4 Software Concept and Implementation

In this chapter, we describe the implementation of the monotone multigrid method pro-
posed in Chapter 3, i.e., Algorithm (1). Our implementation of Algorithm (1) forms a
flexible and powerful tool for solving highly nonlinear elliptic problems. In particular, it
can be regarded as an efficient and easy to use tool for turning linear solvers into nonlinear
ones.

The monotone multigrid method (1) has been implemented in the framework of the
finite element toolbox UG, see [BBJT97], for scalar problems as well as for systems of
elliptic PDEs in two and three space dimensions, i.e., d = 2,3. Scalar obstacle problems
and contact problems with or without friction can be solved numerically using the same
code. Due to the object oriented structure of the code, there is no difference between the
cases d = 2 and d = 3. Moreover, only the algebraic part of the datastructure of UGis
used, making it possible to use discretizations having degrees of freedom associated with
different geometrical objects, i.e., nodes, edges, sides or elements. For example, any finite
element associated with a Lagrangian basis can be used, e.g., linear or quadratic finite
elements. The developed code supports local refinement, in particular at the Signorini
boundary. Thus, the nodes p € N/ )* belonging to the coincidence set can be distributed
over different levels. The user interface is small and requires only the obstacles. At the
moment, the implementation including all related tools takes about 12,000 lines of C—code.

The abstract structure of our implementation is based on the following two structural
advantages of the monotone multigrid method:

e qall nonlinear operations are local and all linear transformations are local,
e the method is independent of the used extended splitting.

Our code takes care of these two advantages in an abstract and object oriented way. In
the following, we describe in detail the developed data structure.

The core of our implementation is the obstacle problem class, consisting of class mem-
bers and member functions. Any particular obstacle problem is represented by a specific
realization of the problem class and suitable implementations of the obstacle problem
class’ member functions.

In addition to the abstract obstacle problem class, the following tools have been im-
plemented:

e projecting nonlinear symmetric and unsymmetric (block) Gauf—Seidel method,

e different local projections used by the Gauk—Seidel method, (contact, contact and
friction, elastic contact)

e different variants of monotone restrictions,
e transformation routines for the linear system,
e local reassembling of the coarse grid stiffness matrices,

e different tools for handling the obstacle, computing boundary stresses and modifying
the transformed linear system,

51



4 Software Concept and Implementation

Members
] INT display
DOULE nofContact DOUBLE fric_coeff
INT BndChange INT amg

OBSDATA _DESC* data_desc

S\

obstacle class

RestrictObstaclesByMatri
ProjectVectorCorrection / / estrictObstaclesByMatrix

GetDirPtr GetValPtr

LocObsUpdate  AssembleObstacles MergeVectorObstacles

Member functions

Figure 4.1: Obstacle problem class and member functions

e leading surface Gauf-Seidel,
e local linearization for problems with piecewise smooth nonlinearities,

e Krylov subspace methods working on the constrained space of the asymptotic linear
problem,

e routines handling the information transfer for parallel computing,
e different tools for data postprocessing, including visualization,
e hierarchical a posteriori error estimator for obstacle problems, cf. Section 5.1.

An overview of the problem class and its member functions is depicted in Figure 4.1. In
what follows, we describe the underlying concept in detail. To this end, in the rest of this
chapter we proceed as follows.

52



4.1 The Obstacle Problem Class

The new obstacle problem class and the user interface is described in Section 4.1 and
4.2, respectively. In Section 4.3, we explain the abstract nonlinear Gaufs—Seidel and the
modified restriction and prolongation operator necessary for resolving the nonlinearity.
These modified operators are used for assembling the modified coarse grid matrices. In
Section 4.5, we show how the coarse grid matrices can be reassembled locally in a fast
and efficient way.

In Section 4.6 of this chapter, we use the code developed to turn an algebraic multigrid
method into a nonlinear solver. Here, we benefit from the abstract structure of our code.

