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2 Signorini’s Problem

Signorini’s problem in linear elasticity models the linearized contact of an elastic body
with a rigid foundation. It has been originally introduced in 1933 by Signorini in [Sig33].
Although the body being in contact with the foundation is assumed to be linear elastic,
Signorini’s problem is nonlinear and nondifferentiable at the contact boundary. This is
due to the a priori unknown contact boundary, since the change of phase at the contact
boundary, i.e., contact or no contact, is highly nonlinear with respect to the displacements.

Before formulating Signorini’s problem, we have to deal with some kinematical consid-
erations concerning the non-penetration condition at the possible contact boundary of our
body & in Section 2.1. Then, in Section 2.2 we give both, the variational formulation of
the Signorini problem as well as its "classical" formulation as a boundary value problem.
Moreover, we state results concerning the existence and regularity of the solution. In con-
trast to the variational formulation (1.14), the corresponding variationl formulation is not
a variational equation, but a wariational inequality. This is due to the unknown contact
boundary. At the end of this section, in Section 2.4, we discretize Signorini’s problem by
finite elements und give a priori error estimates for the discretization error.

2.1 Linearized Contact

In the previous chapter, we have developed the boundary value problem of linear elastic-
ity for hyperelastic materials. Let us recall, that one of the major assumptions is that of
small displacements, which gives rise to the geometric linearization of the strain tensor.
The assumption of small displacements plays also a major role in formulating the non-
penetration condition at the possible contact boundary as we are going see in this section.
Here and throughout this work, we assume that the domain 4, the body under consider-
ation is identified with, is Lipschitzian, i.e., its boundary may locally be represented by a
Lipschitz continuous parametrization, see, e.g., [Wlo82, Definition 2.4].

Let 2 C R® be the body under consideration and let the body’s surface 0% be
decomposed into three disjoint parts

0B =1Ip UTp UTg

with I'p having positive measure. We assume Dirichlet boundary conditions to be pre-
scribed at I'p and surface forces acting on the Neumann part of the boundary I'r. Finally,
I's denotes the possible contact boundary or Signorini boundary. Let furthermore the dis-
placement of the body be constrained by a rigid foundation, or obstacle G, as depicted
in Figure 2.1. Then, our goal is to find a condition, which models the intuitive idea of
2% non-penetrating G and which is easy to handle. Assuming also the obstacle being a
Lipschitz domain, for any point y € 0G there exists a neighbourhood Uy, such that we
can represent the boundary segment v, := 0G N U, as

Yy = {(y17y25y3) LY = ny(ylva) ) |y1|7 |y2| < Qi Oty SuﬂiCiently Sma‘ll} .

Here, the coordinates (y1,y2,y3) are given with respect to a possibly rotated coordinate
system. Proceeding as before with an adjacent segment -y, of the body’s surface, we can
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2.1 Linearized Contact
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Figure 2.1: Contact with a rigid foundation

represent locally the points (z1,x2,23) € v, by

w3 = nz(T1,22)

again with respect the possibly rotated coordinate system used for the parametrization
of ,. Here, we have implicitly made use of the assumption, that the outer normals are
close to each other.

Any deformation v being admissible with respect to the non-penetration constraint
has to satisfy

Nz (1, 2) + uz (w1, 22, M2 (21, 72)) < Ny(@1 + w1 (21, T2, N2 (72, 23)),

r9 + <p2($13m2377w('r23$3)) . (21)

Here of course, ¢ is written with respect to the rotated coordinate system introduced
above. Inequality (2.1) is referred to as kinematical contact condition for finite displace-
ments. Taking a closer look at conditon (2.1), we see that not only the possibly unknown
parametrization of both, the body’s and the obstacle’s surface is required but also the un-
known displacement ¢. Recalling the assumptions of "small" displacements, we seek for
an approximation of the kinematical contact condition in terms of the initial coordinates of
the undeformed configuration Z. Following |[KO88|, we derive the sought approximation
by linearizing the kinematical contact condition.

