Rekonstruktionsprobleme
auf, die in dieser Arbeit behandelt werden.

Die grundlegende Hypothese, auf welcher diese Arbeit aufbaut, ist, dass derartige
Rekonstruktionsprobleme gelost werden kénnen, indem man a-priori Wissen iiber
Form- und andere anwendungsspezifische Eigenschaften berticksichtigt. Wir konzen-
trieren uns besonders auf den Aspekt der geometrischen Formanalyse. Die Grund-
idee besteht darin, die wesentlichen Variationen einer bestimmten Klasse von geo-
metrischen Objekten in einem statistischen Formmodell zu erfassen. Dieses enthélt
typische Merkmale einer gegebenen Population und schrankt das Resultat eines Rekon-
struktionsalgorithmus (mehr oder weniger) auf den durch das Modell beschriebenen
Losungsraum ein.

Eine Grundlage fiir die statistische Analyse von unterschiedlichen Formen ist die
Identifikation korrespondierender Punkte auf deren Oberflichen. Dieses Problem ist
besonders schwierig, wenn die Formen von unterschiedlichen Individuen stammen.
Die Ursache liegt in der grundlegenden Schwierigkeit, geeignete AhnlichkeitsmaBe zu
definieren. In der vorliegenden Arbeit separieren wir das Korrespondenzproblem in
die Identifikation von besonderen Merkmalen und nicht-merkmalsbehafteten Regio-
nen. Wahrend der Merkmalsanteil immer von einer spezifischen Anwendung abhéngt,
lassen sich nicht-merkmalsbehaftete Regionen nur geometrisch charakterisieren. Wir
schlagen zwei verschiedene Verfahren vor. Der erste Ansatz hat sich in vielen An-
wendungen als niitzlich erwiesen, unterliegt jedoch praktischen Einschrankungen und
liefert kein AhnlichkeitsmaB. Unser zweites, variationelles Verfahren soll diese Ein-
grenzungen iiberwinden. Wir schlagen zur Minimierung ein invariantes, metrisches
Verzerrungsmaf} vor, unter der Beriicksichtigung vorab berechneter Merkmale. Eine
wichtige Eigenschaft unseres Verfahrens, die es von anderen wesentlich unterscheidet,
ist, dass es keiner Berechnung einer globalen Oberflichenparametrisierung bedarf.
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Chapter 1

Introduction

1.1 Apples and Oranges

How can different three dimensional objects be compared to each other in a
quantitative fashion? What is the difference between them? The idiom com-
paring apples to oranges indicates that a quantitative comparison is sometimes
not valid because two objects are not related. But can apples and oranges be
related quantitatively? The answer is: yes - in several ways. Not only do ap-
ples and oranges have similar spectroscopic properties !, but we can compare
their color, surface constitution, weight - or geometric shape.

Geometric shape is the common denominator by which all three dimensional
objects are related. In many cases it can be measured much easier than other
properties and it plays an important role in making out differences in our
perception of things. D’Arcy Wentworth Thompson remarked in his famous
book “On Growth and Form” (1917) that geometric shape, among the many
different properties of three dimensional objects, plays a fundamental role:

“Cell and tissue, shell and bone, leaf and flower, are so many portions of
matter, and it is in obedience to the laws of physics that their particles have
been moved, moulded and conformed. They are no exceptions to the rule that
God always geometrizes. Their problems of form are in the first instance math-
ematical problems, their problems of growth are essentially physical problems,
and the morphologist is, ipso facto, a student of physical science.”

The geometric description and quantitative relation of shapes is fundamen-
tal for the task of transforming shapes into one another, which is also known
by its Greek word metamorphosis (pueraudppwon = change of shape) or its
English variant morphing. Modern movie making often employs morphing
techniques to render the seemingly impossible possible, e.g. transforming hu-

! Apples and oranges show similar infrared transmission spectra. See Scott A. Sandford,
NASA Ames Research Center: Apples and Oranges — A Comparison, Annals of Improbable
Research (AIR), 1995.
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Figure 1.1 Transformation of a human into a rhinoceros head.

Figure 1.2 When the tip of the nose p € M on the left head is matched with
a point on the cheek p € M on the right head, shape interpolation may yield
a head with two noses in an intermediate stage.

mans into animals as in Fig. 1.1 - by reducing humans and animals to geomet-
ric objects. The most crucial step in this process is matching corresponding
points on different shapes correctly, as false identification may lead to un-
wanted results (Fig. 1.2).

Digital representations of shapes have opened up a variety of applications
for quantitative shape comparison besides movie animation. This includes
reconstruction, recovery, tracking, prediction or detection of shapes. Such
techniques play a vital role in fields like computer graphics, computer vision,
pattern recognition, robotics, image processing and many more.

The goal of this work is to contribute mathematical strategies to solve the
problem of identifying corresponding points between different shapes on a
purely geometric basis, and to show how to use these strategies in specific
applications.

1.2 Quantitative Comparison of Shapes

In this work the word “shape” will refer to the geometric information repre-
sented by the boundary of a three-dimensional object. It will be used inter-
changeably with the word surface.

Throughout this work different surfaces are assumed to be topologically



Quantitative Comparison of Shapes

equivalent. What else can we say about the kind of shapes we intend to
compare? The answer comprises two important aspects:

Different subjects. We are interested in modeling variations of a three di-
mensional object with certain functional or semantic properties from
different individual origins. These origins could be organs from differ-
ent patients or different biological compounds. Such shapes may exhibit
large geometric variations. Furthermore, physical deformation models
of such objects are not known in general.

Discrete shapes. The shapes we will consider in this work are acquired from
physical measurements (e.g. a tomographic device, laser scanner, micro-
scope, etc.) and have potentially undergone some complex reconstruc-
tion process. They are therefore discrete in nature and subject to errors
of often unknown size.

The goal is to devise methods that capture the spatial variability of different
shapes with the properties mentioned before. This is based on three tasks:

1. The ability of identifying corresponding points on different shapes.
2. The alignment of different shapes into a common frame of reference.

3. The interpolation between different shapes (morphing).

The terms matching or registration are often used to denote either the first
task alone or the first two tasks together. Unfortunately, this ambiguity some-
times causes confusion. The first problem however - also referred to as the
correspondence problem - is the most crucial task in order to capture true
geometric variations, as false identification of point pairs may lead to unrea-
sonable results in the alignment or interpolation process (Fig. 1.2).

The matching problem can be approached from three different angles: one
is to determine corresponding points by spatially aligning two shapes first
and then computing a - in general - nonlinear transformation between them,
e.g. by minimizing surface distance; the second is to compute pairs of corre-
sponding points invariantly, i.e. independent of the location and size in three
dimensional space, and to use this information to align the shapes; the third
is a mixture of both.

As the shapes to be compared are acquired from different individuals at
different points in space and time, and may spatially vary significantly, three-
dimensional spatial overlap of the shapes, such as closest points on different
surfaces, in general is not sufficient to correctly identify corresponding points.
Therefore, the focus of this work is on computing correct correspondences
from an invariant point of view.
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How can corresponding points on different surfaces be characterized? Natu-
rally, salient features that are evident on different surfaces should be put into
correspondence. Such features may be of geometric nature, like e.g. regions
with large curvature. But it may also be specified by other information from
the perceptual or semantic context of the shape. For example, it may be some
muscle attachment site on a bone, specified by the location where a vessel en-
ters some organ, or additional image-based features in a photographic texture.
Another problem is that, in general, for a feature that is present on one shape
there may not exist an obviously associated feature or any feature at all on
the other shape.

Solving the problem of surface matching as stated before is an ambitious
goal and is still not completely solved. The paradigm followed in this work is
to separate two difficult problems, that is

(a) the identification and matching of common salient features, and

(b) the matching in regions around these features

of different objects. In this work we will focus on part (b) of the problem.
Although both issues are often treated simultaneously, part (a) really is the
subject of its own field of research and generally requires separate treatment.
It is also strongly dependent on the type of shape to be treated and the
underlying application.

Identifiable salient features that are common to a set of individual represen-
tatives of a given object will generally be sparsely distributed on the shapes.
We therefore consider them as constraints in part (b) of the matching process.
Once the features have been specified the only invariant information left to
consider is of geometric nature. The geometric content can roughly be split
into two ingredients: metric information and extrinsic curvature. Extrinsic
curvature often is what we perceive as the feature of a surface, and it will thus
be treated that way.

One important application of shape matching is the statistical analysis of
the variability of a certain object between many different individuals within
some data base. It requires matching of a large number of shapes. This task
may be performed simultaneously (group-wise matching) or sequentially by
matching pair-wise only. Group-wise matching is computationally much more
demanding than pair-wise matching. In this work, we will be concerned with
pair-wise matching only.

1.3 OQutline and Contributions

Part I - Shape Modeling (Chapters 2 through 4) of this thesis deals with
surface matching methods and statistical shape modeling.

4



Outline and Contributions

In Chapter 2 we formalize our view on the problem of surface matching.
We introduce basic geometric notions and concepts which play a central role
in this work. We classify and review related work on registration and sur-
face matching, and finally identify the methods most closely related to our
work. At the end of the chapter we describe a specific method, which we
call consistent surface decomposition and parameterization, in more detail.
This interactive approach is conceptually simple and can be applied to solve
a large class of real-world matching problems, such as the generation of sta-
tistical shape models. It has originally been invented by Malte Zockler et al.
[84] to produce morph sequences. We realized its usefulness for the solution of
the correspondence problem for anatomical shapes and the statistical analysis
of shape variations. We replaced the original barycentric patch parameteriza-
tion method with shape preserving and mean-value based convex-combination
maps in order to approximately realize the idea of minimizing geometric dis-
tortion. Additionally, we allow patches to touch themselves, which potentially
reduces the number of cuts that have to be performed. These extensions have
been published by the author of this thesis and co-workers in [71, 72, 75].

Both from a theoretical as well as from a practical point of view the meth-
ods discussed in Chapter 2 have certain drawbacks, which are discussed at
the end of Chapter 2. Therefore, we describe a new variational approach to
shape matching in Chapter 3, which is based on minimizing isometric stretch-
ing between two surfaces that are represented as triangle meshes. The main
contributions of our approach are

e a discrete multi-level representation of the bijective correspondence map,
where the discretization is de-coupled from the resolution of the under-
lying surfaces.

e a new discrete functional that robustly measures isometric distortion
between two triangle meshes based on the 1-skeleton of the discrete
correspondence map.

e a manifold-based optimization method, which does not require the com-
putation of a global surface parameterization.

We describe a prototype implementation of the optimization algorithm, show
some first results and discuss the advantages and limitations of our approach.

Chapter 4 deals with the generation and analysis of statistical shape models
as a basis for the applications discussed in Chapters 5 through 7. The basic
concept of of statistical shape models was proposed by Cootes et al. [28]. The
setup of statistical shape models requires the solution of the correspondence
problem. Based on such solutions shapes can be transformed into elements
of a vector space and traditional statistical methods can be applied. The
main goal of such an analysis is to capture the essential degrees of freedom
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of variations within a well-defined training database, e.g. by using principal
component analysis.

Part IT - 3D Geometry Reconstruction (Chapters 5 through 7) of this thesis
contain a variety of new contributions to problems of three-dimensional geome-
try reconstruction. Most of the contents of these chapters have been published
by the author of this thesis and co-workers in different peer-reviewed fora (see
citations below). The mathematical tool that is central to all these applica-
tions is the statistical shape model. Its use is motivated by the insight that the
incorporation of a-priori knowledge about shape and other application-specific
features allows to progress in the field of geometry reconstruction problems.

Chapter 5 presents a framework for automatic segmentation of three-dimen-
sional medical images, which allows to incorporate additional knowledge about
imaging characteristics. Our approach is capable of robustly segmenting med-
ical images even in the presence of noise or artifacts, as is the case for low-dose
CT data in dental imaging (see Sec. 5.4 and [79]). The method for automatic
segmentation of liver tissue from contrast-enhanced CT data (see Sec. 5.5 and
Kainmdiller et al. [63]) is almost as accurate as human performance. With the
proposed approach we were able to win the MICCAIT 2007 contest “Segmenta-
tion in the Clinics - a Grand Challenge”. The method extends previous work
by the author of this thesis and co-workers [71, 73, 74].

Chapter 6 discusses a method for generating surgical reconstruction pro-
posals for complex interventions. Two applications are presented: the recon-
struction by mandibular dysplasia (see Sec. 6.3 and Zachow et al. [144]), and
craniosynostosis planning (Sec. 6.4). In the case of skull deformities due to
craniosynostosis a first clinical trial could be performed based on our method
[51, 76, 78, 83].

For diagnostic purposes X-ray imaging is a widely used modality. We show
that it is possible to estimate the three-dimensional shape of anatomical struc-
tures from such two-dimensional images using statistical shape models [77].
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Chapter 2

The Correspondence Problem for Surfaces

2.1 Introduction

There exists a huge variety of approaches for establishing correspondence be-
tween surfaces, for which it is almost impossible to give a full account. In this
chapter we will first formalize what we understand as the basic requirements of
surface matching in a principal way. As we are interested in purely geometric
matching, we summarize the most basic definitions and facts about geometric
characterization of surfaces. We will try and state what kind of approaches
exist for solving the correspondence problem and discuss their properties and
limitations. Finally, we focus on a particular approach that has originally been
developed to produce morph sequences, but has turned out to be a powerful
tool to produce surface matchings in real-world applications. It satisfies most
of the stated requirements; yet, it has some drawbacks that will be addressed
in the next chapter.

2.2 Problem Statement

The fundamental requirement in registration or matching of two different sur-
faces is the identification of corresponding points. In this work, we will con-
sider the problem of pair-wise matching of surfaces, which are isometrically
embedded into R3.

Definition 2.1 (Surface). A two dimensional compact manifold M C R3
with a boundary, which is connected and oriented, is called a surface. If the
manifold is C*-differentiable, then M is called a C* surface.

Definition 2.2 (Homeomorphism). Let M and M be two surfaces. A map
¢ M — M s called a homeomorphism if it is bijective, continuous and has

a continuous inverse ¢~'. We say that M and M are homeomorphic.
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Definition 2.3 (Diffeomorphism). If a homeomorphism ¢ and its inverse o~ *

are differentiable, it is called a diffeomorphism. The set of diffeomorphisms
from M to M will be denoted by Diff(M,M). We say that M and M are
diffeomorphic.

Solving the correspondence problem is the task of computing a homeomor-
phism (or diffeomorphism)

p: M — M
between two homeomorphic surfaces M and M , meeting the following criteria:

Invariance. The correspondence map is independent of the location and size
of the surfaces M and M in R3.

Symmetry. If ¢ is the result of matching M to M and 1 the result of match-
ing M to M then poy =id.

It should be possible to integrate specific requirements of the underlying ap-
plication into an algorithm for computing the correspondence map. Generally,
it is desirable to achieve the following:

Plausibility. The correspondence map matches salient features on M and M
in the context of a specific application, e.g. the tip of the nose on two
faces, and performs reasonable interpolation between the features.

Efficiency. The method for computing ¢ is conceptually simple, i.e. its pa-
rameters are easy to interpret and to adjust to given specific applications.

2.3 Geometric Characterization of Shape

As mentioned before, in this work we focus on the correspondence problem
on a purely geometric basis. To this end, we will introduce here the basic
ingredients needed for the discussion of related work as well as our proposed
method in Chap. 3. For further details consult any textbook on differential
geometry and Riemannian geometry such as [33, 34].

2.3.1 Fundamental Geometric Concepts and Notation

Definition 2.4 (Riemannian Metric). A Riemannian metric g is a corre-
spondence that associates to each point p € M a symmetric, bi-linear, positive
definite form g, : T,M x T,M — R, that varies smoothly with respect to p.



2. THE CORRESPONDENCE PROBLEM FOR SURFACES

The pair (M, g) is called a Riemannian surface. The metric g allows to
measure lengths, areas or angles. All quantities that depend on the metric g
only are intrinsic, i.e. they do not depend on the embedding of the surface.
Any smooth surface can be equipped with a Riemannian metric, e.g. with the
Euclidean inner product in R3. In the remainder of this work, all manifolds
will be considered Riemannian.

Definition 2.5 (Shape Operator). Let n : M — R3 denote the unit normal
vector field on M. The shape operator (or Weingarten map) S, : T,M — T,M
is defined by the differential of the unit normal field S, = —dn,,.

S measures the degree to which the normal is changing in a direction tan-
gential to the surface M. In general, it is an extrinsic quantity, i.e. it depends
on the embedding of the surface in R3.

Definition 2.6 (Second Fundamental Form). Since S is a self-adjoint linear
map [33], there exists a symmetric bi-linear form II : T,M x T,M — R
that is associated with S by II(X,Y) = g(S(X),Y). II is called the second
fundamental form.

The quantity II(X, X) for a unit vector X € T, M is the normal curvature
along a curve passing through p tangential to X. The eigenvectors of the
shape operator S are called principal curvature directions, their associated
eigenvalues principal curvatures xi, k3. Two important curvature scalars are
the Gauss curvature k and the mean curvature H

Kk :=detS = K1ko (2.1)

1
H:=tr S = 5(/@1 + /4,2) (22)

Gauss’s Theorema egregium states that the Gauss curvature x depends only on
the Riemannian metric and its derivatives and not on the second fundamental
form. This implies that x is an intrinsic property. The mean curvature H, on
the other hand, is an extrinsic quantity.

2.3.2 Congruency

For the remainder of this section we will assume that all maps ¢ are diffeomor-

phisms, i.e. ¢ € Diff(M, M). In this case it is possible to define the differential
of ¢ at p € M as the linear map (see Fig. 2.1)

dop : TyM — T, M. (2.3)

The pullbacks of the metric g and the second fundamental form II of the

10
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Figure 2.1 The action of dy,: tangent vectors X,Y in T,M are mapped to
the tangent space Ti,,) M.

surface M by the map ¢ are defined as

(" Dp(X,Y) = Gy (dpp(X), dipp(Y)) (2.4)
(" TDp(X,Y) = Ty (diep(X), dpp(Y)) (2.5)
where X,Y € T, M.

Definition 2.7 (Congruency). Two surfaces M and M are said to be con-
gruent, if they differ only by an FEuclidean transformation (rigid motion or
translation and rotation,).

The following theorem characterizes surfaces up to congruency (refer to
do Carmo [33], Spivak [119] and Ciarlet [24] for a more concise exposition and
proofs):

Theorem 2.8 (Fundamental Theorem of Surface Theory). (1) Ezistence:
Let g and 11 be two differentiable forms, that satisfy the Gauss and Codazzi-
Mainardi equations. Then there exists a surface M with metric g and second
fundamental form II. (2) Uniqueness: Let g = ¢*g and II = gp*ﬁ for two
surfaces M and M and a diffeomorphism w. Then M and M are congruent.

Theorem 2.8 implies that two surfaces M and M are congruent if their
Riemannian metric and second fundamental forms are equal. Yet, there ex-
ists some redundant information described by the compatibility conditions
(Gauss and Codazzi-Mainardi equations, see [33]): the Gauss curvature, for
instance, is an intrinsic property. This naturally leads to the question whether
metric information in combination with some scalar curvature value suffices
to guarantee congruency. Bonnet [15] noticed the mean curvature H (or,
equivalently, any other extrinsic scalar curvature) does the job in most cases.
However, counter-examples do exist that are called Bonnet mates:
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2. THE CORRESPONDENCE PROBLEM FOR SURFACES

Definition 2.9 (Bonnet mates). The surfaces M and M with g = ©*g are
called Bonnet mates if they are not congruent, but their mean curvatures H
and H are equal.

Instead of classifying all surfaces that do not have Bonnet mates it is possible
to construct all surfaces which do have Bonnet mates [65]. It could not be
proved yet whether any of these surfaces is closed. On the other hand it was
shown that for compact surfaces there are at most two surfaces with a given
metric and mean curvature [50]. Uniqueness can be established under various
global assumptions (see Kamberov and Kamberova [64]).