Remark 4.1 In our implementation of monotone multigrid methods, we extensively make
use of the concept of vector classes described in [BBJ'97]. Vector classes are designed
for the efficient handling of locally refined grids. For the sake of completeness, here we
give a short introduction to this concept and refer the reader for details to [BBJT97]. The
VECTOR datatype is defined as structure giving access to all degrees of freedom associated
with a particular geometrical object. For example, for piecewise linear elements, there is
ezxactly one VECTOR per node, for standard quadratic elements we have one VECTOR per
node and one VECTOR per edge. To any vector there is assigned a vector class, indicating
whether the vector’s geometrical object is associated with an element which has been refined
or not. In particular, using locally refined grids, all degrees of freedom on the grid’s surface
might be associated with geometrical objects on different levels of the multigrid hierarchy.
This is of importance for our method, since we strongly have to distinguish between those
vectors associated with subspaces Vi +...+Vy, and those associated with V) 1 +...+ V7,
i.e., fine or coarse grid nodes. This is done by using vector classes.

For numerical examples illustrating the robustness and efficiency of the method for
different types of problems in two and three space dimensions, we refer to Chapter 5,
Section 6.3 and Section 7.2.

4.1 The Obstacle Problem Class

The purpose of the obstacle problem class is to implement an abstract framework for
monotone multigrid methods. The implementation of the obstacle problem class has been
done within the linear solver class of UG. To be more specific, the obstacle problem class
is derived from the class fetransfer, which implements the restriction and prolongation
operators for linear multigrid methods. Although monotone multigrid methods are con-
structed to solve nonlinear elliptic partial differential equations, there are several reasons
for deriving the nonlinear obstacle class from a linear problem class. The first one can
be found in Theorem 3.5: After some search phase where the coincidence set is deter-
mined, a linear problem has to be solved. Secondly, the stiffness matrix assembled on
the finest grid, i.e. corresponding to the high frequency basis functions, does not have
to be changed, since the nonlinearity is taken care of within the nonlinear Gauf—Seidel
iteration. Thirdly, the modifications of the coarse grid matrices require only suitable local
reassembling of the coarse grid matrices. Thus, the linear structure is dominating.

In Figure 4.1, the most important members and member functions of the obstacle
class are shown. In the following, we explain the members and member functions in
more detail. To characterize the problem class let us first define what we understand

53



4 Software Concept and Implementation

ProjectVectorCorrection ~—— GauB-Seidel

/ _—
- \

AssembleObstacles

GetValPtr

obstacle data =
GetDirPtr |~ LocObsUpdate

\

MergeVectorObstacles
T RestrictObstaclesByMatrix

ST ObsSub

—_— gets data from

—_— uses abstract obstacle description

Figure 4.2: Relations between the member functions of the obstacle problem class

54



4.1 The Obstacle Problem Class

struct obsdata_desc {
char  name[NOBSTYPE][MAX_NAME_LEN];
char  dirname[NDIR][NOBSTYPE][MAX_NAME_LEN];
SHORT ndirfNOBSTYPE];
SHORT nval_of_dirf[NDIR][NOBSTYPE];
SHORT* cmpptr_of_val_of_dir]NDIR][NOBSTYPE];
SHORT* cmpptr_of_dir[]NDIR][NOBSTYPE];

H

typedef struct obsdata_desc OBSDATA_DESC;

Figure 4.3: Abstract Obstacle Descriptor

to be an abstract obstacle. An obstacle consists of a finite set of directions, the obstacle
directions, with corresponding values, the obstacle values. The number of obstacle values
associated with every obstacle direction is arbitrary. We define two obstacles to be of the
same obstacle type, if the number of directions and the corresponding number of values
coincide. Different obstacle types might be useful 1 for coupling different types of obstacle
problems, i.e., Stefan problems and contact problems as might occur in the simulation of
continuous casting plants or contact problems and plasticity. Within the code, an abstract
obstacle is represented by the structure obsdata desc, see Code 4.3.

In addition, some general information (name, dirname) is stored. The actual number
of directions per obstacle type is given by ndir. The number of values associated with a
given obstacle direction is stored in nval _of dir and the number of components of that
direction in ncmps_of dir. Both depend on the obstacle type. For accessing the obstacle
data, the component pointer cmpptr _of val of dir and cmpptr _of dir are designed to
be used in combination with the UGmacro VVALUE.

For scalar obstacle problems one direction and one corresponding obstacle value is suf-
ficient, whereas for frictionless contact problems in d = 2, 3 space dimensions d directions
and 2d values are necessary. Here, the first and second obstacle value per direction can be
interpreted as lower and upper obstacle, respectively. For contact problems with Coulomb
friction, one additional value for the normals stresses is necessary, see also Chapter 6.

In addition to the obstacle descriptor defined above, the obstacle class possesses several
member functions used as interface. By implementing the member functions, the user
defines the current obstacle problem.