Let the parametrization 7, and 7, have at least a continuous first and a bounded
second derivative and let us denote in an abuse of notation our small displacement by

(ur,uz,u3)" = w(z1, 29,00 (1, 22)) .
Then, we can linearize (2.1) to obtain the simplified condition

Ony Oy

Nw(T1,22) +uz < ny(T1,22) + (a—yl, 8y2) +(u1,ug)”,
that is
ony,  0On
(_ 8—;11’ _8—3;;’ 1) . (Ul,UQ,U?,)T < ny(x1,22) — (21, 22) (2.2)
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2 Signorini’s Problem

This equation gives a linearized contact condition with respect to the direction vector
n, = (—g—Zi‘, - BZZ, ), which is normal to the surface segment -, at the point y. We nor-
malize equation (2.2) by dividing both sides by ||72,||2 and gain the equivalent normalized

equation
n, - (u1,ug, uz)’ < G(z), (2.3)
denoting by n, = n,/|n,|2 the outer normal to 7, at y and by

Gla) = 1y (%1, 22) = 1 (71, 22)
72y 12

the initial gap between the body % and the obstacle, normalized with respect to n,,.

Equation (2.3) is much easier to handle than the kinematical contact condition (2.1),
but involves the outer normal of the obstacle. However to verify the condition (2.3), it is
necessary to compute the outer normal of some unknown point y € 9G.

Exploiting the assumption of small deformations, the surfaces can be seen to differ
only within terms of at least quadratic order, see, e.g., [Eck96]. That is, since both
surfaces are known to be very close initially, within our linear model we can reformulate
condition (2.3) with respect to the outer normal n,(x) of # at a point = € v, C 0% as

ng(x) - (ur,ug, u3)” < g(z). (2.4)
Here, we have set
My(z1, 22) — e (21, T2) - Ny Ong
r)= — and n;=(———,————,1).
9 CIE g S TR R

Equation (2.4) constitutes our final contact condition. It can be computed easily in terms
of the initial gap in normal direction and can be regarded as part of the initial data. We
remark, that tangential displacements are not taken into acount by condition (2.4) and
that penetration might occur due to tangential displacements.

2.2 Strong Formulation

In this section, we define the Signorini problem and give it’s classical as well as variational
formulation. We start with the classical formulation of Signorini’s problem in terms of a
differential equation and show its equivalence with the variational formulation, provided
the solution is smooth. At the end of this section, we give some results concerning the
existence and regularity of the solution.

In the previous section, we derived the linearized contact condition (2.4), which is
a condition given with respect to the displacements. Let us now consider the stresses
developed at the contact boundary. It is clear, that the stresses o,,(u) in normal direction
developed on I's have to be compressive stresses or have to vanish, i.e., that we have

on(u) < 0. (2.5)
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2.2 Strong Formulation

Moreover, we assume frictionless contact. Thus, the body is allowed to displace freely in
tangential direction and for the tangential stresses o (u) holds

or(u)=0. (2.6)

In other words, the primal contact condition (2.4) for the displacements is accomponied
by the dual conditions (2.5) and (2.6)for the boundary stresses at the possible contact
boundary.

For stating Signorini’s problem, we basically add the primal condition (2.4) and the
dual conditions (2.5) and (2.6) to the equations of equilibrium. To be more precise, we
assume the body is clamped at I'p, i.e., we have

U= 07 onI'p (27)
and surface forces p are applied at I'p, giving
oij(uw) -mj=p;, onlp. (2.8)

As in the previous section, n = (ny,...,ng) denotes the outer normal on 90%. Let us
remark, that for ease of presentation here and in the following we shall say surface forces
and volume forces, instead of using the terms density of surface forces and density of
volume forces, respectively. Denoting the volume forces by f, we furthermore assume the
deformed body is in equilibrium state such that

—aij(u),j — fi, in 4. (29)

Considering hyperelastic, homogeneous and isotropic materials, the Cauchy stress tensor
o is given by Hooke’s Law

akl(u) = Hklijaij(u), 1 < i,j, k,l < d, (2.10)

in terms of the linearized strain tensor €, see Chapter 1 and Hooke’s Tensor H has the
following symmetry properties

Hiji = Hjur = Hijie = Hygij - (2.11)

