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Abstract

This work investigates the matrix-induced predissociation of the electronically excited B-

state of Br2 molecules in solid Ar. Using the multi-configuration time-dependent Hartree

(MCTDH) method wave packet simulations are performed on multi-dimensional, non-

adiabatically coupled B- and C-state potential energy surfaces (PES) upon laser pulse

excitation from the electronic ground (X-) state. The quantum models required are develo-

ped in the framework of a combined Cartesian reaction surface (CRS) – vibronic coupling

Hamiltonian (VCH) approach. For calculating the necessary excited state potential ener-

gy surfaces and coupling matrix elements a specific implementation of the semi-empirical

Diatomics-in-Molecules (DIM) is introduced and extended to calculate analytical gradients

and Hessian.

The models investigated comprise two anharmonic reaction coordinates, two vibronic coup-

ling modes and up to 17 harmonic matrix modes. Expressed in these coordinates the poten-

tial energy surfaces of the B- and C-states form a crossing seam, which connects individual

conical intersections (CI).

The numerical results of the wave packet simulations are analyzed in terms of electronic

populations, one- and two-dimensional nuclear densities, as well as position and energy

expectation values. With respect to the predissociation it is shown, that both, asymmetric

and symmetric matrix motions are important for triggering nonadiabatic transitions bet-

ween the B- and C-states. These transitions occur after about 500 fs for each second round

trip of the Br2 molecule and require the elongation of the matrix. In addition, the effect of

vibrational preexcitation of individual nuclear degrees of freedom on the dynamics in the

excited state is investigated. Here, depending on whether a reaction coordinate or vibronic

coupling mode is preexcited one either observes dynamics in a different Franck-Condon

region of the B-state or a doubling of the effective non-adiabatic coupling.

In the last part of the work a full-dimensional, simplified model (2096 harmonic + 1 anhar-

monic nuclear degree of freedom) is developed to simulate the B-state absorption spectrum.

The zero-phonon line (ZPL) and phonon sideband (PSB) contributions of the calculated

spectrum are found in reasonable agreement with experimental results. In particular, the

specific double peak structure of the phonon sideband contributions is reproduced and

resolved in terms of individual normal modes.



Kurzfassung

In dieser Arbeit wird die matrix-induzierte Prädissoziation des elektronisch angeregten B-

Zustandes von Br2-Molekülen in Ar-Festkörpern untersucht. Unter Anwendung der Vielkon-

figurations- zeitabhängigen Hartree-Methode (multi-configuration time-dependent Hartree,

MCTDH) werden dazu Wellenpaketsimulationen auf mehrdimensionalen, nicht-adiabatisch

gekoppelten B- und C-Zustandspotentialflächen (potential energy surfaces, PES) nach

Laserpulsanregung aus dem elektronischen (X-) Grundzustand durchgeführt. Die dafür

benötigten Quantenmodelle werden im Rahmen eines kombinierten, kartesischen Reakti-

onsflächen (Cartesian reaction surface, CRS) – vibronischen Kopplungsoperator-Ansatzes

(vibronic coupling Hamiltonian, VCH) entwickelt. Zur Berechnung der Potentialenergieflä-

chen und Kopplungsmatrixelemente wird die semiempirische Diatomics-in-Molecules (DIM)

Methode problemspezifisch implementiert und um die Berechnung analytischer Gradienten

und Hessematrixelemente erweitert.

Die untersuchten Modelle berücksichtigen zwei anharmonische Reaktionskoordinaten, zwei

vibronische Kopplungsmoden und bis zu 17 harmonische Matrixmoden. In der Darstellung

durch diese Koordinaten zeigen die Potentialenergieflächen des B- und C-Zustandes einen

Kreuzungssaum (crossing seam), der einzelne konische Durchschneidungen (conical inter-

sections, CI) miteinander verbindet.

Die numerischen Resultate der Wellenpaketsimulationen werden anhand elektronischer Po-

pulationen, ein- und zwei-dimensionaler Aufenthaltswahrscheinlichkeiten der Kerne, sowie

Orts- und Energieerwartungswerten untersucht. In Bezug auf die Prädissoziation wird ge-

zeigt, dass sowohl asymmetrische als auch symmetrische Matrixbewegungen notwendig

sind, um nicht-adiabatische Übergänge zwischen dem B- und C-Zustand auszulösen. Diese

Übergänge finden nach ca. 500 fs etwa jede zweite Umlaufperiode des Br2-Moleküls statt

und erfordern eine Auslenkung der Matrix. Zusätzlich wird der Einfluss der Schwingungs-

voranregung einzelner Freiheitsgrade im elektronischen Grundzustand auf die Dynamik im

angeregten Zustand untersucht. Hierbei beobachtet man, je nach dem, ob eine Reaktionsko-

ordinate oder eine vibronische Kopplungsmode vorangeregt wird, entweder die Dynamik in

einem anderen Franck-Condon Bereich des B-Zustandes oder eine Erhöhung der effektiven

nicht-adiabatischen Kopplung um das Doppelte.

Im letzten Teil der Arbeit wird ein volldimensionales, vereinfachtes Modell (2096 harmo-

nische + 1 anharmonischer Kernfreiheitsgrad) zur Simulation des B-Zustandsabsorptions-

spektrums entwickelt. Die Nullphononenlinien (zero-phonon lines, ZPL) und Phononensei-

tenbanden (phonon sidebands, PSB) des berechneten Spektrums stimmen weitgehend mit

dem Experiment überein. Insbesondere wird die spezifische Doppelpeakstruktur der Pho-

nonenseitenbanden reproduziert und anhand einzelner Normalmoden aufgelöst.
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1 Introduction

1.1 Overview

Based upon their simple composition dihalogen and interhalogen molecules in cryogenic

rare gas matrices have drawn attention as prototypical condensed phase systems. Their

constituent parts are among the experimentally and theoretically best characterized sys-

tems known in gas phase spectroscopy [1–3] and solid state physics [4–7]. The coupling

between the chromophore and its host shows up in spectra, which consist of zero-phonon

lines (ZPL) and phonon sidebands (PSB) [8–10]. The crystalline, inert and transparent host

provided by the rare gas matrix enables a detailed spectroscopic investigation of the dihalo-

gen molecule under well-defined, spatially fixed conditions, for a review see Refs. [11–13].

In particular Schwentner and coworkers unraveled a host of phenomena such as ultrafast

spin-flip [14–16] for ClF molecules in Ar matrices, further specific matrix motions accom-

panying the electronic and vibrational excitation of Cl2 in Ar [17], as well as effective

chromophore potentials and vibrational energy relaxation effects [18], coherent collisional

energy transfer processes [19], displacive excitation of zone-boundary phonons [20] and

coherent phonon dynamics [21] in case of Br2 in solid Ar. The various effects related to

the issue of coherence versus decoherence effects have also been illuminated by Apkarian

and coworkers for the system I2 in Ar [22–24] and Kr [25–27].

The presence of coherence lasting for hundreds of femtoseconds observed in the mere of

these experiments triggered the question of coherently controlling these systems by means

of shaped laser pulses. Here, for instance, chirped pulse experiments, which compensate

for the effect of wave packet dispersion, have been applied in order to differentiate between

those effects originating from the anharmonicity of the bare dihalogen molecular poten-

tial and those resulting from its interaction with the matrix. This way the control of wave

packet revivals as well as the extraction of dephasing time scales could be realized [28]. Fur-

ther, using wave packet interferometry experiments in terms of phase-locked pulse pairs

applied to the B ← X transition of Cl2 in Ar, excited state wave packets with well-defined

chromophore-matrix interactions, that is which mostly consist of either zero-phonon or

phonon side band contributions, could be prepared providing a proof that the electronic

coherence is preserved on a time scale of about 600 fs [29] .

The theoretical treatment of the long lasting electronic and vibrational coherence effects

observed requires a quantum approach to these systems. For the latter the evaluation of

potential energy surfaces (PES) is a necessary prerequisite and a key issue, which is chal-

lenged by the manifold of dihalogen valence states and the large number of nuclear degrees

of freedom. This situation is further complicated by the mixing of the various electronic
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states due to the coupling to nuclear motions giving rise to non-adiabatic transitions.

Much effort has been devoted especially to the description of these non-adiabatic elec-

tronic transitions in classical trajectory simulations for the nuclei using Tully’s surface

hopping approach [30–32] in combination with the semi-empirical diatomics-in-molecules

(DIM) method for the efficient on-the-fly calculation of the PES. Originally introduced by

Ellison in 1963 [33,34] this method was refined later on by Tully [35,36] for application to

molecular collision dynamics simulations. In particular for halogen - rare gas systems the

success of the DIM method, and closely related approaches, can be illustrated by a number

of publications starting from the early 1990s. For instance, Gersonde and Gabriel [37, 38]

have studied the photo-dissociation of HCl and Cl2 in Xe crystals, Lawrence and Apkar-

ian [39] the spin-orbit transitions of I atoms caged in crystalline Xe and Kr, Batista and

Coker [40–42] the photo-dissociation and recombination dynamics of I2 in liquid and solid

Xe and Ar as well as the defragmentation of anionic I−2 Arn clusters. At about the same

time Gerber et al. [43–46] investigated the non-adiabatic dissociation dynamics of HCl and

F2 in solid Ar, Grigorenko et al. [47–49] analyzed the PES and stability of He-Cl2 and

Ar-Cl2 van der Waals clusters, next to the photo-dissociation simulations of Cl2 in Ne ma-

trices. Similarly, Buchachenko et al. [50–53] studied triatomic X-Rg species such as Ne-I2,

Ar-I2, Kr-I2, He-Cl2, Ar-Cl2, and He-Br2 using DIM. Methodically, the DIM method has

been extended to treat flexible molecules like I3 [54–57] in condensed phase environment,

and generalized to calculate the PES for quasi-stationary states of polyatomic anions [58].

Altogether, in these applications the DIM method has proven as reasonable compromise

between accuracy and numerical feasibility.

Although the classically nuclear dynamics on non-adiabatically coupled electronic poten-

tial energy surfaces can be treated in full dimensionality, all the above examples miss

the phase information responsible for quantum effects in the nuclear motion. Such ef-

fects, however, are fundamental for the description of the coherence effects observed in

the related experiments mentioned above. Here, semi-classical approximations have been

pursued which retain phase information along classical trajectories [59–64]. Alternatively,

quantum-classical hybrid methods [65,66] and mean-field type approaches such as the clas-

sically separable potential method [67–69] have been applied. Originally developed for

one-dimensional quantum propagations only, the latter method has been extended to in-

clude also quantum correlations between pairs of nuclear coordinates [70].

Strict quantum approaches, on the other hand, are restricted to the description of a few nu-

clear degrees only as these approaches require the calculation of a multi-dimensional PES

in advance. Focusing on the laser excitation process and restricting the dynamics to short

times, reduced dimensionality models on the basis of DIM-generated PES for one and two

effective nuclear degrees of freedom have provided valuable insight into the coherent nature

of the photo-dissociation, as well as into the inter-system crossing dynamics mediated by

spin-orbit coupling, for the molecules F2 [71–73], ClF [15,16,74,75] and Cl2 [76, 77] in Ar

matrices.

Whereas in these simulations the weak and moderate spin-orbit constants (SOC) of the

2



Introduction

light halogen species F and Cl could be applied as coupling parameters for controlling the

spin-flip between the excited molecular singlet and triplet states, the large spin-orbit cou-

pling constants of the heavy halogen atoms Br and I lead to an enhanced energy splitting of

the molecular dissociation limits. In its consequence, the lower bound and repulsive excited

molecular states cross one another. For symmetry reasons, the various spin-obit coupled

states are orthogonal in the bare Br2 and I2 molecules, such that non-adiabatic transitions

between the crossing states can only occur due to the coupling to the molecular rotation.

In condensed phase environment, however, they are coupled by nuclear motions of the sur-

rounding. Here, in particular symmetry-breaking plays an important role as demonstrated

experimentally [78–80] and theoretically [40,81] for the predissociation of I2. This effect is

also reflected when comparing the rather low predissociation yield observed for Br2 in the

gas phase [82] with its increase in matrix environment [83]. The quantum description of

this phenomenon provides a challenge for theory as illustrated in the following.

1.2 Objective

The objective of this thesis is the theoretical description and investigation of the quantum

dynamics of Br2 molecules in Ar matrices. Mainly, the theoretical interests in this sys-

tem has been motivated by the recent time-resolved and spectroscopic experiments of the

Schwentner group, see Sec. 1.1 and Ref. [84]. Among the phenomena of interest are the

wave packet dynamics in the electronically excited B-state, the role of the coupling of the

chromophore to individual lattice phonons and the related effect of non-adiabatic transi-

tions (predissociation) to other electronic states. Here it should be noted, that the unique

localization of the lowest energy crossing between the excited B- and C-state favors Br2
over, for instance, I2 as chromophore for the investigation of predissociation in condensed

phase.

Specifically, this work focusses on the scenario of a laser-induced B ← X transition with

subsequent B-state population transfer to the C-state. This specific predissociation chan-

nel is shown for a one-dimensional model of Br2 in Ar in Fig. 1.1, which also illustrates

various other non-adiabatic transition pathways in terms of Landau-Zener [85, 86] and

Rosen-Zener [87] type crossings. Topologically, these crossings may give rise to, for ex-

ample, conical intersections [88] in more general, multi-dimensional situations as will be

demonstrated below in Sec. 3.3.

As a theoretical tool for the treatment of such conical intersections the vibronic coupling

Hamiltonian has played a decisive role, not only for the general appreciation of its symme-

try properties and structural peculiarities [88], but also for the development of dynamics

methods [89,90]. Particularly, the latter comprise wave packet [91–93] and density matrix

propagations [94,95] as well as classical trajectory-based approaches [96]. However, in view

of the observed nuclear and electronic coherence effects the theoretical description of the

dynamics clearly requires a quantum approach for the present system.

This task can be subdivided into an electronic structure problem and a nuclear dynamics

3
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Figure 1.1: 1D effective potential curves for Br2 in Ar with Landau-Zener (solid ellipse)
and Rosen-Zener type crossings (dashed ellipse) leading to non-adiabatic transitions among
the B- (dash-dotted line) and C-states (dashed line). The other repulsive (above C-state)
and bound excited states (below B-state) contributing during the electronic relaxation to
the X-state (solid line) are drawn as grey curves.

problem. In a first step, it requires the solution of the stationary Schrödinger equation to

generate potential energy surfaces, which in a second step are utilized to solve the time-

dependent Schrödinger equation for the nuclear motion. The solution of both subtasks

involves models, which, in application to Br2 in Ar, require approximations to the elec-

tronic structure as well as to the nuclear degrees of freedom.

Specifically, these approximations apply to the semi-empirical description of the spectro-

scopically relevant electronic states within the framework of DIM theory. Further, they

apply to the choice of nuclear degrees of freedom as well as to the PES spanned by these

coordinates, which should cover most parts of the anharmonicity and the coupling of the

nuclear motion. A promising concept for the definition of such coordinates, particularly

in multi-dimensional situations, is provided by the Cartesian reaction surface (CRS) ap-

proach [97–100]. This approach is based on the interpolation between reactant and product

geometries and has been successfully applied to the description of Hydrogen-transfer reac-

tions proceeding on the PES of a single electronic state, for a review, see Ref. [101].

In order to take into account the non-adiabatic transitions among the PES of different

electronic states this approach has to be combined with vibronic coupling theory for spe-

cific application to Br2 in Ar. Particularly, the vibronic coupling approach builds upon

the idea of a Taylor expansion of the PES with respect to harmonic nuclear degrees of

freedom in the vicinity of the geometry, where the electronic states cross leading to a

multi-mode vibronic coupling problem. This approach is well established [89, 102, 103]

and has been extensively applied to the simulation of ultrafast quantum dynamics of, for

instance, pyrazine [90,104] or Jahn-Teller systems [105] using the multi-configuration time-

dependent Hartree (MCTDH) method. Here, the latter method [106, 107] turned out to

be an efficient tool for solving the time-dependent Schrödinger equation in case of multi-

dimensional, vibronically coupled systems.
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In the following, all these theoretical concepts mentioned, that is the DIM method, the

CRS concept, the VCH approach as well as the MCTDH method will be applied to Br2 in

Ar. The necessary steps are outlined below.

1.3 Outline

This work can be sectioned into three main parts: First, the calculation of the electronic

states for Br2 molecules in Ar matrices using the DIM method. Second, the construction

of a Cartesian reaction surface Hamiltonian for this system in the framework of vibronic

coupling theory. Third, the solution of the time-dependent Schrödinger equation for this

Hamiltonian using the MCTDH method.

In more detail, Chap. 2 introduces the formalism of the DIM method putting emphasis

on halogen molecules in rare gas matrices. Starting with the basic idea of this method in

Sec. 2.1, which is followed by a brief discussion of Hund’s coupling case c, a model basis set

containing 36 spin-orbit coupled molecular states will be introduced in Sec. 2.2 as funda-

ment for the DIM representation of heavy dihalogen molecules. The details of constructing

a dihalogen - rare gas interaction Hamiltonian will be explored in Sec. 2.3 on the basis of

various body frame and basis set transformation steps.

Sec. 2.4 is dedicated to the specific application of the DIM method to Br2 molecules in Ar

matrices. After introducing the required pair potentials and setting up a proper simula-

tion box this system will be subject to a geometry relaxation in Sec. 2.4.3, which will be

complemented by an investigation of the Br2 ground state rotational barrier for its double

substitutional lattice site within the Ar crystal.

The possibility of reducing the complexity of the electronic DIM Hamiltonian will be ex-

plored in Sec. 2.4.4 taking into account two scenarios of different nuclear symmetry. First,

electronic symmetry consideration will be utilized to classify different coupling types, which

subsequently will be analyzed in terms of a specific block-mask diagonalization technique.

Based upon the results of this investigation a DIM-Hamiltonian incorporating only those

electronic states relevant for photo-dissociation will be explored in Sec. 2.4.5. Here, particu-

lar attention is spent on the B-state crossing region, for which eigenvectors and eigenvalues

between full and reduced DIM-Hamiltonian representations will be compared in Sec. 2.4.5.

Chap. 3 is concerned with the construction of a reduced but multi-dimensional quantum

model for Br2 in Ar on the basis of a combined Cartesian reaction surface (CRS) and

vibronic coupling Hamiltonian (VCH) concept. The required small and large amplitude

approximations to the nuclear motion will be introduced in Sec. 3.1.1 and Sec. 3.1.2 em-

ploying each alternative representations of the PES in terms of Cartesian coordinates and

normal modes, respectively. Using vibronic coupling theory these introductory considera-

tions applying to the PES of a single electronic state will be extended to the representation

of the PES in case of many, vibronically coupled electronic states in Sec. 3.1.3. This leads

to the introduction of vibronic coupling and tuning modes. The former provide the linear

coupling between - and the latter the linear coupling within - given electronic states.
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The specific application of these concepts will be detailed in Sec. 3.2. Here, in Sec. 3.2.1

heuristic two-dimensional potential energy surfaces for the motion of specific cage fragments

will be investigated first, before systematically defining a more general matrix coordinate

in Sec. 3.2.2, which will be shown to cover many lattice normal modes. Then, after iden-

tifying important coupling modes in Sec. 3.3 a minimum Cartesian reaction surface linear

vibronic coupling model for Br2 in Ar is subject to quantum simulations within the frame

of MCTDH theory in Chap. 4.

The basic concepts of the MCTDH approach are briefly reviewed in Sec. 4.1 putting em-

phasis on the multi-set formulation of the method. This part is followed by details on the

grid representation of the reaction surface in Sec. 4.2.

In order to unravel the mechanistic aspects of the B- to C-state predissociation laser-driven

wave packet dynamics simulations will then be performed in Sec. 4.3 using a 4D minimal

model first. After setting up the Schrödinger equation and defining various quantities nec-

essary for the analysis of this model, the effect of different X-state vibrational conditions

onto the B-state wave packet dynamics and the efficiency of the population transfer to the

C-state will be investigated. Depending on whether a reaction coordinate or a coupling

mode is initially preexcited one either observes wave packet dynamics in a different Franck-

Condon regime or an increased effective non-adiabatic coupling. Further, analyzing the

numerical results in terms of 1D and 2D reduced densities, as well as the energy exchange

between the coordinates, it will be explicitly shown, that the matrix dynamics is essential

for triggering the B- to C-state non-adiabatic transitions.

In Sec. 4.4 this minimum model will be expanded by a single tuning mode. Specifically, in

a study comparative to the investigations of Sec. 4.3 it will be shown, how this particular

phonon mode modulates the energy gap between the B- and C-states. Eventually, by

rediscretizing the harmonic bath spectral density of states and replacing this single tuning

mode by a manifold of 17 effective oscillators this 5D model will be further expanded to-

wards a 21D model in Sec. 4.5 for taking into account the effect of vibrational relaxation.

Finally, taking up the challenge provided by recent spectroscopic experiments [84], in

Sec. 4.6 a simple, but full-dimensional quantum model containing 2096 lattice normal

modes, which are linearly coupled to an anharmonic 1D effective Br2 potential, will be

used to calculate the B-state absorption spectrum for a detailed comparison to the ex-

periment. The focus of this model does not lie on the dynamics but on the stationary

spectroscopy of the B-state. Its predissociation via the C-state, however, will not be con-

sidered in this simple model.

The major investigations and most important results of this work will then be summarized

in Chap. 5. Finally, an Appendix, Chap. 5, completes this thesis by illustrating the various

techniques and concepts employed in detail, as well as by examples.

6



2 DIM Method for X2-Rg Systems

2.1 Basic Concept

The fundamental concept of the DIM method [33–36] is the description of a polyatomic

molecule in terms of all possible pair interactions between its atoms. This idea is closely

connected to the valence bond (VB) concept of electron pairs forming the chemical bond

between each two atoms. Underlying this heuristic idea is a spatial assignment of electrons

to either individual two-center bonds in a polyatomic molecule or, consequently, to individ-

ual atoms for large inter-nuclear separations. In the latter case the polyatomic electronic

wave function can be represented by an antisymmetrized product of atomic basis functions,

and the polyatomic energy can be expressed by the sum of atomic energies. At moderate

inter-nuclear separations, however, individual atoms share their electrons, which then can

be assigned to diatomic groups rather than to single atoms within such product ansatz for

the electronic wave function. In the specific case of a single halogen guest molecule (X2)

in a crystalline host matrix of closed shell rare gas atoms (Rg) with 1S0 character the elec-

tronic wave function can be written as a product of diatomic basis functions, representing

the X2 molecule, and atomic s-functions, representing the individual Rg atoms. Accord-

ingly, such product ansatz permits the decomposition of the polyatomic Hamiltonian into

diatomic and atomic fragments in its matrix representation. In view of the semi-empirical

character of the DIM method these matrix elements are parameterized by pair potentials.

2.2 The Molecular X2 Hamiltonian

2.2.1 Hund’s Coupling Cases c

The choice of an appropriate basis for the representation of the diatomic electronic wave

function depends on the halogen species under consideration. Common to all halogen

atoms is a 2P term for the atomic ground state with the electronic configuration p5, in

which an electron hole acts like a single electron with the quantum numbers L = 1 and

S = 1
2 for its electronic angular momentum L and its spin S, respectively. Taking into

account the spin-orbit interaction according to the Russel-Saunders (L,S) coupling scheme,

the atomic doublet term 2P is split up into the spin-coupled terms 2P3/2 and 2P1/2.

In particular for the heavy halogen species bromine and iodine the energies of this atomic

term separation (3685 and 7603 cm−1 [108]) are comparable to, or even larger than, the

molecular dissociation energies of Br2 and I2 in the excited B-state (3758 and 4278 cm−1

[2, 109]). For such a case the interaction between L and S is strong as compared to their

7



The Molecular X2 Hamiltonian

JN

Σ Λ

L
S

Ω = Λ + Σ 

N
JN

Ω

N

J

L
S

Figure 2.1: Vector coupling scheme and axial quantization of the spin ∼ (S), orbital ∼
(L), coupled electronic ∼ (J), nuclear ∼ (N) and total angular momentum (JN = Ω+ N)
for Hund’s coupling case a (left) and Hund’s coupling case c (right).

separate interaction with the axial intra-molecular electric field, which leads to a spatial

quantization of the total electronic angular momentum J with the axial component Ω,

rather than to an independent quantization of L and S with the respective axial components

Λ and Σ [1]. This situation corresponds to Hund’s coupling case c according to the general

classification scheme of the interaction between molecular rotation and electronic motion

by F. Hund [110]. The different vector coupling schemes of the angular momenta are

contrasted in Fig. 2.1 for Hund’s case a and Hund’s case c, where the spin-orbit coupling

is weak for the former.

In the limiting case of strong spin-orbit coupling the quantum number Ω of the axial

component Ω of the total electronic angular momentum J is the only “good” quantum

number for the designation of a molecular state. For a diatomic molecule with the atoms a

and b the resultant molecular electronic angular momentum J can be obtained by adding

the single atomic electronic angular momenta Ja and Jb:

J = Ja + Jb. (2.1)

Correspondingly, the molecular quantum number Ω can be obtained by adding the single

atomic quantum numbers MJa and MJb
:

Ω = |MJa +MJb
|. (2.2)

To every combination of two atomic MJ values there corresponds a different molecular

state, except that states differing only in the sign of both MJ values form a degenerate

pair as long as Ω 6= 0.

2.2.2 Molecular Wave Function

A zero order approximation to the molecular wave function ψ(X2)
Ω of a dihalogen Xa −Xb

can be represented by a proper linear combination of diatomic products of non-overlapping

8



DIM Method for X2-Rg Systems

spin-coupled atomic states |J,M 〉a and |J,M 〉b:

ψ
(X2)
Ω =

ni∑

i

cΩ,i|J,M 〉a,i|J ′,M ′〉b,i , (2.3)

where ni denotes the number of distinct products |J,M 〉a,i|J ′,M ′〉b,i for a given molecular

state Ω with the expansion coefficients cΩ,i. In Tab. 2.1 these Hund’s case c basis functions

and term symbols Ωσ
w for a homonuclear molecule originating from the union of two iden-

tical 2P atoms are listed (see also Refs. [40, 111]) and ordered according to the quantum

numbers Ω = 0, 1, 2, 3 for the parity characters w = g, u of the wave function with respect

to an inversion of the nuclei. For those states with quantum number Ω = 0 a different

reflection symmetry σ = +,− of the wave function with respect to a plane containing the

molecular axis can be distinguished. In addition, next to the Hund’s case a term symbols
2Σ+1Λσ

w denoting the origin of the Hund’s case c terms, also the common spectroscopic

trivial names as well as the atomic dissociation limits are given in Tab. 2.1. A general

scheme for the construction of these molecular basis functions can be found in the works of

Chang [112] and Umanski and Nikitin [113]. Notice, that Buchachenko and Stepanov [50]

have discussed alternative expressions with the same symmetry properties for some Hund’s

case c wave functions.

Since the tabulated wave functions are the symmetry eigenfunctions to the irreducible

representations of the molecular symmetry point group D∞h, the diatomic Hamiltonian

matrix is block diagonal with respect to their symmetries. That is, within the given ba-

sis set of 36 diatomic states the molecular Hamiltonian separates into two 4× 4 matrices

(0+
g , 0

−
u ) and two 1 × 1 matrices (0−g , 0

+
u ), each being non-degenerate, and into two 2 × 2

matrices (2g, 2u), one 3× 3 matrix (1g), one 5× 5 matrix (1u), and one 1× 1 matrix (3u),

each being doubly degenerate (cf. Tab. 2.1). Moreover, since the tabulated wave functions

are the linearly independent eigenfunctions to the irreducible representations, the individ-

ual block matrices of the diatomic Hamiltonian are diagonal. This circumstance permits

the parameterization of its diagonal elements by molecular potential energy curves, e.g.

from spectroscopic data or ab initio calculations. Strictly speaking, in the latter case

such parameterization is valid only, if the calculated molecular orbitals (MO) significantly

overlap with the “model” p-basis employed in the DIM method [114, 115]. As a heuristic

argument supporting this overlap criterion one can consider the covalent excited states of

a halogen molecule to be formal electron substitutions of its σ2
gπ

4
uπ

4
gσ

0
u MO orbital ground

state configuration with predominant contributions from atomic valence shell p-orbitals.

