Host Responses to Presentation of Particulate Virulence Factors of Bacteria and Parasites

Inaugural-Dissertation

to obtain the academic degree

Doctor rerum naturalium (Dr. rer. nat.)

submitted to the Department of Biology, Chemistry, and Pharmacy of Freie Universität Berlin

by

Bopanna Monnanda Ponnappa

2015

Reviewers:

- 1. Prof. Dr. Peter H. Seeberger
- 2. Prof. Dr. Sutapa Chakrabarti

Date of Defense: October 20, 2015

Acknowledgement

I am very grateful to Prof. Dr. Peter H. Seeberger for providing me the opportunity and support in realizing this thesis. I would like to thank Dr. Chakkumkal Anish for guiding me through the first part of this thesis. Both their advice, mentoring and moral support was key instrumental in finishing this desertation. I would also like to thank Prof. Dr. Sutapa Chakrabarti for willing to review this thesis and also act as my examiner.

I would like to thank my colleagues from the gycobiology group, Ms. Anika Reinhard, Mr. Felix Broecker, Mr. Andreas Geissner, Ms. Annette Wahlbrink, Dr. Naeem Khan and past members Dr. Nahid Azzouz, Dr. Reka Kurucz and Ms. Melanie Leddermann for the very collegial atmosphere. I would specially like to thank Dr. Nahid Azzouz for his suggestions for the second chapter of this thesis and Mr. Andreas Geissner for his assistance in the microarray and HPAEC techniques.

I would like to thank the members of the vaccine chemistry group especially Dr. Claney Lebev Pereira for proof reading this thesis, Dr. Sharavathi Parameshwarappa and Benjamin Schumann for their general suggestions. I would like to thank Dr. Sharavathi Parameshwarappa and Dr. Subramanian Govindan for providing the capsular polysaccharide -3 synthetic structures and Dr. Dominea Rathwell for providing the glcosphingo lipid.

I would like to thank Dr. Juergen Hartmann from Max Planck Institute of Colloids and Interfaces, Dr. Thorsten Mielke and Mr. Joerg Buerger from Max Planck Institute for Molecular Genetics for the electron microscopy studies.

I would like to thank Dr. Daniel Kolarich and the glycoproteomics group especially Mr. Kathirvel Alagesan, Ms. Kathrin Stavenhagen and Mr. Uwe Moeginger for the support with the MALDI and proteomic analysis. I would also like to thank Dr. Bernd Lepenis and all members of the glycoimmunology group.

A special thanks to Ms. Dorothee Boehme, for all the back office help she provided during my stay at the department. I would also like to thank all the present and past members of the Biomolecular systems department. I would like to thank Claney, Sharu, Mattan, Maya, Ila, Mika, Simi, Charu, Maha, Mat, Kathir, Camille, Oliviana, Subbu, Thamarai, Davide, Stella, Yoshi, Priya, Ankita, Monika, Naresh, Ben, Marilda, Naeem and many others with whom I spent some wonderful time in Berlin. I would specially like to thank Paola for always being there and to share moments both good and bad.

Lastly, I have no words to thank my lovely mom and grandmother, my family members Sampi, Vini, Sagu, Rita, Thoto, Gowru, Sudha, Prakash, Lavi, Robin, Akshay, Akshita and Yashas for their love and support. I would also like to thank CMN Swamy, Mala, Vinay and Vivek. A special thanks to all my friends Mani, Sujay, Siddharth, Raghu, Yashu, Hero, Rajaneesh, Vrushi, Bhushan, Kavita, Meghala and Meenakshi back in India.

न हि ज्ञानेन सदृशं पवित्रमिह विद्यते । तत् स्वयं योगसंसिद्धः कालेनात्मनि विन्दति ॥ Bhagavad Gita, Chapter 4, verse 38

Summary

Virulence factors decorate the surface of pathogens or are secreted as vesicular components of various shapes and sizes, thereby functioning as particulates and mediating diverse host responses. The knowledge of such particulate virulence factors and the host responses they mediate can be exploited in the development of disease intervention strategies like vaccines and therapeutics.

Polysaccharides form an important class of virulence factors in bacteria like Streptococcus pneumoniae, Haemophilus influenza b and Neisseria meningitidis. Vaccine development against polysaccharide antigens is often challenging due to poor immunogenicity, absence of T cell recruitment in the case of polysaccharide vaccines and variables like the nature of the carbohydrate antigen, the carrier protein, the conjugation chemistry and the type of adjuvant used in the case of glycoconjugate vaccines. In the first part of this thesis (Chapter 3), a vaccine delivery system was developed to address the shortcomings of existing glycoconjugate vaccines. Capsular polysaccharide-3 (CPS-3) was used as the antigen and the well-characterized glycolipid α -GalCer (KRN 7000) was used as the adjuvant. Multiple cmbinations of CPS-3 and α -GalCer were formulated, including their co-encapsulation into either nano- or micrometer sized particles of polylactic acid. Incorporation of antigen and adjuvant in these particles was qualitatively and quantitatively assessed using biochemical and biophysical techniques. The particles were found to induce an immune response in mice, highlighting the immunogenic properties of the formulation. A physical mixture of CPS3 and α-GalCer as well as a CPS3 polysaccharide-protein conjugate used as controls produced comparable antibody titers that were lower than that obtained using the commercially available vaccine Prevnar 13[®]. Importantly, upon challenge with CPS-3 antigen, the particulate and soluble formulations, including Prevnar 13[®] mice developed a hyporesponsiveness phenotype except for the mice immunized with the physical CPS- $3/\alpha$ -GalCer mixture. Several studies have highlighted the hyporesponsiveness observed against the serotype-3 capsular polysaccharide of S. pneumoniae and this could be a serious drawback of the commercial vaccine. Using glycan microarray analysis, the antisera from Prevnar13 and physical CPS-3/a-GalCer mixture immunized groups correlated with a differential recognition of synthetic CPS-3 substructures highlighting the possible influence of the polysaccharide size on immune response. Thus, co-administration of α-GalCer in a physical mixture with CPS-3 leads to an altered recongition of certain epitopes and can be used to overcome hyporesponsiveness. The results obtained here have to be further validated using the other vaccine serotypes of S. pneumoniae. These results combined with the chemical synthesis of carbohydrate antigens indicate a promising future for the use of synthetic glycolipids as vaccine adjuvants. This would assist in the rational design of highly controlled vaccines enhancing the efficacy and minimizing formulation inconsistencies. The polymeric particulates of polylactic acid presented in this thesis, have a potential future application as excellent drypowder multicomponent vaccine formulation comprising of numerous antigens with well-defined adjuvants formulated on a single carrier platform. The packaging of the PLA based vaccine formulation into inhalers increases the shelf life and also encourages the needle-free self administration of the vaccine through the intranasal routes.

Extracellular vesicles in the form of exosomes, ectosomes, microvesicles and microparticles are gaining importance as modulators of both systemic and cellular host responses. Unicellular pathogens like Trypanosama cruzi, Leishmania donovani, Cryptococcous neoformans, and Plasmodium falciparum are known to secrete such extracellular vesicles that can act as carriers of virulence factors. In the second part of this thesis (Chapter 4), the ability of Toxoplasma gondii to secrete/shed such extracellular vesicles and possible effector functions mediated was investigated. The study describes the isolation and characterization of Exosome Like Vesicles (ELVs) from the peritoneal fluid of Toxoplasma-infected mice and in vitro cultured tachyzoites. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) measurements showed that the isolated ELVs had a uniform size of 80-100 nm. Proteomic analysis revealed several parasitic proteins such as SAG-1, SAG-2, SAG-3, GRA-3, GRA-6, GRA-7, GRA-12, Myosin, Actin, ROP-2, ROP-4, ROP-8, MIC-1, MIC-2, MIC-3, AMA-1, HSP-70 and HSP-90. Flow cytometry studies also showed differential expression of parasite glycolipids, glycosylphosphatidylinositol (GPI) anchors on these ELVs. The proteins and glycolipid reported here are immunodominant epitopes important for both diagnosis and immunoprophylatics. The ELVs, in the presence of an external inducer, showed enhancement in apoptosis induction of uninfected macrophages. The particulate nature of the ELVs comprising of several important parasitic factors might exert an effect on distant cell populations and modulate the host responses to favor parasite growth. The observations reported here draws attention to the previously unnoticed role of *Toxoplama* ELVs. The role of ELVs in the context of in vivo Toxoplasma infection needs further investigation and the results might give useful insights for designing reliable prevention strategies against toxoplasmosis.

Zusammenfassung

Virulenzfaktoren finden sich meist auf der Oberfläche von Pathogenen, können aber auch in Form von Vesikeln unterschiedlicher Form und Größe sezerniert werden. Dabei rufen sie durch ihre partikulären Eigenschaften verschiedenartige Reaktionen im Wirt hervor. Die Untersuchung dieser Partikel und der ausgelösten Reaktionen des Wirtes können entscheidende Hinweise bei der Bekämpfung von Krankheiten liefern, zum Beispiel bei der Entwicklung von Impfstoffen oder Therapeutika.

Während Polysaccharide bedeutende Virulenzfaktoren in bakteriellen Erregern wie Streptococcus pneumoniae, Haemophilus influenzae b und Neisseria meningitidis sind, gestaltet sich die Entwicklung von Polysaccharid-basierten Impfstoffen oft schwierig. Dies lässt sich im Falle von Polysaccharidimpfstoffen auf die geringe Immunogenität und das Fehlen einer T-Zell-vermittelten Immunantwort zurückführen, bei Glykokonjugatimpfstoffen dagegen auf die Wahl der richtigen Kombination aus Kohlenhydratantigen, Trägerprotein, Konjugationschemie und Art des Adjuvans. Der erste Teil dieser Arbeit (Kapitel 3) beschreibt die Entwicklung eines Formulierungssystems für Impfstoffe, um die Schwachstellen bestehender Glykokonjugatimpfstoffe zu umgehen. Als Antigen wurde das Kapselpolysaccharid von S. pneumoniae Serotyp 3 (CPS-3), als Adjuvans das gut charakterisierte Glykolipid α-GalCer (KRN 7000) gewählt. Es wurden Formulierungen verschiedener Kombinationen aus CPS-3 und α -GalCer hergestellt, darunter die Verkapselung beider Komponenten in mikro- oder nanometergroßen Partikeln aus Polymilchsäure. Der Einschluss von Antigen und Adjuvans wurde dabei mit Hilfe biochemischer und biophysischer Methoden qualitativ und quantitativ verfolgt. Die Partikel induzierten eine Immunantwort in Mäusen, was die immunogenen Eigenschaften der Formulierung bestätigt. Eine physikalische Mischung aus CPS-3 und α-GalCer und ein CPS-3-Polysaccharid-Protein-Konjugat erzeugten vergleichbare Antikörperspiegel, die jedoch geringer waren als die durch den kommerziell erhältlichen Impfstoff Prevnar13[®] hervorgerufenen. Bemerkenswerterweise wurde bei Verabreichung von CPS-3 zur Simulation einer natürlichen Infektion in mit allen partikulären und löslichen Formulierungen – einschließlich Prevnar13 – behandelten Mäusen ein hyporesponsiver Phänotyp beobachtet, mit Ausnahme der physikalischen CPS-3/a-GalCer-Mischung. Diese induzierte Hyporesponsivität ist eine bekannte Eigenschaft von S. pneumoniae CPS-3 und könnte ein entscheidender Nachteil des kommerziell erhältlichen Impfstoffes sein. Mittels Glykan-Mikroarrayanalyse stellte sich heraus, dass die Antiseren der mit Prevnar13 und der physikalischen CPS-3/α-GalCer-Mischung immunisierten Mäuse sich

durch unterschiedliche Erkennungsmuster synthetischer CPS-3-Substrukturen auszeichneten. Dies weist auf einen möglichen Zusammenhang zwischen Immunantwort und Größe des Polysaccharids hin. Durch die Applikation einer physikalischen Mischung aus α-GalCer und CPS-3 lässt sich also eine Veränderung des Erkennungsmusters der Kohlenhydratepitope hervorrufen, was mit ausbleibender Hyporesponsivität einhergeht. Die hier gezeigten Ergebnisse sollen im nächsten Schritt mittels weiterer S. pneumoniae-Serotypen auf Allgemeingültigkeit überprüft werden. In Kombination mit dem Fortschritt in der Synthese von kleinstmöglichen Kohlenhydratantigenen könnte mit den gewonnenen Erkenntnissen ein großer Schritt hin zu gezielt und kontrolliert hergestellten Impfstoffen mit stark verbesserten Wirkungsprofilen getätigt werden, indem Unzulänglichkeiten durch die Formulierung schlecht charakterisierter Inhaltsstoffe ausgeschlossen werden. Die hier präsentierten Polymilchsäurepartikel könnten in der Herstellung von Trockenpulverimpfstoffen Anwendung finden, die potentiell mehrere Antigene in Kombination mit gut charakterisierten Adjuvantien auf einer einzigen Trägerplattform präsentieren. Durch die gegenüber proteinbasierten Impfstoffen erhöhte Haltbarkeit wird außerdem eine intranasale Applikation in Inhalatoren ermöglicht, was ein großer Fortschritt im Zuge der Entwicklung spritzenfreier Impfstoffe wäre.

Extrazelluläre Vesikel in Form von Exosomen, Ektosomen, Mikrovesikeln und Mikropartikeln gewinnen zunehmend an Bedeutung, weil sie Reaktionen im Wirt auf sowohl systemischer als auch zellulärer Ebene beeinflussen können. Einzellige Pathogene wie Trypanosama cruzi, Leishmania donovani, Cryptococcous neoformans und Plasmodium falciparum sezernieren solche Vesikel, die als Träger von Virulenzfaktoren fungieren können. Im zweiten Teil dieser Arbeit (Kapitel 4) wurde die Fähigkeit von Toxoplasma gondii untersucht, extrazelluläre Vesikel freizusetzen. Beschrieben ist die Isolierung und Charakterisierung von Exosom-ähnlichen Vesikeln (ELVs) aus der peritonealen Flüssigkeit Toxoplasma-infizierter Mäuse sowie aus in vitro kultivierten Tachyzoiten. Messungen mittels Transmissionselektronenmikroskopie (TEM) und dynamischer Lichtstreuung (DLS) zeigten, dass die ELVs eine gleichmäßige Größe von 80-100 nm haben. Durch Analyse des ELV-Proteoms wurden verschiedene Proteine des Parasiten wie SAG-1, SAG-2, SAG-3, GRA-3, GRA-6, GRA-7, GRA-12, Myosin, Aktin, ROP-2, ROP-4, ROP-8, MIC-1, MIC-2, MIC-3, AMA-1, HSP-70 und HSP-90 identifiziert. Glykosylphosphatidylinositolanker (GPI), parasitäre Glykolipide, wurden mittels Durchflusszytometrie auf den ELVs gefunden. Die hier beschriebenen Proteine und Glykolipide sind immundominante Epitope, die sowohl für die Diagnostik als auch für die Immunprophylaxe eine wichtige Rolle spielen. Darüber hinaus bewirkten die ELVs eine Verstärkung der Apoptoseauslösung durch einen externen Stimulus in nicht infizierten Makrophagen. Durch die partikulären Eigenschaften der ELVs und die Anwesenheit diverser wichtiger parasitärer Faktoren könnten die Vesikel Einfluss auf räumlich entfernte Zellpopulationen nehmen und die angeborene Immunantwort des Wirtes zu Gunsten des Parasites modifizieren. Die hier beschriebenen Entdeckungen deuten auf eine bisher unbekannte Funktion der ELVs von *Toxoplasma* hin, die eine bedeutende Rolle im Zusammenhang mit Infektionen spielen kann und weitergehender Untersuchungen bedarf. Somit lassen sich möglicherweise wichtige Aufschlüsse in der Entwicklung verlässlicher Präventionsstrategien gegen Toxoplasmose gewinnen.

Abbreveations

APC	Antigen-presenting cell
BCA	Bicinchoninic acid
BSA	Bovine serum albumin
CD	Cluster of differentiation
CPS	Capsular polysaccharide
CRM ₁₉₇	Corynebacterium diphtheriae mutant CRM197
CWPS	Cell-wall polysaccharide
DC	Dendritic cell
DNA	Deoxyribonucleic acid
DLS	Dynamic light scattering
DSAP	Disuccinimido adipate
DTT	Dithiothreitol
EAP	External aqueous phase
ECL	Enhanced chemiluminescence
EDC	N-ethyl-N'-(diethylaminopropyl)-carbodiimide
EDTA	Ethylenediaminetetraacetic acid
ELISA	Enzyme-linked immunosorbent assay
ELV	Exosome like vesicle
FACS	Fluorescent-activated cell sorting
FCS	Fetal calf serum
FITC	Fluorescein isothiocyanate
GPI	Glycosylphosphatidylinositol
GSL	Glycosphingolipid
HPAEC	High Pressure Anion Exchange Chromatography
HRP	Horseradish peroxidase
IAP	Internal aqueous phase
IFN	Interferon
Ig	Immunoglobulin
IL	Interleukin
i-NKT	Invarient natural killer T cell
i.p.	Intraperitoneal
kDa	KiloDalton

MALDI-TOF-MS	Matrix assisted laser desorption/ ionization time-of-flight mass spectrometry
MHC-I/II	Major histocompatibility complex class I/II
mRNA	Messenger RNA
Mw	Molecular weight
NHS	N-hydroxysuccinimide
NK	Natural killer cell
NKT	Natural killer T cell
OD x	Optical density ($x =$ wavelength in nm)
OP	Organic phase
PAD	Pulsed amperometric detection
PAMP	Pathogen-associated molecular pattern
PBS	Phosphate buffered saline
PBS-T	Phosphate buffered saline with 0.1% Tween-20
PE	Phycoerythrin
PLA	Polylactic acid
PRR	Pattern-recognition receptor
PVA	Polyvinyl alcohol
RNA	Ribonnucleic acid
rpm	Revolutions per minute
RT	Room temperature
S.C.	Subcutaneous
SDS	Sodium dodecyl sulfate
SDS-PAGE	SDS polyacrylamide gel electrophoresis
SEC	Size exclusion chromatography
SEM	Scanning electron microscopy
TAE	Tris-acetate-EDTA
TCR	T cell receptor
TFA	Trifluoroacetic acid
$T_{\rm H}$	T helper cell
TLR	Toll-like receptor
TMB	3,3',5,5'- Tetramethylbenzidine
TNF	Tumor necrosis factor

Table of Contents

Chapter 1.	
General Introduction	1
1.1 Infection and Immunity	1
1.1.1 Infection	1
1.1.2 Virulence and Virulence Factors	1
1.1.3 Immunity	2
1.1.4 Vaccines	3
1.1.5 Adjuvants and Vaccine Delivery Systems	5
1.1.5.1 Biodegradable Poly Lactic acid (PLA) as Particulate	7
Vaccine Delivery System and Adjuvant	
1.1.5.2 NKT cells and Glycolipids Adjuvants	10
1.1.5.2.1 NKT Cells	10
1.1.5.2.2 Glycolipid Antigens as iNKT Cell Adjuvants	10
1.1.5.2.3 α-Galactosyl Ceramide and Its Analogs	12
1.1.5.2.4 Bacterial Glycolipids	13
1.1.5.2.4 Bacterial Glycolipids	13

Chapter 2. Materials and Methods

2.1 Materials	15
2.1.1 Instruments and Implements	15
2.1.2 Consumables	16
2.1.3 Chemicals, Polymers and Special Reagents	16
2.1.4 Mice, Cell Lines and Parasite Strains	17
2.1.5 Antibodies, Reagents and Kits	17
2.1.5.1 Antibodies	17
2.1.5.2 Reagents and Kits	18
2.1.5.3 Biochemistry Reagents	18
2.1.6 Materials for Cell Biology Methods	19
2.1.6.1 Media components	19
2.1.6.2 Buffers	20
2.2 Methods	21
2.2.1 Vaccine Delivery Systems	21
2.2.1.1 Fabrication of PLA Nano (NP) and Micro Particles (MP)	21
2.2.1.2 Fabrication of 6-Coumarin Loaded Fluorescent PLA	01
Nano and Microparticles	21
2.2.1.3 Formulation of Antigen Loaded PLA Nano- and Microparticles	23
2.2.1.3.1 Depolymerization of Polysaccharide Antigen	23 23
2.2.1.3.1 Depolymentzation of Folysacehande Antigen 2.2.1.3.2 Glycolipid Solubility	23
2.2.1.4 Formulation of PLA Nano (NP) and Microparticles (MP)	23
Co-encapsulating Glycolipid and Polysaccharide Antigens	23
2.2.1.4 Preparation of CRM ₁₉₇ -CPS3 Protein Glycoconjugate	23
2.2.1.4 Preparation of CRM ₁₉₇ -CF35 Protein Ofycoconjugate 2.2.1.4.1 Treatment of Polysaccharide	24
2.2.1.4.2 Periodate Oxidation	24
2.2.1.7.2 I enoune Oxidation	<u> </u>

15

2.2.1.4.3 Introduction of Primary Amino Groups by Reductive Amination	25
2.2.1.4.4 Conjugation of Aminated CPS3 with CRM 197 Carrier Protein	26
2.2.2 Analytical Methods	20
2.2.2.1 Dynamic Light Scattering (DLS) Analysis	27
2.2.2.2 Electron Microscopy and Immune Gold Labeling	27
2.2.2.3 Protein Concentration Determination 2.2.2.4 SDS-PAGE and Western Blot	28 28
2.2.2.4 SDS-PAGE and Western Blot 2.2.2.5 Proteomic Analysis of Microvesicles	28 28
2.2.2.6 Flow Cytometry	30
2.2.2.7 Confocal Microscopy Analysis of Antigen Loaded PLA	50
Nano and Microparticles	30
2.2.2.8 Estimation of Encapsulated Antigens from PLA	20
Nano and Microparticles	30
2.2.2.8.1 Particle Lysis Protocol	30
2.2.2.8.2 Flochs Extraction	31
2.2.2.9 MALDI-TOF-MS	31
2.2.2.10 HPAEC-PAD Quantification of α -GalCer (GSL) from PLA	
Nano and Microparticles	32
2.2.2.11 Size Exclusion Chromatography (SEC) of CRM ₁₉₇ -CPS3	
Protein Glycoconjugate	33
2.2.2.12 Glycan Microarray	33
2.2.3 Cell Biology Methods	34
2.2.3.1 Cell Culture	34
2.2.3.2 Cultivation of Toxoplasma gondii	35
2.2.3.3 Isolation and Purification of ELVs	35
2.2.3.4 Isolation of Glycosylphosphatidylinositol anchors (GPI)	
from <i>Toxoplasma gondii</i>	36
2.2.3.5 Enzyme-linked Immunosorbent Assay (ELISA)	36
2.2.3.6 Cellular Uptake of PLA Nano- and Microparticles	38
2.2.3.7 Splenocyte Isolation	38
2.2.3.8 Isolation and Production of Bone Marrow	20
Dendritic Cells	38
2.2.3.9 <i>In vitro</i> Stimulation of Splenocytes by PLA Nano and Microporticles	20
Microparticles 2.2.3.10 Dendritic Cell Loading and Splenocyte Activation	38 39
2.2.3.11 Apoptosis Studies in RAW 264.7 Macrophages	39
2.2.4 <i>In vivo</i> Studies	39
2.2.4.1 Ethics Statement	39
2.2.4.2 Immunization	39
2.2.4.3 Serum collection	40

Chapter 3. Fabrication, Characterization and Immunological Evaluation of Polymeric Particles for the Delivery of Polysaccharide-Glycolipid Combination Vaccines	41
3.1 Introduction	42
3.1.1 Carbohydrate Antigens	42
3.1.2 Streptococcous pneumoniae	42
3.1.3 Pneumococcal Virulence Factors	43
3.1.4 Pneumococcal Capsular Polysaccharide	44
3.1.4.1 Streptococcus pneumoniae Serotype-3 Capsular Polysaccharide	47
3.1.5 Vaccines Against Capsular Polysaccharide	47
3.1.5.1 Capsular Polysaccharide Vaccines	48
3.1.5.2 Glycoconjugate Vaccine	49
3.1.6 Nasopharyngeal Carriage of Streptococcus pneumoniae and	
Natural Immunity	51
3.1.7 Mucosal Delivery of Polysaccharide Antigens	51
3.2 Results and Discussion	54
3.2.1. Glycolipid Antigens Show Immune Stimulatory Properties	
with Adjuvant Activity	54
3.2.1.1. Immunization Studies to Evaluate CPS-3 Specific	
Immune Responses of Mice Immunized with	
Glycosphingolipid (GSL) and Alum as Adjuvant	55
3.2.2. Fabrication and Characterization of Polylactic Acid (PLA)	
Nano- and Microparticles	57
3.2.2.1 Fabrication of PLA Microparticles	58
3.2.2.2 Fabrication of PLA Nanoparticles	60
3.2.3. Fabrication of PLA Nano- and Microparticles Encapsulating	()
Capsular Polysaccharide-3 (CPS-3) Antigen	62
3.2.3.1 Immunization Studies to Evaluate Polysaccharide Specific	
Immune Response of Mice Immunized with CPS-3	64
Encapsulated PLA Nano- and Microparticles	04
3.2.4. Fabrication of PLA Nano- and Microparticles Co-Encapsulating Capsular Polysaccharide-3 (CPS-3) and Glycosphingolipid (GSL)	
Antigen	66
3.2.4.1 Quantification and Encapsulation Efficiency of CPS-3 and GSL	68
3.2.4.2. Splenocyte Activation by Soluble and Particulate GSL	70
3.2.4.3. Immunological Evaluation of CPS-3 and GSL Co-encapsulated	70
PLA Nano- and Microparticles	73
3.2.5. Influences of Polysaccharide Size on the Immune Response	76
3.2.5.1 Preparation of CRM ₁₉₇ -CPS3 Protein Conjugate	76
3.2.5.2 Immunization Studies to Evaluate Polysaccharide (CPS-3)	70
Specific Immune Responses from Mice Immunized	
with Glycosphingolipid (GSL) and Alum Adjuvant	80
3.2.6. Mice Immunized with Particulate Formulations and Challenged with	00
CPS-3 Polysaccharide Show Hyporesponsiveness and	
No Immunological Memory	82
3.2.6.1. GSL Rescues the Polysaccharide Induced Hyporesponsiveness	
in Soluble Formulations	84
3.2.6.2. Glycan Array Analysis Reveals Different Epitope Recognition	85

3.3 Conclusion Chapter 4. <i>Toxoplasma gondii</i> Exosome Like Vesicles (ELVs) act as Carriers of Virulence Factors	
4.1 Introduction	94
4.1.1 Extracellular Vesicles	94
4.1.2 Extracellular Vesicles of Pathogens	95
4.1.3 Toxoplasmosis	96
4.1.4 Infection Biology of Toxoplasma gondii	97
4.1.5 Host Resistance and Immunity to Toxoplasma gondii infections	98

4.2 Results and Discussion	99
4.2.1 Toxoplasma gondii Tachyzoites Secrete Exosome Like Vesicles (ELVs)	
in a Time Dependent Manner	99
4.2.2 Toxoplasma gondii ELVs Contain Parasitic Proteins and Glycolipids	101
4.2.3 Peritonial Fluid of <i>Toxoplasma gondii</i> Infected Mice Contains ELVs	
with Parasite Proteins	103
4.2.4 Toxoplasma ELVs from RH and PTG Strains are Composed of	
Different Parasitic Proteins	104
4.2.5 Toxoplasma ELVs from RH and PTG Strains Differ in Parasitic	
Glycolipid (GPI) Composition	106
4.2.6 Toxoplasma ELVs Enhance Apoptosis of RAW Macrophages	
in the Presence of Exogenous IFN- γ	107

4.3 Conclusion

5.	References	
э.	References	

Appendix

127

110

112

1. Introduction

1.1 Infection and Immunity

1.1.1 Infection

Infection is the invasion or acquisition by one organism or cell type, the host, by another organism (microbe) resulting in diametrically opposite outcomes. Either the death of the host, elimination of the microbe or the co-existence of both the host and the microbe can be the result [1]. Humans as part of the evolutionary process act as a natural reservoir and by virtue of their ability to traverse into different ecological niches have evolved to acquire or be infected by various organisms ranging from viruses, bacteria, parasites and even multicellular organisms like worms. Hence, microbial infection or acquisition can lead to elimination, commensalism, colonization, disease and latency [1, 2]. The infecting microbe can either benefit the host or simply co-exist, commonly constituting the microbiome with the net interaction resulting in a healthy state. However, in an opposite disease state, the normal microbiome can be detrimental to the host either due to the infection by a new organism, or by the alteration of an already commensal organism leading to detrimental effect of the host resulting in damage or death of the host with the microbe being termed as a pathogen. Hence, not all infections constitute disease and not all microbes constitute a pathogen but the classification is dependent on the net interaction between the infected host and the invading microbe [3].