The remaining part I'g is the possible contact boundary or Signorini boundary. That
is, only I'g or some parts of it might come into contact with the rigid foundation G. Given
that, we carefully distinguish between the possible contact boundary I's and the zone of
actual contact, which is assumed to be a subset of I's. Bearing contact condition (2.4) in
mind, we impose the following boundary conditions on the I'g

O'T(u) = 0,

O'n(u)(son_g) - 0’
om—g < 0. on I'g. (2.12)

Un(“) < 0,
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2 Signorini’s Problem

As has been defined in Section 2.1, the scalar function g denotes the initial gap between
% and the rigid foundation G, and we write for the normal component of the Cauchy
stress tensor

On = 045N (2.13)
and for the tangential component
(o1)j = oijni — onnj . (2.14)

When referring to boundary stresses or contact stresses, we always mean the pair (o, o)
or g, respectively. Consequently, contact stresses act normal to the surface and boundary
stresses in normal and tangential direction.

Now we are in a state to give the following

Definition 2.1 (Signorini’s problem) The boundary value problem given by equations
(2.7), (2.8), (2.10), (2.12) is called Signorini’s problem in linear elasticity or Signorini’s
problem.

Although boundary conditions (2.12), (2.13), (2.14) make sense with respect to their
physical meaning, we still have to show that Signorini’s problem is a well posed bound-
ary value problem. This is implicitly shown when stating the existence of a solution to
Signorini’s problem. Before doing so, let us take a closer look at equations (2.12). The
first equation in (2.12), that is o = 0, means frictionless contact, i.e., the body is free to
displace in tangential direction to minimize the total energy. The second and last equation
of (2.12) state that there must be vanishing contact stress in case of no contact and that
only compressive normal stress is allowed, respectively. Additionally, the third equation
states that no penetration in normal direction occurs.

Remark 2.2 The only primal constraint showing up in Signorini’s problem is given with
respect to the displacement in normal direction.

2.3  Weak formulation

As in the linear case, there is a variational formulation of Signorini’s problem, correspond-
ing to (1.14). Due to the non-penetration condition (2.4), we cannot expect the energy
functional J to be associated with Problem (2.1) to be Gateaux-differentiable, which
was neccessary to give the minimizer of J as stationary point in terms of a variational
equation. Instead, the variational formulation of Signorini’s problem turns out to be a
variational inequality. problem as variational inequality, existence and uniquenes of a so-
lution can be obtained by using results from convex analysis. Moreover, the formulation
of Signorini’s problem in terms of a variational inequality will be usefull for the numer-
ical algorithm to be developed, since the nonlinearity of the problem essentially can be
resolved by solving local variational inclusions.

Remark 2.3 In case of contact with friciton, standard theorems from convexr analysis
cannot be applied, since the energy functional is not conver and the ezistence theory for
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2.3 Weak formulation

Signorini’s problem with Coulomb friciton turns out to be rather demanding. We discuss
this topic in more detail in Chapter 6.

By H'(%) we denote the usual space of weakly differentiable functions with derivative
in L2(%) and we set

H'(%):= (H'(®)", L*%):=(1*%)
and son on. For details concerning Sobolev spaces we refer to, e.g., [W1lo82]. Let
vp: H'(#) — H'*(Ip)

be the trace operator and let H := {v € H* (%) |vp(v) = 0}. Furthermore, let v, = v-n
be well defined on I's. Then, for any given positive obstacle g: ['s — R, we can define
the set IC of admissible displacements with respect to contact condition (2.4) by

K:={veH|v,<gonTlg}. (2.15)

It can be seen immediately from the definition, that I is a convex subset of H. Multi-
plying (2.9) with test function v — u € K for arbitrary v € K and integrating by parts,
we get for the virtual work produced by the displacements v — u

/aij(u)(vi—ui),jdx . /—aij(u),j(vi—ui)dﬂ/aij(u)nj(vi—ui)dx.(z.w)

B B 0%
Defining the symmetric (cf. (2.10) and (2.11)) bilinearform a: H x H — R

a(u,v) = /Uij(u) v; jdx,

R

equation (2.16) can be rewritten as

a(u,v —u) = (f,v—u)pzg +(0(w)n,v—u)my)-

We note, that the boundary 0% is decomposed into three disjoint parts I'p, I'r, I's. We
find forw=v—u