2.3 The Construction of the X-Rg Interaction Hamiltonian

The fundamental concept for the description of the intrinsic interactions within the given

system of N atoms, which in the following are labeled by the index i = 1, . . . ,N − 2 for

the individual rare gas atoms Rgi, and the index α = a, b for the single halogen atoms Xα,

is the representation of all Xα-Rgi pair interactions in a joint basis of dihalogen molecular

9



The Construction of the X-Rg Interaction Hamiltonian

Table 2.1: Molecular Hund’s Case c states and their case a origins.
2Σ+1Λσ

w Ωσ
w

∑
i cΩ,i|J,M 〉a,i|J ′,M ′〉b,i Dissociation

X, 1 1Σ+
g 0+

g
1√
2

{
|32 , 1

2〉a|32 ,−1
2〉b − |32 ,−1

2〉a|32 , 1
2〉b
}

2P3/2 + 2P3/2

a′, 3Σ−
g 0+

g
1√
2

{
|32 , 3

2〉a|32 ,−3
2〉b − |32 ,−3

2〉a|32 , 3
2〉b
}

2P3/2 + 2P3/2
3Πg 0+

g
1
2

{
|32 , 1

2〉a|12 ,−1
2〉b − |12 ,−1

2〉a|32 , 1
2〉b + |32 ,−1

2〉a|12 , 1
2〉b − |12 , 1

2〉a|32 ,−1
2〉b
}

2P3/2 + 2P1/2

2 1Σ+
g 0+

g
1√
2

{
|12 , 1

2〉a|12 ,−1
2〉b − |12 ,−1

2〉a|12 , 1
2〉b
}

2P1/2 + 2P1/2

3Πg 0−g
1
2

{
|32 , 1

2〉a|12 ,−1
2〉b − |12 ,−1

2〉a|32 , 1
2〉b − |32 ,−1

2〉a|12 , 1
2〉b + |12 , 1

2〉a|32 ,−1
2〉b
}

2P3/2 + 2P1/2

a, 3Πg 1g
1√
2

{
|32 , 3

2〉a|32 ,−1
2〉b − |32 ,−1

2〉a|32 , 3
2〉b
}

2P3/2 + 2P3/2
1√
2

{
|32 ,−3

2〉a|32 , 1
2〉b − |32 , 1

2〉a|32 ,−3
2〉b
}

1Πg 1g
1√
2

{
|32 , 3

2〉a|12 ,−1
2〉b − |12 ,−1

2〉a|32 , 3
2〉b
}

2P3/2 + 2P1/2
1√
2

{
|32 ,−3

2〉a|12 , 1
2〉b − |12 , 1

2〉a|32 ,−3
2〉b
}

3Σ−
g 1g

1√
2

{
|32 , 1

2〉a|12 , 1
2〉b − |12 , 1

2〉a|32 , 1
2〉b
}

2P3/2 + 2P1/2
1√
2

{
|32 ,−1

2〉a|12 ,−1
2〉b − |12 ,−1

2〉a|32 ,−1
2〉b
}

3Πg 2g
1√
2

{
|32 , 3

2〉a|32 , 1
2〉b − |32 , 1

2〉a|32 , 3
2〉b
}

2P3/2 + 2P3/2
1√
2

{
|32 ,−3

2〉a|32 ,−1
2〉b − |32 ,−1

2〉a|32 ,−3
2〉b
}

1∆g 2g
1√
2

{
|32 , 3

2〉a|12 , 1
2〉b − |12 , 1

2〉a|32 , 3
2〉b
}

2P3/2 + 2P1/2
1√
2

{
|32 ,−3

2〉a|12 ,−1
2〉b − |12 ,−1

2〉a|32 ,−3
2〉b
}

B′, 3Πu 0−u
1√
2

{
|32 , 3

2〉a|32 ,−3
2〉b + |32 ,−3

2〉a|32 , 3
2〉b
}

2P3/2 + 2P3/2

1 3Σ+
u 0−u

1√
2

{
|32 , 1

2〉a|32 ,−1
2〉b + |32 ,−1

2〉a|32 , 1
2〉b
}

2P3/2 + 2P3/2
1Σ−

u 0−u
1
2

{
|32 , 1

2〉a|12 ,−1
2〉b + |12 ,−1

2〉a|32 , 1
2〉b − |32 ,−1

2〉a|12 , 1
2〉b − |12 , 1

2〉a|32 ,−1
2〉b
}

2P3/2 + 2P1/2

2 3Σ+
u 0−u

1√
2

{
|12 , 1

2〉a|12 ,−1
2〉b + |12 ,−1

2〉a|12 , 1
2〉b
}

2P1/2 + 2P1/2

B, 3Πu 0+
u

1
2

{
|32 , 1

2〉a|12 ,−1
2〉b + |12 ,−1

2〉a|32 , 1
2〉b + |32 ,−1

2〉a|12 , 1
2〉b + |12 , 1

2〉a|32 ,−1
2〉b
}

2P3/2 + 2P1/2

A, 3Πu 1u
1√
2

{
|32 , 3

2〉a|32 ,−1
2〉b + |32 ,−1

2〉a|32 , 3
2〉b
}

2P3/2 + 2P3/2
1√
2

{
|32 ,−3

2〉a|32 , 1
2〉b + |32 , 1

2〉a|32 ,−3
2〉b
}

C, 1Πu 1u |32 , 1
2〉a|32 , 1

2〉b 2P3/2 + 2P3/2

|32 ,−1
2〉a|32 ,−1

2〉b
1 3Σ+

u 1u
1√
2

{
|32 , 3

2〉a|12 ,−1
2〉b + |12 ,−1

2〉a|32 , 3
2〉b
}

2P3/2 + 2P1/2
1√
2

{
|32 ,−3

2〉a|12 , 1
2〉b + |12 , 1

2〉a|32 ,−3
2〉b
}

2 3Σ+
u 1u

1√
2

{
|32 , 1

2〉a|12 ,−1
2〉b + |12 , 1

2〉a|32 , 1
2〉b
}

2P3/2 + 2P1/2
1√
2

{
|32 ,−1

2〉a|12 ,−1
2〉b + |12 ,−1

2〉a|32 ,−1
2〉b
}

3∆u 1u |12 , 1
2〉a|12 , 1

2〉b 2P1/2 + 2P1/2

|12 ,−1
2〉a|12 ,−1

2〉b
A′, 3Πu 2u

1√
2

{
|32 , 3

2〉a|32 , 1
2〉b + |32 , 1

2〉a|32 , 3
2〉b
}

2P3/2 + 2P3/2
1√
2

{
|32 ,−3

2〉a|32 ,−1
2〉b + |32 ,−1

2〉a|32 ,−3
2〉b
}

b′, 3∆u 2u
1√
2

{
|32 , 3

2〉a|12 , 1
2〉b + |12 , 1

2〉a|32 , 3
2〉b
}

2P3/2 + 2P1/2
1√
2

{
|32 ,−3

2〉a|12 ,−1
2〉b + |12 ,−1

2〉a|32 ,−3
2〉b
}

3∆u 3u |32 , 3
2〉a|32 , 3

2〉b 2P3/2 + 2P3/2

|32 ,−3
2〉a|32 ,−3

2〉b
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π
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Π
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Xb
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Figure 2.2: Body-frame transformation from the initial molecular reference frame M =
(Π, Π̄,Σ) of the Xa-Rgi van der Waals complex via the laboratory frame L = (x, y, z) to
the final reference frame D = (π, π̄, σ) of the Xa-Xb molecule.

states, which are spatially associated with the X2 molecular axis. This requires a number

of transformation steps, which are detailed in the following.

2.3.1 Body-Frame Transformation

A single van der Waals complex Xα-Rgi can be imagined as a halogen p-radical interacting

with a closed shell s2p6-atom. Its electronic angular momenta can be classified in terms

of Σ- and Π-type interactions. The matrix representation of its interaction Hamiltonian,

V
Xα−Rgi
M , is diagonal in the basis set {|pΠ〉, |pΠ̄〉, |pΣ〉} of the respective molecular reference

frame M = (Π, Π̄,Σ) (see Fig. 2.2):

V
Xα−Rgi
M =




VΠ 0 0

0 VΠ̄ 0

0 0 VΣ



 . (2.4)

In order to express this fragment Hamiltonian with respect to the quantization axis of the

dihalogen molecule Xa-Xb a two-step sequence of body-frame transformations is employed

(see Ref. [40]) as it is schematically depicted in Fig. 2.2.

At first, an orthogonal matrix TM,L is applied to V
Xα−Rgi
M according to the following

unitary transformation:

V
Xα−Rgi

L = TM,L V
Xα−Rgi

M T
T
M,L . (2.5)

This step carries the diatomic fragment Hamiltonian V
Xα−Rgi
M into the laboratory frame

L = (x, y, z). In the respective basis set {|px〉, |py〉, |pz〉} of unique orientation the matrix

representation V
Xα−Rgi

L is then no longer diagonal.

The transformation matrix TM,L in Eq. (2.5) is associated with the transpose of the Eule-

rian rotation matrix Eq. (5.3) in Sec. 5.1 of the Appendix. With reference to Fig. 2.2 its
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The Construction of the X-Rg Interaction Hamiltonian

explicit matrix elements can be expressed by means of Cartesian unit vector components.

Skipping the labels α and i for the exemplary characterization of an interaction pair X-Rg

by its distance vector R with the norm R, the axial unit vector components R/R:

ex =
x

R
, ey =

y

R
, ez =

z

R
(2.6)

can be used for conveniently defining the trigonometric functions of the Eulerian azimuthal

and polar angles α and β, respectively:

cosα =
ex√

1− e2z
sinα =

ey√
1− e2z

(2.7)

cos β = ez sin β =
√

1− e2z . (2.8)

Explicitly, the application of the latter in the unitary transformation Eq. (2.5) results in

an all-Cartesian representation of X-Rg Hamiltonian matrix in the laboratory frame L:

V
Xα−Rgi

L =




VΠ + (VΣ − VΠ)e2x (VΣ − VΠ)exey (VΣ − VΠ)exez

(VΣ − VΠ)eyex VΠ + (VΣ − VΠ)e2y (VΣ − VΠ)eyez

(VΣ − VΠ)ezex (VΣ − VΠ)ezey VΠ + (VΣ − VΠ)e2z



 . (2.9)

Since this frame is the same for all X-Rg interaction pairs, the individual fragment Hamil-

tonian matrices V
Xα−Rgi
L can be summed up separately for each halogen atom Xa and

Xb:

V
Xα−Rg
L =

N−2∑

i=1

V
Xα−Rgi
L . (2.10)

This direct summation at the first level of transformation steps can considerably save com-

putational effort as compared to a summation at the end of all subsequent transformation

steps. It appears that this efficiency aspect has been overlooked in previous works [37,40,46]

utilizing the DIM approach.

In a second unitary transformation step, another orthogonal matrix, TL,D , which specifies

the mutual orientation of both halogen atoms with respect to the laboratory frame, is

applied to the individual partial sums V
Xα−Rg
L from Eq. (2.10):

V
Xα−Rg
D = TL,D V

Xα−Rg
L T

T
L,D , (2.11)

resulting in their new representation V
Xα−Rg
D within the reference frame D = (π, π̄, σ) of

the dihalogen (cf. Fig. 2.2). The transformation matrix TL,D now directly corresponds

to the Eulerian matrix in Eq. (5.3), so its matrix elements can be obtained in analogy to

Eq. (2.7). This second transformation step, however, is necessary only if a reorientation of

the X2 molecule relative to the laboratory frame needs to be taken into account explicitly,

e.g. for the description of its restricted and free rotation in solid and liquid rare gases,

respectively.
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2.3.2 Spin-Orbit Coupled Representation

Being expressed in a basis set |pD〉 of real p-orbitals {|pπ〉, |pπ̄〉, |pσ〉} with the desired

orientation, three more steps are necessary for representing the X-Rg Hamiltonian in a

basis of spin-orbit coupled functions |J,M 〉. In order to keep these steps self-contained, the

explicit definition of the transformation matrices is given in Sec. 5.2 of the Appendix. First,

a transformation matrix TD,ml
converts the real-valued representation of V

Xα−Rg
D into its

hermitian representation V
Xα−Rg
ml within the complementary basis set |ml〉 of electronic

angular momentum eigenfunctions according to the unitary transformation:

V
Xα−Rg
ml

= TD,ml
V

Xα−Rg
D T

T
D,ml

. (2.12)

Next, the electronic spin is introduced by a formal product expansion of the respective basis

set |ml〉 with spin eigenfunctions |ms〉. Accordingly, the Hamiltonian matrix V
Xα−Rg
mlms in

the uncoupled representation |ml,ms〉 can be obtained by the outer product of V
Xα−Rg
ml

from Eq. (2.4) with a 2× 2 identity matrix I2:

V
Xα−Rg
mlms

= V
Xα−Rg
ml

⊗ I2 . (2.13)

Starting from this representation of the X-Rg fragment Hamiltonian, its spin-coupled rep-

resentation V
Xα−Rg
JM in the basis set |J,M 〉 can then be obtained by a subsequent unitary

transformation with a Clebsh-Gordan matrix Tmlms,JM :

V
Xα−Rg
JM = Tmlms,JM V

Xα−Rg
mlms

T
T
mlms,JM . (2.14)

Note, that a complementary approach has been given by Buchachenko et al. [50,51], where,

starting from the spin-coupled representation of the X-Rg fragment Hamiltonian and em-

ploying a Jacobian coordinate system, a single Wigner transformation is used for the

body-frame transformation between the X-Rg and X2 quantization axis.

2.3.3 Molecular Basis Representation of X-Rg Fragment Hamiltonians

In order to represent the fragment Hamiltonians V
Xα−Rg
JM of the individual halogen atoms

Xa and Xb in a basis set of the X2 molecular states (see Tab. 2.1), at first a tensor product

with an 6× 6 identity matrix I6 is applied to each of both matrices separately:

V
Xa−Rg
JMaJMb

= V
Xa−Rg
JM ⊗ I6 (2.15)

V
Xb−Rg
JMaJMb

= I6 ⊗V
Xb−Rg
JM . (2.16)

This way, the diatomic Hilbert space Hab = Ha ⊗Hb is introduced by the tensor product

of the single atomic Hilbert spaces Ha and Hb. Correspondingly, its eigenfunctions can be

represented by products of atomic eigenfunctions.

The final transformation of the fragment Hamiltonians in Eq. (2.15) and Eq. (2.16) to a

joint representation within the basis set of Hund’s case c eigenfunctions ψ(X2)
Ω (cf. Eq. (2.3))
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is accomplished by the following unitary transformation:

V
X2−Rg
Ω = TJM,Ω

(
V

Xa−Rg
JMaJMb

+ V
Xb−Rg
JMaJMb

)
T

T
JM,Ω . (2.17)

Here, the respective transformation matrix TJM,Ω contains the molecular expansion coeffi-

cient from Tab. 2.1, its concrete representation is given by Eq. (5.6) in the supplementary

Sec. 5.2 of the Appendix.

This step permits the consideration of all X2-Rg interactions as a perturbation to the

energies of the isolated halogen molecule, as well as the assignment of individual matrix

elements to the symmetry eigenfunctions of the unperturbed system. Thus, the total elec-

tronic Hamiltonian can be expressed as a sum of the diagonal matrix H
X2
Ω for the dihalogen

molecule and a non-diagonal matrix V
X2−Rg
Ω for its interaction with the rare gas matrix.

As the interaction among the Rg-atoms is independent of the electronic state of the di-

halogen molecule, it contributes with the same value to each diagonal element of the total

electronic Hamiltonian, to which it simply can be added after multiplication by a 36× 36

identity matrix I36:

H
el
Ω = H

X2
Ω + V

X2−Rg
Ω +




N−3∑

i=1

N−2∑

j=i+1

V Rgi−Rgj



× I36 . (2.18)

This Hamiltonian parametrically depends on all nuclear coordinates. Further, upon choos-

ing Hund’s case c states as a basis, it contains the spin-orbit coupling. In contrast to the

more common LCAO ansatz (linear combination of atomic orbitals) for molecular orbitals

the DIM wave functions as defined by Eq. (2.3) consist of products of atomic functions,

which do not depend on the inter-nuclear separation. In that sense they form a crude dia-

batic basis of zero-order states, so that the non-diagonal Hamiltonian matrix in Eq. (2.18)

can be termed diabatic with respect to the X2-Rg interaction. Accordingly, the eigenvec-

tors of Eq. (2.18) are adiabatic states, which can be expressed as a superposition of the

diabatic ones.

2.4 Application to Br2 in Ar

2.4.1 Pair Potentials

According to the semi-empirical character of the DIM method the matrix elements of the

separate Hamiltonian terms in Eq. (2.18) are parameterized by pair potentials. For param-

eterizing the matrix elements of the X2 Hamiltonian (see Sec. 2.2) the Br2 potential energy

curves depicted in Fig. 2.3 have been used. They are based on spin-orbit coupled configu-

ration interaction (SOCI) calculations and have been provided by S. Yabushita [116]. Due

to degeneracy effects these 23 potential energy curves give rise to the 36 diagonal elements

required for the matrix representation of the molecular Br2 Hamiltonian.

With reference to Eq. (2.4) in Sec. 2.3 the Br-Ar interaction is characterized by two

anisotropic components VΣ and VΠ (see Fig. 2.4), which have been determined using the
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Figure 2.3: Ab initio SOCI potential energy curves for the lower 23 molecular Hund’s case c
states of Br2 originating from its σ2

gπ
4
uπ

4
gσ

0
u MO configuration [116] (see also Ref. [108,117]).

Potential energy curves are ordered by increasing Franck-Condon excitation energies from
ground state minimum, state labels are explained in Tab. 2.1.

piecewise analytic spin-orbit coupled potentials V3/2,1/2, V3/2,3/2 and V1/2,1/2 from photo-

electron spectroscopic data by Neumark et al. [118, 119], according to the following rela-

tions [120]:

VΣ =
(2
3∆ + V3/2,1/2)V3/2,3/2 − (∆ + V3/2,1/2)V3/2,1/2

V3/2,3/2 − V3/2,1/2 − 1
3∆

(2.19)

VΠ = V3/2,1/2 . (2.20)

In order to enable an analytic evaluation of forces and force constants, the numerical data

from Eq. (2.19) and Eq. (2.20) have been refitted to continuous functions of Extended

Rydberg (ER) type [121]:

VER = −De

(
1 + a1(R−Re) + a2(R− Re)

2 + a3(R− Re)
3
)
e−a1(R−Re) . (2.21)

The corresponding parameters dissociation energy De, equilibrium distance Re as well as

the Taylor expansion coefficients a1, a2, a3 are compiled in Tab. 2.2. Note, that the error

of the fit is on the order of 1%, but the error of the source data [118,119] on the order of

10%.

For modelling the Ar-Ar interaction a simple Lennard-Jones (LJ) potential (see Fig. 2.4)

has been utilized:

VLJ = 4ε
((

σ
R

)12 −
(

σ
R

)6)
, (2.22)

which closely resembles the accurate Hartree-Fock-dispersion (HFDID) potential given by

Aziz [122, 123]. The particular values for the Lennard-Jones energy ε and the van der

Waals radius σ are listed in Tab. 2.2, likewise.

When comparing both interactions in Fig. 2.4 and Tab. 2.2, the binding energy on the order

of 10−4 Eh clearly underlines their dispersive van der Waals nature. In order to avoid the

numerical overhead of long-range contributions in the calculation of pair interactions, the
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Figure 2.4: Br-Ar interaction (left) with the anisotropic components VΣ and VΠ and
isotropic Ar-Ar interaction (right). The cut-off radii RBr−Ar

C = 12 a0 and RAr−Ar
C = 16 a0

are indicated by vertical lines each. For purposes of better visibility the potentials VΠ and
VΣ have been shifted off by ±0.5× 10−4 Eh.

cut-off radii RBr−Ar
C = 12 a0 and RAr−Ar

C = 16 a0 have been utilized for the Br-Ar and

Ar-Ar potentials, respectively.

Table 2.2: Pair Potential Parameters

Br-Ar Ar-Ar
Extended Rydberg VΣ VΠ Lennard-Jones VLJ

De [10−4Eh] 8.223 4.226 ε [10−4Eh] 4.536
Re [a0] 6.672 7.446 σ [a0] 6.331
a1 [a−1

0 ] 1.773 1.635
a2 [a−2

0 ] 0.525 0.242
a3 [a−3

0 ] 0.146 0.063

2.4.2 Choice of the Simulation Box

As it has already been shown in previous works on Cl2 [124–126] and I2 [22, 23, 25] in

Ar matrices, also in the case of Br2 [127, 128] the halogen molecule occupies a double

substitutional lattice site along the 〈110〉 crystallographic direction of a face-centered cubic

(fcc) Ar crystal, which is depicted in Fig. 2.5. A lattice cutout along this direction exposes

an overall D2h symmetry for the Ar atoms surrounding the chromophore. In the following,

the construction of an adequate simulation box, reflecting this particular symmetry, is

detailed.

Therefore, at first the unit cell of an Ar fcc lattice as depicted in Fig. 2.6 is considered.

It contains N = 4 atoms per cube with the lattice constant a, the volume V = a3 and

the number density ρ = N
V = 4

a3 . For a typical reduced density ρ∗ = ρ · σ3 = 1 in terms

of the Lennard-Jones parameter σ (see Tab. 2.2) its lattice constant is determined by

a = 3
√

4 · σ = 10.05 a0.

Upon bisection by the [110] crystallographic plane, according to Fig. 2.6 the tetra-atomic

basis element of the fcc unit cell is cleaved along its diagonal into subunits with the lattice

constant a√
2
. By its two atoms these subunits each define new basis elements for the generic
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Figure 2.5: Br2 molecule (filled circles) in a double substitutional site pointing in 〈110〉
direction (solid line) of an Ar fcc lattice (empty circles).

<100>

<010>

<001>

Figure 2.6: Unit cell of the Ar fcc lattice. Upon bisection by the [110] plane (solid frame)
its tetra-atomic basis element (dash-dotted sub-cube) forms two new basis elements with
each two atoms, whose repetitive translation generates a specific prolongation of the lattice
along 〈110〉 direction, see Fig. 2.7.
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y, <110>

z, <001>

y, <110>

x, <110>
_

Figure 2.7: Schematic front (yz) and top (xy) view of an orthorhombic simulation box in
〈110〉 direction. It consists of 7× 10× 5 primitive cells (dashed) along the directions x,y,z.
The two central Br atoms (hidden) are covered by doubly layered arrays of Ar atoms shown
in stereographic projection (dots and circles).

translation of the lattice in 〈110〉 direction. The resulting super-cell is depicted in Fig. 2.7.

Its particular extension is determined by the sum of the Br-Ar and Ar-Ar cut-off radii, such,

that each Ar atom within the cut-off distance RBr−Ar
C being influenced by the linear motion

of the Br2 molecule between its two adjacent Ar neighbors with the separation 2× a√
2
, can

interact with all other Ar atoms within the radius RAr−Ar
C . Explicitly, this requirement

results in a box dimension of 56 a0× 70.22 a0 × 56 a0 along the directions x,y and z. This

criterion is fulfilled using either 7× 10× 5 or 8× 10× 6 primitive cells with N = 700 and

N = 960 atoms in total, respectively. For most of the calculations in this work the smaller

simulation box in Fig. 2.7 has been applied obtaining fully converged results as compared

to the larger box. This finding can be understood from the pair distribution histogram

in Fig. 2.8. Here, the interactions among the N atoms give rise to 1
2N(N − 1) pairs in

total, which are individually distributed over the distance Rij. When considering only the

relevant contributions, e.g. among the Ar atoms within the radius Rij ≤ RAr−Ar
C , this

number can be reduced effectively by more than 90%, such, that it scales linearly with the

box size.
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Figure 2.8: Pair distribution histogram showing the number of pairs Nij versus pair dis-
tance Rij for two different simulation boxes with N = 700 (foreground) and N = 960

(background) atoms. The application of the cut-off radius RAr−Ar
C = 16 a0 (solid line)

restricts the number of relevant pairs by more than 90%.

2.4.3 Geometry Relaxation

As a prerequisite for the considerations in Sec. 2.4.4 and Sec. 3.2.2 the individual equilib-

rium geometries of the system from Fig. 2.7 have to be calculated for the electronic X-

as well as B-state. Therefore, modified Newtonian equations of motion, Eq. (5.17) and

Eq. (5.18) of the Nosé-Hoover Thermostat in the Appendix (see Sec. 5.3), have been solved

using the following finite-difference Velocity-Verlet algorithm [129]:

1st half-step:

xi(t+ δt) = xi(t) + vi(t)δt +
1

2

[
fi(t)

mi
− ξ(t)vi(t)

]
δt2 (2.23)

vi(t+
δt

2
) = vi(t) +

[
fi(t)

mi
− ξ(t)vi(t)

]
δt

2
(2.24)

ξ(t+ δt) = ξ(t) +

∑3N
i=1miv

2
i (t+ δt

2 )− 3NkBTf

M
δt (2.25)

2nd half-step:

vi(t+ δt) =
1

1 + ξ(t+ δt) δt
2

[
vi(t+

δt

2
) +

fi(t+ δt)

mi

δt

2

]
. (2.26)

In its first step, the atomic positions xi and the friction coefficient ξ at time t + δt are

obtained from their values at time t according to Eq. (2.23) and Eq. (2.25). In the second

step the velocities vi at time t+ δt, Eq. (2.26), are updated from their values at time t+ δt
2

of the previous step, Eq. (2.24), after the forces fi have been recalculated.

As numerical parameters for the integration of these coupled equations of motion a time

step δt = 1 fs, a final simulation temperature Tf = 10−6 K and a reservoir coupling

parameter M ≡ mAr have been used. According to Eq.(2.25) the last two parameters

continuously adjust the strength of the friction coefficient.
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In order to preserve the symmetry of the system in the propagation, the following initial

conditions have been applied:

vi(t = 0) = 0 xi(t = 0) = x0
i

ξ(t = 0) = 0 fi(t = 0) = f0
i

This way, rather than starting from a random velocity distribution for a given temperature,

the forces f0
i at the ideal atomic positions x0

i have been initiated first. These forces fi

depend on the respective electronic state and can be obtained analytically in the scope of

the present DIM approach as detailed in Sec. 5.5 of the Appendix.

In order to explicitly take into account the periodic character of a solid, the simulation box

in Fig. 2.7 was subject to periodic boundary conditions and minimum image convention

[130,131]. In other words, periodic boundary conditions ensure that each particle exceeding

the box boundaries reenters the simulation box from the opposite side. In combination with

cut-off radii the minimum image convention guarantees that each particle at the boundary

of the box shares the same coordination sphere as in its center.
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Figure 2.9: Cage of nearest neighbor (Belt, Phonon, Window and Collision) atoms sur-
rounding the Br2 molecule (filled).

Table 2.3: Absolute (10−3 a0) and relative (%) displacements of nearest neighbor Ar atoms
(see Fig. 2.9) with respect to their idealized lattice values for a relaxation of the system in
the electronic X- and B states. The direction of the individual displacements is specified
by a positive or negative sign.

State X-State B-State
Shift ∆x ∆y ∆z ∆x ∆y ∆z

Belt +198 (5.6) 0 (0.0) +467 (9.3) +193 (5.4) 0 (0.0) +389 (7.7)
Phonon +45 (0.6) −80 (2.2) 0 (0.0) +62 (0.9) −64 (1.8) 0 (0.0)

Window −33 (0.9) −156 (2.2) −55 (1.1) −18 (0.5) −126 (1.8) −32 (0.6)
Collision 0 (0.0) −193 (1.8) 0 (0.0) 0 (0.0) −214 (2.0) 0 (0.0)

The results of both, the X-state and the B-state relaxation, are listed in Tab. 2.3 showing

the absolute and relative displacements of nearest neighbor cage atoms with respect to

their idealized lattice positions. Adapting the terminology from Ref. [17] these nearest

20



DIM Method for X2-Rg Systems

-90 -60 -30  0  30  60  90
-90

-60

-30

 0

 30

 60

 90

ϕ

ϑ

Figure 2.10: Ground round state rotational barrier for Br2 inside the relaxed cage cavity
for fixed R = 4.35 a0 (contour levels 0.0007, 0.0100, 0.0300, 0.0467, 0.1000, 0.1684 Eh).

neighbor atoms depicted in Fig. 2.9 will be labelled Belt, Phonon, Window and Collision

atoms (see Fig. 2.9) in the following. Inspecting Tab. 2.3 the overall relaxation effect is seen

to be dominant for the Belt atoms, which are pushed outwards due to the repulsion by the

chromophore. As consequence of the lowered lattice constant induced by the smaller inter-

atomic separation of the Bromine atoms as compared to the pure Ar lattice the Window

atoms are pulled inwards. Likewise, albeit weaker, the Collision atoms are influenced by

this shift. The Phonon atoms, on the other hand, which lie in the same plane as the

molecule, exhibit only marginal displacements. These findings are in qualitative [17] and

quantitative [127,128] accordance with previous trajectory simulations for Cl2 and Br2 in

Ar, respectively.

Ground State Rotational Barrier

In addition to the calculated ground state equilibrium geometry also the reorientation of

the Br2 molecule away from the 〈110〉 direction due to its zero-point librational motion

has been investigated. Therefore, the ground state barriers for its rotation within the

relaxed matrix have been calculated for a fixed Bromine X-state equilibrium bond length

R = 4.35 a0 with frozen Ar positions. Starting from the 〈110〉 direction with the coordinates

ϕ = ϑ = 0◦ the azimuthal and polar angles −90◦ ≤ ϕ ≤ 90◦ and −90◦ < ϑ < 90◦ are

defined with respect to the directions 〈11̄0〉 and 〈001〉 as shown in Fig. 2.9.

According to Fig. 2.10 the energies of the rotational barriers in the directions ϕ and ϑ can

be estimated to 0.047 and 0.168 Eh, respectively. The ratio between these barriers can be

understood by a restriction of the rotation by 12 Ar atoms (4 Belt and 8 Window atoms)

in ϑ-direction versus only 4 Ar atoms (Phonon atoms) in ϕ-direction. In contrast to the

rotational flexible molecules HCl [132–134], HF [135] and ClF [136–140] within the single

substitutional site of the Ar lattice, the high ground state barriers for Br2 indicate that

there is no comparable mobility within the double substitutional lattice site. Neglecting
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the zero-point librational energy and assuming a ground state vibrational energy of E0 ≈
160 cm−1, the librational motion of Br2 is thus confined to the range −10◦ ≤ ϕ ≤ 10◦ and

−8◦ ≤ ϑ ≤ 8◦. Similar results have been reported for vibrational ground state of Cl2 in

Xe matrices [37].

2.4.4 Classification of Coupling Types

The matrix representation of the electronic DIM-Hamiltonian in the diabatic basis set of

36 dihalogen molecular states makes the detailed investigation of its individual matrix

elements, which parametrically depend on all 3N nuclear coordinates, a rather complex

problem. In particular this holds true for its 630 matrix-induced coupling elements. Thus,

this task demands for a problem specific reduction concerning the number of electronic

states as well as the number of nuclear degrees of freedom. As a prerequisite it requires the

identification and analysis of relevant electronic states and nuclear degrees of freedom. The

first step, which is the analysis and subsequent reduction of the electronic Hamiltonian, is

considered in this section, the identification of relevant nuclear coordinates is explored in

Chap. 3.

Starting from the overall D2h symmetry of Ar atoms around the Br2 molecule in the re-

laxed ground state geometry and fixing the Ar atomic positions the two following scenarios

are expect to be predominant at low temperatures:

First, a D2h preserving elongation of the Br2 molecule with respect to its center of mass.

Second, a respective elongation along with a tilting of the Br2 molecular axis about 10◦

and 8◦ towards the directions 〈11̄0〉 and 〈001〉, respectively. This configuration results in

a Hamiltonian of Ci symmetry and shall illustrate the effect of symmetry lowering.

The key step in the analysis of the Hamiltonian matrix is its partitioning into individual

sub-matrices. With reference to the diagonal structure of the molecular Hamiltonian in

the basis set of Hund’s case c symmetry eigenfunctions, according to Sec. 2.3.3 the effect

of the rare gas atoms can be understood as a perturbation, which induces the coupling

among different molecular states. Regardless of its specific structure, this perturbation

may be separated into components having the same or a different symmetry as compared

to the isolated molecule. Such a projection of the matrix-induced perturbation can be

accomplished by imposing the symmetry blocks of the isolated molecule as a mask onto

the total Hamiltonian matrix as it is schematically depicted in Fig. 2.11.

According to the partitioning by this mask the off-diagonal elements within the diagonal

blocks may be termed intra-symmetric couplings, since they couple the diagonal elements

(molecular potential energy curves) among each other. In contrast, the matrix elements

within the off-diagonal blocks couple sub-matrices of different symmetries and hence may be

called inter-symmetric couplings. Due to the mixing effects induced by the inter-symmetric

coupling type the irreducible representations to the symmetry group D∞h of the isolated

molecule split up into new irreducible representations to the symmetry point groups D2h

and Ci of the individual Hamiltonians. This subduction of the irreducible representations

is given in Tab. 2.4.
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Figure 2.11: Block mask scheme with diagonal blocks containing diagonal and intra-
symmetric coupling elements as well as off-diagonal blocks containing inter-symmetric cou-
pling elements. The symmetry blocks are given in the order 0+

g , 0−g , 1g, 2g, 0−u , 0+
u , 1u, 2u,

3u top down.

Table 2.4: Subduction of the molecular point group D∞h into the subgroups D2h and Ci,
see [141,142]. On successive symmetry lowering only the inversions characters g and u are
preserved.

D∞h D2h Ci

0+
g Ag Ag

0−g B1g Ag

1g B2g ⊕ B3g Ag

2g Ag ⊕ B1g Ag

0−u Au Au

0+
u B1u Au

1u B2u ⊕ B3u Au

2u Au ⊕ B1u Au

3u B2u ⊕ B3u Au
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Figure 2.12: Manifold of diabatic potential energy curves (left) compared to those obtained
from the first (middle) and second (right) diagonalization step for Br2 in Ar with D2h (top)
and Ci (bottom) symmetry.

