3 Monotone Multigrid Methods

In this chapter, we introduce a monotone multigrid method for solving Signorini’s problem
in linear elasticity. We proof the global convergence of the method. The method itself is
defined in terms truncated functions depending on the solution and monotone restrictions.
In combination with a projected block Gauf—Seidel method, these form the main ingre-
dients of the monotone multigrid method for Signorini’s problem. Before describing the
method in detail, let us note some remarkable features of the resulting iteration scheme.

e It is a globally convergent nonlinear method.
e The global nonlinearity of the problem is resolved locally.

e It reduces to a linear subspace correction method once the actual zone of contact
has been found.

e It is of optimal complexity per iteration step.
e It does not use any regularization.

By design, our iterative method does not distinguish between a linear and a nonlinear
iteration step. Rather, it acts as a locally nonlinear solver, i.e., the global nonlinearity of
the problem is resolved by solving local nonlinear subproblems. Thus, our method can
be viewed as an iterative scheme which sits on top of an "adaptive" local linearization
strategy. In other words, our method always uses as much information on the nonlinearity
as it is available. The global control of this mechanism is provided by the minimization
of the total energy. This leads to an efficient and easy to handle nonlinear method.

Let us recall that the nondifferentiablity of the energy function 7 at the contact bound-
ary constitutes the main difficulty in constructing an efficient solver. Newton methods
cannot be applied directly. To overcome this difficulty, often regularization techniques,
i.e., penalty methods, are used, see [CSW99, ESW99, Glo84, GLT81|. These require the
careful handling of regularization parameters in order to find a reasonable compromise
between efficiency and accuracy. In case of frictional contact, the accuracy provided by
penalty method may even not be sufficient, see [ARS99].

Dual techniques, see, e.g.,[Ber82, Glo84, GLT81, GL89, DV97, PC99]) are based on
saddle point formulations. The constraints are incorporated by means of Lagrange mul-
tipliers. Active set strategies [BH93, HMS83, Hop87, HK94, Dos97| iteratively provide
approximations of the contact set. A linear subproblem with given contact set has to be
solved in each iteration step and multigrid methods are typically used for this purpose.
An active set strategy with inexact linear solver has been proposed by Dostal [Dos97].
Recently, Schoberl [Sch98a, Sch98b| has developed an approximate variant of the projec-
tion method (cf. e.g. [Glo84, p. 5]) using a domain decomposition preconditioner and a
linear multigrid solver on the interior nodes.

We emphasize that the algorithm presented herein does not involve any regularization
or dual formulation. Particularly, it should be considered as a descent method rather than
an active set strategy. The central idea of the monotone multigrid method is to minimize
the functional J of total energy successively in direction of suitable chosen d-dimensional
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3 Monotone Multigrid Methods

subspaces. By this means, we obtain nonlinear variants of successive subspace correction in
the sense of Xu [Xu92]. See e.g., [HD97, TX] for a similar approach to smooth variational
problems.

In its simplest form, minimization can be obtained by using well known projected block
Gaufs—Seidel relaxation, corresponding to the subspaces spanned by some Lagrangian finite
element basis functions. Unfortunately, the convergence speed of Gauf—Seidel relaxation
decreases with decreasing mesh size. In the context of linear multigrid method, conver-
gence speed is increased by using additional coarse grid spaces, corresponding to some
frequency like decomposition of the error. Here, we cannot follow the standard multigrid
approach, since any coarse grid correction has to be admissible with respect to the fine grid
constraints. Any correction associated with a geometric object being in contact with the
obstacle requires zero correction in normal direction. This leads to coarse grid corrections
which are bound to the corresponding (d — 1)-dimensional space of tangential displace-
ments. In case of different normals, this seems to be hardly realizable for any non trivial
correction, since different fine grid subspaces share the same coarse grid correction. The
remedy is using sophisticated modifications of the multilevel nodal basis, giving rise to
nonlinear truncated coarse grid functions. The corrections originating from these modi-
fied functions find their natural interpretation as local projections onto the local spaces of
tangential displacements. These truncated coarse grid functions are introduced in Section
3.2.

For problems with the outer normal being constant along the Signorini boundary,
also block versions of suitable scalar methods can be applied. Multigrid methods for
scalar obstacle problems have been considered by several authors, see, e.g., [Bel93, BC83,
HMS83, Hop90, Kor94, Man84|).As mentioned above, there is no obvious generelization to
Signorini’s problem with varying normals.

Even in case of no contact, the coarse grid corrections have to be admissible with
respect to the fine grid constraints. Straightforward implementation leads to additional
prolongations in order to check the constraints. As a consequence, the complexity of
one iteration step on level J is O(nslogny) for uniformly refined triangulations and
might be even O(n?) in the adaptive case. Optimal complexity of multigrid V-cycle is
preserved by approximating fine grid constraints on coarser grids using so called monotone
restrictions, see Section 3.3. This modification may slow down convergence, as long as the
algebraic error is too large. In our numerical experiments, see Chapter 5, we observe that
initial iterates as provided by nested iteration are usually accurate enough to provide fast
convergence throughout the whole iteration.

This chapter is organized as follows: A general framework of our method together with
basic convergence results is presented in Section 3.1. In particular, it turns out that the
discrete contact set is detected in a finite number of steps, if the given discrete problem
is non-degenerate. Then, our nonlinear iteration automatically becomes a linear subspace
correction method for the resulting linear problem.

A suitable multilevel splitting and the monotone restrictions are described in Section
3.3. In case of spatially varying normals, various fine grid directions are incorporated in
each coarse grid space. Similar techniques provide appropriate monotone restrictions of
fine grid constraints. The resulting truncated monotone multigrid method can be arranged
as a multigrid V-cycle with projected block Gauf—Seidel smoothing and sophisticated
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3.1 Minimization of Energy

restriction and prolongation. It is described in Section 3.2.