(o(u)n,w)p2 g = (o(w)n, w2, + (W) n,w)rz .y + (0(w)n,w)per) -

The boundary condition (2.7) yields that the first term on the right side is zero, and
(2.8) gives that (o(w)-n,w)g2 ) can be replaced by (p,w)pz,). In a next step, we
decompose the boundary stress o;;(u)n; on the possible contact boundary I's with respect
to its normal and tangential component. In case of frictionless contact, on I'g holds

oijni(vi —u;) = ((O'T(’U,))Z + Un(u)ni)(vi — u;)
0+ op(uw) (v, — up)

on(w)(vn — Up +9g— 9g)
on(u)(vn, — g)

0,

v
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2 Signorini’s Problem

where we have used (2.12). Summing up, we have derived on I'g the variational inequality

vwek: alu,v—u) > flv—u), veK, (2.17)
where we have set

fw) = (fiv—u)pz g + (v —w)p2r,)-

This kind of inequality is referred to as wvariational inequality of the first kind. For suffi-
ciently smooth u, inequality (2.17) and the strong formulation of Signorini’s problem can
be shown to be equivalent. This is done by integration by parts in (2.17) for suitable test
functions v, see, e.g., [HHNL88, Chapter 2.1.3].

Variational inequality (2.17) may also be formulated on the whole space H. To this
end, we introduce the characteristic functional ¢: H — R by

0, vek,
(V) = +0o , v€K,

and we can rewrite (2.17) as

ue H: alu,v—u)+ o) —ex(u) > flvo—u), veH. (2.18)

Using the functional o, we define the functional J: H — R U {+oo} of total energy
for any uw € H by

F(u) = %a(u,u) — f(u) + por(u).

Any displacement being not admissible with respect to the non penetration condition is
penalized with infinite energy. The following theorem is a usefull characterization of the
convexity of J

Theorem 2.4 (Theorem 4.7-9, [Cia88]) The functional J: H — RU{+00} is con-
vex if and only if the set K is convex and the functional 7: H — R is convex.

Since the functional J of total energy is convex and the set of admissible displacements
K is convex, we have that J is convex.

Unfortunately, the energy functional 7 is not Gateaux-differentiable with respect to
the displacement u at the contact boundary and we cannot apply Theorem 1.8, which
shows the minimizer of a convex functional to be the solution of a variational equation.
We overcome this difficulty by introducing the subdifferential of a function, which is a
set-valued function. Then, variational equation (1.15), characterizing the solution as sta-
tionary point of the energy functional, can be rewritten in terms of a wariational inclusion.

To fix ideas, let us remark, that for any given real Hilbert space H a Gateaux—
differentiable function G: H — R is convex if and only if for v € H

G(u) — G(v) < <%(u),u —v), veH. (2.19)
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2.3 Weak formulation

For a proof, see, e.g., [IS93, Cla83]. Taking v = u + w in equation (2.19), we get

Glutw) > 6+ {2 ) ),

that is, in linearizing we keep staying below (sub) the functional G. This observation
forms the motivation for the following definition of the subdifferential of a function. Here,
the set of all subsets of H is denoted by 2.

Definition 2.5 (Subdifferential) Let H be a Hilbert space and let G: H — (—00, +00].
Then, the subdifferential of G at uw € H is defined to be the set 0G(u) C H of all elements
¢ € H, such that

(Gv) —G(u),v —u)g > (&, v —u)g veH, e dG(u), (2.20)

where (-,-)g denotes the inner product of the Hilbert space H. The multivalued mapping
0G: H — 2H s called the subdifferential mapping and the elements ¢ € OG(u) are
called subgradients.

In the preceeding definition, we have made use of the fact, that a Hilbert space may be
identified with its dual space. In particular, every subgradient £ defines a linear mapping
(&,-)g on H, corresponding to g—f(u) being a linear mapping on H for every fixed u. In
fact, if G is convex and Géateaux differentiable, then the subdifferential is a univalued
operator on H and it holds {g—g(u)} = 0G(u). For a proof of this results and for a more
detailed discussion of the subdifferential and its properties, we refer to, e.g., [IS93, Kor97a,
Appendix, Chapter 2] and for generalizations of this concept to [Cla83].