The separate role of the two coupling types in this subduction can be unravelled by a two-

step diagonalization procedure. This procedure is guided by the symmetry rather than by

the strength of the interaction. In its first step, the intra-symmetric couplings are taken

into account exclusively, whereas the inter-symmetric couplings are incorporated into the

second step. In that sense the second step just completes the partial diagonalization of

states, which has been achieved in the first step.

This sequence is illustrated in Fig. 2.12 contrasting the manifold of the diabatic versus the

adiabatic potential energy curves obtained by the first and second diagonalization steps

for the respective Hamiltonians of D2h and Ci symmetry. When comparing the diabatic

potential energy curves in matrix environment to the isolated molecule (see Fig. 2.3) they

are bent up with increasing bond length due to repulsive on-diagonal contributions of the

Ar atoms. Particularly, this matrix-induced confining potential becomes visible for bond

lengths R ≥ 9 a0 in case of the D2h-Hamiltonian, as well as for R ≥ 8 a0 in case of the

Ci-Hamiltonian. As expected on the basis of Ligand field theory also the three atomic

dissociation limits of the free molecule are perturbed by the Rg matrix, which splits them

up into six individual branches. This splitting increases with a higher symmetry of the

Hamiltonian.

In the next step, which is depicted by the middle part of Fig. 2.12, this splitting is further

increased as a general trend when incorporating the intra-symmetric coupling type into

the diagonalization. A more detailed view on its concrete effects is provided by Fig. 2.13

exemplary showing the potential energy curves for each individual symmetry block of the

D2h-Hamiltonian. Here, the non-degenerate symmetry blocks 0+
g and 0−u exhibit avoided

crossings at the inner (5 ≤ R ≤ 6 a0, 0.08 ≤ E ≤ 0.10 Eh) and outer turning point

(10 ≤ R ≤ 11 a0, 0.12 ≤ E ≤ 0.14 Eh) of the potential curves. A similar effect, albeit more

subtle, is seen for the degenerate symmetry blocks 1g, 1u, 2u and 3u, where the avoided
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Figure 2.13: Potential energy curves for the DIM valence states along the Br2 bond distance
for fixed Ar positions and D2h symmetry. The data have been obtained by block diagonal-
ization of the Hamiltonian including Ωσ

w intra-symmetric couplings only. For labeling of
the states, compare Tab. 2.1.
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crossing is indicated by the increasing energy separation between those potential energy

curves, which would share the same dissociation limit in the gas phase. Their intrinsic

twofold degeneracies, however, are not lifted in this splitting.

The effect of including the inter-symmetric coupling type into the complete diagonalization

can be seen when comparing the last two panels in Fig. 2.12 to the preceding block diag-

onalization step. Inspecting the D2h-Hamiltonian first, one finds almost identical results.

Obviously, in the case of an overall D2h symmetry, which can be considered as a subgroup

of the D∞h symmetry group of the isolated molecule, the inter-symmetric coupling type is

negligible or even absent here. Thus, in first approximation, one can consider the individ-

ual symmetry blocks of the Hamiltonian to be independent. As an important consequence

the Hund’s case c states of the free molecule retain their meaning, even within the Rg

environment. This finding directly justifies the empirical usage of gas phase selection rules

in the spectroscopy of dihalogen molecules in cryogenic rare gas matrices.

In contrast to the D2h-Hamiltonian the presence of the inter-symmetric coupling type is

explicitly seen for the Ci-Hamiltonian. Starting from bond lengths R ≈ 7 a0 this coupling

type advances the splitting of the adiabatic potential energy curves towards a complete

lifting of all initial degeneracies.

However, in both cases the results suggest, that the interplay of the two coupling types can

be considered independently for the three dissociation limits of the free Br2 molecule, at

least as far as moderate bond lengths are concerned. This finding motivates the reduction

of the full 36× 36 DIM-Hamiltonian matrix towards a smaller sub-matrix, which permits

a detailed insight into specific phenomena, such as the predissociation of the electronic

B-state.

2.4.5 A Reduced Target-State DIM Hamiltonian

When aiming at a specific reduction of the DIM Hamiltonian the intrinsic energy and co-

ordinate range of the phenomenon investigated provides the main criterion. In application

to the B-state excitation of Br2 in solid Ar this criterion is provided by the Franck-Condon

window for the vertical B ← X-transition starting from the ground state equilibrium bond

length (see Fig. 2.14).

In order to properly describe the B-state predissociation and the subsequent population

of lower lying electronic states a reduced model Hamiltonian should also incorporate the

molecular potential curves below to the B-state PES. According to Fig. 2.3 its basis is

thus defined by the X (0+
g )-, A′ (2u)-, A (1u)-,3Πu (0−u )-, B (0+

u )-, C (1u)-, 3Πg (2g)-, a

(1g)-, a′ (0+
g )-,3∆u (3u)- and 13Σ+

u (0−u )-states. Of course, such truncation of the diabatic

basis restricts the number of possible linear combinations for the adiabatic states as well

as their proportional composition, so that the reduced model has to be checked carefully.

This can be accomplished by comparing its eigenvalues and eigenvectors to those obtained

from a complete Hamiltonian.

Fig. 2.14 shows the eigenvalues of the reduced D2h and Ci Hamiltonians together with the

relative errors with respect to the eigenvalues of the complete Hamiltonians. Comparing
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Figure 2.14: Comparison of the 17 adiabatic potential energy curves calculated from re-
duced Hamiltonians for Br2 in Ar with D2h and Ci symmetry, the dashed line denotes the
Franck-Condon target energy of E ≈ 0.09 Eh. The lower two panels show the percent-
age error with respect to the complete Hamiltonian eigenvalues within this target energy
interval.

27



Application to Br2 in Ar

0.068

0.070

0.072

0.074

0.076

0.078

0.080

5.2 5.4 5.6 5.8 6.0 6.2 6.4

E
 [

E
h]

R [a0]

D2h-Hamiltonian

0.068

0.070

0.072

0.074

0.076

0.078

0.080

5.2 5.4 5.6 5.8 6.0 6.2 6.4

 

R [a0]

Ci-Hamiltonian

Figure 2.15: Close-up view of the crossing region of the B (0+
u )-state with the C (1u)-, 3Πg

(2g)-, a (1g)-, a′ (0+
g )-, 3∆u (3u)- and 13Σ+

u (0−u )-state (from left to right) for Br2 in Ar
with D2h (left) and Ci (right) symmetry.

the results for both reduced models, the largest errors occur for the eigenvalue E15 and the

lower four eigenvalues of the D2h-Hamiltonian, as well as for the eigenvalues E17 and E8

of the Ci-Hamiltonian. However, taking into account that these errors of up to 5% appear

only for bond lengths outside the Franck-Condon window of the B ← X transition, the

performance of both reduced Hamiltonians within the target energy interval of E ≈ 0.09 Eh

is very good. In other words, the suggested set of potential energy curves is sufficient for

reproducing the results of the respective complete Hamiltonians.

B-state Crossing Region

Next, the sensitivity of the reduction within the region shown in Fig. 2.15 is of particu-

lar interest, since this region is essential for the predissociation of the B-state. The role

of the B-state crossings for predissociation, as well as their dependence on the environ-

mental symmetry, has been investigated by Coker et al. [40, 81] for I2 in condensed rare

gases. Adapting the terminology from Ref. [81] one sees that the overall pattern of quasi-

non-avoided (weakly interacting curves) and avoided (strongly interacting curves) B-state

crossings is similar for both symmetries investigated. Except for minor differences in the

magnitude of the splitting two common characteristics of these crossings can be found on

closer examination.

In case the B-state with quantum number Ω = 0 is crossed by a doubly degenerate state

Ω 6= 0, there results only one avoided crossing whereas one of the initially degenerate states

follows its original course. In other words a coupling modifies only one of the degenerate

states. This circumstance is illustrated by an analytic example of the B,C-state crossing

in Sec. 5.4 of the Appendix.

In case that the B-state is crossed by another non-degenerate state with quantum number

Ω = 0, there is only avoided crossing and consequently either bound excited state dynamics

or predissociative dynamics are to be expected, depending on whether the system follows

the upper or the lower part of the adiabatic potential energy curves.

A more detailed view on the quality of the reduction is provided by an analysis of some
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Figure 2.16: Population analysis in 2D projection of the complete (right column) and
reduced (left column) D2h-Hamiltonian eigenvectors for the states 17 (upper row), 12
(middle row) and 7 (lower row) corresponding to the highest, an intermediate and the
lowest adiabatic potential energy curves in Fig. 2.15.
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exemplary eigenvectors out of the B-state crossing region from Fig. 2.15. Therefore, with

reference to Fig. 2.14, the eigenvectors to the energy eigenvalues values E7, E12 and E17

have been chosen, which correspond to the lowest, a middle one and the highest adiabatic

potential curve in Fig. 2.15. Inspired by the overlap criterion of Kuntz et al. [114,143] the

individual populations of the diabatic Hund’s case c states have been used as a measure for

comparing the composition of adiabatic states between the reduced and full Hamiltonians.

The results for the cases D2h and Ci are shown in Fig. 2.16 and Fig. 2.17. In both cases

there is an almost quantitative agreement in the composition of the lowest as well as the

middle adiabatic states between the reduced and complete Hamiltonians. With respect to

the highest adiabatic state, which is energetically close to the set of states discarded from

the model, both reduced models deviate in their composition from the complete ones in

the range 5.2 ≤ R ≤ 5.6 a0. Here, some of the diabatic states, which are not part of the

reduced model, become populated. However, recalling from Fig. 2.14 that the energy of

the highest state coincides with the Franck-Condon window only after R ≈ 5.6 a0 one can

say, that both reduced model Hamiltonians reasonably resemble the complete ones in the

relevant regime of B-state crossings.

Next to this quantitative aspects also some qualitative features of the B-state crossings

can be explained by means of Fig. 2.16 and Fig. 2.17. As a common characteristic for

both cases, a switching between the diabatic states can be found for the lowest and highest

adiabatic states. In accordance with Fig. 2.15 these switchings appear at the crossing point

R = 5.6 a0 between the B-state (0+
u symmetry) and the C-state (1u symmetry). Further,

they appear around R ≈ 6.1 a0 between the 13Σ+
u -state of 0−u symmetry and the B-state.

Such abrupt symmetry switchings hint to a weak diabatic coupling element, but give rise

to a strong derivative coupling, as it is exemplary shown for the generic three state model

of the B,C-state crossing in Sec. 5.4.

A different character of the symmetry transition can be found for the middle adiabatic

state, which corresponds to an avoided crossing between the two repulsive potential energy

curves of the a-state (1g symmetry) and the 3Πg-state (2g symmetry). This avoided cross-

ing appears in the region of coincidence below to the intersection with the B-state potential

in Fig. 2.15. Whereas for the D2h-Hamiltonian in Fig. 2.16 one again finds a switching

between the respective symmetries 1g and 2g around R ≈ 6 a0, their gradual transition is

seen for the Ci-Hamiltonian in Fig. 2.17, where it extends over a range 5.9 ≤ R ≤ 6.2 a0.

As a consequence of the investigations from Sec. 5.4, the diabatic coupling element is ex-

pected to be strong in this case and the derivative coupling element weak, in turn.

In essence, the above investigations show, that a reduction of the DIM-Hamiltonian matrix

is possible without deteriorating its overall accuracy. Particularly, this finding is relevant

for on-the-fly dynamics. In the following the DIM method will be used to calculate Carte-

sian reaction surfaces and vibronic couplings for quantum simulations. This application,

however, requires a further restriction of the DIM-Hamiltonian to the potential energy

curves of the X-, B- and C-states only.
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Figure 2.17: Same as Fig. 2.16, but for the full (right column) and the reduced (left column)
Ci-Hamiltonians.
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3 The Cartesian Reaction Surface

Approach and Vibronic Coupling

Theory

3.1 Basic Concepts

Whereas the solution of the Newtonian equations of motion (see Sec. 2.4.3 and Sec. 5.3) lead

to classical trajectories, which, when knowing the gradients of the potential energy, can be

calculated “on the fly”, the solution of the time-dependent Schrödinger equation (TDSE)

leads to nuclear wave packets and requires the knowledge of the PES as function of the

nuclear coordinates. From the technical point of view it is impossible to represent such

function globally for systems with many degrees of freedom. Here specific approximations

have to be invoked. These approximations either base on a Taylor expansion of the PES or

its effective representation within a low-dimensional subspace of nuclear coordinates. The

necessary formalism behind these approximations is part of the following sections, for an

alternative representation see Refs. [97–100,144,145].

3.1.1 Small Amplitude Displacements

Harmonic Approximation

The Cartesian Hamiltonian for an N atomic system, when expressed in the full set of

i = 1, . . . , 3N nuclear coordinates xi and momenta px,i, is given by the following expression:

H = T + V =

3N∑

i=1

p2
x,i

2mi
+ V ({xi}) . (3.1)

Within the harmonic approximation, which restricts the following considerations to small

amplitude displacements (SAD) ∆xi = xi − x
(0)
i of the nuclear coordinates for a given

electronic state, the 3N -dimensional PES V ({xi}) is expanded into a Taylor series of 2nd

order around some reference geometry {x(0)
i }:

V ({xi}) ≈ V ({x(0)
i })−

3N∑

i=1

fi∆xi +
1

2

3N∑

i=1

3N∑

j=1

kij∆xi∆xj . (3.2)
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The expansion coefficients of this Taylor series are the Cartesian forces fi and force con-

stants kij with the definitions:

−fi =
∂V

∂xi

∣∣∣∣
{x(0)

i }
, kij =

∂2V

∂xi∂xj

∣∣∣∣
{x(0)

i }
, (3.3)

where the forces fi vanish, if the reference geometry {x(0)
i } of expansion (3.2) corresponds

to a stationary point of the 3N -dimensional PES.

Introducing mass-weighted Cartesian coordinates ξi and conjugated momenta pξ,i:

ξi =
√
mi∆xi , pξ,i =

px,i√
mi

(3.4)

the kinetic energy T in Eq. (3.1) takes on a simple form without the explicit requirement

of particle masses. As a consequence of the coordinate transformation in Eq. (3.4), also

the Taylor expansion coefficients from Eq. (3.3) have to be mass-weighted:

f̃i =
fi√
mi

, k̃ij =
kij√
mimj

, (3.5)

where the mass-weighted force constants k̃ij , taken at the stationary point {x(0)
i }, cor-

respond to the matrix elements of a Hessian matrix [62] with the dimension 3N × 3N .

Substituting the quantities from Eq. (3.5) into Eq. (3.2) and utilizing the variables defined

in Eq. (3.4) the Cartesian Hamiltonian from Eq. (3.1) can be rewritten:

H ≈ 1

2




3N∑

i=1

p2
ξ,i +

3N∑

i=1

3N∑

j=1

k̃ijξiξj



 , (3.6)

where the constant energy term V ({x(0)
i }) to the reference point of the Taylor expansion

(3.2) has been omitted, since it just shifts the energy scale of the Hamiltonian. Nevertheless,

when comparing Eq. (3.6) with Eq. (3.1) it is seen that the individual degrees of freedom

are still coupled in this representation.

Normal Coordinates

In order to eliminate the bilinear coupling terms in Eq. (3.6), first an orthonormal set

{qk} of k = 1, . . . , 3N normal coordinates is introduced [146, 147]. These coordinates are

related to the set {ξi} of i = 1, . . . , 3N SAD coordinates via the following bidirectional

linear transform:

qk =

3N∑

i=1

lkiξi ←→ ξi =

3N∑

k=1

likqk , (3.7)

where the individual linear combination coefficients lki with lik = lTki correspond to the

elements of an orthogonal transformation matrix. Expressed in the set {qk} of normal
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coordinates the Hamiltonian from Eq. (3.6) takes on a simple quadratic form:

H =
1

2

[
3N∑

k=1

p2
q,k +

3N∑

k=1

λkq
2
k

]
. (3.8)

Here, the pq,k are the conjugated momenta of the normal coordinates qk , and the λk = ω2
k

are the squared normal mode frequencies, which, when comparing Eq. (3.8) to Eq. (3.6),

are recognized as eigenvalues of the Hessian matrix Eq. (3.5) according to its principal axis

transformation. These eigenvalues can be obtained as roots of the eigenvalue problem:

|k̃ij − λδij | = 0 . (3.9)

Its eigenvectors contain the linear combination coefficients lki for the transformation be-

tween the mass-weighted Cartesian and the normal coordinates as defined by Eq. (3.7).

In principle, upon initial displacement of the normal coordinates, it is now possible to

solve the time-dependent Schrödinger equation for the Hamiltonian Eq. (3.8). Its solutions,

however, would be trivial, since the individual normal modes qk would just harmonically

oscillate with their vibrational frequencies ωk around their equilibrium positions.

When solving the secular equations Eq. (3.9) for a periodic system, which is subject to peri-

odic boundary conditions, one obtains 3N−3 nonzero eigenvalues [62] instead of 3N−6 as

in the general case of a polyatomic molecule. Here, the subset of normal modes {q1, q2, q3}
with the numerical eigenvalues λ1, λ2, λ3 ≈ 0 describes the translation of the simulation

box as a whole. These normal modes are not required and hence may be projected out.

For this purpose, starting from the unity relation of the normal coordinates:

3N∑

k=1

liklki = 1






∑3
k=1 liklki = ρi

∑3N
k=4 liklki = 1− ρi

(3.10)

the projectors ρi and 1−ρi are defined. In close analogy to Mulliken’s population analysis

ρi accumulates the squared contributions |lki|2 of a single DOF ξi to the normal modes

k = 1, 2, 3, which, when carried out over all modes, would give unity, so that 1−ρi captures

its remaining “population” in all other modes k 6= 1, 2, 3. The explicit application of the

projector 1− ρi is demonstrated in Sec. 3.1.2.

3.1.2 Large Amplitude Coordinates

Cartesian Representation

In order to overcome the restrictions of the harmonic approximation to SAD, a new set

{ζs} of s = 1, 2, . . . ,Ns ≪ 3N mass-weighted Cartesian coordinates, which undergo large

amplitude displacements and hence may be termed large amplitude coordinates (LAC),

is introduced. These coordinates provide a means to account for the full anharmonicity

and the full couplings within a relevant subpart of the total system. Without further

specification at this point these coordinates may be represented by linear combinations of
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the mass-weighted coordinates ξi:

ζs =

3N∑

i=1

usiξi (3.11)

with the linear combination coefficients usi, which are chosen to be orthonormal. Due to the

restriction Ns ≪ 3N , however, the LACs do not form a complete orthonormal set, unlike

the normal modes from Eq. (3.7). Depending on the total number Ns = 1, 2, 3, 4 . . . the

set {ζs} of LACs spans up a Cartesian (Reaction) Path, Plane, Surface or Hyper-surface

within the 3N -dimensional PES of the total system. Of course, the subsystem described

by such hyper-surface exchanges energy with the remainder part of the total system, the

bath. It this context it should be mentioned, that the term “bath” refers to environmental

degrees of freedom rather than to a heat bath. The underlying distinction between system

and bath can be made explicit by defining another projector ̺i:

̺i =

Ns∑

s=1

uisusi , (3.12)

which projects the whole set {ζs} of LACs onto the individual coordinates ξi. According

to the interpretation of Eq. (3.10) the projector 1 − ̺i then fixes all complementary ξi

contributions which do not enter into definition (3.11), and hence are left for the definition

of an explicit set {[1− ̺i]ξi} of bath coordinates.

Whereas the subsystem defined by the LACs can be represented in a rather accurate

way, the motions of bath coordinates can only be accounted for in an approximate way. In

analogy to Eq. (3.2) this can be accomplished via a Taylor series expansion of the potential

energy with respect to the bath degrees of freedom around a fixed reference geometry {x(0)
i }:

V ({ζs}, {[1− ̺i]ξi}) ≈ U({ζs})−
3N∑

i=1

f̃i({ζs})[1− ̺i]ξi (3.13)

+
1

2

3N∑

i=1

3N∑

j=1

[1− ̺i]k̃ij({ζs})[1− ̺j]ξiξj .

Here, the expansion coefficients U({ζs}), f̃i({ζs}) and k̃ij({ζs}) are functions of the LACs.

Alternatively to this frozen bath [99] version one may think of a modified Taylor expansion,

where the reference geometry of the bath is not fixed and taken as a function of the system

coordinates. This expansion is known as flexible bath [99] approach. In contrast to the

frozen bath version, the flexible bath approach thus requires the re-optimization of the

reference geometry as a function of the system coordinates, which can be seen as a major

computational disadvantage of this method.

With the aid of Taylor expansion (3.13) a new Hamiltonian:

H = HS +HSB (3.14)
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can be formulated, which is composed of a system Hamiltonian HS and a mixed Hamilto-

nian HSB:

HS =
1

2

Ns∑

s=1

p2
ζ,s + U({ζs}) , (3.15a)

HSB =
1

2

3N∑

i=1

(pξ,i[1− ̺i])
2 −

3N∑

i=1

f̃i({ζs})[1− ̺i]ξi (3.15b)

+
1

2

3N∑

i=1

3N∑

j=1

[1− ̺i]k̃ij({ζs})[1− ̺j ]ξiξj ,

which describes the bath interacting with the system.

Normal Mode Representation

More useful for the interpretation of nuclear motions than the representation of the system-

bath Hamiltonian, Eq. (3.15b), in terms of individual, uncoupled coordinates is its formu-

lation in terms of normal modes, as these coordinates already account for a certain degree

of coupling. In analogy to the LACs defined by Eq. (3.11) the latter also describe collec-

tive, but small displacements of the mass-weighted Cartesian coordinates. Additionally,

the distinction between system and bath by the projector (3.12) is incomplete within the

Cartesian representation, since in case 0 < ̺i < 1 it permits the partial contribution of the

Cartesian coordinates ξi to both, system and bath. The normal mode representation of the

coupled system-bath Hamiltonian from Eq. (3.15b) can be accomplished in two ways.

One way is to successively diagonalize the harmonic potential expansion for the bath de-

grees of freedom obtaining uncoupled normal modes, whose linear combination coefficients

and frequencies change as a function of the system coordinates {ζs}. This procedure is

known as vibrational adiabatic approximation [97,98] and the corresponding normal modes

to a given point of the system coordinates are often called local or instantaneous modes [99].

Alternatively, one may define a fixed set of bath modes at a common reference geometry

of the 3N -dimensional PES, where both, the system and the bath degrees of freedom, are

in their equilibrium positions.

Assuming that this reference geometry coincides with {x(0)
i } from Sec. 3.1.1, and provided

that the respective force constants (3.5) and normal modes (3.7) have already been deter-

mined, the projected Hessian matrix with the elements:

k′ij = [1− ̺i][1− ρi]k̃ij [1− ρj][1− ̺j ] (3.16)

is introduced. The interpretation of Eq. (3.16) is straightforward, since it corresponds to

two successive projections, where first the set {q1, q2, q3} of translational modes and second

the set {ζs} of LACs are projected out. Upon solving the projected secular problem:

|k′ij − λδij | = 0 (3.17)
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new eigenvalues λ′k and modes q′k with linear combination coefficients l′ki are obtained.

According to the particular definition of the Hessian matrix, Eq. (3.16), its first Ns + 3

eigenvalues λ′k vanish by construction; the set {q′k} of k = Ns + 4, . . . , 3N normal modes

is then orthogonal to the set {ζs}. When projecting the forces and force constants of the

Taylor expansion (3.13) onto the new set {q′k} of normal modes:

f ′k({ζs}) =

3N∑

i=1

l′kif̃i({ζs}) k′kl({ζs}) =

3N∑

i=1

3N∑

j=1

l′kik̃ij({ζs})l′jl (3.18)

the Cartesian system - bath Hamiltonian from Eq. (3.14) can be rewritten in the following

way:

HSB =
1

2

3N∑

k=Ns+4

p2
q′,k −

3N∑

k=Ns+4

f ′k({ζs})q′k +
1

2

3N∑ 3N∑

k,l=Ns+4

q′kk
′
kl({ζs})q′l . (3.19)

In contrast to the instantaneous normal modes mentioned before, the fixed bath modes

are coupled to the system in their potential energy via linear and bilinear terms, which are

functions of the system coordinates.

3.1.3 Vibronic Coupling Theory

When aiming to describe nuclear motions associated with electronic transitions, the con-

siderations from Sec. 3.1.1 and Sec. 3.1.2 have to be extended to multiple electronic states.

Additionally, in situations where the potential energy surfaces of two electronic states a and

b cross one another the Born-Oppenheimer approximation breaks down and the coupling

between nuclear and electronic motion cannot be neglected any longer. Such situations

can be described by vibronic coupling theory [89,91,102,103,148–150]. In contrast to the

previous considerations, which have not been restricted to a certain representation, the

formulation of the vibronic coupling problem requires a diabatic representation of the elec-

tronic Hamiltonian. This criterion is matched by the present DIM approach (see Chap. 2),

since the X2 molecular states (cf. Sec. 2.2.2), which serve as zero-order basis functions

of the DIM-Hamiltonian (cf. Sec. 2.3.3), are defined as product functions with constant

expansion coefficients, and hence do not depend on the nuclear coordinate.

Conceptionally, the vibronic coupling problem can be formulated in close analogy to

Sec. 3.1.1. Assuming that the nuclear dependence of the diagonal as well as off-diagonal

matrix elements Vaa and Vab of two diabatic states with the labels a and b can be approxi-

mated by a Taylor series similar to Eq. (3.2), the respective expansion coefficients are given

by the following expressions:

−f (a)
i =

∂Vaa

∂xi

∣∣∣∣
{x(0)

i }
, k

(a)
ij =

∂2Vaa

∂xi∂xj

∣∣∣∣
{x(0)

i }
, (3.20)

f
(ab)
i =

∂Vab

∂xi

∣∣∣∣
{x(c)

i }
, k

(ab)
ij =

∂2Vab

∂xi∂xj

∣∣∣∣
{x(c)

i }
. (3.21)
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Applying the terminology of vibronic coupling theory, the state dependent forces f (a)
i and

force constants k(a)
ij in Eq. (3.20) are called intra-state coupling constants. Accordingly,

the expansion coefficients f (ab)
i and k

(ab)
ij in Eq. (3.21) are termed inter-state vibronic

coupling constants of 1st and 2nd order. Notice, that the reference geometry in Eq. (3.20)

corresponds to {x(0)
i }, whereas in Eq. (3.21) it corresponds to a crossing point {x(c)

i }
obeying the condition Vaa = Vbb. Within the present DIM approach, the first and second

derivatives of the diabatic potential energy matrix elements from Eq. (3.20) and Eq. (3.21)

can be calculated analytically as detailed in Sec. 5.5 of the Appendix. Further, provided

that the normal modes from Eq. (3.7) have been calculated for the electronic ground state,

and that the quantities from Eq. (3.20) and Eq. (3.21) have been mass-weighted according

to Eq. (3.5), the vibronic coupling constants can be mapped onto these normal modes:

f
(a)
k =

3N∑

i=1

lkif̃
(a)
i , k

(a)
kl =

3N∑

i=1

3N∑

j=1

lkik̃
(a)
ij ljl , (3.22)

f
(ab)
k =

3N∑

i=1

lkif̃
(ab)
i , k

(ab)
kl =

3N∑

i=1

3N∑

j=1

lkik̃
(ab)
ij ljl . (3.23)

Using Eq. (3.22) and Eq. (3.23) the normal mode vibronic coupling Hamiltonian can then

be formulated in terms of the following matrix elements:

Haa =
1

2

∑

k

p2
q,k −

∑

k∈G1

f
(a)
k qk +

1

2

∑∑

k,l∈G2

qkk
(a)
kl ql (3.24)

Hab =
∑

k∈G3

f
(ab)
k qk +

1

2

∑∑

k,l∈G4

qkk
(ab)
kl ql (3.25)

Due to symmetry selection rules the single and double sums in Eq. (3.24) and Eq. (3.25)

are restricted to certain subsets of modes. The subsets G1:

G1 : Γk ⊃ ΓA ,

comprises all normal modes qk with the irreducible representation Γk that transform ac-

cording to the totally symmetric representation ΓA of the molecular symmetry group. Since

these modes modulate the energy gap between individual diabatic states they are called

tuning modes. The second subset G2 covers all pairs of modes:

G2 : Γk × Γl ⊃ ΓA ,

which provide bilinear and quadratic on-diagonal couplings. These modes cause mixing

effects and frequency shifts within a given diabatic state. The third subset G3 of modes

accounts for the linear vibronic coupling between two crossing states with the irreducible

representations Γa and Γb:

G3 : Γk × Γa × Γb ⊃ ΓA .
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These modes are called coupling modes. Finally, the set G4 denotes all pairs of modes

which contribute to the off-diagonal elements of the Hamiltonian:

G4 : Γk × Γl × Γa × Γb ⊃ ΓA .

In case that two crossing states have a different parity, that is g and u, the inter-state vi-

bronic coupling must be an odd function of the coupling coordinate. Hence, there exist no

constant and quadratic vibronic coupling terms, only linear and bilinear ones are allowed.

When taking into account only the linear coupling terms of Eq. (3.24) and Eq. (3.25) one

obtains the so-called linear vibronic coupling model. A special case of this model is the

Huang-Rhys or shifted oscillator model as described in Sec. 5.7 of the Appendix, which

only takes into account the linear intra-state coupling terms.

Following Sec. 3.1.2 the normal mode vibronic coupling Hamiltonian from Eq. (3.24) and

Eq. (3.25) can be straightforwardly combined with the Cartesian reaction surface model.

Assuming that the set {ζs} of LACs defined by Eq. (3.11) contains only totally symmetric

coordinates, which do not contribute to vibronic off-diagonal coupling terms, the system

Hamiltonian from Eq. (3.15a) is just determined by the respective diagonal matrix ele-

ments:

H
(aa)
S =

1

2

Ns∑

s=1

p2
ζ,s + Uaa({ζs}) , (3.26)

where the Ns-dimensional reaction surfaces Uaa({ζs}) depend on the electronic state con-

sidered. Further, when using the set {q′k} of normal modes obtained from Eq. (3.16) and

Eq. (3.17), the vibronic coupling Hamiltonian, Eq. (3.24) and Eq. (3.25), can be brought

into a form similar to the system-bath Hamiltonian as defined by Eq. (3.14), taking into

account, however, that the vibronic coupling quantities from Eq. (3.22) and Eq. (3.23)

become functions of the LACs. The vibronically coupled system-bath Hamiltonian is then

given by the following matrix elements:

H
(a)
SB =

1

2

∑

k

p2
q′,k −

3N∑

k∈G1

f
′(a)
k ({ζs})q′k +

1

2

∑∑

k,l∈G2

q′kk
′(a)
kl ({ζs})q′l , (3.27)

H
(ab)
SB =

3N∑

k∈G3

f
′(ab)
k ({ζs})q′k +

1

2

∑∑

k,l∈G4

q′kk
′(ab)
kl ({ζs})q′l . (3.28)

Together with Eq. (3.26) the both Eqs. (3.27) and (3.28) form the fundament for the de-

scription of the vibronically coupled quantum dynamics involving large amplitude motions.

However, due to the dependence of the 1st and 2nd order coupling constants on the reac-

tion coordinates, further approximations have to be invoked in the application of Eq. (3.27)

and Eq. (3.28), particularly when taking into account, that the number of bath modes may

be enormous in case of typical condensed phase situations.
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3.2 Two-Dimensional Reaction Surfaces

3.2.1 Analysis of Cage Fragment Displacements

In order to provide an instructive basis for the definition of system coordinates, which have

been introduced rather formally in Eq. (3.11) of Sec. 3.1.2, the reduced dimensionality ap-

proach as developed for the quantum description of the photo-dissociation dynamics of

F2 [71–73] and ClF [75] molecules in Ar matrices has been adapted to the present system.