2.3.3 lIsometry

Instead of considering congruency, a weaker characterization of surface geom-
etry may be based on the concept of

Definition 2.10 (Isometry). The map ¢ is called an isometry if the length
of any rectifiable curve on M is the same as that of its image on M. If such
a map exists, M and M are said to be isometric.

Congruency implies isometry, but the converse is generally not true. Im-
portant notions related to isometry are based on analyzing properties of the
length function L(vy) of curves v on M.

Definition 2.11 (Geodesics). A geodesic v : R — M is a locally shortest
curve on M, i.e. 7y is a critical point of the length function L(vy) with respect
to variations tangential to M that leave the endpoints of v fized.

Definition 2.12 (Distance). The distance d : M x M — R between two points
p,q € M is defined as inf., L(y) for all rectifiable curves v : [0,1] — M with

7(0) = p and (1) = q.

There exist different equivalent characterizations of geodesics, e.g. that the
geodesic curvature k, vanishes along v [69, §50]. Another useful notion is the
metric distortion tensor [58]:

Definition 2.13 (Metric Distortion Tensor). There exists a symmetric posi-
tiwe definite 2 X 2 matriz field Q, for p € M, uniquely defined almost every-
where, such that

9p(Qp(X),Y) = Gy (p) (dipp(X), dipp(Y)) (2.6)

for all vector fields X,Y at point p on the surface M.
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There are different equivalent characterizations of isometry:

Lemma 2.14 (Characterizations of Isometry). The following statements are
equivalent (refer to [69, §57] for a proof):

1. M and M are isometric.

2. 3y € Diff(M, M) : d(p,q) = d(¢(p), ¢(q)) for all p,q € M.
3. Jp € Diff(M, M) : g, = (¢*§)p for allp € M.

4. o € Diff(M, M) : Q, =id for all p € M.

2.4  Classification of Shape Matching Methods

In many cases, correspondence as well as alignment and interpolation are
treated simultaneously within a single approach. Such methods are often
tailored to specific applications and thus are not easily adaptable to other
types of problems. It is impossible to give a complete list of works concerned
with or contributing to the problem of surface matching. Therefore we try to
our best to give a classification of existing approaches most closely related to
this work - and remain aware that within the scope of the present work we
were forced to be selective to a certain degree.

There exist some surveys on shape matching and correspondence: Lazarus
and Verroust [80] review 3D matching with a focus on shape transformations,
Alt and Guibas [5] focus on geometric techniques based on the Hausdorff
distance, Audette et al. [8] place their overview in the context of medical
imaging, while Veltkamp and Hagedoorn [134] emphasize similarity measures.
More recently, Planitz et al. [101] have presented an attempt to classify a
set of correspondence methods, which are popular in the pattern recognition
community. Most authors agree that matching algorithms can be classified
via four different elements:

1. shape representation
2. type of transformation
3. similarity measure

4. algorithm
Other aspects are matching of partial, multiple or non-homeomorphic shapes,
none of which fall under the problem described in Sec. 2.2. They are not

considered in this work.
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2. THE CORRESPONDENCE PROBLEM FOR SURFACES

2.4.1 Shape Representations

A surface M may be represented either parametrically as the image of a map
S : R4 — R3, or implicitly as the level-set {x € R3 : F(z) = 0} of a smooth
function F' : R? — R. Such a function F is typically computed via the distance
transform [29]. Implicit surfaces [14, 98, 114] are widely used in computer
graphics and image processing, as they allow for handling topological changes
in a simpler way than it is the case with parametric surfaces. However, in
shape matching they increase the complexity of the problem by introducing
an additional dimension.

Meshes, i.e. piecewise linear polygonal surfaces, are a special case of non-
smooth parametric surfaces heavily used in computer modeling and graph-
ics, due to conceptual simplicity that allows for flexible and efficient process-
ing [19]. Smooth parametric surfaces, such as spline or nurbs surfaces [100],
are commonly used in computer aided engineering [111]. Other parametric
representations include: spherical harmonics [45], medial axis representations
[17] or point-based surfaces [6]. In this work, we will be dealing with triangle
meshes when it comes to computational issues.

Furthermore, shapes may be represented approximately by other mathe-
matical objects, e.g. graph, skeleton or point representations. It is beyond
the scope of this work to discuss methods based on representations other than
surfaces, although such methods do have their eligibility.

2.4.2 Transformations

The correspondence map is not always computed directly as a map ¢ : M —
M between manifolds. It is also rather common to compute a map ¢ : R? — R3
between the embeddings of the shapes in their ambient space. The term reg-
istration is often used to refer to this setting. In general, ¢ is non-linear. One
distinguishes between non-parametric (see e.g. Modersitzki [92] for a detailed
exposition) and parametric methods, e.g. based on thin-plate [16] or Bezier
splines [109, 67].

Methods that operate directly on the surfaces and not their ambient space
can be divided into two classes: (a) A common intermediate parameterization
of both M and M is computed and the problem is solved on the parameter
domain [84, 48, 82]. (b) A map between the manifolds is computed directly
[116, 20].

2.4.3 Similarity Measures

Let us consider a parametric representation of two surfaces 5,7 : R4 — R3
for the moment. The only basic ingredients of geometric similarity measures
are the values of ST and their derivatives. Probably the best known and
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most widely used measure is surface distance [12, 23], i.e. a measure that in-
volves only evaluations of S and T itself and as such is not invariant. Measures
based on first- and higher-order derivatives, however, are invariant. First-order
measures essentially quantify metric deviations (stretching): e.g. geodesic dis-
tances [20, 130] or elastic deformations such as the Green-St Venant-Kirchoff
energy [99]. Second-order derivatives measure curvature deviations (bending)
of the surfaces. Terzopoulos et al. [125] introduced a measure that is often
called thin-shell energy, assessing the discrepancy between the first and second
fundamental forms at corresponding points. Similar energies are used by Gu
and Vemuri [48] and Litke et al. [82].

In the literature those basic ingredients are combined into a variety of dif-
ferent similarity measures. Depending on the underlying application one part
of such a measure is called the regularization while the rest is referred to as
the feature term. It is the task of the feature term to match characteristic
regions of the shapes, while the regularization shall ensure well-posedness and
certain degrees of regularity of the solutions.

The measures can also be interpreted as scalar fields on the surfaces, which
allow to adopt the similarity measures known from image registration [146] to
surface matching, as was done by Wang et al. [136] for mutual information,
a popular information theoretic measure in image registration. However, this
approach requires a common global parameterization of both surfaces. Fur-
thermore feature descriptors (also termed indicators or fingerprints) may be
used to measure similarity [108, 91, 61]. A survey of such methods is presented
by Mikolajczyk and Schmid [88].

There exist many approaches that are beyond pure geometric characteriza-
tion of shapes. Although not in the focus of this work, we will mention two
different approaches that combine geometric with statistical information:

Pennec et al. [99] introduce the statistical Riemannian elasticity frame-
work which combines an elastic energy with statistical information from a set
of learned diffeomorphisms. This approach requires that a number of prior
matchings have been performed on a carefully selected training set, which
reflects the properties of the current shapes to be matched. It has not been
studied how the training data effects the result.

Twining et al. [128] combine statistical information based on the information
theoretic concept of minimum description length (MDL) [31] with a fluid-
based registration approach [22]. Here the idea is to describe the shapes as
viscous fluids using the Navier-Stokes equation to drive a deformation. The
MDL approach is a group-wise matching approach that requires the solution
of a costly optimization problem. Its focus is on generating statistical shape
models (see Chap. 4).
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2.5 Review of Geometric Shape Matching Algorithms

We restrict our discussion here to algorithms that deal with invariant surface
matching based on purely geometric considerations. We have identified the
following methods as being most closely related to our work.

2.5.1 Matching based on Surface Parameterization

Both Gu and Vemuri [48] and Litke et al. [82] parameterize meshes M and M
onto a common base domain and compute the correspondence map ¢ : 2 —
on the parameter domain 2 C R2. This setup has the advantage that efficient
numerical optimization schemes are far simpler to devise on analytically ac-
cessible parameter domains (e.g. plane or sphere) than over arbitrary curved
domains. Particularly, the resampling of the parameter domain is generally
much simpler, thus it makes the decoupling of the discretization of the original
meshes from a discretization of ¢ much easier. Both approaches are symmet-
ric, and require the specification of two parameters. Additional constraints
may be incorporated.

Gu and Vemuri [48] use the method of conformal parameterization [49] for
meshes of spherical topology, and apply a quasi-Newton method to minimize
their energy. The energy is given by

E(9) Za/Q [A(2) —X(¢(w))ll2dx+6/ﬂ\lﬂ(x) — H(¢(@))| dx

where A is the conformal factor, measuring stretch and computed as the result
of a conformal surface parameterization method. H is the mean curvature of
a surface.

Litke et al. [82] use the method of Clarenz et al. [25] to parameterize meshes
with disc-like topology. They apply a finite element discretization and opti-
mize the matching energy using a multi-scale approach. Their energy is similar
to that of Gu and Vemuri [48] and is given by

E(¢)=a /Q W (trQ(x), det Q(x)) v/g(x) da
e /Q 1 H (x) — F(6(@)|? /g (@) da

where Q(x) is the metric distortion tensor at a point x € £ (see Def. 2.13 on
page 12) and the energy density W accounts for length and area distortion.

2.5.2 Intersurface Mapping

The restriction to disc- or sphere-like topology is overcome by the method
of Schreiner et al. [116], which does not require a common parameterization.
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They base their method on a so-called meta-mesh which may be automatically
embedded on both surfaces M and M and thus allows to directly evaluate their
distortion energy on corresponding planar faces of the meta-mesh. They con-
struct a first-order symmetric similarity measure based on the L? stretch met-
ric [112] per triangle, which smoothly penalizes scale distortion. The match is
optimized by local relaxation steps of the vertices of the meta-mesh on differ-
ent resolutions of the input meshes. The relaxation of the meta-mesh vertices
is a complicated process which requires careful treatment in order to maintain
bijectivity of the map. Moreover, the discretization of the correspondence
map ¢ is coupled directly to the resolution of the input meshes, and not to
the error in the similarity measure.

The following two approaches were originally invented to detect isometric
deformations of objects, but can generally be used for shape matching as well.
Both methods can handle partial matchings and are intended to operate in an
unsupervised fashion.

2.5.3 Multi-dimensional Scaling

The approach of Elad and Kimmel [38] is based on the concept of isometric em-
bedding and solved by applying a multi-dimensional scaling technique (MDS).
It was extended by Bronstein et al. [20] to non-Euclidean embeddings and
thus termed generalized multi-dimensional scaling (GMDS). It works directly
on the manifolds and does not require the computation of an intermediate pa-
rameterization. The idea of measuring similarity is based on the (non-local)
characterization of isometry given in Lemma 2.14, item 2 (page 13):

E(p) = sup |d(p,q) —d((p), p(q))] (2.7)
p,qeEM

where d denotes geodesic distance on M. Since this problem is apparently
intractable, a modified functional is minimized based on mapping a discrete
number of point pairs p; = ¢(p;) only. The problem is reduced to the finite
dimensional problem

E@r,....ox) = Y ld(pi,p;) — d(Bi 5y)
i>7

which is minimized using a gradient descent algorithm combined with a multi-
resolution strategy to avoid getting stuck in insignificant local minima. The
geodesic distances d, d are pre-computed for the mesh vertices and stored in
a matrix. The values of d on the interior of the triangles are interpolated
using a so-called three-point geodesic distance approximation described by
Bronstein et al. [21]. The number of embedded points is typically of the order
of 10-100. Meshes may not grow too large in order to be able to store the
geodesic distance matrix. The correspondence map between the sample points
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2. THE CORRESPONDENCE PROBLEM FOR SURFACES

is interpolated by inverse square distance-weighting. A remarkable fact is that
the geodesic distance can be estimated robustly even on noisy triangle meshes.

2.5.4 Probabilistic Matching

Anguelov et al. [7] define a probabilistic model over all correspondences p; =
©(pi), which encodes geodesic distance constraints as well as other high-level
surface features (spin images, see Johnson [62]). They derive a Markov net-
work, which models a joint probability distribution over the correspondence
pairs and apply the loopy belief propagation algorithm [142] to solve for the
most likely configuration. No details on how to compute the geodesic dis-
tances are given in this paper. Yet an interpolation of the correspondence
map could be performed in the same manner as in the above approach. The
main limitation of this approach is the fact that it makes the assumption of
(approximate) preservation of geodesic distance. A second limitation of the
approach is that it assumes that the data mesh is a subset of the model mesh.

2.6 Consistent Surface Decomposition and Parameterization

In this section we will discuss one specific geometric shape matching algorithm,
which has proved successful in many real-world applications, especially for
generating statistical shape models (Chap. 4) of anatomical structures. It
can be considered as an extension to the surface parameterization approaches
(Sec. 2.5.1), that on the one hand can handle arbitrary topological meshes.
On the other hand it is conceptually and computationally much simpler than
the intersurface-mapping algorithm (Sec. 2.5.2).

2.6.1 Motivation

A general problem in surface matching is the combined consideration of fea-
tures and regularizations. As mentioned in the introductory Chap. 1.2, we
strive to devise a framework where features are incorporated as hard con-
straints in a regularization process. This way the definition of features is
completely decoupled from the regularization criterion. Variational methods
that use additive coupling of regularization and feature terms (soft constraints)
suffer from the difficulty of specifying the coupling constant. It may be pos-
sible to add hard constraints to unsupervised methods (Sec. 2.5.3 and 2.5.4),
like GMDS or probabilistic matching, but this has not yet been dealt with.
Typical features or constraints in matching applications are corresponding
points, corresponding lines or whole corresponding regions where exists no
detailed knowledge of how to map the interior of such regions or lines. Hence,
our idea to decompose the surfaces into corresponding parts in a consistent
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way and match these parts separately by considering suitable compatibility
conditions along the boundary of those regions. This makes sense if matching
the parts as well as the subsequent assembly is significantly simpler than
solving the whole problem at once. Moreover, this implies that the features
should be contained in the set of boundaries of these parts, not on their
interior. This idea was inspired by the work of Malte Zockler et al. [84].
Their goal was the generation of visually pleasing morph sequences. Our
contribution is the realization that such an approach can be applied to solve
the correspondence problem as posed in Sec. 2.2.

2.6.2 Consistent Decomposition

There are several ways to define such decompositions. A major goal, how-
ever, is that the matching of the parts and their assembly can be performed
for arbitrary surfaces and allows to incorporate features in a simple manner.
For instance, a simple scheme can be devised for parts that can efficiently be
parameterized globally onto common domains. In this case, the matching ¢|r
of two corresponding regions R C M and R C M with given parameteriza-
tions z : @ — Rand 7 : Q — R can be computed by concatenating their
parameterizations:

plp=Fox™!

R——— R
x / (2.8)
Q

The most efficient parameterization methods for given base domains exist for
regions that are homeomorphic to a disc. For triangle meshes there exist
a variety of different methods for computing parameterizations of disc-like
surfaces, see e.g. Floater and Hormann [43] for a classification and overview
over current approaches. Conformal methods are widely used as they mini-
mize angular distortion, which is desirable when dealing with triangle meshes.
Harmonic maps [37] using finite element discretization [36] have the drawback
of not guaranteeing bijectivity. This property is explicitly enforced in the
so-called convex-combination map approach [41]:

Let P = {p1,...,Pn,Pn+1,--.,PN} be the coordinates of the vertices of
a triangulated surface patch R. Assume that p,...,p, are internal nodes,
while pp41,...,pn lie on the boundary OR. Furthermore let u; € Q C R?
(¢t = 1,..,N) be the corresponding coordinates in the parameter domain (2.
The map

VP Q, peou = :c_l(pz-)
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is called a convex combination map, if

N
U; = Z )\ijuj (29)
j=1
for all internal nodes i = 1,...,n, and
N
o =0 () ¢E
jz_:l)\z] =1 ’ )\z] { > 0 (Z,]) c E (210)

where F is the set of all edges of the triangulation. It was shown by Floater
[41] that convex combination maps do not produce fold-overs in the planar
domain 2, and every point u; lies in the convex hull of 0€2. The linear system
(2.9) is sparse and can be solved efficiently even for large triangle meshes. The
most simple choice for A\;; = 1/n; are barycentric weights, where n; are the
number of neighbors of point p; in the triangle mesh. However, the freedom to
choose A;j can be exploited to minimize geometric distortion. We use the so-
called mean value coordinates by [42], which satisfy the mean value theorem
of harmonic functions.

Let us now formalize what we mean by consistent decomposition of two
surfaces, and how the parts R are assembled to produce a continuous corres-
pondence map ¢ from the set {¢|r : R C M}. Our basic assumption is that
each region R is homeomorphic to a disc. Let K = (V, E,C) be an abstract
2-dimensional cell complex with

V ={1,...,n} the set of vertices,
E ={(i,j)]i,7 € V} the set of edges and
C={(i1,..- i) |1,...,i € V,k > 2} the set of 2-dimensional cells.

Each vertex i has a corresponding point p; embedded in M and p; embedded

in M. The geometric realization of an edge e € E' is a curve 7, : R — M, that
does not intersect any other curve v, except at their endpoints. Cutting the
surface M along the union of embedded curves I' := |, Im(7.) produces a
decomposition of M into regions R., equivalent to the geometric realizations
of cells c € C.

Definition 2.15 (Consistent Surface Decomposition). We call a decompo-
sition of M walid, if M\I' = |J.cc Re degenerates into disconnected surface
patches each homeomorphic to a disc. Two valid decompositions based on the
same cell compler K are said to be consistent. Note that a cell of of such a
decomposition may touch itself, see Fig. 2.2.

For each pair of corresponding patches R. and ﬁc a common base domain
Q. € R? is defined. The shape of the domain influences the amount of distor-
tion introduced by the parameterization method. Generically, the unit disc
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Figure 2.2 A special decomposition of a double-torus. The whole surface is
cut into a single region homeomorphic to a disc. The picture was taken from
Erickson and Har-Peled [39].

may be chosen, but other constructions are conceivable as well. In order to
achieve continuity of the correspondence map across boundary curves 7, ver-
tices on M must be mapped to vertices on M, while boundary curves must be
mapped to common intervals. This must be considered in the construction of
the boundary 0€). of the common base domains before parameterization can
be performed. A natural way of fixing the location of the vertices on 0€). is
common arc-length parameterization, i.e. averaging the lengths of the bound-
ary curves 7. and 7, relative to the total length of curves bounding a cell ¢
in M and M, respectively. The final correspondence map ¢ at point p is now
given by ¢, for ¢ such that p € R,.

2.6.3 Implementational Issues

In order to implement the above method triangle meshes are cut along user-
defined curves on surfaces. This is achieved by constrained Delaunay triangu-
lation of the original mesh (Fig. 2.3a) per triangle along the curve (Fig. 2.3b).
Our implementation is based on the Triangle library by Shewchuk [117].

This procedure generally introduces triangles with bad aspect ratio, which
have to be avoided in the further course of processing, e.g. to improve the
condition of the linear system (2.9) in the mesh parameterization process.
We solve this problem by re-meshing the surface (Fig. 2.3¢), while preserving
feature lines. It is based on local surface operations only and does not require
previous parameterization of the surface. Please refer to Zilske et al. [145] for
details.

In our algorithm, we allow surface regions to touch themselves, which po-
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Figure 2.3 Decomposition of a surface mesh: (a) Original mesh, (b) Definition
of cutting curves: the close-up shows the mesh after re-triangulation along the
cuts. (c¢) Re-meshing of the mesh such that the geometry of the cutting curves
is preserved while the triangle quality is improved.

tentially reduces the number of cuts that have to be performed. In general,
every closed surface may even be cut into a single region homeomorphic to a
disc (Fig. 2.2).