1.1.2 Virulence and Virulence Factors

The infecting organisms are broadly classified as pathogenic and non-pathogenic based on their disease causing ability and destruction of the host. This disease causing ability is thought to be solely pathogen centric, mediated by certain components present or released by the pathogens termed virulence factors [4]. However, the ability of certain commensal bacteria to evolve from non-pathogens to later become pathogenic on account of antibiotic therapy, chronic infections or immunosuppression focused the attention on the host responses towards the infecting organisms [5]. Consequently, infections are classified either as primary infections or opportunistic infections based on the host cell response and damage incurred following the infection. In both cases, the outcome of host cell damage is attributed to a concerted action of the microbe or microbial components on the host and the responses

produced by the host against the invading microbe or the microbial component [3, 5]. Hence, host resistance forms an important barrier in defining the interaction between the hosts and invading microbe. In humans, the mucosal surfaces of gastro-intestinal and nasopharangeal surfaces provide the first line of resistance against infectious agents and define a niche for the invading microbes where they might exist as commensals. Depending on the weakened host-responses, these commensals might breach the mucosal barriers and interact with the systemic circulation and hence form a devastating host response leading to damage or death of the host [6, 7]. Some of the virulence factors can be involved in the infection process itself like adhesins, or can provide protection to the microbe from the host like capsules of gram positive bacteria, or can release certain components like exotoxins damaging the host cell, or factors that modulate the apoptosis leading to reduced host response leading to the destruction of the microbe or an increased host response leading to the destruction of the host

1.1.3 Immunity

The host-pathogen interaction often leads to an optimal host response/resistance resulting in the destruction or minimizing the effects of the pathogenesis, benefiting the host or might lead to an overwhelming or no response leading to the destruction of the host. The host response is brought about by complex, collective and concerted defense reactions termed immunity. Immunity is a defense reaction mediated by the body against as invading pathogen or certain components of the pathogen aimed at maintaining the integrity of the host. Immunity can be broadly classified into innate and adaptive mechanisms that are again dependent on the extent of the interaction between the host and pathogen. The innate immunity is characterized by the first line instant defense mechanisms of the host that can be mediated by physical barriers such as mucous, epithelial layers of skin and gut. The physical barriers minimize the interaction of the infecting microbe/pathogen and remove them from the host surfaces. Upon breaching the physical barriers, the pathogens are exposed to the innate immune cells like macrophages that recognize the microbe via pathogen associated molecular patterns (PAMPs) and danger associated molecular patterns (DAMPs). The recognition of the pathogen (PAMP and DAMP) might lead to a host response characterized by inflammation mediated by soluble host factors like cytokines that further recruit other innate cells like neutrophils and soluble factors like acute phase proteins and complement that contain the infection and mark the microbe for further destruction [8, 9]. The innate immune response prompts the adaptive immunity that is characterized by a slower and specific response against certain components of the microbe called as antigens that might or might not be the same as that recognized by the innate immune system. Adaptive immunity is activated and controlled by the antigen presenting cells (APC) such as macrophages, B cells and dendritic cells [10]. The APCs process and present the antigens on either MHC I or MHC II molecules and thereby activate the adaptive immune cells, the B- and T-lymphocytes which define the humoral and cellular arms of adaptive immunity. The B-lymphocytes differentiate into memory B cells and plasma cells which produce specific effector molecules called antibodies against the antigen of the extracellular microbes. The antibodies bind the surface antigens of the microbe and mark them for endocytosis by a process known as opsonization. The T lymphocytes on the other hand differentiate into cytotoxic (T_c) and helper (T_H) T cells with the cytotoxic T cells directly destroying the intracellular microbes like viruses and phagocytized bacteria by recognizing the antigens presented on MHC I molecules. The helper T_H cell recognizes the antigen presented on MHC II of an APC and gets activated to produce cytokines that help in B cell differentiation or activation of other cells such as natural killer cells (NK). The concerted action between innate and adaptive responses of the immune system can provide temporary or permanent protection against an invading pathogen.

1.1.4 Vaccines

Vaccines are a preferred intervention strategy aimed at eliciting a protective immune response against an invading pathogen or its virulence factors aimed at protecting the host from further infections (prophylactic vaccines) or curing the outcome of an infection (therapeutic vaccines). Based on the type of pathogen, its interaction with the host and the nature of the virulence factors (antigen), different types of vaccines have been used (Table 1). The first form of vaccines were largely empirical and consisted of the whole pathogens, attenuated or killed by chemical treatment which produced a robust immune response and conferred long lasting protection [11]. Subsequent identification of new virulent factors like toxins resulted in the specific production of vaccines against the inactivated toxin (toxoid). However, the major drawback of the attenuated vaccines was the reactivation of the pathogen back to the virulent form combined with the non-specific responses resulting in deleterious side effects. The advent of DNA technology combined with cell culture techniques

Vaccine Type	Examples
Whole Pathogen Vaccines	
Live (Attenuated)	Varicella (chickenpox) Influenza, Rotavirus, Polio (OPV).
Killed/ Inactivated	Polio (IPV) Hepatitis A
Toxoid-Antitoxoid Vaccines (Inactivated Toxin)	Tetanus, Diphtheria
Subunit Vaccines	
Protein	Hepatitis-B, Pertussis
Polysaccharide	Neisseria meningitidis Streptococcus pneumoniae
Conjugate Vaccines	Neisseria meningitidis Haemophilius influenzae Streptococcus pneumoniae

Table 1. Examples of vaccines targeting different diseases

led to the phase of rational design of vaccines. Efforts were made to refine the antigenic determinant by using cell culture and recombinant protein engineering techniques that led to the development of subunit protein vaccines [12]. Although tremendous progress was made with protein and peptide based vaccines, a major bottleneck was the mutability of certain pathogens that led to large changes in the antigenic determinants. An important drawback of subunit vaccines was the loss of immunogenicity due to over refinement of the antigen. This lack of immunogenicity was compensated by immunostimulatory compounds called adjuvants that provided help in restoring the immunogenicity. The concept of adjuvants became central to vaccine research. The presence of polysaccharides and high level of posttranslational modification on certain gram positive bacteria and other pathogens resulted in the emergence of a novel form of glycan based vaccines which included either polysaccharides or shorter oligosaccharide antigenic structures combined with proteins forming the conjugate vaccines [12].

1.1.5 Adjuvants and Vaccine Delivery Systems

Adjuvants are substances which, when used in conjunction with an antigen, enhance the immunogenicity of the antigen leading to a productive immune response [13]. It is beyond doubt that the live or attenuated whole organisms retaining their external morphology in addition with inherent natural adjuvants (bacterial flagelin, viral dsRNA) are superior inducers of adaptive immunity. The live/attenuated whole organisms concentrate the antigens and maximize the interaction with the different cells of the immune system mimicking a natural infection scenario leading to a robust immune response [14-17]. On the other hand, the sub-unit vaccines even though antigenic, fail to induce a protective immune response due to their reduced immunogenicity partly due to the loss of danger associated molecular pattern, reduced interaction with the immune system and dilution of the antigen [15, 18]. Hence, adjuvants improve the immunogenicity of the antigen by enhancing the magnitude and speed of the immune response, stimulating CTL responses, modulating antibody diversity, affinity and isotype distribution and finally minimize the dose of the antigen [15, 19, 20]. One of the most important properties of adjuvants are their ability to concentrate the otherwise soluble antigens producing a depot effect maximizing the concentration of the antigen at the site of injection and increasing the interaction with the cells of the adaptive immunity [18]. It is also evident that the adjuvants provide an additive effect and work best when co-delivered with the antigen to produce a productive response. Hence most of the adjuvants also work as delivery systems and the concept of adjuvants and delivery systems have been interchangeably used in the context of vaccination [21]. Hence, as seen in Figure 1, adjuvants are broadly classified into particulate or non-particulate adjuvants [19].

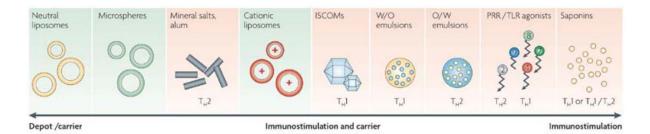


Figure 1. Vaccine adjuvants. Particulate and non-particulate vaccine adjuvants functioning either as depot/carriers or as immunostimulants adopted from [22].

The particulate adjuvants also function as delivery systems that include emulsions (MF 59, Freunds adjuvant), mineral salts (Alum Al(OH)₃), liposomes, virus-like particles (VLP), immune stimulating complexes (ISCOMS of saponins) and nano/microparticles of chitosan

and polylactic acid (PLA) [23-27]. The non-particulate adjuvants include individual compounds like lipopolysaccharides (LPS), flagelins, unmethylated CpG DNA, β -glucan, double stranded RNA and endogenous therapeutics like cytokines that have intrinsic immune modulatory properties [20]. However, as the co-delivery of the antigen and adjuvant is prerequisite for maximal response, most non-particulate adjuvants work best when associated with a particulate adjuvant.

Adjuvants are also classified based on their interaction with the immune cells and the modes whereby they modulate the immune response into type A, B or C [22]. Most of the non-particulate adjuvants are either type A (PAMPs which target the TLR) or type-C (endogenous adjuvants like cytokines and glycolipids) that modulate the immune response either towards a T_{H1} cell mediated response to combat intracellular pathogens and cancer cells or a T_{H2} antibody response directed towards extracellular pathogens or a mixed T_{H1}/T_{H2} response. The particulate delivery systems (liposomes and PLA particles) mainly function to enhance the antigen presentation to the T cells in a MHC dependent pathway and are classified as type-B adjuvants [19]. However, the co-delivery of a type A or C adjuvant class with the type-B adjuvant or delivery system enhances the potency of the vaccine/antigen in a synergistic manner [28-30].

Although different compounds and delivery systems show promising adjuvant properties, the aluminum based system (Alum) is the only human approved adjuvant that acts by forming emulsions, concentrating and adsorbing the antigens with negligible side effects [31, 32]. However, alum has its own shortcomings as it poorly adsorbs some negatively charged polysaccharide antigens, general requirement for repeated booster doses, inability to elicit an IgA mucosal responses and inability to elicit a cytotoxic T cell (CTL) responses [31]. The field of adjuvants and delivery systems is an area of intense research and several new adjuvant formulations are currently being explored as summarized in Table 2.

Particulate	Adjuvants	
Adjuvant Name	Properties/ Remarks	
Alum based [Al(PO) ₄ , Al(OH) ₃ , AlK(SO) ₄]	Most used; weak	
Mineral salts (Ca, Fe and Zr)	Better tolerated than alum	
Tensioactive compounds (Quil A,	Glycosides from steroids, plant extract	
QS21)	or only fractions, too toxic for human	
Emulsions (oil in water or vice versa,	Depot effect, in general too toxic for	
MF59, Adjuvant 65 , Montanide, Freunds)	routine human prophylactic vaccine	
Liposomes	Low stability, manufacturing? Quality?	
Polymeric microspheres (poly lactide,	Depot effect, dry powder formulations,	
poly lactide-co-glycolide)	good encapsulation of hydrophobic and	
	hydrophillic antigens, too many	
	variables	
Non-Particulate Adjuvants		
Adjuvant Name	Properties/ Remarks	
Bacteria-derived (peptidoglycan, LPS,	Good stimulation of immune response,	
flagellin, trehalose, DNA (CpG motifs))	too toxic	
Cytokines (IFN-y, GM-CSF)	Potential in DNA vaccines	
Glycolipids, CD1d ligands,	Specific i-NKT cell adjuvants,	
(a-galactosylceramide/KRN-7000)	encapsulation and co-delivery needed	
Carbohydrates (Inulin, glucans,	Good stimulation of immune response,	
dextrans, lentinans, glucomannans and	less toxic, ongoing research	
galactomannans)		

Table 2. Vaccine adjuvants. Various particulate and non-particulate substances used as vaccine adjuvants with their associated advantages and disadvantages [26, 33, 34].

1.1.5.1 Biodegradable Poly Lactic acid (PLA) as Particulate Vaccine Delivery System and Adjuvant

Polylactic acid (PLA) and poly lactide-co-glycolide (PLGA) are condensation polymers of hydroxyacid monomers, D-lactic, L-lactic, and/or glycolic acid. They form excellent biodegradable and biocompatible scaffolds and can be fabricated into various shapes and size and are completely inert with excellent bio safety records. They have been approved by the US Food and Drug Administration (FDA) and European Medicines Agency (EMEA) for use in humans and veterinary use and have served as excellent scaffolds for various biomedical applications like sutures, delivery matrices, orthopedic fixtures and medical implants [35-37].

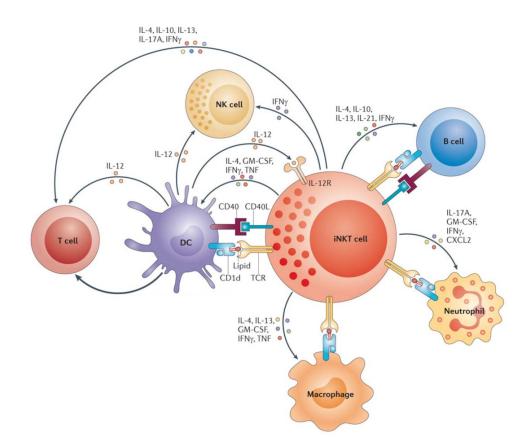
Polylactic acid polymers have also been fabricated as excellent controlled release systems for the delivery of various hydrophilic and hydrophobic drugs [38, 39]. The fabrication of the particles is achieved by water in oil (w/o) single emulsion or water in oil in water (w/o/w) double emulsion either by solvent evaporation or solvent diffusion technique. The polymer is generally dissolved in the organic solvent (oil phase) and the drug/antigen

depending on the solubility is either dissolved in the oil or water phase. Apart from this, the PLA/PLGA particles are used as vaccine delivery systems where various antigens ranging from proteins, peptides, lipids and polysaccharides have been encapsulated and delivered [40]. An important feature of the particulate systems is the ability to custom fabricate particles depending on the physio-chemical nature of the drug/antigen combination with the type of polymer used which impacts the drug/antigen release. Generally, PLGA or PLA have been used for encapsulation of antigens due to their homogenous distribution on the matrix [41]. The PLA polymer is more hydrophobic than the PLGA polymer. The hydrophobicity has a great impact on the degradation of the polymer by hydrolysis. The PLGA polymers are more prone to degradation than PLA [42]. The degradation of the polymer generally follows an initial burst release on contact with the aqueous environment where the antigens adsorbed on the surface are initially released within a few hours to days [43-45]. This initial phase is followed by a delayed degradation of the remaining particle that can take place in few weeks to months or up to a year depending on the properties of the polymer used, the porosity of the particles with PLGA polymers degrading faster compared to PLA polymers [46, 47]. The above mentioned physio-chemical properties of PLA polymers enables the fabrication of a control release systems either for a fast or sustained delivery of the antigen. A second important feature of the polymeric system is that different sized particles can be readily formulated in the micrometer range of 1-30 microns [48, 49]. Further control of various parameters like emulsion ratio, the power employed for dispersion, the surfactant and the evaporation technique used results in sub-micron particles up to <200 nm [50-52]. The above features of the polymeric particles combined with the different size have a direct impact on their function as vaccine adjuvants by increasing the efficiency of antigen presentation and maximizing the interaction with immune cells like phagocytes and dendritic cells. PLA by themselves are inert and do not cause unwanted immune responses but can cause a very mild inflammation. This inflammatory response is thought to further aid the adjuvant nature of the particles [22, 53, 54]. The size differences of the particles can further fine tune the immune response as they interact differently with cells of the immune system. The particles undergo uptake either through phagocytosis (1-10 µm), micropinocytosis (0.5-5 µm) or clathrin mediated endocytosis (< 500 nm) [55-57]. It has been shown that there is about a six fold difference in the uptake of nanoparticles as compared to the 10 µm particles by weight and by number, this difference is about 700,000 times higher [58]. During the course of immunization, nanoparticles are efficiently taken up by a cell or permeate the biological barrier and reach the bloodstream from where they are taken up by the mononuclear

phagocytic system [59, 60]. However, microparticles are not so efficiently up-taken by the cells and hence are retained at the point of injection where they continuously release the antigen in a pulsating manner and function as antigenic depots [61]. In this regard, PLA particles have been shown to serve as excellent single point vaccine delivery systems, displaying long lasting immunological memory after one year of immunization with protection against challenge as compared to traditional vaccination protocols that involve a priming dose followed by several repeated booster doses [62, 63].

Another advantage of the PLA particulate system based on size is efficient presentation of the antigen both to the MHC-I and MHC-II pathways promoting both cellular and humoral immune responses. PLGA particles in the 2-8 μ m range are shown to be potent inducers of antibodies and this has been attributed to the depot effect of the microparticles, promoting an up regulation of MHC class II pathway with the secretion of the cytokine IL-4 skewing the immune response towards a T_H2 type characterized by antibodies [64-66]. On the other hand, nanoparticles as compared to microparticles have been shown to induce higher levels of IFN- γ with up-regulation of the MHC class I molecule skewing the immune response towards a T_H1 type [67]. Co-encapsulation of the PLA particles with a T_H1 adjuvant like CPG ODN or MPLA can promote a mixed T_H1/T_H2 response characterized by both cell mediated CD8 and CD4 Humoral immunity [68-72]. Hence, polylactide based biodegradable particles can be fabricated with tailor made specificities to elicit a response either against an intracellular pathogen by a T_H1 response or an extracellular pathogen by a T_H2 response.

Most of the commercial sub-unit vaccines are marketed as suspensions in a liquid state that need constant refrigeration to maintain the quality of the vaccine. Polymeric PLA particles can be lyophilized, aerosolized and stored as dry powder formulations without damaging the antigen. Such formulations have bright future applications in low income countries where the refrigeration costs of maintaining a vaccine are very high.


1.1.5.2 NKT Cells and Glycolipids Adjuvants

1.1.5.2.1 NKT Cells

Natural Killer T (NKT) cells are specialized sub set of lymphocytes that combine the cytotoxic activity of Natural killer (NK) cell and the immune regulatory properties of T cells and hence bridge both the innate and adaptive immune responses [73]. The NKT cells were defined based on two independent discoveries. i) a T cell subset having a NK cell receptor NK 1.1(CD 161) [74] and ii) a subset of T cells expressing a invariant T cell receptor (TCR) α -chain composed of V α 14-J α 18 (combined with semi-invariant β -chain V β 8.2, V β 7 or V β 6 in mouse) or V α 24-J α 18 (combined with V β 11 in humans) as compared to the classical CD4 CD8 T cells [75, 76]. A contrasting feature of the NKT cell TCR as compared to the TCRs of CD4 and CD8 T cells is their recognition of lipid antigens presented on non-classical MHC-I like membrane bound glycoprotein CD1d that are mainly expressed on B cells, macrophages, dendritic cells and epithelial cells [77, 78]. CD1d is the only mouse isoform present compared to humans that have five isoforms (CD1a-e) [79, 80]. The CD1 isoforms are thought to traffic the different endocytic compartments with CD1a mainly present in early endosomes whereas CD1b and CD1d are localized to the late endosomes where maximum microbial lipids are accumulated during infections [81-83]. NKT cells are further classified as type I or type II NKT cells based on their unique response towards glycolipid antigens presented on CD1d and are hence known to be CD1d restricted [84]. Type I NKT cells are known as invariant NKT cells (iNKT) based on the limited diversity of their TCR in specifically recognizing the glycolipid antigen α -galactosylceramide (α -GalCer) presented on CD1d [85-87]. Type II NKT (non Va14 and Va24) have diverse TCR that are not activated by α -GalCer but recognize sulfatide and non-lipidic small molecules in a CD1d dependent manner [88, 89].

1.1.5.2.2 Glycolipid Antigens as iNKT Cell Adjuvants

Invariant natural killer T (iNKT) cells get activated by their TCRs that recognize self and foreign lipids antigens presented on CD1d molecule of an APC. The extent of iNKT cell activation is dependent on the nature of the glycolipid antigen with few glycolipids (α -GalCer) functioning as potent iNKT cell ligands. However, the iNKT cells can also be activated through the cytokine IL-12 produced by an APC through pattern recognition receptor (PRR) activation in which case the glycolipid can be a weak antigen. The latter is particularly true in the case of few exogenous glycolipid antigens of certain bacteria. In either case, the activation of the iNKT cells by the potent agonist glycolipid antigen leads to rapid release in copious amounts of cytokines [90]. The cytokines can be pro-inflammatory like IL-2 and IFN- γ that mediate a T_H1 type response against bacteria, viruses and parasites or a T_H2 type response mediated by IL-4, IL-10, GMCSF etc or a mixed T_H1/T_H2 type response [91-93]. As seen in Figure 2, the iNKT cells interact directly or indirectly with innate immune cells like DC, macrophage, neutrophils and also with cells of the adaptive immune system like B cells and T cells directly or through the activation of DC. Dendritic cells (DC), like iNKT cells play an important role at the interface between innate and adaptive immunity [94]. Dendritic cells constitutively express CD1d and are involved in the presentation of intravenously delivered α -GalCer resulting in *in vivo* activation of splenic iNKT cells [95-97].

Figure 2. iNKT cell activation and interaction with different leukocytes. The CD1d dependent presentation of glycolipids by an APC like macrophage, dendritic cell (DC), B cell or neutrophil leads to activation of the iNKT cell. The activated iNKT cells produce the T cell cytokines like IL-4, IFN- γ , granulocyte-macrophage colony stimulating factor (GM-CSF) that cause the reciprocal activation of the APC leading to various innate and adaptive immune activation like either B cell maturation, T cell activation by DC and microbial killing by macrophages and DC. The iNKT cell cytokine IFN- γ and IL-12 from DC might also transactivate natural killer (NK) cells mediating a microbicidal activity. Figure adopted from [98].

Similarly, in the lungs, pulmonary DCs can take up glycolipid antigens and present it to iNKT cells or transmigrate into draining lymph nodes and present the antigen to conventional T cells in case of protein [99]. In the infection scenario, DCs, the professional antigen presenting cells can get activated via the PRR mediated pathway and produce the cytokine IL-12. The production of the cytokine IL-12 leads to the up-regulation of antigenic glycolipids or the presentation of microbial glycolipids on CD1 molecules [98, 100]. The subsequent cognate recognition of this DC-CD1-iNKT leads to further secretion of IL-12 that binds to the IL-12 receptor on iNKT cells, to activate them to produce IFN- γ [95, 101, 102]. The IFN- γ production brought about by activation of iNKT cells leads to transactivation of NK cells that are involved in immune surveillance and mediate an antitumor effect [103-106].

Besides DCs, B cells that are also APCs can present antigenic lipids leading to activation of iNKT cells. It has been shown that B cell receptor (BCR) mediated uptake of CD1d restricted antigens was effective in enhancing B cell responses in vivo [107]. B cell modulation has been achieved by synthesis of an antigen linked to iNKT cell agonist [107, 108]. This cognate iNKT-B cell interaction followed by the release of iNKT cytokines IL-4 induces B cell maturation leading to higher antibody titers, affinity maturation, antibody class-switching and expansion of memory B cell pools enhancing specific antibody responses [109-111].

This direct and reciprocal activation of the different cells specifically modulates both the innate and adaptive immune responses and hence iNKT cells along with well-defined glycolipids can function as vaccine adjuvants.

1.1.5.2.3 α-Galactosyl Ceramide and Its Analogs

α-Galactosylceramide (α-GalCer) was one of the first, specific and most potent iNKT cell glycolipid antigen identified [112]. It was originally isolated from marine sponges and belongs to the family of 'agelasphin' glycolipids that contain saccharides that are α- or β-linked to a phytosphingosine containing ceramide backbone [113]. Several structure activity relationship studies further refined the structure resulting in the commercial, fully synthetic, potent iNKT antigen KRN 7000 [114, 115]. However, α-GalCer is a marine sponge glycolipid with an α-linked anomeric sugar that is not common to mammals and hence cannot be a natural iNKT cell ligand. α-GalCer potently activates iNKT cells producing IFN-γ and IL-4

resulting in a mixed $T_H 1/T_H 2$ cytokine response mediating both immunostimulatory and immunosuppressive functions, not beneficial for specific treatments in case of cancer or diabetes [116]. The potent activity and massive amount of cytokine released by α -GalCer activation leads to iNKT cell inactivation and anergy leading to hyporesponsiveness towards subsequent administration of α -GalCer [117]. Considerable efforts were spent in the identification of various exogenous and endogenous glycolipid ligands of iNKT cells.

1.1.5.2.4 Bacterial Glycolipids

One of the first discoveries of an exogenous iNKT cell glycolipid ligand was from the bacterial species *Sphingomonadaceae*, gram negative bacteria that contain glycosylceramides in their cell wall instead of LPS [118-120]. Subsequent isolation and purification of the glycolipid fractions reported two classes of glycolipids, both having a ceramide containing sphingosine lipid but differing in their carbohydrate content. The first class termed GSL-1 contained α -glucuronic acid and the second class GSL-1' contained galacturonic acid as the sugar [121-123]. Although the chemically synthesized GSL-1 showed an iNKTcell activation potential, it was however low as compared to that of α -GalCer [124]. This differential activation potential was attributed to the stereochemistry at the C-4 position that differs between a glucose and galactose residues [125]. Hence, the difference in the terminal sugar combined with the length of the glycolipid tail influences the antigenicity of the glycolipid ligand.

A second class of exogenous iNKT cell glycolipids were reported from the pathogenic bacterium, *Borrelia burgdorferi*, the causative agent of Lyme disease and the bacterium, *Streptococcus pneumoniae causing* pneumococcal pneumonia. The analysis of *B. burgdorferi* glycolipids revealed the presence of galactose as the terminal sugar but with a diacylglycerol (DAG) containing lipid tail as compared to ceramide containing α -GalCer [126]. The chemically synthesized structure BbGL-II showed iNKT activation potential and was the first reported non-glycosphingolipid iNKT cell antigen [126]. However, the analysis of the *Streptococcus pneumoniae* glycolipids revealed a DAG glycolipid but containing a α -glucosyl sugar moiety capable of stimulating iNKT cells to the same level as BbGL-II [127]. A striking difference between the ceramide containing α -GalCer and the DAG containing glycolipids in that the ceramide lipids show potent activity with only galactose terminated sugar moieties whereas the DAG containing glycolipids show similar activation potential with both galactose and glucose as the terminal sugar. Hence the discovery of the galactosyl and glucosyl DAG strengthened the role of iNKT cells in recognizing bacterial pathogens and the different effector functions they mediate.

Apart from the bacterial species, various other exogenous and endogenous iNKT cell glycolipid antigens have been identified like cholesterol esters of *Helicobacter pylori* [128], lipopeptidophospoglycans from *Leishmania* [129], phosphatidylinositolmannoside from mycobacterium [130] and endogenous self-lipids like isoglobotrihexosylceramide (iGB3) [131] and plasmalogen lysophosphatidylethanolamine [132]. The effect of the glycolipid tail and the attached sugar in modulating different levels of iNKT cell stimulation have been exploited by synthesizing various α -GalCer analogues to be used in immunotherapy which can skew the immune response specifically towards a T_H1 or T_H2 response.