In this approach the potential energy is taken as a function of the X-X bond distance and

a specific matrix coordinate, which describes the motion of a certain cage fragment in the

proximity of the dihalogen while keeping all other Rg atoms frozen. For the application of

this strategy to Br2 in Ar the Belt, Phonon, Window and Collision atoms shown in Fig. 2.9

of Sec. 2.4.3 can be considered as prototypic cage fragments. This choice is motivated by

their relaxation-induced shifts (see Tab. 2.3) as well as their participation in trajectory

simulations of matrix-isolated Br2 [127,128] and Cl2 [17, 62] molecules.

When analyzing the potential energy of the electronic X-, B-, and C-states as function

of the Br-Br coordinate versus the centrosymmetric elongation of the Belt, Phonon, Win-

dow and Collision atoms one obtains a series of two-dimensional PES shown in Fig. 3.1.

Focusing on the X-state surfaces one notices that there is a substantial coupling of the

Bromine coordinate to the motion of the Belt, Window and Collision atoms. Whereas the

two limiting cases of weak and strong coupling follow from the symmetric and triangular

shape of the PES for the Phonon and Collision atoms, its minimum energy path predicts

a contraction of the Belt atom frame and an expansion of the Window atom frame with

increasing separation of the Br atoms, just as expected on intuitive grounds.

In order to get an impression about the motions of the Bromine and matrix coordinates in

the electronically excited states the relief reflection principle [71] can be applied to the B-

and C-state surfaces. According to this principle the tangent of the isopotential contour

lines at the turning point of the initial motion path determines the subsequent reflection

path away from the surface relief. This way, by combining all consecutive reflection path

segments a schematic picture of the relative motions onto the excited state PES can be

drawn. Such scenarios predict rather large amplitude motions for the Bromine coordi-

nate making its anharmonicity an essential feature for the description of the excited state

dynamics. Furthermore, the potential along the individual matrix coordinates is not har-

monic, that is in the frame of a system-bath treatment all of these coordinates have to be

included into the “system”.

3.2.2 Problem-Adapted Reaction Coordinates

Whereas the displacements of the individual cage coordinates have been considered indepen-

dently in the above approach, a systematic description of their combined motion requires

another strategy close to the reaction path method proposed by Miller et al. [99,100]. For

describing the coupled motions of matrix atoms associated with the electronic B ← X

transition, the idea of a reaction path connecting two specific reactant and product geome-
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Figure 3.1: Contour plots of 2D-PES showing Bromine coordinate (abscissa) versus Belt
(1st row), Phonon (2nd row), Window (3rd row) and Collision (last row) coordinates
(ordinates) (cf. Fig. 2.9) for the diabatic X- (left column), B- (middle column) and C-
states (right column) with contour levels at 0.001, 0.07, 0.08, 0.09, 0.10, 0.11 and 0.12
Eh.
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Figure 3.2: Displacement vectors of the mass-weighted Bromine ζR (left), Eq. (3.29), and
matrix coordinates ζX−B (right), Eq. (3.30).

tries has to be extended to different electronic states. As opposed to previous applications

of the method to Hydrogen-transfer reactions (for a review, see Ref. [101]), which were

confined to the electronic ground state, the “product” and “reactant” geometries in the

above scenario correspond to minimum energy configurations of the system in two distinct

electronic states.

For a convenient definition of large amplitude coordinates within the frame of the CRS

concept (see Sec. 3.1.2) it is helpful to cast the individual atomic positions of the i = 1, 2

Br atoms and the i = 3, . . . ,N Ar atoms into a coordinate vector R of dimension 3N :

R = {R1,x, . . . , Ri,x, Ri,y , Ri,z, . . . , RN,z}
=̂ {x1, . . . , x3i−2, x3i−1, x3i, . . . , x3N} .

Using this convention together with the atomic Bromine mass mBr the first LAC can be

formulated in terms of the mass-weighted Br-Br distance:

ζR =

√
mBr

2
(R2,y −R1,y)ey . (3.29)

Its displacement vector is shown on the left side of Fig. 3.2, where the coordinate system

has been chosen such that the Bromine molecule points along the y-direction indicated

by the unit vector ey in Eq. (3.29). Provided that the equilibrium geometries R(X) and

R(B) for the system in the electronic X- and B-states have been determined as described

in Sec. 2.4.3, the second reaction coordinate is obtained by the mass-weighted coordinate

shift ∆ = M 1/2(R(B) − R(X)) between the respective minima, where M is a diagonal

matrix containing the Br and Ar atomic masses. Projecting out the contributions of the

Bromine coordinate (∆, ζR)ζR from the matrix coordinate with the aid of a Gram-Schmidt

orthogonalization:

ζX−B = ∆− (∆, ζR)ζR (3.30)

followed by normalization, one obtains a “pure” matrix coordinate ζX−B, which is orthonor-

mal to ζR.
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The individual atomic displacement vectors of this coordinate ζX−B with respect to ground

state equilibrium geometry R(X) are depicted on the right side of Fig. 3.2. Here it is seen,

that the motion along this coordinate involves a collective displacement of the Belt, Phonon,

Window and Collision atoms. In this respect ζX−B resembles the combined effect of the

cage fragment coordinates discussed in Sec. 3.2.1.

According to their definitions by Eq. (3.29) and Eq. (3.30) both LACs describe totally sym-

metric motions, which preserve the 〈110〉 orientation of the Br2 molecule and the overall

D2h symmetry of the matrix cage as well. Furthermore, the definition of ζX−B in terms

of stationary structures predestines this coordinate for the description of matrix motions

in the long-time domain, that is after vibrational relaxation in the B-state. Thus it is a

priori not clear, whether this coordinate can provide a reasonable description of matrix

motions at non-equilibrium distances of the Bromine coordinate. Within the scope of the

CRS concept this problem can be addressed by adding another LAC similar to Eq. (3.30)

for describing this regime. Test calculations along these lines have been performed using a

third relaxed matrix geometry, which corresponds to the outer turning point of the Br-Br

motion in the B-state at the Franck-Condon energy (9 a0, 0.09 Eh). It turned out that the

vector pointing from the B-state minimum geometry to this configuration is nearly parallel

to ζX−B, so the latter should also provide a reasonable description of the matrix motions

beyond the Br2 equilibrium distance in the B-state up to the outer turning point. Finally,

it cannot be guaranteed that the intrinsic reaction path from the B ← X Franck-Condon

vertical excitation geometry to the B-state minimum lies in the plane spanned by ζR and

ζX−B. This reaction path corresponds to the minimum energy path, which coincides with

the path of steepest decent in mass-weighted coordinates when followed downhill from a

given transition structure or saddle point [151,152]. However, in view of short-time dynam-

ics this path is likely to be of no relevance. Still this reaction plane model is advantageous

over the individual cage fragment models of the previous section because it describes their

combined motion.

Normal Mode Analysis of the Matrix Coordinate

A further analysis of ζX−B beyond its interpretation in terms of individual cage atom

displacements (cf. Fig. 3.2) is provided when projecting this coordinate onto the normal

modes of the simulation box from Fig. 2.7. For this purposes, the normal modes {qk}
and vibrational frequencies {ωk} of the X-state PES minimum geometry have been calcu-

lated by solving secular problem from Eq. (3.9) as described in Sec. 3.1.1. The respective

vibrational density of states N(ω):

N(ω) =
∑

k

δ(ω − ωk) (3.31)

characterizing the normal mode spectrum of the N = 700 (2 Br and 698 Ar) atoms in

total is shown by the histogram in Fig. 3.3a. Specifically, this histogram has been obtained

by counting the number of modes within a finite frequency interval ∆ω = 1 cm−1. Its
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Figure 3.3: (a) Ground state density of states N(ω) (grey bars) and spectral density of
states ωJ(ω) to the B ← X transition (open bars). (b) Projection of matrix coordinate
ζX−B onto the ground state normal modes.

shape is typical for Ar crystals and closely resembles the phonon density of states given

in Ref. [7]. Note, that there is an additional peak around ω = 320 cm−1 (not shown)

for the harmonic X-state vibrational frequency of the Br2 molecule. Further, the three

zero-frequency modes describing the translation of the simulation box have been projected

out by means of the projector defined in Eq. (3.10) of Sec. 3.1.1.

The results of the normal mode projection, that is, the individual scalar products (ζX−B, qk),

are shown in Fig. 3.3b. Inspecting this figure it becomes clear that ζX−B involves contri-

butions from many (symmetry-preserving) normal modes covering an essential part of the

whole phonon spectrum. Hence this coordinate provides a compact description of coupled

matrix motions. As a possible drawback of such a description it should be mentioned, that

the couplings contained in this coordinate require an additional effort, if an interpretation

in terms of individual normal mode couplings is required.

If raising this question of the coupling of individual normal modes to the electronic B ← X

transition, the result of the normal mode projection from Fig. 3.3b may be compared to

the spectral density of states J(ω) shown in Fig. 3.3a. In contrast to the density of states

N(ω) defined by Eq. (3.31) the latter quantity J(ω):

J(ω) =
∑

k

Skδ(ω − ωk) (3.32)

weights each phonon mode by a dimensionless coupling strength Sk, which reflects its

linear response to an electronic transition. According to the Huang-Rhys model given in

Sec. 5.7 of the Appendix this coupling (denoted S in Eq. (5.69)) is determined by the

force fk acting on the kth ground state phonon mode qk in the electronic B-state assuming

a vertical transition. Comparing both figures, Fig. 3.3a and Fig. 3.3b, it is seen, that

ζX−B resembles the totally symmetric part of the linear coupling modes in the Franck-

Condon region. These intra-state coupling modes (or tuning modes) correspond to the

set G1 of the vibronic coupling Hamiltonian introduced in Eq. (3.24) of Sec. 3.1.3. With

respect to the initial aim of modelling a collective coordinate, which reflects the matrix
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Figure 3.4: 2D plot of the CRS, Eq. (3.13) in Sec. 3.1.2 and Eq. (3.26) in Sec. 3.1.3,
as function of the Bromine coordinate ζR (abscissa) and the matrix coordinate ζX−B

(ordinate) from Fig. 3.2 in Sec. 3.2.2 for the diabatic X- (left), B- (middle) and C-states
(right) with isopotential contour lines at 0.001, 0.035, 0.069, 0.080, 0.090, 0.100, 0.110 and
0.120 Eh.

motions associated to the electronic B ← X transition, this comparison can be seen as a

“self-consistency” check for matching this requirement.

Analysis of Cartesian Reaction Surfaces

After having defined and analyzed the two large amplitude coordinates ζR and ζXB
one

can now proceed with the characterization of two-dimensional Cartesian reaction surfaces

obtained on the basis of DIM calculations. These Cartesian reaction surface form the

fundament for the construction of the system Hamiltonian introduced in Eq. (3.26) of

Sec. 3.1.3. The respective diabatic PES for the electronic X-,B- and C-states are shown in

Fig. 3.4. Analyzing this figure one notices a characteristic tilting of the PES towards larger

ζX−B with increasing ζR for all three states considered. When comparing Fig. 3.4 to Fig. 3.1

this tilting can be attributed to the specific response of the Belt, Window and Collision

atoms to the Br-Br bond stretching. In that sense the PES of the X-, B- and C-states

in Fig. 3.4 can be understood as a “superposition” of the respective individual potential

energy surfaces from Fig. 3.1. Further, as a consequence of the definition from Eq. (3.30)

the minimum energy positions of the B- and C-state PES are shifted with respect to the

X-state minimum, not only along the Bromine coordinate ζR, but also along the matrix

coordinate ζX−B. This positional shift along ζX−B reflects a different molecule-matrix

interaction for different electronic states of the chromophore.

Next to the Br-Ar interactions this shift involves Ar-Ar interactions, which also provide

the repulsive potential at rather large elongations of the matrix coordinate making the

depicted PES closed shapes. Notice, that the diabatic X- and C- states are essentially

degenerate along both coordinates starting from the region of the C-state minimum.
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Figure 3.5: (a) Lower adiabatic B − C surface showing the crossing seam with minimum
(dot) at ζR ≈ 8, ζX−B ≈ 3 amu1/2a0. Isopotential contour lines are drawn at 0.069, 0.072,
0.073, 0.075, 0.077, 0.080, 0.085, 0.090, 0.095 and 0.100 Eh. (b) Normal mode projection of
the BC coupling matrix element at the minimum of crossing seam from (a). (c) Coordinate
dependence of the two dominant vibronic coupling modes from (b) with B3g (ω1 ≈ 60 cm−1)
and B2g (ω2 ≈ 63 cm−1) symmetry along the crossing seam of (a).

3.3 Identification of Vibronic Coupling Modes

The LAC described in the previous paragraph are constructed such as to capture that part

of the molecule-matrix coupling and the anharmonicity of the PES which is related to the

symmetric deformation of the matrix cage in the B-state. As it has been pointed out in

Sec. 3.2.2 this deformation preserves the overall D2h symmetry of the system, and with it

the electronic symmetries of the B- and C-states (cf. Tab. 2.4 in Sec. 2.4.4).

Therefore, in the absence of further matrix couplings, the bare diabatic B- and C-state

PES spanned by the LAC intersect and form a crossing seam rather than a conical intersec-

tion in adiabatic representation. The topology of this crossing seam can be visualized when

following the lowest of the resulting reaction surfaces in the latter representation as shown

in Fig. 3.5a. Inspecting this figure one notices that this crossing seam is approximately

directed along the matrix coordinate ζX−B.

That part of matrix motions describing, for instance, asymmetric cage deformations, which

are not captured by the LAC, can be coupled to the reaction surface model in terms of har-

monic oscillators as described in Sec. 3.1.3. A specific category among this normal modes is

denoted by the set G3 in Eq. (3.28). These normal modes of particular symmetry provide

the linear vibronic couplings for the non-adiabatic transition between the B- and C-state

PES from Fig. 3.4. In order to identify these coupling modes, first the ground state normal

modes from Fig. 3.3a in Sec. 3.2.2 have to be made orthogonal to the plane spanned by

the reaction coordinates. Technically, this can be accomplished by diagonalizing the Hes-

sian matrix from Eq. (3.16) in Sec. 3.1.2, where now in addition to the three translational

modes the two reaction coordinates ζR and ζX−B have to be projected out by means of

the projectors defined in Eq. (3.10) and Eq. (3.12). Following Eq. (3.23) in Sec. 3.1.3 these

normal modes can then be utilized for the normal mode representation of the vibronic

coupling constants defined by Eq. (3.21). For this purpose the individual gradients f (BC)
i
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Figure 3.6: Atomic displacement vectors for the vibronic coupling modes q1 (left) of B3g

and q2 (right) of B2g symmetry from Fig. 3.5.

of the diabatic BC off-diagonal matrix element have been determined at the lowest point

of the BC crossing seam, which is marked by a black dot in Fig. 3.5a. The result of the

normal mode representation, that is the individual vibronic coupling constants f (BC)
k with

k = 1, . . . , 3N − 5 are shown in Fig. 3.5b. For a better comparability of the coupling

strength to the normal mode frequencies both quantities have been expressed in units of

energy. Therefore, the respective gradients have been evaluated in dimensionless oscillator

coordinates (for details see Sec. 5.6 and Sec. 5.7 of the Appendix). Analyzing Fig. 3.5b

two strongly coupling modes with the normal mode frequencies ω1 = 60 and ω2 = 63 cm−1

can be readily identified, whereas an almost continuous distribution of modes stretching

from 7 to 57 cm−1 couples only weakly. As expected on group theoretical grounds the

dominant coupling modes, which may be denoted by q1 (59.9 cm−1) and q2 (62.6 cm−1),

are of B3g and B2g symmetry. The associated atomic displacement vectors are shown in

Fig. 3.6. Inspecting this figure one notices that the B3g-mode q1, next to an antipodal

vibration of the Belt and Window atoms, also involves a librational type of motion of the

Br2 molecule while the B2g-mode q2 corresponds to an asymmetric stretching vibration of

the Belt atoms.

When plotting the potential energy of the B- and C- states as a function of the Bromine

coordinate ζR versus one of the vibronic coupling modes, e.g. the stronger coupling mode

q2 of B2g symmetry, one obtains a conical intersection in adiabatic representation. This

conical intersection is visualized in Fig. 3.7, where it is shown, how the motion along q2
lifts the degeneracy of the resulting PES. Note, that each point of the crossing seam from

Fig. 3.5a gives rise to such a conical intersection. In that sense these points topologically

concatenate a series of conical intersections along the crossing seam (see, e.g. [153]).

Further, for the construction of a vibronically coupled Cartesian reaction surface in the con-

text of Sec. 3.1.3 it is necessary to have at hand the functional dependencies f (BC)
1 (ζR, ζX−B)

and f (BC)
2 (ζR, ζX−B) of the dominant linear vibronic couplings from Fig. 3.5b on the PES.

Since ζR is approximately constant along the seam (compare Fig. 3.5a) these dependencies

are restricted to the matrix coordinate ζX−B. As it is shown in Fig. 3.5c both vibronic

couplings increase upon proceeding elongation of ζX−B along the crossing seam. This

correlation between the matrix coordinate and the vibronic coupling modes q1 and q2

immediately becomes plausible when comparing Fig. 3.6 to Fig. 3.2, since both types of

47



Identification of Vibronic Coupling Modes

 0  5  10  15  20  25 -10 -5  0  5  10

0.070

0.072

0.074

0.076

0.078

E [Eh]

B

C

ζR q2

Figure 3.7: Conical intersection between B- and C-states in adiabatic representation when
plotting the potential energy as a function of totally symmetric Bromine coordinate ζR
[amu1/2a0] versus the vibronic coupling mode q2 [dimensionless] of B2g symmetry. For a
better visibility of the conical intersection the calculated vibronic coupling constant has
been scaled.

coordinates involve the same kind of atoms, that is Window and/or Belt atoms. In ad-

dition to these investigations concerning the seam dependence of both dominant vibronic

coupling contributions it has been investigated whether the overall coupling pattern of

the remainder vibronic coupling modes changes when moving away from the minimum

point of the crossing seam. Here it was found that this coupling pattern does not change

significantly within the coordinate and energy intervals −24 ≤ ζX−B ≤ 24 amu1/2a0 and

0.072 ≤ E ≤ 0.092 Eh.

Comparing Fig. 3.5b to the spectral density in Fig. 3.3a one needs to emphasize that inci-

dentally in both cases there are dominant peaks at frequencies of about 63 cm−1. However,

while the 63 cm−1 mode in Fig. 3.3a is totally symmetric, it is of B2g symmetry in Fig. 3.6.

Furthermore, within the LAC model one still finds a totally symmetric mode with a dom-

inant coupling in the Franck-Condon region. Its character is similar to the full harmonic

model described in Fig. 3.3a, but its frequency is shifted to about 61 cm−1 upon orthogo-

nalization with the two LAC coordinates.

In essence, a quantum model for describing the B-state predissociation dynamics via the

C-state channel should comprise the following nuclear degrees of freedom at minimum:

the Bromine and matrix coordinates ζR and ζX−B as well as the vibronic coupling modes

q1 and q2. This model can be extended by adding tuning modes, that is harmonic nor-

mal modes from the B ← X spectral density of states. These model extensions will be

discussed in Sec. 4.4 and Sec. 4.5 on the basis of quantum dynamics simulations for the

minimum model in Sec. 4.3 of the following chapter.
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4 Quantum Dynamics Simulations

4.1 The Multi-Configuration Time-Dependent Hartree

Method

The multi-configuration time-dependent Hartree (MCTDH) method [93,106,107,154–157]

has been specifically designed to provide a numerically tractable approach for solving the

time-dependent Schrödinger equation:

i~Ψ̇ = HΨ (4.1)

in case of multi-dimensional systems. Considering a system with f nuclear degrees of

freedom k, which may be represented by a set of generalized coordinates {Qk} incorporating

the large-amplitude as well as normal mode coordinates ζ and q of the previous sections,

the basic concepts behind this method can be illustrated best in contrast to the standard

wave packet propagation approach. Establishing the collective index J = (j1, · · · , jf ) the

standard expansion of the multi-dimensional wave function Ψ into a direct product basis

set XJ of time-independent basis functions χ(k)
jk

(Qk) with the time-dependent expansion

coefficients CJ = Cj1···jf
(t) reads:

Ψ({Qk}; t) =

N1∑

j1=1

· · ·
Nf∑

jf =1

Cj1···jf
(t)

f∏

k=1

χ
(k)
jk

(Qk) ≡
∑

J

CJXJ . (4.2)

Here, Nk denotes the number of basis functions χ(k)
jk

(Qk) required for representing the kth

degree of freedom. Practically, for evaluating the action of H onto Ψ, these basis functions

are often chosen to be DVR/FBR (grid) functions [158–161]. A comprehensive review of

common DVR techniques is given in Ref. [106]. Using expansion Eq. (4.2) and applying

the Dirac-Frenkel variational principle to Eq. (4.1):

〈δΨ|H − i~ ∂
∂t
|Ψ〉 = 0 (4.3)

the following equations of motions (EOM) for the expansion coefficients CJ can be obtained:

i~ĊJ =
∑

L

HJLCL , (4.4)

where HJL = 〈XJ |H|XL〉 denote the matrix elements of the Hamiltonian in the above

product basis set. Assuming the same number Nk = N of grid points for all k, the
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numerical effort in evaluating Eq. (4.4) becomes proportional to fNf+1. In principle, this

exponential scaling restricts the applicability of the direct product expansion, Eq. (4.2), to

the quantum description of a few nuclear degrees of freedom only.

Based on the early multi-configurational ideas of Refs. [154, 162] the following ansatz for

the wave function Ψ has been proposed [93,106,107,155–157]:

Ψ({Qk}; t) =

n1∑

j1=1

· · ·
nf∑

jf =1

Aj1···jf
(t)

f∏

k=1

φ
(k)
jk

(Qk; t) ≡
∑

J

AJΦJ (4.5)

to overcome these limitations of the numerically exact propagation. Now, the time-dependent

expansion coefficients AJ = Aj1···jf
(t) refer to time-dependent configurations ΦJ , which, in

turn, are represented by f -dimensional Hartree products of time-dependent single-particle

functions (SPFs) φ(k)
jk

(Qk; t). Since these products of one-dimensional wave packets are

able to follow the propagation of the system, the individual numbers nk of single-particle

functions required for representing the kth degree of freedom are usually much smaller

than the numbers Nk of grid points in the respective time-independent representation

Eq. (4.2). Numerically, each SPF φ
(k)
jk

(Qk; t) is represented by a linear combination of

time-independent basis (grid) functions χ(k)
ik

(Qk):

φ
(k)
jk

(Qk; t) =

Nk∑

ik=1

cjk,ik(t)χ
(k)
ik

(Qk) . (4.6)

Hence, in the limiting case nk → Nk Eq. (4.5) recovers the numerically exact expansion

of the wave function Eq. (4.2). However, since both, the expansion coefficients and single-

particle functions are time-dependent, Eq. (4.5) also introduces some ambiguities in the

representation of the wave function. These redundancies can be lifted when applying

additional constraints to the SPFs, e.g. :

〈φ(k)
j |φ

(k)
l 〉 = δjl , (4.7)

〈φ(k)
j |φ̇

(k)
l 〉 = 0 . (4.8)

Further constraints are discussed in Refs. [106,156,157]. Specifically, Eq. (4.7) ensures the

orthonormality of the SPFs at t = t0, whereas Eq. (4.8) minimizes the motions of the SPFs

keeping them orthogonal for all times.

In order to write down the equations of motion for Eq. (4.5) it is helpful to first introduce

single-hole functions :

Ψ
(k)
l = 〈φ(k)

l |Ψ〉 , (4.9)

which, in consequence, permit the following alternative expression for Eq. (4.5):

Ψ =
∑

l

φ
(k)
l Ψ

(k)
l . (4.10)
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Based upon these single-hole functions one can then conveniently define density matrices :

ρ
(k)
jl = 〈Ψ(k)

k |Ψ
(k)
l 〉 (4.11)

as well as mean field matrix elements acting on the kth degree of freedom only:

〈H〉(k)
jl = 〈Ψ(k)

k |H|Ψ
(k)
l 〉 . (4.12)

After having defined the single-particle projector onto the space of single-particle functions

{|φ(k)
jk
〉}:

P (k) =

nk∑

jk=1

|φ(k)
jk
〉〈φ(k)

jk
| (4.13)

one can employ Eq. (4.11)-Eq. (4.13) for the optimization of the MCTDH coefficients

and single-particle functions according to the Dirac-Frenkel variational principle Eq. (4.3).

Applying the constraints Eq. (4.7) and Eq. (4.8) the following coupled MCTDH equations

of motion can be derived [106,107]:

i~ȦJ =
∑

L

〈ΦJ |H|ΦL〉AL , (4.14)

i~φ̇
(k)

=
(
1− P (k)

)(
ρ(k)

)−1
〈H〉(k)φ(k) . (4.15)

Here, φ(k) = (φ
(k)
1 , . . . , φ

(k)
nk )T refers to a column vector of the individual SPFs φ(k)

jk
, and

ρ(k) and 〈H〉(k) to the respective density and mean field matrices defined by Eq. (4.11) and

Eq. (4.12).

Note, that the eigenvectors and eigenvalues of the density matrix ρ(k), the so-called natural

orbitals and natural populations, are unique quantities with respect to the chosen SPFs,

such, that the population of the highest natural orbital provides a measure for the conver-

gence of a MCTDH calculation.

To avoid the direct evaluation of f - and f−1-dimensional integrals in the calculation of the

Hamilton matrix elements Eq. (4.14) and mean fields Eq. (4.15) the MCTDH package [163]

utilizes a separate representation of the Hamiltonian in terms of sums over products of one-

dimensional operators, similar to expansion Eq. (4.5). For this purpose any user-supplied

PES can be fit into such separable terms using the internal Potfit algorithm [164, 165].

Given s expansion terms and assuming n single-particle functions and N grid points for

all f degrees of freedom, the total effort in evaluating Eq. (4.14) and Eq. (4.15) scales

proportional to sfn(N2 + fnf), which is advantageous over fNf+1 from Eq. (4.4) as long

as n≪ N .

Since the time-dependent Schrödinger Eq. (4.1) is an initial value problem it requires an

initial guess Ψ(t = 0), e.g. a simple Hartree product of 1D-eigenfunctions of uncoupled

Hamiltonians. Based on this first guess the true ground state wave function Ψ0 of a coupled

Hamiltonian can then be generated by propagating the initial wave packet in imaginary

time t → −iτ . Establishing the time-dependent expectation value E(τ) of H it follows
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from the formal solution of this propagation [106]:

Ψ(τ) = exp

(∫
[E(τ)−E0]dτ

)
exp(−[H −E0]τ/~)Ψ(0) , (4.16)

that Ψ(τ) relaxes towards the ground state with the energy E0 while damping out all other

eigenstate contributions and preserving the norm of the wave function.

For the specific treatment of non-adiabatic systems a particular MCTDH extension, the

so-called multi-set formalism has been developed [93,106,107,150,157,166,167] employing

different sets of single particle functions for each electronic state. Therefore, the wave

function Ψ as well as the HamiltonianH need to be expanded into the set {|a〉} of electronic

states:

|Ψ〉 =
∑

a

Ψ(a)|a〉 , (4.17)

H =
∑

a

∑

b

|a〉H(ab)〈b| , (4.18)

where each wave function Ψ(a) is expanded into MCTDH form (cf. Eq. (4.5)) individually.

Labeling the distinct electronic states by additional superscripts a and b the following

multi-set equations of motions can be obtained on the basis of Eq. (4.14) and Eq. (4.15)

[106,157,167]:

i~Ȧ
(a)
J =

∑

b

∑

L

〈Φ(a)
J |H(ab)|Φ(b)

L 〉A
(b)
L , (4.19)

i~φ̇
(a,k)

=
(
1− P (a,k)

)(
ρ(a,k)

)−1∑

b

〈H〉(ab,k)φ(b,k) . (4.20)

Independent of single or multi-set formulation, the MCTDH equations of motion, e.g.

Eq. (4.14) and Eq. (4.15) form a system of coupled non-linear differential equations of first

order. Alternative to their standard integration in terms of predictor-corrector methods,

which is referred to as variable mean-field (VMF) [106] integration scheme, the MCTDH

package [163] provides another integration scheme specifically developed for the numeri-

cally efficient solution of both equations. This so-called constant mean-field (CMF) [157]

integration scheme utilizes the fact, that the Hamiltonian matrix elements 〈ΦJ |H|ΦL〉, as

well as the products of the inverse density and mean field matrices
(
ρ(k)

)−1 〈H〉(k), change

much slower in time than the MCTDH coefficients and single-particle functions, such that

the former matrix elements can be kept constant over some time. In consequence, the

differential equation for the A-vector, Eq. (4.14), turns into a set of linear equations with

constant coefficients, which can be solved most efficiently using the short iterative Lanczos

(SIL) or Lanczos-Arnoldi integrators as implemented in [163]. Similarly, the differential

equation for the single-particle functions, Eq. (4.15), splits up into each subsets of un-

coupled, but still non-linear equations, which can be integrated using the implemented

Bulirsch-Stoer (BS) extrapolation method.
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4.2 Grid Representation of the Reaction Surface

For a quantum description of the LAC motions it is necessary to transform the Cartesian

reaction surfaces from Fig. 3.4 into a an appropriate discrete variable representation (DVR).

This transformation can be accomplished via a finite basis set representation (FBR) of the

position operator. Upon diagonalizing its matrix representation one obtains the respective

position eigenvalues and eigenfunctions (δ-functions). The matrix elements of the potential

energy operator in the discrete variable representation can then be obtained by evaluating

the potential energy at these eigenvalues of the position operator. Furthermore, the eigen-

vector coefficients of the position operator provide the linear combinations for the unitary

transformation between the DVR and FBR of the potential energy operator. This way the

matrix elements of the potential energy operator in FBR can be calculated efficiently. In

particular, the latter representation takes advantage of the fact, that the matrix elements

of the kinetic energy operator can be calculated analytically [106].

In order to find an optimal DVR for the representation of the reaction surface it is necessary

to estimate the accessible energy and coordinate range of the process under investigation.

Focusing, for instance on a Franck-Condon vertical excitation [168,169] from the electronic

ground state X to the electronic B-state the reflection principle [1, 169–171] can provide

the required information. According to this principle the energy distribution of ground

state wave packet in the electronically excited state is determined by its initial width and

the gradient of excited state potential at the ground state equilibrium geometry. This prin-

ciple is exemplified in Fig. 4.1a for a one-dimensional cut of the PES (cf. Fig. 3.4) along

the Bromine coordinate ζR. It is shown, that the energy distribution of the Br2 ground

state wave packet in the electronic B-state is centered around the B ← X Franck-Condon

excitation energy within a total energy interval of 0.07 ≤ E ≤ 0.12, which covers about

124 and 140 vibrational levels on the B- and C-state surfaces, respectively. This energy

interval corresponds to a maximum kinetic energy of 0.05 Eh gained by the system upon

excitation to the B-state. In mass-weighted coordinates ζ, where the respective momentum

operator is defined by pζ = ~

i
∂
∂ζ this energy value corresponds to a maximum momentum

of 13.5 ~/amu1/2a0.