For the ease of presentation, we restrict ourselves to the case of constraints given only
in normal direction. The generalization of the results given in this chapter to the general
case of box constraints is straightforward. Our implementation, which is described in
Chapter 4, is capable of handling box constraints, i.e., constraints in both, normal and
tangential direction. Let us finally note that this chapter is mostly borrowed from [KKO00].

3.1 Minimization of Energy

The basic idea of monotone multigrid methods is to minimize the energy functional [J in
direction of suitably chosen functions p,,. For example, straightforward implementation of
this idea leads to nonlinear Gauf—Seidel relaxation, if minimizing is done only in direction
of the basis functions of the fine grid space S()). Since relaxation methods as Gauf-
Seidel relaxation are known to decrease in convergence speed for increasing number of
unknowns, in this section we consider so called extended relazations, see [Kor94|. The
aim is, to accelerate the convergence using corrections originating from minimization of
J in direction of functions with large support, which are called coarse grid corrections.
Obviously, the proper choice of the functions used for the extended relaxation is crucial
for the convergence speed of the resulting method.

Since minimization of the functional J has to be carried out with respect to the
constraints of the finest grid, we have to ensure that the coarse grid corrections are
admissible with respect to the fine grid constraints. This is done by using so called
monotone restrictions, which give rise to interior approximations of the convex set K.

In this section, we introduce monotone multigrid methods as subspace correction meth-
ods. We define monotone restrictions and proof the global convergence of the method.
For the construction of suitable coarse grid functions for Signorini’s problem in linear
elasticity, we refer the reader to Section 3.2.

Being concerned with linear elasticity, we carefully have to distinguish between any
generic object as, e.g., the the elasticity tensor, and its representation with respect to
a family of given local coordinate system. In particular, the proper choice of the local
coordinate systems used is of crucial importance for the considerations made in the next
Section. Let us recall, that the summation convention is enforced on small Latin indices
i,4,s, which always range from 1 to d. Moreover, by E’ we denote the canonical basis
vectors of the Euclidian vector space R?. As in the previous chapters, we use boldfaces
letters for vectors and tensors and normal typeface letters for scalar objects. For the ease
of presentation, all convex spaces ares denoted by calligraphic letters, as in D and K.
Note, that calligraphic letters are also used for the triangulation 7, the set of nodes N
and the energy functional J.

Now, we are in a position to define the finite element spaces associated with our
subspace correction method. Let S/) be the finite element space spanned by the nodal

basis functions
MNIE, i=1,....d peN
with piecewise linear, scalar functions /\](;]) satisfying

AN (q) = 0pg. poge N,
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3 Monotone Multigrid Methods

see also (2.27). Here, 0,, denotes the Kronecker delta. The nodes p € N’ /) are assumed
to be the vertices of a suitable triangulation 7, see also Section 3.2. As mentioned in the
introduction, a nonlinear version of successive subspace correction, cf. Xu [Xu92], based
on the splitting SH =V, +...+V, ; with d-dimensional subspaces
Vi=span{A\VE, . AV B 1=1,. 0y =#N)

(2]

gives rise to the well known projected block Gauk—Seidel relaxation M j, see.,e.g., [Glo84,
p. 151]. As the convergence speed of this method usually deteriorates rapidly with in-
creasing refinement level, we consider the eztended splitting

SO =Vt 4V, +Vy g+ + VY (3.1)
The additional d-dimensional subspaces V|, v =ny+1,...,m, are intended to improve
the low-frequency contributions of the error. Hence, basis functions ull’y, e ,uf’” of V{

should have large support. In order to allow a stepwise adaptation of the splitting (3.1)
to the actual contact zone, the spaces V] may vary in each iteration step.

In principle, it is possible to choose the basis functions ull’y, ey uld"’ as the nodal basis
functions of the coarse grid spaces S Y ), j < J. Unfortunately, this choice might lead to
vanishing coarse grid corrections at the actual contact zone, spoiling the convergence speed
of the method. For an explanation of this behavior, see Section 3.2. Consequently, we
need to construct extended search directions, which take the actual contact zone set into
account. Since the actual shape of the extended search directions does not exert influence
on the global convergence proof to be given in this section, let us assume the functions
ull’y, e ,uld’y are given. Their detailed construction is carried out in Section 3.2.

Adapting multigrid terminology, the leading projected block Gauf—Seidel relaxation
M plays the role of a fine grid smoother, u*; = w}, = M ;(u';) is the smoothed iterate
and subsequent corrections v;, l =njy+1,...,m, are called coarse grid corrections. Note,
that @% € K holds for all u% € ).

Remark 3.1 The subspaces V|, v =ns+1,...,m are inspired by coarse grid corrections
from linear multigrid theory. In contrast to linear multigrid methods, the shape of the
"coarse grid" functions ull’y, e ,uld’" depends on the actual iterate, i.e., on the actual

guess of the discrete contact zone. Even in case of a known contact zone, they might differ
from those used in linear multigrid methods. In Section 3.2, we give an interpretation of
the extended search directions as local projections onto the set of admissible displacements.