Let us consider the member functions given in the obstacle problem class introduced
in Section 4.1 on page 53 in more detail, starting with AssembleObstacle. This function
computes the obstacles and writes the values into the obstacle obs_vd for later acces by

other member functions. If required, the user can implement his own version of Assem-
bleObstacle.

Remark 4.2 As it is the case for all member functions, the first argument of the function
AssembleObstacle is the obstacle class itself, giving access to all members of the obstacle
class. This is related to the this pointer from C++, which is also giving access to class
members.

55



4 Software Concept and Implementation

/*assembling of obstacles, depends on coeffcient function number OBS_FCT */

INT (*AssembleObstacles)
(struct np_obs_transfer *,
MULTIGRID*,
INT,
INT,
INT,
VECDATA_DESC* );

/* pointer to obstacle numproc
/* pointer to multigrid

Y/
*/

/* mode: ALL_VECTORS or ON_SURFACE */

/* from level
/* to level
/* renew critical nodes yes/no

/* general restriction routine for the obstacles, should be preferred
INT (*RestrictObstaclesByMatrix)

(struct np_obs_transfer *,
GRID *,
VECDATA_DESC *,
VECDATA_DESC *);

/* pointer to obs. numproc
/* pointer to finegrid

/¥ restrict to ...

/* using data from

/* merges two obstacles. Used by the obstacle restrictions

INT (*MergeVectorObstacles)
(struct np_obs_transfer *,
VECTOR¥,

VECTOR**,
MATRIX**,
SHORT);

/* pointer to obstacle numproc

Y/
Y/

/¥ vector for which new obs should

be computed
/* list of vectors for merging
/¥ list of corresp. matrices
/* length of vector-list

/* project correction locally into admissible set, userdefined

INT (*ProjectVectorCorrection)
(struct np_obs_transfer *,
VECTOR¥*,
VECDATA_DESC*,
VECDATA_DESC*,
DOUBLE¥*,

SHORT#,
DOUBLE*);

/* pointer to obstacle numproc
/* vector

/* correction to project

/* actual solution

/* local stiffness matrix

/* components of local matrix
/* right hand side

/* Local obstacle update, also userdefined
INT (*LocObsUpdate)(struct np_obs_transfer *, /* obstacle numproc */

DOUBLE*,
DOUBLE*,
SHORT,
SHORT,
VECTOR¥,
SHORT*,
SHORT*,
INT);

/* obstacle values

/* obstacle directions
/¥ actual direction

/* obstacle type

/¥ current vector

/¥ component pointer
/¥ component pointer
/* current level

Y/
Y/

Y/

Y/

Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/

56

Figure 4.4: Member functions




4.1 The Obstacle Problem Class

static INT ContactBallVal(DOUBLE *pos, DOUBLE *value)

{
SHORT dir = (SHORT) value|[0];
value[0] = —OBS_MAX;
value[l] = OBS_MAX;

if(dir == ROT_DIR)
value[l] = 0.5 + pos[2];

return(0);

}

Figure 4.5: Obstacle definition

Our implementation of AssembleObstacle is the function SetStandardObstacles. For any
vector on the surface of the multigrid hierarchy, a user defined function is called. For any
other vector, the values of the obstacle are set to oo or —oo, respectively. These values
are needed only for the extended relaxation steps and are set by the monotone restriction
to finite values.

Within SetStandardObstacles, information about the obstacle is needed. This infor-
mation is provided by an user defined function, giving the distance of the undeformed
body Z to the obstacle in normal direction. For an example of this user defined function,
see Figure 4.5. The argument list of ContactBallVal consists of the position pos at which
the obstacle has to be computed and the obstacle values value. In case of the obstacle
direction dir being the normal direction, i.e., dir == ROT _DIR, the distance of the body
in it’s reference configuration to the obstacle is written into value[0]. All other values are
set to oo and —oo, respectively.

Here, the obstacle has to be specified by the user. Using the default-settings in com-
bination with the body’s geometry and the material settings, this is all additional infor-
mation which has to be specified.

The monotone restriction proposed in Section 3.3 on page 44 is implemented in terms
of the following two member functions, RestrictObstaclesByMatrix and MergeVectorObsta-
cles. The function MergeVectorObstacles is called inside of RestrictObstaclesByMatrix and
computes locally the coarse grid obstacle for a given list of local interpolation matrices
and corresponding values of fine grid obstacles. These lists are set up in RestrictObsta-
clesByMatrix. Our implementation of RestrictObstaclesByMatrix additionally takes care of
some data transfer needed for the parallel version.