2.6.4 Discussion

Fig. 2.4 shows the decomposition of a pelvic bone and a liver surface. The
pelvis is cut into 11 regions, the liver is composed of 4 regions. Generally not
all cuts can anatomically be well-defined, as shown in Fig. 2.5. Some cuts are
needed merely for achieving topological consistent decomposition. As cuts on
different shapes will be matched and, generally, have different (uncorrelated)
arc-length parameterizations, unwanted correspondences may be introduced
along the cuts. More details about the decomposition of specific shapes are
given in Chap. 5 through 7.

The fact that the parameterization of the cutting lines is fixed indepen-
dently of the interior of the regions, leads to potentially large distortions in
the resulting map, see Fig. 2.6. A possible remedy is a post-processing step
that improves the mesh quality iteratively by moving vertices tangentially
along the surfaces. This idea is part of the approach taken by Schreiner et al.
[116] and is closely related to the concept of surface re-meshing.
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Figure 2.4 Decomposition of a pelvic bone surface into 11 regions and a liver
surface into 4 regions.

Figure 2.5 Some cuts must be defined for purely technical reasons. Such
cuts are not well defined anatomically and thus possibly introduce unwanted
correspondences.

Figure 2.6 Distortion of the correspondence map introduced by the method
of consistent surface decomposition and parameterization: (a) mesh M, (b)
mesh M with the same mesh topology as M, (c) large distortion of triangles
occur mainly around the region boundaries.
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Another limitation of this approach is that is not obvious how to obtain a
quantitative similarity measure within this construction. Currently, the sur-
face decomposition process is interactive, which can be regarded as a draw-
back in certain applications. Efforts to further automatize this task have
been proposed in the literature [104, 116]. Extensions have been and still are
investigated by two diploma theses co-supervised by the author of this the-
sis [10, 141]. For a wide range of applications, however, such as statistical
shape modeling (see Chap. 4), the possibility of interaction is beneficial, as it
decouples feature identification from regularization.

2.7 Conclusions

Each discussed method for computing corresponding points on different shapes
has its strengths and weaknesses, and has been shown to be successful on
certain types of data. The goal must be to combine their strengths into one
approach that meets the desired requirements stated in Sec. 2.2 and overcomes
at least some of the issues of the discussed methods. These are - briefly
summarized - the following:

e One class of methods relies on global parameterizations of the surface.
This is only tractable for simple topologies (disc, sphere). For surfaces
of higher genus the computation of atlases seems prohibitive.

e Non-local similarity measures, as in the MDL approach, limit the prob-
lem size which the optimization method is able to handle.

e Working directly on the surface mesh does not decouple mesh resolution
from the discretization of .

e Splitting the matching problem into sub-problems, dealing with topo-
logically simpler shapes, in order to handle arbitrary topology, makes
it difficult to obtain a quantitative similarity measure, introduces un-
wanted correspondences and possibly large distortions around the inter-
faces between the different regions (Fig. 2.6).

In the next chapter we propose an attempt to solve some of these problems.
The advantages of our approach will be that it can handle arbitrary topology
without computing surface parameterizations explicitly. Furthermore it is
based on a local characterization of isometric deviation. Our discrete distance
functional approximates a smooth functional, and can be evaluated robustly
on triangle meshes.
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Chapter 3

Variational Surface Matching

3.1 Introduction

In this chapter we will introduce a variational approach to shape matching.
The underlying idea is to measure only the deviation between the geometric
content of surfaces. Basically there are two ingredients: metric and extrinsic
curvature. Extrinsic curvature, however, is a property of a surface that is often
understood to represent specific features of a shape. As stated before, such
features may not exist on all shapes to be compared and it may not necessarily
be desirable to match regions with similar extrinsic curvature. Hence we will
measure metric deviations only.

First we derive a distance functional for smooth surfaces and examine the
structure of the optimization problem. In real applications, however, we face
two major problems: (1) Even for smooth surfaces of high genus it is virtually
impossible to repeatedly compute surface parameterizations (atlases). (2) We
are dealing with discrete surfaces. These aspects lead us to proposing a dis-
crete distance measure which can be evaluated robustly on discrete meshes.
We show how to compute its first variation and describe a minimization-on-a-
manifold scheme, which does not require the computation of surface param-
eterizations. Finally, we present a prototype implementation and show some
preliminary results of our method.

3.2 Measuring Geometric Deviation

As stated in Sec. 2.2, we are interested in characterizing surfaces not only
modulo translation and rotation but also scale. Let A and A denote the total
surface area of M and M, respectively. We can always assume scale invariance
by simply re-scaling M and M such that A=A = 1.
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Let (M, g) and (]\7 ,g) be two Riemannian surfaces and
¢ € M := Diff(M, M) (3.1)
a diffeomorphism. We want to derive a (family of) functional(s)
F:M-—R
such that its minimum

F(p) — min subject to additional constraints (3.2)

is attained when the two surfaces M and M are geometrically most similar.
How can geometric similarity (or equivalently geometric deviation) be mea-
sured quantitatively?

Let I and II be the second fundamental forms of M and M , respectively.
An obvious way of measuring geometric deviation - neglecting symmetry con-
siderations for the moment - could be

)=a / lop — (& )pl2 dA + 8 / I, — (T, |24 (33)

where || - || denotes some suitable operator norm and dA the area element of
M. The parameters a, § € Ry weights metric and curvature deviation.

Functional (3.3) was introduced in the seminal work by Terzopoulos et al.
[125]. It is closely related to the theory of elastic shells [24] and can be
regarded as a simplified version of Koiter’s energy for a nonlinear elastic shell.
In our setting, the surface (M, g,1I) corresponds to the deformed shell, while
(]\7 ., ﬁ) corresponds to the reference configuration. Although functional
(3.3) is not derived from the theory of elastic materials, it does simulate

stretching 1 «||gp, — (¢*7),/|* and (3.4)
bending : G ||, — (*TI),|? (3.5)

of an infinitely thin shell. Its parameters o and 3, however, do not have a
direct physical interpretation.

In computer graphics applications, functional (3.3) is used to model surface
deformations. In this field, one is usually interested in generating physically
plausible and aesthetically pleasing deformations at interactive rates. There-
fore, functional (3.3) is often replaced by a linearized version and minimized on
a given triangle mesh, which stays fixed during the deformation. See Botsch
and Sorkine [18] for a review of such methods. For the task of computing corre-
spondences such an approach does not seem appropriate, as the discretization
of ¢ depends on the resolution of the surface M.

The bending term (3.5) is minimized when regions of similar curvature
(and curvature directions) are matched. As pointed out in the introduction
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B B

Figure 3.1 Part of a cylinder M is matched with a copy M of itself that

is rotated by 90°. The corner mappings are fixed. The bending term ||.S, —
(¢*S)p|| in equation (3.5) drives the match ¢ of the dashed line on M towards

the dotted line on M.

(see Chap. 1) such regions are often regarded as salient features of a shape.
However, a feature that is present on one shape may not have one obvious
associated feature or any feature at all on the other shape. Since the feature
definition is context-dependent, we have decided to treat feature detection
separately.

In order to illustrate the effect of the bending term, we consider a situa-
tion where no salient features shall be present on the two surfaces M and M
depicted in Fig. 3.1. Both shapes are identical parts of a cylinder that are
matched under the following constraints: boundaries of M shall be mapped
to boundaries of M by identifying the corners of the shapes (4, B,C, D with
A, B,C, D) and matching the thick black lines L and L. Without the bending
term, the dashed lines on both shapes would be matched. Including the bend-
ing term, however, favors solutions ¢ that rotate the dashed line towards the
dotted line. According to our paradigm, this may not be the desired solution
when no additional features are given on the interior of the shapes.

Therefore, in this work, we will neglect extrinsic curvature and seek to
minimize metric distance in a symmetric way, as defined in Sec. 2.2. We
propose to minimize

Flp.oh) = /M lop — (" Dpll? dA + /M 150 — (0 9)all? dA| (3.6)

with additional contraints. Here, dA and dA denote the area element of M
and M respectively. In many cases, constraints are necessary to guarantee the
existence of a unique solution. In this work we will assume that “sufficient”
constraints are given. In the case of surfaces with boundaries, the mapping
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3. VARIATIONAL SURFACE MATCHING

of boundaries on M to boundaries on M must be specified as constraints to
ensure that ¢ is a diffeomorphism. Further constraints may be derived from an
analysis of extrinsic curvature measures or other non-geometric information.
Bihun and Chicone [13] discuss a similar functional to equation (3.6) based
on the Jacobian of ¢ and prove the existence of minimizers.

3.3 Minimizing Stretching

In this section we will discuss the theoretical setting of the variational problem
stated in equation (3.2):

F(p) »min , ¢ € M := Diff(M, M)

such as the stretching functional defined in equation (3.6). Recall that M and
M are Riemannian surfaces as given in Def. 2.1. For the relevant background
on Riemannian geometry refer to Appendix A.

The space M is not a linear space, i.e. one cannot simply perform addition
of two elements ¢, € M such that ¢ + ¢ € M. Yet, for the purpose of
optimization, we must work with linear spaces.

The key to tackle this problem lies in realizing that M is a manifold modeled
on a Banach space [70]. Its tangent bundle M can be identified with the
tangent bundle TM of the target surface M , see [13]. Furthermore, M is
a differentiable manifold [96] and can hence be equipped with a Riemannian
metric. For more details about infinite dimensional manifolds and spaces of
maps refer to the literature on global nonlinear analysis (e.g. Nitecki [96] and
references therein).

For functionals F' defined on a Riemannian manifold a Taylor expansion
was derived by Smith [118], Chap. 4, §2. The variation V,, € T,M of F in a
neighborhood of ¢ € M is given by

Fexpy, (Vi) = F(p) + VE(V) () + %VzF(V, V() + O(IVi )

where V,, € T, M is a tangent vector at ¢ € M and V is the covariant
derivative of F'. The vector field V on M is adapted to V,,, i.e. for each point
1 in the neighborhood of ¢ we have Vi, = 7(V},), where 7 denotes the parallel
translation of V), along the unique geodesic connection between p and ¢. For
the definition of geodesics and parallel translation refer to Sec. A.

The standard approach to performing numerical computations for such func-
tionals would be to derive the Euler-Lagrange equations, and express all quan-
tities in local coordinates. This requires the computations of an atlas structure
for the manifold M, the specification of a Riemannian metric on M as well
as the computation of atlases for both surfaces M and M. In the case where
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a common global parameterization of M and M can be computed, i.e. for
simple topologies such as disc or sphere [48, 82], the variational problem can
be written as

F(r) = /M lg(z) = g(r(@)]I* Vg(z) da

where 7 : ) — () is a map on the common parameter domain  C R? of
M and M, and M = z7%(Q) and M = 771(Q) are the local coordinates.
However, in the case of arbitrary topologies, common local coordinates need
to be computed repeatedly depending on the current value of ¢. It is not
clear whether such an approach is tractable and can lead to efficient numerical
schemes. Yet, at least from a theoretical point of view this approach should
be pursued further. Some progress was already reported in [13].

In this work, however, we will take a different approach for two reasons:
(1) The surfaces we are dealing with are a result of physical measurements
(e.g. laser scanners) and/or complex reconstruction processes (e.g. manual
segmentation and marching-cubes surface reconstruction from medical image
data) and are therefore given as discrete data, more specifically as triangle
meshes. There exists no correlation between the sampling of both M and
M. (2) M and M can be of arbitrary topology. The explicit computation of
atlases currently seems prohibitive for the reason mentioned above.

How can we represent the correspondence map ¢ on polygonal meshes?
How can we measure or estimate stretching, i.e. the metric g and ¢ and their
pullbacks (see equation 2.4), reliably from discrete data?

For triangle meshes there exists no canonical smooth approximation scheme.
In fact, two different schemes may lead to completely different values of the
metric, surface area, curvature, etc. On the other hand, if a given sequence of
polygonal meshes converges to a smooth surface M in Hausdorff distance and
the normal field converges, then (discrete) quantities like intrinsic distance,
area, mean curvature, geodesics converge too [58, 137]. Hence, the discrete
setting has a smooth limit.

Therefore, our goal is to develop a discrete representation of ¢ in conjunction
with a method that is capable of reliably estimating geometric quantities on
triangle meshes of arbitrary topology. Such an approach is presented in the
next sections.

3.4 Discrete Stretching Functional

We propose to discretize ¢ by decomposing the shapes into cells ¢; and ap-
proximating the integrand of F', i.e. the stretching density

F(@) = llgp = (@"p” (3.7)
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by a constant f; in each cell ¢;, thus turning the infinite dimensional optimiza-
tion problem into a finite one:

Flo) = [ feraa = 3 [ serda TS faveate)

The discrete map ¢y, is represented via the following construction. Let K =
(V,E,C) be an abstract 2-dimensional cell complex with

V ={1,...,n} the set of vertices,

E ={(i,j)|i,7 € V} the set of edges and

C={(i1,... i) |i1,...,ix € V,k > 2} the set of 2-dimensional cells.

The surfaces M and M are decomposed by embedding the cell complex K into
M and M, i.e. by specifying valid (definition see below) geometric realizations
1 and 9 of K in M and M:

Ph —~
M
X % (3.9)
K

The geometric realizations ¢ and 1; are defined as follows: Let the image of
the vertices V on M and M be denoted by the sets of points

M

P={p1,...,pn} withp,e M
P={p1,....pn} withp;eM

The geometric realizations of an edge e = (i,j) € F is defined as the shortest
curve 7;; connecting the points p; and p;. Its length is denoted L. = d(p;, pj).
The geometric realization of each cell ¢ € C is thus called a geodesic cell with
an area denoted by area(c) = A.. A cell ¢ = (i1,...,i) is bounded by the
set of curves i io, Vigizs - - - » Vip_qip- Fig- 3.2 illustrates the embedding process.
The resulting embeddings constitute a consistent surface decomposition of M
and M (cf. Def. 2.15).

In this setting, the discretization parameter h is given as

h = max {max L. , max Ze} . (3.9)
eck eck

Definition 3.1 (Valid Geometric Realization). A geometric realization v of

an abstract cell compler K on a surface M is called valid, if the image of

the geometric realization ¥(K) forms a geometric cell complex K, which is

topologically equivalent to K, i.e. consists of the same sets of vertices, edges

and cells.
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Figure 3.2 Embedding a common cell complex K into two surface M and
M: the vertices 1, j, k are mapped to p;, pj, pr and p;, pj, P, respectively. E.g.
vertex i and k are connected by an edge (i, k), whose geometric realization
are the geodesics v and ;. The cell ¢ = (7,4, k) is bounded by its three
adjacent geodesics.

For the purpose of this work we will assume that valid geometric realizations
exist for both M and M. As M and M are homeomorphic this is certainly the
case for h — 0. In order to complete the construction of the correspondence
map ¢p : M — M we need to specify how to map the interior of geodesics
and geodesic cells from M and M (interpolation scheme). In fact, we will not
specify this interpolation scheme, as the functional we propose will be evalu-
ated only on the 1-skeleton of the map ¢ given by the vertices and edges of
the embedded cell complex. In order to extend the map from the 1-skeleton to
the whole surfaces, continuity must be ensured across the embedded edges and
inside cells. Otherwise, we leave the interpolation undefined. The method of
consistent surface decomposition and parameterization described in Sec. 2.6.2
can be directly applied to obtain the full correspondence map ¢, as it approx-
imately minimizes stretching inside the cells.

In the case of two planar surfaces and a complex K, which is simplicial,
the construction of a suitable distance measure based on the 1-skeleton of ¢y,
reduces to comparing two flat triangles meshes with Euclidean straight edges
(Fig. 3.3). In this case the stretching density (3.7) is indeed constant on each
cell, because the map from cell ¢ to ¢ is linear. It can be measured in different
ways, e.g. by comparing edge lengths L. with Ee or areas A, with gc (or
eigenvalues of the linear map, see [112]).

We will use an analogy to the planar case to setup our discrete matching
functional. The basic idea is to approximate stretching density by a constant
value per cell by measuring only length deviations of the cell boundaries and
area deviations between the interior of the cells ¢ and ¢ embedded on M and
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3. VARIATIONAL SURFACE MATCHING

Figure 3.3 Stretching between two planar triangle meshes (simplicial cell
complex embedded into the plane) is constant per cell, because the the map
from cell ¢ to ¢ is linear. It can be measured by comparing edge lengths L or
areas A.

M , thereby neglecting further geometric details on the interior of the cell
embeddings. We propose:

s

Fh(P,]S):)\L-Zk<%,L£) +AA-Zk<iC,Af) (3.10)

eeE ceC

with the discrete stretching density

k(z,y) = (1 - Z)Q + (1 - %)2 (3.11)

Ar, and A4 are parameters to weight edge length against area deviation, while
L=>_L.and A=) _A. denote total edge length and total surface area,
respectively.

Functional (3.10) measures length deviations of corresponding geodesics and
area deviations of corresponding geodesic cells on M and M. Functional (3.10)
has the following desired properties (see Sec. 2.2):

(i) Fj is invariant under Euclidean transformations, because it de-
pends on differential geometric - even intrinsic - properties only.

(ii) Fj is invariant under rescaling of both M and M , since the argu-
ments of k£ are dimension-less.

(iii) F}, is symmetric with respect to exchanging M and M, ie. Fy(P, P) =
Fn(P, P), since k(z,y) = k(y,x).
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3.5 First Variation of the Discrete Stretching Functional

We have transformed the shape matching problem into the finite dimensional
optimization problem

Fp,: M—R

defined on the 2n-dimensional product manifold

o 14)- (19

As described before in Sec. 3.3 variations are defined in the tangent space of
M, which is given as a Cartesian product [97, p. 24]:

TM = (15[1 TpiM> X (lj T,;ﬁ)

In order to minimize Fj, we need to compute its variation V F}, with respect to
some vector field V € T M. Due to the Cartesian product structure of M and
isomorphism, the variation can be split into independent variations for some
veTyM (and v € 15, M, respectively). This essentially requires computing
the variation of the length of a geodesic V, L. and of the area of a geodesic
cell V,A. with respect to some vector v € Tp].M )

We fix some notations needed to produce the desired results (see Fig. 3.4):
let w;; € T;,; M denote the unit vector tangentially to the geodesic between

Figure 3.4 Gradient computation of Fj, at point p. Explanation see text.
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(and oriented from) p; and p;. Let wié € T, M be the vector w;; rotated by
90° clockwise (in the orientation of the surface M). For a cell ¢ containing
adjacent vertices i, j, k the gradients in 7)), M can be written as

VLe(pj) = w,-j (3.12)

VA:pj) = Ukjw,ij — Uijwfj‘- (3.13)

The gradient of the length L. of a geodesic from p; to p; points tangentially
along the geodesic and has unit length, denoted w;;. The gradient of the
area A. at p; has two terms, for both geodesics bounding cell ¢ ending in p;
(see Fig. 3.4). Each term is the gradient of the area swept by varying the
geodesic by displacing p; tangentially while fixing p;. Since the area swept
by a geodesic ;; is zero when p; is displaced tangentially to the geodesic,
i.e. along w;;, its gradient must be normal to the geodesic at p;, i.e. denoted
wf] Its magnitude o;; is given by the derivative of the integrated normal
components u : [0, L] — R of the variation vector field

o= % (/OL u(s) ds) (3.14)

constrained by
w(0) =0 and u(L)=c¢e. (3.15)

The variation vector field for a family of geodesics is called Jacobi field. Its
normal component v is characterized by the ordinary differential equation

u”(s) = —k(s)u(s) (3.16)

where k is the Gauss curvature along the curve. Thus, the solution of the
boundary value problem (3.16) with (3.15) substituted into (3.14) yields the
magnitude of the area gradient.

As examples, we consider the case of K = 0 (planar surfaces) and k = 1
(sphere). For x = 0 the boundary value problem s solved by u(s) = €7.
Hence, we have 0 = L/2, which is the well known Euclidean expression. For

k = 1 we have u(s) = e=nl) 1;‘;&%? =L+ 312+ ... For

sin(L)
small values of L, o exhibits the expected asymptotic behavior towards the

Euclidean case.

and o =

For triangle meshes, the computation of the point-wise Gauss curvature x is
described in Appendix B. An algorithm for computing o for arbitrary Gauss
curvature x is presented in Appendix C.