The extended relaxzation based on the splitting (3.1) now reads as follows. Starting
with the given v—th iterate u'; = wg € K, we compute a sequence of intermediate iterates
w] = w]_; + v?’”, I =1,...,m. The new iterate is u’; = wy,. The corrections v?’” are
the unique solutions of the local subproblems

v eD: Jwi +v") < T (wf+v) veDM, (3.2)
with closed, convex sets D;*" defined by

D ={veV]|wl_,+vek;} CV]. (3.3)
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3.1 Minimization of Energy

For v = ny; 4+ 1,...,m, it might be too costly to check whether some v € V7
is contained in D;*¥ or not. To see this, let us consider the coarse grid functions
ull’”, e uf’” spanning the subspace V}. Then by definition, the solution v’;” of the
local subproblem (3.2) is admissible with respect to all local constraints associated with
nodes p € supp ;. Checking for these constraints would require additional prolonga-
tions, resulting in an overall complexity of O(nslogn ) per iteration step. Hence, optimal
corrections v?’y, l=mns;+1,... ,m, are replaced by approximations v;’ € V| provided by
approximate local problems

vy €DV J(wi—1+v)) < J(wi—1+v) veD. (3.4)

Since the constraints at the contact boundary I's are given in normal direction, let us
introduce for any p € N/) N Tg the rotated local coordinate system {e’(p;)}. We choose
e!(p;) = n(p;) and extend e!(p;) by Householder reflection to an orthonormal system in
R? in the following way: As it is well known, any orthogonal transformation in R may
be decomposed into a rotation R and a reflection with respect to some hypersurface H.
Choosing R the identity on R? and H the hypersurface with 0 € H and H being normal
to 3(el(p)) — E'(p1)) for given e!(p;), we can uniquely define the local unit vectors e’(p;).
Denoting the Householder reflection at p; defined above by O(p;), we can write

e'(m)=0m)E (p), peN. (3.5)

Bearing in mind that e'(p;) = n(p) for 1 <1< ny, ie,pe N it is clear that the non
penetration condition (2.4) can be reformulated as, 1 <1 < ny,

Di={veV|vp) em) e[ 3])

with %1 = g(p;) and %ll = —oo. More generally, this gives rise to the following definition
of the closed convex subsets D;” C V7

DY ={ve Vi |v(p)-e(p) €Wy, &) foralli=1,...,d}, (3.6)

which are intended to approximate D;*". Here, we have %’”,%’V € R. For completeness
for any p; € N Nint supp p;”, we set e!(p) = E*(p;) and 3, = oc and %” = —o0.
It is clear that D;” = V7 or, equivalently, 4" = —oo, 1, = 400, if all v € V} satisfy

v|rg = 0. In the sequel, we suppress the index v if it is clear from the context.

Remark 3.2 For any p; € NY) nint supp u?’”, the choice of the local unit vector e'(p;)
is arbitrary. In particular, in our implementation of the method all extended relazation
steps are carried out with respect to the canonical local coordinate system E°.

In the following theorem, we prove the global convergence of the extended relaxation
method.

Theorem 3.3 Assume that

0 €D, C D (3.7)
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3 Monotone Multigrid Methods

Then the approximate extended relaration

ny m
uth =+ Zv?‘ + Z v (3.8)
=1 I=n;+1

with v} and v; computed from (3.2) and (3.4), respectively, is globally convergent.

Proof The sequence of iterates u’, v = 0,1,..., is bounded because our scheme (3.2)
is monotone in the sense that

Tt < Jwh,) < J(wl) < J@h) <oo, v=12,...,

and we have J(v”) — oo for any unbounded sequence v” € S/,

As u’; is bounded and S) has finite dimension, it is sufficient to show that each
convergent subsequence of w'; converges to w;. Let u'} be an arbitrary, convergent
subsequence of u';, with some limit u* € S (‘]),

ul —u', k— oo (3.9)
It can easily be verified that M ; is continuous so that
My(u'}) = My(u*), k— oc. (3.10)
Again, monotonicity of the iteration implies
T (i) < T @i < T(My(u))) < T (W),
In virtue of the convergence (3.9), (3.10) and the continuity of J on K, this leads to
T My(u*)) =T (u"). (3.11)

It can easily be seen that (3.11) holds, if and only if all local corrections of the projected
block Gauf-Seidel relaxation applied to u* are zero, i.e., Mj(u*) = u*. As the finite
element solution w; is the only fixed point of the projected block Gauk—Seidel relaxation
(cf. e.g. [Glo84, pp. 152]), we have shown u* = w ;. This completes the proof.
O
Let us discuss the above result in some detail. It can easily be seen, that any in-
termediate iterate has to be admissible with respect to the fine grid constraints. If not,
monotonicity of the method is lost and convergence cannot be guaranteed. In particular,
the coarse grid corrections must not violate the fine grid constraints. During the nonlinear
phase, this restriction might slow down the convergence of the method, but it is necessary
for the global convergence. From numerical experiments, it can be seen that the non pene-
tration condition must not be relaxed on the coarse grids. Even projecting the coarse grid
corrections back onto the set ;, 1 << J after prolongation, see [BC83|, does not ensure
global convergence of the method. The second important item to be mentioned is the
locality of the constraints. The method relies heavily on the constraints being decoupled
with respect to the nonlinearity. This is a necessary condition for the convergence of the
fine grid Gauk—Seidel relaxation, see, e.g., [Glo84].
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As a corollary, we also obtain convergence of the intermediate iterates
w] — uy v — 00. (3.12)
Indeed, the sequence wj, v = 0,1,..., is bounded and due to the monotonicity
T(wi™h) < T (w*) < T (uf)
and the continuity of 7 on K the limit w* of an arbitrary convergent subsequence w;”*,
k=0,1,..., must satisfy J(w*) = J(uy), giving w* = u.

Up to now, we have been proving global convergence of the method. We note that if
the contact boundary is known, Signorini’s problem is linear. Does our method reduce
to a linear subspace correction method in that case? And if so, how long does it take, to
identify the discrete contact zone?

The answer to the first question is affirmative and is given in Theorem 3.5. The answer
to the second question is much more difficult to find and is partly given in Lemma 3.4 and
Theorem 3.5. It is shown, that the discrete contact zone is found after a finite number
of iteration steps, but no estimate of the number of nonlinear iteration steps is given.
On the other hand, during the search phase for the actual zone of contact, the energy is
already reduced monotonously and the gained solution of the iteration process might be
satisfactory, even if the discrete zone of contact has not been completely identified.