The last member function to be mentioned is LocObsUpdate. This function is called
within the function ObsSub, which prepares the obstacles for restriction. In LocObsUp-
date, the actual distance of the solution to the obstacle is computed. This depends on
the obstacle specification given by the user and is thus implemented as a user function.
Our implementation of LocObsUpdate does not only compute the actual distance of the
solution to the obstacle, but also checks the critical and non critical flags set by Pro-

57



4 Software Concept and Implementation

static INT OBSTransferConstruct (NP_BASE *theNP)

{
NP_TRANSFER *np = (NP_TRANSFER *) theNP;
NP_OBS_TRANSFER *ObsNP = (NP_OBS_TRANSFER *) theNP;

theNP—>Init = OBSTransferlnit;

theNP—>Display = OBSTransferDisplay;

theNP—>Execute = NULL;

/¥ code ommitted */

ObsNP—>AssembleObstacles = SetStandardObstacles;
ObsNP—>RestrictObstaclesByMatrix = RestrictObstaclesByMatrix;
ObsNP—>ProjectVectorCorrection = ProjectVectorCorrectionDual;
ObsNP—>MergeVectorObstacles = MinMergeVectorObstacles;
ObsNP—>LocObsUpdate LocObsUpdate_Ctct;
ObsNP—>GetValPtr GetValPtr_Ctct;
ObsNP—>GetDirPtr = GetDirPtr_Ctct;

return(0);

Figure 4.6: Constructor of the obstacle problem class

jectVectorCorrection for consistency.

Summarizing, we have built an abstract class for nonlinear monotone multigrid meth-
ods for scalar equations as well as systems of equations. Our current implementation is
capable of handling scalar obstacle problems as well as contact problems in linear elastic-
ity. In particular, implementing the necessary tools for problems involving elastic contact
with friction, see Chapter [|, was possible without any modification of the problem class.

Let us finally take a look at the user specific parts of the obstacle problem class con-
structor, which can be seen in Figure 4.6. The first five member functions have been
discussed already in Section 4.1. The functions GetValPtr_ Ctct and GetDirPtr_ Ctct pro-
vide acces to double values storing the directions vectors and associated values of the
abstract obstacle. At the moment, GetValPtr_Ctct, GetValPtr_Fric, GetValPtr_Scalar
and GetValPtr_ElasticFric are available. This concept provides flexible acces to the values
needed independent of the way they have been stored. It is extremely important in the
case where the values of the obstacle are not part of the problem description but depend
on the smoothed iterate u’;. In Chapter 7, we present a nonlinear Dirichlet-Neumann
algorithm, see also [KWO00]. Here, the obstacle has to be modified in each outer iteration
step.

The following options are available:

4.2 Basic User Interface

As has been shown in the previous section, the obstacle problem class provides a flexible
description for different types of obstacle problems. These problems include scalar obstacle

58



4.2 Basic User Interface

Option Values Explanation

X (vecdata descriptor) solution

c (vecdata descriptor) correction

b (vecdata descriptor) rhs

A (matdata descriptor) stiffness matrix

n (vecdata descriptor) normals

Obs (vecdata descriptor) obstacle

sd (vecdata descriptor) For storing the diagonal for fric-
tional problems

L (matdata descriptor) Copy of the stiffness matrix (paral-
lel only)

tren lor2 Use truncated multigrid (1). Trun-

cate tangential basis functions if
contact in normal direction has been

found (2)
fric (number) Coefficient of friction
cut (number) Also truncate, if the distance to the
obstacle is less than (number)
noRotate none Do not rotate stiffness and interpo-

lation matrices and right hand side
on any level

nozero none Do not rotate stiffness matrix and
right hand side on level 0.

scalar none Use accelerations for scalar obstacle
problems.

Table 4.1: Options for use with monotone multigrid method

59



4 Software Concept and Implementation

problems, contact problems in linear elasticity and, more generally, obstacle problems
involving piecewise smooth nonlinearities as are frictional contact problems and porous
media flow. In this subsection, we describe how to define a new obstacle problem within
the obstacle problem class. For defining a new obstacle problem, the user has to

e choose (or define) an abstract obstacle type,
e provide some geometrical information.