3.6 Minimizing the Discrete Stretching Functional

We are faced with the problem of minimizing a function F} : M — R over
a finite-dimensional manifold, that is not given analytically, i.e. no atlas is
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given. As mentioned before it is desirable to avoid the explicit computation
of such an atlas. Therefore, we propose a method where the minimization is
directly performed on the manifold.

3.6.1 Optimization on a Manifold

So far, we have only the gradient of F} and no higher derivatives at our dis-
posal. Hence, we will adopt a gradient-based line-search method to minimize
Fy. A nonlinear conjugate gradient descent for optimization on a manifold
was described by Smith [118]:

Algorithm 3.1. (Nonlinear Conjugate Gradient Descent on a Manifold)

1. Let x0 = (p1,--+Pn,P1,---,Pn)o € M.
Compute dy = —V Fy(z¢) € Ty, M and set k = 0.

2. Compute ty so that F,(exp,, (txdy)) < Fr(exp,, (tdy)) for all t > 0.
3. Set Tk+1 = €XPg, (tkdk)

4. Set dg11 = —VFp(xps1) + PBr7(dg), where 7 is the parallel transport from
Zk to xp4+1, and B may be given by the Polak-Ribiére formula

(VW (zry1), VER(11) — T(VER(21)) )

B = (VEp(z1), VEu(z1))

5. Stop if convergence is reached or increment k£ and go back to step 2.

It was shown by Smith [118] that Alg. 3.1 has the same rate of super-linear
convergence as its Euclidean analogue. Convergence in the case of functions
defined on Riemannian manifolds is defined as follows: let{z} be a Cauchy
sequence in M that converges to x. The sequence is said to be convergent
of the order n if there exist an integer m and a constant § € [0,1) such that
d(xps1,x) < dd(xp, )" for all k > m, where d is the distance on M. Likewise,
convergence could be shown for other optimization schemes such as Newton’s
method [44, 118, 129] or trust region methods [2].

Several authors [85, 4, 59, 89] showed that the convergence properties are
preserved when the exponential update is relaxed to the general notion of
retraction: Let R, : T, M — M be a first-order approximation to the expo-
nential map, i.e. for v € T, M let exp,(v) = R;(v) + O(||v]|?). This means
that geodesics can be replaced by any curve tangential to the search direction
in the update step (step 2 and 3 in Alg. 3.1). Similarly, parallel transport 7
(step 4 in Alg. 3.1) might be replaced by the more general notion of vector
transport, but this is ongoing research [1, 3].
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Figure 3.5 A hierarchy of cell complexes (grids): K' covers the whole shape
with one cell, it is refined by adding one vertex in the interior of the shape and
connecting it to all boundary vertices (K?2), resulting in a simplicial complex.
Two additional refinements (K2 and K?) are performed by 1:4 splitting of
each triangular cell.

3.6.2 Multi-level Optimization

We adopt a multi-level approach with Gauss-Seidel smoothing. We start with
a coarse cell complex K (few vertices and cells) on level 1 and minimize Fj,.
The coarse level solution is then prolongated to the next finer level K2 and so
on, resulting in a hierarchy of cell complexes:

K'<K?’<...<K"

The prolongation operator performs 1:4 refinement of triangular shaped cells
by connecting the midpoints of edges with a shortest path. For cells with more
than 3 vertices a new vertex is added on the interior of the cell and connected
to all cell vertices, resulting in a triangular shaped cells on the finer levels
(Fig. 3.5).

As a multi-grid smoother, we apply a Gauss-Seidel relaxation scheme. This
means, that Fj is minimized successively with respect to a single variable
p; or p;, while fixing all other variables, using Alg. 3.1. Constraints can be
incorporated by fixing certain vertices p; or p; in the current cell complex K.
Furthermore edges which lie on the boundaries or on non-manifold regions on
M must be mapped to boundaries or non-manifold regions on M respectively.
The bijectivity of ¢ is guaranteed throughout the algorithm by using the
following line-search strategy in step 2 of Alg. 3.1:

The exponential map in a point p € M is computed (see Sec. 3.7.1) along
the negative gradient dj until it touches any other embedded geodesic curve
~ in the star of the vertex ¢ € V' (see Fig. 3.6). The functional is evaluated at
a discrete number nyg of points evenly spaced along the resulting geodesic.
Around the minimum the process is repeated for the interval between neigh-
boring samples recursively until a given accuracy hpyi, is reached. The value
t is given by the optimal position on the geodesic. This way bijectivity is
preserved.
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Figure 3.6 Line minimization at p along the conjugate gradient direction
dy in iteration k: The functional Fj is (recursively) evaluated at a discrete
number of points along the geodesics v emanating in p (see text) to find the
minimum and a better value for p.

3.7 Geodesics, Exponential Map and Surface Area for Meshes

In order to implement Alg. 3.1, we need to specify the computation of geodesics
on M and M. It is only at this point that we really need to fix the represen-
tation of the surfaces M and M in order to present concrete algorithms. As
mentioned before, the surfaces are given as triangle meshes.

On smooth surfaces, geodesics are straightest and locally shortest curves.
They generalize the concept of Euclidean straight lines. On smooth surfaces
they satisfy two properties: (1) Geodesics solve the initial value problem which
states that from any point on a surface there starts a unique geodesic in any
direction. This is required for evaluating the exponential map in the algorithm
of Sec. 3.6. (2) The length minimizing property provides a solution of the
boundary value problem of connecting two given points on a surface with
a locally shortest curve. This is needed to evaluate the discrete stretching
functional (3.10) and its variations (3.12) and (3.13).

3.7.1 Exponential Map

The algorithm presented in this section is based upon the work of Polthier
and Schmies [102] and their definition of straightest geodesics on meshes:

Definition 3.2 (Straightest Geodesics). A curve v on a triangle mesh M is
called a straightest geodesic if for each point p € v the left and right curve
angles 0; and 0, at p are equal.

This definition uniquely solves [102] the initial value problem for triangle
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Figure 3.7 Computation of the straightest geodesic on a triangle mesh based
on the definition of equal left 6; and right 6, angles (see Def. 3.2 and Alg. 3.2).
Three cases have to be distinguished: point inside a triangle (a), on an edge
(b) and on a vertex (c).

meshes, and thus allows to evaluate the exponential map expp(v) at any given
point p € M in tangential direction v € T}, M. exp,(v) is simply the endpoint
of the straightest curve v emanating in p in direction v with length ||v||. The
algorithm for computing ~ is as follows:

Algorithm 3.2. (Straightest Geodesics)

1.
2.

Let go = p and set k = 0.

Unfold the local neighborhood U C M of the endpoint g; of the curve
v into tangent space T, M as follows: If g is located inside a triangle
the local neighborhood is the triangle itself and unfolding is trivial. If gz
lies on an edge the neighboring triangles are mapped to the tangent plane
isometrically. If g coincides with a mesh vertex all adjacent triangles are
flattened to the tangent plane by preserving angles relative to the total angle
at that vertex (see Fig. 3.7).

If & = 0 compute ¢ as the intersection of the ray emanating from p in
direction v with the boundary of the unfolded neighborhood U*. If £ > 0
compute gi+1 as the intersection of the ray passing from gi_; through gy,
mapped to U* with the boundary of U*. With this construction subsequent
curve endpoints gx_1 and g touch a common mesh triangle and therefore
qr—1 is always contained in the local neighborhood of gy.

. The current straightest path « is the piecewise linear curve connecting the

points qo, ..., qk+1. Stop if v has length |[v|| or increment k and go back
to step 2.

In the unfolded local neighborhood U* this algorithm constructs equal left
and right angles of 180° at each point g;. Angles are preserved exactly when
reversing the unfolding process (step 2) in case of triangles and edges. At
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vertices angles are scaled uniformly and hence Def. 3.2 is adhered to by the
algorithm, i.e. §; and 6, are equal everywhere along the curve.

3.7.2 Length Minimizing Geodesics

Geodesics between two given points on triangle meshes are often computed
only on the edge-graph of the triangle mesh using Dijkstra’s algorithm [32].
This algorithm can be implemented with a complexity of O(nlogn) using
a Fibonacci heap, when n is the number of vertices in the mesh. One ba-
sic operation is essentially equivalent to one addition. Backtracing is trivial:
simply indexing the heap. This efficiency and simplicity for implementation
has made this algorithm so popular. However, the approximation based on
such geodesics may be very bad depending on the triangulation of the surface.
Hence, two variants have been proposed in the literature for the computation
of geodesics that cut across triangles in the mesh hence producing much bet-
ter approximations of geodesics. Kimmel and Sethian [68] employ a variant
of the fast-marching method to compute approximate geodesics on meshes.
Surazhsky et al. [122] present a practical implementation of the algorithm of
Mitchell et al. [90]. All these algorithms possess the same asymptotic run-time
as Dijkstra’s algorithm. Yet, the basic operations in setting up the distance
heap and backtracing are more difficult to implement and costly. They in-
volve computations of propagating intersecting lines and intervals, which rely
on multi-precision floating point computations. Alternatively, Martinez et al.
[86] propose an iterative local minimization scheme in combination with an
initialization based on the fast marching method.

Conceptually, we propose a similar approach to the work of Martinez et al.
[86]. The algorithm we propose was conceived by Polthier et al. [103]. It
provides a highly efficient way to compute locally shortest paths on meshes
that cut across mesh triangles. The algorithm iteratively minimizes the length
of an initially given path connecting two points on the mesh:

Algorithm 3.3. (Shortest Geodesics)

1. Let 7y be an arbitrary initial curve on M connecting the point p with g.. Set
k=0.

2. Compute the triangle strip S of M that contains . Unfold that triangle
strip isometrically into the plane. Note that the unfolded strip S* may
overlap.

3. Compute the shortest path from p to ¢ within the unfolded triangle strip
S*. This can be done efficiently in O(m)-time using the algorithm of Lee
and Preparata [81], where m is the number of vertices in the strip. Replace
~ with the projection of the shortest path in S* back to M.
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Figure 3.8 Iterative computation of the shortest geodesic on a triangle mesh.
Starting from some initial triangle strip, the shortest path within this strip is
computed. The triangle strip is updated, when the path touches its boundary.
See Alg. 3.3 for more details.

4. Let O denote the total angle at a vertex of the mesh M. The current path
~ may touch the boundary of the triangle strip S only at mesh vertices. If
any of these vertices is (a) spherical (© < 27), or (b) hyperbolic (© > 2)
and either the left or right curve angles 6, 6, are not in the range [7,© — 7]
then the path will become shorter when the strip is redirected around that
vertex star. Replace S with the triangle strip that is redirected at such a
vertex, increment k and go back to step 3. If no such vertex exists stop.

See Fig. 3.8 for an illustration of the algorithm. The number of iterations
required depend on the quality of the initial curve guess. We use Dijkstra’s
algorithm on the triangle graph (dual of the edge graph) of the mesh to gener-
ate the initial curve. Since in our algorithm one iteration can be performed in
O(m)-time, we have observed that Alg. 3.3 runs much faster than the method
of Surazhsky et al. [122]. Furthermore, the algorithm is easy to implement.
Note, that the solution depends on the initialization of the path: If, for in-
stance, a shorter path around the other side of the peak in Fig. 3.8 exists,
yet, the initial path lies on the opposite side, it cannot be detected with this
method.

3.7.3 Computing Surface Area

After the geodesics have been updated, the surface area of the geodesic cells
are computed. Generally geodesics run across faces of the triangle mesh. For
faces, which are crossed by geodesics, the portion of the face area for each
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adjacent cell is computed. For all other faces, their associated geodesic cell
is determined and its area added to the area of total area of the cell. This
requires virtually cutting the mesh along the geodesics and flood-filling the
regions between the cuts to find all faces that belong to a given cell. In general,
an arbitrary number of geodesics may run through a given face, which is cut
by a geodesic. Hence, care must be taken that such faces are decomposed
consistently. We decompose each face into a number of closed polygons, that
are assigned uniquely to the geodesics cells.

3.8 Implementation and Numerical Results

We have implemented a prototype version of the proposed algorithm. Cur-
rently, some interaction is required and some parameters have to be adjusted
manually. It is subject to future work to remedy such issues. The focus of
this section is to demonstrate the feasibility of the proposed method.

3.8.1 Software Framework

The implementations have been done within the development framework of
the Amira 3D visualization and modeling software [121]. Amira offers a trian-
gle mesh data structure as well as a variety of read/write routines, visualiza-
tion and computational modules for triangle meshes. For the task of surface
matching the following extensions have been implemented:

e Consistent decomposition and parameterization of meshes (Sec. 2.6).
e Data structure for curves on meshes.

Editor for interactive modification of curves on meshes.

Shortest and straightest geodesics on meshes (Sec. 3.7)

Computation of the area of a geodesics cell (Sec. 3.7.3).

e Gauss curvature on a mesh (Appendix B).

Multi-level minimization of the discrete stretching functional (3.10) as
described in Sec. 3.5 and Sec. 3.6.

3.8.2 Parameters and Interaction

Currently, the initial cell complex K I must be interactively embedded on both
meshes M and M. This can be done efficiently using the editor developed
for defining and modifying curves on meshes. Practically, this is achieved
by (a) specifying all embedded vertices, (b) connecting them with geodesic
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or boundary/non-manifold curves according to the edge set E' in K' and
(c) ensuring correspondence between geodesic cells. The parameters of the
method are:

e Functional parameters allow to weight the influence of length Ay, versus
area A4 distortion.

e Line-search parameters adjust the accuracy of the one-dimensional
minimum search. nrg is the initial number of samples inspected along
the gradient curve, while hp,;, determines the desired accuracy.

e The number of levels in the multi-level hierarchy depends on the de-
sired accuracy hmin.

e The convergence criterion for stopping the conjugate gradient descent
is given as a tolerance € on the relative change in functional value.

At this stage, these parameters have to be fixed at the start of the algorithm.
In future work, strategies for adaptively adjusting them to the geometric de-
tails of the shapes to be matched shall be investigated. Furthermore, the cell
complex is currently refined uniformly in the multi-level hierarchy. Adaptive
methods shall be devised in the future based on suitable error estimators.

3.8.3 Numerical Results

In this section we will illustrate different aspects and properties of the proposed
method.

Multi-level Hierarchy

The multi-level scheme allows to adjust the level of geometric details that is to
be resolved in the matching process. Fig. 3.9 illustrates this optimization on
different levels for A, = A4 = 1. Refining the grid K resolves more geometric
details of the shapes, hence the optimal functional value will generally increase
on a new level. Furthermore, the points along the boundaries are currently
fixed on each level in our implementation. This introduces additional stretch-
ing. In the future this constraint shall be relaxed: generally points along the
boundaries should have the freedom to move along the boundaries.

Robustness to Noise

The adjustment of the scale parameter h (or the coarseness of the cell complex)
allows to control the robustness with respect to noise that is present in the
data. If h is significantly larger than the noise present the matching can be
computed robustly. Comparing Fig. 3.10 with Fig. 3.9 qualitatively shows
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[Init] 0.001814 0.007501 0.052590 0.043649
[Opt] 0.006376 0.008750 0.009406

Figure 3.9 Multi-level optimization of F}, on four levels K, ..., K*. The top
row show the value of F}, after prolongation, the bottom row after optimization
on that level. The images show the optimized result on each level.

that the matchings on level K2 and even K?® are not too different, starting
from the same initial value.

Length versus Area Distortion

With A4 = 0 the stretching functional represents a mass-spring system em-
bedded in a curved domain with non-zero rest lengths. Fig. 3.11 illustrates
the effect of neglecting the area term particularly for non-planar shapes.

Realistic Example

Fig. 3.12 shows the matching of two faces. Initially six points along the bound-
ary are fixed (two points at each ear and two points at the mid-sagittal (or
median) plane, and one at the tip of the nose. This initial embedding is
performed manually, but could probably be automatized without too much
difficulty. Since all cells are triangular they are refined by 1:4 splitting, while
the nose tip is fixed on all levels. The optimization on level 2 (row 3) took
about 10 minutes, while on level 3 (row 4) it took about one hour with the
current implementation.

Qualitative Performance Analysis

Each evaluation of the stretching functional requires the computation of geo-
desics and cell areas for the edges and cells of the current cell complex on
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Figure 3.10 Stretching optimization (A, = A4 = 1) in the presence of noise:
For large h (coarse grid) the discrete correspondence map can be computed
quite robustly. The smaller h becomes the more sensitive to the noise in data
the placement of the connecting geodesics gets (see close-ups).

/Mé] ’M\

AL =1,x4=0 AL =1LA4=1

GISYGIE

Figure 3.11 Length versus area distortion: A deformed half-ellipsoid is
matched with a plane. The interior point on the plane is fixed to illustrate the
behavior of optimizing the corresponding vertex on the ellipsoid: With A4 =0
(a) the optimal position is such that the adjacent geodesics wind themselves
around the ellipsoid. With A4 = 1 the solution is much more intuitive.
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Figure 3.12 Matching of two faces with A\ = A4 = 1: in each row the faces
are shown from three different viewpoints (right/center/left). The second row
shows the initially embedded grid K. The vertex on the nose is fixed through-
out the optimization. The third row shows the result after one refinement step
K?, the third row after a second refinement K3.
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two surfaces. Whenever a vertex is relocated on one shape the geodesics
to its adjacent points as well as the surface area of its adjacent cells are
recomputed (local update). For convex optimization the conjugate gradient
descent requires two line-search step to reach the minimum. We observed,
that locally only rarely more than two steps are necessary.

The computational effort for computing geodesics depends on the number
of triangles Njs of the underlying mesh as well as on the value of the grid
resolution h of the cell complex. Large h and high mesh resolution potentially
require more iterations, as the triangle strip needs to be redirected more often,
depending on the initial curve. The run time for the area computation depends
on the number of triangles enclosed within a cell, and the number of triangles
cut by the geodesics. This means, that for large h local functional updates
are expensive, yet there are few (small number of vertices). For small h,
local updates are less expensive (shorter geodesics, smaller cells), yet there
are much more of them. In the future, the performance shall be analyzed in
a quantitative fashion.

As usual in local relaxation schemes, the maximum change in vertex reloca-
tion is h. This means, that for a small values of h the convergence may be very
slow, as the error must propagate across many layers of vertices. This moti-
vates the combination of Gauss-Seidel relaxation with a multi-level hierarchy,
where the optimization is started with large h.

On the one hand, the goal of future efforts will be directed on improv-
ing the numerical scheme with the aim to reducing the number of functional
evaluations. On the other hand, there is much potential for improving the
implementation.

3.9 Conclusions

We have developed a multi-level approach to shape matching which minimizes
geometric stretching between two surfaces M and M. The continuous corre-
spondence map ¢ is approximated by a discretization ¢, via embedding a
common grid K into both surfaces. This de-couples the discretization of ¢
from the discretization of the surfaces. The matching functional is defined by
the 1-skeleton of ¢y, only, which allows to selectively adapt the method to the
desired level of geometric content of the surfaces. This is useful particularly
in the presence of noise in the data.

Our optimization-on-a-manifold approach of the discrete matching func-
tional does not require the computation of surface parameterizations. This is
an advantage when a global parameterization is not available. The proposed
optimization strategy also assures that ¢y is always bijective.

These benefits are achieved at the expense of a rather costly functional
evaluation: each update requires the computation of geodesics as well as of the
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area of cells bounded by these geodesics on both shapes. We have presented
algorithms that perform these operations with a reasonable computational
effort. Future effort will be directed towards optimizing the efficiency of these
methods.