The number of grid points required for properly representing this momentum value not

only depends on the extension of the PES along both LAC, but also on the particular

basis set employed. According to Fig. 4.1b the coordinate intervals of all these PES

at the respective cutoff energy of 0.12 Eh are given by ζR ∈ [−6, 38]=̂44 amu1/2a0 and

ζX−B ∈ [−68, 47]=̂115 amu1/2a0. In case of a Colbert-Miller DVR [172] or an exponential

DVR [159, 173, 174], which is related the fast Fourier transform (FFT) pseudo-spectral

method [162, 175], that is when using either particle-in-a-box functions or plane waves as

FBR basis sets, one would require 200×500 grid points for a proper DVR representation of

the reaction surface. However, in case of a harmonic oscillator (Hermite) DVR [158,160,161]

(for details see Sec. 5.6 of the Appendix), only 160 × 400 are required for describing the

accessible energy and coordinate range at the same quality. Thus the harmonic oscillator

eigenfunctions provide a more compact representation as compared to one of the former
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Figure 4.1: (a) Reflection principle applied to the electronic B ← X Franck-Condon vertical
transition for a one-dimensional cut of the PES from Fig. 3.4 along the Bromine coordinate
ζR. The corresponding energy distribution of the initial ground state wave packet is shown
to approximately cover 124 and 140 vibrational levels in the respective electronic B- (dash-
dotted curve) and C-states (dashed curve). (b) Close-up view of theX- and lower adiabatic
BC-state surface showing the grid extension along the coordinates ζR and ζX−B for a cutoff-
energy of 0.12 Eh (isopotential contour lines are drawn at 0.0007, 0.0200, 0.0450, 0.0685,
0.0693, 0.0719, 0.0750, 0.0800, 0.0900, 0.1000, 0.1100 and 0.1200 Eh).

basis sets, since the respective DVR grid points are not equidistant. This way one can

explicitly save 36000 grid points in the DVR representation of the reaction surface, which

is particularly relevant for a numerically exact solution of the Schrödinger equation.

4.3 A Four-Dimensional Minimum Model

As it has been detailed in Sec. 3.2.2 and Sec. 3.3 the theoretical description of the vibron-

ically coupled B- and C-state dynamics requires a four-dimensional model at minimum.

Specifically, this model incorporates both large amplitude coordinates shown in Fig. 3.2,

which span up the Cartesian reaction surfaces from Fig. 3.4, as well as both coupling modes

depicted in Fig. 3.6, which provide the linear vibronic B,C-state coupling elements from

Fig. 3.5. Explicitly, the matrix representation of time-dependent Schrödinger equation
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Eq. (4.1) for this model reads:

i~
∂

∂t





ΨX

ΨB

ΨC

ΨC′




=





T + VX −µXBE(t) 0 0

−µBXE(t) T + VB −V ∗
BC VBC′

0 −VBC T + VC 0

0 V ∗
BC′ 0 T + VC′









ΨX

ΨB

ΨC

ΨC′




.(4.21)

Employing the mass-weighted large-amplitude coordinates ζR and ζX−B as defined by

Eq. (3.29) and Eq. (3.30) in Sec. 3.2.2 and the dimensionless oscillator coordinates q1 and

q2 together with respective frequencies ω1 and ω2 from Sec. 3.3 the kinetic energy operator

T is given by:

T = −~
2

2

(
∂2

∂ζ2
R

+
∂2

∂ζ2
X−B

)
− ~

2

(
ω1

∂2

∂q21
+ ω2

∂2

∂q22

)
. (4.22)

Particularly, the usage of orthogonal coordinates has the advantage that there appear no

kinetic couplings in Eq. (4.22), at least as long as one does not explicitly consider the effect

of librational motion, which, however, was found to be small in Sec. 2.4.3.

Focusing on the potential energy operator representation in Eq. (4.21) its diagonal matrix

elements are given by:

Va = Ua(ζR, ζX−B) +
~

2

(
ω1q

2
1 + ω2q

2
2

)
(4.23)

as a sum of the harmonic potential energy contributions of the coupling modes q1 and q2
and the potential energy surfaces Ua(ζR, ζX−B) with (a = X,B,C,C ′) from Fig. 3.4. Note,

that the diabatic C-states are degenerate, that is UC = UC′ .

Its off-diagonal elements, in turn, are determined by the linear vibronic coupling contribu-

tions f (1)
BC(ζX−B) and f (2)

BC(ζX−B) of both coupling modes:

VBC = VBC′ = ~f
(2)
BC(ζX−B)q2 + i · ~f (1)

BC(ζX−B)q1 (4.24)

as function of the B,C crossing seam shown in Fig. 3.5 of Sec. 3.3. As consequence of

the complex valued DIM-Hamiltonian matrix Eq. (2.18), and its derivatives detailed in

Sec. 5.2 and Sec. 5.5 of the Appendix, the second term of Eq. (4.24) is purely imaginary

(cf. Eq. (4.21)).

In order to describe the laser excitation process a linear approximation to the coordinate

dependence of the electronic B ← X transition moment with the ground state equilibrium

geometry serving as a reference has been utilized:

µXB = µ
(0)
XB +

∂µXB

∂ζR
ζR (4.25)

adapting the respective parameters µ(0)
XB = 0.15 ea0 and ∂µXB/∂ζR = 0.01 e/amu1/2 from

Refs. [176–178]. Further, employing the semi-classical dipole approximation the laser field
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Figure 4.2: Typical laser pulse applied in the simulation of a B ← X vertical transition
with a respective electronic transition moment µ(0)

XB = 0.15 ea0 and a resonance frequency
~ω = 0.09 Eh for a pulse duration of σ = 18 fs and a field strength of E0 = 0.005 Eh/ea0,
see Eq. (4.26).

itself has been taken into account in the following form:

E(t) = E0 exp(−t2/2σ2) cos(ωt) . (4.26)

A typical laser pulse applied in the simulations is shown in Fig. 4.2. Its corresponding

parameters field strength E0 = 0.005 Eh/ea0 and duration σ = 18 fs refer to an experimental

pulse [13] with a full width at half maximum (FWHM) intensity of 30 fs, a laser spot

diameter 50 ≤ d ≤ 100 µm with a spot area A = π
4d

2 and a pulse energy of E = 1 µJ 1.

For the description of the quantum dynamics on the different electronic states a harmonic

oscillator DVR (cf. Sec. 4.2) of Eq. (4.21) has been applied using the multi-set formulation

of the MCTDH method (cf. Sec. 4.1). The respective grid parameters for the present 4D

minimal model, as well as the models presented in the following sections, are compiled in

Tab. 4.1. Using the fact that the dipole operator Eq. (4.25) acts along ζR only the constant

mean field (CMF) propagation scheme [106] as implemented in the MCTDH package [163]

can be applied to the numerical integration of the coupled equations of motion Eq. (4.19)

1Switching to the complex representation 2 cos(ωt) = exp(iωt) + exp(−iωt) of the cosine in Eq. (4.26),
the field strength E0 of the laser pulse can be calculated from the relation [145]:

E =
Aε0c0

ω

Z

[iĖ†E + c.c.]dt ,

where ε0 is the vacuum permittivity (electric constant) and c0 the speed of the light. Using the
intermediate result 2ωE2

0 exp(−t2/τ2) for the integrand together with the integral
R ∞
0

exp(−t2/τ2) =
√

π
2

τ the following expression can be obtained:

E = Aε0c0E2
0

√
πτ giving E0 =

2

d

r

E

π3/2ε0c0τ

after some rearrangement.
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Table 4.1: Parameters used for the MCTDH propagation of different models. All coordi-
nates were represented by a harmonic oscillator DVR using Nk grid points; the numbers of
SPFs per DOF, nk, are given in the last columns for the respective electronic states. The
numbers in parenthesis refer to reference calculations used to check the convergence of the
results.

Mode Nk X B C C ′

ζR 160 2 (3) 10 (15) 10 (15) 10 (15)
ζX−B 400 2 (3) 10 (15) 10 (15) 10 (15)
q1 10 (100) 1 (2) 2 (3) 2 (3) 2 (3)
q2 10 (100) 1 (2) 2 (3) 2 (3) 2 (3)
q3 65 1 (2) 10 (15) 10 (15) 10 (15)
q̃1 300 1 1 1 1
q̃2 100 1 1 1 1
q̃3 400 1 1 1 1
q̃4 200 1 1 1 1
q̃5 200 1 1 1 1
q̃6 200 1 1 1 1
q̃7 250 1 1 1 1
q̃8 150 1 1 1 1
q̃9 100 1 1 1 1
q̃10 80 1 1 1 1
q̃11 60 1 1 1 1
q̃12 70 1 1 1 1
q̃13 50 1 1 1 1
q̃14 25 1 1 1 1
q̃15 30 1 1 1 1
q̃16 10 1 1 1 1
q̃17 65 1 1 1 1
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and Eq. (4.20). Specifically, the A-vector and the SPFs have been integrated applying the

complex Lanczos-Arnoldi and Bulirsch-Stoer integrators of the respective maximal orders

15 and 9 with an error tolerance of 10−7 atomic units.

For analyzing the wave packet dynamics the following reduced two-dimensional densities

along the coordinates ζR and ζX−B:

ρa(ζR, ζX−B; t) =

∫∫
|Ψa(ζR, ζX−B, q1, q2; t)|2 dq1dq2 , (4.27)

together with the one-dimensional reduced density for ζR:

ρa(ζR; t) =

∫
ρa(ζR, ζX−B ; t) dζX−B (4.28)

and, likewise, for ζX−B, will be used. Furthermore, focusing on the B- to C-state predis-

sociation the relative C-state(s) population defined as:

P (t) =
PC(t) + PC′(t)

1− PX(t)
, (4.29)

will be monitored, where the individual electronic populations are obtained from:

Pa(t) =

∫
ρa(ζR; t) dζR . (4.30)

In order to unravel the mechanistic aspects of the B- to C-state predissociation laser-driven

wave packet simulations have been performed with focus on the dynamics of the relative

C-state population, Eq. (4.29), in dependence on different initial conditions, which have

been obtained as vibrational eigenstates of one-dimensional X-state PES cuts using the

MCTDH package [163]. For this purpose, the following three scenarios have been chosen

for a closer examination:

(I) a Franck-Condon vertical excitation starting from the vibrational ground state,

(II) a resonant excitation starting from the first vibrationally excited state along the

Bromine coordinate ζR, and

(III) a resonant excitation starting from the first vibrationally excited state along the

vibronic coupling mode q2.

The population dynamics for the three different initial conditions is shown in Fig. 4.3. For

the given laser parameters the total population transfer to the B-state out of the electronic

ground state X amounts to about 8%. One of the first things one notices on inspecting

Fig. 4.3 is a step-wise increase of the C-state population during the time intervals 400-550

fs and 1300-1450 fs as a common feature in all three cases considered. In between these

two intervals there is approximately a plateau where the population does not change sig-

nificantly. A similar plateau is observed after 1450 fs. Note, that the overall population

58



Quantum Dynamics Simulations

0.0

0.5

1.0

1.5

2.0

2.5

 0  500  1000  1500  2000

R
el

at
iv

e 
Po

pu
la

tio
n 

[%
]

t [fs]

(I)

(II)

(III)

Figure 4.3: Population dynamics (relative C-state population, Eq. (4.29), 4D model) for
(I) a Franck-Condon vertical transition, (II) a vibrational preexcitation of the Bromine
coordinate ζR lowering the excitation energy, and (III) a vibrational preexcitation of the
B2g-mode q2. The scenario of a vibrational preexcitation of the matrix coordinate ζX−B

has been taken out of explicit consideration, since test calculations along these lines have
shown almost no effect. Note, that the two C-states are approximately equally populated.

transfer during the first 2 ps amounts to 1-2.5% only, depending on the initial state.

In order to get an impression about the general wave packet dynamics following upon laser

pulse excitation to the electronic B-state it is instructive to focus on case (I) as reference

first, that is, the Franck-Condon excitation starting from the vibrational ground state.

Fig. 4.4 shows the respective time-evolution of the reduced 2D density, Eq. (4.27), on the

diabatic B-state PES as series of snapshots taken at characteristic points in time. Around

time t = 0 fs the wave packet emerges in the Franck-Condon region of the excited B-state

surface. At about 50 fs it has reached the crossing seam without significant motion along

the matrix coordinate. At t = 225 fs the wave packet arrives at the outer turning point

of the B-state potential from where it is reflected also in direction of the collective matrix

coordinate. The next snapshot shows the wave packet at 400 fs when it passes the crossing

seam for the second time, now, however, with its center significantly displaced along the

matrix coordinate. After about 450 fs the wave packet hits the inner turning point of

the B-state potential completing the first round trip of the Bromine coordinate. The last

snapshot shows the wave packet at the end of the propagation interval (2 ps). Altogether

the wave packet exhibits a parabolic motion on the B-state surface.

A more specific view onto the non-adiabatically coupled B- and C-state dynamics is pro-

vided when analyzing the individual reduced 1D densities, Eq. (4.28), and expectation

values of the kinetic energy of the Bromine and matrix coordinates, for case (I) in Fig. 4.5.

The respective 1D reduced densities in Fig. 4.5a and Fig. 4.5c reveal an approximate 1 : 2

ratio for the periods of the Bromine and matrix motions. This ratio can now be correlated

with the population dynamics shown in Fig. 4.3. A steep rise in the C-state population

occurs whenever the center of the wave packet passes the crossing seem and is displaced

along the matrix coordinate. Comparing Fig. 4.5a and Fig. 4.5c this condition is matched
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Figure 4.4: Snapshots showing the time-evolution of the 2D reduced density ρB(ζR, ζX−B)

(isodensity values 0.0001, 0.0003, 0.0005, 0.001, 0.003, 0.005, 0.01, 0.03) on the diabatic
B-state surface (contour levels 0.069, 0.08, 0.09, 0.10, 0.11, 0.12 Eh) after Franck-Condon
excitation, case (I). The position of the crossing seam (cf. Fig.3.5a) is indicated by a
vertical line.
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Figure 4.5: Franck-Condon excitation, case (I): Time-dependent reduced 1D B-state densi-
ties for (a) the Bromine coordinate ρ(B)(ζR, t) (isodensity values 0.001, 0.003, 0.005, 0.007,
0.01, 0.03) and (c) the matrix coordinate ρ(B)(ζX−B, t) (isodensity values 0.002, 0.004,
0.006, 0.008, 0.01, 0.02), together with the time-dependent expectation values of (b) the
Bromine kinetic energy and (d) the matrix kinetic energy (in units 10−3 Eh). The position
of the crossing seam is indicated by a horizontal line in (a).
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Figure 4.6: Trajectories (〈ζR〉, 〈ζX−B〉) for the wave packet center of mass motion on the
diabatic B-state surface following (a) a Franck-Condon vertical excitation without prior
vibrational preexcitation, case (I) (cf. Fig. 4.4), and (b) a resonant excitation of the
vibrationally preexcited Bromine coordinate ζR, case (II). Potential contours are the same
as in Fig. 4.4.

at the times 450 fs and 1350 fs, when the Bromine coordinate is near the inner turning

point and the matrix coordinate at the outer turning point. This finding implies that a

change of the matrix cage coordinate ζX−B is essential for triggering the non-adiabatic

transition. The reason for this behavior can be found in the dependence of the vibronic

coupling strength on the matrix coordinate as shown in Fig. 3.5c of Sec 3.3, i.e. its strong

increase upon cage deformation.

A closer look at the population in the rise intervals shows that there is a small plateau

which corresponds to the situation that the wave packet has passed the crossing seam and

hits the inner turning point. Thus the rise in population originates from a single transfer

event per ζR round trip, occurring either upon bond elongation or contraction. Note, that

the expectation value of the Bromine kinetic energy in Fig. 4.5b exhibits a double peak

structure at the inner turning point, where it does not fall off to zero. Its finite value can

be explained by the two competing processes of wave packet contraction and dispersion at

the inner wall of the B-state PES. Further, when considering the time-evolution of the 1D

densities in Fig. 4.5a and Fig. 4.5c, as well as the snapshots of the 2D density in Fig. 4.4,

one notices that the wave packet stays relatively compact, which suggests a description of

the wave packet motion in terms of time-dependent coordinate expectation values. Such

wave packet based trajectories have already been utilized for the analysis of vibronically

coupled problems by Domcke and Köppel [91] before. Fig. 4.6a shows the projection of

such a wave packet trajectory motion (cf. Fig. 4.4) onto the (〈ζR〉, 〈ζX−B〉)-plane for the

reference case (I). This figure not only provides an alternative view on the conditions for

predissociation, but also highlights the 1:2 resonance of the round trip times by an Lis-

sajous parabola for the wave packet center of mass motion on the B-state PES.
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Figure 4.7: Same as Fig. 4.5, but for a resonant laser pulse excitation to the B-state
starting from the vibrationally preexcited Bromine coordinate ζR, case (II).

Focusing on the effect of different initial conditions in Fig. 4.3, that is vibrational preexcita-

tion in the X-state, for case (II), the preexcitation of the Bromine coordinate ζR, one finds

that the overall population transfer during the first 2 ps is slightly reduced as compared

to case (I). This behavior can be traced back to the fact, that, due to the lowered exci-

tation energy required for fulfilling the resonance condition of the B ← X transition the

wave packet is located deeper in the B-state potential, which reduces the degree of matrix

excitation upon reflection from the matrix wall around the outer turning point. A more

detailed view on this reduced molecule-matrix interaction is provided when comparing the

amplitudes of the Bromine and matrix coordinates in Fig. 4.7a and Fig. 4.7c, as well as the

energy kinetic energies in Fig. 4.7b and Fig. 4.7d to the respective quantities in Fig. 4.5.

Qualitatively, the double peak structure of the Bromine kinetic energy in Fig. 4.7b vanishes

upon wave packet broadening at the inner turning points for t = 1300 fs and t = 1750 fs

(cf. Fig. 4.7a). Further, the oscillations of the matrix kinetic energy in Fig. 4.7d appear

uniform in comparison to Fig. 4.5d indicating a diminishing energy exchange between the

Bromine and matrix coordinates. An overall picture of the dynamics for case (II) can be

inferred from the trajectory in Fig. 4.6b. Apparently, for this excitation condition the

trajectory resembles even more a 1:2 parabolic Lissajous figure, which does not fluctuate

around the outer turning point, hence reflecting the reduced anharmonicity of the PES at

this energy.
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Figure 4.8: Evolution of the density (isodensity values 0.00005, 0.00010, 0.00015) along
the coupling mode q2 in the C-state for (a) case (I) and (b) case (III).

Next, when considering the case (III) in Fig. 4.3 one notices that the preexcitation of the

vibronic coupling mode q2 leads to an increase of the population transfer by a factor of

about 2. Here, even without appreciable matrix coordinate elongation transfer occurs, e.g.

around 1000 fs. Qualitatively this is a consequence of the linear coordinate dependence of

the vibronic coupling operator. In more (semi-)quantitative terms one may think of this

increase in the context of Landau-Zener theory (see, e.g. [179]). Suppose that |m〉 and |n〉
denote the sets of eigenstates of the coupling mode oscillator q2 in the electronic B- and

C-states. For the linear coupling, Eq. (4.24), the non-vanishing transition matrix elements

are then given by:

〈m|q|n〉 ∝
√
n〈m|n− 1〉+

√
n+ 1〈m|n+ 1〉 ,

which follows as consequence of the ladder operator representation of the coordinate opera-

tor in a harmonic oscillator basis set as detailed in Sec. 5.6. Thus, starting from B0 (m = 0

level in B-state) the dominant pathway is B0 → C1, whereas upon preexcitation one has

the two pathways B1 → C0 and B1 → C2. This circumstance is illustrated in Fig. 4.8

showing the density along the vibronic mode q2 in the C-state. Here it is confirmed that

for case (I) only the n = 1 vibrational eigenstate of q2 is populated, whereas the respective

wave packet in case (III) is a mixture of the n = 0 and n = 2 vibrational eigenstates.

4.4 Systematic Extension: 5D Model

In Sec. 3.2.2 it has been shown, that the matrix coordinate ζX−B already resembles the

linear coupling of the tuning modes (cf. set G1 in Eq. (3.24) of Sec. 3.1.3) in the Franck-

Condon region of the B-state to a large extend. However, particularly when comparing

the spectral weights of the B ← X transition in Fig. 3.3a to the normal mode projection of

ζX−B in Fig. 3.3b for the dominant peak at 63 cm−1 one notices that the effective matrix

coordinate cannot completely reproduce the coupling of this specific normal mode. In order

to recover that part of coupling missing in the LAC description the individual gradients

of the B-state diagonal matrix elements can be mapped onto those ground state normal
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Figure 4.9: (a) Coupling to the B ← X-transition and (b) atomic displacement vectors of
the tuning mode q3 (ω3 = 61.4 cm−1) with Ag symmetry.

modes qk with k = 1, . . . , 3N−5, which are orthogonal to the reaction plane. The absolute

values of the resulting linear intra-state coupling constants f (B)
k determined in the Franck-

Condon region of the B-state PES are shown in Fig. 4.9a. Next to an almost continuous

distribution of weakly coupling modes within the interval 10 ≤ ω ≤ 57 cm−1 one again

finds a dominant contribution similar to Fig. 3.3a, which now appears at a frequency of

ω = 61 cm−1. The respective atomic displacement vectors in Fig. 4.9b clearly identify this

mode as Belt mode with Ag symmetry. This normal mode corresponds to the dominant

contribution in Fig. 3.3 of Sec. 3.2.2, however, with its respective frequency ω3 shifted due

to the orthogonalization.

It is thus suggestive to add this mode q3 to the 4D minimal model from Sec. 4.3. For

this purpose, next to the linear coupling f (B)
3 of this tuning mode within Franck-Condon

region of the B-state PES also its dependence f
(B)
3 (ζR, ζX−B) along the Bromine and

matrix coordinates is required. Rather than explicitly evaluating this force at each grid

point of the reaction surface its dependence can be approximated by means of the second

derivatives k(B)
3,R and k(B)

3,X−B of the B-state potential with respect to q3, ζR and ζX−B:

f
(B)
3 (ζR, ζX−B) ≈ k

(B)
3,R · ζR + k

(B)
3,X−B · ζX−B . (4.31)

In turn, these mixed second derivatives, which may be abbreviated as k(B)
3,s with s =

R,X − B, can be obtained from mass-weighted Hessian matrix elements k̃
(B)
ij via the

following bilinear transform:

k
(B)
3,s =

3N∑

i=1

3N∑

j=1

l3ik̃
(B)
ij ujs , (4.32)

with the coefficients l3i and ujs defining the respective normal mode and LAC representa-

tions, see Eq. (3.7) and Eq. (3.11). Focusing on the dependence of the population transfer

efficiency on different initial conditions there adds a 4th case to three scenarios discussed

in Sec. 4.3, which corresponds to:
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Figure 4.10: Population dynamics (relative C-state population, Eq. (4.29), 5D model) for
(I) a Franck-Condon vertical transition, (II) a vibrational preexcitation of the Bromine
coordinate ζR, (III) a vibrational preexcitation of the B2g-mode q2 and (IV) a vibrational
preexcitation of the Ag-mode q3. For comparison see Fig. 4.3.

(IV) a resonant excitation starting from the first vibrationally excited state of the tuning

mode q3.

Comparing the population dynamics for the cases shown in Fig. 4.10 to those of Fig. 4.3 one

again finds a similar step-wise population transfer with plateaus in between. Qualitatively,

there appears a new rise interval between t = 1700 and t = 1900 fs, which particularly

dominates in case (III) for the reasons discussed in Sec. 4.3. Quantitatively, this rise interval

leads to an increase of the overall population transfer efficiency, which amounts to 1.5-3.0%

in total. In order to explain this new rise interval it is instructive to first consider the time-

evolution of the reduced 2D density for case (I) in Fig. 4.11. Analog to Fig. 4.4 again the

wave packet describes a parabolic motion on the B-state surface for the first round trip

along the Bromine coordinate and stays compact until the end of the propagation time.

However, when following the wave packet center of mass motion for case (I) in Fig. 4.12a

over the total time interval, it immediately becomes clear, that its trajectory does not form

a simple Lissajous parabola, unlike in Fig. 4.6a. This deviation from the initial 1:2 ratio

of the periods for the Bromine and matrix motions can be attributed to the coupling of

both motions to the tuning mode q3.

A more detailed view on this coupling is provided when analyzing Fig. 4.13 for case (I). For

instance, comparing the reduced 1D densities in Fig. 4.13c and Fig. 4.13e it is seen, that

the time-evolution of the matrix coordinate clearly carries the signature of the tuning mode

oscillation. In particular, this signature is seen for the out-of-phase motion at t = 800 and

t = 1800, where the matrix motion is decelerated by the tuning mode. This deceleration

is accompanied by respective minimum values of the kinetic energy in Fig. 4.13d. For the

in-phase motion, in turn, the matrix coordinate is accelerated and reaches its maximum

kinetic energy in the time interval between 1200 and 1300 fs. Concerning the coupling

and the energy exchange between the tuning mode and the Bromine coordinate, one sees
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Figure 4.11: Snapshots showing the time-evolution of the 2D reduced density ρB(ζR, ζX−B)

(isodensity values 0.0001, 0.0003, 0.0005, 0.001, 0.003, 0.005, 0.01, 0.03) on the diabatic
B-state surface (contour levels 0.069, 0.08, 0.09, 0.10, 0.11, 0.12 Eh) after Franck-Condon
excitation, case (I), within the 5D model. The position of the crossing seam (cf. Fig. 3.5a)
is indicated by a vertical line.
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Figure 4.12: Trajectories (〈ζR〉, 〈ζX−B〉) for the wave packet center of mass motion on
the diabatic B-state surface within the 5D model following (a) a Franck-Condon vertical
excitation without prior vibrational preexcitation, case (I) (cf. Fig. 4.4), and (b) a resonant
excitation of the vibrationally preexcited Bromine coordinate ζR, case (II). Potential
contours are the same as in Fig. 4.11.

that the change of the amplitude of ζR, Fig. 4.13a, as well as the loss of its kinetic energy,

Fig. 4.13b, approximately corresponds to a rise of the kinetic energy of q3 in Fig. 4.13f.

When correlating these results to the population transfer dynamics in Fig. 4.10 it is seen

further, that the rise interval between t = 1700 and t = 1900 fs exactly coincides with the

out-of-phase motion between the matrix and tuning mode oscillations. Thus, next to the

specific constellation of the two large amplitude coordinates at the inner and outer turning

points found in Sec. 4.3 the coupling of the tuning mode q3 to ζX−B adds as a 3rd condition

promoting the population transfer between the B- and C-states. The mechanistic details of

the coupling can be inferred from Fig. 4.14 in terms of an energy gap modulation between

the B- and C-state surfaces. When contrasting the time-evolution of the potential energy

expectation values between the 4D and 5D models, the B- and C-states surfaces only cross

one another two times within the region of interest in Fig. 4.14a, whereas they remain

degenerate running parallel in Fig. 4.14b. In that sense, the tuning mode supports the

population transfer by forcing the degeneracy in the crossing region.

Focusing on the effect of different initial conditions in Fig. 4.10 resulting from vibrational

preexcitation of the coordinates in the electronic ground state, one again finds that the

overall population transfer for case (II) is reduced as compared to case (I). According

to the argumentation of Fig. 4.3 and Fig. 4.7 in Sec. 4.3 the reason can be found in

the excitation of the wave packet at lower energies in the B-state PES, which directly

can be seen from a comparison of the amplitudes for case (I) in Fig. 4.12a and case (II)

in Fig. 4.12b. In particular, the overall reduced molecule-matrix interaction is reflected

by the reduced amplitude and kinetic energy of the Bromine motion when comparing

Fig. 4.15a and Fig. 4.15b to Fig. 4.13a and Fig. 4.13b. Comparing the motions of the
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Figure 4.13: Franck-Condon excitation, case (I), 5D model: Time-dependent reduced 1D
B-state densities for (a) the Bromine coordinate ρ(B)(ζR, t) (isodensity values 0.001, 0.003,
0.005, 0.007, 0.01, 0.03), (c) the matrix coordinate ρ(B)(ζX−B, t) (isodensity values 0.002,
0.004, 0.006, 0.008, 0.01, 0.02) and (e) the tuning mode ρ(B)(q3, t) (isodensity values 0.001,
0.003, 0.005, 0.007, 0.01, 0.03) together with the respective expectation values of (b) the
Bromine kinetic energy, (d) the matrix kinetic energy and (f) the kinetic energy of the
tuning mode. The position of the crossing seam is indicated by a horizontal line in (a).
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Figure 4.14: Temporal evolution of potential energy expectation values showing the
modulation of the energy gap between the B- (dashed) and C-state (dotted) PES (cf.
Fig. 3.4). The encircled region contrasts the energy gap in the time-interval of interest
(1700 ≤ t ≤ 1900 fs, cf. Fig. 4.3 and Fig. 4.10) for case (I) – (a) 4D model and (b) 5D
model.

matrix coordinate and the tuning mode one sees that signature of the latter, Fig. 4.15e, is

still present in reduced density of the Fig. 4.15c at t = 800 fs, but starts to disappear in

the time-interval between t = 1600 and t = 1700 fs. Within about this time-interval the

condition for population transfer in case (II) is matched by the positions of the Bromine

and matrix coordinates in Fig. 4.13a and Fig. 4.13c. However, the respective rise interval of

the C-state population in Fig. 4.10 appears rather flat as compared to case (I), which hints

to a reduced interaction between the tuning mode and the Bromine and matrix coordinates.

This reduced interaction can be understood in terms of Eq. (4.31) relating the coupling

strength of q3 to the amplitude of both coordinates, ζR and ζX−B. In turn, this reduced

coupling not only reduces the overall energy exchange between the tuning mode, Fig. 4.15f,

and the Bromine and matrix coordinates, Fig. 4.15b and Fig. 4.15d, when comparing the

respective kinetic energies to Fig. 4.13, but also lowers the amplitude and period of the

tuning mode oscillation in Fig. 4.15e as compared to Fig. 4.13e.

For the vibrational preexcitation of the tuning mode in case (IV), the coupling of the

tuning mode to the Bromine and matrix coordinates is the same as in case (I), only the

amplitude of the tuning mode oscillation is bigger. Further, the intervals for the population

transfer coincide with case (I). Finally, as a note in caution it should be mentioned, that

the validity of the above findings are of course restricted to those cases of preexcitation

discussed, as well as to those domains of the B-state potential accessed.