2. Materials and Methods

2.1 Materials

2.1.1 Instruments and Implements

Analytical balance Autoclave CarboPac PA 20 column Cell counter chamber Centrifuges Confocal microscope	Mettler Toledo, Columbus, OH, USA Laboclav, steriltechnik AG, Detzel Schloss, Germany Dionex, Thermo Scientific, Rockford, USA Neubauer, Marienfeld, Lauda Koenigshofen, Germany 5810R & 5417R, Eppendorf, Wesseling-Berzdorf, Germany Zeiss LSM 700, Oberkochen, Germany
Electrophoresis system	Biorad, Munich, Germany
ELISA plate reader	Infinite M200, Tecan, Crailsheim, Germany
Flow cytometer	FACS Canto II, BD Pharmingen, Heidelberg, Germany
Freezer	Liebherr, Ahrensfelde, Germany
Heating Block	ThermomixerComfort,Eppendorf,WesselingBerzdorf,Germany
Homogenizer	IKA [®] T-10 Basic and T-18 Digital ULTRA TURRAX [®] Werke
nomogenizer	GmbH, Germany
Homogenizer probe	S 10 N-5G and S 18 N-10G IKA [®] Werke GmbH, Germany
HPLC	ICS 5000, Dionex, Thermo Scientific, Rockford, USA
Incubator for cell culture	NuAire, Plymouth, USA
Magnetic stirrer	MR Hei-Tec, Heidolph, Schwabach, Germany
Microarray printer	SciFlexarrayer, Scienion, Berlin, Germany
Fluorescent scanner	Genepix 4300A, Molecular Devices, Sunnyvale, CA, USA
Light Microscopes	Hund, Wilovert, Buckinghamshire, UK
Multichannel pipette	Eppendorf, Wesseling-Berzdorf, Germany
Oven	Binder, Tuttlingen, Germany
pH meter	Mettler Toledo, Columbus, OH, USA
Pipettes	Gilson Inc, Middleton, USA
Refrigerator	Liebherr, Ahrensfelde, Germany
Shaker	Neolab, Heidelberg, Germany
Sonicator	Bransons, Emerson Electric Co, St. Louis, USA
Sterile bench	Herasafe KS, Thermo Scientific, Bonn, Germany
Superose 12 column	GE Healthcare, Uppsala, Sweden
Ultra centrifuge	Optima TM L-90K, Beckman Coulter, GmbH, Krefeld, Germany
Ultra centrifuge bottles	Type 70-Ti & SW 40- Ti Beckman Coulter, GmbH, Krefeld,
	Germany
Vortexer	Vortex Gene, Scientific Industries, Bohemia, NY, USA
Water bath	Memmert, Schwabach, Germany
Water deionizer	Integra UV Plus, Neolab, Heidelberg, Germany
Zetasizer µv	Malvern Instruments Ltd, Malvern, UK
Mastersizer 2000	Malvern Instruments Ltd, Malvern, UK

2.1.2 Consumables

Amicon® Ultra-4 Centrifugal Filters	Millipore, Bedford, MA, USA
Boiling tubes	Thermo Scientific, Bremen, Germany
Cell culture flasks	Corning, Corning, NY, USA
Cell culture plates	Corning, Corning, NY, USA
Cell strainer (40 µm)	Thermo Scientific, Bremen, Germany
Centricon® Centrifugal Filters	Millipore, Bedford, MA, USA
Combitips	Eppendorf, Wesseling-Berzdorf, Germany
Cryotubes	Corning, Corning, NY, USA
ELISA plates (Nunc)	Thermo Scientific, Bremen, Germany
FACS tubes	Sarstedt, Nuremburg, Germany
Polypropelene tubes (15 ml)	Corning, Corning, NY, USA
Polypropelene tubes (50 ml)	Corning, Corning, NY, USA
Microscope slide	Sarstedt, Nuremburg, Germany
Needles	B. Braun, Melsungen, Germany
Nitrocellulose membrane	GE Healthcare, Waukesha, USA
Pasteur pipettes	Roth, Karlsruhe, Germany
Petri dishes	Corning, Corning, NY, USA
Sterile flasks	Corning, Corning, NY, USA
Sterile filters	Roth, Karlsruhe, Germany
Serological pipettes (5, 10, 25 ml)	Corning, Corning, NY, USA
Syringes	B. Braun, Melsungen, Germany
Eppendorf tubes	Eppendorf, Wesseling-Berzdorf, Germany

2.1.3 Chemicals, Polymers and Special Reagents

All chemicals used in this study were of high purity and were supplied by Sigma Aldrich (Munich, Germany), Roth (Karlsruhe, Germany) and AppliChem GmbH (Darmstadt, Germany). The polymer Polylactic acid (PLA) RESOMER, R-203 S (0.25-0.35 dL/g) was from Evonik Industries AG, Germany and PURASORB PDL 05 Poly-DL-lactide) (0.49 dL/g) was a kind gift from Purac Biochem, Netherlands. The Glycosphingolipid (α -GalCer/ KRN-7000) was from Cayman Chemicals USA. *Streptococcous pneumoninae* capsular polysaccharide (CPS) and cell-wall polysaccharide (CWPS) was from STATENS serum institute, Denmark.

2.1.4 Mice, Cell Lines and Parasite Strains

Mice strain

C57BL/6

Charles River, Sulzfeld, Germany; Max Planck Institute for Infection Biology, Berlin, Germany

Cell lines

Macrophage cell line (RAW 264.7) Human foreskin fibroblast (HFF) African Green Monkey Kidney Cells (Vero) ATCC TIB-71 ATCC CRL-1635 ATCC CCL-81

Parasite strains

Toxoplasma gondii	Type 1	(RH)	virulent
	Type 2	(PTG)	avirulent

2.1.5 Antibodies, Reagents and Kits

2.1.5.1 Antibodies

Primary antibodies

Goat anti-DT (CRM₁₉₇) IgG Rabbit polyclonal CPS-3 antisera Mouse monoclonal anti CPS-3 IgG (5F6)

Mouse anti-galactocerebroside IgG (mGalC) Mouse anti-SAG1 (P-30) IgG Mouse anti-*Toxoplasma* GPI-A IgG (T3 3F12) Mouse anti-*Toxoplasma* GPI-B IgG (T5 4E10) Thermo Scientific, Bremen, Germany STATENS serum institute, Denmark. Prof. Liise-anne Pirofski, Yeshiva University, USA Millipore, Temecula, CA, USA Leica Biosystems Newcastel Ltd, UK Dr. Nahid Azzouz Dr. Nahid Azzouz

Secondary Antibodies

Goat anti-mouse	IgG (H+L)-FITC
Goat anti-mouse	IgG-AF 647
Goat anti-mouse	IgG-AF 635
Goat anti-rabbit	IgG-488
Rabbit anti-mouse	IgG-HRP
Mouse anti-rabbit	IgG-HRP
Rabbit anti-goat	IgG-HRP

Sigma-Aldrich, St. Louis, MO, USA Invitrogen, Carlsbad, CA, USA Invitrogen, Carlsbad, CA, USA Abcam plc, Cambridge, UK Sigma-Aldrich, St. Louis, MO, USA Sigma-Aldrich, St. Louis, MO, USA

2.1.5.2 Reagents and Kits

Acrylamide/ bis-acrylamide (29:1) Alcian blue 8GX Aldehyde/Sulfate Latex Beads (5 µm) Allumium phosphate adjuvant (Alum) Amicon centrifugal filters Ammonium persulfate (APS) Annexin V Apoptosis Detection Kit Avidin-HRP BCA Protein Assay Kit Bovine serum albumin (BSA) Coomassie Protein Assay CRM₁₉₇ Protein Coumarin-6 DTT ECL Western Blot Detection Reagent ELISA Kit IL-2, IL-4, IFN-γ Milk powder Protein molecular weight ladder Streptavidin-HRP TEMED Tween-20

AppliChem GmbH, Darmstadt, Germany. Sigma-Aldrich, St. Louis, MO, USA Life technologies, Darmstad, Germany Adju-Phos[®], Brenntag Biosector, Denmark Sigma-Aldrich, St. Louis, MO, USA Sigma-Aldrich, St. Louis, MO, USA BD Pharmingen, Heidelberg, Germany PeproTech, Rocky Hill, NJ, USA Thermo Scientific, Rockford, USA Biomol, Hamburg, Germany Biorad, Munich, Germany Phenex Inc, San Diego, USA Polysciences GmbH, Eppelheim, Germany Promega, Madison, WI, USA GE Healthcare, Uppsala, Sweden Thermo Scientific, Rockford, USA Sigma-Aldrich, St. Louis, MO, USA Biorad, Munich, Germany PeproTech, Rocky Hill, NJ, USA AppliChem GmbH, Darmstadt, Germany Sigma-Aldrich, St. Louis, MO, USA

2.1.5.3 Biochemistry Reagents

Stock solutions

Ammonium persulfate (APS)

10% in H_2O

Lectin binding buffer

10 mM HEPES (11.9 g) 1 mM MgCl2 (5 mL from 1M MgCl2) 1 mM CaCl2 (5 mL from 1M aCl2) Volume adjusted to 500 ml with water

SDS-PAGE running buffer (10X)

30.3 g Tris base144 g GlycineVolume adjusted to 1 L with water

Western blot transfer buffer (1X)

100 ml running buffer (10X) 150 ml Methanol Volume adjusted to 1 L with water

Coomassie stain

2.5 gms Coomassie brilliant blue R-2501 L methanol in acetic acid in water (50:10:40)

Alcian blue stain

2 gms Alcian blue 1 L ethanol in acetic acid in water (20:3:67) Filter through paper filters

Coomassie destaining solution

Methanol: Acetic acid: Water (50:10:40)

Alcian blue destaining solution

7% acetic acid in H₂O

2.1.6 Materials for Cell Biology Methods

2.1.6.1 Media components

DMEM (with 4.5 g/L Glucose, without L-glutamine and sodium pyruvate)

Penicillin 10000 U/mL, Streptomycin 10 mg/mL (Pen/Strep) Stable glutamine 200 mM Sodium Pyruvate 100 mM β- Mercaptoethanol (β- Me) 50 mM Fetal calf serum (FCS) PAN Biotech, Aidenbach, Germany

PAN Biotech, Aidenbach, Germany

PAN Biotech, Aidenbach, Germany PAN Biotech, Aidenbach, Germany PAN Biotech, Aidenbach, Germany PAN Biotech, Aidenbach, Germany

Complete DMEM

DMEM	500 ml
FCS	10%
Glutamine	1%
Pen/ Strep	1%
Sodium pyruvate	1%
β- Mercaptoethanol	0.1 %

2.1.6.2 Buffers

Erythrocyte lysis buffer (ACK)

0.1	M Tris-HCl (pH 7.5)	10%
0.16	M NH ₄ Cl	90%

Buffers for microscopy

Cell fixation buffer

4% paraformaldehyde (PFA) in PBS, pH- 7.4

PFA quenching buffer

100 mM Glycine in PBS, pH-7.4

Cell permiabilization buffer

0.1 % Tween-20 in PBS, pH- 7.4

Cell extricating buffer

0.25 % Trypsin/ 0.02 % EDTA, pH- 7.4

ELISA coating buffer		ELISA blocking buffer and diluent
NaCO ₃ /NA ₂ HCO ₃	pH 9.4	1% BSA in PBS
PBS	рН 7.4	

ELISA washing buffer

0.1% Tween-20 in PBS

2.2 Methods

2.2.1 Vaccine Delivery Systems

2.2.1.1 Fabrication of PLA Nano (NP) and Micro Particles (MP)

Polylactic acid (PLA) nano (< 500 nm) and microparticles (2-8 µm) were fabricated using a water/oil/water (W1 /O / W2) double emulsion solvent evaporation technique as depicted in Figure 3. A two-step approach was employed where 100 μ L of the internal aqueous phase (IAP or W1) (2.5% BSA in 10% sucrose) was emulsified into 2 mL of the organic phase (OP or O) (50 mg/ ml PLA-PDL 50, 0.49 dL/ g in Dichloromethane) in a 10 mL glass vial using a sonicator fitted with a micro tip (output control-4, 40 W, 1 min, 4^oC) resulting in the primary emulsion (W_1/O) . The composition of the primary emulsion was essentially the same for both nano and microparticles. For nanoparticle formulations, the primary emulsion was immediately emulsified drop wise into 8 mL external aqueous phase (EAP or W₂) in a 50 ml polypropelene tube (Falcon) containing 2% Low molecular weight Polyvinylalcohol- PVA (Mw. 13-23K, 87-89% hydrolysis in 10% sucrose) using a sonicator fitted with a microtip (output control-5, 50 W, 2 min, 4^oC). Microparticles were fabricated by emulsifying the primary emulsion, to the external aqueous phase (EAP or W₂ 8 mL (2% Polyvinylalcohol-PVA, Mw. 31-50K, 98-99 % hydrolysis in 10% sucrose) by using a homogenizer with S 18 N-10G probe (10000 rpm, 8 min) resulting in the secondary emulsion (W_1 /O / W_2). The resulting secondary emulsion was poured into a 25 mL glass beaker, covered with an aluminum foil punched with holes and subjected to solvent evaporation and particle precipitation at 400 rpm for 6-8 h under a sterile bench. The resulting nano and microparticles were collected by centrifugation at 13000 x g for 15 min, washed with nanopure water and lyophilized for 48-72 h to obtain a fine power of PLA nano or microparticles. The vials were hermetically sealed and stored at 4⁰ C till further use.

2.2.1.2 Fabrication of 6-Coumarin Loaded Fluorescent PLA Nano- and Microparticles.

For the fabrication of fluorescent PLA nano and microparticles, $100 \ \mu L$ of the fluorescent dye 6-coumarin (1 mg/mL in dichloromethane) was added to the polymer containing organic phase (OP) during particle preparation. All other parameters were the same as described in method 2.2.1.1.

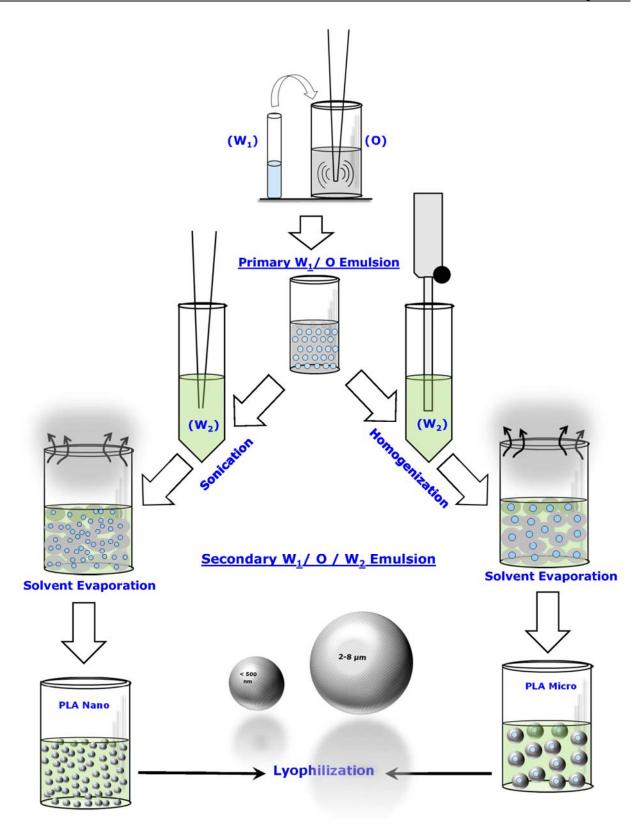
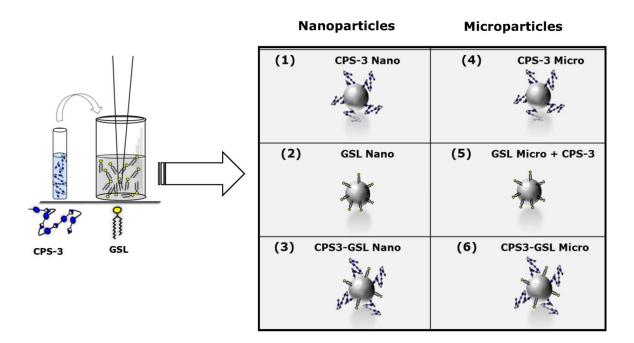


Figure 3. Schematic of PLA nano and microparticle fabrication process.

2.2.1.3 Formulation of Antigen Loaded PLA Nano and Microparticles

2.2.1.3.1 Depolymerization of Polysaccharide Antigen


The *Streptococcous pneumoninae* capsular polysaccharide antigen CPS-3 (10 mg) was dissolved in 10 mL of nanopure water, stabilized for 2 h by intermittent sonication in a sonicator water bath and transferred into a 25 mL two mouthed V bottom flask. Depolymerization/ size reduction was carried out using a Branson sonicator fitted with a microtip probe at 30 W power for 30 min-1 h under a stream of argon. The size reduction was monitored using SDS-PAGE/ Dynamic light scattering techniques. The size reduced polysaccharide solution was centrifuged at 20000 x g for 15 min on a table-top centrifuge, lyophilized and reconstituted with nanopure water and stored as 10 mg/mL aliquots until further use.

2.2.1.3.2 Glycolipid Solubility

The glycosphingolipid (GSL) α -GalCer (KRN-7000) from here on mentioned as GSL was solubilized in 3:1 chloroform in methanol, dried under a stream of N₂ and stored as 1 mg aliquots at -20^o C till further use. Depending on the end use, the aliquots were reconstituted either in 1:1 chloroform in methanol for particle preparation, DMSO for *in vitro* stimulation experiments or in PBS with sonication for *in vivo* experiments.

2.2.1.4 Formulation of PLA Nano (NP) and Microparticles (MP) Co-encapsulating Glycolipid and Polysaccharide Antigens

Polylacticacid (PLA) nano and microparticles coencapsulating the glycolipid and polysaccharide antigens in different combinations were formulated using the water/oil/water (W_1 /O / W_2) double emulsion solvent evaporation technique as described in Methods 2.1.1.1. Four types of particles were formulated consisting of Dummy, GSL only, CPS-3 only and CPS3- GSL (Figure 4). Formulation parameters for primary emulsion were essentially the same for both nano and microparticles. Briefly, 100 µL of the internal aqueous phase (IAP) with/ without the size reduced CPS-3 polysaccharide was emulsified into the organic phase (OP) with/ without the glycolipid GSL using the parameters as described in method 2.1.1.1.

Figure 4. Schematic representation of various particulate formulations of CPS-3 and GSL. The CPS-3 polysaccharide and GSL were formulated in different combinations resulting in the following particulate antigens (1) Nanoparticles containing only CPS-3. (2) Nanoparticles containing only GSL. (3) Nanoparticles co-encapsulating both CPS3 and GSL. (4) Microparticles containing only CPS-3. (5) Microparticles containing only GSL. (6) Microparticles co-encapsulating both CPS3 and GSL

2.2.1.4 Preparation of CRM₁₉₇- CPS3 Protein Glycoconjugate

The capsular polysaccharide-3 antigen was chemically conjugated to the immunogenic protein CRM₁₉₇ by periodate oxidation followed by reductive amination and amide bond formation via an activated NHS ester.

2.2.1.4.1 Treatment of Polysaccharide

2.2.1.4.2 Periodate Oxidation

The size reduced CPS-3 (from method 2.2.1.3.1) was reacted with sodium periodate (NaIO₄) to generate additional aldehyde groups as shown in Figure 5.

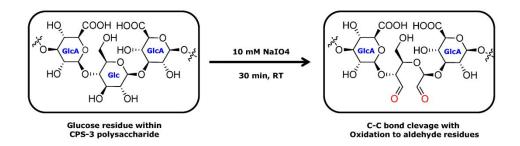
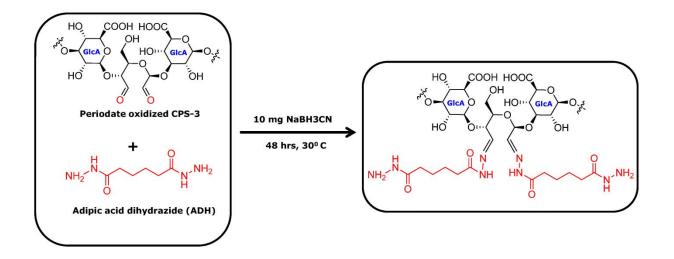



Figure 5. Schematic of the periodate oxidation reaction of CPS-3 resulting in formation of reactive aldehyde groups.

Sodium periodate cleaves the carbon-carbon bond between two adjacent hydroxyls in a carbohydrate and oxidizes the hydroxyl groups to reactive aldehyde groups. The generated aldehyde groups can be used to introduce amine groups for further conjugation procedures. The size reduced CPS-3 (2 mg) was volume adjusted to 750 μ L with 0.1 M sodium phosphate buffer pH 7.4 and 250 μ L of a 10 mg/mL (46 mM) stock of NaIO₄ in water was added to get a final concentration of 10 mM of NaIO₄. Oxidation was carried out for 30 min at RT after which 100 μ L of 100 % Glycerol was added and further incubated for 15 min to quench the reaction. Excess NaIO₄ was removed by washing four times with water using a 3 kDa MWCO concentrator. Then the oxidized polysaccharide was collected in a fresh microfuge tube and subjected to reductive amination reaction.

2.2.1.4.3 Introduction of Primary Amino Groups by Reductive Amination

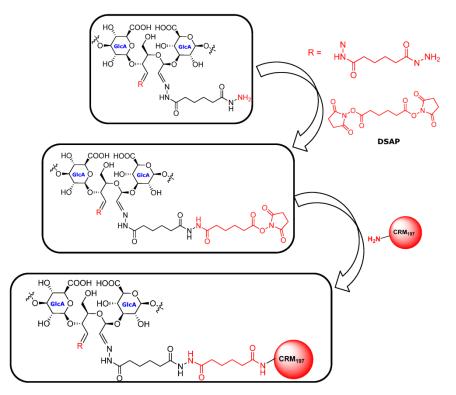

The periodate treated CPS-3 was subjected to reductive amination reaction to incorporate amine groups $(-NH_2)$ using the homobifunctional cross-linker adipic acid dihydrazide (ADH) as shown in Figure 6. The periodate oxidized CPS-3 was incubated for 48 h at 30^o C in 1 mL of 100 mM sodium phosphate buffer pH 7.4 containing 20 mg adipic acid dihydrazide (ADH) & 10 mg sodium cyanoborohydride (NaBH₃CN). The aminated polysaccharide was washed five times with nanopure water using a 3 KDa MWCO concentrator to remove the unreacted ADH and lyophilized as 1 mg aliquots.

Figure 6. Schematic of the reductive amination reaction reaction of the periodate oxidized CPS-3 in presence of adipic acid dihydrazine resulting in formation of aminated CPS-3 polysaccharide.

2.2.1.4.4 Conjugation of Aminated CPS3 with CRM 197 Carrier Protein

The CPS-3 polysaccharide with the newly formed amine group from the previous step was conjugated to the carrier protein CRM₁₉₇ using a disuccinimido adipate (DSAP) linker (Figure 7). The DSAP linker contains an amine-reactive N-hydroxysuccinimide (NHS) ester located on both ends of the 6-carbon spacer arm that can react with primary amines at pH 7-9 to form stable amide bonds. The DSAP linker was used to conjugate the amino-linked CPS-3 polysaccharide to the primary amines of the side chain of lysine residues on the surface of the CRM₁₉₇ protein. The linker 20 mg was dissolved in 200 µL DMSO followed by activation with 10 µL triethylamine. The aminated CPS-3 polysaccharide (1 mg) was dissolved in 9:1 DMSO:H₂O and was added drop wise to the linker solution kept on a magnetic stirrer and allowed to react for 2 h at RT. After the incubation time, 250-500 µL phosphate buffer was added and the unreacted DSAP linker was extracted out by adding 10 mL of chloroform in 15 mL polypropylene tube followed by centrifugation at $3000 \times g$ for 3 min. The aqueous phase of the chloroform extraction step was collected in a fresh tube and the extraction was repeated twice. This aqueous phase now containing the CPS-3 polysaccharide with the bound DSAP linker was added drop wise to solution of 500 µg CRM₁₉₇ protein in 500 µL sodium phosphate buffer pH 7.4 and incubated overnight at RT with stirring on a magnetic stirrer. The conjugates were washed with sodium phosphate buffer pH 7.4 and concentrated using a 10 kDa MWCO concentrator and stored in phosphate buffered saline (PBS) at 4^oC.

Figure 7. Schematic of conjugation procedure where the aminated CPS-3 polysaccharide was conjugated to the carrier protein CRM₁₉₇ using the DSAP linker.

2.2.2 Analytical Methods

2.2.2.1 Dynamic Light Scattering (DLS) Analysis

Size distribution of ELVs or nanoparticles was analyzed by dynamic light scattering (DLS) batch measurement technique using the Zetasizer μ V nano (Malvern). Vesicles (10 μ L) or 1 mg/mL nanoparticle suspension (10 μ L) was diluted in 1 mL PBS or water and three measurements were performed at 25⁰ C, each measurement comprised of 15 scans for duration of 14 min. Microparticle size distribution was analyzed using a Mastersizer with each measurement performed in triplicates with a size range of 0.02-2000 μ m.

2.2.2.2 Electron Microscopy and Immune Gold Labeling

For cryo-EM analysis, a droplet of 3.5 μ L ELVs was applied on a freshly glowdischarged R1.2/1.3 QuantifoilTM grid (Quantifoil Micro Tools GmbH, Jena, Germany) without additional carbon support film and plunge-frozen in liquid ethane using a VitrobotTM plunger (FEI, Eindhoven, Netherlands). Samples were screened using a Tecnai Spirit transmission electron microscope (FEI) operated at 120 kV. Images were recorded using a 2kx2k Eagle CCD camera (FEI) at a nominal magnification of 42.000x applying a defocus of about -2 μ m.

Immune gold labelling was done by first fixing the ELVs in 4% paraformaldehyde (PFA)-PBS solution for 20 min followed by quenching with a solution of 0.1 M Glycine for an additional 20 min. The ELVs (10 μ L) were adsorbed on freshly glow-discharged R2/4 QuantifoilTM grid (Quantifoil Micro Tools GmbH, Jena, Germany) for 20 min at RT. The grids were washed in PBS and incubated with the corresponding primary antibody for 45 min. After washing four times with phosphate buffered saline + 0.1% Tween-20 (PBS-T), detection was done using goat anti-mouse 10 nm gold conjugate IgG incubated for 30 min. The grids were washed with PBS-T followed by 1 wash with PBS and negatively stained with 2% uranylacetate solution (50 μ L) for 15 s. Samples were screened using a Philips CM100 transmission electron microscope operated at 100 kV equipped with a 1kx1k F114 Fastcan CCD camera (TVIPS).

2.2.2.3 Protein Concentration Determination

Colorimetric estimation of proteins was carried out using the coomassie G-250 based Bradford method or by the copper-based method of BCA as per manufacturer's instructions. In both cases, the concentration was derived from a standard curve generated using the protein BSA, expressed as μ g/ mL of protein.

2.2.2.4 SDS-PAGE and Western Blot

Samples were mixed with loading buffer and heated at 95° C for 15 min in case of proteins or incubated for 15 min at RT for polysaccharides and loaded onto polyacrylamide gels of different percentages depending on the sample. Electrophoresis was carried out at 130 V, 25 mA for 90 min. The gels were washed three times in nanopure water and stained either with coomassie brilliant blue for proteins (15 min) or with Alcian blue stain for polysaccharides (30 min) and destained to get a clear back ground.

Western blot analysis was performed in a tank blot system by electrophoretically transferring the SDS-PAGE resolved proteins and polysaccharides prior to staining from the polyacrylamide gels onto a nitrocellulose membrane. Protein transfer was done at 25 V, 250 mA for 2 h. The nitrocellulose membrane was washed twice with phosphate buffered saline + 0.1% Tween-20 (PBS-T) and blocked with a solution of 5% non-fat dried milk powder dissolved in PBS-T for 2 h at RT or overnight at 4°C. Subsequent incubation with the desired primary antibody or serum was carried out at room temperature for 90 min followed by washings with PBS-T and incubation with a HRP conjugated secondary antibody for 60 min at RT. The blots were developed using the ECL plus reagent as per manufacturer instructions and images were acquired using a LAS 5000 system.

2.2.2.5 Proteomic Analysis of Microvesicles

Tryptic digestion of the coomassie stained protein bands was performed as reported previously [133] with minor modifications. Briefly, protein bands were excised manually using a clean scalpel and transferred to clean microfuge tubes from Eppendorf. The gel pieces were destained with 50% acetonitrile, 100 mM ammonium bicarbonate, dried using a speed vac concentrator, and digested overnight at 37° C using 50 ng of trypsin under basic conditions.