From a practical point of view, there remain several open issues. Our ap-
proach requires an initial embedding of the grid K into the surfaces M and
M. How can such embeddings be achieved efficiently for arbitrarily given
shapes? Another important aspect for making this approach applicable is an
effective treatment of constraints. Currently, boundary points are fixed. This
introduces unnatural stretching. Yet, it should be possible to prescribe corre-
sponding input curves and allow grid vertices to move along such curves (e.g.
boundary curves), or even other types of constraints. Furthermore, constraints
should be definable by the user in an intuitive way. Another important aspect
for future work is to improve the numerical approach by incorporating adap-
tivity, higher-order variations and improved line-search strategies. It shall be
analyzed more thoroughly how the discrete relates to the continuous setting.
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Chapter 4

Statistical Shape Modeling

4.1 Point Distribution Models

A major goal of statistical analysis is to transform measured data into more
compact or visibly accessible representations. This often includes reducing the
dimensionality of the original data and extracting only the essential degrees
of freedom contained in the data.

Statistical analysis of shapes has attracted considerable attention in the
fields of computer vision and image understanding through the work of Cootes
et al. [28]. They have introduced the concept of point-distribution models and
applied it for locating structures in medical images (active shape models).

The basic concept behind statistical shape models is to capture the most
characteristic geometric variations contained in some given data base, often
called training set. The main obstacle in constructing such models lies in the
registration or matching of the training shapes, which is necessary in order to
represent the shapes within a common vector space. This problem is referred
to as the correspondence problem.

In the early works in the 1990s correspondence was often generated manu-
ally, and for closed two-dimensional contours only. Since then much work has
been devoted to solving the correspondence problem both in 2D and in 3D, as
well as on improving other aspects of statistical shape modeling [27, 26]. An
overview of these developments is in preparation [53].

In principal, all non-linear matching or registration methods for three-
dimensional shapes can be used to solve the correspondence problem, com-
pletely de-coupled from the application to statistical shape modeling. The
methods we use are presented and discussed in Sec. 2.6 and Chap. 3. An-
other approach is based on the idea to compute the correspondences in such
a way that certain properties of a statistical model are optimized [31]. Such
an approach leads to a group-wise registration problem and it requires suit-
able regularization that takes into account the geometric nature of the shapes
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[128]. Our variational method from Chap. 3 could be combined with such an
approach.

Throughout this chapter we will assume that the training set consists of
surfaces M; with 7 = 1,...,n, and that continuous correspondence maps ¢;; :
M; — M have been computed between them.

Point distribution models (PDM) represent each shape M; in terms of a
description or shape vector

v eRM™  i=1,...,n (4.1)
which contains the coordinates of three-dimensional points

vy = (a:ij,yij,zij)T eR? j=1,....m (4.2)
sampling the shape M;, so that

v; = (vh, ..., vb )T (4.3)

Given a set of correspondence maps ¢;; : M; — M; the sampling could be
fixed on any shape M; to be the set of points

Pi={vp €R¥:k=1,...,m} (4.4)
Then the set of corresponding points on M; is given by

Pj = {Ujk = @ij(vik) € R?: k= 1,.. .,m} (45)

With this construction there is some bias in the choice of the points that
represent the shapes in the PDM. The denser the shape is sampled, however,
the better the PDM represents the real shape (Fig. 4.1), and the bias grad-
ually becomes unimportant. Equation (4.5) clearly shows that the details of
the sampling process - including the identification of corresponding points -
influences the result of the statistical analysis. One can picture the points as
vertices of different triangle meshes with the same mesh topology embedded
on different surfaces.

Statistical analysis may be performed on alternative shape representations,
cf. Sec. 2.4.1, which may be better suited to specific classes of problems. Ex-
amples are Fourier based shape descriptors [120], spherical harmonics [66] or
angle based representation, which play an important role in molecular anal-
ysis [113]. In this thesis, we will work with a point-based representation, as
this is the most commonly encountered representation in the field of geometry
reconstruction.
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Figure 4.1 Densely sampled point-based representation of two head models
with corresponding points.

4.2  Shape Alignment

In order to perform meaningful statistical analysis, the shape vectors v; must
correspond in a reasonable (e.g. anatomical) way and must be aligned in a
common coordinate system. In general, these two goals are accomplished
independently of one another: methods that minimize spatial distance between
shapes may simultaneously compute an alignment, while invariant methods
(like ours) do not take the spatial location into account. In the latter case,
the shape vectors must be aligned afterwards.

Then the task of alignment consists of finding a set of linear (affine, Eu-
clidean or similarity) transformations T; for each shape v; such that some
cost function D is minimized. A common procedure is generalized partial
Procrustes analysis [47], where the distance is given by

n
DUT}) =) |ITi(vi) — o) (4.6)
i=1
where o = )", v;/n. T(v;) is an abbreviated notation for a linear transfor-
mation, that is applied to each point v;; of v; separately. Let
T(’Uz‘) = (T(’Uﬂ), .o ,T(’Uim)) (47)
with
T(Uz‘j) = Av,-j +b

and A € R3*3, b € R3. Furthermore the transformations 7; may be restricted
to similarity (rotation, scale and translation) or Euclidean (rotation and trans-
lation) transformations. We will denote the space of three-dimensional linear
transformations Lin(3). The following iterative approach minimizes D:
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Algorithm 4.1. (Iterative Alignment of Multiple Shapes)

4.
5.

. Translate the center of gravity of each shape v; to the origin.
. Choose one shape v; as an initial estimate for the mean shape .

. Align all shapes v; to the current mean shape v by computing

T; = argmin |T(v;) — 0|* fori=1,...,n
T

Update all v; < T;(v;) and recompute the mean as o = ), v;/n.

Repeat step (3) and (4) until convergence is achieved.

For affine transformations T, equation (4.8) amounts to solving a linear
system. In the case of Euclidean transformations 7', the problem is known as
ordinary partial Procrustes analysis [124, 35] and is solved by singular value

decomposition.

iterative minimization scheme converges to a local minimum.

4.3

Statistical Shape Models

Since D is decreased monotonically at each iteration, this

Once the shape vectors are aligned in a common coordinate system, statistical
analysis can be performed. One of the most commonly used methods is based
on the assumption of a multi-variate Gaussian distribution of the training
shapes. It is known as principal component analysis (PCA):

Algorithm 4.2. (Principal Component Analysis)

1.

2.

Compute the mean shape (see Fig. 4.2)

n
Z V; € Rgm
=1

v =

S

Compute deviations from the mean shape

D= ((v1—0),...,(vqg—7)) €R¥m*n

3. Compute the covariance matrix

C = EDDT c R3m><3m
n

4. Compute eigenvalues and eigenvectors of C

Cpr = \ipx;
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Figure 4.2 A training set {v;} of n = 6 faces and the corresponding average
shape v. Each model consists of m ~ 16000 points.

In physics, pi are referred to as the principal axes of inertia, where each
shape v; is considered a point of mass 1. C' is a positive semi-definite matrix,
Ak is the variance of the training data in the direction of pi. When there are
fewer samples in the training set than dimensions of the shape vectors, i.e.
3m > n, then 3m — n eigenvalues will vanish. The remaining eigenvalues/-
vectors of C can efficiently be computed as follows. Consider

1

EDTD% = [k

and multiply both sides from the left by D to obtain
C(Dax) = pr(Dgy).- (4.9)

The computation of the eigenvectors ¢ and -values puy of %DTD e R™" ig
more efficient that of C' € R3*3™  From equation (4.9) we conclude that
pr = Dqi and A, = pu.

PCA belongs to a family of methods known as factor analysis (FA). Such
methods can be classified as linear or non-linear, reflecting whether the shapes
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can be represented by a linear or non-linear function of the statistical compo-
nents. Linear models, such as PCA, are often easier to interpret than others.

Another linear FA method is independent component analysis (ICA): its un-
derlying assumption is that the data cannot be modeled by a Gaussian distri-
bution. ICA looks for components that are statistically independent without
assuming Gaussian distributions. There exist many different approaches for
estimating ICA, e.g. nonlinear decorrelation by maximum likelihood methods
or information theoretic approaches based on mutual information. A detailed
discussion of these methods goes beyond the scope of this work. Please refer
to Hyvérinen et al. [60] for more details. In contrast to PCA, ICA does not
provide a compact representation of the variability contained in the training
data, as there are as many independent components needed to reconstruct the
training data as the number of data.

Yet another linear FA method worth noting here is called principal factor
analysis (PFA) [9]. PFA models the covariance between the variables as op-
posed to the total variance in the data (PCA). While PCA determines the
factors which account for the total (unique and common) variance in the set
of variables, PFA determines the least number of factors which can account
for the common variance (correlation).

Statistical shape models attempt to capture and model the variability con-
tained in a given training set of shapes V = {v; € R :i =1,... n}. In this
work we define a statistical shape model as the map

S : R x Lin(3) — R3™

such that
d
(b,T) — SOb,T)=T (@ +) bkpk> = T(% + Pb) (4.10)
k=1
The parameters of the model are modes of variation P = (py, ..., pg) € R3m*4

with p, € R derived from the statistical analysis on the training set and
the mean shape © € R®™, as defined in Sec. 4.3. The eigenvectors are sorted
in descending order of the magnitude of the corresponding eigenvalues

Ak 2 Agy1 >0

The number of modes d < n — 1 included in the model may be less than
all modes available from the statistical analysis. The variables of the models
are the shape weights b € R? and a linear transformation T € Lin(3). This
linear transformation may be a Euclidean or similarity transformation. If all
eigenvectors are used, then the shape weights b for a training data set v; can
exactly be computed as

b= PT(v; — 0) (4.11)
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l

k=1 k=2 k=3 k=4 k=5

Figure 4.3 All d = 5 eigenvectors of the face model derived from the training
set in Fig. 4.2. Column k shows the shape S(b) associated to the minimal
(top) and maximal (bottom) shape weight by present in the training data
(computed from equation (4.11)), while b; = 0 for j # k.

since PTP = id. Fig. 4.3 shows the variability of a shape model of human
faces.

4.3.1 Quality of Statistical Shape Models

The following properties of statistical shape models can be used to assess the
quality of a model. They are defined by Davies [30]:

Generality

The generalization ability of a model measures its capability to represent un-
seen instances of the class of object modeled. This is a fundamental property
as it allows a model to learn the characteristics of a class of objects from a
limited training set. If a model is over-fitted to the training set, it will be
unable to generalize to unseen examples. The generalization ability of each
model is measured from the training set using leave-one-out reconstruction.
A model is built using all but one member of the training set and then fitted
to the excluded example. The accuracy to which the model can describe the
unseen example is measured and the process is repeated excluding each ex-
ample in turn. The approximation error is averaged over the complete set of
trials.
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Specificity

A specific model should only generate instances of the object class that are
similar to those in the training set. It is useful to assess this qualitatively by
generating a population of instances using the model and comparing them to
the members of the training set.

Compactness

A compact model is one that has as little variance as possible and requires
as few parameters as possible to define an instance. This suggests that the
important information is captured in a plot of cumulative variance.

Statistical models can be used in a variety of applications. While the above
criteria may yield good indications of the quality of a model, the decisive
moment is the quantitative performance of the model in an application. Three
selected applications are presented in the next chapter.
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3D Geometry Reconstruction
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Chapter 5

Segmentation of Medical Images

5.1 Introduction

In medicine, modern three dimensional imaging techniques such as computer
tomography, magnetic resonance or even three dimensional ultrasound have
made it possible to create detailed and complex geometric models of individ-
ual anatomical structures. Such models form the basis for computer-aided
diagnosis and therapy planning. In biology, more and more three dimensional
imaging methods such as confocal microscopy or electron tomography are es-
tablished which allow the study of cellular or even sub-cellular structures.
Therefore segmentation has become a major focus of many researchers world-
wide who strive to develop efficient, robust and automatic methods, that meet
the highly demanding requirements of the daily routine.

The creation of a geometric model of a certain structure from three dimen-
sional image data requires its delineation from surrounding structures and the
background. This process is referred to as image segmentation.

Due to the different characteristics of available imaging modalities and the
variety of possible structures of interest a single method for automatic seg-
mentation cannot be expected to succeed in all problems. Yet, even for one
imaging modality automatic segmentation methods based on low-level vision
methods do not produce satisfactory results, except in special cases. There-
fore, interactive methods are routinely used in many cases. These are often
time-consuming and their outcome is irreproducible.

The fundamental hypothesis is that automatic segmentation can be achieved
by incorporating a-priori knowledge about geometric shape characteristics and
image characteristics of the objects to be segmented.
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5. SEGMENTATION OF MEDICAL IMAGES

5.2 Problems and Challenges

Image segmentation is the task of partitioning a given image I : R® — R
into contiguous regions representing individual objects - in medical images
e.g. anatomical entities. This step is usually followed by image classification
which assigns these regions to classes, based on features that are extracted
from these regions. The label associated to each region may or may not belong
to some semantic space. Here we will consider the two steps merged into one:
The segmentation process assigns a label to each pixel /voxel, thereby creating
a labeled partition of the image domain, i.e. a map from the image domain
to a set of labels. The semantic definition of the label is determined by the
application. For instance in a medical application dealing with bones, it must
be defined whether bone and bone marrow shall be assigned the same label
or not.

Since distinct materials often cannot be discriminated based on intensity
values only, much more complicated segmentation operators are needed, which
depend not only on the intensity value of the voxel to classify, but also on its
neighborhood, i.e. on textural and other contextual information. Standard
image segmentation techniques base their decisions on homogeneity measures,
like e.g. intensity variance and texture similarity (similarity of local statistical
properties), and measures signaling the presence of edges, like e.g. intensity
gradients.

However, in many practical cases detecting edges and clustering homoge-
neous regions is not sufficient for the following reasons:

e Images are noisy, and so are homogeneity measures and edge informa-
tion. This means, there are regions were homogeneity and edge presence
are either pretended or camouflaged.

e Due to object properties or imaging characteristics, individual objects
may appear inhomogeneous and separated by artificial edges.

e Due to object properties or imaging characteristics, different neighbored
objects may appear homogeneous and not separated by edges.

See Fig. 5.1 for an illustration of these problems. A consequence is a lack of
robustness of automatic segmentation methods of the kind mentioned above.

Deformable models [87] of the object to be segmented have proven to be
helpful in overcoming some of the problems. For instance they help to bridge
regions where the signal is deficient. The basic principle behind all these ap-
proaches is some dynamic evolution of the deformable model governed by in-
ternal and external forces. Internal forces constrain the elasticity of the model
(length, area, curvature) while external forces attract the model to features in
the image. However, this approach allow shapes to evolve that definitely are
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Figure 5.1 Left: CT of the liver/heart/lung region, Right: T1-weighted MR
data from the abdomen.

not legal instances of the object considered (lack of specificity). Therefore, im-
age segmentation procedures are sought that utilize a-priori knowledge about
average shape and shape variability of the objects to be segmented. This may
for instance be achieved by modeling the physical behavior of objects to be
segmented based on a single example of a shape [95]. However, such properties
are often not available, highly inaccurate or the methods are computationally
prohibitive.

5.3 Segmentation with Statistical Shape Models

An alternative is the use of statistical shape models (SSM), see Chap. 4. Here
the variability of an object is captured statistically from a suitable training
set. The segmentation then consists of computing the set of variables of the
shape model such that the model yields a true representation of the object in
the image data I to be segmented. The segmentation strategy described here
was essentially introduced by Cootes et al. [28].

Let R € R3™ denote a shape vector of some surface, e.g. the vector of the co-
ordinates of m vertices on some triangle mesh, to be segmented from the image
data I. Segmentation using a statistical model S(b,T") (see equation (4.10))
can be formulated as the optimization problem

(", T*) = ar%r%lin IR —S(b,T)? (5.1)

The final segmentation is an approximation to R given by R* = S(b*,T*).
However, the location and shape of R is only encoded implicitly in the image
data I. Therefore the computation of R* proceeds iteratively. Let R =
S(b', T?) denote the segmentation in iteration i:
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Figure 5.2 Left: A shape model S(b,T) of the liver is initialized in the bound-
ing box of a CT data set. Middle: The optimization of the transformation
parameters T has converged. Right: The final segmentation after also opti-
mizing the shape parameters b.

Algorithm 5.1. (Model-based Image Segmentation)
1. RY:=5(0,7).

2. Compute a displacement vector field AR € R3™ defined on the current
segmentation R, i.e. a vector Ar, € R3 is assigned to each vertex k € N
of the surface R'. It describes the desired deformation of the model towards
the (unknown) surface R in the underlying image data I.

3. Project the displacements onto the SSM by solving the optimization problem

(b, T = argumin (R + AR) — S(b, T[> (5.2)

4. Update i < i + 1 and return to step (2) if convergence has not been
achieved, i.e. if |S(b%, T%) — S(biTL, T )| > 3m - ¢; else return b* = b* and
T =T

The evolution of the algorithm is illustrated in Fig. 5.2.

The crucial ingredient in this algorithm is the computation of the displace-
ment vector field AR € R3™ (displacement strategy). This computation is
based on some intensity or appearance model of the underlying type of image
data to be segmented. Such a model depends on the knowledge about imaging
characteristics as well as image properties of the object to be segmented. For
example, the segmentation of bone is performed differently for CT or MRT
data. Apart from the shape knowledge incorporated in the statistical shape
model, this is the second point where available a-priori knowledge from the
application can enter and help to improve the segmentation.

A generic displacement strategy was proposed by Cootes et al. [28]. For
each training data set, not only the shape but also the image data is sampled
in a neighborhood of the current surface of the shape model. This may e.g.
be done by extracting a pre-defined number of image data samples along a
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Figure 5.3 One way to compute the displacement vector field AR is by
analyzing image data profiles at each vertex of the shape model normal to its
surface. Left: a model of a human mandible inside a CT image data with
an exemplary profile. Middle: the CT sampled along the profile shown in the
right image. Value 25 on the x-axis corresponds to the point on the surface, 50
is furthest outside. The peak indicates the bone boundary in the image data: a
good candidate for a desired displacement. Right: The resulting displacement
vector field AR, where the length of each displacement is color-coded on the
surface (red=outwards, blue=inwards).

one-dimensional profile of a given length normal to the surface of the shape
(see Fig. 5.3). At each point of the surface, a statistical profile model of the
image data distribution is computed. In the segmentation process, several such
profiles are extracted from the image data to be segmented at each point and
their Mahalanobis distance to the statistical profile model is computed. The
best match determines the normal displacement AR?. However, this procedure
is not always applicable. For instance if the shape model was not generated
on the same data basis as the data to be segmented. Other displacement
strategies, as for example heuristic strategies, have to be devised.

We add some comments about Alg. 5.1. The optimization (5.2) in step (3)
is performed either with respect to

(1) the position parameters T' (position adjustment), or

(2) the shape parameters b (shape adjustment)

The first case is equivalent to the shape alignment problem (4.8), hence
amounts to solving a linear system of equations or a singular value decompo-
sition, depending on the type of transformation allowed. In the second case, a
linear system of equations of dimension d (= number of allowed shape modes
in the model) has to be solved. The iterative segmentation process may gener-
ically be initialized by positioning the average shape (b = 0) in the center of
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Figure 5.4 Three different slices from low-dose CBVT data.

the bounding box of the image data I. Better initialization strategies should
be devised depending on the application.

The iterative segmentation process can be augmented with a hierarchical
structure in order to improve the performance and increase the robustness of
the method. The parameters that can be adapted are

e the sequence of position and shape adjustments,
e the number of modes d of the shape model S, and

e the resolution of the image data to be considered.

Transformation parameters should always be optimized, before shape parame-
ters are optimized. It may be useful to start shape optimization with only few
shape modes on a coarse version of the image data and successively increase d
and refine the image data. This is a common approach in image registration
in order to prevent getting stuck in local minima.

The following sections contain different examples of shape model based seg-
mentation of different anatomical structures. All shape models were con-
structed using the method of consistent surface decomposition and parame-
terization (Sec. 2.6).

5.4 Mandible from Low-Dose CT data

Cone-beam volumetric tomography (CBVT) is a widely available technology
and a suitable foundation for three-dimensional diagnoses and planning in
cranio-maxillofacial surgery [115]. Such scanners can operate with a signifi-
cantly reduced patient’s exposure to radiation compared to conventional CT.
As a side effect of the low dose, however, such images are often noisy, and metal
artifacts are present (Fig. 5.4). One of the major applications for CBVT is den-
tal imaging. The surgical procedure of placing dental implants requires careful
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Figure 5.5 Training set of mandibles (without teeth region), lower right:
average shape.

preoperative planning. The surgical plan is guided by prosthetic considera-
tions and anatomical structures, which limit the volume into which implants
can be inserted. The basis for computer aided planning is a segmentation of
the mandibular bone in the data. Due to the problems mentioned, this task
is difficult to automate with low-level techniques, such as thresholding, region
growing or morphological filters.