4.5 Relaxation to an Effective Bath

Although the 4D and 5D models from Sec. 4.3 and Sec. 4.4 describe the energy transfer

among the Bromine and matrix coordinates as well as their exchange with the tuning mode

q3, they do not account for the energy relaxation into other matrix degrees of freedom. Ex-

perimentally, the total vibrational relaxation rate has been estimated to about 2000−3000
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Figure 4.15: Same as Fig. 4.13, but for a resonant Laser pulse excitation to the B-state
starting from the vibrationally preexcited Bromine coordinate ζR, case (II).
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Figure 4.16: (a)+(c) Effective bath oscillators representing the coupling of the tuning
modes orthogonal to the reaction plane at the four characteristic points of Fig. (b), each
within frequency intervals of ∆ω = 3 cm−1. (b) B-state PES (isopotential contour lines at
0.069, 0.080, 0.090, 0.100, 0.110 and 0.120 Eh).

cm−1/ps for the B-state close to the gas phase dissociation limit [13], so that one should

not attempt to compare these low-dimensional models with the experiment on time scales

exceeding a few round trip times. A straightforward way to account for effects of vibra-

tional energy relaxation within the frame of a system-bath treatment is to supplement the

minimum model from Sec. 4.3 by a finite set of harmonic oscillators, which linearly couple

to the B-state PES as it has been demonstrated exemplarily for q3 in Eq. 4.31 of Sec. 4.4.

This approach is hampered by the fact, that the B ← X transition is characterized by

a quasi-continuous spectral density of states (cf. Fig. 3.3a and Fig. 4.9a) rather than by

a discrete spectrum of few distinct lines. Further, in Sec. 4.4 it has been shown that a

proper description of the coupling requires a linear approximation of its dependence on the

reaction surface. Numerically, however, it is impossible to represent the individual linear

couplings of all tuning modes on the whole grid spanned by the LAC. To overcome this

limitation, a finite set of effective bath oscillators has been introduced, which approximate

the linear couplings of the matrix phonons to the reaction plane at four specific points of

the B-state PES. Therefore, first the linear couplings of the tuning modes orthogonal to the

reaction plane have been determined for the points P1, P2, P3 and P4 along the Bromine

and matrix coordinates as shown in Fig. 4.16b. In a second step, these tuning mode cou-

plings have been rediscretized by calculating the geometric mean of the forces f (B)
k for the

arithmetic mean of the normal modes frequencies ωk, each within a frequency interval of

∆ω = 3 cm−1. The results of this rediscretization are shown in Fig. 4.16a and Fig. 4.16c.

Alongside with this rediscretization technique there goes a loss of information, not only

about specific normal modes, but also on the direction of the linear coupling. That is the

effective bath oscillators obtained this way have no meaning deeper than just to reproduce
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Figure 4.17: Trajectories (〈ζR〉, 〈ζX−B〉) for the wave packet center of mass motion on
the diabatic B-state surface following a Franck-Condon vertical excitation (cf. Fig. 4.18).
Potential contours are the same as in Fig. 4.4.

the absolute value of the coupling, not its sign. The dependence of the effective bath os-

cillators on the Bromine and matrix coordinates has been approximated by the differences

in the linear couplings between each two opposite points on the reaction surface. Hence,

this approximation differs from the one given in Eq. (4.31) of Sec. 4.4. It has been used,

since a rediscretization of the second order coupling quantities from Eq. (4.32) cannot be

accomplished in a systematic way.

Inspecting the linear couplings in Fig. 4.16 it can be seen, that their magnitude predicts

high vibrational excitations of the bath oscillators, particularly at the points P2 and P4.

These high vibrational excitations can be inferred from Tab. 4.1, where they correlate

to the numbers of DVR functions required to avoid artificial reflection effects at the end

points of the oscillator grid. In consequence, the rather large bath couplings lead to a

strong distortion of the wave packet trajectory along the matrix coordinate as shown in

Fig. 4.17.

A more detailed view on this scenario describing a trapping of the Bromine atoms in the

matrix cage is provided by Fig. 4.18. Focusing on the reduced densities in Fig. 4.18 it

is clear that the separation of the Bromine atoms, Fig. 4.18a, is accompanied by large

amplitude breathing motions of the matrix coordinate, Fig. 4.18c. Only at the very end

of the simulation the onset of a damping of the latter motion becomes visible. Concerning

the energy exchange between the reaction coordinates and the oscillator bath it is seen

that the kinetic energy of the Bromine motion, Fig. 4.18b, is absorbed by the bath and

partially redistributed into the motion of the matrix coordinate, Fig. 4.18d.

As a note in caution one should mention, that the present bath model treats the energy

flow between the effective oscillators only indirectly via coupling to both reaction coordi-

nates, that is a direct exchange via bilinear bath couplings is not contained. Even in case
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Figure 4.18: Franck-Condon excitation, 21D model: Time-dependent reduced 1D B-state
densities for (a) the Bromine coordinate ρ(B)(ζR, t) (isodensity values 0.001, 0.003, 0.005,
0.007, 0.01, 0.03) and (c) the matrix coordinate ρ(B)(ζX−B, t) (isodensity values 0.002,
0.004, 0.006, 0.008, 0.01, 0.02) together with the respective expectation values of (b) the
Bromine kinetic energy and (d) the matrix kinetic energy. The position of the crossing
seam is indicated by a horizontal line in (a).
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of the 17 effective oscillators considered here such attempt would lead to 136 additional

couplings, which again explicitly depend on the reaction surface.

Technically, the representation of the 17-dimensional wave function for the oscillator bath

can only be handled in Hartree approximation using one SPF per bath degree of freedom

q̃ as it is indicated in Tab. 4.1. Strictly speaking such Hartree approximation is justified

in case of weak couplings only, if one can assume correlation effects to be small. Further,

for the high vibrational excitations predicted, which are accompanied by high vibrational

amplitudes, the harmonic approximation becomes inadmissible for the bath.

In view of these drawbacks the effective bath approach, which is likely to overestimate

the vibrational relaxation rate in the B-state, has to be considered with caution, since in

addition the Bromine molecule is trapped in a region of the PES, where the energy gap to

other electronic states not included into the model becomes small, such that subsequent

electronic relaxation processes have to be expected. Despite of these drawbacks, however,

the trapping scenario found could explain the persistence of probe signals without signifi-

cant modulation as observed for some probe windows in respective pump-probe spectra of

matrix-isolated Cl2 [180] and Br2 [181], especially in case of high energy excitations with

short pump wavelengths below a certain threshold.

4.6 Spectral Information - The B-state Absorption Spectrum

The reduced dimensionality models of the former sections, Sec. 4.3-Sec. 4.5, have been

designed to specifically describe the short-time aspect of wave packet dynamics. This dy-

namics is characterized by a rather broad energy distribution of the nuclear wave packet

in the B-state triggered by excitation of the respective ground state wave packet via an

ultrashort laser pulse. Next to this wave packet simulations, it would be desirable to also

calculate some time-independent spectroscopic properties of matrix-isolated Br2 for a di-

rect comparison with recent experimental data provided by the Schwentner group [84].

In principle such spectral information can be obtained on the basis of wave packet propaga-

tions via the Fourier transform of the dipole-dipole autocorrelation function [145,182–184].

When applying a discrete Fourier transform with a frequency resolution ∆ω = 2π/N∆t

inversely proportional to the sampling time N∆t such an approach would require the prop-

agation of wave packets on time scales of about 10 ps in order to resolve individual B-state

vibrational levels. However, on this time scale the reaction surface based models of the

former sections reach their limit of applicability for two reasons: First, the excited state

wave function loses its compactness in time, that is the number of single-particle functions

required for its proper representation rapidly increases and converges towards the number

of grid points as in case of a numerically exact calculation. Second, the weak molecule-

matrix couplings neglected in these models are likely to become important on a longer time

scale and one cannot expect the reduced models to hold over this period of time.

Hence, it would be advantageous to have a simple model, which not only takes into account

the full dimensionality of the system, but which is also able to reproduce its main spec-
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Figure 4.19: (a) Vibrational eigenfunctions of the B-state potential with position expec-
tation values (dots) of the Br-Br bond distance in the frozen matrix. Additionally, the
potential energy curves of those states leading to the B-state predissociation are drawn.
(b) Transition amplitudes |〈v′′ = 0|v′〉|2 of the B ← X transitions to the vibrational lev-
els of (a). Note, that the intensities have been normalized to the strongest transition at
v′ = 23. The 1st half of the picture shows the relative intensities for v′ = 0, . . . , 9 on a
logarithmic scale.

troscopic features such as zero-phonon lines (ZPL) and phonon sidebands (PSB) [83, 84].

Neglecting non-adiabatic couplings these features can be described in terms of the stan-

dard Huang-Rhys model (for details see Sec. 5.7 of the Appendix). For this model a closed

expression of the dipole-dipole autocorrelation function in Condon-approximation exists

(see Ref. [145]). However, this model needs to be extended such as to describe the ex-

perimentally observed anharmonicity of the ZPL, as well as the dependence of the PSB

contributions on the Br2 vibrational quantum number [84].

Therefore, the following expression for the optical absorption coefficient has been applied

to the calculation of the B-state absorption spectrum:

σ(ω) ∼
∑

v′

|〈v′′ = 0|v′〉|2 · e−Gv′ (t=0)

t→∞∫

t=0

e−iω0v′t · eGv′ (t) · eiωtdt , (4.33)

where, when adapting the terminology of Ref. [84], the sum runs over the Br2 vibrational

levels v′ in the B-state with v′′ = 0 being the zero level of the X-state. The squared

Franck-Condon factors |〈v′′ = 0|v′〉|2 between the respective eigenfunctions in Eq. (4.33)

reflect the intensities of the B ← X zero-phonon transitions with the associated frequencies

ω0v′ = Ev′−Ev′′=0/~ . These transition frequencies and intensities are depicted in Fig. 4.19b.

The necessary eigenenergies and eigenfunctions have been obtained from 1D potential

energy curves as function the Br-Br bond-distance R in the frozen Ar matrix using the

Fourier grid Hamiltonian (FGH) method [173, 174]. Fig. 4.19a shows these quantities for

the B-state potential of the chromophore. It should be mentioned, that the transition

probabilities from the v′′ = 0 level to the lower vibrational levels v′ of the B-state (cf.
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Fig. 4.19a) are comparatively small. As indicated by the logarithmic scale in the 1st half of

Fig. 4.19b this can be attributed to rather weak Franck-Condon factors, which immediately

can be rationalized by means of the distinct equilibrium distances R(X)
e = 4.35 a0 and

R
(B)
e = 5.12 a0 of the X- and B-state potentials, taking into account, that the ground

state wave packet in the X-state (not shown) is only about half that wide than that in the

B-state.

The time-dependent functionGv(t) appearing in the exponent of the integrand in Eq. (4.33)

carries the complete information about the coupling of the individual lattice normal modes

qk to the B ← X-transition, including the dependence of this coupling on the quantum

number v′ of the Bromine molecule. Explicitly, Gv′(t) has been calculated according to

the following formula (see Ref. [145]):

Gv′(t) =
∑

k

Sv′,ke
−iωkt . (4.34)

At time t = 0 Eq. (4.34) is given by the sum of the individual Huang-Rhys factors Sv′,k.

According to Sec. 5.7 the integral prefactor e−Gv′ (t=0) in Eq. (4.33) weights each ZPL by

the fraction of intensity entering into its corresponding PSB. Gv′(t) itself sums the time-

dependent modulation of the Huang-Rhys factors Sv′,k by the normal mode frequencies ωk,

so that the Fourier transform of this function leads to the spectral density of states defined

in Eq. (3.32) of Sec. 3.2.2. In analogy to Sec. 3.2.2 and Sec. 5.7 the Huang-Rhys factors

in Eq. (4.34) have been calculated from the forces f (B)
v′,k acting on the ground state normal

modes qk in the B-state using dimensionless oscillator coordinates:

Sv′,k =
1

2



f
(B)
v′,k

~ωk




2

, (4.35)

with the modification, that these forces have been determined in dependence on the indi-

vidual bond expectation values 〈v′|R|v′〉 of the Bromine molecule:

f
(B)
v′,k =

∂VB

∂qk

∣∣∣∣
〈v′|R|v′〉

. (4.36)

These bond expectation values are indicated by black dots in Fig. 4.19a. Once the func-

tions Gv′(t), Eq. (4.34), as well as the individual transition amplitudes |〈v′′ = 0|v′〉|2 and

frequencies ω0v′ are known, the complete B-state absorption spectrum can be calculated

according to the Fourier transform given by Eq. (4.33).

Fig. 4.20 contrasts the resulting absorption spectrum versus the experimentally measured

B-state excitation spectrum [84]. Compared are the zero-phonon lines (ZPL) and phonon

sideband (PSB) contributions. Inspecting the vibrational progression of the zero-phonon

lines within the observed interval 2 ≤ v′ ≤ 20 in Fig. 4.20a one immediately recognizes

irregularities in the intensities of the ZPL for v′ = 4, 5 and v′ = 7 − 9. These irregulari-

ties hint to population transfer events via the B-state predissociative channels depicted in
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Figure 4.20: (a) Experimental B-state excitation spectrum [84] showing the vibrational
progression of the zero-phonon lines (ZPL) for Br2 in matrix Ar from v′ = 2 up to v′ =

19, 20 with corresponding phonon sideband (PSB) contributions. (b) Calculated B-state
absorption spectrum (cf. Fig. 4.19b).

Fig. 4.19a. Notice, that the curve crossings predicted on the basis of the 1D effective DIM

potential from Fig. 4.19a approximately coincide with the respective positions observed in

the experiment, Fig. 4.20a. However, the effect of predissociation has not been taken into

account in the present simple model.

Further, when comparing the level spacings of the ZPL between Fig. 4.20a and Fig. 4.20b

one notices a different anharmonicity, particularly for higher vibrational levels v′, which

can be attributed to the deviation of the calculated 1D B-state potential in the frozen Ar

matrix from the true potential containing the average effect of matrix motions.

Concerning the relative intensities of the individual ZPL in Fig. 4.20a one should keep in

mind, that the measured excitation spectrum reflects that fraction of B-state population

emitting from the B-state upon resonant absorption only after the various predissociative

channels from Fig. 4.19a have been passed. That is, when adding those parts of B-state

population lost by predissociation, which experimentally have been verified in the emission

signals of the lower-lying A- and A′-states [84], it should be possible to at least approxi-

mately recover the “pure” absorption spectrum from Fig. 4.20b.

Next, when focusing on the phonon sideband (PSB) contributions in Fig. 4.20 one notices

a qualitative agreement of the PSB structures between the measured and calculated spec-

tra. In both cases one finds a double peaked PSB structure, which, for instance, can be

seen for the sidebands to v′ = 12 and v′ = 13. Further, one notices a dependence of the

PSB contributions on the vibrational quantum number of the Br2 molecule, specifically

from v′ = 10 up to higher vibrational levels. Particularly, the rising intensity of the PSB

contributions is a clear indication for a stronger molecule-matrix coupling with increasing

Br2 vibrational amplitude.

Experimentally, the individual PSB contributions from Fig. 4.20a have been quantified

in terms of cumulative Huang-Rhys coupling constants Sv′. These constants are shown

by filled squares in Fig. 4.21a and may directly be compared to the respective calculated

quantities shown by filled circles, which correspond to Gv′(t = 0). Notice, that both, the

78



Quantum Dynamics Simulations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

 2  4  6  8  10  12  14  16  18  20

S v

v

EXP
DIM

DIM x 2

(a)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 0  10  20  30  40  50  60  70  80  90  100

I 
[I

PS
B

]

ω [cm-1]

EXP
DIM

(b)

Figure 4.21: (a) Huang-Rhys factors (experimental values [84] depicted by squares, calcu-
lated values by circles). (b) Phonon sideband (PSB) to v′ = 12, see Fig. 4.20 (experimental
PSB drawn as solid curve, calculated PSB as dash-dotted curve). Notice, that the approach
given by Eq. (4.35) and Eq. (4.36) is essential for obtaining Fig. (a) and Fig. (b).

experimental and calculated values, follow the same trend of a nonlinear increase with

the vibrational quantum number v′. This increase is even more evident when scaling

the DIM-based values have by a factor of 2. Based on this comparison one could argue

that the DIM model underestimates the forces f (B)
v′,k by a factor of

√
2 as they enter into

Eq. (4.36) quadratically. In particular, this factor may be traced back to the Br-Ar po-

tential, Sec. 2.4.1. However, in this context one should also mention, that the coupling

constants obtained from experiment in terms of the relative intensity and line-width mea-

surements are necessarily afflicted with some error, too.

On the other hand, when considering Fig. 4.21b, which shows close-up views of the PSB

to v′ = 12 from Fig. 4.20, one not only finds a qualitative, but also a semiquantitative

agreement, so that the difference between experiment and theory vanishes. This agreement

facilitates the resolution of the double peaked PSB structure in terms of the individual con-

tributions Sv′,k. Fig. 4.22a shows the corresponding spectrum of the PSB from Fig. 4.21b.
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Figure 4.22: Mode resolved PSB contributions to (a) v′ = 12 (cf. Fig. 4.21b) and (b)
v′ = 20.

79



Spectral Information - The B-state Absorption Spectrum

Figure 4.23: Displacement vectors for two modes of Ag symmetry contributing to the PSB
(cf. Fig. 4.21b and Fig. 4.22) with the harmonic frequencies ω = 24.5 cm−1 (left) and
ω = 25.8 cm−1 (right).

Inspecting this figure one can clearly identify two main peaks at the normal mode frequen-

cies ω = 24.5 cm−1 and ω = 25.8 cm−1 and another dominant peak at 62.8 cm−1. Still, it

has to be checked, whether this mode spectrum of the PSB changes when going to higher

vibrational quantum numbers, for instance to v′ = 20 as shown in Fig. 4.22b. It can be

seen, that, except for higher Sv′,k values, all modes substantially contributing to Fig. 4.22a

also dominate in this case.

Analyzing these normal modes in detail it was found, that the high-frequency peak in

Fig. 4.22 corresponds to the tuning mode q3 discussed in Sec. 4.4. The respective displace-

ments vectors of the other two lower-frequency modes are shown in Fig. 4.23. According

to the opposite sign of the displacement vectors as well as the nearby frequencies it can

be concluded that both modes are quasi-degenerate, which also could explain their higher

intensity contributions in Fig. 4.21b as compared to q3 . It should be mentioned, that

in contrast to the localized Belt mode q3 from Fig. 4.9b both modes in Fig. 4.23 extend

deeper into the crystal than depicted here for the purpose of a better visibility. In other

words, they are less localized at the chromophore, which also explains their lower frequency

as compared to the Belt mode. Altogether, with the aid of these three normal modes the

double peak structure of the phonon sideband can be explained.
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5 Summary and Conclusion

The major investigations and results of the thesis may be summarized as follows:

The Diatomics-in-Molecules method has been implemented for the system Br2 in solid Ar

as detailed in Chap. 2. In Sec. 2.4.2 a specific simulation box containing 700 atoms has been

defined in terms of an extended Ar lattice cut-out along the crystallographic 〈110〉 direc-

tion using cut-off radii of pair potentials and nearest neighbor separations for determining

its particular extension. On the basis of this simulation box the ground state equilibrium

geometries of the system in the electronic X- and B-states have been calculated using a

classical thermostating method. The calculated relaxation effects of the nearest neighbor

Ar atoms in the vicinity of the chromophore are in accordance with the findings of related

MD simulations for Cl2 [17] and Br2 [127,128] molecules in Ar matrices. In addition, the

flexibility and rotational barriers of the Bromine molecule has been investigated for its

double substitutional lattice site in Sec. 2.4.3 leading to a similar angular confinement as

reported for Cl2 in Xe matrices [37].

In Sec. 2.4.4 an approach for reducing the complexity of the DIM Hamiltonian matrix

towards application to specific problems in the context of laser spectroscopy has been pro-

posed. Within this approach the separability of the DIM Hamiltonian matrix has been

explored in terms of a particular block-mask scheme. By imposing the block-diagonal

structure of the molecular Hamiltonian onto the total Hamiltonian the disturbance of its

individual Hund’s case c symmetry blocks by the matrix could be grouped into intra-

symmetric or inter-symmetric couplings. The separate role of both coupling types has

been investigated using a two-step diagonalization procedure. Here a certain separability

of symmetry blocks was found to be preserved for the three different molecular dissocia-

tion limits. Specifically, it was found that the Hund’s case c symmetries of the isolated

molecule approximately retain their meaning within a well-ordered rare gas environment.

This finding verifies the empirical usage of gas phase selection rules in the spectroscopy of

matrix-isolated dihalogens. Furthermore, this separability facilitated the determination of

a relevant subset of potential energy curves for the description of B-state predissociation

with subsequent electronic relaxation in Sec. 2.4.5. Taking into account the Franck-Condon

target energy interval for a resonant B ← X transition it was found that a model Hamil-

tonian of reduced complexity can be approximated by 17 instead of all 36 valence states.

This model Hamiltonian was shown to reproduce the eigenvalue spectrum of the complete

DIM-Hamiltonian within the energy interval given. Moreover, focusing on the regime of

B-state crossings relevant for photo-dissociation it was shown in Sec. 2.4.5 that the reduced

and complete DIM-Hamiltonians reasonably agree in the composition of their eigenvectors.

The present approach to problem-adapted model Hamiltonians shall be particularly useful
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for avoiding the numerical overhead in conventional semi-classical as well as in perspective

“quantum on-the-fly” applications of the DIM method.

In Chap. 3 a reduced but multi-dimensional quantum model for describing the predissocia-

tion of Br2 molecules in Ar has been developed in the frame of a combined CRS and VCH

approach. Therefore, first the theoretical fundamentals of these approaches have been

introduced in Sec. 3.1. Applying the CRS concept to the electronic B ← X transition

two anharmonic large amplitude coordinates have been defined in Sec. 3.2.2. Whereas the

first coordinate describes a linear Br-Br motion, the second coordinate describes a collec-

tive rearrangement of the matrix atoms when going from the equilibrium geometry of the

system in the X-state to its equilibrium geometry in the B-state. Specifically, this ma-

trix coordinate has been defined by interpolating between both mass-weighted equilibrium

geometries and applying subsequent Gram-Schmidt orthonormalization to the Bromine co-

ordinate. Analyzing the matrix coordinate in terms of its normal mode projections, it was

shown, that this coordinate not only resembles the symmetric part of the linear coupling

modes in the Franck-Condon region but also covers an essential part of the whole phonon

spectrum. Further, the calculated phonon spectrum used for comparison was found to

agree well with literature data for pure Ar crystals [7]. In Sec. 3.2.2 the potential energy

surfaces spanned by the two large amplitudes coordinates have been shown to provide a

compact description of the anharmonicity and coupling of the Bromine and matrix mo-

tions. Specifically, this PES was found to mimic the collective effect of those individual,

prototypic cage fragment displacements, which have been analyzed in Sec. 3.2.1 using Belt,

Phonon, Window and Collision atoms. As another important feature it was shown in

Sec. 3.3 that the potential energy surfaces of the B- and C-states exhibit a crossing seam

rather than a conical intersection, since both large amplitude coordinates describe totally

symmetric motions. Applying vibronic coupling theory to the manifold of harmonic normal

modes orthogonal to the PES defined by the large amplitude coordinates two dominant

linear vibronic coupling modes of B2g and B3g symmetry have been identified. For these

two symmetry-breaking normal modes the dependence of the vibronic coupling on the

crossing seam was found to be substantial. Further, the mapping of the potential energy

as a function of the symmetric Bromine coordinate versus the vibronic coupling mode of

B2g symmetry was confirmed to give a conical intersection in adiabatic representation. In

essence, by combining both large amplitude coordinates and both vibronic coupling modes

a four-dimensional Cartesian reaction surface - vibronic coupling Hamiltonian containing

four electronic states has been constructed for describing the B-state predissociation of

Br2 in Ar via C-state channel.

In Chap. 4 quantum dynamics simulations have been performed in the framework of the

multi-configuration time-dependent Hartree (MCTDH) method using the above Hamilto-

nian as a minimal model for further extensions. A brief account of this method was given

in Sec. 4.1, followed by details on the grid representation of the reaction surfaces required

in Sec. 4.2. In order to investigate the wave packet dynamics in the B-state, as well as to

unravel mechanistic aspects related to the B- to C-state predissociation, quantum prop-
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agations of this 4D model have been carried out in Sec. 4.3. For these purposes various

ground state wave packets composed of different initial vibrational levels have been excited

to the B-sate using realistic laser pulses. The results of the wave packet propagation have

have been analyzed in terms of reduced densities and kinetic energy expectation values of

the Bromine and matrix large amplitude coordinates. Monitoring the non-adiabatic transi-

tions in terms of fractions of the B-state population, which is transfered to the degenerate

C-states, a stepwise population transfer was observed. Analyzing the nuclear dynamics

in the B-state potential a parabolic motion of the wave packet with an approximate 1:2

ratio between the periods of the Bromine and matrix motions was found. By correlating

both results it was shown that even though the B-state wave packet passes the B-to C-

state crossing seam two times on each round-trip of the Bromine coordinate, a transition

occurs only once. Specifically, it was found that the transition occurs only in that moment

when the matrix coordinate is maximally elongated. This result has been explained by the

strong increase of the linear vibronic couplings with matrix deformation. Concerning the

mechanistic details of the predissociation it was thus shown, that for being efficient it not

only requires symmetry-breaking linear vibronic coupling modes which generate a conical

intersection, but also a symmetry-preserving cage deformation.

Further, the wave packet dynamics has been studied in a different Franck-Condon region

of the B-state potential using vibrational preexcitation of the Bromine coordinate in the

X-state as a means for lowering the resonance condition of the B ← X transition as

compared to the case of no excitation. Here, an overall reduced elongation of the matrix

coordinate was observed leading to weaker predissociation in consequence. As another

important modification of initial conditions the vibrational preexcitation of the linear vi-

bronic coupling mode of B2g symmetry has been considered. In this case an enhancement

of the predissociation yield by a factor of two, even without appreciable excitation of the

matrix coordinate, was found. Specifically, this finding could be explained in terms of the

doubling of the number of transfer channels as compared to the case of no excitation. This

principle of manipulating the efficiency of the B-state predissociation was recently con-

firmed by spectroscopic experiments of the Schwentner group (unpublished) using shaped

laser pulses, which activate vibronic coupling modes.

The systematic extension of the minimum model was addressed in Sec. 4.4. Here a specific

part of linear couplings not covered by the large amplitude coordinate model was found

to persist in the B-state spectral density of the normal modes orthogonal to the reaction

plane. Analyzing the latter a representative tuning mode of Ag symmetry with Belt atom

character has been identified and added to the model. It was found that the linear coupling

of this specific normal mode depends on the large amplitude coordinates and cannot be

approximated by its value at the vertical Franck-Condon transition geometry exclusively.

Repeating the investigations of Sec. 4.3 for this 5D model and contrasting the results to the

former model it was further found, that the coupling of this tuning mode not only disturbs

the approximate 1:2 ratio between the Bromine and matrix motions, but also increases the

probability of predissociation within a certain interval. Comparing the expectation values
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of the potential energy between both models it was explicitly shown, that the tuning mode

supports the population transfer by reducing the energy gap between the B- and C-state

surfaces. Hence, such an energy gap modulation provides another means for manipulating

predissociation.

In order to specifically account for the effect of vibrational relaxation and energy dissipa-

tion into the matrix the 4D minimal model from Sec. 4.3 was further extended in Sec. 4.5

by the linear coupling of set of 17 harmonic bath oscillators. For this purpose, effective

bath oscillators have been generated from the projected ground state normal modes by

rediscretizing the manifold of tuning mode couplings. The dependence of the latter on the

reaction coordinates has been approximated in terms of the differences between the values

of the linear coupling constants calculated for each two opposite points of the reaction sur-

face at the Franck-Condon energy. As a result of the wave packet propagation a trapping

of the Bromine atoms in the matrix cage accompanied by large amplitude matrix motions

was found and no population transfer was observed. Due to the rediscretization of the

tuning mode couplings, as well as due to their linear approximation to the reaction surface

this model, however, was found to overestimate the effect of vibrational relaxation in the

B-state.

Extending the simulations to the long-time domain, for which a quantum description in

terms of low-dimensional models becomes inaccurate, a simple, but full-dimensional model

containing 2097 nuclear degrees of freedom has been introduced in Sec. 4.6 to calculate the

B-state absorption spectrum. Specifically, this model has been designed as an extension

of the Huang-Rhys model to account for the anharmonicity of the Br-Br potential as well

as to account for the dependence of the linear coupling of the matrix normal modes on

the vibrational excitation of the Br2 molecule. The zero-phonon lines (ZPL) and phonon

sideband (PSB) contributions of the absorption spectrum calculated have been compared

to the excitation spectrum measured [84] finding an overall agreement for both features.

Qualitatively, an approximate double peak structure was found for the PSB contributions

in both cases. Quantitatively, Huang-Rhys coupling constants have been calculated for the

PSB contributions and compared to experimentally determined values. Here it was found,

that the calculated coupling constants not only follow the same trend of a non-linear in-

crease with the quantum number of the ZPL, but also obey the same order of magnitude.

Moreover, the double peak structure of the PSB contributions could be resolved in terms

of individual normal mode contributions. Explicitly, next to the tuning mode discussed in

Sec. 4.4 two other dominant normal modes of Ag symmetry with lower energy have been

identified.

On the technical side, three major improvements related to the calculation of DIM ma-

trix elements have been made in this work: The first improvement concerns the efficient

summation of fragment Hamiltonians at earliest transformation stage in the laboratory

frame as shown in Sec. 2.3.1. The second and the third improvements concern the analytic

calculation of 1st and 2nd order Hamiltonian matrix derivatives as it has been detailed in

Sec. 5.5, that is the calculation of forces, Sec. 5.5.1, and Hessian matrix elements, Sec. 5.5.2.
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Throughout the work, both quantities have been applied extensively to calculate normal

modes, vibrational and spectral densities of states, as well as vibronic coupling constants,

permitting the technical realization of the CRS and VCH concepts this way.

The present study calls for extensions into several directions. One natural extension con-

cerns the control of nuclear wave packets via the external electric field. The laser pulses

applied in this work have just been means for preparing nuclear wave packets in the Franck-

Condon region of the B-state state. In order to manipulate the yield of the predissociation

one could thus try to localize these wave packets in the region of the B- to C-state crossing

using optimal control theory.

Another possible extension concerns the improved treatment of tuning and coupling modes.

For instance, one could include second order couplings or anharmonicity effects. The Morse

parameter β required to account for anharmonicity effects in the matrix modes could be

estimated from the Lennard-Jones parameters of the Ar-Ar potential, that is β = 6/21/6σ.

Also on the methodical side there is plenty of room for future improvements. For instance,

one could apply an effective mode approach to the vibronic coupling problem as recently

proposed for the description of conical intersections in macro-systems [185–187].