Let us now state more precisely what we understand to be the discrete contact zone
or coincidence set. For given w € K, the coincidence set is defined by

N (w) = {pe N NTg | wp) np) = g(p)}.

No contact occurs at N (w) = N\ ND*(w). Note, that @ € K, holds for all
ud e 8§
b .
Once the coincidence set N')®(uy) is known, the minimization problem (2.28) can
be rewritten as a reduced linear problem

a(uy,v) = f(v) ve S, (3.13)
where the subspace S ()% = 8 ig defined by
S = (v e 8 | v(p) n(p) =0 forall pe N (uy)}.

In the remainder of this section, we will show that the iteration (3.8) reduces asymptoti-
cally to a linear subspace correction method for the linear problem (3.13).

Lemma 3.4 Assume that the discrete problem (2.28) is non-degenerate in the sense that
FOF () = aluy, A n(p) >0 for allp € N (uy) (3.14)

and that the coarse grid spaces V7 in (8.1) are chosen such that
w' () mp)=0  forallpe N (a}) (3.15)

holds for all v > 0.
Then there is a vy > 0 such that

ND* @4y = NO® (uy) for all v > vy. (3.16)

37



3 Monotone Multigrid Methods

Proof Let p € N°(u;) NIy or, equivalently, u,(p) - n(p) < g(p). Convergence of
v’ implies u”(p) - n(p) < g(p) for all v > vy with sufficiently large 1. Hence,

N(J)O(UJ) C N(J)o(u}/) for all v > 1.

Now, let p; € N/)*(us). As a consequence of (3.14) and the convergence of the interme-
diate iterates (3.12), we obtain

FO () — a(wy A n(p) >0 forall v > 1 (3.17)
for I = 1,...,n; and sufficiently large 9. Now assume that p; ¢ N/ ).(ﬂZ) or, equiva-

lently,
wy(pr) - nlpr) = wiy (o) - npr) + 077" (1) - (1) < g(po).
In the light of (3.2), the correction v;"” then satisfies the variational equality
a(v;”,v) = f(v) — a(w}_;,v) veV.
Hence, f(v) —a(w},v) =0 v € V; in contradiction to (3.17). We have shown
ND*(uy) c N (ah) for all v > 1.

Tt is clear from (3.15) that N)° (@) ¢ ND* (w4, yields N®(uy) € N (u¥) for
all v > vg + 1. This completes the proof.
O
We recall that continuous versions of the non-degeneracy condition (3.14) provide
stability of the free boundary (cf. e.g. [Rod87, pp. 198]). As a by product of the proof,
we also get

N @)y = N (wy)  v> . (3.18)

The non-degeneracy condition (3.14) can be interpreted in terms of contact stresses,
since, on the basis of Green’s formula, a(u,, /\,(j])n(p)) — f(/\,(;Dn(p)) can be seen to be

the discrete normal stresses at p. Consequently, if a(u J,)\I(;])n(p)) =f (AI(,J)n(p)), the
body hits the obstacle at p but the contact does not cause any deformation. Thus, the
coincidence set may change without changing the solution, which is an obvious instability.
The second condition, i.e., condition (3.15), guarantees that correction in the direction
of p;” does not affect the actual guess of the coincidence set N (J ).(115). This is in
general not true, if the extended search directions are chosen as the coarse grid functions
of the standard multilevel basis. As a consequence of (3.15), the coarse grid corrections
from Vi, v =nj41,... ,m, asymptotically reduce to a linear subspace correction for the
reduced problem (3.13) provided that no constraints are active. This can be ensured by
appropriate choice of local obstacles _z"” , E;U

In the following theorem, we show that the extended splitting (3.1) degenerates to a

linear subspace correction method. To this end, let us assume, the coincidence set has been
identified already and that V¥ solely depends on N')*(w%), i.e. V¥ =V (ND*(w¥)) .
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Then, we expect linear behavior of our method. In particular, any coarse grid correction
should be admissible with respect to the local constraints. This is only possible, if the
inner approximation (3.6) do not degenerate. Summing up, we call a sequence of local

obstacles %” , E;’V, v > 0, quasioptimal (cf. [Kor94]), if convergence of the intermediate

iterates w? (see (3.12)) and convergence of the coincidence sets N)°*(@¥) (see (3.18))
implies that there is a positive number *, independent of v, and some 1y > 0, such that

W< gt <0<yt <gY forall v > w. (3.19)

holds for all i = 1,...,d and [ = ny + 1,...,m. For construction of such quasioptimal
obstacles, we refer to Section 3.3 Now, we can give the following

Theorem 3.5 Assume that the assumptions of Lemma 3.4 are satisfied. Assume further
that the coarse grid spaces only depend on the actual guess of the coincidence set, i.e.,

V=V, (N<J).(ﬁ§)), and that the local obstacles %, ¥, are quasioptimal in the sense of
(3.19).

Then there is a vy > 0 such that the approzimate extended relazation (3.8) is reducing
to the linear successive subspace correction induced by the splitting

SD° =V 4. 4 Ve,
with
V?:{VIOS(J)O, l=1,...,ny
VIND (uy)), l=ny+1....m
as applied to the reduced linear problem (3.13).

Proof Let | = 1,...,ny. There is nothing to show, if p; ¢ I's. Let p; € N(J).(UJ).
As a consequence of Lemma 3.4 and (3.18), the normal components of v?’” are zero, if v
is sufficiently large. In this case, we have v," € V; N S = V9 and V? = D™ so that

j(wl_l + ’U;’V) < J(wl_l + ’U) ONS V?. (320)

In the remaining case p; € N/)°(u;) N g, it follows directly from (3.18) that v;"” must
satisfy (3.20) with V] = V for sufficiently large v.