The statistical shape model of the mandible used in this application con-
sists of 13 individual mandible shapes (Fig. 5.5), reconstructed interactively
from conventional CT data. Each surface is decomposed into 8 regions in a
symmetric manner: lower corpus mandibulae, teeth region, ramus mandibulae
and the caput mandibulae (Fig. 5.6). The teeth region (two patches) is not
considered in the statistical analysis because, in general, teeth differ in their
number and the topology of the reconstructed geometry (contact vs. mnon-
contact) from patient to patient. Moreover, the displacement model for the
segmentation is not designed to include this region.

The design of the displacement model for segmenting mandibular bone from
low-dose CT data is based on the analysis of one dimensional profiles along the
normal of the shape model’s surface. Typically, such profiles show two distinct
peaks that indicate the transition from the callus and the marrow of the bone
(see Fig. 5.7). In the upper mandibular regions the bone is rather thin and
often exhibits only a single strong peak. Thus, the deformation vector at a
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Figure 5.6 Patch decomposition of mandibular bone for the construction of
the statistical shape model.

Figure 5.7 Design of deformation model. Left: two profiles (L = 4 cm)
normal to the surface. Middle: profile in upper mandibular region (single
peak). Right: profile in lower mandibular region (twin-peak).

given vertex is determined as follows:

e sample a profile normal to the current surface of length (such that half
of the profile is located on the inside and on the outside of the surface)

e apply smoothing on the profile, e.g. by Gauss or median filtering
e detect the two major peaks

e if the magnitude of the peaks differs significantly, discard smaller of the
two

e move outwards from the right peak to the point of inflection

The teeth region is not considered in this analysis, because of metal artifacts
inherent in this region.

For the evaluation of the segmentation process 15 data sets from a NewTom
DVT scanner were available. These were segmented interactively by anatom-
ical experts and serve as the gold standard for the evaluation of the proposed
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Figure 5.8 Mean and maximum surface distances between gold standard and
results of segmentation and surface reconstruction for each of the 15 NewTom
data sets.

methods. For comparison, the statistical model is directly fitted to the sur-
face reconstructed from the segmentation of each of 15 data sets by solving
the minimization problem

(b*,T*) = argmin do(R,S(b,T))
b, T

Here da(S,S’) denotes the squared surface distance between S and S’. For
details on how to solve this optimization problem refer to Chap. 6.

Initially the shape model is placed in the center of the bounding box of the
CT data. The number of sampled points along each profile is kept fixed at
all times and the segmentation process is divided into two phases. In the first
phase, only the lower corpus mandibulae is matched to the CT data, i.e. the
deformation vectors of all other patches equaled 0, was set to 5 cm. This yields
a good initialization for the second phase, where the ramus mandibulae is also
segmented, and is reduced to 2 cm - resulting in a more accurate deformation
of the model and at the same time preventing profiles in the upper mandibular
region from (falsely) detecting the maxilla. The accuracy of the segmentation
is measured by computing the surface distance between the automatic result
with the gold standard. Results are shown in Fig. 5.8.

The results of the direct surface reconstruction indicate the best possible
reconstruction to be achieved with the available statistical shape model. The
deviations between the segmentation and the surface reconstruction are due to
shortcomings in the segmentation process, i.e. inaccuracies in the deformation
model and/or the segmentation strategy. Improvements are subject to future
work.

However the results show that statistical models of 3D shapes offer a promis-
ing approach for automating the segmentation of volumetric data. Incorporat-
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ing a-priori knowledge about the object and the data seems a feasible way to
segment image data in the presence of high noise-to-signal ratios or artifacts -
as is the case in low-dose CT data. The usage of a statistical 3D shape model
of the mandible is a suitable approach due to the mandible’s characteristic
shape and well defined topology.

While the proposed method may require some manual interaction for post-
processing, we expect that with increasing number of samples in the training
set, interaction will be required only in a minority of cases. Since the model-
based approach yields a good initialization for such interaction, this may even
be avoided completely by means of locally elastic deformations, thus providing
a fully automated segmentation method.

5.5 Liver Segmentation from CT data

5.5.1 Overview

The main issue in automatic liver segmentation from contrast-enhanced CT
data is that the intensity values of the liver tissue are often similar to those
of some surrounding anatomical structures like stomach, pancreas, kidney
and muscles. Approaches which are only based on local intensity or intensity
gradient features are usually not sufficient to differentiate between liver tissue
and other anatomical structures in those regions.

In order to alleviate this problem a-priori knowledge about the typical shape
of a liver is incorporated into the process to constrain the segmentation process
where the image information is not reliable. The shape may be constrained
by a single template [93], a statistical shape model (SSM) [28] or even more
flexible deformable models. Combinations of these approaches have also been
presented [138, 55].

Although the SSM based segmentation provides robustness, as was shown in
the previous Sec. 5.4, it often lacks flexibility to accurately model the desired
segmentation. To overcome this limitation we augment the statistical model
based segmentation with a constrained free-form step with the aim of further
reducing manual correction.

We present a simple heuristic model of the typical intensity distribution
around the liver boundary based on a nonlinear isotropic diffusion filtering
of the original CT data. The model also considers the potential presence of
tumors inside the liver. An algorithm for computing displacement vectors
is derived that drives the surface deformation. General intensity features
[93, 138] or a statistical model of the intensity distribution [54] have previously
been used in the literature.

In order to achieve fully automatic segmentation both the set of parameters
required for the computation of the displacements as well as the initial posi-
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tioning of the model in the image data will be estimated automatically from
the image data.

5.5.2 Statistical Liver Model

The statistical liver model (see Fig. 5.9) was generated from 102 different
data sets and has m = 7000 vertices. The patch decomposition of the liver
surfaces is chosen to be along lines of high curvature (feature lines), since these
lines represent anatomical features that can be found on each liver. We have
divided the surfaces into four patches:

e the lower border of the left lobe (LL),
e the lower border of the right plus the caudate lobe (LR+CL),
e the lower border of the quadratic lobe (QL) and

e the whole upper part of the liver surface (U)

The feature lines are drawn on the surface by manually selecting points where
two or more patch boundaries would meet (branch points). Some intermediate
points along the feature lines are added manually. These points are then auto-
matically connected by computing geodesic shortest paths between them. In
almost all cases we use a metric that favors paths along lines of high curvature.
Only in one region we use a pure distance measure. Following this procedure
the user has to specify no more than 10 landmarks per surface, resulting in 4
patches, divided by 6 patch boundaries and 4 branch points. The first three
modes of the model are visualized in Fig. 5.10.

5.5.3 Constrained Free-Form Segmentation

Although the SSM based segmentation provides robustness, it may lack flexi-
bility to accurately model the desired segmentation R. In order to overcome
this limitation we perform a so called free-form segmentation step, starting
from the previous result R* as computed by Alg. 5.1. However, we constrain
the free-form segmentation to a narrow band around R* to prevent too large
deviations from the previously computed shape. The free-form segmentation
is performed as follows:

Algorithm 5.2. (Free-Form Segmentation)
1. RV := R*.

2. Compute two different vector fields on the current segmentation R': A
displacement vector field AR and a smoothing vector field AS, pulling
each vertex towards the barycenter of its 1-ring neighborhood.
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Figure 5.9 Surface decomposition of the liver.

Figure 5.10 Variability of a statistical model of the liver shape made from 43
training data sets: in the left column the eigenmode with the largest variance
A1 is varied between £31/\1, in the second and third column the modes with
the second and third largest variance are shown respectively.
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3. Compute a resulting vector field AV. For an individual vertex of the surface
it is given by v = w,Ar + ws;As. The weights depend on the cosines
crs = cos(Z(Ar, As)) as follows:

(1) |Ap| =0= ws :=0.15- (1 — ¢p), wy := 1 —wg, wp, :=0.
(2) For a,b € {s,r}, a # b: If |Aa] = 0, ¢4 is not defined = w, := 0
and ¢y := 0. Set the remaining weight accordingly.

The resulting vector v is trimmed such that is does not leave the prescribed
narrow band.

4. Set R .= R'+ AV. Perform this addition iteratively for all vertices, such
that updated position 2**! := 2?4 of an individual vertex does not produce
self-intersections in the surface. Then R**! also has no self-intersections.

5. Update i «— ¢ + 1 and return to step (2) if stopping criterion has not
been met (same € as in Alg. 5.1). Otherwise, or if a maximum number of
iterations has been reached, return.

5.5.4 Computation of the Displacement Field AR

The displacement vector field AR is computed on the basis of the image data
1, after applying a nonlinear isotropic diffusion filter [139]: The filtered image
is the solution of the partial differential equation

Oyu = div (9(|Vue|*) Vu) with u(z,0) = I(z) (5.3)

and diffusivity function

B 1 s <0) A
T9= 11— e (F282) (5> 0) (5:4)

A displacement vector Ary is computed for each vertex k of the surface by
analyzing a 1D intensity profile at vertex position x along the (unit) surface
normal u. This profile is sampled equidistantly over a length L at the set of
points:

P={zj:==a0+[(i—-1)/(Ny,—1)—1/2]-L-uwithi=1,...,Np}.

The result of the analysis will yield the displacement vector Ary = w(z, —x),
with z,, € P, n € {1,..., Np} and a confidence weight w, at the vertex k of the
surface. Fig. 5.11 shows some typical profiles in different anatomical regions.

The basic assumptions for the computation of the displacement are based
on the following simple model for the intensity distribution around the liver
boundary: The intensity inside the liver lies in the range G, = [gr, — t1, 91 +
tr], where g;, denotes the average liver intensity and ¢; the corresponding
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tolerance. Analogously, the intensity of tumors (potentially) contained in the
liver are in the range Gr = [gr — t7,97r + tr]. Furthermore, there exist
bounds gmin and gmax := gr + 3tz below resp. above which the intensity
indicates definitely non-liver and non-tumor tissue. The liver boundary is
characterized by a minimal absolute value of the intensity gradient dpyi, > 0.
A sample point along a profile is only considered inside the liver/tumor if at
least cmin := N,/5 consecutive neighbors on the profile lie within G /Gr.
Based on these assumptions we propose the following strategy to compute
Tn € P from the intensity profile at a vertex:

Algorithm 5.3. (Displacement Computation)
1. Initialize n := (N, +1)/2 and w := 1.

2. If I(xzy,) ¢ G, — Determine largest i < n with I(x;) € G, and set n :=i.
If there is no such point ¢, set w := 0.

3. If I(z,,) € G — Count number ¢ of consecutive i < n with I(z;) € Gf.
If ¢ > cmin, define x,, to be inside liver.

4. If z,, outside liver but I(z,) € G, — Count number ¢ of consecutive i > 1
with I(z;) € G. If ¢ > ¢pin, set n := ¢ and define z,, to be inside liver.

5. If z,, outside liver — Set w := 0.
6. If I(z,) ¢ G — If tumor present, search for an x; that is inside tumor.
Use the same strategy as for the liver, but with Gt instead of G. If such

an x; exists, set n := ¢ and w := 0.75.

7. If I(zy,) ¢ GLUGT — Determine all consecutive i < N, with I(2;) < gmin-
If smallest such ¢ < n, set n: =4, w := 0.75 and return.

8. If w =0 — Return.
9. Now z,, is either inside liver or inside tumor. The remaining steps are equal
in both cases. — Find first point ¢ > n with either [I'(z;)| > duyin or

I(x;) & Gryp. W I(x;) € Gpyp, set ni=1i—1, else n :=i.

10. If [I'(zy)| > dmin — Find point of inflection z; with smallest ¢ > n, then
find largest j < i such that I(z;) > gmin. Set n :=j.

11. Find largest i < N, with I(z;) < gmax. If @ <n, set n :=1i. This prevents
from moving too far into regions such as kidney or heart.
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Figure 5.11 Exemplary intensity profiles. (a) Gr, (b) gmin, (€) gmax, (d)
current vertex position z, (e) suggested new position x,, (f) profile plot.

5.5.5 Estimation of Intensity-based Parameters

The intensity parameters, which are required for computing the displacement
field AR, are estimated based on an analysis of two different histograms H;
and Hs of the preprocessed image data. The basic idea is to discriminate the
major liver peak(s) from minor yet distinct other peaks, which indicate the
presence of tumor tissue. Hj is the histogram on the volume inside some given
liver surface, while Hs considers a slightly enlarged liver volume by growing
the current liver surface by 5 voxels. The histograms are evaluated only on
voxels with an intensity in the range of [0,300] HU, which is assumed to cover
both liver and tumor tissue. A weighted sum of 10 Gaussians P; (i = 1,...,10)
is fitted to each of the two histograms using the Expectation Maximization
(EM) algorithm on a Gaussian mixture model. As a result, we obtain weights
wj, means (;, standard deviations o; and the so-called peak height h; = w;/o;
for each Gaussian P;. First, the tumor intensity range G is computed based
on histogram H;:

Algorithm 5.4. (Estimation of Segmentation Parameters I)

1. Identify P; in Hy with the highest h;. P; is assumed to model the intensity
distribution inside the liver (liver peak).

2. Identify N := {j | |pi — p4| < max(15,min(20,30;)), hj > 0.02- h;} as
nearby liver peaks. Set Iy := minjen{; — 0 - max(1, min(3,50 - h3/h))}
as the lower liver boundary. Set the upper liver boundary w1 accordingly.

3. Compute the approximate total peak height as r := ZjeN
is not necessarily a peak height of our Gaussian mixture.

hj. Note that r

4. Now identify potential tumor peaks T := {j | p; < li,h; > 0.05 -
r}. If |T| = 0, assume that there is no big tumor. Otherwise iden-
tify Omin = minjer{o;}. Set T* := T\{j € T | 0j > 20min} and
t := argmaxjep«{p;}. P; is assumed to model the intensity distribution
inside tumors.

5. Fix the tumor intensity range Gp with g7 := p; and tp := min(20, 30y).
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Since Histogram H; possibly excludes important regions of the liver, which
are not covered by the current segmentation, we analyze the Gaussians fitted
to Hs in a second step to see whether the liver intensity range needs to be
enlarged:

Algorithm 5.5. (Estimation of Segmentation Parameters II)

1. Identify liver intensity boundaries I3 and uy in Hs just like Iy and uy in Hy.

2. ldentify a tumor Gaussian P;, in Hy just as in Hy. Accept P, only if none
was found in Hy, and if py, > 0.5(l2 + ug) — 30. Then set gr =
and t7 := min(20, 30y,). This reduces the risk of including fat to the liver
range.

3. Set | := I and u := max(uj,u2). If [ <o and not gp > I, set [ :=1[;.

4. Fix g1, :=0.5(l +u) and t1, := 0.5 (u —{), and dpin := 0.57L.

5.5.6 Estimation of the Initial Position

It is assumed that the general position of the patient in the CT scanner is
known and correct from the DICOM header (e.g. FFS = Feet First Supine).
The idea of the position initialization is to robustly detect the lower rim of
the right lobe of the lung and to position the liver model below it. First, all
connected components with intensity values less than -600 HU are determined
and the largest two components (left and right lobe), which are adjacent to
the upper border of the image volume, are selected. Next, the lobe component
on the right-hand side is projected in patient axis direction from feet to head
and the center and orientation of the resulting lung area is determined. The
liver model is now translated and oriented according to the back-projected
center point and orientation of the lower rim of the right lobe.

5.5.7 Segmentation Algorithm

The segmentation algorithm consists of a series of steps combining the methods
presented in the sections above, see Tab. 5.1. Each step is one of the following
methods:

e position initialization (Init)

estimation of parameters (Estimate), see Alg. 5.4 and Alg. 5.5

e optimization of the shape model (Opt-SSM), see Alg. 5.1

constrained free-form deformation (Opt-CFFD), see Alg. 5.2

e or some other processing step explained in the table.
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Step Type | Details

1 Preproc. |two passes of nonlinear diffusion filtering of I with ¢t =
30, At =5, A = 10. Pass 1 with o = 3, and pass 2 with
o=1.

2 Init | position 7°

3 Estimate | compute G, G, dmin

4 Opt-SSM | only position (rigid + isotropic scaling € [0.5,1.5]), L :=
50 mm, N := 50, gmin := 0

5 Estimate |recompute G, Gr, dmin

6 Opt-SSM | position and shape parameters (5 modes), L := 60 mm
and N, := 60 without tumor, gmi, := 0, € := 0.1 mm

7 Estimate | recompute Gp, dpi, only

8 Opt-SSM | position and shape parameters. The number of used
modes m depends on the slice thickness z of the original
ct data: Without tumor m = min(50, max(20, —75z +
57.5)), with tumor m = min(30, max(20, —75z+57.5)).
Jmin = g1, — 3ty without tumor and gy — ¢t with tumor,
€ := 0.05 mm

9 Estimate | recompute G, dyin only

10 Opt-SSM |same as step 7 but with L := 40 mm and N, := 40 with
tumor

11 Opt-SSM | Only performed if no tumor: L := 20 mm, N, := 40.

12 | Remeshing | The surface of the SSM is scan-converted, interior holes
are filled, a new surface mesh is generated as input for
the following steps.

13 | Opt-CFFD |narrow band radius rp := 10 mm, L := 30 mm, N, :=
60, € := 0.04 mm, maximum number of iterations := 30.

14 | Opt-CFFD |Only performed if no tumor was detected: L := 10 mm,
N, := 50, otherwise same as last OPT-CFFD step.

15 |FillAllSlices | Fill 2D holes in xy-slices of scan converted result from

step 14

Table 5.1 Segmentation algorithm. Parameters remain the same if not noted
otherwise.

For each step the parameters for the specific method or other comments are
listed in the third column labeled detazls.

5.5.8 Results and Conclusions

We presented an algorithm for automatic segmentation of the liver in CT
data. Its main components are statistical shape and constrained free-form

73



5. SEGMENTATION OF MEDICAL IMAGES

Dataset|Overlap Error|Volume Diff.| Avg. Dist. | RMS Dist. | Max. Dist. | Total
(%]  Score| [%)] Score| [mm] Score| [mm] Score| [mm] Score| Score

1 6.3 76| -2.3 88 09 77 20 73| 206 73 7

2| 11.5 551-10.8 43 1.6 60 24 66| 170 78 60

3| 4.7 82| -1.6 91 09 717 20 72| 214 72 79

4 7.2 721 -05 98 1.2 70 24 67| 184 76 76

5 8.8 66| -6.1 68 1.5 62 25 65| 21.5 72 66

6| 7.0 73| -56 70 1.3 68 3.3 54| 36.5 52 63

7 6.3 76| -1.9 90 1.1 74 3.1 57| 25.6 66 73

8| 4.5 82| -0.2 99 0.7 82 1.5 79| 135 82 85

9| 4.1 84| -1.0 95 0.5 88 1.0 86| 159 79 86

10| 9.2 64| -5.7 70 1.3 67 23 68| 191 75 69
Average| 7.0 73] -3.6 81 1.1 72 23 69| 209 72 73

Table 5.2 Results of the comparison metrics and scores for all ten test cases.

Figure 5.12 From left to right, a sagittal, coronal and transversal slice from
a relatively easy case (1, top), an average case (4, middle), and a relatively
difficult case (3, bottom). The outline of the reference standard segmentation
is in red, the outline of the segmentation of the method described in this paper
is in blue. Slices are displayed with a window of 400 and a level of 70.
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deformations. The computation of the displacement vectors are based on a
simple intensity model that may also apply to other segmentation problems.