At the moment, abstract obstacles for the following problem classes are available:
e scalar obstacle problems,

e contact problems in linear elasticity,

contact problems in linear elasticity with Coulomb friction,

elastic contact,
e clastic contact with Coulomb friction.

If one of these problem classes is chosen, the user only has to specify geometry of the
obstacle. This is done by implementing two functions. The first one gives the distance of
the body 4 in it’s reference configuration to the obstacle. For an example, see Figure 4.5
on page 57 The second one gives the outer normal at each point p € I'g. If this function
is set to the NULL pointer, by default the outer normal to the current triangulation is
taken. Let us point us, that, using the default settings only the obstacle’s geometry has to
be provided. Thus, the only difference between a linear problem in linear elasticity and a
nonlinear contact problem is a short function as printed in Figure 4.5. The user interface
is extremely small and easy to handle.

In case, one want’s to specify an additional abstract obstacle, one has to proceed
in the following way. Firstly, the abstract obstacle type has to be defined by creating
an abstract obstacle descriptor. This is done by implementing a suitable constructor.
Secondly, the functions giving access to the obstacle values have to be implemented, i.e.,
implementations of GetValPtr and GetDirPtr. Then, an implementation of LocObsUpdate
has to be provided. For piecewise smooth nonlinearities, in addition the Jacobian has to
be provided.

4.3 Abstract Nonlinear GaulR—Seidel

The member function ProjectVectorCorrection is the "heart" of our nonlinear method. Any
of it’s realizations implements a local projection onto the admissible set ;. As is known
from, e.g., [Glo84], see also [Kor97a], convergence of the method can only be established
for localizable nonlinearities. Thus, providing a local projection is sufficient. The actual
realization of ProjectVectorCorrection is called within the nonlinear Gaufi—Seidel method
and returns the local correction which is admissible with respect to the given constraints.
For frictionless contact problems, this is the projection onto the admissible set with respect
to the energy scalar product. Several local projection routines have been implemented

60



4.4 Modified Restriction

for one sided contact with and without friction and for elastic contact with and without
friction, see [KWO00]. The local projection implemented for one sided contact problems
also implements the scalar case. Taking a look at the argument list, we not only see
the values of the solution but also the values of the local residual. These are needed for
computing the modified residual, cf. [Kor97a|. The local projection also sets appropriate
flags for proper handling of the coincidence set N(J).(ﬂ’j) by using the SETCRITICAL
and SETNONCRITICAL macros. These flags are used within the modified restriction and
prolongation and within the local reassembling of coarse grid matrices, see Section. 4.5

Remark 4.3 Although for linear problems, it is common practice to update the residual
after each iteration step, repeated updates of the obstacle must not be done. Updates
of the obstacle can lead to instabilities of the projected Gaufi—Seidel method. Thus, it is
necessary to compute the distance to the obstacle in current obstacle direction each time
ProjectVectorCorrection is called.

4.4 Modified Restriction

The source code shown in Figure 4.7 on the following page is the core of our implemen-
tation MinMergeVectorObstacles of MergeVectorObstacles. Here, all code related to scalar
obstacles and debugging has been omitted for the sake of clarity. In particular, let us
consider the lines

if(CRITBIT(Fvec, Fdir) && ObsNP—>trcn)
continue;

The coarse grid obstacles are not modified, if truncation is used (ObsNP—> trcn == 1)
and if contact has been found at the fine grid vector Fvec in obstacle direction Fdir. Since
the obstacles on the coarse grid are set to co, —oo by the obstacle assembling routine, this
leads to unconstrained coarse grid corrections in direction of Fdir.

4.5 Fast Modification of the Coarse Grid Matrices

On the coarser grids, we have to assemble the entries of the stiffness matrices AW G <,
associated with the extended search directions uj, p € N (). It ist not reasonable, to
completely reassemble the coarse grid matrices AU) | j < ¢ within each iteration step with
respect to the actual coincidence set, since the computational cost of the reassembling
would dominate the whole iteration process. In particular, after the discrete contact
boundary has been fixed, no reassembling is necessary. Thus, our aim is to reassemble
the entries of the stiffness matrices Az(fq), j < £ if and only if the phase at some node
r € supp u{fl U supp ué“ has changed. Additionally, we have to take special care for
the case of locally refined grids. Here, we have to carefully distinguish between degrees
of freedom associated with the surface of the grid and degrees of freedom associated with
the extended relaxation steps. This is difficult, since the surface in general can only be
built up using different levels of the multigrid hierarchy.