Now, let I = ny+1,...,m. Then, exploiting (3.18) we get V¥ = V(N )*(uy)), i.e.,
Vi = V7, for sufficiently large v. Convergence of the intermediate iterates w; (3.12)
implies that the corrections v} must tend to zero. Utilizing (3.19), it follows that

v (m) - € (p) € [~¢*, 0" C ()", 4"
holds for sufficiently large v. In this case,
J(w;—1 +v]) < J(w—1 +v) veV)

and the assertion follows.
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From Theorem 3.5, the differences between leading and extended relaxation can be
seen. The actual discrete contact zone, or coincidence set, is fixed by the leading fine grid
relaxation M ;, whereas the coarse grid corrections are used for acceleration of the conver-
gence only. Unfortunately, the coarse grid corrections must not contribute corrections in
normal directions at critical nodes, leading to functions with large support but zero value
at isolated points in the interior of their support. Such functions incorporate the bound-
ary conditions associated with the actual coincidence set. Note, that the construction of
the coarse grid functions and of the quasioptimal obstacles is crucial for the convergence
speed, since omitting only a single coarse grid correction can spoil the convergence of the
multigrid method, see also Chapter 5

Using optimal corrections from (3.2) instead of quasioptimal approximations (cf. The-
orem 3.5), we asymptotically get the same linear subspace correction method for (3.13).
However, using quasioptimal obstacles gives optimal complexity per iteration step.

3.2 Truncated Coarse Grid Functions

In this section, we explicitly construct extended search directions uf’” with property (3.15).
We give an interpretation of the resulting coarse grid corrections as local projections onto
the set K s of admissible displacements and show, how the constructed search directions
can be obtained from the nodal basis functions of the fine grid space S() by careful
linear combination and truncation. This has been proposed for scalar obstacle problems
in [Kor97a].

Before describing the truncated basis functions in detail, we give an example illustrat-
ing the main difficulty when using extended relaxation for Signorini’s problem in linear
elasticity. Let us recall, that any non admissible coarse grid correction can spoil the non-
linear convergence of the method and that a vanishing coarse grid correction can spoil the
linear convergence speed. Thus, we need suitable coarse grid corrections corresponding to
some admissible low frequency sliding of the body along the possibly curvilinear contact
boundary. Clearly, functions representing such kind of displacement cannot be linear.
Let us consider a simple two dimensional example of a curvilinear contact boundary as

Rigid foundation

Figure 3.1: Coarse grid correction at curvilinear boundary

depicted in Figure 3.1. Here, we assume contact at the two different nodes p and ¢ with
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3.2 Truncated Coarse Grid Functions

different outer normals n(p) # n(q). Then, it is clear from (3.15), that any coarse grid
correction v, in direction of w, with p,q € int supp p, must not contribute corrections
in direction of m(p) and m(q), respectively. That is, the correction v, has to satisfy
v, € span{t,} and v, € span{t,}, with ¢, # t, the tangential vectors. This rules out a
linear search direction p,. The basic idea is now to use truncated search directions, being
piecewise linear functions only with respect to the finest grid 7;. Note, that this problem
does not show up if n(p) = n(g). Then, the tangent vector t(p) and ¢(q) are collinear
and simply setting the coarse grid correction in normal direction to zero would give an
admissible coarse grid correction wv,.

As a first attempt to construct suitable functions u?’”, let us consider linear combina-
tions of the truncated nodal basis functions p,g‘]), given with respect to the local coordinate
system e’ for s € {p,q,r}. In order to guarantee (3.15), we truncate the fine grid basis

functions ugj), s € {p,q,r} by

i 0 ifi=1
(D — )
(57) { ADeip)  else
)

Then, condition (3.15) is true for any linear combination of the truncated functions g
Applying the standard restriction, we get

( (J— 1) Z )\J 1) ())j (3.21)

se{p,q,r}

as a candidate coarse grid function. Unfortunately, extended relaxation in direction of
~(‘]71) does not improve convergence speed, since in case of no contact the extended relax-
atlon using u(‘] D does not degenerate to a standard multigrid method. More precisely,

the approximation property of the coarse grid spaces is lost.

Here, the remedy is to use appropriate weights in definition (3.21) instead of A=Y (r),
see Lemma 3.6. These weights take care of the extended relaxation degenerating to a
standard multigrid method in case of no contact. Moreover, the convergence speed of the
resulting method is comparable to linear multigrid methods applied to Signorini’s problem
with known contact stresses.

Let us now formulate the ideas given above more precisely. Assume that 7 is resulting
from J refinements of a coarse triangulation 7. Though the algorithms and convergence
results to be presented can be easily generalized to the non-uniform case, let us assume
for the moment that the triangulations are uniformly refined. More precisely, for the
two dimensional case, each triangle ¢t € 7} is subdivided into four congruent subtriangles
in order to produce the next triangulation 7j,1. For the three dimensional case, each
tetrahedron is subdivided into eight congruent subtetrahedrons.

Using this hierarchy of grids and the corresponding hierarchy of finite element spaces,
we now choose suitable spaces Vi, ;11,..., V. Each space Vi = V1) is associated
with a node p € NV on some refinement level k < J — 1. We frequently use the notation
V,(gk) = Vi) u}(,k) = My(p,r)- The ordering [ = l(p, k) is taken from fine to coarse, i.e.,
l(p, k) <l(q,7) implies k > j.
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3 Monotone Multigrid Methods

For each p € N') we choose the local orthonormal system e’(p) € R, i = 1,...d,
see (3.5) with the property e'(p) = n(p) for all p € N/) NTg. Starting with

0 if i =1 and p e N)*(a@¥)
(1)) = . J 3.22
) ={ iy o , 322
we recursively define truncated basis functions
)= NV @ e @) () (3.23)
aEN},
and we set
V1(>k) = span{(ug“))l, cee (ul(,k))d}, k=J—-1,...,0. (3.24)

v

Note, that supp (uék))i = supp )\](gk) and that (Vék)) = Vék) (N(J>.(ﬁj)) only depends

on N)*(@y).