Our method was evaluated within the MICCAI 2007 Workshop on 3D Seg-
mentation in the Clinic [132], where it competed against nine other automatic
segmentation algorithms from all over the world. The evaluation was per-
formed on 10 CT data sets, where radiological experts manually outlined liver
contours for all images in transversal slice-by-slice fashion. These segmenta-
tions were used as the ground truth. For quantitative comparison, a scoring
system was developed that is based on five different discrepancy measures
between automatically computed segmentations and the ground truth: (1)
volumetric overlap error, (2) relative volume difference, (3) average symmet-
ric surface distance, (4) root mean square symmetric surface distance, and (5)
maximum symmetric surface distance. All measures were weighted equally to
produce a score of 100 for a perfect match and 0 for complete failure. Addi-
tionally, the score was calibrated by a second rater, such that a score of 75
can be regarded as roughly equivalent to human performance.

Fig. 5.12 and Tab. 5.2 show qualitative and quantitative results of our
method. The not yet optimized run-time of the algorithm was 15 minutes per
liver on an Intel 3.2 GHz processor. The overall performance of our method
has a score of 73. There has been no failure. Our method achieved the best
overall score of all automatic methods, both in the on-site as well as in the
pre-workshop competition. A comparison article is in preparation [56].

Segmentation errors sometimes occur in regions where anatomical structures
with very similar intensity values are located close to the liver, in particular if
parts of those structures can be captured within a typical liver shape: lower
part of vena cava (Fig. 5.12 top, right), duodenum (Fig. 5.12 middle, right),
heart, muscles, stomach and pancreas. The consideration of tumors inside
the liver during the segmentation process is very important and works very
well (Fig. 5.12 middle and bottom row). At high noise levels in the original
image data the isotropic nonlinear diffusion process is stopped before reaching
the liver boundary (e.g. case 2). Some deviations are caused by incorrect
manual segmentations (e.g. Fig. 5.12 middle row, middle column, near the
gallbladder).

The initiative of providing a common pool of test data as well as well-
defined measures for evaluation is indispensable for further progress in the
field of automatic image segmentation. Yet it remains difficult to establish the
correct ground truth, especially for the liver, due to the difficulty to clearly
define the exact boundary of the liver tissue (e.g. at the inner side, where
the portal vein enters the liver or the vena cava). Although fully automatic
liver segmentation algorithms are desirable in the clinical routine, methods
that reduce and facilitate manual interaction will remain essential in case of
failures.
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Chapter 6

Reconstruction from Pathological Shapes

6.1 Introduction

In planning surgical interventions, a central issue is how to reconstruct patho-
logical deformities or missing anatomical structures, when the original nor-
mal situation is unknown. In many cases, objective criteria to guide the
re-modeling and re-shaping process are missing, and surgeons are forced to
withdraw to subjective, e.g. aesthetic, assessment. This prevents impartial
control of therapeutic success and aggravates guidance and instruction of the
remodeling process for inexperienced surgeons.

Statistical models of of healthy shapes offer the possibility for automated
and reproducible reconstructions of pathological shapes R. The idea is to fit
the statistical model S(b,T") to match R in regions where there is no pathology
and /or which will be unaffected by the surgical intervention. The resulting
best fit R* to R will provide a patient-specific yet objective proposal for the
re-modeling process.

6.2 Model-based Surface Reconstruction

From a mathematical point of view, the difference to the segmentation process
is mainly two-fold: (a) the shape to be reconstructed is explicitly known, yet
(b) there exists no correspondence between the shape model S(b, T') and R, i.e.
we cannot easily compute R — S. Since R may be a subset or superset of the
object represented by the shape model, the computation of correspondences
is not easily accomplished.

Hence, we must minimize some surface distance between R and S:

(b*,T*) = argmin d(S(b,T), R) (6.1)
b,T

such that R* = S(b*,T*) is the best fit for R.
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Figure 6.1 Point-to-surface distance is not symmetric.

Given two surfaces S and R the point-to-surface distance d(p, R) between
a point p € R3 on surface S and the surface R is given by

d(p, R) = min [p — q|
qER

Based on this definition surface distance measures can be constructed. In
order not to lose important information, such measures should be symmetric,
ie. d(S,R) = d(R,S) (see Fig. 6.1). We use the square symmetric surface
distance defined as

1 1
@wﬁﬁwﬂémuW@+m,g@&%q (6.2)

where |S| denotes the surface area of S and dp its area element.

In the case of triangle meshes the surfaces are represented by a set of vertices
pi € R3 with i =1,...,n,, and the integrals in equation (6.2) are replaced by
sums over all vertices:

1

1 &
=i [ dp,R)?*dS — > dpi,R)*-A;

5]

where A; is an area measure around sample point p;, e.g. one third of the area
of the neighboring triangles. For triangle meshes d(p;, R) can efficiently be
evaluated using octree data structures [133]: First, all triangles of the surface
R are stored in the octree. Next, only those triangles in octree cells nearest
to the point p; are considered for point-to-triangle distance computations.
Finally, the smallest of these distances yields the desired solution.

We use an iterative procedure to solve the optimization problem (6.1), where
we separate optimization with respect to b and T":
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Figure 6.2 Computation of the gradient of the symmetric root-mean-square
distance. Left: from S to R. Right: from R to S

Algorithm 6.1. (Surface Reconstruction)

1. Let (b°,T%) denote the solution at time i.

2. Update transformation parameters

T = argmin dy(S(V',T), R)
T

by applying the iterative closest point (ICP) algorithm [12].
3. Update shape weights

pitl — argmin dQ(S(b, TiJrl)a R)
b

by applying quasi-Newton optimization [105].

4. Update i < i + 1 and go back to step (1) if convergence has not been
achieved, i.e. ||(b%, T?) — (b1, T > e

In order to apply quasi-Newton optimization in step (3) we must compute
the gradient of da(S(b,T'), R) with respect to the shape weights b:

Let p; denote the vertex positions of S and g; the vertex positions of R (see
Fig. 6.2, left). The closest point of p; € S is denoted p; € R and their distance
is given by

d(pj, R) = |pi — pjl
Since p; is given by the shape model as

Pi=0i+ > brwg
k
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Reconstruction of Mandibular Dysplasia

where 7; € R? and Wk € R3 denote the coordinates of the i-th sample point
of the average shape and the eigenvector of the covariance matrix respectively,
we obtain

0

—— d(pi, R)* = 2d(p;, R) - wy

ob

We approximate the derivative of the second summand in (6.2) (see Fig. 6.2,
right) as follows: For each vertex ¢; € R the closest point qé- € S is computed.

The closest vertex p; € S to q; is used to approximate the distance |g; — q;|
by |g;j — pil:

d(q;, SO0, 1)) = lgj — ¢i* = lg; — pu?

The finer the triangle mesh becomes the more accurate this approximation
will become. As p; = 0, + ;. bywy; we obtain

0
o U029 = 2 |a; = pil - wy
The distance do is only one of many different measures that may be used.
The basic idea is always to project the pathological shape R onto the statistical
shape model S. The choice of a suitable distance depends on the application.
We present two different medical applications of this technique.

6.3 Reconstruction of Mandibular Dysplasia

Patients with distinct craniofacial deformities or missing bony structures re-
quire a surgical reconstruction that in general is a very complex and difficult
task. The main reasons for such malformations, as show in Fig. 6.3, are tu-
mor related bone resections or craniofacial microsomia [106, 135]. In cases
where the reconstruction cannot be guided by the symmetry of anatomical
structures, it becomes particularly challenging. In such a case, the surgeon
has to compare the individual pathological situation with a mental image of
a regular anatomy in order to modify the affected structures accordingly. For
such a surgical therapy osteotomies are typically performed with either subse-
quent osteodistraction [46] or osteosynthesis after relocation of bony segments
[52], sometimes even in combination with selective bone and soft tissue aug-
mentation. In more than 15 cases of mandibular dysplasia and hemifacial
microsomia that we have planned so far [143, 140], any kind of guideline for
the perception of a designated objective was highly desired. Hence, the aim
of our work is to provide a statistical 3D shape model of a human mandible,
that will serve as a template for individual treatment planning. Depending
on gender and age, different models might be developed as well.

The statistical model used is the same as in Sec. 5.4, yet with the teeth region
included. First experiments with this rather small amount of mandibular
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6. RECONSTRUCTION FROM PATHOLOGICAL SHAPES

Figure 6.3 Three cases of hemifacial microsomia with evidently malformed
mandibles

Figure 6.4 top) selection of different shapes of the training set, bottom) three
major modes of variation of the average mandible

shape samples already show a broad range of typical variations. With only 10
characteristic shape modes we are able to distinguish between the height of the
rami mandibulae, the mandibular angle, the length of the vertical branches,
the width of the entire mandible, the radius of the mandibular arch, the shape
and the size of the condyles (Fig. 6.4).

After optimization of the rigid transformation 7" in combination with the
shape weights b with regard to a minimal distance d,.,,s between the relevant
part of the mandible that is to be reconstructed and the shape model, a
mean distance d,eqn between 1.2 and 1.5 mm with a median of 1.0 to 1.2 mm
was achieved (cf. Tab. 6.1). For more than 70, up to 83% of the selected
surfaces the deviation was below 2mm, and only 2-6.5 % of the surfaces were
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Reconstruction of Mandibular Dysplasia

pasent | o | oy | | | |
Py 1.2 1.0 104 16.8 5.0 2.0
Ps 1.4 1.0 9.2 22.7 11.4 6.4
P3 1.5 1.2 8.3 29.0 13.5 5.8

Table 6.1 Statistics on the deviation between the surfaces of the shape model
and the malformed mandible within a region of interest

(d)

Figure 6.5 Template generation for patient Py, see Tab. 6.1: a) hypoplastic
mandible, b) average mandible shape, ¢) adaptation of the shape model to the
right part of the mandible, d) 3D template for mandible reconstruction

deviating more than 4 mm. The maximum distance of 8.3 —-10.4 mm between
the adjusted shape models and the individual mandibles originates from the
fact, that a statistical shape model consisting of only 11 samples is far from
being representative to describe all variations of a human mandible. However,
the value for d,q; is expected to diminish with a larger training set.

For each of the three pathological cases in Fig. 6.3 we were able to find a
suitable candidate from our statistical shape model, using the optimization
described above. An example for the first patient is shown in Fig. 6.5. The
morphological difference of the optimally aligned two shapes can be measured
in size and volume, thus either indicating the thickness of bone augmentation
or being suited as a template for autologous bone grafts, the configuration of
titanium plates or even the fabrication of individual prostheses.

The statistical 3D shape model of the human mandible seems to be a valu-
able planning aid for surgical reconstruction of bone defects. This is partic-
ularly useful for severe cases of hemifacial microsomia, as shown in our three
examples. With a best matching candidate of the shape model, regarding the
size and the shape of available bone, a surgeon gets a good mental perception
of the reconstruction that is to be performed.
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6. RECONSTRUCTION FROM PATHOLOGICAL SHAPES

Figure 6.6 MRI data of normally developed skulls.

6.4 Craniosynostosis

Premature ossified cranial sutures of infants (craniosynostis) often lead to
skull deformities in the growth process. This can lead to increased intracra-
nial pressure, vision, hearing, and breathing problems. Since research on the
correction of underlying disorders on the cellular level is still being carried
on patients with craniosynostosis depend on surgical intervention for prevent-
ing or reducing functional impairment and improving their appearance. The
most commonly used surgical procedure consists of bone fragmentation, defor-
mation (reshaping) and repositioning based on standards developed by Paul
Tessier [126] and refined by Daniel Marchac and Dominique Renier [107]. A
major problem is the evaluation of the aesthetic results of reshaping the cranial
vault in small children as the literature does not provide sufficient criteria for
assessing skull shape during infancy. A definition of the correct target shape
after surgery is missing. The most important and in many cases only indi-
cation of the best possible approximation of the skull shape to the unknown
healthy shape is left to the subjective aesthetic assessment of the surgeon.

In order to establish objective criteria for the reshaping process, we propose
to perform statistical analysis of normally developed cranial shapes. The idea
is to compute an average shape and the most characteristic variations from a
training set of skulls. Pathological shapes are then projected onto the space
spanned by the healthy shapes. The resulting shape will provide a patient-
specific proposal for the remodeling process.

A statistical shape model has been created from 21 MRI data sets (patient
age: 3 to 10 months) of normally developed skulls (Fig. 6.6). These have
been segmented interactively by an anatomical expert. From these segmenta-
tions polygonal surfaces have been reconstructed. A typical result is shown in
Fig. 6.7 (a). Next, the relevant region for the surgical intervention has been
determined. Therefore, four landmarks have been defined on the reconstructed
skull surfaces, Fig. 6.7 (b):

82



Craniosynostosis

Figure 6.7 Surface reconstruction of neurocraniums of infants for statistical
shape modeling. (a) reconstruction of the bone surface from segmented data,
(b) landmarks, (c) determining cutting planes, (d) final skull patches used to
generate the statistical analysis.

(1) meatus acusticus externus: the entries to the auditory canals.

(2) nasion: foremost point of the sutura naso-frontalis in the mid-sagittal
plane.

(3) sella: center of the sella turcica (hypophysis)

(4) occiput: palpable elevation of the os occipitale in the mid-sagittal plane.

These landmarks define a set of planes through which the surface mesh is cut
(Fig. 6.7 (c)). The resulting surface of the affected neurocranial region serves
as input for the statistical analysis and consists of four sub-regions (Fig. 6.7
(d)): right and left orbital regions, left and right upper skull region.

The completeness of the model was tested in a leave-one-out experiment
(cf. Sec. 4.3.1) on all 21 data sets available: on average the model is capable
of approximating any other arbitrary skull shape with an error of 0.7 +/- 0.2
mm (mean symmetric surface distance).

The 3D cranial model serves as a template for the reshaping process, by
finding an optimal fit of any of its variations to a given malformed skull.
Usually, no pre-operative MRI scan is available for the infant patients (mostly
under the age of one year) in order to avoid unnecessary anaesthesia. Hence
the matching of the model towards the pathological skull of the patient is
performed by non-invasively measuring anthropometric distances that are not
affected by the surgical intervention:

(1) width between both entries of the auditory canals
(2) distance from nasion to occiput

(3) height between vertex and the midpoint of the line between the auditory
canals
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6. RECONSTRUCTION FROM PATHOLOGICAL SHAPES

Figure 6.8 Three different views of a patient with trigonocephaly (ossification
of the suture running down the midline of the forehead) - before surgery.

Figure 6.9 Cutting lines indicated on the skull, removed frontal skull region
before the reshaping, facsimile of shape model instance on which bone parts
are reshaped.

Figure 6.10 Bone stripe before and after reshaping, result of reshaping process
on model.

These distances are extrapolated to the skull surface by approximating the
skin and skull thickness. The shape model instance that best fits these mea-
surements is selected as a template for the reconstruction process. The result-
ing shape instance represents an individual interpolation of all shapes con-
tained in the training set.

In a first clinical application, the statistical model was pre-operatively matched
to a patient using the method described in section 2.3. From this computed
shape model instance a life-size facsimile of the skull was built and taken to
the operating room to guide the reshaping process. Fig. 6.8 through 6.12 de-
scribe and illustrate the surgical procedure and the role of the statistical skull
model (photos taken by F. Hafner).

The application of a statistical shape model as a tool for guiding the skull
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Craniosynostosis

Figure 6.11 Microplates for fixating bone pieces on remaining skull are also
shaped on the model, result after fixation of reshaped bone on skull.

Figure 6.12 Comparison between pre- and post-operative situation (from
left to right): patient 2 months before surgery, immediately before surgery,
fac-simile of the target shape derived from the statistical model, patient im-
mediately after surgery, 3 weeks after surgery.

reshaping process in cases of craniosynostosis has proven successful, as shown
in a first clinical evaluation. Statistical shape models are capable of providing
objective, yet patient-specific criteria for the reshaping process. At the same
time they accelerate the process of reshaping as they prevent mistakes or
uncertainties followed by time consuming corrections.

We want to extend the number of samples in the training set to improve
the completeness of the statistical shape model. It will have to be examined
whether the model can be used for segmentation purposes as well, because
this is the most time-consuming task in the model generation pipeline.

In this work, the matching of the model was carried out on the basis of a
few landmark measurements. In the future we want to explore the possibilities
of 3D surface scanners to acquire pre-operative patient data as well as post-
operative data for long-term validation.
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Chapter 7

3D Shape Estimation from X-Ray Projections

7.1 Introduction

X-ray projection images still play a crucial role in diagnosis and surgery or
therapy planning. Accurate computer-aided pre-operative planning, however,
requires the knowledge of the 3D-geometry of the anatomy. The problem
addressed in this work is how to reconstruct the a-priori unknown 3D-geometry
of objects from 2D-projection images.

One of the most prominent applications is the treatment of degenerative
joint diseases by artificial hip joint replacement. A large number of hip pros-
theses are implanted per year. Due to the aging of the population a strong rise
in this number is expected for the future. While it is known that the loads on
the hip joint play a crucial role for the long-term function and successful per-
formance of artificial joints, there exists no reliable data about expected joint
loads for surgical planning. Computer-assisted planning shall help to further
improve the treatment in order to assure an individual and optimal biomechan-
ical reconstruction of the hip. To this end, arising forces and loads before and
after the intervention shall be computed via validated biomechanical models.
Most commonly, the basis for such simulations are X-ray projections. While
substantial data for the adjustment of biomechanical model parameters can
be extracted from coronal X-ray projections [57], a more accurate analysis of
the loads requires the knowledge of the 3D-geometry of the bone and muscles.

A large portion of the work concerning 2D/3D-registration (cf. van de
Kraats et al. [131] and references therein) is based on the assumption that
there exist pre-operative 3D-data of the patient, which shall be registered
to data acquired intra- or post-operatively. This work however addresses the
problem of reconstructing 3D-objects from 2D-data, where no such reference is
available. Among many differently parameterized deformable surface models
(see. Montagnat et al. [94] for an overview), models that incorporate a-priori
knowledge about typical shape variations occurring in the object to be re-
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Reconstruction Process

Figure 7.1 3D-reconstruction from X-ray projections.

constructed seem to be most suitable for this task due to their robustness.
Miscellaneous works build upon this idea:

Fleute and Lavallée [40] use a 3D-statistical shape model of the distal fe-
mur for registration with X-ray projections from a C-arm. They minimize the
distances between the contours of the model surface and the contours formed
by a discrete number of projection rays within the X-ray acquisition setting
using the ICP algorithm. Benameur et al. [11] build and use a 3D-statistical
shape model of vertebrae for registration and segmentation of X-ray projec-
tions. The registration consists of a minimization of an image edge potential,
which measures the distance of the projected contours to the contours in the
X-ray projections. Tang and Ellis [123] generate a hybrid shape model for the
reconstruction of femurs from X-ray data. The correlation between simulated
thickness images of the shape model and the X-ray projections serves as the
similarity measure for the optimization.

7.2 Reconstruction Process

The basic idea is to project the statistical shape model S into the X-ray plane
and measure the distance of the projected shape to the shape in the projection
image, i.e. the X-ray projection in our case (Fig. 7.1).

More formally: for a given camera calibration K and a shape model S(b,T)
a 2D projection image P(b,T, K) is computed and compared to the X-ray
projection X. The reconstruction can now be formulated as the optimization
problem

(b, T, K)* = argmin D(P(b, T, K), X) (7.1)
b, T, K
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7. 3D SHAPE ESTIMATION FROM X-RAY PROJECTIONS

where the distance measure D quantifies the mismatch between the two-
dimensional images P and X.

The distance function D is non-linear and generally exhibits many local
minima. Thus, we use a gradient-descent evolution for the minimization of
D: #(t) = =V D(x) with some initial value x = (bg, Tp, Ko). We replace the
gradient VD by a more suitable search direction, which is computed via a
method that evaluates the distance measure at the bounds of a large interval,
hence avoiding the solution from being stuck in local minima. In addition,
a multi-resolution approach is adopted by performing the registration in a
data pyramid: the silhouettes are considered at different resolutions during
the course of the optimization. This also speeds up the computation time
considerably [110].