61



4 Software Concept and Implementation

INT MinMergeVectorObstacles(NP_OBS_TRANSFER* ObsNP, VECTOR* Fvec,
VECTOR** CvecList, MATRIX** matrixList, SHORT noOfCvec) {
OBSDATA_DESC* obs = OBS_DESC(ObsNP);
SHORT Fvtype = VTYPE(Fvec);
SHORT Fotype = OBSTYPE(Fvec);
SHORT Fndir = OD_NDIR(obs, Fotype);
SHORT i, Cdir;
for(i = 0; i < noOfCvec; i++) {
VECTOR* Cvec = CvecList]i];
MATRIX* imat = matrixList[i];
SHORT Cvtype = VTYPE(Cvec);
SHORT Cotype = OBSTYPE(Cvec);
SHORT Cndir = OD_NDIR(obs, Cotype);
SHORT Fdir;

for(Fdir = 0; Fdir < Fndir; Fdir++) {
SHORT Fnvalcmp = OD_NVAL_OF_DIR(obs, Fdir, Fotype);
SHORT Fndircmp = OD_NCMPS_OF_DIR(obs, Fdir, Fotype);
SHORT *Fvalcmp = OD_CMPPTR_OF_VAL_OF_DIR(obs, Fdir, Fotype);
SHORT *Fdircmp = OD_CMPPTR_OF_DIR(obs, Fdir, Fotype);
DOUBLE *FobsVal = ObsNP—>GetValPtr(ObsNP, Fvec, Fdir);
SHORT Cdir, nzero[Cndir], sum_nzero;

if(CRITBIT (Fvec, Fdir) && ObsNP—>trcn)
continue;
sum_nzero = 0;
for(Cdir = 0; Cdir < Cndir; Cdir++)
if(ABS(MVALUE(imat, Cdir*DIM+Fdir)) > DBL_EPSILON)
sum_nzero++;

for(Cdir = 0; Cdir < Cndir; Cdir++) {
SHORT Cnvalcmp = OD_NVAL_OF_DIR(obs, Cdir, Cotype);
SHORT Cndircmp = OD_NCMPS_OF_DIR(obs, Cdir, Cotype);
SHORT *Cvalcmp = OD_CMPPTR_OF_VAL_OF_DIR(obs, Cdir, Cotype);
SHORT *Cdircmp = OD_CMPPTR_OF_DIR(obs, Cdir, Cotype);
DOUBLE *CobsVal = ObsNP—>GetValPtr(ObsNP, Cvec, Cdir);
DOUBLE weight = MVALUE(imat, Cdir*DIM+Fdir) * (DOUBLE) sum_nzero
* (DOUBLE) noOfCvec;
if(ABS(weight) <= DBL_EPSILON)
continue;
if (weight > 0.0) {
CobsVal[Cvalecmp[1]] = MIN( FobsVal[Fvalcmp[1]] / weight, CobsVal[Cvalcmp][1]]);
CobsVal[Cvalcmp[0]] = MAX( FobsVal[Fvalcmp[0]] / weight, CobsVal[Cvalcmp[0]]);

else if (weight < 0.0) {
CobsVal[Cvalcmp[1]] = MIN( FobsVal[Fvalcmp[0]] / weight, CobsVal[Cvalecmp[1]]);
CobsVal[Cvalcmp[0]] = MAX( FobsVal[Fvalcmp[1]] / weight, CobsVal[Cvalcmp[0]]);

SRS
REP_ERR_RETURN(0);

}

Figure 4.7: Local monotone restriciton

62



4.5 Fast Modification of the Coarse Grid Matrices

Thus, our goal is to reassemble locally the entries of the stiffness matrices on the
coarser grids if necessary. This is achieved by associating the flag CHANGEBIT (vec) with
any VECTOR vec, where the the phase has changed during the preceding relaxation steps.
Using these flags, for any level j the information whether there was a change of phase or
not is stored in the member BndChange[j] of the current obstacle. Local reassembling of
AU) is only done, if BndChange[j+1] was true. Using this mechanism, no additional work
is required for computing extended search directions after the coincidence is fixed.