All mass spectrometric analyses were performed on an AmaZon ETD Speed ion trap massspectrometer (Bruker Daltonics, Bremen, Germany) coupled to an Ultimate 3000 UHPLC system (Dionex, Thermo Fisher Scientific, Germany). The instrument was operated in the positive ion mode with the experimental parameters as follows: capillary exit voltage, 4500 V; with maximum accumulation time of 50 ms with ICC ON. In MS experiments, a mass range of m/z 400-1500 was scanned and for MS/MS experiments, a mass range of m/z 100–1500 was scanned. The width of isolation was set to 2.2 and the fragmentation amplitude was set from 30-200% in the 'smart fragmentation' mode

The mass spectrometer was set up to perform CID fragmentation on the selected precursors in positive mode. An m/z range from 400-1500 Da was scanned for precursor scanning. The three most intense signals in every MS scan were selected for MS/MS experiments, and just signals with a charge state $\geq 2+$ were selected for MS/MS. For MS/MS experiments, a m/z range from 100-1500 Da was scanned. Both, MS precursor and MS/MS scans were recorded in the instrument's "enhanced resolution mode". Tryptic digested peptides were reconstituted in 0.1% formic acid before online LC separation by reversed phase chromatography (ProteCol[™] Capillary Column, SGE, Ringwood, Vic, Australia, 300 µm x 10 mm [precolumn] and 300 µm x 150 mm [analytical column]). The samples were injected onto the precolumn in 100% solvent A (0.1% formic acid) at the flow rate of 8 µL/min and washing the precolumn for 5 min in buffer A eluted unbound components. The analytical column was equilibrated in 2% solvent B (acetonitrile with 0.1% formic acid) and a linear gradient using an increasing solvent B concentration was applied at the flow rate of 5 µL/min as follows: linear increase of buffer B from 2 to 30% (from 5 min to 61 min), further increase to 60% (61 to 76 min), followed by a steep increase to 90% (76 to 77 min). The column was held at 90 % B for 5 min (77 to 82 min) before re-equilibrating the analytical column in 2% solvent B. Meanwhile the precolumn was re-equilibrated in 100% solvent A before injection of the next sample.

Data analysis and protein identification was performed using MASCOT 2.3 (MatrixScience, UK) with the following search parameters: Cysteine as carbamidomethyl was set as fixed modification, deamidation (Asn/Gln) and oxidation (Met) were set as variable modifications. Up to one missed tryptic cleavage was allowed. Peptide tolerance (both MS and MS/MS) was set at ± 0.2 Da. The data was searched against NCBI protein database.

2.2.2.6 Flow Cytometry

Flow cytometry analysis was carried out using a FACS CantoTM II instrument from BD bioscience. ELVs and glycolipid (GPI) were analysed by immobilizing approximately 5 μ g of vesicles or glycolipid on 10 μ L of a 4 μ m diameter aldehyde/ sulphate latex beads overnight at 4^oC. The beads were quenched with 0.1 M glycine-PBS for 20 min at RT. In case of PLA particles, a known amount of particles was weighed and washed three times with water. The aldehyde latex and PLA particles were blocked with 1% BSA-PBS for 60 min at RT. Incubations with the corresponding antibodies diluted in 1% BSA-PBS was carried out at RT for 90 min followed by washings with PBS-T. Detection was done using antibodies conjugated with a fluorescent probe and for lectin staining; the fluorescently labelled Lectin was incubated in Lectin binding buffer for 90 min. A total of 50000 events were recorded for each sample and data was analyzed using FlowJo 7.6.5 software (Treestar Inc., Ashland, OR, USA).

2.2.2.7 Confocal Microscopy Analysis of Antigen Loaded PLA Nano and Microparticles

The encapsulation of GSL and CPS-3on the PLA particles was checked by confocal microscopy analysis. Briefly, 10 mg of the GSL-CPS3 particles were washed three times with nanopure water and incubated with the corresponding primary antibodies for 90 min at RT. For CPS-3, the rabbit polyclonal antibody was used and for GSL, the mouse monoclonal galactocerebroside antibody (mGalC) was used. Incubations were carried out in 0.1% BSA/ PBS after which, the particles were washed three times with PBS and incubated with the corresponding secondary antibody conjugated with a fluorescence probe for 45 min at RT. The particles were washed three times with PBS and images were acquired using a confocal microscope (LSM-700 Carl Zeiss AG).

2.2.2.8 Estimation of Encapsulated Antigens from PLA Nano and Microparticles

2.2.2.8.1 Particle Lysis Protocol

In order to estimate the loading and encapsulation efficiency of the antigens, the PLA particles were lysed using strong alkaline conditions. Briefly, 5 mg each of the different particle types Dummy, GSL, CPS-3, and CPS3-GSL were washed three times with 2 mL of nanopure water and particles were pelleted by centrifugation at 15000 x g for 10 min. The particle pellet was resuspended in 250 μ L of 0.5 N NaOH and incubated overnight at room temperature (RT).

The particle suspension proceeded from turbid to clear by the end of the incubation time indicating complete particle lysis. The particle lysate was neutralized with 112 μ L of 1N HCl solution.

2.2.2.8.2 Flochs Extraction

The CPS-3 polysaccharide and GSL were extracted from the particle lysate by phase partitioning using chloroform or chloroform in methanol depending on the antigen. For extraction of CPS-3 polysaccharide, 600 μ L of chloroform was added to the particle lysate, vortexed vigorously and centrifuged at 14000 rpm for 5 min. The upper aqueous phase containing the polysaccharide was carefully collected into a separate microfuge tube, leaving behind approximately 100 μ l of the aqueous phase. The extraction was repeated with an additional 400 μ l of nanopure water and the aqueous phases from the two extractions were pooled and centrifuged at 13000 rpm for 5 min to pellet the residual chloroform. The contents were transferred into a fresh microfuge tube, leaving behind any chloroform pellet and incubated at 37^o C for 30 min to further evaporate trace amounts of chloroform. The volume was noted down and readjusted with 10 X PBS to obtain the final polysaccharide extract in 1X PBS.

The GSL was retrieved from the residual chloroform phase (also containing approx. 100 μ L of residual aqueous phase) after the Flochs extraction step. Briefly, 200 μ L of methanol was added to the 600 μ L of chloroform phase to get chloroform:methanol ratio of 3:1. After vortexing and centrifugation at 15000 x g for 5 min, the lower chloroform:methanol phase was carefully collected using a 1 mL syringe and transferred into a clean boiling tube. The contents were completely air dried using a stream of nitrogen and used for analysis or capped tightly and stored at -20^o C till further use.

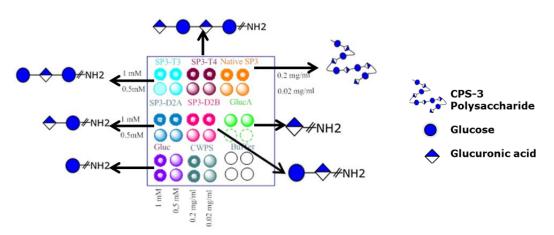
2.2.2.9 MALDI-TOF-MS

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis was performed to analyse the GSL released from hydrolyzed PLA particles in the chloroform fraction of the Flochs extract. MALDI-TOF-MS analysis was performed on an AutoflexTM Speed mass spectrometer equipped with a SmartbeamTM II laser optics running at 1000 Hz. The instrument was controlled by the FlexControl 3.3 software. The air dried chloroform phase was resuspended in 100 μ L of nanopure water and a volume (5 μ L) was mixed with an equal volume of the matrix (saturated solution of 2, 5

dihydroxybenzoicacid/ 50% acetonitrile containing 0.1% TFA). The sample-matrix mixture (1µL) was spotted onto a 384-spot MALDI target (600 µm polished steel) and allowed to dry at room temperature. Internal calibration was performed using a standard calibration mix and spectra were acquired in reflector- negative ion mode within the mass range of m/z 700 to m/z 1500 da. After analysis, the acquired spectra were baseline corrected and smoothed using with the software Flex Analysis.

2.2.2.10 HPAEC-PAD Quantification of α-GalCer (GSL) from PLA Nano and Microparticles

The quantification and the percent encapsulation efficiency (% EE) of GSL on the PLA nano and microparticles was evaluated by acid hydrolysis followed by monosaccharide quantification using High Pressure Anion Exchange Chromatography (HPAEC) method coupled with Pulsed Amperometric Detection (PAD). A sample (5 mg) of each particle type was hydrolyzed and phase-particle according to the method described in section 2.2.2.8 to release the encapsulated antigens. The aqueous phase of the phase-particle lysate containing the polysaccharide (CPS-3) and the organic phase containing the glycolipid (α -GalCer) was dried under a stream of nitrogen and processed for acid hydrolysis [134]. Acid hydrolysis was carried out using 2M TFA at 120°C for 2 h after which the samples were dried using a speed-Vac concentrator. For hydrolysis of the polysaccharide CPS-3 containing glucuronic acid residues, an additional step of methanolysis was performed prior to TFA hydrolysis with 2N methanolic-HCl at 80^oC for 24 h. The sample was dried under a stream of nitrogen followed by TFA hydrolysis. After the removal of TFA, the samples were reconstituted in 500 µL of nanopure water and filtered using a 0.45 µm HPLC-syringe filter and 10 µl of the samples were injected onto a Carbo-Pac PA-20 column (ThermoFischer) fitted with a Carbo-Pac PA-20 guard column which was connected to a Dionex ICS 5000 HPLC system. Seperations were done at a flow rate of 0.5 mL/min with an isocratic elution of 10 mM NaOH for 15 min, followed by a washing step with 200 mM NaOH for 5 min followed by regeneration with 10 mM NaOH for 20 min for analysis of neutral monosaccharides (galactose content of GSL containing samples). For uronic acid containing acidic monosaccharides, a combination of isocratic and gradient elution was used with elution of 10 mM NaOH for 16 min, followed by a washing step with 200 mM NaOH for 5 min, followed by second elution with linear gradient of 500 mM NaOAc in 100 mM NaOH reaching 60% in 15 min followed by a washing step with 200 mM NaOH for 10 min and regeneration with 10 mM NaOH for 20 min. The chromatography was monitored by pulsed amperometric detection with a gold working electrode and a Ag/ AgCl reference electrode by


selecting the quadrapule-potential waveform set for carbohydrates. GSL was quantified by comparing the galactose content with a standard curve of galactose in the range of 25-0.6 μ M treated under the same conditions as the samples. The chromatograms were processed using the Chromeleon® 7 software.

2.2.2.11 Size Exclusion Chromatography (SEC) of CRM₁₉₇-CPS3 Protein Glycoconjugate

The CRM₁₉₇-CPS3 protein-polysaccharide conjugate was analyzed and purified using size exclusion chromatography performed on a Dionex ICS 5000 HPLC system equipped with a photodiode array detector (PAD) consisting of a deuterium and tungsten lamp. Chromatography was performed in phosphate buffered saline using the Superose 12 10/300 GL column (GE Healthcare) with a flow rate of 0.4 mL/min. A sample (100 μ L) containing 200 μ g sample was injected with duration of 70 min per run. A 50 μ g/ 100 μ L standard solution of CRM₁₉₇ was used as a standard to compare the molecular weight increase of the conjugates. Fractions were manually collected and analyzed by SDS-PAGE and western blot. The chromatographic data was processed using the Chromeleon® 7 software.

2.2.2.12 Glycan Microarray

Glycan arrays were used to determine the binding preferences of sera towards the different sub-structures of CPS-3. For this purpose, the following synthetic sub-structures of CPS-3 were synthesized by Dr. Sharavathi Parameshwarappa and Dr. Subramanian Govindan and these structures were printed on a microarray slide by Mr. Andreas Geissner following standard protocols established in the lab with the printing format shown in Figure 8.

Figure 8. Microarray slide layout used for screening of CPS3 immunized sera. Various synthetic sub structures of CPS-3 made of repeating units of glucose (blue circles) and glucuronic acid (rhomboids) residues were printed in two concentrations. Native CPS3 (orange circles) and cell wall polysaccharide (CWPS) (green circles) were also printed.

The CPS-3 polysaccharide and the substructures in two different concentrations were dissolved in the printing buffer (50 mM sodium phosphate, pH 8.5). These individual solutions were spotted on a CodeLink NHS activated glass slides (Surmodics) using a S3 piezoelectric microarray printer (Scienion) equipped with a type 4 coated nozzle. The spotting chamber was constantly kept at 65% relative humidity. Post-printing, the slides were incubated over night at room temperature in a humidity saturated chamber and the remaining reactive groups on the slide surface were quenched by incubation with 50 mM sodium phosphate, 100 mM ethanolamine pH 9.0 at room temperature for 1 h. Slides were subsequently washed three times for 5 min with water, dried by centrifugation at 300 x g for 5 min (CombiSlide system, Eppendorf) and stored at 4 °C until further use.

Prior to the start of the screening procedure, a 64 well incubation gasket (FlexWell 64 grid, Grace BioLabs) was attached to the slide and well secured with clips. The primary antibody/ sera were diluted in 1% BSA-PBS solution and 30 μ L were dispensed into each well in duplicates and incubated for 1 h at RT in a humid chamber. Following the incubation step, the wells were washed three times for 5 min with PBS containing 0.1% Tween-20 (PBST) by adding 50 μ L to each well. The detection antibody dilutions were prepared in 1% BSA-PBS and 30 μ L dispensed into each well and incubated at RT in the dark for 45 min. The slides were washed twice for 5 min with PBS-T, once with PBS, rinsed with water and dried by centrifugation. Fluorescence read out was measured with a GenePix 4300A microarray reader (Molecular Devices) and the individual spots were analyzed using GenePix Pro 7 (Molecular Devices) using the mean fluorescence intensity. Spot diameter was kept identical for all samples and the mean of four spots from duplicate wells were used when quantifying the results.

2.2.3 Cell Biology Methods

2.2.3.1 Cell Culture

All cell lines and parasites were grown in complete DMEM medium supplemented with 10% foetal calf serum (FCS). Human Foreskin Fibrablasts (HFF) cells were grown to 80-90% confluence in 75 cm² sterile cell culture flasks after which sub-culturing was done by dislodging the cells with trypsin-EDTA (0.25% trypsin, 0.02% EDTA) solution. The spent medium was discarded prior to adding 5 mL of trypsin-EDTA solution and the flasks were incubated at 37^{0} C for 5 min. The cells were mechanically dislodged by tapping and the reaction was stopped by adding 5 mL of complete DMEM medium. The cells were recovered by centrifugation at 300 x g for 10 min and typically one 75 cm² flask was split in two 300 cm² flasks that reached 90%

confluence after about 5 days. African Green Monkey Kidney (VERO) cells were also propagated under similar growth conditions but were harvested using a cell scraper.

2.2.3.2 Cultivation of Toxoplasma gondii

The mice virulent strain of *Toxoplasma gondii* Type-I (RH) and the avirulent strain Type-II (PTG) were propagated in Human Foresikn Fibroblast (HFF) cells or African Green Monkey Kidney (VERO) cells grown to 80-90% confluence in complete DMEM medium. The parasites were propagated in 75 cm² flasks for routine maintenance and in 6 x 300 cm² flasks to achieve high density of approximately 10^{10} parasites.

2.2.3.3 Isolation and Purification of ELVs

ELVs were isolated from the spent medium of approximately 10^{10} tachyzoites propagated *in vitro* for 6 h in 25 mL of DMEM medium or from the peritoneal lavage of mice infected with tachyzoites using differential centrifugation approach [135]. In both cases, the production medium or peritoneal lavage was subjected to low speed centrifugation at 300 x g for 15 min, 2000 x g for 30 min and 15,000 x g for 30 mins at 4^{0} C. The supernatant of the 15,000 x g centrifugation step was subjected to two rounds of high speed centrifugations at 110,000 x g for 90 min at 4^{0} C using a 70-ti fixed angle rotor and on subsequent washing of the pellet with 10 mL PBS the second centrifugation was carried out in a SW-40 swing bucket rotor to obtain the final pellet of ELVs. In an alternate protocol, the 15000 x g centrifugation step was replaced by a filtration step using 0.45 µm and 0.2 µm pore size syringe filters followed by two rounds of centrifugation at 110,000 x g as above. For some applications, after the first centrifugation step at 110,000 x g for 90 min to obtain the final pellet of ELVs which were resuspended in 50-100 µL of PBS and the protein content estimated using the Bradford assay.

Starting with 10^{10} parasites and with a production time of 6 h, approximately 7-10 µg ELVs were obtained vesicles as measured by protein content.

2.2.3.4 Isolation of Glycosylphosphatidylinositol anchors (GPI) from Toxoplasma gondii

Frozen parasite pellets were thawed, resuspended in PBS, and pooled before centrifugation in a glass tube at 2000 x g for 15 min at 4^oC. The parasite pellet was resuspended in chloroform:methanol 1:1 (4 mL) using a Pasteur pipette in a sonication water bath. The resulting solution was centrifuged at 2000 x g for 15 min at 4^oC and the supernatant was transferred to a new glass tube and the remaining pellet was now resuspended in 4 mL chloroform:methanol:water (10:10:3). After another round of centrifugation, both supernatants were pooled in a V-bottom flask and the solvent was removed using a rotary evaporator to complete dryness forming a thin film of lipids. The content of the flask was resuspended in 4 mL of water-saturated 1-butanol on a sonication water bath and subsequently, 3 mL water was added, and the solution was thoroughly mixed and centrifuged at 2000 x g for 15 min at 4^oC. The supernatant (butanol phase) was transferred into a fresh glass tube of known weight, and 4 mL water-saturated 1-butanol was added to the lower phase followed by another round of centrifugation. The two upper phase/ butanol phase were pooled and flushed with a stream of nitrogen to evaporate the butanol leading to the precipitation of the glycolipid (GPI). The contents were periodically centrifuged at 2000 x g for 15 min at 4^oC to obtain a white pellet comprising the GPI. Approximately 200-300 µL of the remaining butanol was pipetted out and the glycolipid pellet was completely dried using a stream of nitrogen.

2.2.3.5 Enzyme-linked Immunosorbent Assay (ELISA)

Cytokine quantification (IL-2, IL-4 and IFN- γ) was performed using an indirect sandwich ELISA format according to the manufactures instructions (BD Bioscience). The plates were coated with 100 µL of the corresponding capture antibodies at 1 µg/ml PBS and incubated overnight at 4^oC followed by three washes with PBS-T. The wells were blocked with 300 µL of blocking buffer for 2 h at room temperature followed by incubation for 90 min with 100 µL of the samples or 100 µL of standards (IL-2, IL-4 and IFN- γ) in reagent diluent. The plates were washed five times with PBS-T and incubated for 1 h at RT with 100 µL of corresponding biotinylated detection antibody diluted 1:400, 1:200 (IL-2, IL-4 and IFN- γ) along with the Streptavidin HRP conjugate at 1:250 dilution. Following incubations, the plates were washed seven times with PBS-T and developed with 100 µL TMB substrate reagent for 30 min at RT in dark. The reaction was stopped by the addition of 2% H₂SO₄ (50 µL) and the absorbance was measured at 450 nm with a correction wavelength at 570 nm. The unknown concentrations were extrapolated from the standard curves.

To quantify CPS-3, the plates were coated with 100 μ L of the monoclonal antibody (mAB5F6, a kind gift from Prof. Liise-anne Pirofski) at 1 μ g/mL in PBS and incubated overnight at 4^oC followed by three washes with PBS-T. The wells were blocked with 300 μ L of blocking buffer for 2 h at room temperature followed by incubation for 2 h with 100 μ l of the samples or 100 μ L of standards. The samples included the aqueous phase of the different particle lysates subjected to flochs extraction and the standard included the CPS-3 polysaccharide diluted over a concentration range of 30-0.62 μ g/mL prepared in reagent diluent. After the incubation time, the plate was washed five times with PBS-T and incubated for 1 h at RT. The plate was washed five times with PBS-T and incubated for 1 h at RT. The plate was washed five times with PBS-T and incubated with goat anti rabbit-HRP conjugate diluted 1:2500 in reagent diluent and incubated for 1 h at RT. After the incubation time, plates were washed seven times with PBS-T and developed with 100 μ L of TMB substrate reagent for 30 min at RT in dark. The reaction was stopped by the addition of 2% H₂SO₄ (50 μ l) and absorbance was measured at 450 nm with a correction wavelength at 570 nm. The unknown concentrations were extrapolated from the standard curves.

To evaluate the antibody response (titers), the plates were coated with 1 μ g CPS-3/PBS and incubated overnight at 4⁰C followed by three washes with PBS-T. The plates were blocked with 300 μ l of 10% FCS solution for 2 h at RT. The plates were probed with 100 μ L of serum diluted in reagent diluent and incubated for 2 h at RT. Prior to incubations, the sera were preadsorbed with 10 μ g/mL of cell-wall polysaccharide (CWPS) incorporated directly in the reagent diluent (1% BSA-PBS). Following incubations with the serum, the plates were washed five times with PBS-T and incubated with 100 μ L of anti-mouse IgG HRP diluted 1:10000 and incubated for 1 h at RT. The plates were washed seven times with PBS-T and developed with 100 μ L of TMB substrate reagent for 30 min at RT in dark. The reaction was stopped by the addition of 2 % H₂SO₄ (50 μ l) and absorbance was measured at 450 nm. The absorbance values were normalized by subtracting the absorbance values of each group with their respective preimmune sera and these normalized values were used.

2.2.3.6 Cellular Uptake of PLA Nano- and Microparticles

Uptake studies were performed to check for the uptake of PLA nano and microparticles by antigen presenting cells (APC). For this analysis, RAW 264.7 macrophage cells were plated at 1×10^5 cells/ well in a 8-chamber slide and incubated with the fluorescent 6-coumarin PLA nano and microparticles at a concentration of 50 µg/ mL for 12 h. Confocal microscopy was performed to evaluate the uptake of particles by the RAW macrophages.

2.2.3.7 Splenocyte Isolation

Spleens were retrieved from the sacrificed C57BL/6 mice and washed twice in PBS. Splenocyte cell suspension was prepared by crushing the spleen in a 10 cm cell culture dish containing 10 mL of PBS through a 40 μ m cell strainer using a 10 mL syringe plunger. Splenocytes were pelleted at 300 x g for 10 min at 4^oC and resuspended in 3 mL of ACK buffer for 10 min at RT for RBC lysis. The reaction was stopped by adding 10 mL of PBS and the pellet was washed twice with PBS. The splenocytes obtained were counted using Trypan blue to exclude the dead cells. A total of $6x10^7$ cells were obtained /spleen.

2.2.3.8 Isolation and Production of Bone Marrow Dendritic Cells

For the production of dendritic cells, bone marrow from the tibiae and femurs of C57BL/6 mice was flushed into incomplete DMEM medium and pipetted vigorously to disentangle the cells. The cells, 1×10^{6} / mL were plated in a 6 well dish with 4 mL/well of cell suspension in DMEM media containing 1ng/mL GM-CSF. The plates were incubated in a 37^{0} C incubator with 5 % CO₂ and media changed on day 3, 5, and 7. On day 8, the majority of the dendritic cells was harvested after staining for the surface marker CD 11c+ by flow cytometry.

2.2.3.9 In vitro Stimulation of Splenocytes by PLA Nano and Microparticles

Splenocytes were seeded in a 96 well flat bottom plate containing 200 μ L complete DMEM medium at a concentration of 5 x 10⁵ cells/well. The cells were stimulated either with 100 ng/mL soluble GSL or 50 μ g/mL of particulate (nano and micro) GSL for 48 h after which the supernatant was retrieved and checked for the cytokines IL-2, 1L-4 & IFN- γ using a sandwich ELISA format.

2.2.3.10 Dendritic Cell Loading and Splenocyte Activation

In an alternative method of splenocyte activation, bone marrow-dendritic cells (BM-DC) were first seeded at 1 x 10^5 cells/ well in a 96 well flat bottom plate along with 100 ng/ mL soluble GSL or 50 µg/mL particulate GSL (nano and micro). Incubations were carried on for 6 h to facilitate DC mediated uptake and presentation of GSL both from the soluble and particulate forms. After the incubation time, DCs were washed three times with PBS followed by incubation with splenocyte suspension (5 x 10^5 cells/well) for an additional 24 h after which the supernatants were collected and checked for the T-cell cytokine IL-2 using ELISA.

2.2.3.11 Apoptosis Studies in RAW 264.7 Macrophages

For analysis of apoptosis, RAW 264.7 macrophages $(1 \times 10^5 \text{ cells/500 } \mu\text{L})$ were incubated in complete DMEM medium followed by addition of 2 µg of RH and PTG ELVs. PBS was used as negative control and all samples were incubated for 6 h at 37 °C. After the incubation time, the samples were treated with or without 50 U/ mL of IFN- γ and were further incubated for 12 h at 37 °C. After incubation, the cells were detached using Trypsin/EDTA solution. The apoptotic cells were detected using flow cytometry by performing Annexin staining using the AnnexinV-APC Apoptosis Detection Kit.

2.2.4 In vivo Studies

2.2.4.1 Ethics Statement

Animal experiments were performed in strict accordance with the German regulations of the Society for Laboratory Animal Science and the European Health Law of the Federation of Laboratory Animal Science Associations. The protocol was approved by the Landesamt für Gesundheit und Soziales Berlin (Permit No. G0104/13). All efforts were made to minimize suffering.

2.2.4.2 Immunization

Female C57BL/6 mice 6-8 weeks old were housed in separate cages with three mice per cage. Each sample group consisted of six mice/ group. A one prime two boost regime was followed as shown in Figure 9A followed by challenge with 5 μ g of capsular polysaccharide-3 (CPS-3). Mice were immunized by s.c injection with 100 μ L of PBS or various particle suspensions and protein conjugates containing CPS-3 (2 μ g) and GSL (1 μ g). The Prevnar®

group was immunized with $1/5^{\text{th}}$ concentration (400 ng equivalent of CPS-3) as shown in Figure 9B. The CRM₁₉₇-CPS3 conjugates were adsorbed with alum (1:1 V/V) for 1 h, volume adjusted with PBS to 600 µL (equivalent to 100 µL/ mice) and incubated overnight at 4° C on a tumbler. Prior to immunization, mice were weighed and serum collected.

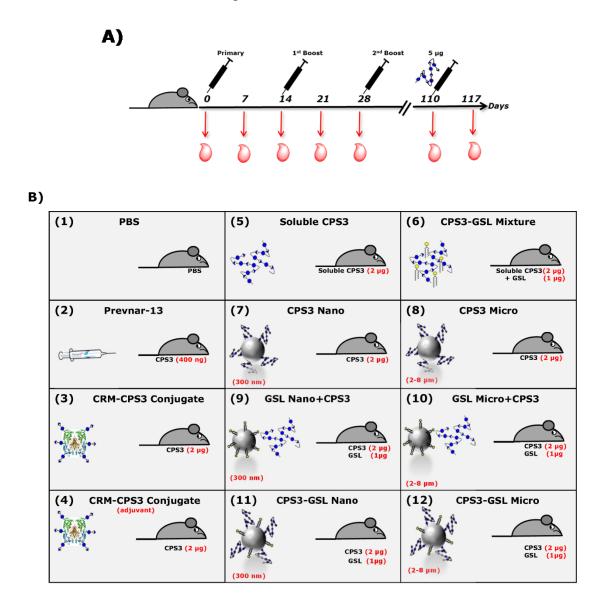


Figure 9. (A) Schematic representation of the immunization schedule. (B) The various experimental groups immunized with different formulations of CPS-3 antigen.

2.2.4.3 Serum Collection

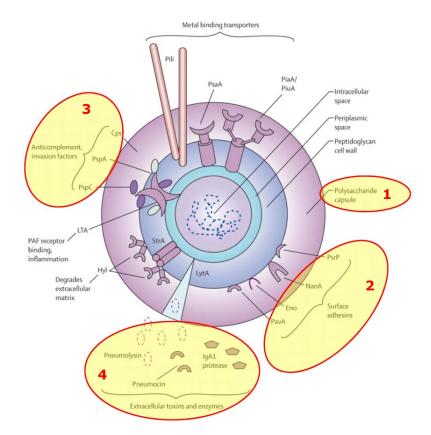
For analysis of antibody titers in sera, blood was retrieved from the mouse tail vein. Blood was incubated at RT for 30 min, before centrifugation at 10000 rpm, RT for 10 min. Sera were pipetted into new Eppendorf tubes and stored at -20 °C until further use.

3. Fabrication, Characterization and Immunological Evaluation of Polymeric Particles for the Delivery of Polysaccharide-Glycolipid Combination Vaccines

The following chapter describes the fabrication, characterization and immunological evaluation of a dry powder particulate formulation of polylactic acid (PLA) as a vaccine delivery system. The study focuses on T cell independent antigens (TI) and in particular the capsular polysaccharides of *Streptococcus pneumoniae*. Glycolipids demonstrate potent T cell adjuvant properties by activation of iNKT cells in a CD1d dependent manner. The glycosphingolipid α-galactosylceramide (α-GalCer/ KRN 7000) is a commercial glycolipid with standalone iNKT activation potential. This study aims to utilize the unique properties of the PLA based particulate system to co-deliver the TI antigen, in this case the capsular polysaccharide of Streptococcus pneumoniae serotype-3 (CPS-3) along with the iNKT cell glycolipid adjuvant α -galactosylceramide (α -GalCer/ KRN 7000) to the same B cell. The uptake and presentation of glycolipid by the CPS-3 specific B cell would result in cognate interaction and activation of iNKT cells leading to recruitment of iNKT cell help for B cells. Such a help will promote B cell differentiation and immunological memory. The CPS-3 and GSL antigens were presented on the PLA particulate system in different combinations and sizes ranging from <500 nm to 2-8 μ m. The particulate formulations of the CPS-3 antigen and GSL adjuvant was compared with the CRM₁₉₇ protein conjugate of the polysaccharide CPS-3 with alum as an adjuvant. The entire system was compared to the commercial vaccine Prevnar 13[®].