In order to circumvent some of the problems arising from an explicit quantum treatment

of the bath (cf. Sec. 4.5) one could couple the present reaction surface model to a classical

bath via time-dependent mean-fields using the Ehrenfest theorem [188]. Such hybrid quan-

tum/classical approach has already been successfully applied to a primitive model of I2 in

rare gas matrices [189–191]. In specific application to non-adiabatic transitions such quan-

tum/classical approach may be combined with the Hellmann-Feynman theorem [192,193]

within a multi-configurational framework using the time-dependent self-consistent field

(Q/C MCTDSCF) approximation [194]. Both approaches offer the on-the-fly calculation

of trajectories for the bath degrees of freedom as a promising alternative. Another two

promising approaches for treating non-adiabatic dynamics in multi-dimensional systems

are the quantum-dressed classical mechanics method [195–198] as well as the variational

multi-configuration Gaussian wave packet (vMCG) method [199–202]. The first method

employs a discrete variable representation of the nuclear wave function in a Gauss-Hermite

basis set, where the grid points follow a classical trajectory in space, the second one employs

a basis set of frozen Gaussian functions within an MCTDH ansatz for the nuclear wave

function. As a major advantage over the conventional quantum approach both method

permit a direct calculation of the PES, that is on-the-fly and in local harmonic approxima-

tion, respectively. Given the possibility of efficiently generating gradients and Hessian the

present DIM approach would be suited for a fusion with these new concepts. Here again

Br2 in solid Ar could serve as prototypic test system, which shows non-adiabatic behavior

due to excited state crossings on one side, as well as classical behavior due to heavy atomic

masses on the other.
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Appendix

5.1 Eulerian Angles

The rotation of a rigid body in the Euclidean space is uniquely defined by three Eulerian

angles α, β and γ and can be understood as a sequence of three consecutive rotations

about two out of three orthogonal body-fixed axes [203, 204]. This sequence is illustrated

in Fig. 5.1 assuming a right-handed coordinate system with a positive sign for the counter-

clockwise rotation.

The first rotation α (0 ≤ α < 2π) about the z-axis of the initial frame (x, y, z), represented

by the operator Rz(α), transfers the coordinates x, y, z into their new positions x′, y′, z′:




x′

y′

z′



 = Rz(α)




x

y

z



 =




cosα sinα 0

− sinα cosα 0

0 0 1








x

y

z



 .

The next rotation β (0 ≤ β < π) about the y′-axis of the new frame (x′, y′, z′), represented

by the operator Ry′(β), carries the coordinates x′, y′, z′ into another positions x′′, y′′, z′′:




x′′

y′′

z′′



 = Ry′(β)




x′

y′

z′



 =




cosβ 0 − sinβ

0 1 0

sin β 0 cos β








x′

y′

z′



 .

Finally, the third rotation γ (0 ≤ γ < 2π) about the z′′-axis of the intermediate frame

(x′′, y′′, z′′), represented by the operator Rz′′(γ), transfers the coordinates x′′, y′′, z′′ into

z’

x’

x’’

y’, y’’

z’’

β

z’’, z’’’

x’’’x’’

y’’

y’’’

γ

x
x’

y’
y

z, z’

α

Figure 5.1: Three successive rotations Rz(α), Ry′(β) and Rz′′(γ) transforming the initial
frame (x, y, z) to the final frame (x′′′, y′′′, z′′′).
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their final positions x′′′, y′′′, z′′′:




x′′′

y′′′

z′′′



 = Rz′′(γ)




x′′

y′′

z′′



 =




cos γ sin γ 0

− sin γ cos γ 0

0 0 1








x′′

y′′

z′′



 .

These final positions can be linked directly to the initial ones by direct multiplication of

the single rotations in the order from right to left:

Rz′′(γ)Ry′(β)Rz(α), (5.1)

where the explicit transformation is given by the matrix:




cos γ cos β cosα− sin γ sinα cos γ cosβ sinα + sin γ cosα − cos γ sin β

− sin γ cosβ cosα− cos γ sinα − sin γ cos β sinα+ cos γ cosα sin γ sinβ

sinβ cosα sin β sinα cosβ



 . (5.2)

Inserting the following substitutions for the single rotation operators:

Ry′(β) = Rz(α)Ry(β)Rz(−α)

Rz′′(γ) = Ry′(β)Rz′(γ)Ry′(−β)

Rz′(γ) = Rz(α)Rz(γ)Rz(−α)

into Eq. (5.1), the equivalence relation Rz′′(γ)Ry′(β)Rz(α) = Rz(α)Ry(β)Rz(γ) is ob-

tained. Thus, the three rotations can be carried out in the same coordinate frame if the

order of rotations is reversed. Since the Eulerian angle γ then parameterizes just one out

of two rotations about the same z-axis, its particular value is arbitrary. For the choice

γ = 0 the transformation matrix Eq. (5.2) simplifies to:




cosβ cosα cos β sinα − sinβ

− sinα cosα 0

sin β cosα sinβ sinα cos β



 . (5.3)

5.2 Supplementary DIM Matrices

The transformation matrix TD,ml
in Eq. (2.12) of Sec. 2.3.2 is given by the linear transfor-

mation |ml〉 = TD,ml
|pD〉 between the real and complex basis sets |pD〉 = {|pπ〉, |pπ̄〉, |pσ〉}

and |ml〉 = {| 1〉, | 0〉, |−1〉}, respectively. In matrix notation this transformation is thus

given by the following expression:




| 1〉
| 0〉
|−1〉



 =




1/
√

2 i/
√

2 0

0 0 1

1/
√

2 −i/
√

2 0








|pπ〉
|pπ̄〉
|pσ〉



 .
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Denoting the individual matrix elements of Eq. (2.12) by Hij with the indices i, j = 1, 2, 3,

the outer product expansion in Eq. (2.13) is given by the following matrix:





H11 0 H12 0 H13 0

0 H11 0 H12 0 H13

H21 0 H22 0 H23 0

0 H21 0 H22 0 H23

H31 0 H32 0 H33 0

0 H31 0 H32 0 H33





.

According to Eq. (2.14) the transformation of this uncoupled Hamiltonian to the spin-

coupled representation |J,M 〉 is determined by the Clebsh-Cordon matrix Tmlms,JM with

the definition:




|32 , 3
2〉

|32 , 1
2〉

|32 ,−1
2〉

|32 ,−3
2〉

|12 , 1
2〉

|12 ,−1
2〉





=





1 0 0 0 0 0

0
√

1/3
√

2/3 0 0 0

0 0 0
√

2/3
√

1/3 0

0 0 0 0 0 1

0
√

2/3 −
√

1/3 0 0 0

0 0 0
√

1/3 −
√

2/3 0









| 1, 1
2〉

| 1,−1
2〉

| 0, 1
2〉

| 0,−1
2〉

|−1, 1
2〉

|−1,−1
2〉





.

Within the spin-coupled representation, the diatomic Hilbert space is introduced by an

outer product of the individual atomic Hilbert spaces for the halogen atoms a and b with

the Hamiltonian matrix elements Ha
ij and Hb

ij , where i, j = 1, . . . , 6. Hence, the different

outer product expansions in Eq. (2.15) and Eq. (2.16) are given by the following matrices:





Ha
11 0 0 0 0 0 Ha

12 0 0 0 0 0 Ha
13 0 0 0 0 0 Ha

14 0 0 0 0 0 Ha
15 0 0 0 0 0 Ha

16 0 0 0 0 0

0 Ha
11 0 0 0 0 0 Ha

12 0 0 0 0 0 Ha
13 0 0 0 0 0 Ha

14 0 0 0 0 0 Ha
15 0 0 0 0 0 Ha

16 0 0 0 0

0 0 Ha
11 0 0 0 0 0 Ha

12 0 0 0 0 0 Ha
13 0 0 0 0 0 Ha

14 0 0 0 0 0 Ha
15 0 0 0 0 0 Ha

16 0 0 0

0 0 0 Ha
11 0 0 0 0 0 Ha

12 0 0 0 0 0 Ha
13 0 0 0 0 0 Ha

14 0 0 0 0 0 Ha
15 0 0 0 0 0 Ha

16 0 0

0 0 0 0 Ha
11 0 0 0 0 0 Ha

12 0 0 0 0 0 Ha
13 0 0 0 0 0 Ha

14 0 0 0 0 0 Ha
15 0 0 0 0 0 Ha

16 0

0 0 0 0 0 Ha
11 0 0 0 0 0 Ha

12 0 0 0 0 0 Ha
13 0 0 0 0 0 Ha

14 0 0 0 0 0 Ha
15 0 0 0 0 0 Ha

16

Ha
21 0 0 0 0 0 Ha

22 0 0 0 0 0 Ha
23 0 0 0 0 0 Ha

24 0 0 0 0 0 Ha
25 0 0 0 0 0 Ha

26 0 0 0 0 0

0 Ha
21 0 0 0 0 0 Ha

22 0 0 0 0 0 Ha
23 0 0 0 0 0 Ha

24 0 0 0 0 0 Ha
25 0 0 0 0 0 Ha

26 0 0 0 0

0 0 Ha
21 0 0 0 0 0 Ha

22 0 0 0 0 0 Ha
23 0 0 0 0 0 Ha

24 0 0 0 0 0 Ha
25 0 0 0 0 0 Ha

26 0 0 0

0 0 0 Ha
21 0 0 0 0 0 Ha

22 0 0 0 0 0 Ha
23 0 0 0 0 0 Ha

24 0 0 0 0 0 Ha
25 0 0 0 0 0 Ha

26 0 0

0 0 0 0 Ha
21 0 0 0 0 0 Ha

22 0 0 0 0 0 Ha
23 0 0 0 0 0 Ha

24 0 0 0 0 0 Ha
25 0 0 0 0 0 Ha

26 0

0 0 0 0 0 Ha
21 0 0 0 0 0 Ha

22 0 0 0 0 0 Ha
23 0 0 0 0 0 Ha

24 0 0 0 0 0 Ha
25 0 0 0 0 0 Ha

26

Ha
31 0 0 0 0 0 Ha

32 0 0 0 0 0 Ha
33 0 0 0 0 0 Ha

34 0 0 0 0 0 Ha
35 0 0 0 0 0 Ha

36 0 0 0 0 0

0 Ha
31 0 0 0 0 0 Ha

32 0 0 0 0 0 Ha
33 0 0 0 0 0 Ha

34 0 0 0 0 0 Ha
35 0 0 0 0 0 Ha

36 0 0 0 0

0 0 Ha
31 0 0 0 0 0 Ha

32 0 0 0 0 0 Ha
33 0 0 0 0 0 Ha

34 0 0 0 0 0 Ha
35 0 0 0 0 0 Ha

36 0 0 0

0 0 0 Ha
31 0 0 0 0 0 Ha

32 0 0 0 0 0 Ha
33 0 0 0 0 0 Ha

34 0 0 0 0 0 Ha
35 0 0 0 0 0 Ha

36 0 0

0 0 0 0 Ha
31 0 0 0 0 0 Ha

32 0 0 0 0 0 Ha
33 0 0 0 0 0 Ha

34 0 0 0 0 0 Ha
35 0 0 0 0 0 Ha

36 0

0 0 0 0 0 Ha
31 0 0 0 0 0 Ha

32 0 0 0 0 0 Ha
33 0 0 0 0 0 Ha

34 0 0 0 0 0 Ha
35 0 0 0 0 0 Ha

36

Ha
41 0 0 0 0 0 Ha

42 0 0 0 0 0 Ha
43 0 0 0 0 0 Ha

44 0 0 0 0 0 Ha
45 0 0 0 0 0 Ha

46 0 0 0 0 0

0 Ha
41 0 0 0 0 0 Ha

42 0 0 0 0 0 Ha
43 0 0 0 0 0 Ha

44 0 0 0 0 0 Ha
45 0 0 0 0 0 Ha

46 0 0 0 0

0 0 Ha
41 0 0 0 0 0 Ha

42 0 0 0 0 0 Ha
43 0 0 0 0 0 Ha

44 0 0 0 0 0 Ha
45 0 0 0 0 0 Ha

46 0 0 0

0 0 0 Ha
41 0 0 0 0 0 Ha

42 0 0 0 0 0 Ha
43 0 0 0 0 0 Ha

44 0 0 0 0 0 Ha
45 0 0 0 0 0 Ha

46 0 0

0 0 0 0 Ha
41 0 0 0 0 0 Ha

42 0 0 0 0 0 Ha
43 0 0 0 0 0 Ha

44 0 0 0 0 0 Ha
45 0 0 0 0 0 Ha

46 0

0 0 0 0 0 Ha
41 0 0 0 0 0 Ha

42 0 0 0 0 0 Ha
43 0 0 0 0 0 Ha

44 0 0 0 0 0 Ha
45 0 0 0 0 0 Ha

46

Ha
51 0 0 0 0 0 Ha

52 0 0 0 0 0 Ha
53 0 0 0 0 0 Ha

54 0 0 0 0 0 Ha
55 0 0 0 0 0 Ha

56 0 0 0 0 0

0 Ha
51 0 0 0 0 0 Ha

52 0 0 0 0 0 Ha
53 0 0 0 0 0 Ha

54 0 0 0 0 0 Ha
55 0 0 0 0 0 Ha

56 0 0 0 0

0 0 Ha
51 0 0 0 0 0 Ha

52 0 0 0 0 0 Ha
53 0 0 0 0 0 Ha

54 0 0 0 0 0 Ha
55 0 0 0 0 0 Ha

56 0 0 0

0 0 0 Ha
51 0 0 0 0 0 Ha

52 0 0 0 0 0 Ha
53 0 0 0 0 0 Ha

54 0 0 0 0 0 Ha
55 0 0 0 0 0 Ha

56 0 0

0 0 0 0 Ha
51 0 0 0 0 0 Ha

52 0 0 0 0 0 Ha
53 0 0 0 0 0 Ha

54 0 0 0 0 0 Ha
55 0 0 0 0 0 Ha

56 0

0 0 0 0 0 Ha
51 0 0 0 0 0 Ha

52 0 0 0 0 0 Ha
53 0 0 0 0 0 Ha

54 0 0 0 0 0 Ha
55 0 0 0 0 0 Ha

56

Ha
61 0 0 0 0 0 Ha

62 0 0 0 0 0 Ha
63 0 0 0 0 0 Ha

64 0 0 0 0 0 Ha
65 0 0 0 0 0 Ha

66 0 0 0 0 0

0 Ha
61 0 0 0 0 0 Ha

62 0 0 0 0 0 Ha
63 0 0 0 0 0 Ha

64 0 0 0 0 0 Ha
65 0 0 0 0 0 Ha

66 0 0 0 0

0 0 Ha
61 0 0 0 0 0 Ha

62 0 0 0 0 0 Ha
63 0 0 0 0 0 Ha

64 0 0 0 0 0 Ha
65 0 0 0 0 0 Ha

66 0 0 0

0 0 0 Ha
61 0 0 0 0 0 Ha

62 0 0 0 0 0 Ha
63 0 0 0 0 0 Ha

64 0 0 0 0 0 Ha
65 0 0 0 0 0 Ha

66 0 0

0 0 0 0 Ha
61 0 0 0 0 0 Ha

62 0 0 0 0 0 Ha
63 0 0 0 0 0 Ha

64 0 0 0 0 0 Ha
65 0 0 0 0 0 Ha

66 0

0 0 0 0 0 Ha
61 0 0 0 0 0 Ha

62 0 0 0 0 0 Ha
63 0 0 0 0 0 Ha

64 0 0 0 0 0 Ha
65 0 0 0 0 0 Ha

66





, (5.4)
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



Hb
11H

b
12H

b
13H

b
14H

b
15H

b
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hb
21H

b
22H

b
23H

b
24H

b
25H

b
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hb
31H

b
32H

b
33H

b
34H

b
35H

b
36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hb
41H

b
42H

b
43H

b
44H

b
45H

b
46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hb
51H

b
52H

b
53H

b
54H

b
55H

b
56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hb
61H

b
62H

b
63H

b
64H

b
65H

b
66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 Hb
11H

b
12H

b
13H

b
14H

b
15H

b
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 Hb
21H

b
22H

b
23H

b
24H

b
25H

b
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 Hb
31H

b
32H

b
33H

b
34H

b
35H

b
36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 Hb
41H

b
42H

b
43H

b
44H

b
45H

b
46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 Hb
51H

b
52H

b
53H

b
54H

b
55H

b
56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 Hb
61H

b
62H

b
63H

b
64H

b
65H

b
66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 Hb
11H

b
12H

b
13H

b
14H

b
15H

b
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 Hb
21H

b
22H

b
23H

b
24H

b
25H

b
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 Hb
31H

b
32H

b
33H

b
34H

b
35H

b
36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 Hb
41H

b
42H

b
43H

b
44H

b
45H

b
46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 Hb
51H

b
52H

b
53H

b
54H

b
55H

b
56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 Hb
61H

b
62H

b
63H

b
64H

b
65H

b
66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hb
11H

b
12H

b
13H

b
14H

b
15H

b
16 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hb
21H

b
22H

b
23H

b
24H

b
25H

b
26 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hb
31H

b
32H

b
33H

b
34H

b
35H

b
36 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hb
41H

b
42H

b
43H

b
44H

b
45H

b
46 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hb
51H

b
52H

b
53H

b
54H

b
55H

b
56 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hb
61H

b
62H

b
63H

b
64H

b
65H

b
66 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hb
11H

b
12H

b
13H

b
14H

b
15H

b
16 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hb
21H

b
22H

b
23H

b
24H

b
25H

b
26 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hb
31H

b
32H

b
33H

b
34H

b
35H

b
36 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hb
41H

b
42H

b
43H

b
44H

b
45H

b
46 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hb
51H

b
52H

b
53H

b
54H

b
55H

b
56 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hb
61H

b
62H

b
63H

b
64H

b
65H

b
66 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hb
11H

b
12H

b
13H

b
14H

b
15H

b
16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hb
21H

b
22H

b
23H

b
24H

b
25H

b
26

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hb
31H

b
32H

b
33H

b
34H

b
35H

b
36

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hb
41H

b
42H

b
43H

b
44H

b
45H

b
46

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hb
51H

b
52H

b
53H

b
54H

b
55H

b
56

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hb
61H

b
62H

b
63H

b
64H

b
65H

b
66





, (5.5)

where the order of the product states to the matrix elements in Eq. (5.4) and Eq. (5.5) is

defined by the state vector on the right hand side of Eq. 5.6.

The latter transformation matrix TJM,Ω is given by Eq. (2.3) in combination with the

linear combination coefficients from Tab. 2.1 and explicitly reads to:





|0+
g 〉
|0+

g 〉
|0+

g 〉
|0+

g 〉
|0−g 〉
|1g〉
|1g〉
|1g〉
|1g〉
|1g〉
|1g〉
|2g〉
|2g〉
|2g〉
|2g〉
|0−u 〉
|0−u 〉
|0−u 〉
|0−u 〉
|0+

u 〉
|1u〉
|1u〉
|1u〉
|1u〉
|1u〉
|1u〉
|1u〉
|1u〉
|1u〉
|1u〉
|2u〉
|2u〉
|2u〉
|2u〉
|3u〉
|3u〉





=
1√
2





0 0 0 0 0 0 0 0 1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1√
2 0 0 0 0 1√

2 0 0 0 0 0 0 0 0 0 −1√
2 0 0 0 0 −1√

2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 0 0 1√
2 0 0 0 0 −1√

2 0 0 0 0 0 0 0 0 0 1√
2 0 0 0 0 −1√

2 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0

0 1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −1 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1√
2 0 0 0 0 −1√

2 0 0 0 0 0 0 0 0 0 −1√
2 0 0 0 0 1√

2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1√
2 0 0 0 0 1√

2 0 0 0 0 0 0 0 0 0 1√
2 0 0 0 0 1√

2 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
√

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0
√

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
√

2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
√

2

0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
√

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
√

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0









|32 , 3
2〉a|32 , 3

2〉b
|32 , 3

2〉a|32 , 1
2〉b

|32 , 3
2〉a|32 ,−1

2〉b
|32 , 3

2〉a|32 ,−3
2〉b

|32 , 3
2〉a|12 , 1

2〉b
|32 , 3

2〉a|12 ,−1
2〉b

|32 , 1
2〉a|32 , 3

2〉b
|32 , 1

2〉a|32 , 1
2〉b

|32 , 1
2〉a|32 ,−1

2〉b
|32 , 1

2〉a|32 ,−3
2〉b

|32 , 1
2〉a|12 , 1

2〉b
|32 , 1

2〉a|12 ,−1
2〉b

|32 ,−1
2〉a|32 , 3

2〉b
|32 ,−1

2〉a|32 , 1
2〉b

|32 ,−1
2〉a|32 ,−1

2〉b
|32 ,−1

2〉a|32 ,−3
2〉b

|32 ,−1
2〉a|12 , 1

2〉b
|32 ,−1

2〉a|12 ,−1
2〉b

|32 ,−3
2〉a|32 , 3

2〉b
|32 ,−3

2〉a|32 , 1
2〉b

|32 ,−3
2〉a|32 ,−1

2〉b
|32 ,−3

2〉a|32 ,−3
2〉b

|32 ,−3
2〉a|12 , 1

2〉b
|32 ,−3

2〉a|12 ,−1
2〉b

|12 , 1
2〉a|32 , 3

2〉b
|12 , 1

2〉a|32 , 1
2〉b

|12 , 1
2〉a|32 ,−1

2〉b
|12 , 1

2〉a|32 ,−3
2〉b

|12 , 1
2〉a|12 , 1

2〉b
|12 , 1

2〉a|12 ,−1
2〉b

|12 ,−1
2〉a|32 , 3

2〉b
|12 ,−1

2〉a|32 , 1
2〉b

|12 ,−1
2〉a|32 ,−1

2〉b
|12 ,−1

2〉a|32 ,−3
2〉b

|12 ,−1
2〉a|12 , 1

2〉b
|12 ,−1

2〉a|12 ,−1
2〉b





(5.6)

5.3 The Nosé-Hoover Thermostat

The Nosé-Hoover (NH) thermostat [130,131,205,206] is a molecular dynamics method for

calculating the equilibrium phase-space distribution of a canonical ensemble at a specific

temperature T . It is based on the extended system (ES) approach by Nosé, in which an
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external heat bath, represented by an additional degree of freedom with the coordinate

s, the mass-like parameter M of dimension [Et2], and the momentum ps, is coupled to a

subsystem of N particles with the masses mi and 3N coordinates xi with momenta pi.

Its Hamiltonian [205,206] has been postulated on the basis of the virtual (scaled) momenta

p′i, p
′
s and times t′:

H(x1, . . . , x3N ; p′1, . . . , p
′
3N ; s, p′s) =

3N∑

i=1

p′2i
2mis2

+ V (x1, . . . , x3N )

+
p′2s
2M

+ 3NkBT ln s , (5.7)

which are connected to the real variables via the following relations:

p′i = s · pi, p′s = s · ps, dt′ = s · dt . (5.8)

Applying Hamilton’s formalism to Eq. (5.7) the following set of canonical equations of

motion for the virtual variables can be obtained:

dxi

dt′
=

∂H

∂p′i
=

p′i
mis2

(5.9)

ds

dt′
=

∂H

∂p′s
=

p′s
M

(5.10)

dp′i
dt′

= −∂H
∂xi

= fi (5.11)

dp′s
dt′

= −∂H
∂s

=

3N∑

i=1

p′2i
mis3

− 3NkBT

s
. (5.12)

Using the chain rule of differentiation together with Eq. (5.8), the Eqs. (5.9)-(5.12) can be

transformed into the respective equations for the real variables:

dxi

dt
= s

dxi

dt′
=

pi

mi
(5.13)

ds

dt
= s

ds

dt′
= s2

ps

M
(5.14)

dpi

dt
= s

dp′i/s
dt′

=
dp′i
dt′
− p′i

s

ds

dt′
= fi − pi · s

ps

M
(5.15)

dps

dt
= s

dp′s/s
dt′

=
dps

dt′
− ps

s

ds

dt′
=

3N∑

i=1

p2
i

mis
− 3NkBT

s
− s p

2
s

M
. (5.16)

Due to additional force terms, Eq. (5.15) and Eq. (5.16) are no longer canonical.

Introducing a thermodynamic friction coefficient with the definition ξ ≡ s ps

M , the following

second order differential equations for the coordinates xi, and first order differential equa-
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tion for the friction coefficient ξ, can be derived from Eqs. (5.15) and (5.16), respectively:

d2xi

dt2
=

1

mi

dpi

dt
=

fi

mi
− ξ dxi

dt
(5.17)

dξ

dt
=

ps

M

ds

dt
+

s

M

dps

dt
=

∑3N
i=1

p2
i

mi
− 3NkBT

M
. (5.18)

5.4 Generic Three State Model

The effect of couplings on the curve crossing problem between the electronic B-state and

the doubly degenerate C-states can be understood in terms of a simple 1D three state

model (see Fig. 5.2) making advantage of its closed analytic formulation. Within this

model, the 3 × 3 matrix representation of the stationary Schrödinger equation with the

energy eigenvalues λ and the associated eigenvector coefficients cλ,1, . . . , cλ,3 may look as

follows:




ε1 v v

v ε2 0

v 0 ε2








cλ,1

cλ,2

cλ,3



 = λ




cλ,1

cλ,2

cλ,3



 . (5.19)

The off-diagonal matrix element v in Eq. (5.19) is chosen as a real valued parameter for

modelling a constant matrix-induced coupling between the bound B- and the dissociative

C-states, which are represented by the diagonal matrix elements ε1 and ε2, respectively.

The characteristic dependence of these matrix elements on the nuclear coordinate x can

be modelled using a Morse function and its repulsive term with unity parameterization:

ε1 = exp(2(1− x))− 2 exp(1− x) + 1 (5.20)

ε2 = exp(2(1− x)) . (5.21)

When giving the energy scale in units of the dissociation energy [De] as well as the co-

ordinate scale in units of the Morse parameter times the equilibrium distance [βxe], this

model requires no further parameter and the coupling strength v can directly be expressed

in fractions of the B-state dissociation energy, which is about equal to Bromine spin-orbit

coupling constant ∆.

In order to obtain the solutions λ of the eigenvalue problem Eq.(5.19), the characteristic

polynomial for its vanishing secular determinant has to be solved:

∣∣∣∣∣∣∣

ε1 − λ v v

v ε2 − λ 0

v 0 ε2 − λ

∣∣∣∣∣∣∣
= (ε2 − λ)

[
(ε2 − λ)(ε1 − λ)− 2v2

]
= 0 . (5.22)
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Its roots are given by the following expressions:

λ1 =
1

2

[
ε1 + ε2 −

√
(ε1 − ε2)2 + 8v2

]
(5.23)

λ2 = ε2 (5.24)

λ3 =
1

2

[
ε1 + ε2 +

√
(ε1 − ε2)2 + 8v2

]
, (5.25)

where λ2 = e2 directly results from (ε2 − λ) = 0.

The eigenvector, or adiabatic state, to a particular eigenvalue λ can be expressed by a linear

combination of the diabatic states |ϕ1〉, . . . , |ϕ3〉 with the respective expansion coefficients

cλ,1, . . . , cλ,3:

|ψλ〉 = cλ,1|ϕ1〉+ cλ,2|ϕ2〉+ cλ,3|ϕ3〉 . (5.26)

Inserting the eigenvalues from the Eqs. (5.23)-(5.25) into the matrix eigenvalue problem

Eq. (5.19) and applying the normalization condition |cλ,1|2 + |cλ,2|2 + |cλ,2|3 = 1, the

following expressions for the expansion coefficients of the orthonormalized eigenvectors

can be obtained:

λ1, λ3 : cλ,1 =
λ− ε2√

(λ− ε2)2 + 2v2
λ2 : cλ,1 = 0 (5.27)

cλ,2 =
v√

(λ− ε2)2 + 2v2
cλ,2 =

1√
2

(5.28)

cλ,3 = cλ,2 cλ,3 = −cλ,2 . (5.29)

Since the diabatic basis functions in Eq. (5.26) are assumed to vary only smoothly with

the nuclear coordinate, the gradients of the eigenvectors are determined by the gradients

of the coefficients:

∇|ψλ〉 = ∇cλ,1|ϕ1〉+∇cλ,2|ϕ2〉+∇cλ,3|ϕ3〉 . (5.30)

These gradients can be calculated from Eq. (5.27)-(5.29) using recursive definitions:

λ1, λ3 : ∇cλ,1 =
(1− cλ,1cλ,1)∇(λ− ε2)√

(λ− ε2)2 + 2v2
λ2 : ∇cλ,1 = 0 (5.31)

∇cλ,2 =
−cλ,2cλ,1∇(λ− ε2)√

(λ− ε2)2 + 2v2
∇cλ,2 = 0 (5.32)

∇cλ,3 = ∇cλ,2 ∇cλ,3 = 0 . (5.33)

After some algebra, the only non-vanishing derivative coupling elements can be found

between the adiabatic states |ψ1〉 and |ψ3〉. Their coupling is given by the following ex-

pressions:

〈ψ3|∇|ψ1〉 =
λ3 − ε2√

(λ3 − ε2)2 + 2v2
· ∇(λ1 − ε2)√

(λ1 − ε2)2 + 2v2
(5.34)

〈ψ1|∇|ψ3〉 = −〈ψ3|∇|ψ1〉 , (5.35)
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where Eq. (5.35) can be obtained by exchanging λ1 and λ3 in Eq. (5.34). At the crossing

point with the coordinates xc = 1 + ln 2 and ε1 = ε2 = 1
4 the absolute value of these

derivative couplings amounts to | 1√
32v
| and approaches infinity for v going to zero.

The parametric dependence of the energy eigenvalues (Eqs. (5.23)-(5.25)) and eigenvectors

coefficients (Eqs. (5.27)-(5.29)) to λ1 and λ3, as well as of the kinetic coupling element

(Eq. (5.34)) on the coupling constant is shown in Fig. 5.2 for the three different coupling

strength v = 0.2 % ∆, 1 % ∆ and 5 % ∆. Next to the energy separation, also the

curvature of the lowest and highest adiabatic potential curves changes characteristically

with increasing coupling constant. In addition, one of both degenerate diabatic potential

energy curve becomes visible as second solution, Eq. (5.24), of the eigenvalue problem.

When analyzing the composition of the lowest and highest adiabatic states in terms of

the individual diabatic populations, the transition among the diabatic states varies from

abrupt over steep to gradual. This circumstance is reflected by the typical Lorentzian

profile of the derivative coupling element, which decreases in amplitude, but increases in

width.

From these model study the magnitude of the effective BC coupling element in rare gas

environment can be estimated to 10 ≤ v ≤ 40 cm−1 by a phenomenological comparison

of the first two panels in Fig.5.2 with the weak splitting of the numerical potential curves

from Fig. 2.15 of Sec. 2.4.5.

5.5 Cartesian Derivatives of DIM Matrix Elements

In the present case, where the X2 molecular frame is fixed within the Rg matrix (see

Sec. 2.3.1 in Chap. 2), the Cartesian derivatives of the DIM-Hamiltonian matrix defined

in Eq. (2.18) of Sec. 2.3.3, that is the intra- and interstate forces and force constants as

required in Sec. 2.4.3 and Chap. 3, can be calculated analytically.

5.5.1 Forces

Since the matrix elements of the diagonal Hamilton matrices for the X2 and the Rg-Rg

interaction, irrespective of any electronic state labels or pair indices, can be considered

as generalized pair potentials V = V (R), which depend on the relative distance R =√
x2 + y2 + z2 only, the analytic calculation of the gradients:

∂

∂x
V =

∂V

∂R

∂R

∂x
=
∂V

∂R
ex

∂

∂y
V =

∂V

∂R

∂R

∂y
=
∂V

∂R
ey (5.36)

∂

∂z
V =

∂V

∂R

∂R

∂z
=
∂V

∂R
ez

is straightforward. On recalling the explicit pair indices again, e.g. i and j with:

Rij =
√

(xj − xi)2 + (yj − yi)2 + (zj − zi)2 ,
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Figure 5.2: Adiabatic potential curves (1st row) and diabatic populations for the lower-
most (2nd row) and the uppermost adiabatic state (3rd row) as well as their non-adiabatic
couplings (4th row) for three different coupling parameters v = 0.2 % De (1st column),
1 % De (2nd column) and 5 % De (3rd column) in the order from top to bottom and left
to right.