Exploiting the definition of the subdifferential, we can reformulate the variational

inequality (2.18) as a variational inclusion
a(u,) = f(:) € dp(u). (2.21)

Remark 2.6 In case of Signorini’s problem, the subdifferential is the boundary stress
developed at the actual zone of contact. In (2.13), we have been defining the normal
stresses o, (u) in a strong sense as normal component of the Cauchy stress tensor. This
definition can be generalized on the basis of Green’s Theorem. Let u be a solution of
Signorini’s problem. Then, o,(u) can be seen to satisfy for v € H, vy =0 on ',

(on(w),vn) 2(rg) = alu,v) — f(v). (2.22)

Consequently, o,(u) € H Y/2(I's), i.e., the boundary stresses are elements of the dual of
the trace space H'/?(T'g), see, e.g., [KO88, Chapter 5. For o, (u) smooth enough (2.13)
and (2.22) coincide. The dual interpretation of boundary stresses can also be taken ad-
vantage of in the context of elastic contact problems, see [KW00] and Chapter 7.

The following theorem, which can be found in, e.g. [Glo84, Lemma 4.1] or [DL72],
states existence and uniqueness of a solution to Signorini’s problem. Moreover, it also
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2 Signorini’s Problem

gives an equivalent formulation of the problem as as conver minimization problem, i.e.,
the variational inequality (2.17) can equivalently be rewritten as

J(u) < J(v) ve H. (2.23)

This formulation is going to be the starting point for the construction of our numerical
method in Chapter 3, which is based on a successive minimization of the nondifferentiable
functional J.

Before we can state the desired theorem, let us give the following

Definition 2.7 Let H be a real Hilbert space. A functional G: H — RU{+o0} is called
lower semicontinuous (l.s.c.), if

liminf G(v*) > G(v)

k

for any sequence v — v and it is called proper, if

G#+4+o00 and G(v)>—o00, veH. (2.24)

For a non-empty set K of admissible displacements the characteristic functional  is 1.s.c.
and proper. In addition, the ellipticity of the bilinearform a(-,-) in case of meas(I'p) > 0
is a consequence of Korn’s inequality, see, e.g. [KO88|. Now, existence und uniqueness of
a solution to Signorini’s problem is guaranteed by the following theorem

Theorem 2.8 Let a: H x H — R be a symmetric continuous bilinear and H -elliptic
form, i.e.,

a(v,v) > al|v|g. (2.25)

Let f € V' and o: H — R U {+occ} be a convez, l.s.c. proper functional. Let J(v) =
2a(v,v) + p(v) — f(v). Then, the minimization problem (2.23) has a unigue solution
which is also characterized by (2.17).

Although the above theorem provides us with a solution to Signorini’s problem, it
does not give any estimates of the boundary regularity of the solution w of Signorini’s
problem. Results concerning the regularity of the solution in the interior of the domain
are well known, see, e.g., [KO88]. Here, for sufficiently smooth data and smooth domain,
local H? regularity of the solution on compact subsets of 4 is shown. Results estimating
the regularity of the solution at the boundary may be found in [Sch88, Kin82b, Kin82a,
NJHS80, Eck96, HH80]. Assuming sufficiently smooth 4, in [Sch88]| the solution is shown
to belong to the space C1T* of Hélder—continuous functions for some unknown a € (0, 1).
For particular domains, estimates of the weak regularity of the solution to Signorini’s
problem with small friction in terms of the given data can be found in [NJHS0].
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2.4 Discretization and Error Estimates

2.4 Discretization and Error Estimates

In this section, we introduce the discretization used for the numerical approximation of
Signorini’s problem and give a priori estimates of the discretization error.

We consider a Galerkin approximation of the Hilbert space H, that is, we consider a
sequence (SW)) of finite dimensional subspaces SU) ¢ H with

Jj€No
= lI-llex
Us¥ =H.
j=0
Here, the closure is taken with respect to the Hilbert—norm || - || .