3.1 Introduction

3.1.1 Carbohydrate Antigens

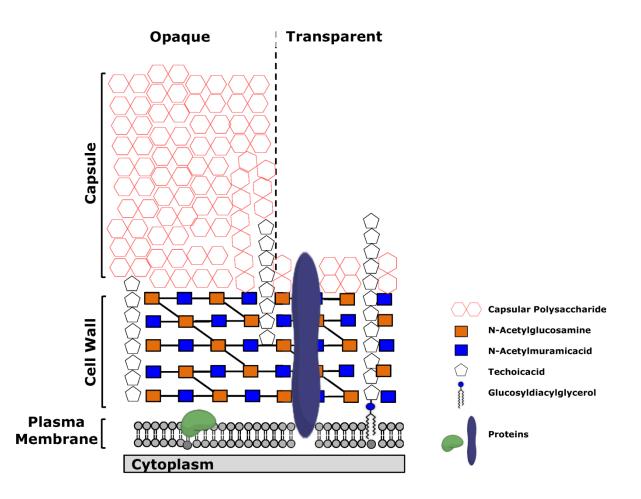

Carbohydrates (glycans) decorate on the surface of almost all cells and organisms. They exist as very well defined conjugates with specific linkages either with proteins forming glycoproteins or with lipids forming glycolipids. Carbohydrates are present on the surface of a wide range of pathogens like viruses (HIV-GP120), bacteria (LPS and various capsular polysaccharide structures), fungus (Cryptococcus β -glucan and Candida β -mannan), parasites (*Plasmodium* glycosylphosphatidylinositol) and serve as important virulence factors. Carbohydrates/ glycans like globohexaosylceramide (Globo H), fucosyl GM1, Thomsen–Friedenreich (TF) and 2-6- α -N-acetylgalactosamine (Tn), sialyl Tn and polysialic acid (PSA) are also important disease biomarkers found on the surface of various malignant tissues. Hence carbohydrates, either as monosaccharide, oligosaccharide or polysaccharide antigens form important targets of intervention strategies [136].

3.1.2 Streptococcous pneumoniae

Of the many pathogenic microbes infecting humans, bacterial infections inflict one of the highest human miseries in the form of deaths and economic burden [137]. Pneumonia caused by *Streptococcus pneumoniae*, a gram positive diplococci, lancet shaped, ubiquitous, extracellular respiratory bacteria is one of the most commonly acquired respiratory infections affecting all age groups across geographical locations [138]. Humans are the natural carriers and the bacteria habitat the upper mucosal surfaces and airway epithelia especially the nasopharyngeal regions of the respiratory tract. Although a commensal bacteria, *Streptococcus pneumoniae* can become an opportunistic pathogen depending on age, immunosuppression, genetic background, and outcome of other diseases leading to invasive pneumococcal disease (IPD) characterized by pneumonia, meningitis, otitis media, and bacteremia [138]. IPD causes the worst form of infections killing approximately 1.6 million people per year globally of which 8–12% are children below 6 years of age with an underdeveloped immune system and an equally high number of elderly with a weakened immune system or people having immune deficient syndrome on account of AIDS or Cancer worldwide [139-141].

3.1.3 Pneumococcal Virulence Factors

Streptococcous pneumoniae as all gram positive bacteria is an encapsulated pathogen normally carried in the upper respiratory tract with asymptomatic infections. Occasionally the bacteria can transcend to the lower respiratory tract where it colonizes the lung epithelia leading to direct interaction with the innate defense mechanisms of the host leading to elimination of the bacteria or establishment of a successful colonization. The outcome of this host-pathogen interaction leads to an inflammation that along with bacterial colonization of lungs, leads to pneumonia that can further transcend into the bacteria invading and causing systemic infections resulting in bacteremia leading to meningitidis [138]. The surface components of the bacteria are mainly evolved to assist the bacteria in infection colonization, invasion and evasion of the host responses. The virulence factors can be summarized based on the four important steps of infection, colonization and invasion (Figure 10).

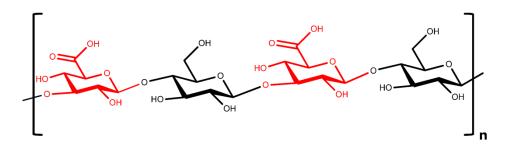

Figure 10. Virulence factors of *S. pneumoniae.* The various proteins and polysaccharides used by *S. pneuomoniae* during the different phases and steps of establishing a successful infection and colonization. The four important groups are 1. the capsular polysaccharide that provides protection from the mucus in the nasopharyngeal region and from the immune cells during the planktonic invasive form in circulation. 2. A group of adhesines that mediate the binding to the host airway epithelia, 3. A group of proteins and enzymes that degrade the complement factors and also aid in attachment and 4. A group of secretory proteins that cause host cell damage. Figure adopted and modified from [142].

The bacteria are protected by a thick outer capsule made of polysaccharides that offers the first stage of protection to the bacteria against the deposition of complement factors, avoiding entrapment and ejection by the mucous, preventing engulfment by host phagocytes both in the colonizing phase in the lungs and the invasive phase during circulation. The second set of virulence factors consists of a set of proteins that function as adhesins to establish contact with the lung cell epithelia and also favor the invasion process. Some of the adhesins and associated proteins are hyaluronate lyase that degrades the extracellular matrix and neuraminidase that functions by removing the terminal sialic acids on host glycopeptides and mucins to expose the binding sites on the host surface [143]. The proteins pneumococcal adhesion and virulence-A (PavA) and enolase are two lectins that directly bind to the host surfaces through fibronectin and plasminogen [144, 145]. Having established a successful and strong contact on the host cell epithelia, the bacteria protects itself from various host responses using proteins like pneumococcal surface protein (PspA and C) which bind complement control protein factor H, block the fixation complement factor C3 and also inhibits the binding of C3b to factor B protecting the bacteria from complement mediated lysis. The bacteria also secrete a protease that degrades the Ig A, the essential immunoglobin of mucosal immunity. The expression of the protein LytA the lysis of the bacteria releasing the cell wall components comprising of techoic acid and the toxin pneumolysin, a pore forming peptide that mediates cell lysis creating an intense inflammatory reaction enabling the bacteria to invade into the systemic circulation. Once in circulation, the bacteria overexpress the polysaccharide capsule in order to protect itself from the immune system and mask the various proteins on its surface. The exposure of the bacteria to the two immunological niches of lung tissue and circulation influences the expression of one or the other component benefitting the bacteria to adapt to these host environments.

3.1.4 Pneumococcal Capsular Polysaccharide

The pioneering work of Heidelberger & Avery in 1923 established the classification of one of the important virulence factors of *S.pneumoniae* as polysaccharides [146, 147]. The surface of *Streptococcus pneumoniae* is decorated with a thick layer of repeating glycans units linked through different linkages forming the capsular polysaccharide (CPS). The repeating unit can be as simple as a disaccharide and in some cases can even be an octasaccharide as big as $0.5-2x10^6$ Da measuring about 200-400 nm and can account for half the dry weight of the bacteria [148, 149]. The capsular polysaccharide forms one of the most important

virulence factors in both the commensal and invasive forms of the pneumococcal infections and is directly dependent on the thickness of the capsule [150]. The capsular polysaccharide (CPS) prevents opsonophagocytosis of the bacteria, helps in colonization, renders the bacteria resistant to mechanical clearance by the mucous, restricts autolysis and reduces exposure to antibiotics [151]. During an infection event which is primarily through the nasopharyngeal region, the first line of defense the bacteria encounters is the mucous that can entrap and eject the bacteria. The presence of the polysaccharide capsule, which is highly negatively charged, repels the binding of the mucous and facilitates the adsorption of the bacteria on the lung epithelia. However, the colonization of the bacteria on the lung epithelia is not favored by the capsule as it obstructs binding of certain bacterial adhesins on the host cell. Hence the bacteria down regulate the polysaccharide capsular content to enhance colonization and growth on the


Figure 11. Cross-section of *S. pneumoniae* showing the three cell boundaries. i) The polysaccharide capsule showing phase variation between rough (left half) or smooth (right half) defining the different growth phases. ii) The middle cell-wall consisting of highly cross linked *N*-Acetylglucosamine and *N*-acetylmuramicacids, several techoic acid polymers and protein virulence factors. iii) The plasma membrane, consisting of several membrane associated proteins and the lipotechoic acid residues (LTA) linked through a glucosyldiacylglycerol (Glc-DAG) moiety.

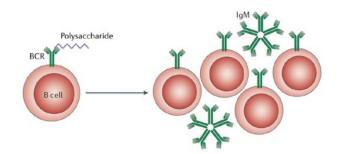
lung epithelia. During a successful invasion event, the bacteria now become exposed to a different immunological niche where they encounter specific antibodies, complement factors and phagocytic cells that can kill the bacteria as part of the host response. In the planktonic, invasive form, the bacteria overexpress its capsule many fold to protect against the host response. The bacteria exist in two forms, a transparent form found in lung colonization characterized by a low polysaccharide capsule and an opaque invasive form characterized by a thick polysaccharide capsule [152].

The biosynthesis of CPS is mediated by the transcription of several genes located on the *cps* locus flanked by a 1, $6-\alpha$ -glucosidase gene *dexB* and the oligopeptide ABC transporter gene aliA [153, 154]. The cps locus contain several glycosyl transferases producing various glycans where in the Wzx/ Wzy flippase-polymerase dependent pathway is used to produce the polysaccharide or the locus can possess a single transferase where the synthase pathway is used to produce the simpler polysaccharide [155, 156]. Hence based on the number/unique combination of genes coding for the transferases, S. pneumoniae have capsules made up of varied combinations of different glycans resulting in >90 different serotypes having different composition of glycans, 20 of which are known to cause serious infections in humans. Out of the >90 serogroups, except for serotype 3 which is made of alternating units of glucose and glucuronic acid, the rest are synthesized using the Wzx/ Wzy pathway. Each serotype possesses only a unique combination of cps genes or alleles at any given time producing a specific type of capsule. However, the cps locus is prone to variability either by slipped-strand mispairing resulting in gene truncation or by high genetic transformability resulting in recombination events resulting in replacement of either a part or the entire cps locus with the homologous region from a donor strain resulting in serotype/ capsule switching [157-159]. However, no transcriptional elements of the *cps* promoter which is thought to be involved in the transcriptional and translational control of CPS production between the colonizing and invasive forms of the bacteria are identified to date [160].

3.1.4.1 Streptococcus pneumoniae Serotype-3 Capsular Polysaccharide (CPS-3)

The capsular polysaccharide of *S.pneumoniae* serotype-3 is made up of simple disaccharide repeating units $[\rightarrow 3)$ - β -D-GlcA- $(1\rightarrow 4)$ - β -D-Glc- $(1\rightarrow)$ terminating either with a glucose or glucuronic acid residue (Figure 12) [161, 162].

Figure 12. Chemical structure of Capsular polysaccharide-3 (CPS-3). The repeating unit of CPS-3 indicated by glucurinic acid (red) and glucose (black). n≈37 repeating units [163].


As opposed to the other serotypes, the CPS of serotype-3 is linear and is synthesized using the synthase based pathway [154]. This result in a large molecular weight polymer of approximately 0.14×10^5 Da [163] . *S.pneumoniae* serotype-3 is also known to possess one of the largest capsules measuring 400 nm which is not covalently bound to the preceding cell wall [164]. The capsular polysaccharide of *S.pneumoniae* serotype-3 is implicated as one of the leading factors for the high incidence of pneumococcal infection acute otis media (AOM) in children [164].

3.1.5 Vaccines Against Capsular Polysaccharide

The capsular polysaccharides are the largest surface exposed virulence factors not just in *Streptococcus pneumonia* but also in other encapsulated bacteria like *Haemophilus influenza* type b, *Neisseria meningitidis* and hence are prime targets of vaccine development. The emergence of antibiotic resistance in bacteria has provided a large emphasis towards the development of polysaccharide based vaccines. Not surprisingly, vaccine development against carbohydrate/polysaccharide antigens are not straightforward because of the strain dependent variability of the antigens, similarity of the antigen with host structures, variable host factors like age and finally poor immunogenicity of the antigen itself. Based on these factors, only two broad classes of carbohydrate based vaccines exist i) capsular polysaccharide vaccines and ii) glycoconjugate vaccines.

3.1.5.1 Capsular Polysaccharide Vaccines

Based on the discovery of Heidelberger and Avery, S. pneumonia was the first polysaccharide antigen known to induce an immune response and protection against pneumococcal pneumonia [165]. This discovery further led to the development of a 14-valent polysaccharide vaccine that was later expanded to include the current formulation of 23 different disease causing serotypes of S. pneumoniae commercially called PPSV-Pneumovax® 23. The inception of this vaccine resulted in a great decrease in the incidence of pneumococcal infections offering protection to more than 90% of isolates responsible for invasive pneumococcal pneumonia. Unfortunately, the vaccine failed to offer protection in neonates, immunocompromised individuals and elderly. This failure was mainly attributed to the mechanism of immune activation mediated by carbohydrates that are T independent (TI) antigens and do not require a cognate antigen specific B cell and T cell interaction to produce an immune response as in case of protein antigens [166]. The TI antigens are further classified into TI-1 and TI-2 antigens [167, 168]. TI-1 antigens like bacterial lipopolysaccharide (LPS) act as B cell mitogens capable of providing intrinsic signals inducing proliferation and differentiation of both naïve and mature B cells [166, 169]. On the other hand, TI-2 antigens like capsular polysaccharides are large repetitive glycan structures and are poorly degraded in vivo with no capacity to intrinsically activate B cells [170, 171]. TI-2 antigens like polysaccharides mainly bind to the antigen specific B cell receptors (BCR) that are surface IgG molecules, and cause their activation by cross linking the receptor resulting in the producing plasma cells and IgM antibodies as shown in Figure 13 [166, 172].

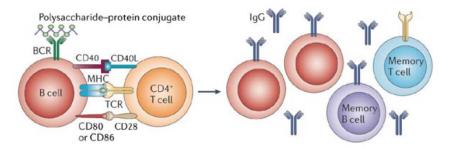


Figure 13. Polysaccharide activation of B cells through a B cell receptor (IgG) leading to clonal expansion and production of IgM class of antibodies with no immunological memory. Figure adopted from [172].

TI-2 antigens mainly activate mature B cells and the outcome of such an interaction produces primarily IgM antibodies that are short lived, and in the absence of T cell help produces no isotype class-switch, affinity maturation and immunological memory. B cells mature late in children and fade away in elderly with advancement of age. The vaccine is not effective in children below two years of age with underdeveloped B cell responses and in elderly due to a weakened immune system. Polysaccharide vaccines only provide systemic protection against invasive pneumococcal infections but do not prevent the colonization and carriage of the bacteria in the nasopharyngeal regions[173]. This combined with the poor population coverage of the vaccine further contributes to the spread of the bacteria. Indeed, due to the cost benefits, the vaccine is still a success in elderly that have to be revaccinated every five years [174, 175].

3.1.5.2 Glycoconjugate Vaccine

The pioneering studies by Avery & Goebel in 1929 demonstrated that nonimmunogenic sugars can be made immunogenic by conjugating to a protein moiety to produce sugar/polysaccharide specific immune response [176]. This concept was later on exploited to address the T-independent behavior of polysaccharide antigens by chemically conjugating the polysaccharide fragment to a carrier protein making it a T dependent (TD) antigen and the first glycoconjugate vaccine for human use was developed in 1980 [177]. The conjugate vaccines were also extended to pneumococcal antigens with the development of a 7-valent conjugate vaccine which was later expanded to include the current formulation of 13 different disease causing serotypes commercially called Prevnar-13[®]. The 7 valent conjugate vaccine provided excellent protection in infants and children and was >90% effective in preventing invasive pneumococcal disease for the vaccine included serotypes [178]. The vaccine was also efficacious in reducing the carriage of the bacteria and was superior to the PPSV in this regard. The proposed mechanism and superiority of the PCV was thought to be mediated by the carrier protein having a T cell epitope which when internalized by an antigenic specific B cell would be processed and presented on a MHC class II molecule. The subsequent activation of the B cell receptor by the sugar on the conjugate and the recognition of the MHC restricted carrier peptide by a T cell results in the activation of antigen specific B cell by the T cell stimulatory cytokine release. This cascade induces the B cells to undergo differentiation into memory cells and antibody producing plasma cells with affinity maturation and class switching producing IgG class of specific antibodies (Figure 14).

Figure 14. Mechanism of B cell activation by PCV. The recognition of the PCV by the polysaccharide specific BCR leads to B cell activation and internalization of the PCV. The PCV is processed and the carrier protein having T cell epitope is presented on MHC molecules. Recognition of the peptide MHC fragment by the T cell along with co-receptor ligation of CD40-40L leads to production of T cell cytokines which induce B cell differentiation producing high affinity IgG antibody producing plasma cells and memory T and B cells. Figure adopted from [172].

There are certain limitations for conjugate vaccines as compared to PPSVs. The PCVs are limited in serotype inclusion of 13 CPS types as compared to the PPSVs that include 23 serogroups and provide no comparable benefit in adults as compared to PPSV [179, 180]. Capsular polysaccharides are chemically unreactive and hence have to be modified to create reactive functional groups to facilitate its conjugation to the protein carriers [181]. The chemical modification of polysaccharides often results in the loss of immunogenicity towards the targeted epitope [181]. Formulation parameters for each individual serotype vary in terms of carrier protein used, linkage type of the polysaccharide, size of the polysaccharide and the overall polysaccharide immunogenicity resulting in higher cost of producing the PCV as compared to the PPSV [181]. Although the PCV provide excellent protection against the vaccine included serotypes of S.pneumoniae, there has been an increase in the incidence of mid ear infections (acute otis media- AOM) caused by serogroups of pneumonia not included in the PCV [182]. This has been due to the nasopharyngeal carriage and serotype replacement by non-vaccine serotype of *S.pneumoniae* leading to serious concerns [183, 184]. Additional ways of inducing TD immunity towards a polysaccharide antigen have been considered including polysaccharide peptide mimics and DNA vaccines. This area of research is definitely intense and promising.

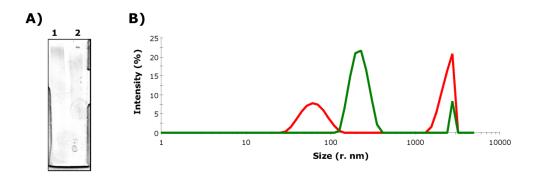
3.1.6 Nasopharyngeal Carriage of Streptococcus pneumoniae and Natural Immunity

Humans are the natural carriers of S.pneumoniae with the nasopharyngeal region being the natural habitat. An important observation was the presence of serotype specific natural antibodies of IgG isotype directed against the capsular polysaccharide in individuals with history of pneumococcal carriage [185]. Although, the levels of antibodies were different for different serotypes, depending on the immunogenic property of the polysaccharide, the pneumococcal carriage definitely provided protection and reduced the risk of carriage [186]. Polysaccharides are known TI antigens, incapable of producing IgG type antibodies. Infection of mice with polysaccharide encapsulated bacteria produced serotype specific IgG indicating some form of T cell help which were largely CD4+ type [187]. This T cell help was thought to be mediated by the various immunogenic proteins such as PspA, PsaA, pneumolysin that are associated below the capsule [187]. However, it has been reported that the level of polysaccharide IgG antibodies were always higher and there was no change in the level of the antibodies against the bacterial proteins PspA or PsaA indicating that apart for the proteins other factors could also be involved in mediating this T cell help [188]. This observation coincides with the independent discovery of a specific subset of invariant Natural Killer like T cells (iNKT) and the subsequent discovery of their corresponding glycolipid ligand α -glucosyl diacylglycerol (a-Glc DAG). a-Glc DAG are components of the bacterial cell wall that narrow the gap between T-dependent and independent antigens in the context of pneumococcal natural infection. The use of an iNKT cell adjuvant glycolipid combined with a TI antigen to raise polysaccharide specific immune responses mimics the natural infection scenario. This combination could also address the shortcomings associated with using the protein conjugate to raise a TD response and more pneumococcal serotypes could be included in a vaccination regime. Co-delivering the glycolipid adjuvant and the polysaccharide antigen with the aim of eliciting a protective mucosal and systemic immunity could serve as a novel vaccination platform against pneumococcal infections.

3.1.7 Mucosal Delivery of Polysaccharide Antigens

An important aspect of vaccination against infectious organisms is the route, site of infection and the corresponding mode of vaccine delivery. In the case of pneumococcal infections, this is the mucosal surfaces of the respiratory tract especially the nasopharyngeal region. Mucosal immunization of experimental animals with whole cell pneumococci has

shown protection against infection and colonization [189]. Mucosal immunization can be beneficial as it elicits both local and systemic immunity [190]. It can be advantageous as the local secretory immunoglobulin-A (sIgA) has been shown to prevent both bacterial colonization at the mucosal surfaces and invasion into the systemic circulation [191, 192]. The mucosal immune system develops earlier in infants and lasts longer in the elderly and is beneficial for AIDS patients as HIV-infected individuals can develop normal mucosal antibody responses even in late clinical phases [193-195]. However, targeting the mucosal immune system is limited in success as it presents numerous hurdles, including diversity in mucosal surface structure, complexity in immune cell interaction and limitations in experimental methodology. Mucosal immunity can be elicited by oral, nasal or pulmonary delivery of antigens. Unfortunately, in these cases the traditional delivery of antigens in a soluble form is not the optimal delivery system. Targeting the mucosal surfaces pertaining to the packing and presentation of the antigen along with novel adjuvant activities has to be pursued [196]. These include particulate formulations like liposomes and polymeric particles of biodegradable polymers (polylactic acid) that package the antigen in a multivalent fashion with an appropriate size resulting in pathogen mimicry [56]. The particulate nature of these antigens also confers an adjuvant like property, protects against antigen degradation and assists in the controlled release of antigen at a particular site [197]. Many antigens have been formulated into liposomes, and oral delivery of these antigens to target the mucosal surfaces have been tried, but with little success. Oral immunization has been limited because of inefficient antigen uptake, induction of tolerance, and proteolytic degradation of the antigens before they reach the immune cells [198]. Liposomes are also limited by their instability during storage, limited shelf-life, and the difficulty in producing a sterile product [56].


Pulmonary vaccine delivery is becoming an attractive mode of immunization, because of the high vascularization in the pulmonary area, the absence of acidity, lack of enzymes, and a thin epithelial layer that allows for low doses of antigen to be administered [199, 200]. However, delivering of antigens to deep lung tissues is challenging and requires a delivery system with a mass median aerodynamic size between 1 and 5 µm to deposit the antigen on the alveolar region [201, 202]. Polylactic acid and other biodegradable polymers have shown great promise in this regard with practical ease of fabrication and aerosolization into particles of different sizes [202]. An important advantage of aerosolization is that the antigens can be formulated into very stable dry powders and packed in inhalers [203]. This formulation enhances the stability of the antigen, improves the retention time on the mucosal surfaces, facilitates enhanced uptake and presentation by alveolar APC like macrophages [204, 205]. An important feature of drypowder formulations is that it removes the need of cold storage of the vaccine formulation thereby encouraging self-administration and reducing the costs involved in maintenance of health care volunteers.

The infection biology of *S.pneumoniae* summarizes certain key points beneficial in vaccine development. The T cell help mediated by iNKT- α -GalCer- CD-1d interaction opens a new area where iNKT cell ligands, mainly α -GalCer lipids can be used as novel adjuvants. Co-delivering a TI antigen, in this case the pneumococcal capsular polysaccharide (CPS-3) along with an iNKT ligand (α -GalCer) in a particulate form through the natural route of infection can serve as a rational approach of vaccination against *Streptococcus pneumoniae* infections.

3.2 Results and Discussion

3.2.1 Glycolipid Antigens Show Immune Stimulatory Properties with Adjuvant Activity

Glycolipid antigens, especially the glycosphingolipids (GSL) and glycosyldiacylglycerols (Glc-DAG) have shown promising T cell adjuvant properties with respect to the activation of iNKT cells through a CD1d dependent pathway [120, 206]. Polysaccharide antigens activate antigen specific B cells in a T cell independent (TI) manner by cross linking their BCR. Hence, the co-delivery of an iNKT cell agonist like GSL may provide iNKT cell help converting a TI CPS-3 antigen into a T cell dependent (TD) antigen. The immune stimulatory potential and adjuvant property of α-GalCer (KRN 7000) referred to as GSL (glycosphingolipid) from here on was checked by injecting it into mice along with the CPS-3 antigen as a physical mixture. The adjuvant activity of GSL was compared to the commercial vaccine Prevenar-13[®] that was injected in the presence of alum. The capsular polysaccharides of pneumococcus are very large polymers and hence form very viscous solutions. It is also known that Streptococcus pneumoniae serotype-3 produces one of the largest capsules. The capsular polysaccharide (CPS-3) was sonicated for approximately 1h to partially depolymerize and size reduced the polysaccharide to render it less viscous. The size reduction was monitored by SDS-PAGE followed by Alcian blue staining. Although the staining of the CPS-3 on the gel was limited, there was a visible size reduction of the polysaccharide seen in lane 2 (Figure 15A) as compared to the native polysaccharide (lane 1). This reduced staining efficiency might be due to the negative charge of the CPS-3 polysaccharide that consists of glucose and glucuronic acid repeating units.

Figure 15. Size reduction of CPS-3 polysaccharide. (A) Profile of native and size reduced CPS-3 polysaccharide run on a 10% SDS-PAGE stained with alcian blue (1. Native polysaccharide (50 μ g), 2. Size-reduced polysaccharide (50 μ g)). (B) Reduction of CPS-3(50 μ g) hydrodynamic size (native-red) and (size-reduced-green) analyzed by dynamic light scattering technique.

The size reduction was further analyzed by a more sensitive technique of Dynamic Light Scattering (DLS) which gives information of the size of particulates between 1 nm-1 μ m based on the light scattering. The native polysaccharide (in red) had two light scattering intensity peaks, one in 100 nm low molecular weight range and the other in the 1000 nm high molecular weight range (Figure 15B). On sonication, the scattering intensity of the high molecular weight peak drastically decreased with an increase in scattering intensity of the peak at the 500 nm range indicating size/molecular weight reduction (Fig 3.1B, in green). This size reduced polysaccharide was used for all further experiments.

3.2.1.1 Immunization Studies to Evaluate CPS-3 Specific Immune Responses of Mice Immunized with Glycosphingolipid (GSL) and Alum as Adjuvant.

The ability of the size reduced CPS-3 antigen to elicit a polysaccharide specific IgG response was evaluated by immunizing C57BL/6 mice (n=6) through the sub-cutaneous route. Different formulations were prepared either with or without GSL for soluble CPS-3 (Table 3). The commercial vaccine Prevnar[®] served as a positive control and phosphate buffered saline (PBS) as the negative control. All formulations were normalized to an injection volume of 100 μ L per mouse and immunizations followed a prime-boost regime (Figure 16A). The sera collected on day 21 were analyzed for polysaccharide specific IgG antibodies by ELISA using CPS-3 polysaccharide as coating antigen. The IgG titers of the different experimental groups were represented by plotting the absorbance values at 450 nm after subtracting their

	Formulation	Antigen	Adjuvant	CPS-3 Dose
1	PBS	-	-	-
2	Soluble CPS-3	CPS-3	-	2 µg/ 100 µL/ mouse
3	CPS3-GSL Physical Mixture (PM)	CPS-3	GSL (α-GalCer) 1 μg	2 µg/ 100 µL/ mouse
4	Prevnar 13®	Capsular Polysaccharide (1, <u>3</u> , 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, 23F)	Alum (AIPO₄)	0,4 μg/ 100 μL/ mouse

Table 3. Formulations used for evaluating adjuvant potential of GSL and Alum.

corresponding pre-immune (day 0) values. The experimental group immunized with the CPS-3 polysaccharide antigen (blue square) didnot elicit a specific IgG response on day 21 and the mean serum titers were comparable to the control group immunized with PBS (black circles) (Figure 16B). This clearly demonstrates the T-independent behavior of the polysaccharide antigen and the inability of the B cells to produce IgG class of antibodies. However, there was a significant increase in the CPS-3 specific IgG titers when the polysaccharide (CPS-3) and the iNKT cell adjuvant (GSL) were co-delivered in form of a physical mixture (orange diamond). These findings clearly demonstrate the role played by the glycolipid GSL in assisting the B cells to produce IgG type antibodies. However, the Prevnar[®] group with only 1/5th dose of CPS-3 immunized produced superior IgG response with mean titers significantly higher than the group that received CPS3-GSL physical mixture (CPS3-GSL PM).