Locality of the reassembling is preserved as follows: In a first step, using the func-
tion PrepareAssembling, for all coarse grid VECTORS Cvec connected to fine grid vectors
Fvec with CHANGEBIT(Fvec) set , CHANGEBIT(Cvec) is also set. All matrix entries AY)
with CHANGEBIT(p) or CHANGEBIT(q) true are cleared and then reassembled. Here, we
extensively use the macro SKIP_ MATRIX_FROM _TO(p, q), which is defined by

#define SKIP_MATRIX_FROM_TO(v,d) ( (/CHANGEBIT(v) && ICHANGEBIT(d)) ||
(VNCLASS(v) < NEWDEF_CLASS && VNCLASS(d) < NEWDEF_CLASS) )

This definition is also useful for locally refined grids, since it uses the UG—macros
VCLASS and VNCLASS. These macros provide access to the vector class mechanism of
UG, see Remark 4.1

If SKIP_MATRIX_FROM_TO(p, q) is true, the d x d-block matrix A,, coupling the
two VECTORS p and ¢ has not to be recomputed. In Figure 4.8, the first iteration of
the nonlinear search phase for an V(4,4)-cycle is shown. Here, as coarse grid solver the
algebraic monotone multigrid method described in Section 4.6 is used, leading to negative
level indices. The number of vectors in contact is shown in the second column, the number
of vectors with CHANGEBIT set in the third column. The last three columns show the
number of contact nodes in each obstacle direction. On level 1, there are eight critical
nodes, illustrating the recursive truncation of basis functions.

*¥*¥¥* statistics of transfer.obstacle.obstacle ****
Level NVec Nchg (time) Total 0 1 2

4 1 1 (1) 1 1 0 0
3 0 1(1 0 0 0 0
2 0 1(0 0 0 0 ©
1 8 8(0 8 0 0 8
0 5 15(0 5 0 0 5
-1 0 7(0 0 0 0 0
-2 0 4(0 0 0 0 0
Sum 14 37 (2 -—— 1 0 13

Figure 4.8: Obstacle statistics

Remark 4.4 In case of locally refined grids, the coarse grid matrices can become singular,
if all fine grid functions contributing to a particular coarse grid function are truncated.
This is detected within the function ModifyMatrix, which is called after reassembling the

63



4 Software Concept and Implementation

coarse grid matrices. Degrees of freedom with zero entries in the stiffness matriz can be
regarded as an artifact from the linear data structure. We overcome this difficulty by setting
the corresponding diagonal element of the stiffness matriz to one and the corresponding
row and column to zero. Thus, the VECTOR is decoupled from all other VECTORs and

the stiffness matriz is still reqular.

4.6 An Application of the Concept: Algebraic Monotone Multigrid

As an application of the abstract software concept developed in the previous sections, in
this section we consider an algebraic monotone multigrid method. We apply our code
to a linear algebraic multigrid method and turn it into a nonlinear solver. The non-
linear algebraic monotone multigrid method described in this chapter is based on the
implementation of linear algebraic multigrid methods in the finite element toolbox UG.

Let us recall that on the coarsest grid of our multigrid hierarchy we have to solve
nonlinear obstacle problems. In Algorithm (1), this is done by a nonlinear projected
Gaufs—Seidel method. This is efficient for for scalar obstacle problems and small coarse
grids. However, in case of complicated geometries in three space dimensions the coarse grid
might consists of several hundreds or thousands unknowns. Here, applying a nonlinear
Gaufs—Seidel method, in particular for systems of equations, requires many iteration steps
on the coarse grid. Thus, the efficiency of the method is lost.

Unfortunately, due to the nonlinearity of the problem, no direct method can be applied.
The local corrections have to be admissible with respect to the quasioptimal obstacles
introduced in Section (3.3). Therefore, standard linear solvers cannot be used for the
coarse grid problems. The remedy is, to use nonlinear monotone algebraic multigrid as a
coarse grid solver. The resulting method is a hybrid geometrical and algebraic multigrid
methods with only a few unknowns on the coarsest grid. The geometrical multigrid is
used for the hierarchy of triangulations resulting from successive refinement. Whenever
available, we use these finite element spaces, since for these spaces the approximation
property (2.26) is well known. If no hierarchy of nested spaces is a priori available, we use
the coarse grid spaces constructed implicitly by applying an algebraic multigrid method.

Algebraic multigrid methods for linear problems have been implemented in the frame-
work of the finite element toolbox UG. For a short introduction to algebraic multigrid
methods, we refer the reader to [Wag98| and the literature cited therein.