The spaces S G ), j =0,..., are spanned by linearly independent functions )\]S,j Ve H )
where p € N and N is a suitable finite index set with nj = #N () < 0o elements,

i.e., we have
S — Span{AI(,j) lpe NOW},
Moreover, we assume the basis functions )\]S,j ) to be bounded and locally supported.

As an additional property of the spaces S(j), we require an approzimation property,
which is also known as Jackson inequality, see, e.g., [BS68, BL76]. Let

Ej(u)= inf |u—v|g=|u;—uln,
ves)

then for some smoothness parameter s > 0, the following inequality is assumed to hold
with a generic constant ¢ > 0 independent of j
—s/d
Bj(w) < ey ullsr - (2.26)
To give an example for suitable spaces S(j), let 77 be a given partition of % into
triangles (tetrahedra) ¢ with minimal diameter h; = @(27") and let N'/) denote the set
of vertices contained in ZUI'r UT'g. Let /\Z(f ) be the continuous piecewise linear nodal

basis functions with )\éj )(q) = 0, for any p,q € NWand let {E'} denote the canonical

basis of the R?. Then, setting )\I(f ) = ()\,(,J )Ei)T, we obtain low order finite elements
SU) = {v]v=(vi,...,vq) € C(B)* N Hu;; is linear, i = 1,...,d, t € T?}.  (2.27)

Here, the index set A'Y) can be identified with the vertices of a triangulation of the domain
HB. Consequently, any degree of freedom is associated with a geometric object and for
some fixed J, we can call S the fine grid space and the spaces S(j), j < J the coarse
grid spaces. The approximation property (2.26) is well known for linear finite elements
and can be found for example in [Hac85, Bra93, Xu89|. If not stated otherwise, in what
follows we always assume the spaces S to be the spaces of linear finite elements given
above.
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Remark 2.9 In general, the basis functions AI(,] ) do not have to be associated with a ge-
ometric object. For example, using algebraic multigrid methods, the crucial task is not
building up suitable coarse grid meshes but suitable spaces, that is, spaces, for which ap-
prozimation property (2.26) holds. From that point of view, standard geometric multigrid
methods might be viewed as a reliable method to construct a sequence {S(j)}jeNo of nested
spaces with property (2.26). We emphasize, that our monotone multigrid method does not
require any geometric information besides the obstacle and the initial configuration. For
an implementation of the method within the framework of an algebraic multigrid method,
we refer the reader to Section 4.6.

In a next step, we discretize the convex set K of admissible displacements. We replace
the set K C H by its discrete analogue K; C S @),

Kj={vlvesY, v(p) n(p) <gjlp). pe NV NTs},

based on suitable approximations n; and g; of n and g, respectively. Note that in general
K; ¢ K, since the constraints are given pointwise. Based on this approximation of K, we
obtain the discrete minimization problem

u; € ICjS J(uj) < j(v) , NS /Cj . (2.28)

The existence and uniqueness of the solution follows from Theorem 2.8.

For any particular choice of spaces S(j), the approximation property (2.26) has to be
verified. Let us consider the case of linear finite elements, i.e., SU) as in (2.27). Here,
special care has to be taken in case of non-polygonal domains 4, since then the partition
T associated with SU) is only an approximation of 4. Following the lines of [KOS88],
we define the extension @ of the finite element function v € SU) by constant extension
in direction of the outer normal of the discrete boundary I';. The discrete boundary T';
consists of the outer edges or faces of the partition 77.

For shape regular partitions 77 and sufficiently smooth solutions u € K of (2.17), the
approximation property (2.26) is well known to hold for the spaces S (@), Written in terms
of the meshsize parameter h; of S Y ), it takes the form

lu; —ullg < chjllulla,
for the Hilbert space norm || - [|g. Using this approximation property, for sufficiently
smooth domains Z € C>' and obstacles g € H3/?(I'g), the sequence ('&j)j No of extended
solutions wu; of (2.28) can be shown to converge to the solution u € K of the variational
inequality (2.17). That is, there exists a constant ¢ > 0 independent of j, such that
[KO88, Theorem 6.4]

la; —ulle < chillullgies,  we H™® (2.29)

where H'** is a space containing suitable smooth functions, e.g., a Sobolov space and
0<s<1.
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