Lemma 3.6 Let 0 < k< J,pe N, and 1 <1i,j <d. Then

3 ) . . — (J). — v
(uz(gk))z(q) - el(q) = { ® 0 if j =1 and g € NV (u?) (3.25)

p (q) € (p) - €(q) else

holds for all ¢ € N'J).

Proof The assertion is clear for k = J. Assume that (3.25) holds for some k < J. If
j#lorq¢ N(J).(ﬁf}) we obtain (summation on s)

(1)@ ) = NI ) () (1)’ (a) ¢ (0)

reNy

= > A AP () €l(p) - €(r) e*(r) - € (q)
rENk

= > A AP(g) €(p) - €/ (q)
reNg

= A V(g) ep)-el(q)

exploiting the identity
e'(p)-e*(r) e’(r)-el(q) = €'(p)-e'(q).  p,q,r €NV
Now let ¢ € N)*(@¥). Then definition (3.22) yields
(1$") () -m(q) =0,  forallpe N

Using (3.23), the assertion now follows by induction.
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3.2 Truncated Coarse Grid Functions

Lemma 3.6 reveals the construction principle of coarse grid spaces Vp(k). If g ¢
N (@), we get

(1) (@) = AP (a) €' (p) -

Hence, V;(,k> = span{)\gk)El, . ,)\;k)Ed}, if there is no contact in the neighborhood of
p or, more precisely, if int supp AI(,k) NN ).(ﬁj) = (). In this case, we obtain the same

(k)

local correction v, as classical multigrid method with canonical Galerkin restriction and
block GauR-Seidel smoother. On the other hand, if ¢ € N/ ).('H’j), Lemma 3.6 provides

(B) (q) - m(q) = 0.

Hence, the spaces V,(,k) satisfy condition (3.15).
For a better understanding of these truncated functions, let us consider a simple one-

dimensional situation as depicted in Figure 3.2. Here, the truncated coarse grid function
(J-1)

=D

has zero value at the point p € int supp pr . There is no contribution of the

Figure 3.2: Truncated functions (red) for the scalar case

(/)

coarse grid correction in direction of the function u,”’. In case of Signorini’s problem, the
situation is slightly more complicated. Again, let us consider the situation as depicted in
Figure 3.1 and let the correction in direction of m(n‘]_l) be denoted by ¢,. The displacement
¢, can be interpreted as a low frequency sliding of the body along the curvilinear contact
boundary, that is, the whole body is assumed to move in direction of ¢,. In order to
satisfy the constraints c,(p) € span{t,} and c,(q) € span{t,}, at s = p,q € N we
take the weighted projection of ¢.(r) onto span{ts} with respect to the Euclidian scalar
product, see Figure 3.3. That is, for ¢,(r) = €’(r)c., we have

(cr(s)) = AP €i(s)-cl(s), s=pgeN.
(k)

Roughly speaking, coarse grid basis functions (up )Z are obtained by careful truncation

and bending of nodal basis functions /\;k)ei (p). In case of constant normal directions we

get e'(p) = €(q) for all p,q € N) and (3.23) reduces to the canonical restriction

plD) = 37 Ak D (g) (ulb)) (3.26)

qeN},

Note, that canonical restriction (3.26) could be used in the case of spatially varying nor-
mals as well, because the resulting coarse grid basis functions would still satisfy (3.15).
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3 Monotone Multigrid Methods

__— Rigidfoundation

Supp Hr

Figure 3.3: Interpretation of coarse gird correction ¢, (red) as local projection (cyan)

However, varying normals result in a large energy of such coarse grid functions As a
consequence poor convergence rates of the corresponding subspace correction are ob-
tained. Similar effects caused by jumping coefficients have been discussed, e.g., by Wan
et al. [WCS98|.

In order to complete the construction of our multigrid method, we now describe the
recursive construction of local obstacles %(p’k) = (yg“))’, %(%k) = (Ez()k))i, k=J-1,...,0,
occurring in (3.3). Starting with

1 —(J)\1 v
@) = —o0 (1&]) = g(p) —u(p) -n(p) pENW,
@) = o @) = Foe PR
(3.27)

we assume that local obstacles (ﬁ;k))i, (E(k)

N )! have been constructed for some k < J.

3.3 Monotone Restrictions

From Theorem 3.5 and Lemma 3.7, we know that on the discrete level we asymptotically
have to solve a linear problem. Thus, it is desirable to "forget" about the contact condi-
tion (2.4) after the coincidence set has been determined. Or, in terms of computational
effort, we require the extended relaxation (3.8) to be of the same complexity as the same
extended relaxation without obstacles. As has been mentioned above, checking the coarse
grid corrections for being admissible with respect to the fine grid constraints spoils the
optimal complexity per iteration step. In particular, one step of the extended relaxation
(3.8) for the asymptotic linear problem may be also interpreted as one step of a linear
V—cycle.

Now, to preserve optimal complexity of one iteration step, we approximate the fine
grid constraints on the coarse grid by suitable coarse grid obstacles. These coarse grid
obstacles ensure computational work of O(n;) per iteration step and, by construction,
take care of the admissibility of the solution. Construction of the coarse grid obstacles is
done by means of monotone restrictions, which are given in this section.
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3.3 Monotone Restrictions

For fixed p € Ny_1 and 7 = 1,...d local obstacles on the next coarser level are now
obtained by monotone restriction defined as follows

(V) = d7 max(W))-, (@Y

Y )" = d; " min(W)),; . (3.28)
The factor d; < d denotes the number of non-zero entries in the i—th row of (ei(p) :
e’(q))ij=1,...q- Further let W} be defined by

VA S B eint supp \F VNN, j=1,....d,
P\ G o e o | P % b

j#lorq¢g NO(@h), el(p)-el(q) #03. (3.29)

The sets (¥})_ and (¥))4 contain the non-positive and non-negative elements of W},
respectively. Observe that the weights e'(p) - €/(q) may be positive, negative or zero.