94



Appendix

the directional signs +1 and −1 of the force components for the respective atoms j and i

can be readily recovered.

Evaluating the gradients of the X2-Rg Hamiltonian, on the other hand, is demanding since

the individual X-Rg fragments composing this Hamiltonian also depend on the spatial

orientation of the interaction.

At the lowest transformation level of the X-Rg fragment Hamiltonian, which is given by

Eq. (2.9) in Sec. 2.3.1, the gradients of the respective matrix elements thus involve the

following derivatives of unit vectors:

∂

∂x
ex =

1− e2x
R

∂

∂x
ey = −exey

R

∂

∂x
ez = −exez

R

∂

∂y
ex =

∂

∂x
ey

∂

∂y
ey =

1− e2y
R

∂

∂y
ez = −eyez

R
(5.37)

∂

∂z
ex =

∂

∂x
ez

∂

∂z
ey =

∂

∂y
ez

∂

∂z
ez =

1− e2z
R

.

Specifically, the calculation of the gradient of Eq. (2.9) involves the derivatives of unit

vector products. These can be obtained from Eq. (5.37) by applying the chain rule of

differentiation in combination with the unity relation e2x + e2y + e2z = 1:

∂

∂x
exex =

(2− 2e2x)ex

R

∂

∂x
exey =

(1− 2e2x)ey

R

∂

∂x
exez =

(1− 2e2x)ez

R

∂

∂y
exex = −2e2xey

R

∂

∂y
exey =

(1− 2e2y)ex

R

∂

∂y
exez = −2exeyez

R
(5.38a)

∂

∂z
exex = −2e2xez

R

∂

∂z
exey = −2exeyez

R

∂

∂z
exez =

(1− 2e2z)ex

R

∂

∂x
eyex =

∂

∂x
exey

∂

∂x
eyey = −

2e2yex

R

∂

∂x
eyez = −2exeyez

R

∂

∂y
eyex =

∂

∂y
exey

∂

∂y
eyey =

(2− 2e2y)ey

R

∂

∂y
eyez =

(1− 2e2y)ez

R
(5.38b)

∂

∂z
eyex =

∂

∂z
exey

∂

∂z
eyey = −

2e2yez

R

∂

∂z
eyez =

(1− 2e2z)ey

R

∂

∂x
ezex =

∂

∂x
exez

∂

∂x
ezey =

∂

∂x
eyez

∂

∂x
ezez = −2e2zex

R
∂

∂y
ezex =

∂

∂y
exez

∂

∂y
ezey =

∂

∂y
eyez

∂

∂y
ezez = −2e2zey

R
(5.38c)

∂

∂z
ezex =

∂

∂z
exez

∂

∂z
ezey =

∂

∂z
eyez

∂

∂z
ezez =

(2− 2e2z)ez

R
.
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Introducing the following short hand notation for the symmetric X-Rg fragment Hamilto-

nian matrix from Eq. (2.9):

V =




V11 · · · · · ·
V21 V22 · · ·
V31 V32 V33



 (5.39)

and applying the relations from Eq. (5.36) to VΣ and VΠ, together with Eq. (5.38a)-

Eq. (5.38c), the gradients of Eq. (5.39), that is the force matrices Fx,Fy and Fz, are

given by the following matrix elements:

Fx :






∂
∂xV11 =

[
∂VΠ
∂R + 2VΣ−VΠ

R +
(

∂VΣ
∂R −

∂VΠ
∂R − 2VΣ−VΠ

R

)
e2x

]
ex

∂
∂xV21 =

[
VΣ−VΠ

R +
(

∂VΣ
∂R −

∂VΠ
∂R − 2VΣ−VΠ

R

)
e2x

]
ey

∂
∂xV31 =

[
VΣ−VΠ

R +
(

∂VΣ
∂R −

∂VΠ
∂R − 2VΣ−VΠ

R

)
e2x

]
ez

∂
∂xV22 =

[
∂VΠ
∂R +

(
∂VΣ
∂R −

∂VΠ
∂R − 2VΣ−VΠ

R

)
e2y

]
ex

∂
∂xV32 =

(
∂VΣ
∂R −

∂VΠ
∂R − 2VΣ−VΠ

R

)
exeyez

∂
∂xV33 =

[
∂VΠ
∂R +

(
∂VΣ
∂R −

∂VΠ
∂R − 2VΣ−VΠ

R

)
e2z

]
ex ,

(5.40a)

Fy :






∂
∂yV11 =

[
∂VΠ
∂R +

(
∂VΣ
∂R −

∂VΠ
∂R − 2VΣ−VΠ

R

)
e2x

]
ey

∂
∂yV21 =

[
VΣ−VΠ

R +
(

∂VΣ
∂R −

∂VΠ
∂R − 2VΣ−VΠ

R

)
e2y

]
ex

∂
∂yV31 =

(
∂VΣ
∂R −

∂VΠ
∂R − 2VΣ−VΠ

R

)
exeyez

∂
∂yV22 =

[
∂VΠ
∂R + 2VΣ−VΠ

R +
(

∂VΣ
∂R −

∂VΠ
∂R − 2VΣ−VΠ

R

)
e2y

]
ey

∂
∂yV32 =

[
VΣ−VΠ

R +
(

∂VΣ
∂R −

∂VΠ
∂R − 2VΣ−VΠ

R

)
e2y

]
ez

∂
∂yV33 =

[
∂VΠ
∂R +

(
∂VΣ
∂R −

∂VΠ
∂R − 2VΣ−VΠ

R

)
e2z

]
ey ,

(5.40b)

Fz :






∂
∂zV11 =

[
∂VΠ
∂R +

(
∂VΣ
∂R −

∂VΠ
∂R − 2VΣ−VΠ

R

)
e2x

]
ez

∂
∂zV21 =

(
∂VΣ
∂R −

∂VΠ
∂R − 2VΣ−VΠ

R

)
exeyez

∂
∂zV31 =

[
VΣ−VΠ

R +
(

∂VΣ
∂R −

∂VΠ
∂R − 2VΣ−VΠ

R

)
e2z

]
ex

∂
∂zV22 =

[
∂VΠ
∂R +

(
∂VΣ
∂R −

∂VΠ
∂R − 2VΣ−VΠ

R

)
e2y

]
ez

∂
∂zV32 =

[
VΣ−VΠ

R +
(

∂VΣ
∂R −

∂VΠ
∂R − 2VΣ−VΠ

R

)
e2z

]
ey

∂
∂zV33 =

[
∂VΠ
∂R + 2VΣ−VΠ

R +
(

∂VΣ
∂R −

∂VΠ
∂R − 2VΣ−VΠ

R

)
e2z

]
ez .

(5.40c)

In order to transform the force matrices Eq. (5.40a)-Eq. (5.40c) from the p-orbital repre-

sentation to the X2 molecular state representation the various basis set transformation and

expansion steps Eq. (2.12), Eq. (2.13), Eq. (2.14) (cf. Sec. 2.3.2), as well as Eq. (2.15),

Eq. (2.16) and Eq. (2.17) (cf. Sec. 2.3.3) have to be applied to each matrix Fx,Fy and Fz

96



Appendix

and each X-Rg interaction pair separately. This way, the matrices Eq. (5.40a)-Eq. (5.40c)

of dimension 3 × 3 are transformed into respective matrices of dimension 36 × 36. Now,

individual matrix elements, that is intra-state or inter-state components of particular elec-

tronic states, can be picked out and summed up properly. This double loop summation over

atomic pairs can be simplified when taking into account, that the forces acting between

each pair are of equal magnitude, but opposite sign.

5.5.2 Hessian

For calculating the Hessian, the second derivatives of Eq. (5.39), that is the first derivatives

of Eq. (5.40a), (5.40b) and (5.40c), are required. Inspecting the above force matrices Fx,Fy

and Fz one notices the recurrence of the following forces and force combinations, which,

for short hand notation, may be abbreviated as:

f1 =
∂VΣ

∂R

f2 =
∂VΠ

∂R

f3 =
VΣ − VΠ

R
(5.41)

f4 =
∂VΠ

∂R
+ 2

VΣ − VΠ

R
= f2 + 2f3

f5 =
∂VΣ

∂R
− ∂VΠ

∂R
− 2

VΣ − VΠ

R
= f1 − f4 .

When applying the chain rule of differentiation to Eq. (5.40a),(5.40b) and (5.40c), one

notices, that next to the derivatives of unit vectors, Eq. (5.37), and unit vectors prod-

ucts, Eq. (5.38a)-Eq. (5.38c), also the following derivatives of respective triple unit vectors

products are required:

∂exeyez

∂x
=

(1− 3e2x)eyez

R

∂exeyez

∂y
=

(1− 3e2y)exez

R

∂exeyez

∂z
=

(1− 3e2z)exey

R
. (5.42)

Further, one requires the derivatives of the quantities introduced in Eq. (5.41), that is:

k1 =
∂2VΣ

∂R2

k2 =
∂2VΠ

∂R2

k3 =
1

R

(
∂VΣ

∂R
− ∂VΠ

∂R
− VΣ − VΠ

R

)
=
f1 − f2 − f3

R
(5.43)

k4 =
∂2VΠ

∂R2
+

2

R

(
∂VΣ

∂R
− ∂VΠ

∂R
− VΣ − VΠ

R

)
= k2 + 2k3

k5 =
∂2VΣ

∂R2
− ∂2VΠ

∂R2
− 2

R

(
∂VΣ

∂R
− ∂VΠ

∂R
− VΣ − VΠ

R

)
= k1 − k4 .

Then, applying Eq. (5.43) and Eq. (5.41), together with the relations from Eq. (5.37),

Eq. (5.38a)-Eq. (5.38c) and Eq. (5.42), one obtains the following matrices for the second
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derivatives of Eq. (5.39):

Kxx :






∂2

∂x∂xV11 =
[
k4ex + k5exe

2
x + f5

∂
∂xe

2
x

]
ex +

(
f4 + f5e

2
x

)
∂
∂xex

∂2

∂x∂xV21 =
[
k3ex + k5exe

2
x + f5

∂
∂xe

2
x

]
ey +

(
f3 + f5e

2
x

)
∂
∂xey

∂2

∂x∂xV31 =
[
k3ex + k5exe

2
x + f5

∂
∂xe

2
x

]
ez +

(
f3 + f5e

2
x

)
∂
∂xez

∂2

∂x∂xV22 =
[
k2ex + k5exe

2
y + f5

∂
∂xe

2
y

]
ex +

(
f2 + f5e

2
y

)
∂
∂xex

∂2

∂x∂xV32 =
(
k5e

2
xeyez + f5

)
∂
∂xexeyez

∂2

∂x∂xV33 =
[
k2ex + k5exe

2
z + f5

∂
∂xe

2
z

]
ex +

(
f2 + f5e

2
z

)
∂
∂xex

(5.44a)

Kxy :






∂2

∂x∂yV11 =
[
k4ey + k5eye

2
x + f5

∂
∂ye

2
x

]
ex +

(
f4 + f5e

2
x

)
∂
∂yex

∂2

∂x∂yV21 =
[
k3ey + k5eye

2
x + f5

∂
∂ye

2
x

]
ey +

(
f3 + f5e

2
x

)
∂
∂yey

∂2

∂x∂yV31 =
[
k3ey + k5eye

2
x + f5

∂
∂ye

2
x

]
ez +

(
f3 + f5e

2
x

)
∂
∂yez

∂2

∂x∂yV22 =
[
k2ey + k5eye

2
y + f5

∂
∂ye

2
y

]
ex +

(
f2 + f5e

2
y

)
∂
∂yex

∂2

∂x∂yV32 =
(
k5e

2
yexez + f5

)
∂
∂yexeyez

∂2

∂x∂yV33 =
[
k2ey + k5eye

2
z + f5

∂
∂ye

2
z

]
ex +

(
f2 + f5e

2
z

)
∂
∂yex

(5.44b)

Kxz :






∂2

∂x∂zV11 =
[
k4ez + k5eze

2
x + f5

∂
∂ze

2
x

]
ex +

(
f4 + f5e

2
x

)
∂
∂zex

∂2

∂x∂zV21 =
[
k3ez + k5eze

2
x + f5

∂
∂ze

2
x

]
ey +

(
f3 + f5e

2
x

)
∂
∂z ey

∂2

∂x∂zV31 =
[
k3ez + k5eze

2
x + f5

∂
∂ze

2
x

]
ez +

(
f3 + f5e

2
x

)
∂
∂zez

∂2

∂x∂zV22 =
[
k2ez + k5eze

2
y + f5

∂
∂z e

2
y

]
ex +

(
f2 + f5e

2
y

)
∂
∂zex

∂2

∂x∂zV32 =
(
k5e

2
zexey + f5

)
∂
∂z exeyez

∂2

∂x∂zV33 =
[
k2ez + k5eze

2
z + f5

∂
∂z e

2
z

]
ex +

(
f2 + f5e

2
z

)
∂
∂z ex

(5.44c)

Kyx :






∂2

∂y∂xV11 =
[
k2ex + k5exe

2
x + f5

∂
∂xe

2
x

]
ey +

(
f2 + f5e

2
x

)
∂
∂xey

∂2

∂y∂xV21 =
[
k3ex + k5exe

2
y + f5

∂
∂xe

2
y

]
ex +

(
f3 + f5e

2
y

)
∂
∂xex

∂2

∂y∂xV31 =
(
k5e

2
xeyez + f5

)
∂
∂xexeyez

∂2

∂y∂xV22 =
[
k4ex + k5exe

2
y + f5

∂
∂xe

2
y

]
ey +

(
f4 + f5e

2
y

)
∂
∂xey

∂2

∂y∂xV32 =
[
k3ex + k5exe

2
y + f5

∂
∂xe

2
y

]
ez +

(
f3 + f5e

2
y

)
∂
∂xez

∂2

∂y∂xV33 =
[
k2ex + k5exe

2
z + f5

∂
∂xe

2
z

]
ey +

(
f2 + f5e

2
z

)
∂
∂xey

(5.44d)
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Kyy :






∂2

∂y∂yV11 =
[
k2ey + k5eye

2
x + f5

∂
∂ye

2
x

]
ey +

(
f2 + f5e

2
x

)
∂
∂yey

∂2

∂y∂yV21 =
[
k3ey + k5eye

2
y + f5

∂
∂ye

2
y

]
ex +

(
f3 + f5e

2
y

)
∂
∂yex

∂2

∂y∂yV31 =
(
k5e

2
yexez + f5

)
∂
∂yexeyez

∂2

∂y∂yV22 =
[
k4ey + k5eye

2
y + f5

∂
∂ye

2
y

]
ey +

(
f4 + f5e

2
y

)
∂
∂yey

∂2

∂y∂yV32 =
[
k3ey + k5eye

2
y + f5

∂
∂ye

2
y

]
ez +

(
f3 + f5e

2
y

)
∂
∂yez

∂2

∂y∂yV33 =
[
k2ey + k5eye

2
z + f5

∂
∂ye

2
z

]
ey +

(
f2 + f5e

2
z

)
∂
∂yey

(5.44e)

Kyz :






∂2

∂y∂zV11 =
[
k2ez + k5eze

2
x + f5

∂
∂ze

2
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After having calculated this 3×3 representations of second derivatives in laboratory frame

all subsequent transformation steps from Sec. 5.5.1 have to be repeated analogously. Then,

the respective derivatives of Hamiltonian matrix elements to a given molecular electronic

state can be summed up properly to give the final Hessian matrix of dimension 3N × 3N .

5.6 The Ladder Operator Approach to the Harmonic

Oscillator

In this section the ladder operator approach to the harmonic oscillator [207, 208] is in-

troduced as a basic method for calculating the discrete variable representation (DVR) of

potential energy operators in a harmonic oscillator basis set. It has been applied to repre-

sent the DIM-based reaction surfaces from Sec. 4.2 in the form required by the MCTDH

package.

Starting from the Hamiltonian of the simple harmonic oscillator:

H =
p2

x

2m
+
mω2

2
x2 (5.45)

at first the dimensionless oscillator coordinate q and its conjugated momentum pq are

introduced:

q =

√
mω

~
x , pq =

px√
~mω

. (5.46)

With the aid of these scaled variables the above Hamiltonian, Eq. (5.45), can be simplified:

H =
~ω

2

(
p2

q + q2
)
. (5.47)

Next, the squared momentum and coordinate operators in Eq. (5.47) can be factorize,

taking into account, however, that the operator product of both complex roots results in

the following expression:

(q − ipq)(q + ipq) = q2 − 1 + p2
q . (5.48)
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Using this factorization and inserting Eq. (5.48) into Eq. (5.47) the harmonic oscillator

Hamiltonian can be rewritten again:

H =
~ω

2

(
(q − ipq)(q + ipq) + 1

)
. (5.49)

Further, when introducing the so-called raising (creation) and lowering (annihilation) op-

erators a† and a, as well as their product, the number operator N̂ , with the definitions:

a† =
q − ipq√

2
, a =

q + ipq√
2

, N̂ = a†a , (5.50)

the factorized Hamiltonian from Eq. (5.49) can be reformulated equivalently:

H = ~ω

(
a†a+

1

2

)
= ~ω

(
N̂ +

1

2

)
. (5.51)

This Hamiltonian closely resembles the eigenvalue formula of the harmonic oscillator:

Ev = ~ω

(
v +

1

2

)
, (5.52)

so that the vibrational quantum number v in Eq. (5.52) can be seen as eigenvalue of the

number operator N̂ to the vibrational eigenfunction |v〉:

N̂ |v〉 = v|v〉 . (5.53)

In order to understand the meaning of the individual operators a† and a it is instruc-

tive to evaluate the commutators between both ladder operators first, and then to check

their individual commutation relations with the number operator N̂ . Whereas the former

relations:

[a†, a] = a†a− aa† = iqpq − ipqq = i[q, pq ] = −1 [a, a†] = −[a†, a] = 1 ,

reveal the ± operator identity, which has already been implied for the factorization in

Eq. (5.48), the latter relations:

[N̂ , a†] = N̂a† − a†N̂ = a†[a, a†] = a† (5.54)

[N̂ , a] = N̂a− aN̂ = [a†, a]a = −a (5.55)

show, that a†|v〉 and a|v〉 are both, eigenfunctions of N̂ and the respective operators a†

and a. Using the relations from Eq. (5.54) and Eq. (5.55) in combination with Eq. (5.53)

it can be shown further:

N̂a†|v〉 = a†N̂ |v〉+ a†|v〉 = (v + 1)a†|v〉 (5.56)

N̂a|v〉 = aN̂ |v〉 − a|v〉 = (v − 1)a|v〉 (5.57)
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that a†|v〉 and a|v〉 are indeed eigenfunctions of the number operator N̂ with the eigenvalues

v + 1 and v − 1, respectively.

From Eq. (5.56) it becomes clear, that the successive application of the raising operator a†

results in a sequential creation of each one quantum of energy, in other words a† “climbs”

up an infinite ladder of eigenfunctions. According to Eq. (5.57) the lowering operator a,

in turn, steps this ladder down by annihilating each one quantum of energy. Its repetitive

application, however, cannot be continued indefinitely since eigenvalue formula Eq. (5.52)

cannot have negative values.

Additionally, since the norm squared of a|v〉, that is |a|v〉|2 = 〈v|a†a|v〉 = 〈v|N̂ |v〉 = v〈v|v〉,
where 〈v|v〉 > 0 for any |v〉, it follows that there must exist a lowest eigenfunction with

the vibrational quantum number v = 0, which satisfies the equation a|v〉 = 0. This

requirement leads to the following differential equation for harmonic oscillator ground

state wave function ψ0(q):

(
q +

∂

∂q

)
ψ0(q) = 0 −→ d lnψ0(q) = −qdq .

Its solution ψ0(q) = c0 exp(− q2

2 ) is straightforward, the respective normalization constant

c0 can be obtained from the normalization constraint:

|c0|2
∫ ∞

−∞
e−q2

dq = |c0|2
√
π = 1 .

Putting emphasis on the normalization of the harmonic oscillator eigenstates in Hilbert

space the vibrational index v may be replaced by n in the following, where 〈n|n〉 = 1 is

assumed. Once the lowest eigenstate |0〉 with n = 0 is known, all other eigenstates |n〉 can

be created, or annihilated, algebraically by means of the ladder operators:

a†|n〉 = c(+)
n |n+ 1〉 , |c(+)

n |2 = 〈n|aa†|n〉 = n+ 1 → a†|n〉 =
√
n+ 1|n+ 1〉 (5.58)

a|n〉 = c(−)
n |n− 1〉 , |c(−)

n |2 = 〈n|a†a|n〉 = n → a|n〉 =
√
n|n− 1〉 . (5.59)

Here, the expansion coefficients c(+)
n in Eq. (5.58) and c(−)

n in Eq. (5.59) have been found

by multiplying the respective ket with their complementary bra vectors. Within the or-

thonormal basis of harmonic oscillator eigenstates the non-vanishing matrix elements are

given by 〈n+ 1|a†|n〉 =
√
n+ 1 in case of the creation operator, and by 〈n− 1|a|n〉 = √n

in case of its adjoint operator, the annihilation operator. Thus, the representation of the

ladder operators within the Hilbert space spanned by the eigenstates |n〉 is given by the
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following matrices:

a† =





0 0 0 0 · · ·√
1 0 0 0 · · ·

0
√

2 0 0 · · ·
0 0

√
3 0 · · ·

...
...

...
...

. . .





, a =





0
√

1 0 0 · · ·
0 0

√
2 0 · · ·

0 0 0
√

3 · · ·
0 0 0 0 · · ·
...

...
...

...
. . .





. (5.60)

As a side remark, once the matrix elements of the creation operator are known, it is

straightforward to obtain the normalized harmonic oscillator wave functions in position

space by repeated operation of a† onto the ground state wave function:

|n〉 =
a†√
n
|n− 1〉 = . . . =

(a†)n

√
n!
|0〉 −→ ψn(q) =

1√
2nn!

(
q − ∂

∂q

)n

ψ0(q) .

The strength of the ladder operator approach, however, is the convenient matrix represen-

tation of the position and momentum operators, which can be expressed as linear combi-

nations of the raising and lowering operators by reversal of Eq. (5.50):

q =
a† + a√

2
, pq = i

a† − a√
2

. (5.61)

Combining the matrices from Eq. (5.60) according to Eq. (5.61) the following representa-

tions of the dimensionless coordinate and momentum operators can be obtained:

q =
1√
2





0
√

1 0 0 · · ·√
1 0

√
2 0 · · ·

0
√

2 0
√

3 · · ·
0 0

√
3 0 · · ·

...
...

...
...

. . .





, pq =
i√
2





0 −
√

1 0 0 · · ·√
1 0 −

√
2 0 · · ·

0
√

2 0 −
√

3 · · ·
0 0

√
3 0 · · ·

...
...

...
...

. . .





(5.62)

resulting in a symmetric matrix for q, and a hermitian matrix for pq, respectively.

For practical applications, however, the matrices given by Eq. (5.62) have to be finite,

which leads to a finite basis representation (FBR) of the respective operators. Upon diago-

nalizing the matrix representation of these operators their discrete variable representation

(DVR) in terms of position and momentum eigenvalues can be obtained, where the respec-

tive eigenvectors provide the transformation between both equivalent representations.

In order to express arbitrary (1D) potential energy operators in a (finite) harmonic oscil-

lator basis set the latter operators can be expressed by their discrete values determined at

the respective position eigenvalues (grid points) of the harmonic oscillator.

103



Shifted Harmonic Oscillator Potential

Ve(qg)
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Vg(qg)
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q

E

Figure 5.3: Linear shift of the harmonic oscillator ground and excited state potentials Vg(q)

and Ve(q) along the oscillator coordinate q with the respective equilibrium geometries qg
and qe upon e← g excitation.

5.7 Shifted Harmonic Oscillator Potential

Together with the Franck-Condon principle [169] the shifted harmonic oscillator poten-

tial [145] (cf. Fig. 5.3) forms the theoretical basis of the Huang-Rhys model [10]. This

model provides a microscopic and qualitative description of the photo-absorption spectra of

chromophores in optically transparent solids. Particularly, it explains the band shape and

line profiles of the corresponding spectra in terms of zero-phonon line (ZPL) and phonon

sideband (PSB) contributions (cf. Fig. 5.4). Within this model it is assumed that the

vibrational modes of the lattice in the immediate vicinity of the chromophore linearly re-

spond to its electronic excitation. Further, it is assumed, that these local modes (LM) can

be described by specific or effective harmonic oscillators [9]. In case of a single oscillator

mode qk with the frequency ωk the Huang-Rhys model is known as configuration coordi-

nate (CC) model. Dropping the explicit mode index k and using dimensionless oscillator

coordinates (cf. Eq. (5.46) in Sec. 5.6) the electronic ground state potential Vg(q) of the

harmonic oscillator q with the equilibrium geometry qg is given by:

Vg(q) =
~ω

2
(q − qg)2 . (5.63)

Following the Franck-Condon principle of a vertical electronic transition the potential

energy Ve(q) of the harmonic oscillator q in the electronically excited state may be expanded
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into a Taylor series around qg:

Ve(q) ≈ Ve(qg) +
∂Ve

∂q

∣∣∣∣
qg

(q − qg) +
1

2

∂2Ve

∂q2

∣∣∣∣
qg

(q − qg)2 , (5.64)

where the constant expansion term Ve(qg) corresponds to the Franck-Condon excitation

energy of the chromophore. Further, assuming that the curvature of the harmonic oscillator

in the electronically excited state is the same as in the ground state, Eq. (5.64) is just

determined by the force fe acting onto the oscillator upon excitation of the chromophore:

Ve(q) = Ve(qg)− fe(q − qg) +
~ω

2
(q − qg)2 . (5.65)

Note, that when working in dimensionless oscillator coordinates this force has the unit of

an energy. From Fig. 5.3 it is seen, that, when introducing a new equilibrium geometry qe,

the excited state potential from Eq. (5.65) can be brought into the following form:

Ve(q) = Ve(qe) +
~ω

2
(q − qe)2 . (5.66)

Then, except for the constant energy as well as coordinate shifts ∆E = Ve(qe) − Vg(qg)

and ∆q = qe − qg , Eq. (5.66) resembles Eq. (5.63). In order to find the minimum position

of the oscillator potential in the excited state the first derivative of Eq. (5.65) with respect

to q has to vanish, that is 0 = −fe + ~ω(q − qg), from which follows:

∆q = qe − qg =
fe

~ω
. (5.67)

Substituting this expression into Eq. (5.66) one obtains:

Ve(q) = Ve(qe) +
1

2

f2
e

~ω
− fe(q − qg) +

~ω

2
(q − qg)2 , (5.68)

which is equivalent to Eq. (5.65); the quantity 1
2

f2
e

~ω = ∆E is called reorganization or

readjustment energy. Dividing this reorganization energy by the energy quantum ~ω of

the harmonic oscillator one obtains the dimensionless Huang-Rhys coupling constant S:

S =
∆E

~ω
=

1

2
∆q2 , (5.69)

which serves a measures for the coupling strength of the harmonic oscillator to the electronic

transition of chromophore. Its particular value reflects the average number of quanta

absorbed by the oscillator to compensate its shift in the excited state.

Fig. 5.4 shows a model absorption spectrum for a single mode qk coupling to a given

optical transition of a chromophore with the frequency ω′ for different coupling parameters

Sk = 0, 1, 2, 3, 4 and 5. Starting with limiting case of zero coupling Sk = 0 there is only one

peak for the resonant light absorption of the chromophore at ω′. This peak corresponds

to the so-called zero-phonon line (ZPL) since no vibrational quantum is excited in the
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Figure 5.4: Model absorption spectrum showing the intensity weights of zero-phonon line
(ZPL) peak (dash-dotted curve, Eq. (5.70)) and its phonon sideband (PSB) contributions
(discrete lines with dashed envelope, Eq. (5.71)) for different Huang-Rhys coupling param-
eters Sk = 0, 1, 2, 3, 4, 5 in the order from left to right and top to bottom.
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oscillator upon electronic transition, that is the respective harmonic potential curves from

Fig. 5.3 are not shifted with respect to one another. The line profile of the ZPL peak

follows a Lorentzian curve fL(ω̃) [8]:

fL(ω̃) =
1

π

γ/2

ω̃2 + γ2/4
, (5.70)

which is characterized by the full-width at half maximum (FWHM) parameter γ. With

increasing coupling strength Sk = 1, 2, 3 the intensity of this ZPL successively decreases in

favor of a rapidly growing phonon sideband (PSB) with a Poisson distribution fP (ω̃) [9]:

fP (ω̃) = e−Sk

∞∑

n=0

Sn
k

n!
δ(ω̃ − n) , (5.71)

where the index n counts the vibrational quanta ~ωk in excited state of qk . Note, that the

argument ω̃ in Eq. (5.70) and Eq. (5.71) has been defined in terms of a shifted frequency

ω − ω′, normalized by ωk :

ω̃ ≡ ω − ω′

ωk

such that its integer values correspond to n. The maximum intensity of the PSB lies be-

tween n = Sk − 1 and n = Sk, so that the Huang-Rhys constant Sk reflects the mean

number of quanta excited in the oscillator coordinate. In case of a rather strong coupling

Sk = 4, 5 the oscillator’s PSB contributions finally dominate the chromophore’s ZPL in

the maximum intensity and the respective Poisson distribution gradually turns into Gaus-

sian. Accordingly, the total line-shape I(ω̃) of the spectrum can be seen as a normalized

superposition of fL(ω̃) and fP (ω̃) [8]:

I(ω̃) = αfL(ω̃) + (1− α)fP (ω̃) , (5.72)

where the normalization constant α = exp(−Sk) is characterized by the relative intensities

of the ZPL and PSB contributions in fractions of the total area under both curves.

Of course the above consideration can be generalized to the situation, where many harmonic

oscillators qk with distinct Huang-Rhys factors Sk couple to the chromophore. In this case

the total coupling strength is determined by the sum of the individual coupling constants:

S =
∑

k

Sk . (5.73)
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BS Bulirsch-Stoer

CC Configuration Coordinate

CMF Constant Mean-Field

CRS Cartesian Reaction Surface

DIM Diatomics-in-Molecules

DOF Degree of Freedom

DVR Discrete Variable Representation

EOM Equation of Motion

FBR Finite Basis Representation

FFT Fast Fourier Transform

FGH Fourier Grid Hamiltonian

FWHM Full Width at Half Maximum

HFDID Hartree-Fock Dispersion Individually Damped

IRP Intrinsic Reaction Path

LAC Large Amplitude Coordinate

LCAO Linear Combination of Atomic Orbitals

LJ Lennard-Jones

LM Local Mode

MCTDH Multi-Configuration Time-Dependent Hartree

MO Molecular Orbital

NH Nosé-Hoover

PES Potential Energy Surface

PSB Phonon Sideband

SAD Small Amplitude Displacement

SIL Short Iterative Lanczos

SOC Spin-Orbit Coupling

SOCI Spin-Orbit-Coupled Configuration Interaction

SPF Single Particle Function

TDSE Time-Dependent Schrödinger Equation

VB Valence Bond

VCH Vibronic Coupling Hamiltonian

VMF Variable Mean-Field

ZPL Zero-Phonon Line
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