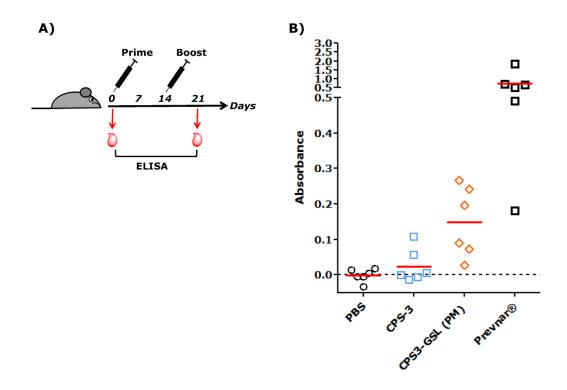


Figure 16. Evaluation of serum antibodies from mice immunized with CPS-3 polysaccharide antigen. (A) C57BL/6 mice were primed at day zero followed by a boost-immunization at day fourteen with the formulations listed in table 3.1. Sera 50 μ L was collected both prior and after immunization and analyzed by ELISA. (B) ELISA titers of sera collected on day twenty one expressed as OD 450 absorbance values after subtracting the pre-immune values of corresponding experimental groups. Sera were diluted 200 X with 1% BSA-PBS and pre-incubate with 10 μ g/mL cell-wall polysaccharide. 100 μ L of the diluted pre-incubated sera was added per well of the microtiter plate which was coated with 1 μ g of CPS-3 polysaccharide. Following washings, the plates were incubated with a HRP conjugated mouse secondary antibody diluted 1:10000 and developed using the chromogenic substrate TMB. Absorbance was measured at 450 nm and the data were plotted using the graphpad prism software with the red horizontal lines representing the mean OD values of the experimental groups.

Two important factors may have influenced the outcome. i) The conjugation of CPS-3 to the carrier protein (CRM₁₉₇) in the Prevnar[®] formulation represents a particulate scaffold where the carrier protein apart from providing T cell epitopes functions as a delivery system concentrating the antigen. ii) The presence of the adjuvant (alum) which forms emulsions further increase the local concentration of the antigen improving the efficiency of the delivery and enhancing the overall immune response. Therefore, the delivery of CPS-3 and GSL as an abstract physical mixture (PM) might have diluted the local concentration of the antigen (CPS-3) and the glycolipid adjuvant (GSL) leading to a reduced immune response. It also known that co-delivering both the antigen and the adjuvant to the same B cell increases the efficiency of the immune response. Hence, it was envisaged that co-delivering the above antigens (CPS-3 and GSL) on a common scaffold, might improve the immunization efficiency resulting in an enhanced polysaccharide specific IgG response. Considering the physiochemical property and solubility of the hydrophilic (CPS-3) and the hydrophobic (GSL) antigens, it is quite challenging to present them on a common delivery platform. Thus, I decided to fabricate polymeric particles of polylactic acid (PLA) which are reported to be excellent systems for co-encapsulation of hydrophilic and hydrophobic compounds. It has been shown that S. pneumoniae has a size of approximately 2 µm but can also form long chains and colonies reaching up to 10 µm. The average size of the aluminum adjuvant gels (Alum) is below 10 µm with an average size of 3 µm [207]. PLA particles of different sizes in the sub-micron range and micrometer range (< 10 μ m) promote different types (T_H1/T_H2) of immune response. Considering these properties, PLA particles of two different size ranges < 500 nm and 2-8 µm were fabricated to study the outcome of the immune response on the size dependent presentation of the antigens CPS-3 and GSL.

3.2.2 Fabrication and Characterization of Polylactic Acid (PLA) Nano- and Microparticles

Polymeric particles of polylactide or polylactide co-glycolide have been used as efficient systems for encapsulating and delivering various hydrophilic and hydrophobic components. Besides the physiochemical properties of the ligands (polysaccharide and glycolipid antigen), the PLA polymer used can influence the final fabrication of the particles and impact the encapsulation efficiency, release kinetics and finally the size of the particles. The optimal process parameters for the fabrication of PLA nano and microparticles particles were first standardized.

3.2.2.1 Fabrication of PLA Microparticles

Microparticles were fabricated using the double emulsion solvent evaporation technique [208, 209]. Three fabrication conditions were tried using the low molecular weight polymer of Poly-D/L-Lactide (inherent viscocity 0.25-0.35 dL/g) resulting in the particle types (1, 2 and 3) as shown in Table 4. The constituents of the IAP, OP and EAP were kept constant but the energy input in making the secondary emulsion was varied. This was accomplished using a handheld homogenizer with an analogous power output (Power 1-6) reaching speeds of 8-20K rpm. The size and the distribution of the particles (types-1, 2 & 3) were first analyzed using the mastersizer. As seen in Table 4, the particles showed a volume averaged size D_{ν} (0.5) of 7.5, 4.5 and 2.6 µm with varying span values indicating the heterogeneity of the particles.

Primary Emulsion			Secondary Emulsion					
Fabrication Condition (Particle Type)	IAP (W1)	0P (0)	IAP:OP (W1:O)	EAP (W2)	W1:0:W2	Power	Size <i>D</i> _v (0.5)	Span
		Poly	Lactide- R	-203 S (I	nherent visco	sity 0.25-	0.35 dL/g)	
1	50 µL	2 mL (50 mg)	1: 40	8 mL (1%)	1:4	3	7.5 μm	4.1
2	50 µL	2 mL (50 mg)	1: 40	8 mL (1 %)	1:4	4	4.5 μm	1.3
3	50 µL	2 mL (50 mg)	1: 40	8 mL (1 %)	1:4	6	2.6 µm	0.9
Poly-D/L-Lactide PDL-50 (Inherent viscosity 0.49 dL/g)								
5	50 µL	2 mL (100mg)	1: 40	8 mL (2 %)	1:4	10 K rpm	5.5 µm	1.4
6	100 µL	2 mL (100mg)	1: 20	8 mL (2 %)	1:4	10 K rpm	5.5 µm	1.09

Table 4. Process parameters used for the fabrication of PLA microparticles. The various parameters used in fabricating the microparticle (type-6) highlighted in red. IAP= Internal Aqueous Phase, OP= Organic Phase and EAP= External Aqueous Phase.

The particle type-1 had a very broad size distribution ranging from of 2-33 μ m and was outside the intended size range selected for my studies. However, the type-2 and type-3 microparticles had very narrow span values with a distribution of 2-8 μ m (type-2) and 1.5-4

um (type-3) particles. Although the microparticle (type-2) had an optimal size range intended for the current studies, they were very unstable and rapidly lysed when dispersed in an aqueous solvent like water or PBS. The lysis may be due to the low molecular weight of the polymer that is known to degrade rapidly. Hence, in order to increase the stability of the particles, high molecular weight PLA polymer (0.49 dL/g) was used. Apart from the molecular weight of PLA, the concentration of the polymer was also changed to increase the particle yield. A homogenizer with an accurate digital power output was used to better control the secondary emulsion parameters. The new fabrication condition resulted in microparticles (particle type-5) with a volume averaged size $D_{\nu}(0.5)$ of 5.5 µm and a distribution of 2-10 µm (Table 4). In order to incorporate higher amounts of hydrophilic antigens, the volume of the IAP was increased to 100 µL (fabrication condition/particle type-6) keeping all other parameters same as that of particle type-5. The microparticles (type-6) resulted in very stable particles having a smooth surface morphology as analyzed by scanning electron microscopy (SEM) (Figure 17A). The particles were very homogenous with a volume averaged size D_{ν} (0.5) of 5.5 µm and a distribution of 2-8 µm as analyzed by mastersizer (Figure 17B). This condition was chosen for the formulation of all other microparticle types.

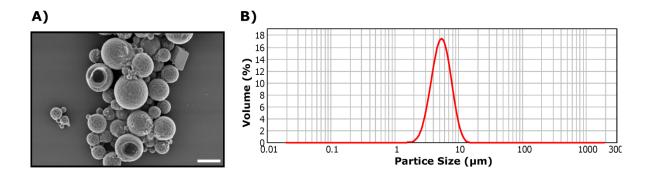
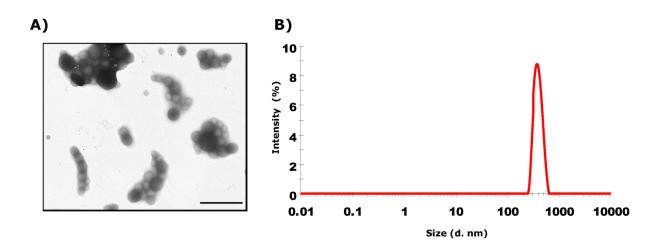


Figure 17. Characterization of PLA microparticles. (A) Scanning electron micrograph of the microparticle (type-6) produced using the fabrication condition-6. (B) Size analysis of the microparticles (type-6) produced using the fabrication condition-6. Scale bar represents $5 \mu m$.


3.2.2.2 Fabrication of PLA Nanoparticles

The fabrication of nanoparticles smaller than 500 nm was achieved using the fabrication parameters detailed in Table 5. The polymer of choice was Poly-D/L-lactide with inherent viscosity of 0.49 dL/g. The nanoparticle fabrication condition-1 was the same as that used for the fabrication of microparticle (fabrication condition-5, Table 4) except for the power input that was 21K rpm for 10 min. The size and polydispersity of nanoparticle type-1 was analyzed by DLS batch measurement technique. The particles showed a size of > 1000 nm with a high polydispersity index (PDI) of 0.7 as compared to a monodisperse system that should have a PDI value close to 0 and intercept close to 1. Therefore, in subsequent fabrication conditions (2-5), sonication was chosen for the preparation of the secondary emulsion along with varying the other parameters such as power input (Watt), time, and the concentration of the emulsifier/ stabilizer (polyvinyl alcohol-PVA) as in Table 5. Using conditions 2-5, nanoparticles with a size average of below 500 nm with narrow distribution were not obtained. The PVA used in the EAP plays a critical role in the formation and stabilization of the secondary emulsion (W1/O: W2) influencing the particle size. The use of

	F	Primary E	mulsion		Secondar	y Emulsion		Z-Average	PDI	Intercept
Polymer	Fabrication Condition	IAP (W1)	0P (0)	IAP:OP (W1:O)	EAP (W2)	W1:0:W2	Power			
	1	50 µL	2 mL (100 mg)	1: 40	8 mL (2 %)	1:4	21 K RPM	1150 nm	0.727	0.318
	2	50 µL	2 mL (100 mg)	1: 40	8 mL (1%)	1:4	40 W	729 nm	0.596	0.771
	3	50 µL	2 mL (100 mg)	1: 40	8 mL (1 %)	1:4	50 W	473 nm	0.302	0.778
le (PDL ^{49dL/g}	4	50 µL	2 mL (50 mg)	1: 40	8 mL (2 %)	1:4	50 W	400 nm	0.49	0.804
-Lactid iscosity 0.	5	50 µL	2 mL (100 mg)	1: 40	<mark>16 mL</mark> (2 %)	1:8	50 W	533 nm	0.40	0.870
Poly -D/L-Lactide (PDL) Inherent viscosity 0.49dL/g	6	50 µL	2 mL (100 mg)	1: 40	8 mL (2 %) Low M.Wt 13-23 KD, 83-87 % hydrolysis	1:4	50 W	377,5 nm	0.195	0.844
	7	100 µL	2 mL (100 mg)	1: 20	8 mL (2 %) Low M.Wt	1:4	50 W	377,7 nm	0.133	0.848

Table 5. Process parameters used for the fabrication of PLA nanoparticles. The various parameters used in fabricating nanoparticle (type-6) highlighted in red. IAP= Internal Aqueous Phase, OP= Organic Phase and EAP= External Aqueous Phase.

low molecular weight PVA resulted in lower particle size compared to the high molecular weight compound [210]. Fabrication condition 6 was tried using PVA of molecular weight (18-23 kDa) as reported in Table 5. The resulting particles had an average size of 377 nm with a PDI value of 0.195 as analyzed by DLS. In order to incorporate a higher concentration of hydrophilic components (antigens), fabrication condition-7 (particle type-7) was used where the volume of IAP was increased to 100 μ L keeping all other parameters the same as that of fabrication condition-6. The nanoparticle (type-7) had a smooth surface morphology as analyzed by transmission electron microscopy (TEM) (Figure 18A) with an average size of 377 nm with PDI and intercept values of 0.13 and 0.8 indicating very narrow distribution (Figure 18B). This condition was chosen for the formulation of all other nanoparticle types.

Figure 18. Characterization of PLA nanoparticles. (A) Electron micrographs of PLA nanoparticles (type-7) as observed by transmission electron microscopy (TEM). (B) Nanoparticle (type-7) size and polydispersity measured by dynamic light scattering (DLS). Scale bar represents 1000 nm.

3.2.3 Fabrication of PLA Nano- and Microparticles Encapsulating Capsular Polysaccharide-3 (CPS-3) Antigen

The presentation of the soluble TI polysaccharide antigens on PLA polymeric particle has been shown to greatly enhance the immune response by producing protective polysaccharide specific IgG antibodies [209, 211]. Both nano and microparticle formulations enhanced the IgG response with nanoparticle formulations producing high titer antibodies providing protective immune response irrespective of the antigen used [209, 211]. It was planned to encapsulate the size-reduced CPS-3 antigen on PLA particles in the size range of <500 nm (nano) and 2-8 μ m (micrometer) to provide not only information on the particulate presentation of CPS-3 but also the size effect. The process parameters established for the fabrication of nano- and microparticles were directly used for the microencapsulation of the CPS-3 antigen by emulsifying 500 μ g of the size-reduced polysaccharide. Besides the particles encapsulating CPS-3, corresponding control particles (dummy) without the antigens were also prepared (Figure 21).

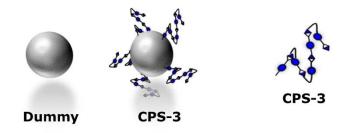
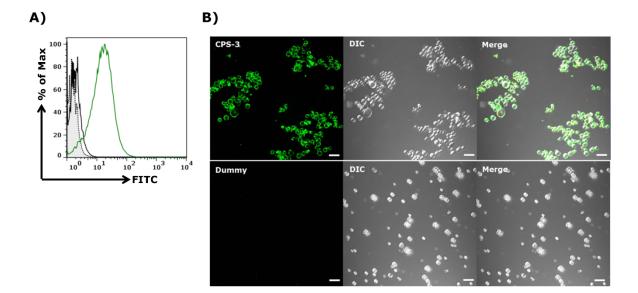



Figure 19. Schematic representation of polysaccharide encapsulated PLA nano- and microparticles.

The encapsulation and specific surface localization of the CPS-3 antigen on the particles was confirmed by flow cytometry and confocal microscopy analysis. Both the dummy and polysaccharide (CPS-3) encapsulated particles were incubated with the rabbit anti-CPS-3 polyclonal serum followed by detection using a FITC conjugated secondary antibody. The analysis was performed on microparticles considering their size and ease of handling in flow cytometry experiments as compared to the nanoparticle formulations. Compared to the dummy particles (grey histograms) the CPS-3 loaded particles showed a positive shift (green histograms) in flow cytometry experiments indicating the encapsulation of the CPS-3 on the microparticles (Figure 20A). Confocal microscopy analysis (Figure 20B) revealed the specific surface localization of CPS-3 on the polysaccharide encapsulated particles with aggregation (upper panel) as compared to the dummy particles that did not aggregate nor stain with the antisera (lower panel). The surface localization of the CPS-3

antigen is an important feature considering that polysaccharide specific immune responses are primarily mediated by cross-linking of the B cell receptor.

Figure 20. Characterization of polysaccharide (CPS-3) encapsulating PLA microparticles. (A) Histogram representation of CPS-3 encapsulation analyzed by flow cytometry using the rabbit polyclonal CPS-3 antisera (1:300) probed with a FITC conjugated secondary detection antibody (1:500) (green histogram). Corresponding controls included the dummy particles with no CPS-3 encapsulation stained with primary and secondary antibodies (black histogram). The unlabeled dummy beads are shown as tinted histograms. (B) Confocal laser scanning micrograph where the specific surface localization of CPS-3on microparticle was analyzed using rabbit polyclonal CPS-3 antisera probed with a FITC conjugated secondary detection antibody (upper panel). Corresponding controls included the dummy particles with no CPS-3 encapsulation but stained with primary and secondary antibodies (lower panel) showing the surface localization of CPS-3 on the microparticles. The green color indicates CPS-3 on the PLA microparticles with DIC indicating the phase contrast image of the particle morphology. Scale bar represents 10 μm.

3.2.3.1 Immunization Studies to Evaluate Polysaccharide Specific Immune Response of Mice Immunized with CPS-3 Encapsulated PLA Nano- and Microparticles

The ability of the CPS-3 encapsulated nano- and microparticles to elicit a polysaccharide specific IgG response was evaluated by immunizing C57BL/6 mice (n=6) subcutaneously. Different soluble and particulate formulations were prepared along with PBS as negative control and the commercial vaccine Prevnar[®] as a positive control (Table 6). The polysaccharide content and percent encapsulation of the nano- and microparticle formulations

	Formulation	Antigen	Size	Adjuvant	CPS-3 Dose	CPS-3 Load	%EE CPS-3
1	PBS	-	-	-	I	-	-
2	Soluble CPS-3	CPS-3	-	-	2 μg/ 100 μL/ mouse	-	-
3	CPS-3 Nanoparticles	CPS-3	300-500 nm	-	2 µg/ 100 µL/ mouse	1.2 µg/mg particles	24
4	CPS-3 Microparticles	CPS-3	2-8 µm	-	2 μg/ 100 μL/ mouse	1.0 µg/mg particles	20
5	Prevnar 13®	CPS- (1, <mark>3</mark> , 4, 5, 6A, 6B, 7F, 9V, 14,18C, 19A, 19F, 23F)	-	Alum (AIPO₄)	0,4 μg/ 100 μL/ mouse	-	-

Table 6. Details of the various soluble and particulate formulations of CPS-3 used for immunization.

were 1.2 µg and 1 µg/mg per mg of particles with a encapsulation efficiency (%EE) of 24% and 20% respectively. CPS-3 estimation was performed by quantitative ELISA technique using a standard curve (CPS-3) after lysing and extracting the polysaccharide from the particles. Attempts were also made to quantify the extracted polysaccharides by acid hydrolysis and analyzing the monosaccharides glucose and glucuronic acid content by high pressure anion exchange chromatography coupled with pulsed amperometric detection (HPAEC-PAD). However, incomplete hydrolysis of CPS-3 did not yield the individual monosaccharide constituents glucose and glucuronic acid due to the inefficiency of acid hydrolysis procedure to cleave β (1→4) linkages. All formulations were normalized to an

injection volume of 100 μ L per mouse containing a polysaccharide concentration of 2 μ g except the Prevnar[®] group that received 400 ng of CPS-3.

The mice were immunized following a prime-boost regime (Figure 21A) and sera were collected on day 21 and analyzed for polysaccharide specific IgG antibodies by ELISA using 1 µg CPS-3 polysaccharide as coating antigen. The IgG titers were represented by plotting the absorbance values at 450 nm of the different experimental groups after subtracting their corresponding pre-immune (day zero) titers. The group immunized with soluble CPS-3 antigen (blue square) failed to elicit specific IgG response at day 21 with the mean serum titers comparable to the control PBS group (black circles) Figure 21B. However, the nano- and microparticle formulations of CPS-3 (orange circles and blue filled squares) elicited similar IgG titers indicating no major difference between different sized formulations.

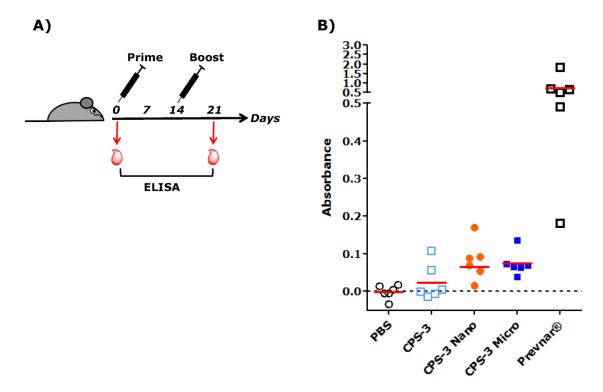
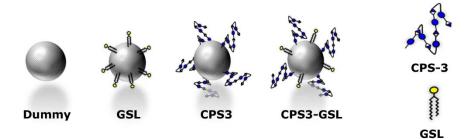



Figure 21. Evaluation of serum antibodies from mice immunized with CPS-3 encapsulated PLA nano and microparticles. (A) C57BL/6 mice were primed at day zero followed by a boost-immunization at day fourteen with the formulations listed in table 3.1. Sera 50 μ L was collected both prior and after immunization and analyzed by ELISA. (B) ELISA titers of sera collected on day twenty one expressed as OD 450 absorbance values after subtracting from the pre-immune values of corresponding experimental groups. Sera were diluted 200 X with 1% BSA-PBS and pre-incubate with 10 μ g/mL cell-wall polysaccharide. 100 μ L of the diluted pre-incubated sera was added per well of the micro titer plate which was coated with 1 μ g of CPS-3 polysaccharide. Following washings, the plates were incubated with a HRP conjugated mouse secondary antibody diluted 1:10000 and developed using the chromogenic substrate TMB. Absorbance was measured at 450 nm and the data were plotted using the graphpad prism software with the red horizontal lines representing the mean OD values of the experimental groups.

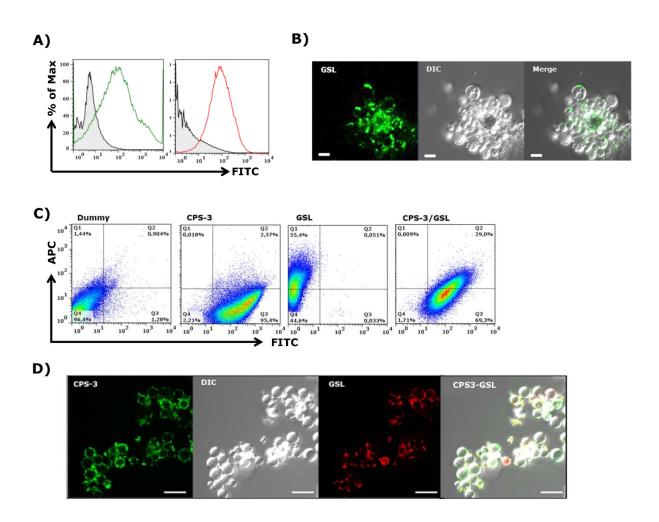
However, the IgG titers from the particulate formulations were marginally higher than the soluble CPS-3 formulation indicating a subtle effect of the particulate presentation of the antigen (CPS-3 polysaccharide). However, the commercial vaccine (black squares) produced IgG titers that were substantially higher than the particulate formulations. It is evident from the above experiments that apart from the particulate presentation of the antigen, the role of T cell activation and help is equally important in eliciting a robust IgG response against a TI polysaccharide antigen. This T cell help in the commercial vaccine is primarily mediated by the carrier protein CRM₁₉₇. Although attempts have been made to co-encapsulate carrier proteins having T cell epitopes with TI antigens on the PLA particles, the results have not been promising. This problem is partly due to the denaturation of the protein during the fabrication process. To overcome this challenge, it was envisaged to enhance the polysaccharide specific IgG response in a T cell dependent manner by inducing the specific activation of iNKT cells. Therefore, the PLA particles were encapsulated with both the CPS-3 antigen and the glycolipid ligand GSL (α -GalCer).

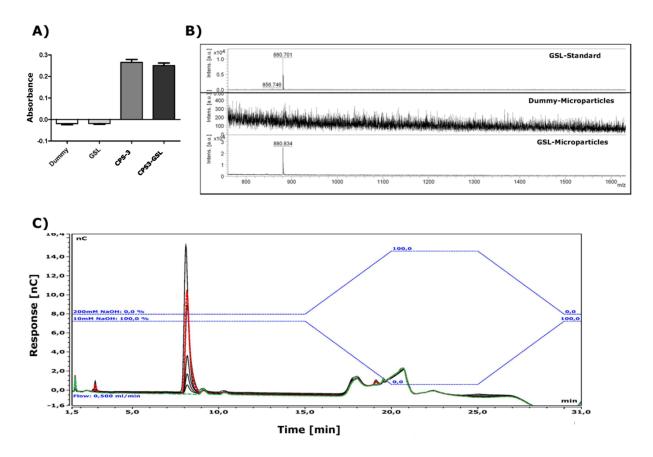
3.2.4 Fabrication of PLA Nano- and Microparticles Co-Encapsulating Capsular Polysaccharide-3 (CPS-3) and Glycosphingolipid (GSL) Antigen

The PLA particles encapsulating GSL and CPS-3 or co-encapsulating both antigens (Dummy, CPS-3, GSL and CPS3-GSL) were fabricated in the nano and micrometer range as shown in Figure 22.

Figure 22. Schematic representation of different combinations of GSL and CPS-3 particles. Dummy [GSL(-)/CPS-3(-)], GSL [GSL(+)/CPS-3(-)], CPS-3 [GSL(-)/CPS-3(+)] and CPS3-GSL [GSL(+)/CPS-3(+)]. Particles were prepared both in the nanometer (<500 nm) and micrometer range (2-8 μ m).

The encapsulation and specific surface localization of GSL and CPS-3 antigen on the monoor co-encapsulated particles was confirmed by flow cytometry and confocal microscopy analysis. Both the dummy and GSL encapsulated particles were incubated with the FITC conjugated galactose binding lectin (RCA-120) or the galactocerebrocide binding antibody (mGalC) followed by detection using a FITC conjugated secondary antibody. For the analysis




Figure 23. Characterization of CPS-3 and GSL co-encapsulating PLA microparticles. (A) Histogram representation of GSL encapsulation analyzed by flow cytometry using the FITC labelled lectin RCA-120 (1:500) (left panel, green histogram) and the mouse monoclonal galactocerebrocide antibody (mGalC) (1:500) probed with a FITC conjugated secondary detection antibody (1:500) (right panel, red histogram). Corresponding controls included dummy particles with no GSL encapsulation but stained with the lectin RCA-120 and antibody mGalC (tinted histogram). (B) Specific surface localization of GSL on microparticles analyzed by confocal laser scanning microscopy using the mouse monoclonal galactocerebrocide antibody (mGalC) probed with a FITC conjugated secondary detection antibody. Scale bars represent 10 µm. (C) Quadrant representation of microparticles dummy, CPS-3, GSL and CPS3-GSL, simultaneously analyzed by flow cytometry using the rabbit polyclonal CPS-3 antisera (1:300) and the mouse monoclonal antibody mGalC, probed with the corresponding FITC and PE conjugated secondary detection antibody (1:500). (D) Specific surface co-localization of CPS-3 and GSL on microparticles co-encapsulating both the antigens analyzed by confocal laser scanning microscopy using rabbit polyclonal CPS-3 antisera (1:300) and the mouse monoclonal antibody mGalC, probed with the corresponding FITC and PE conjugated secondary detection antibody (1:500). The green color indicates CPS-3 and the red color indicated GSL on the PLA microparticles with DIC indicating the phase contrast image of the particle morphology. Scale bars represent 10 µm.

of polysaccharide (CPS-3) and GSL co-encapsulated formulations, the particles were incubated with the polyclonal CPS-3 specific anti-serum from rabbit or the galactocerebrocide binding antibody from mice (mGalC) followed by detection using a FITC conjugated and PE conjugated secondary antibodies respectively. The analysis was performed on microparticles considering their size and ease of handling in flow cytometry experiments when compared to the nanoparticle formulations. Compared to the dummy particles (grey histograms) the GSL loaded particles showed a positive shift both when probed with the lectin RCA-120 (green histograms) and also with the galactocerebroside antibody (red histogram) indicating the encapsulation of the GSL on the microparticles (Figure 23A). Confocal microscopy analysis (Figure 23B) revealed the specific surface localization of GSL on the particles with visible aggregation. The co-encapsulation of CPS-3 and GSL was confirmed by flow cytometry by comparing to the dummy or mono encapsulated particles of CPS-3 and GSL (Figure 23C). Confocal microscopy analysis (Figure 23D) further confirmed the specific surface localization of both CPS-3 (green) and GSL (red) on the same PLA particles.