In contrast to standard multigrid methods, for algebraic multigrid methods the in-
terpolation operators are built up matrix dependent, i.e., the transfer operators depend
on the actual representation of the bilinear form a(-,-). Thus, no geometrical objects are
associated with any degree of freedom on algebraic levels [ < 0. Due to our abstract
concept, this is of only minor significance for the obstacle toolbox describedd above:

e The coarse grid obstacles are constructed in a purely algebraic way using
RestrictObstaclesByMatrx,

e obstacles and obstacle directions are associated in an abstract way with VECTORS,
but not with nodes, edges or sides.

For using the obstacle toolbox in combination with algebraic multigrid methods, only
minor changes to the code have been necessary. These are mostly related to the fact,

64



4.6 An Application of the Concept: Algebraic Monotone Multigrid

that the solution computed by the algebraic multigrid method on the coarsest level is
a correction with respect to the obstacle problem given on level ¢ > 0. These changes
are mainly of technical nature. In Table 4.2, all options related to the proper use of the
monotone multigrid method in combination with algebraic multigrid method are listed.
Note, that these options take only effect for levels [ < 0.

Option Values Explanation
amg none or 1 create obstacle for use with algebraic
multigrid method.
amg 2 create obstacle for use with amg and re-
assemble stiffness matrices A', I < 0
amg 3 create obstacle for use with amg and re-

assemble stiffness matrices A, [ < 0.
Also truncate interpolation matrices if
destination vector of none obstacle type

noRotate none Do not rotate stiffness and interpolation

matrices and right hand side on any level

nozero none Do not rotate stiffness matrix and right
hand side on level 0.

fatherobstacle (obstacle numproc) Copy all obstacle information from ob-

stacle (obstacle numproc).

Table 4.2: Options for use with algebraic multigrid method

The numerical experiments described in Chapter 5 have partly been carried out using
algebraic multigrid methods as basesolver, i.e., as solver on the coarsest grid. For instance,
the solution for the example given in Section 5.3 has been computed using nonlinear
algebraic multigrid as a basesolver. Here, on the coarsest grid we have about 600 unknowns

and the algebraic multigrid method is more than twice as fast than a nonlinear Gaufs—
Seidel method.

Remark 4.5 For algebraic multigrid methods, the interpolation operators used depend
on the stiffness matriz A. Since the stiffness matriz does depend on the basis and since
our method requires local change of basis, the convergence speed of the algebraic multigrid
method depends on whether applied to the transformed system or not. There are two
possibilities

e Local transformation of the stiffness matriz, then assembling of transfer operators
and no local transformation of interpolation matrices

o Assembling of transfer operators, then local transformation of the stiffness matriz
and then local transformation of interpolation matrices

For both methods, we get different results. Better results are usually achieved, if the in-
terpolation matrices are assembled with respect to the locally transformed stiffness matriz.
In other words, the hierarchy of spaces constructed by the algebraic multigrid method is

65



4 Software Concept and Implementation

not invariant with respect to orthogonal transformations as the standard nodal multilevel
basis is.

We have to take into account another difference between geometrical and algebraic
multigrid method. The interpolation matrices constructed by the selection schemes of
algebraic multigrid methods are usually more dense than those arising from geometrical
multigrid method. In particular, it cannot be guaranteed that corrections at the contact
boundary are always originating from vectors at the contact boundary. This does not affect
the theory presented in Section 3, but is of importance if obstacle values are associated
only with VECTORS at the contact boundary. This is preferable for use of our method
with standard multigrid method, since any correction at any interior vector is always
admissible.

Thus, if using algebraic multigrid method, not admissible coarse grid corrections might
occur. This can spoil the convergence of the method during the transient phase. We
observed this in numerical experiments. There are two possibilities to overcome this
difficulty. The first possibility is to truncate, i.e., set to zero, all entries of the interpolation
matrices, which could lead to not admissible corrections. This is done by option amg 3
listed in Table 4.2. Using this option usually slows down convergence, but we the global
convergence of the method is guaranteed. The second possibility is to associate obstacle
values with all vectors on all levels, leading to possibly restricted coarse grid corrections
in the interior of the domain. For problems with constraints not being as local as for
contact problems, however, this difficulty does not arise. Here, all vectors are associated
with obstacle values.

66