Once all local corrections vék_l = Vj(p,k) On level k£ — 1 have been computed from
(3.4), we update the obstacles according to

(L) = @) — oy ) €' ()

@) = @) w0 )

Monotone restriction (3.28) and update (3.30) are repeated inductively until the coarsest
level is reached. It is clear by construction that

p ENk_l. (3.30)

Lemma 3.7 Let u’; € K;. Then the subsets D; = Dz(gk),
DO = {v e VP [v(p)-e'p) € (D). [@y)] foralli=1,....d}

satisfy condition (3.7).

Proof From corrections on levels J to k < J, we obtain the intermediate iterate w®),

J
w® = uf + Z Z vl(,k).

j:kpe./\/j
We show by induction that
wh + 3 2 Ver, Vel k=0, (3.32)

PENL_1
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3 Monotone Multigrid Methods

holds after the monotone restriction (3.28). Simultaneously, we prove the auxiliary result

PEN}

where Dz(,k) is taken after update (3.30) for k =J —1,...,0.

Assertion (3.33) is clear for k = J. Assuming that (3.33) holds for some k = J,...,1
we now prove (3.32). Let zék_l) = (zz(,k_l))i (uz(,k_l))i € Dgﬂ_l). Inserting (3.23), we get

the representation

> A A

PENL_1 PN

with

0= 2 ATV =@ d0) () e VY.
qeENK_1

Let j #1orpé¢ N(J).(ﬁj). Exploiting (3.28), we get

20 elp) = > AFIp) ()i o) ) € (DY, @Y

qEN -1

for all j = 1,...,d. In the remaining case, j =1 and p € N(‘]).(ﬁj), Lemma 3.5 leads
to

20 (p) - e'(p) =0 € [, (@I

Hence, zz(,k) € DI(,k) for all p € N}, and (3.32) follows from (3.33).
Finally, it is easily seen that the update (3.30) is performed in such a way that (3.33)
holds for k — 1.
O

Lemma 3.8 The local obstacles %(p = (g;k))i, Ef(p’k) = (_;k))i, k=J-1,...,0, as

obtained from (3.28) and (3.30) are quasioptimal in the sense of (3.19).
Proof The local obstacles as obtained from (3.28) and (3.30) depend continuously
on the smoothed iterate u* and on the coarse grid corrections v;k). As u% — wu; and

vz(;k) — 0, it is sufficient to show that (3.19) holds if @ and v,(,k_l) are replaced by u
and 0, respectively. This can be done by induction.
O
In case of constant normal directions, i.e., € (p) = e’(q) for all p,q € N'/), definition
(3.28) reduces to the restriction

@) = min {@flk))l | g € (int supp A=Y N AG) \N(‘]).(’_‘Z)}

p
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3.4 Algebraic Formulation

as proposed by Mandel [Man84| in the scalar case (see also [Kor94]). No tangential
constraints occur on coarse grids. However, in case of spatially varying normal directions
monotone restriction (3.28) causes tangential constraints on coarse levels though no such
constraints are present on the finest grid. This leads to more pessimistic coarse grid
constraints in comparison with the scalar case. Improvements of (3.28) are possible by
generalizing ideas from [Kor94].

Now we are ready to state the main result of this chapter.

Theorem 3.9 The truncated monotone multigrid method based on local spaces Vg(gk) from
(3.24) and on local obstacles gz()k), E(k) as obtained from (3.28) and (3.30) is globally

D
convergent. If the discrete problem (2.28) satisfies the non-degeneracy condition (3.14),

then there is a vy > 0 such that the iteration reduces to the linear subspace correction
method for the linear reduced problem (3.13) induced by the splitting

SO°3S (v (534

k=0 pEN}

with (V) = v a8D° p e NO), and (VIP)° = VIONOD (u)), p € N,
k=J—1,...,0.

Proof Utilizing (3.31) and Lemma 3.7, global convergence follows from Theorem 3.3.
Asymptotic reduction to a linear iteration follows from Theorem 3.5 in combination with
Lemma 3.7 and Lemma 3.8.

O

Note, that splitting (3.34) depends only on the choice of additional coarse grid spaces
and not on the choice of quasioptimal restriction. In the light of Theorem 3.9, linear
multigrid convergence theory can be applied in order to derive asymptotic convergence
rates.

3.4 Algebraic Formulation

In this section, we shall derive an algebraic reformulation of the truncated monotone
multigrid method considered in Theorem 3.9. Although the construction of the extended
splitting (3.1) looks rather technical, implementation is straightforward, if Galerkin as-
sembling of coarse grid matrices is used. Considering the truncated monotone multigrid
method in it’s algebraic formulation shows where the nonlinearity enters.

Let us recall, that the resulting algorithm can be implemented as a standard linear
multigrid V-cycle and is of optimal complexity per step. Denoting

Qpq = (a()‘éJ)ei’ )\f(ZJ)ej))i,j:L...,d ; by = (f(/\z()J)ei))i:L...,d’

we define the stiffness matrix and the right hand side by

A= (apq)p,qu(J> ) b= (bp)peN(J)-
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3 Monotone Multigrid Methods

The vector representation of the given iterate u'; is

[

’U,; = (up)pe/\/(J) 3 u’p - (up)izl,...,d 3 u;) = u;(p) . e’l(p) (335)

We shall use a similar partitioning of vectors v = (vli))pe Niji=1,....d € R on each level
0 <k < J. The residual is given by

r=b— Au’.
Solving the defect problem
v eD: 0 AV —r vt < Jv-Av—T v veD (3.36)
with constraints
D = {v e R | vy < g(p) —u, for all pe N NTg}

exactly, we would obtain the exact solution u; = u'; + v*. The approximate correction
as obtained by one step of the projected block Gauf—Seidel relaxation with d x d blocks
ap, is denoted by GS;(A, 7, D). Hence, the vector representation of the smoothed iterate
u'; is given by

a = ul + GS;(A,r, D).
(k)

Here, for given matrix A®) = (apq )p,qen,, residual r®) and constraints D® the ap-
proximate correction resulting from one step of projected block Gauf—Seidel relaxation
with d x d blocks a,(,lfz) is denoted by GSk(A(k), rk), D(k)).