3.2.4.1 Quantification and Encapsulation Efficiency of CPS-3 and GSL

The quantification of GSL and CPS-3 content of the vaccine formulations is important to define the antigen dose. Although the total carbohydrate content can be estimated by various methods, the presence of contaminants or any other carbohydrate containing excipients such as the lyoprotectant (sucrose) used in the formulation process may lead to erroneous values. In order to estimate both the CPS-3 and GSL antigens seperately, particles were lysed with NaOH and the lysate subjected to phase partitioning between the organic (chloroform in methanol 1:1) and water phases to obtain the polysaccharide (CPS-3) in the (upper) aqueous phase and the GSL in the (lower) organic phase. The extraction efficiency was monitored by analyzing the CPS-3 in the aqueous phase by ELISA and the GSL containing organic phase by MALDI. Analysis of the aqueous phase by ELISA showed the presence of CPS-3 only in the mono and double encapsulated formulations (CPS-3 and CPS3-GSL) with comparable absorbance values indicating identical levels of encapsulation and extraction of CPS-3 in these particle types (Figure 24A). The antigen load and percent encapsulation efficiency of CPS-3 in the co-encapsulated formulations, as estimated by quantitative ELISA was 1 µg and 20% per mg of PLA nano and microparticle formulations respectively.

The organic phase of the particle lysate was subjected to MALDI analysis for determination of the GSL content. The organic phase of the GSL encapsulated particle lysate showed a characteristic peak at m/z 880 Da (Figure 24B, bottom panel) corresponding to molar mass of GSL standard (top panel). The analysis also confirms the stability of GSL and purity of particle preparation as no other contaminating peaks were detected. The dummy particles particles (Figure 24B, middle panel) showed no characteristic peaks in the mass range indicating no interference from the polymer scaffold (PLA) that further confirms the peak at 880 Da to be specifically that of GSL. To quantitate GSL, several techniques of GC-MS and fluorescence associated HPLC have been reported that are prone to sample loss

Figure 24. Quantification of CPS-3 and GSL from co-encapsulated particles. (A) Analysis of CPS-3 in the aqueous phase of the particle types (Dummy, GSL, CPS-3 and CPS-3-GSL) after lysis and phase partioning using sandwitch ELISA were the mouse-monoclonal antibody CPS-3-5F6 (1mg/ml) diluted to 1:1000 was used as the capture antibody followed by incubation with the rabbit polyclonal antisera. Detection was done using HRP conjugated secondary antibody and developed using the chromogenic substrate TMB. Data is represented as absorbance values at 450 nm plotted using the Graphpad prism software. (B) Analysis of GSL in the lower organic phase of the particle types dummy (middle panel) and GSL (lower panel) after lysis and phase portioning using MALDI analysis. The soluble GSL (top panel) served as a positive control. (C) Acid hydrolysis and analysis of GSL (Galactose content) in the lower organic phase of the particle types CPS-3(green) and GSL (red) compared with a Galactose standard (black) by HPAEC.

during the processing. Hence, the more reliable technique of monosaccharide analysis using High Pressure Anion Exchange Chromatography (HPAEC) with a pulsed amperometric detection using a gold electrode was used. The organic phase obtained from the various particle types, were dried and subjected to acid hydrolysis using 2 M trifluoroacetic acid (TFA) to cleave the galactose sugar from the ceramide lipid part of GSL. The TFA released galactose (red chromatogram) was estimated by comparing to a standard curve of galactose processed in a similar manner (Figure 24C, black chromatogram). It is also evident that the organic phase of the CPS-3 encapsulated particles (green chromatogram) stays at baseline and does not show any peaks indicative of galactose or any other monosaccharides. This observation further indicates the purity of the preparation and the efficiency of extraction of CPS-3 from the organic phase with respect to the CPS-3 encapsulated particles. The concentration of GSL in the mono encapsulated formulation was 0.9 and 0.64 µg /mg of PLA nano- and microparticles with a encapsulation efficiency of 30% and 21% respectively. In the CPS3-GSL co-encapsulated formulation, the concentration of GSL was 0.9 and 0.94 µg/mg of PLA nano- and microparticles with a encapsulation efficiency of 30% and 31% respectively.

3.2.4.2 Splenocyte Activation by Soluble and Particulate GSL

The biological activity of GSL (α -GalCer) is characterized by the specific activation of iNKT cells through the cognate recognition and binding of the glycolipid ligand presented on a CD1d molecule of an APC through the invariant T cell receptor (iTCR). The glycolipid can be presented on a CD1d molecule of an APC by the uptake and processing of a particulate antigen or by direct loading in the case of soluble antigens (GSL). It has been shown that GSL when presented in a particulate manner enhances the iNKT activation potential many fold as compared to its activity in the soluble form [212, 213]. The activation of iNKT cells by GSL when presented in a soluble and particulate form in different size ranges (nano and microparticles) was investigated. Since PLA particles are negatively charged, it was first decided to check the uptake of the nano- and micro particles by the macrophage cell line (RAW 264.7). The dye 6-coumarin was used for the fabrication of fluorescent PLA nano-(Figure 25A, left panel) and microparticles (Figure 25A, right panel). The fluorescent nano and microparticles (50 µg/mL) were incubated with the macrophage cell line RAW 264.7 cells for 12h, washed and imaged using confocal microscope. The particles were nonrefractory to the cell and there was uptake of both the nano- (Figure 25B, top panel) and microparticles (Figure 25B, bottom panel). Although the cells were incubated with equal amounts of particles by weight, the nanoparticles showed higher uptake as compared to microparticles due to the higher size to volume ratio of the nanoparticles compared to the microparticles.

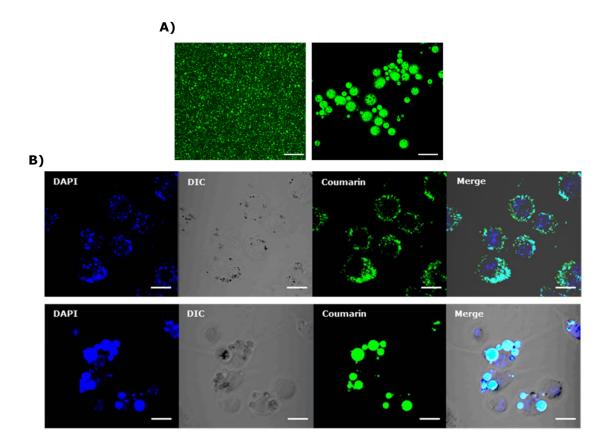
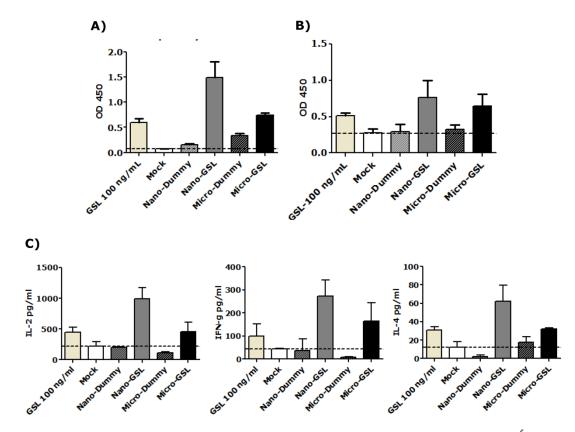



Figure 25. Uptake analyses of 6-coumarin loaded PLA nano and microparticles. (A) 6coumarin loaded fluorescent PLA nano (left panel) and microparticles (right panel) analyzed by confocal laser scanning microscopy. Scale bars represent 10 μ m. (B) Uptake analysis of 6coumarin loaded PLA nano (top panel) and microparticles (bottom panel) 50 μ g/mL incubated with RAW 264.7 macrophage (1x10⁵ cells) for 12h and analyzed by confocal laser scanning microscopy. Blue color indicates the cell nucleus stained with DAPI (cross talk of 6-coumarin in the DAPI channel is visible) with the DIC indicating the phase contrast image to view the external cell morphology and green color indicating the fluorescent PLA nano and microparticles. The merged image clearly differentiates the cell nucleus from the fluorescent PLA particles. Scale bars represent 10 μ m.

Next, a splenocyte assay, one of the most commonly used ex vivo assay to test the iNKT activation by glycolipids (GSL) was performed. Splenocyte cell suspension prepared from C57Bl/6 mice was incubated with soluble and particulate GSL for 48h and the supernatant was analyzed by ELISA. To analyze the uptake and presentation of the GSL by an APC, the soluble and particulate formulations were first incubated for 6h with BM-DC isolated from C57Bl/6 mice followed by co-culture with splenocyte cell suspension. Compared to the mock treated cells, the GSL containing samples showed better activation in

terms of IL-2 release shown as increase in absorbance values at 450 nm (Figure 26A and B). In samples incubated with the dummy particles having no GSL encapsulation, there was no IL-2 release or the levels were comparable to that of the mock treated cells indicating the specific activation of iNKT cells by GSL and not due to other contaminants in the sample. The low background activity of the Dummy particles further show that PLA by themselves are quite inert and do not induce non-specific activation of iNKT cells.

Figure 26. Splenocyte activation assay. (A) Splenocyte single cell suspension $(5x10^5 \text{ cells})$ was incubated with soluble and particulate GSL formulations for 48h and supernatants were analyzed for cytokine IL-2 represented as OD 450 absorbance. (B) BM-Dendritic cells from C57BL6/J mice $(1x10^5 \text{ cells})$ was incubated with the soluble and particulate GSL formulations for 6h, washed with PBS and co-cultured with $5x10^5$ splenocytes for 24h and supernatants were analyzed for cytokine IL-2 represented as OD 450 absorbance. (C) Splenocyte single cell suspension $(5x10^5 \text{ cells})$ incubated with soluble and particulate GSL formulations for 48h and the amount of cytokines IL-2, IL-4 and IFN- γ in the supernatant was quantified by ELISA and the values are represented as pg/mL of individual cytokines. Soluble GSL 100 ng/mL (Yellow bars), GSL loaded nano (greybars) and microparticles (black bars) 50-60 µg/mL normalized to GSL content of 50 ng/mL. Dummy nano (grey bar horizontal lines) and microparticles (black bar horizontal lines) 50-60 µg/mL. Mock PBS (white bar) corresponding to volume of soluble GSL.

GSL (α -GalCer) is a potent iNKT cell ligand with a standalone activity as compared to other glycolipid antigens, characterized by the production of both T_H1/T_H2 T cell cytokines IFN- γ and IL-4 along with the production of specific T cell cytokine IL-2. In order to evaluate and estimate the $T_H 1/T_H 2$ responses, the soluble and particulate nano- and microparticle GSL formulations were incubated for 48h with splenocyte cell suspension prepared from C57Bl/6 mice and the cytokines (IFN- γ , IL-4 and IL-2) in the supernatant was analyzed by ELISA. Both the soluble (Figure 26C, panel 1) (yellow bar) and particulate (grey and black bar) GSL formulations produced the cytokine IL-2 higher than the mock treated samples (clear bar) indicating specific T cell activation. The same was true in the case of the $T_H 1/T_H 2$ cytokines with both the soluble and particulate GSL formulations producing more IFN- γ than IL-4 (Figure 26C, panel 2 & 3). In all cases, the response of the dummy particle formulations without any GSL encapsulation was comparable to that of the mock indicating the inert nature of the particles further demonstrating the specific activation of iNKT cells by GSL antigen. In all cases, the nanoparticle GSL formulations demonstrated a higher activation potential with enhanced secretion of the cytokines IL-2, IFN- γ , and IL-4 as compared to the microparticles. The higher activation potential of the nanoparticle formulations could be due to the higher surface loading of the nanoparticles with GSL and the superior uptake (Figure 25B). It is worth to note that the nanoparticle formulations with only half the amount of GSL encapsulated (50 µg/mL) produced twice the amount of cytokines compared to the soluble GSL formulations. Hence, the above experiments indicate that the microencapsulation of GSL into PLA particles can be used as particulate T cell adjuvants to activate iNKT cells which provide help to a B cell activated by a TI antigen like polysaccharide.

3.2.4.3 *In vivo* Immunogenicity Evaluation of CPS-3 and GSL Co-encapsulated PLA Nano- and Microparticles

The particulate presentation of the glycolipid (GSL) antigen shows superior T cell adjuvant properties via iNKT cell activation. The incorporation of GSL in the particulate delivery of the TI polysaccharide antigen (CPS-3) would promote the specific IgG (CPS-3) response in a T cell (iNKT) dependent manner as compared to particles immunized with CPS-3 alone. Immunogenicity was evaluated by immunizing C57BL/6 mice (n=6) with the various particulate and soluble formulations of CPS-3 and GSL through the sub-cutaneous route as shown in Table 7 along with PBS as negative control. The CPS3-GSL physical mixture (PM) served as control to evaluate the importance of delivering both the CPS-3 and GSL antigens in a particulate form. Nano- and microparticles where only GSL was encapsulated were used to show the importance of co-encapsulation and presentation of both the antigens (CPS-3 and GSL) on the same particle. In these GSL encapsulated control particle group, the CPS-3

antigen $(2 \ \mu g)$ was mixed just prior to immunizing the mice. The adjuvant property of GSL across all the formulations was evaluated by comparing it with the experimental group that was immunized with only soluble CPS-3 antigen. The mice were immunized following a

	Formulation	Size	GSL DOSE	CPS-3 Dose	CPS-3 Load	%EE CPS-3	GSL Load	%EE GSL
1	PBS	-	-	-	-	-	-	-
2	Soluble CPS-3	-	-	2 μg/ 100 μL/ mouse	-	-	-	-
3	CPS3-GSL Physical mixture	-	1 µg/ 100 µL/ mouse	2 μg/ 100 μL/ mouse	-	-	-	-
4	GSL Nanoparticles + Soluble CPS-3	300- 500 nm	1 μg/ 100 μL/ mouse	2 μg/ 100 μL/ mouse	-	-	0.9 μg/mg particles	30
5	GSL Microparticles + Soluble CPS-3	2-8 µm	1 μg/ 100 μL/ mouse	2 µg/ 100 µL/ mouse	-	-	0.64 µg/mg particles	21.3
6	GSL-CPS3 Nanoparticles	300- 500 nm	1 μg/ 100 μL/ mouse	2 µg/ 100 µL/ mouse	1 µg/mg particles	20	0.9 μg/mg particles	30
7	GSL-CPS3 Microparticles	2-8 µm	1 μg/ 100 μL/ mouse	2 μg/ 100 μL/ mouse	1 µg/mg particles	20	0.94 µg/mg particles	31.3

Table 7. Formulations used for immunization of GSL encapsulation or CPS3-GSL co-encapsulation of PLA nano- and microparticles.

prime-boost regime as shown in Figure 27A and sera were collected on day 21 and analyzed for CPS-3 specific IgG antibodies by ELISA. The IgG titers were represented by plotting the absorbance values at 450 nm of the different experimental groups after subtracting their corresponding day zero pre-immune titers. The experimental group immunized with only soluble CPS-3 antigen (Figure 27B) (blue squares) failed to elicit a polysaccharide specific IgG response as compared to the group immunized with a mixture of CPS-3 and GSL (PM) indicating the importance of iNKT T cell help (orange diamonds). The GSL encapsulated nanoparticle (filled purple squares) and microparticle (filled green inverted triangles) formulations mixed with the soluble CPS-3 antigen also failed to elicit an IgG response. The titers were comparable to that of the soluble CPS-3 and PBS control group possibly due to the dilution of the CPS-3 antigen at the injection site. However, the CPS-3 and GSL coencapsulated nano- (purple open squares) and microparticles (green inverted open triangles)

A) B) 0.4 Prime Boost 0.3 21 14 Days Absorbance 0.2 V ELISA 0.1 , V . 0.0 55 Nanot OS3 CPS3 Nart

showed a positive trend in the increase of IgG and the mean titers were above the control formulations of CPS-3 (blue squares) and GSL only particles. This further highlights the

Figure 27. Evaluations of serum antibodies from mice immunized with CPS-3-GSL coencapsulating PLA nano and microparticles. (A) C57BL/6 mice were primed at day zero followed by a boost-immunization at day fourteen with the formulations listed in Table 3.1. Sera (50 μ L) were collected both prior and after immunization and analyzed by ELISA. (B) ELISA titers of sera collected on day twenty one expressed as OD 450 absorbance values after subtracting from the pre-immune values of corresponding experimental groups. Sera were diluted 200 X with 1% BSA-PBS and pre-incubate with 10 μ g/ml cell-wall polysaccharide. The diluted pre-incubated sera (100 μ L) was added per well of the microtiter plate that was coated with 1 μ g of CPS-3 polysaccharide. Following washings, the plates were incubated with a HRP conjugated mouse secondary antibody diluted 1:10000 and developed using the chromogenic substrate TMB. Absorbance was measured at 450 nm and the data were plotted using the Graphpad prism software with the red horizontal lines representing the mean OD values of the experimental groups.

importance of co-encapsulating both the B cell cross linking (CPS-3) and iNKT stimulating (GSL) antigens on the same polymeric particle and the role of GSL in enhancing the polysaccharide specific IgG response. However, the particulate presentation of the CPS-3 and GSL antigens yielded no drastic increase of antibody titers when compared to the experimental group immunized with the soluble physical mixture of CPS-3 and GSL. The reasons for the lower particulate response might be due to factors such as release kinetics of the particles, route of immunization and the polysaccharide size. The preferred route of immunization for the particulate formulations is by intra muscular (i.m) injection as compared to sub-cutaneous (s.c) injections used in this study. The i.m injection ensures rapid dispersion

and dissemination of the particles to the various immune rich tissues and organs like spleen and lymph node increasing the amplitude of the immune response [214, 215]. Particulate formulations are generally immunized as single point injections and the antigen release is thought to proceed via a rapid burst phase priming the immune system followed by a slow release phase giving a depot effect that shapes the immunological memory. On the other hand, the superior IgG response produced by the physical mixtures might be due to hydrophobic GSL forming micells when mixed with the hydrophilic CPS-3 antigen. The micells of the PM could have provided a particulate effect by concentrating the antigens (CPS-3 and GSL) at the point of delivery leading to enhanced processing and presentation of the GSL leading to superior and faster IgG response. Hence, it was decided to prolong the exposure time of the mice with the particulate and soluble antigen up to 110 days followed by immunization with CPS-3 to determine the a memory recall responses.

3.2.5 Influences of Polysaccharide Size on the Immune Response

3.2.5.1 Preparation of CRM₁₉₇-CPS3 Protein Conjugate

Apart from the route of immunization and release kinetics of the polymeric particles, polysaccharide size can play an important role in determining the outcome of the immune response. This was evident in Section 3.2.1.1 where the Prevnar[®] formulation at 1/5th the antigen concentration produced superior IgG titers compared to the PM. Apart from differences in the carrier (CRM₁₉₇ vs PM) and adjuvant (alum vs GSL) the size of the CPS-3 polysaccharide may play an important role. The information on the specific size of the polysaccharide used in the commercial vaccine Prevnar[®] is not available due to patent restrictions. Presumably, shorter polysaccharide repeating units might have been used as compared to the PM formulations that comprise high molecular weight polysaccharide (CPS-3). This becomes an impeding factor when the CPS-3 antigen is normalized by weight for immunization studies. As T independent antigens like carbohydrates mainly function by cross linking the BCR, a high molecular weight polysaccharide (low molarity) encounters and cross links very few BCR as compared to the low molecular weight oligosaccharide (high molarity) of the same antigen that can crosslink large number of BCR leading to an enhanced immune response. Hence, the size reduced polysaccharide (CPS-3) was conjugated to the carrier protein CRM₁₉₇ to investigate the effect of CPS-3 size on the outcome of immune response when using the same carrier protein and adjuvant (CRM₁₉₇ and Alum). The CRM₁₉₇-CPS3 protein conjugate was also used to compare against the physical mixture group which utilizes the same polysaccharide but different adjuvant systems (Alum and GSL).

The conjugation was performed as described in the methods section (2.2.1.4) and monitored using SDS-PAGE followed by coomassie staining to check for molecular weight increase. There was a significant increase in the molecular weight of the protein (Figure 28, panel A) in lane 3 (conjugate) especially in the 75-250 kDa regions as compared to the CRM standard (lane 2). To corroborate that the molecular weight increase of the proteins was due to conjugation of the polysaccharide, western blot analyses was performed and probed using antibodies against the protein CRM₁₉₇ and against the CPS-3 polysaccharide. Both the standard CRM₁₉₇ (Figure 28, panel B lane 4) and the conjugate (lane 5) stained positive when probed with an anti-CRM₁₉₇ antibody matching the coomassie profile. However, as seen in Figure 28, panel C (lane 7), the CPS-3 antisera only stained the higher molecular weight bands (above 75 kDa) but not the predominant band corresponding to 75 kDa on panel B (indicated by star). The 75 kDa band may have originated from the cleavage of DSAP linker used to conjugate the polysaccharide and protein. This band stained only with antibodies against CRM but not with the CPS-3 antisera. Hence, it was decided to purify the CRM-CPS3

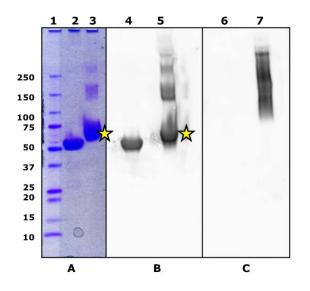
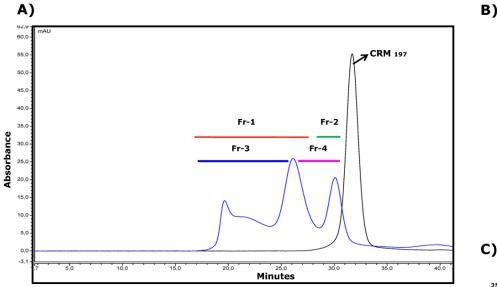



Fig 28. SDS-PAGE and western blot analysis of CRM₁₉₇-CPS3 conjugates. Panel A. Coomassie stained profile of CRM₁₉₇-CPS3 conjugate resolved on a 4-15% polyacrylamide gel, Panel B. The presence of CRM protein in the CRM₁₉₇-CPS3 conjugate analyzed by western blot using the anti-DT/CRM polyclonal antibody (1:1000) and probed with a HRP conjugated secondary antibody (1:5000) and Panel C. The presence of CPS-3 in the CRM₁₉₇-CPS3 conjugate analyzed by western blot using the anti-blot using the anti-CPS3 polyclonal antibody (1:2500) and probed with a HRP conjugated secondary antibody (1:5000), Where 1. Protein ladder ranging from 250-10 kDa M.Wt, 2, 4, 6. CRM₁₉₇ standard (5 μ g) and 3, 5, 7. CRM₁₉₇-CPS3 conjugates (10 μ g).

conjugates by size exclusion chromatography (SEC) in order to enrich the bands at molecular weight 100 kDa and above which stained positive with both anti-CRM₁₉₇ and anti-CPS3 antibodies. The SEC profile of the conjugates revealed at least three species which eluted between 18-30 min (Figure 29A, blue trace) as compared to the CRM protein standard (black trace) that eluted as a very sharp peak at 32 min. The elution profile of the conjugate was similar to the coomassie stained gel (Figure 28, panel A). The peak eluting at 30 min preceding the CRM protein standard (32 min) may be the 75 kDa linker-associated CRM fraction. The elution's from 18-28 min were termed as fraction 1 (Fr-1, red legend) which would primarily contain the CRM- CPS3 conjugate and the remaining elution from 29-31 min was collected as fraction 2 (Fr-2, green legend) comprising the linker-associated CRM fraction. The SEC purified fractions were resolved using PAGE. In the coomassie stained gel (Figure 29B), most of the CRM₁₉₇-CPS3 species in the 100-250 kDa region eluted in fraction 1 (lane 3) but the linker-associated CRM species were equally distributed both in lane 3 and lane 4 around the 75 kDa region. Therefore, contrary to the earlier assumption, a fairly large

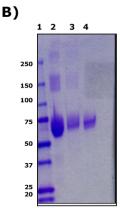
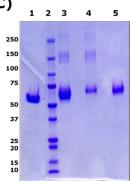



Figure 29. Purification of CPS-3-CRM protein conjugates by size exclusion chromatography (SEC). (A) Profile of CPS-3-CRM conjugate (100 μ g) resolved on a Superose-12 SEC column (blue trace) with the corresponding CRM₁₉₇ protein standard (black trace). (B) Coomassie stained profile of fraction 1 and fraction 2 resolved on a 4-15% polyacrylamide gel. 1. Protein ladder ranging from 250-10 kDa M.Wt, 2. CRM-CPS-3 conjugate (10 μ g) 3. Fraction 1(5 μ g), 4. Fraction 2 (5 μ g). (C) Coomassie stained profile of fraction 3 and fraction 4 resolved on a 4-15% polyacrylamide gel. 1. CRM197 standard (5 μ g), 2. Protein ladder ranging from 250-10 kDa M.Wt, 3. CRM-CPS-3 conjugate (10 μ g) 4. Fraction 3 (5 μ g), 5. Fraction 4 (5 μ g).

amount of linker-associated CRM 197 was also present in the second peak eluting between 25-28 min and exclusion of this peak resulted in a major loss of the CRM₁₉₇-CPS3 conjugate. Hence, in a subsequent injection, the elutions from 18-26 min were collected and termed as fraction 3 (Fr-3, blue legend) while the remaining elutions from 26-31 min formed fraction-4 (Fr-4, pink legend). As seen in the coomassie stained gel Figure 29C, most of the CRM₁₉₇-CPS3 species in the 100-250 kDa region eluted in fraction 3 (lane 4) and majority of the linker-associated CRM species eluted in fraction 4 (lane 5) around the 75 kDa region. However, the linker-associated CRM species could not be completely separated from fraction 3 (lane 4) but there was substantial improvement in the purification compared to the unpurified conjugate (lane 3). This was the best compromise that could be achieved without a major loss of conjugate. The protein content of the purified CRM₁₉₇-CPS3 conjugate was determined by BCA analysis and the content of the polysaccharide was determined by quantitative ELISA. The poor separation/ resolution of the conjugates might be due to the random cross-linking of a polysaccharide to the carrier protein resulting in an ill-defined matrix-like structure as compared to conjugation with oligosaccharides of defined sequence length that result in well-defined radial particulate structures.

3.2.5.2 Immunization Studies to Evaluate Polysaccharide (CPS-3) Specific Immune Responses from Mice Immunized with Glycosphingolipid (GSL) and Alum Adjuvant

The ability of the size reduced CPS-3 polysaccharide antigen and its CRM conjugate to elicit a polysaccharide specific IgG response was evaluated by immunizing C57BL/6 mice (n=6) sub-cutaneously. Different formulations were prepared either with or without GSL (for soluble CPS-3) and with or without Alum (for CRM₁₉₇-CPS3 conjugate) along with a control that included only phosphate buffered saline (PBS) Table 8. The influence of polysaccharide size on the immunogenicity was evaluated by comparing the preperations against the commercial vaccine Prevnar[®]. All formulations were normalized to an injection volume of 100 μ L per mouse. The mice were immunized following a prime-boost regime as

	Formulation	Antigen	Adjuvant	CPS-3 Dose
1	PBS	-	-	-
2	CPS-3	CPS-3	-	2 µg/ 100 µL/ mouse
3	CPS3-GSL Physical Mixture (PM)	CPS-3	GSL (α-GalCer) 1 μg	2 µg/ 100 µL/ mouse
4	CRM-CPS3 Conjugate	CPS-3	-	2 µg/ 100 µL/ mouse
5	CRM-CPS3 Conjugate (Alum)	CPS-3	Alum (AlPO₄)	2 µg/ 100 µL/ mouse
6	Prevnar 13®	CPS- (1, <u>3</u> , 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, 23F)	Alum (AlPO₄)	0,4 µg/ 100 µL/ mouse

Table 8. Details of the various soluble CPS-3 formulations (Alum/GSL) that were used for immunizations.

shown in Figure 30A and sera were collected on day 21 and analyzed for polysaccharide specific IgG antibodies by binding to ELISA plates coated with 1 μ g CPS-3 polysaccharide. The IgG titers were represented by plotting the absorbance values at 450 nm of the different groups after subtracting their corresponding pre-immune (day 0) values. The experimental group immunized with only the CPS-3 polysaccharide antigen (Figure 30B,blue square) failed to elicit a CPS-3 specific IgG response on day 21with the mean serum IgG titers comparable

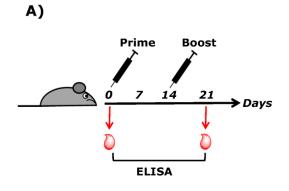
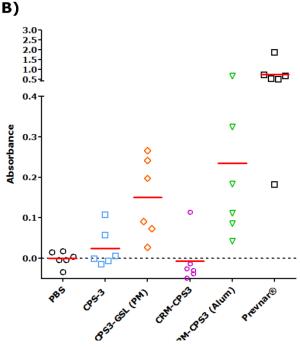



Figure 30. Evaluation of serum antibodies from mice immunized with the soluble formulations and protein conjugates of CPS-3. (A) C57BL/6 mice were primed at day 0 followed by a boost-immunization at day 14 with the formulations listed in Table 3.1 and sera (50 μ L) were collected both prior and after immunization and analyzed by ELISA.