For a given camera calibration K (location and orientation of the X-ray
source w.r.t. the image acquisition planes) and a given instance of the shape
model S(b,T), a thickness image of the shape model in the image acquisition
plane is computed by computing the propagation length of simulated rays
through the volume enclosed by the shape model (Fig. 7.2). This can efficiently
be accomplished using graphics hardware acceleration.

7.3 Distance Measures

The most obvious and fully automatic choice for D would be an intensity
correlation between the thickness and the X-ray projection (cf. Tang and Ellis
[123]), e.g. by sum of squared differences or mutual information. However, our
experiments showed unsatisfactory results on the pelvic data. The approach
produces mismatches on the inside of the pelvis since it does not take into
account inhomogeneities there (Fig. 7.2 and 7.3). Another cause for problems
is the additional structure that is present on the outside in the X-ray data but
not in the thickness image.

The second most obvious choice consists in measuring the distance between
the edge-maps (cf. Benameur et al. [11]). This approach is almost automatic,
as it involves adjusting some parameters of the Canny-filter. Let

d(z,s") = min ||z — 2| (7.2)
z'es’

be the distance between a point z in the set of contour s of the thickness
image and the set of contours s’ of the X-ray projection. Then

D—/ d(x,s')zd:r—i—/ d(z,s)d. (7.3)
TES x€s’

In order to efficiently evaluate this distance, the distance map of both the
model and the X-ray contours are computed.
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Reconstruction of Pelvic Bone

Figure 7.2 Canny edge detection in  Figure 7.3 Left: Canny edge detec-
thickness images. tion in X-ray projections. Right: Sil-
houette of the pelvic bone.

The consideration of full edge-maps, however, failed to produce acceptable
results, due to the fact that many contours have no well-defined corresponding
counterpart (see Fig. 7.2). Hence we propose to consider the silhouettes of the
objects instead of the full edge-maps s and s’ (Fig. 7.3), which alleviates the
problems mentioned.

In contrast to the cited previous work we propose to measure the distance
between the model and the data based on their silhouettes. From both the
thickness and the X-ray projections accentuated contours are extracted using
a Canny [123] edge detector (Fig. 7.2). Finally, the silhouette is extracted
from the projection images. The silhouette can be automatically computed
from the thickness images: it is its zero level-set, i.e. it separates pixels with
thickness > 0 from pixels with thickness = 0. However, the silhouette must be
determined interactively in the X-ray projections: wrong edges are discarded
or missing edges are added to the silhouette (demonstrated in Fig. 7.3 on real
X-ray projections). The final contours are rasterized as 2D-images.

7.4 Reconstruction of Pelvic Bone

We have generated a statistical shape model of the pelvic bone from 23 CT
data sets of male patients [75] using the method of consistent surface decompo-
sition and parameterization. Each data set has been segmented manually by
labeling the pelvic bone regions. Before surface reconstruction a label based
interpolation algorithm has been applied to reduce the effect of anisotropy of
the voxels (slice thickness of 5 mm, resolution of 1.4 mm in axial slices). For
reasons of efficiency all surfaces have been simplified by reducing the number
of triangles, obtaining meshes with about 25000 triangles and 12500 nodes.
Each pelvic bone surface has been divided into 11 patches (Fig. 7.4):

e the promontorium (P)
e the frontal/ventral sacrum (FS, VS)

e the frontal right/left upper ilium (FRUL, FLUL)
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7. 3D SHAPE ESTIMATION FROM X-RAY PROJECTIONS

Figure 7.4 Surface decomposition of the pelvic bone.

e the ventral right/left upper ilium (VRUL, VLUL)
e the right/left femur joint (RFJ, LFJ)
o the right/left lower ilium (RLI, LLI)

The user has to specify about 40 landmarks per surface, resulting in 11 patches,
bounded by 40 patch boundaries and 25 branching points. Manual interaction
amounts to about 30 minutes per training data.

The main modes of variation of the pelvic bone (see Fig. 7.5) model can be
well interpreted as: (1) scaling in z-direction, (2) widening and bending of the
ilium and (3) change of length of the sacrum.

For validation of the proposed method 23 CT data sets of the abdomen
without bone defects have been used (resolution 1 x 1 x 5 mm). For all
data sets manual segmentations of the pelvic bone have been available as
a gold standard for quantitative evaluation. The goal of this evaluation is
to examine the accuracy achievable with the proposed method. The main
ingredients of this method to be tested are the statistical shape model and
the similarity measure. Therefore we assume that the camera calibration K
and the linear transformation 7T is known and need not be optimized. For
evaluation purposes these parameters are known from the generation of the
simulated X-ray projections. In fact these assumptions often are met in real
world: in conventional surgical planning calibrated X-ray projections can be
generated under standardized acquisition conditions [127].

All experiments were conducted for one X-ray projection (coronal: CO) and
two X-ray projections (CO plus sagittal: CO-SA). The error was measured by
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b o
VY

Figure 7.5 Variability of a statistical model of the pelvic bone shape made
from 23 training data sets: in the left column the eigenmode with the largest
variance \; is varied between +3+1/\1, in the second and third column the
modes with the second and third largest variance are shown respectively.

computing the symmetric mean surface distances between optimization result
and gold standard. Three different experiments were performed (see Tab. 7.1
for results):

(a) Leave-All-In Test (LI): As a test of the similarity measure and the opti-
mization strategy to capture the true 3D-shape, the reconstruction was
carried out with a statistical shape model that contained the shape to
be reconstructed. The error should ideally reduce to zero.

(b) Leave-One-Out Test (LO): The shape to be reconstructed was removed
from the shape model. This represents the “real-world” situation.

(c) Surface-Optimization (SO): As a reference value for the leave-one-out
test the shape model was directly matched to the gold standard surfaces
in leave-one-out test, where the surface distance between the two shapes
was directly minimized [75]. This yields the optimal result to be achieved
with a given statistical shape model in the leave-one-out test (b).

7.5 Conclusions
In this work a new method for the reconstruction of unknown 3D-shapes
from X-ray projections was presented. The method was validated based on

synthetic X-ray data (from pelvic CT) with known camera calibration. The
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7. 3D SHAPE ESTIMATION FROM X-RAY PROJECTIONS

Test Mean [mm] | Median [mm]| | Max [mm]
LI (CO) 1,540,5 | 1,240,3 | 8,8+3,3
LI (CO-SA) | 1,3+0,5 | 1,1+0,5 | 7,9+2,6
LO (CO) 2.6+40,4 | 2140,3 |17,6+6,5
LO (CO-SA) | 2,4+0,4 | 2,0+£0,3 |14,9+3,1
SO 2,040,2 | 1,640,2 |13,3+2,6

Table 7.1 2D-3D reconstruction of the pelvic bone. Experimental results
(mean values and standard deviations across 23 data sets)

mean values of the measured errors even for a single projection image (coronal)
were up to a few millimeters within a range where one can expect to obtain a
sufficient estimate of the 3D-geometry with respect to the application of com-
puting load conditions for biomechanical studies [57]. This shall be validated
on clinical data in the future. For a complete analysis of the loads occurring in
the context of artificial hip joint replacements the method shall be extended
to include the femur in a next step. The leave-one-out test shows that the
largest portion of the error stems from the incompleteness of the statistical
model. Hence the model shall be enlarged by more training data sets in the
future. For the clinical application of the method it must be examined to what
extent the method can cope with occlusions, artifacts in the X-ray projection
or pathological situations, e.g. such as degenerative changes of the pelvic bone
(Fig. 7.6). To this end it must be investigated if the method yields sufficient
results in cases of incomplete silhouette information. A potential increase in
accuracy consists in incorporating further information from the X-ray data
and the shape model into the similarity measure for the registration. Hence
future work shall attempt to combine silhouette information with modified
thickness images into the registration process.

Figure 7.6 X-ray projections with occlusions and pathologies.
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Conclusions

This thesis has contributed to the solution of some open problems in the field of
3D geometry reconstruction based on the consideration of a-priori knowledge
about shape variability and other application-specific properties.

The central mathematical tool, used in this work, is a statistical model
of inter-individual shape variability. In order to establish correspondences
between different shapes, two approaches have been developed. With our
first approach, large numbers of training data can be processed efficiently to
generate shape models. Secondly, initial steps towards a multi-level treat-
ment of variational surface matching have been presented. Both approaches
are restricted to homeomorphic surfaces, and hence cannot deal with missing
parts or topological variations. However, they can handle surfaces of arbitrary
topology and can be robustly implemented for triangle meshes.

Statistical shape models have successfully been applied to image segmen-
tation. They increase the robustness at the expense of flexibility, and even
accuracy. It remains an issue how to trade-off these antagonistic properties in
general. Simultaneously, the deformation models that drive the reconstruction
processes leave a lot of space for further improvement and for incorporation of
additional application-specific knowledge. However, statistical shape models
yield good initializations for additional post-processing. It has been shown for
particular anatomical structures that unsupervised segmentation procedures
of medical image data can be devised that are almost as accurate as human
performance, even in the presence of noise and artifacts. In addition, is has
been shown that it is even possible to estimate a three-dimensional shape from
two-dimensional projection images, like X-ray.

Moreover, statistical shape models also provide a very useful means for
surgical reconstruction of missing, malformed or other pathological anatomical
structures. Patient-specific, yet objective surgical reconstruction proposals
based on such models have been established as a planning criterion for complex
surgical interventions, like individual implant or transplant design.
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Appendix A

Riemannian Geometry

In this appendix we state elementary definitions and facts from Riemannian
geometry. The exposition follows Smith [118], as well as O'Neill [97] and
do Carmo [33].

Smooth Manifolds

Let M be a set and E some Banach space. A smooth atlas on M is a collec-
tion of charts (U;,x;) (with ¢ ranging in some indexing set 7) satisfying the
following properties:

M1 Al U; € M and M = {J;c7 Us.

M2 z; : U; — E is a bijection onto an open subset z(U;) of E. For any 1, j,
z(U; N Uj) is open in E.

M3 The map z; o x; ' : 2;(U; NU;) — z;(U; NU;) is a smooth bijection for
each pair of indices i, j.

Let x : U — E’ be a topological isomorphism from an open set U C M
onto an open set E' C E. The chart (U, x) is called compatible with the atlas
{(Ui, x;)} if each map z; o x, defined on a suitable intersection as in M3, is
a smooth isomorphism. Two atlases are said to be compatible if each chart
of one is compatible with the other. An equivalence class of smooth atlases
on M defines a smooth manifold on M. We say that M is modeled on E. If
E = R” for some fixed n, then we say that the manifold is n-dimensional.
The inverse of a chart map ! : E — U is often called a parameterization or
system of coordinates for U C M.
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Maps and Functions

Let M, N be two smooth manifolds, and ¢ : M — N a map. ¢ is called
smooth if, given p € M, there exists a chart (U, z) at p and a chart (V,y) at
©(p) such that o(U) C V and

yopoz ' :a(U)—y(V)

is smooth. It follows from M2, that this definition holds for any choice of
charts (U,z) and (V,y) with o(U) C V. Let C*°(M,N) denote the set of
smooth maps between two manifolds. The special case C*°(M,R) will be
denoted the set of smooth functions on M.

Tangent Bundle, Vector Fields

A smooth map v : I — M on some open interval I C R is called a curve in
M. Let v(0) = p € M. The tangent vector V, := +/(0) to the curve 7 is a
function V, : C*°(M,R) — R given by

=200 peoronm

The tangent vector at p is the tangent vector to some curve v with v(0) = p.
The set of all tangent vectors to M at p is called the tangent space T, M. It
is a vector space over R and the Leibniz rule holds, i.e.

Vo(fg) = Vo(f)g(p) + f(p)V3(9)
The tangent bundle is defined as
TM :={(p,Vp) : p€ M,V, € M}

The tangent bundle can be provided with a smooth structure and hence be
made a manifold itself (see [33], Ex. 4.1).

A wector field V : M — TM on a manifold M is a map that assigns to
each point p € M a tangent vector Vj, to M at p. If f € C*°(M,R), then V f
denotes the function on M given by

(Vf)(p) =Vp(f) forall peM
The set of all smooth vector fields
F(M) = C™®(M,TM)
on M is a module over the ring C°°(M,R) with the following operations:

(fv)p:f(p)vp
V+W),=V,+W, foral peM
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Covariant Derivative

An affine connection D on a smooth manifold M is a map
D:F(M)x F(M)— F(M)
characterized (but not uniquely) by the following axioms:

D1 DfV+gV’W = fDVW + gDV/W
D2 Dy (W +W') = DyW + Dy W’
D3 Dy (fW) = (VW + fDyW for f € C=(M,R).

A vector field Dy W is called a covariant derivative of W with respect to V for
the affine connection D. As shown by do Carmo [33] (sec. 2) an affine con-
nection “furnishes a [intrinsic] manner of differentiating vectors along curves”
by satisfying D1 and D2. Axiom D3 allows to show that an affine connection
is a local notion.

The definition of the covariant derivative can be extended to arbitrary
tensor fields (see O’Neill [97], sec. 3.2). Particularly, for the (0,0)-tensor
f e C>®(M,R) we have

Df(V):=Dyf=V{ (A1)

Moreover, this allows to compute higher-order covariant derivatives of f by
defining: D"f := Do...o Df. The second covariant derivative of f is a
(0,2)-tensor (see O'Neill [97], sec. 3.11) given by

D2f(V,W) = Dy (D)(V) = WV f — (DwV)f (A.2)

Geodesics and Parallelism

Let v : I — M be a smooth curve with tangent vectors V. = 7/(t). The
curve v is called a geodesic if DyV = 0 for all t € I. Now let W,y € T, (s M
be a smooth family of tangent vectors defined along «. The family W, is
said to be parallel along v if DyW =0 for all t € I.

For every p € M and V), # 0 in T, M there exist a unique geodesic ¢t — ~(t)
such that v(0) = p, 7/(0) = V, and 1 is in the domain of 7. We define the
exponential map

expy, : T,M — M by epr(V};) =7(1)

for all V,, € T, M. We write for v(t) = exp,(tV},). The image of a star-shaped
neighbourhood Ny of the origin of T,,M is called the normal neighbourhood,
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Figure A.1 Relation between parallelism and covariant differentation.

denoted by N,. It can be shown to always exist.

Given a curve v : I — M with v(0) = p for each V,, in T, M there exists a
unique family V) € Ty M (t € I) of tangent vectors parallel along ~ such
that V) = Vp. This parallelism induces an isomorphism

mh: TpyM — TyM by  7,(Vp) := Vi)

for y(h) = q and h € I. 7,(V}) is called parallel transport of V, along v. A
vector field W on a normal neighbourhood N, is called adapted to the tan-
gent vector V), € T,M if W, = 7,(V}) is a parallel translation along the unique
geodesic segment joining p and q.

Parallel transport and covariant differentation are related in the following
way (see Fig. A.1) Let V be a vector field on M and v be an integral curve of
V. Then for vector field W on M:

.1,
(DVW)p = }1113%) E(Th 1(I/Vw(h)) - W)

This relation holds if W is replaced by an arbitrary tensor on M.

Riemannian Manifolds

A Riemannian structure g, is a (0, 2)-tensor that assigns to each point p € M
a positive definite symmetric bilinear form

9gp : TpyM x T,M — R

This makes the tangent space T, M a Hilbert space. For a smooth connected
manifold M the pair (M, g) is called a Riemannian manifold. For vector fields
we have

g: F(M) x F(M) — C*®(M,R)
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A. RIEMANNIAN GEOMETRY

For every p in M the Riemannian structure provides an inner product on
T,M. For V, € T,M the norm is given by

Vol = gp(Vp, Vi) V2.

Note that a bilinear symmetric form can be obtained from a given norm using
the polarization identity

1
90 (Vs W) = 5 (IIVp + Wyll* = [V " = W3, ]1%)

The length of a curve t — ~(t) in M with t € [a, b] is defined as

b
L) = [ Il
For v(a) = p and ~(b) = ¢ the Riemannian metric
d(p,q) = inf L(v)

yields a metric on M. It can be shown that the distance d between two points
is the length of the shortest geodesic connecting these two points. Moreover
we have

d(p, expy(tVp)) = - [Vl (A.3)

For a vectorfield V' and some curve v with v(0) = p and +/(t) = V,(4), we have

d
Vol = =

3| o) (A1)

Riemannian Connection

For every Riemannian manifold (M, g) there exists a unique connection V,
called the Levi-Clivita or Riemannian connection, satisfying

D4 [V,W]=VyW — V'V
D5 Ug(V,W) = g(VuV, W)+ g(V,VyW)

for U,V,W € F(M). D4 is the definition for a symmetric affine connection.
D5 is equivalent to the statement that the connection V is compatible with
the metric g, i.e. for any smooth curve v on M and any two parallel vector
fields V, W € F(M) along v we have g(V, W) = constant (see do Carmo [33],
sec. 2.3). In other words, parallel transport is an isometry.
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For manifolds embedded in Euclidean space, the Levi-Civita connection is
the directional derivative in the embedding space followed by an orthogonal
projection onto T, M (see O’Neill [97], sec. 4.3).

For the Riemannian connection we can define the gradient and Hessian
operator as follows:

Vi(V)=g(gradf,V) with gradf e F(M)
and
V2f(V,W) = g(Hessf(V),W) with Hessf: F(M)— F(M)
The following relationship holds (see O’Neill [97], sec. 3.11)
Hessf(V) = Vy (gradf)

Due to the symmetry property D4, the second covariant derivative of f is
symmetric, and hence the associated Hessian is a symmetric operator.
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Appendix B

Discrete Gauss Curvature

Let T be a triangle mesh with vertices vi...,v,. Let ¢; be the piecewise
linear function with value 1 at vertex v; and 0 at all other vertices at the mesh
(Lagrange basis). The mass matrix is given by

M;; = / 61(p) 6;(p) dA (B.1)
M

If v; and v; are neighbored vertices in the mesh then M;; is 1/12 the area of
the triangles adjacent to edge (i,j). Diagonal entries M;; are 1/6 the area of
all triangles adjacent to vertex v;. All other entries are zero.

The integrated Gauss curvature K; at interior and boundary vertices ¢ is
defined by the angle excesses

K; =27 — 6; (interior) and K; =7 — 6; (boundary)

where 6; is the sum of all angles adjacent to vertex v;. Hence, the pointwise
Gauss curvature x; at vertex v; can be defined via the solution of the sparse
linear system

Mr =K (B.2)

where K = (Ky,...,K,)" and k = (k1,...,%,)7. This definition for the
pointwise Gauss curvature satisfies the Gauss-Bonnet theorem

2rx = 3 K; =idK =idMx = /M idk dA
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Appendix C

The Magnitude of the Area Gradient

We describe here the computation of the integral (3.14)

o= % </OL u(s) ds> (C.1)

by numerically solving a boundary problem for the normal geodesic variations
u along a given geodesic v : [0,L] — M on a surface M. Discretizing u in
(3.16) and the boundary constraints (3.15) by equally deviding the interval
[0, L] into n smaller subintervals yields the following system of equations:

ﬁ(uifl —2u; + ujy1) + Kiw; =0

Uy = 0 (CQ)
Uy = €
with h = L/n and k; = k(th) with i = 0,...,n is the Gauss curvature at

discrete sample points along the curve ~.

System (C.2) is a tridiagonal linear system Au = b with

1 0
1 (h?k1 —2) 1 0
1 hry—2) 1
A= ( ) . ) (C.3)
0 1 (hWPkp1—2) 1
0 1
and u = (u1,...,u,)? and b = (0,...,¢)T. We approximate the integral in

equation (C.1) using the trapezoidal rule:
L n—1
U + Up
ds~h | —— ; C4
/0 u(s) ds ( 5 + i:E 1 uz> (C.4)
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C. THE MAGNITUDE OF THE AREA GRADIENT

Due to the linear dependence of u on € the differentiation of (C.4) with respect
to € is equivalent to setting e = 1 in the linear system (C.2). Then o is given
by the formula in (C.4). Note, that the system (C.2) is non-symmetric and
generally indefinite.
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