Now, we describe the coarse grid correction of u%. It is clear how to obtain the
actual coincidence set N/ ).(ﬂf}). We define the truncated stiffness matrix A) = trc(A)
by setting those rows and columns of A to zero that are associated with basis functions
Ael(p), pe NV ).(ﬁ’j). In practical implementation, this is realized by appropriate flags,
see Chapter 4. Using the partitioning v = (U;)pex\/k,izl,...,d of some vector v € R¥* on
some level k, the vector trc(v) is obtained by annihilating all v} with p € N/ < ).(115) NN
The truncated residual is given by r/ = tre(b — AuY).

Recursive definition (3.23) of u,(,k) gives rise to the restriction matrix R’,z_l,

R'Z_l = ()‘z()k) (9)epq)peni_1.qen;, €pq = (€'(p) - ej(q))i,jzl,---,d-
As it is standard, we define our prolongation by
PIIE—I - (R'é_l)T-
Local obstacles

P = (W) e 2 = (@)
—(k) —(k) —(k) —(k)y;
v = (@ )pen P = (@ ))isi 4
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3.4 Algebraic Formulation

are initialized according to (3.27) and the monotone restriction

Pt = RELp®), PV =R W),

(%)

is defined according to (3.28). Local obstacles QUC), 1" give rise to the constraints

D) = (v € R | ¥ < tre(v) < P

Now we are ready to rewrite our algorithm as a multigrid V-cycle.

Algorithm 1 (Monotone Multigrid Method for Signorini’s Problem)

given: u'; € R

compute: u = u" + GS;(A,r,D) (fine grid smoothing)
initialize: A') = trc(A) 7)) = trc(b— A@Y) (truncate stiffness matrix and residual)
g(‘]), E(J) according to (3.27) (local obstacles)
fork=J—-1,...,1do
vF) = GSL(AW), (k) DR (projected block Gauf—Seidel smoothing)
rk) — (k) — A(R)qy(k) (update of residual)
g(k) = g(k) — o) E(k) = E(k) — vk (update of local obstacles cf. (3.30))
A=Y — R’,z_lA(k)P’,z_1 (Galerkin restriction of stiffness matrix)
rh—1) = R’,z_lr<k) (restriction of residual)
g(’“_l) = Eﬁ_l(g(k)), E(k_l) = ﬁiil(a(k)) (monotone restriction of

local obstacles cf. (3.28))

v = GSy(AO O DO)) (approx. solution on 7p)

fork=1,...,J—1do
o) = vk 4 pr k=) (Interpolation)
new iterate: " = a4 + PJ_jv/7V

Our implementation of the Galerkin restriction takes advantage of the fact that the local
updates of the coincidence set only cause local updates of the stiffness matrix, see Section
4.5.

Let us briefly consider some variants of the above multigrid algorithm which can be
analyzed in the same general framework and which have convergence properties as stated
in Theorem 3.9.

In order to further improve coarse grid transport in the transient phase, i.e., until the
exact coincidence set is known, we consider a fully truncated variant performing truncation
recursively on all levels in all directions ¢ = 1,...,d. More precisely, we introduce d
different sets of critical nodes N, k. " i=1,...,d, on each refinement level k. Starting with
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3 Monotone Multigrid Methods

N;’l = N%(u%) and N}L =(,i=2,...,d, the update

o0

Nt = ( mii NNR) U{p € Nj; | constraint in the direction of e’(p)

was activated when computing vl()k)} (3.37)

takes place after the correction on level k. Recursive truncation can be formulated alge-
braically by introducing an operator trcy that annihilates coefficients associated with i
and p, if p € N}, Then, the implementation is based on appropriate flags. Correspond-
ing quasioptimal local obstacles are obtained by a similar modification of (3.28). We have
already seen that no constraints are active in local coarse grid problems, if the exact
coincidence set /\/'j'(u]-) has been detected and coarse grid corrections are small enough.
Hence, in the non-degenerate case, fully truncated monotone multigrid still asymptotically
reduces to the linear subspace correction generated by (3.34).

Multiple pre- and post-smoothing or W-cycles are performed in the usual way. In
terms of subspace corrections such algorithms can be formulated by multiple occurrence

(k)

of the same coarse grid space V,"".

Exact solution on the initial grid 7, corresponds to replacing the spaces VI(,O), p € No,
by v 0 — g(0)

In case of adaptively refined grids, coarse grid smoothing is applied only at new nodes
and their neighbors. Again, there is a corresponding interpretation in terms of subspaces
Vl(yk). In the adaptive case, it may happen that the dimension of V;k)
also Section 4.5.

Other finite element discretizations like piecewise quadratics or bilinear elements on
quadrilaterals can be treated in a similar way. We only have to plug in the appropriate

)

nodal basis functions instead of Al(,j .

is less than d, see

Remark 3.10 The monotone multigrid method developed in this work is capable of han-
dling box-constraints, i.e., constraints in normal and tangential direction. This turns
out to be necessary on the coarser grids of the multigrid hierarchy, when constraints with
respect to different normal directions have to be taken into account, see Chapter 5. In
particular, even if the outer normals at the contact boundary do not differ, box constraints
are required for solving contact problems involving friction, see Chapter 6. Then, the con-
straints in tangential direction depend on the friction functional and the actual guess of
the stick and slip regions at the contact boundary.
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