(B) ELISA titers of sera collected on day 21 expressed as OD 450 absorbance values after subtracting from the pre-immune values of corresponding experimental groups. Sera were diluted 200 X with 1% BSA-PBS and pre-incubate with 10 μ g/mL cell-wall polysaccharide. The diluted pre-incubated sera (100 μ L) was added per well of the microtiter plate which was coated with 1 μ g of CPS-3 polysaccharide. Following washings, the plates were incubated with a HRP conjugated mouse secondary antibody diluted to 1:10000 and developed using the chromogenic substrate TMB. Absorbance was measured at 450 nm and the data were plotted using the graphpad prism software with the red horizontal lines representing the mean OD values of the experimental groups.

to the control group immunized with PBS (black circles). This observation clearly demonstrates the TI behavior of the polysaccharide antigen and the inability of the polysaccharide specific B cell to undergo class switching in the absence of T cell help. However, comparable IgG titers were observed when the polysaccharide was injected using T cell adjuvants either as physical mixture (CPS3-GSL, orange diamonds) or CRM protein conjugate with alum as adjuvant (inverted green triangles). However, the antibody titers of CRM₁₉₇-CPS3 conjugate immunized without the adjuvant alum (purple circles) was similar to that of the PBS and soluble CPS-3 groups. These findings indicate the absolute necessity of an adjuvant and more specifically a T cell adjuvant to produce polysaccharide specific IgG antibodies. The influence of the size on the outcome of the immune response was evident as the commercial vaccine containing oligosaccharide repeating units produced superior IgG titers in comparison to the in-house prepared CRM₁₉₇-CPS3 conjugate. Hence, the high molecular weight CPS-3 produced comparable IgG titers when immunized either as PM or CRM conjugates irrespective of the adjuvant (alum or GSL) indicating the importance of polysaccharide size when the antigen is normalized by weight.

3.2.6 Mice Immunized with Particulate Formulations and Challenged with CPS-3 Polysaccharide Show Hyporesponsiveness and No Immunological Memory

In order to improve the IgG titers and facilitate the long lasting memory responses, all groups of mice were boosted on day 28 with the formulations listed in Table 9.

	Formulation	Size	GSL DOSE	CPS-3 Dose
1	PBS	-	-	-
2	Soluble CPS-3	-	-	2 μg/ 100 μL/ mouse
3	CPS3-GSL Physical mixture (PM)	-	1 µg/ 100 µL/ mouse	2 µg/ 100 µL/ mouse
4	CRM-CPS3 Conjugate	-	-	2 μg/ 100 μL/ mouse
5	CRM-CPS3 Conjugate <mark>(Alum)</mark>	-	-	2 µg/ 100 µL/ mouse
6	Prevnar® 13	-	-	0,4 µg/ 100 µL/ mouse
7	CPS-3 Nanoparticles	300-500 nm	-	2 μg/ 100 μL/ mouse
8	CPS-3 Microparticles	2-8 µm	-	2 μg/ 100 μL/ mouse
9	GSL Nanoparticles + Soluble CPS-3	300-500 nm	1 µg/ 100 µL/ mouse	2 µg/ 100 µL/ mouse
10	GSL Microparticles + Soluble CPS-3	2-8 μm	1 µg/ 100 µL/ mouse	2 µg/ 100 µL/ mouse
11	GSL-CPS3 Nanoparticles	300-500 nm	1 µg/ 100 µL/ mouse	2 µg/ 100 µL/ mouse
12	GSL-CPS3 Microparticles	2-8 µm	1 µg/ 100 µL/ mouse	2 μg/ 100 μL/ mouse

Table 9. Details of the various soluble and particulate formulations of CPS-3 (Alum/GSL) used forday 28 boost immunization.

The mice were maintained for a total of 82 days to facilitate the uptake and processing of the particulate antigens (Figure 31A). On day 110, the sera were collected and all groups were boosted with 5 µg of the CPS-3 polysaccharide and memory responses were analyzed on day 117. There was no improvement in IgG titers on day 110 (blue square) in mice immunized with the CPS-3 nano and microparticle formulations as compared to day 21 (green circles) [Figure 31B]. However, in the experimental groups immunized with particulate formulations co-encapsulating both GSL and CPS-3, there was a minor increment in the IgG

titers on day 110 (Figure 31C, blue square). This was true only for the nanoparticle formulations but the titers of the microparticle formulations were similar to or lower than that of the day 21 values (green circles). However, the day 117 titers post CPS-3 challenge (orange triangles) across all groups and particulate formulations showed a hyporesponsive trend with the IgG titers falling below the day 21(green circle) levels.

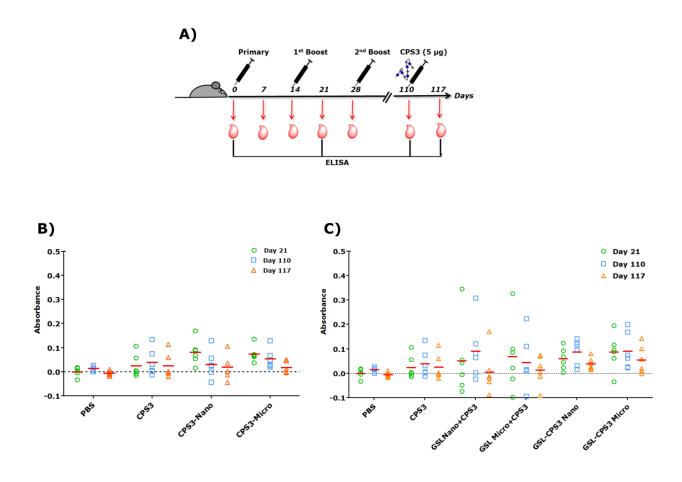


Figure 31. Evaluation of memory recall response of mice immunized with particulate formulations and challenged with CPS-3 polysaccharide. (A) C57BL/6 mice boosted on day 28 with particulate formulations of CPS-3 and GSL followed by challenge with 5 μ g CPS-3 polysaccharide on day hundred ten followed by and analysis of the boosting response on day hundred seventeen. Sera 50 μ L was collected both prior to and after challenge. (B) ELISA titers of sera from CPS-3 PLA nano and microparticles immunized groups collected on day (21, 110 and 117). (C) ELISA titers of sera from GSL PLA and CPS-3-GSL PLA nano and microparticles immunized groups collected on day (21, 110 and 117). The titers are expressed as OD 450 absorbance values after subtracting from the pre-immune values of corresponding experimental groups. Sera were diluted 200 X with 1% BSA-PBS and pre-incubate with 10 μ g/mL cell-wall polysaccharide. Diluted pre-incubated sera (100 μ L) was added per well of the microtiter plate which was coated with 1 μ g of CPS-3 polysaccharide. Following washings, the plates were incubated with a HRP conjugated mouse secondary antibody diluted to 1:10000 and developed using the chromogenic substrate TMB. Absorbance was measured at 450 nm and the data were plotted using the graphpad prism software with the red horizontal lines representing the mean OD values of the experimental groups.

3.2.6.1 GSL Rescues the Polysaccharide Induced Hyporesponsiveness in Soluble Formulation

Hyporesponsiveness is the inability to mount a booster immune response equal to or higher than the post primary levels. In case of carbohydrate based vaccines, hyporesponsiveness was thought to be mediated by repeated exposure to the polysaccharide antigen leading to T independent immune activation with no replenishment of memory B cell pools. However, hyporesponsivness was also reported in the case of polysaccharide conjugate vaccines that induce immunity in a T cell dependent manner. An important observation was the direct correlation of conjugate vaccine induced hyporesponsiveness against S.pneumoniae serotype-3 (CPS-3) in children leading to incidence of acute otis media (AOM) infections. In this thesis, as hyporesponsiveness was observed in the particulate formulations immunized with or without GSL, I investigated if the same was true with the various soluble formulations, most importantly the CRM conjugate of CPS-3 (both in house and commercial vaccine). Hence, the sera collected at different time points [day 0, 21, 110 and 117 (Figure 32A)] were analyzed by ELISA for increase in polysaccharide (CPS-3) specific memory IgG response on boosting with CPS-3 antigen. Mice immunized with the plain CPS-3 polysaccharide (Figure 32B, blue line) mounted no significant IgG response as the levels were comparable to the PBS group (black line). Comparing the adjuvant formulations, the day 21

B)

A)

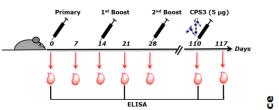
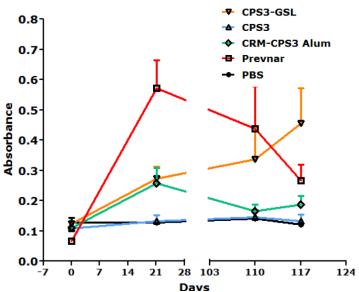
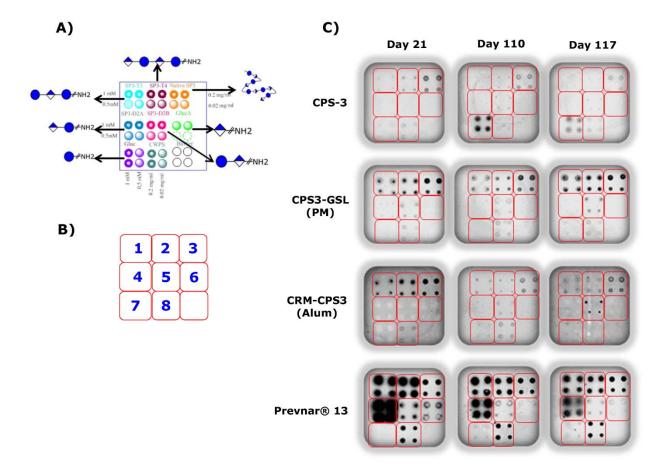



Figure 32. Evaluation of memory recall response from mice immunized with the soluble formulations and challenged with CPS-3 polysaccharide. (A) C57BL/6 mice boosted on day 28 with soluble formulations followed by challenge with 5 μ g CPS-3 polysaccharide on day 110 followed by analysis of the boosting response on day 117. Sera (50 μ L) were collected both prior to and after challenge. (B) ELISA titers of sera from the different soluble formulation immunized

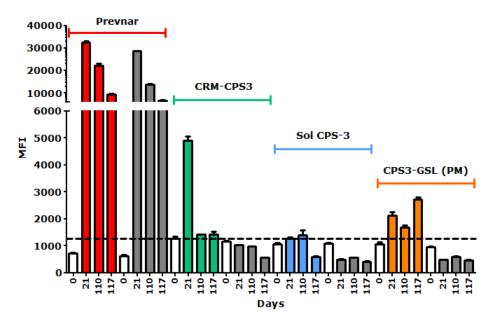

groups collected on day (21, 110 and 117). The titers are expressed as OD 450 absorbance values after subtracting from the pre-immune values of corresponding experimental groups. Sera were diluted 200 X with 1% BSA-PBS and pre-incubate with 10 μ g/mL cell-wall polysaccharide. Diluted pre-incubated sera (100 μ L) was added per well of the microtiter plate which was coated with 1 μ g of CPS-3 polysaccharide, detected with a HRP conjugated mouse secondary antibody diluted to 1:10000 and developed using TMB. Absorbance was measured at 450 nm and the data were plotted using the graphpad prism software.

mean IgG titers were in agreement with the previous results obtained. The mean IgG titers of CRM₁₉₇-CPS3 (alum) and CPS3-GSL (PM) at day 21 were comparable in magnitude (green and orange lines) and that of the commercial vaccine (red lines) was the highest. However, there was a drastic decrease in the IgG titers of the protein conjugates CRM₁₉₇-CPS3 and Prevnar[®] (green and red lines) on day 110 (pre CPS-3 boost). This decrease was expected as the antibody responses would have subsided during the course of the 82 days the mice were rested. This observation was however in contrast to the experimental group immunized with CPS3-GSL (PM). On day 110, sera of the CPS3-GSL (PM) group showed an increasing trend of IgG titers as compared to the day 21 values (orange line). The titers were further boosted when the mice were challenged with the CPS-3 polysaccharide and the sera analyzed on day 117. In comparison, the commercial Prevnar[®] formulations showed a further decrease in IgG titers compared to day 110, clearly indicating polysaccharide induced hyporesponsiveness. The CRM₁₉₇-CPS3 conjugate prepared in-house (green line) showed no increase in titers and the values at day 117 were similar to that of day 110. Hence, although the mice demonstrated a robust booster response at day 21 when immunized with commercial Prevnar® vaccine, there was a hyporesponsive trend on subsequent immunization with the polysaccharide at day 117. It can be concluded cautiously that the hyporesponsiveness induced by polysaccharide vaccines can be rescued by using the iNKT adjuvant GSL (α -GalCer). Incorporating GSL into a commercial polysaccharide vaccine may be beneficial in eliciting a TD response, with no associated hyporesponsiveness. This would encourage the shift from using a protein conjugate vaccine thereby minimizing the vaccination cost and increasing the sequence coverage.

3.2.6.2 Glycan Array Analysis Reveals Different Epitope Recognition

Mapping of the minimal epitope required for the generation of a productive immune response is one of the critical aspects in the design of vaccines against polysaccharide antigens. In case of *S. pneumoniae* capsular polysaccharides, this can be a simple disaccharide repeating unit as in serotype-3 or up to an octasaccharide. Attempts to generate the minimal repeating unit from the natural polysaccharides often results in heterogeneous mixtures of varying chain lengths that are difficult to purify and characterize. The chemical synthesis of very pure sequence defined oligosaccharide structures combined with the microarray platform provides a powerful tool for carbohydrate vaccine research. Utilizing this, the sera generated against the various soluble formulations collected on days 21, 110 and 117 were screened on the microarray platform. Different synthetic CPS-3 constructs varying

in chain length and combinations of glucose (blue circles) and glucuronic acid (blue-white diamonds) along with the natural CPS-3 and cell wall polysaccharide (CWPS) (Figure 33A) were printed as different sub-blocks numbered 1-8 (Figure 33B). The day 21 sera from the CPS-3 immunized mice produced low IgG titers which bound weakly to the CPS-3 (polysaccharide) antigen (sub-block 3) (Figure 33C). Although weak IgG binding to the tri-


Figure 33. Glycan array analysis of various CPS-3 soluble formulations immunized sera. (A) Glycan array block depicting the printing pattern of the various CPS-3 synthetic constructs the natural capsular polysaccharide-3 and the cell wall polysaccharide (CWPS). (B) The different subblocks numbered 1-8 on which the antigens were printed with each sub-block containing two concentrations of the antigen. Sub-block 3, the natural CPS-3(orange spots) and sub-block 8 the CWPS (green spots) was printed in two concentrations of 0.2 and 0.02 mg/mL. All other synthetic constructs sub-block1; Glc-GlcA-Glc-NH₂ (indigo spots), sub-block 2; GlcA-Glc-GlcA-Glc-NH₂ (magenta spots), sub-block 4; GlcA-Glc-NH₂ (blue spots), sub-block 5; Glc- GlcA-NH₂ (pink spots), sub-block 6; GlcA-NH₂ (green spots), sub-block 7; Glc-NH₂ (purple spots) were printed in two concentrations of 1 and 0.5 mM except sub-block-6 which contained only spots of 1 mM concentration. (C) Sera (day 21, 110 and 117) from the different experimental groups immunized with various soluble formulations was diluted 200 X with 1% BSA-PBS and incubated for 1h. The spots were detected using an Alexafluor-635 conjugated mouse secondary antibody diluted 400X and incubated for 1h.

and tetrasaccharide constructs (sub-block 1 and 2) were observed, these eventually disappeared by day 110 and 117. In contrast, the group immunized with the PM and CRM₁₉₇-CPS3 (alum) showed strong binding in the order CPS-3 (polysaccharide antigen) (block 3) > tertrasaccharide (block 2) > trisaccharide (sub-block 1) for the day 21 sera. However in case of CRM₁₉₇-CPS3 (alum), binding eventually decreased by day 117 to levels lower than the day 21 values corroborating the hyporesponsiveness observed due to polysaccharide immunization. In case of the CPS3-GSL (PM), the day 110 sera showed a marginal decrease in the intensity of binding (sub-block 3, 2, 1) which on polysaccharide challenge got restored to levels observed at day 21.

In case of the commercial vaccine Prevnar[®], the day 21 sera apart from recognizing the tri-, tetra- and natural polysaccharide (sub-blocks 1, 2 and 3) also bound the di- and monosaccharide epitopes (sub blocks 4, 5 and 6). It has been shown that acid hydrolysis and enzymatic treatment of the CPS-3 polysaccharide yields shorter oligosaccharide fragments terminating either with a glucose or glucuronic acid residue [161, 162]. The glucuronic acid structures were shown to react strongly with the antisera as compared to the glucose [216]. This is evident in the day 21 sera that bound strongly to the glucuronic acid terminated structure (sub-block 4) as compared to the glucose terminated structure (sub-block 5). The additional epitopes recognized in the Prevnar[®] sera may have originate due to the size reduction and conjugation procedure used to make the conjugate. In addition, the sera also bound the cell wall polysaccharide-CWPS (sub-block 8) with high intensity indicating that a substantial amount of antibodies were raised against this structure. However, in the CPS3-GSL and CRM₁₉₇-CPS3 formulations the binding to CWPS was very minimal. The CWPS is a common contaminant in the capsular polysaccharide (CPS) preparation and might have been carried over in the final Prevnar[®] formulation. Since the commercial vaccine Prevnar[®] is composed of 13 serotypes that are individually conjugated, the final formulation might have contained a substantial amount of CWPS. Although the day 21 Prevnar® sera bound all the CPS-3 substructures with high intensity, the day 110 and 117 sera showed a substantial decrease in binding indicating hyporesponsiveness due to polysaccharide immunization.

Next, the binding of antisera to the CPS-3 polysaccharide structures (sub-block 3) was quantified by analyzing the mean fluorescence intensity (MFI) values. As the Prevnar[®] immunized sera bound strongly to the CWPS (sub-block 8); these values were also included in the analysis. The MFI values for Prevnar[®] sera (Figure 34, red bars) were exceptionally high compared to the other soluble formulations. There was a sharp decrease in the MFI

values by more than 50% in the sera collected one week post challenge (day 117) compared to the day 21 sera indicating polysaccharide induce hyporesponsiveness. The same was true for the CRM₁₉₇-CPS3 conjugate (green bars) prepared in-house which showed a high titer on day 21 but failed to respond on subsequent challenge by polysaccharide. The sera from the group immunized with only the CPS-3 (blue bars) failed to induce any IgG response and the values were comparable to the corresponding pre-immune values (white bars). However, the MFI values of the sera from the CPS-3 and GSL physical mixture (PM) group not only produced IgG titers above the CPS-3 group (blue bars) but also responded positively to polysaccharide challenge. Although the titers were very low, the trend definitely highlights the role of the T cell adjuvant GSL in enhancing the CPS-3 specific IgG titers and limiting the hyporesponsiveness to subsequent challenges with the polysaccharide. However, the post challenge antibody titer (MFI) for the Prevnar[®] group (sub-block 3) was very high in microarray analysis compared to that obtained by ELISA (Figure 34). This observation may

Figure 34. Glycan array quantification. Quantification of sera binding to natural CPS-3 and CWPS (sub-blocks 3 and 8) from the experimental groups immunized with various soluble formulations. Detection was done using an Alexafluor-647 conjugated mouse secondary antibody (1:400). Results are shown as mean fluorescence intensity (MFI) values \pm SD.

be due to the presence of CWPS antibodies in the Prevnar[®] sera (grey bars) that bind the CPS-3 polysaccharide (sub-block 3), known to contain a considerable amount of CWPS contamination there by giving an enhanced MFI value. However, the CWPS titers for the CPS3-GSL physical mixtures were below the corresponding pre-immune values (day 0, white bar).

3.3 Conclusion

In this part of the thesis, as a surrogate to the commercial vaccine against T independent carbohydrate antigens, a fully synthetic and well defined vaccine formulation comprising the capsular polysaccharide virulence factors of *S.pneumoniae* was designed.

Vaccine development against polysaccharide antigens is often challenging due to poor immunogenicity, T cell independent immunological properties (polysaccharide vaccine) or variables like the nature of the carbohydrate antigen, the carrier protein, the conjugation chemistry and the type of adjuvant used as in case of glycoconjugate vaccines. In the studies reported in this thesis, two important formulation parameters of the commercial vaccine was changed in order to have better control of formulation parameters that would ultimately enhance the efficacy of the vaccine. In the first part, the adjuvant system alum used in the commercial vaccine was replaced by the glycolipid α -GalCer (KRN 7000). Adjuvant systems like alum forms an important bottle-neck in the success of glycoconjugate vaccine, the formulation processes of which are poorly defined with limitations such as poor adsorption of glycoconjugates due to interference of the attached glycans [32, 217]. On the other hand, numerous glycolipids and glycolipid based formulations are reported to have superior immunomodulatory functions as they specifically activate iNKT cell population in a CD 1d dependent manner. Recent reports suggest that co-delivering the carbohydrate antigen and glycolipid adjuvant [a-GalCer (KRN 7000)] to specific B cell would augment the immunogenicity of the carbohydrate antigen and the necessary ancillary help for B-cell to undergo isotype switching and affinity maturation would come from the recognized iNKT cell dependent manner [108, 218].

With this rational, when the polysaccharide (CPS-3) was injected in mice along with the glycolipid α -GalCer (KRN 7000) there was an increase in post booster (day 21) IgG titers. This indicated the adjuvant property of the glycolipid to elicit polysaccharide specific IgG responses. However the antibody titers were much lower than the commercial vaccine Prevnar 13[®], a glycoconjugate vaccine administered in presence of alum as adjuvant. In order to increase the immunogenicity and antibody titers, attempts were made to co-deliver both the polysaccharide and the glycolipid adjuvant as a single entity. This was accomplished by developing a particulate delivery system made up of polylactic acid where both the antigen and the adjuvant were co-encapsulated. The PLA particulate system was qualitatively and quantitatively analyzed for both the polysaccharide and the glycolipid adjuvant confirming the co-encapsulation on the same polymeric particle. However, immunization of the particulate system into mice elicited much lower IgG titers compared to the physical mixture formulations which were in turn lower than that observed for the commercial vaccine. Three important factors were assumed to be responsible for this reduced immunogenicity; the polysaccharide size, route of immunization and release property of the polymer particle.

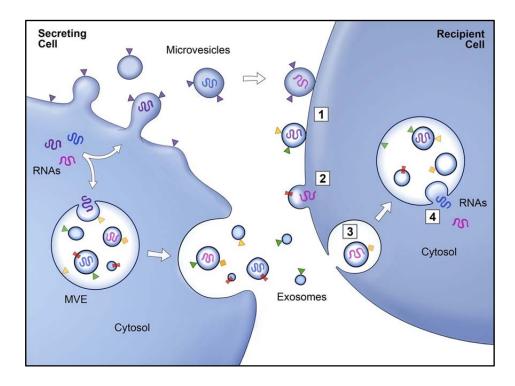
Several conflicting reports discuss the influence of the polysaccharide size on the outcome of the immune response [163, 219, 220]. As the formulation details of the commercial vaccine are protected by intellectual property, the information on the size of the CPS-3 antigen used is not accessible. Hence, CRM₁₉₇-CPS3 glycoconjugates were prepared in-house using the same polysaccharide used in the physical mixture formulations and were immunized in mice with alum as adjuvant. Analysis of the antibody titers indicated that the physical mixture formulation and the CRM₁₉₇-CPS3 glycoconjugate prepared in-house elicited similar antibody titers indicating the adjuvant potential of GSL on par with that of alum. Although there was no differences in the antibody titers produced between the two adjuvant systems, the greatest advantage of the GSL adjuvant was the ease of administiring which was by just mixing with the polysaccharide and injecting. The CRM₁₉₇-CPS3 glycoconjugate on the other hand involved several chemical modification and characterization steps which might be not cost effective compared to the physical mixture formulations. However, the commercial vaccine Prevnar 13[®], produced antibody titers several folds higer compared to both the physical mixture and CRM₁₉₇-CPS3 formulations. Limited acid hydrolysis is one of the preferred methods of polysaccharide size reduction in the manufacture of the commercial vaccine Prevnar $13^{\text{®}}$. Hence the use of such oligomeric structures in the commercial vaccine formulation might have resulted in a better immune response correlating with high titer antibodies. Although, the polymeric particulate and physical mixture formulations used the same polysaccharide, the decreased antibody titers seen in the particulate formulations compared to the physical mixture formulations might be due to factors like the route of immunization, uptake, presentation and the release property of the PLA polymer apart from the polysaccharide size. The uptake and presentation of the GSL in the polymeric particulate formulations is key important for iNKT cell activation to mediate the adjuvant effect. The uptake analysis and the splenocyte activation by the polymeric particulate formulations in an ex vivo splenocyte assay releasing the T cell cytokine IL-2 indicates the functionality of the adjuvant GSL formulated in a particulate form. The particulate formulation produced similar levels of cytokines IL-2,-4 and IFNy even though it contained only half the amount of GSL compared to the soluble formulation. This further indicated that the reduced antibody titers produced against the particulate formulations could

be on account of the route of immunization which in this case was the sub cutaneous route. Several studies have demonstrated the shortcomings of sub-cutaneous (s.c) route of vaccine administration over the intra-muscular (i.m) route. One of the major disadvantages attributed to s.c route is the presence of deltoid tissue which might hinder the acquition of the vaccine by the antigen presenting cells. Intramuscular route on the other hand has been shown to be better for vaccine administration due to the increased circulation and better dispersion of the antigen [214, 215]. This is particularly true in case of polymeric particles which have been shown to undergo aggregation and lysis when administerd through the the sub-cutaneous route [221]. Hence, all the experimental groups were boosted with their corresponding antigens for the second time and were rested for a total of 110 days with the aim to facilitate the uptake of the particles resulting in shaping of immunological memory.

In order to evaluate the memory immune responses, all the experimental groups were challenged with 5 ug of the CPS-3 polysaccharide on day 110 and the sera were analyzed after one week at day 117. It was interesting to note that all the experimental groups demonstrated hyporesponsiveness on account of polysaccharide challenge except the group immunized with the physical mixture formulation comprising the polysaccharide and the glycolipid α -GalCer. The polysaccharide induced hyporesponsiveness is a common feature observed accross different age groups from neonates to adults mediated by either depletion or apoptosis of memory B cell populations [180, 222-226]. However, the increased antibody titers observed in the physical mixture immunized groups holds a promising future for the use of glycolipid adjuvants in polysaccharide vaccines. This however has to be validated for the other vaccine serotypes along with further experimental studies pertaining to the protection offered on account of bacterial challenge. The sera from the commercial vaccine and the physical mixture immunized groups when analysed by glycan array analysis showed a differential recognition of various CPS-3 sub-structures. Although both the Prevnar 13® and physical mixture immunized sera bound to the natural polysaccharide, the Prevnar 13® sera recognized diverse epitiopes ranging from mono saccharide, di-saccharide, tri-saccharide and tetra saccharide structures. The physical mixture immunized sera on the other hand only bound to the tri- and tetrasaccharide structures in addition to the natural polysaccharide. This highlights two important observations; either the different adjuvant systems, alum and GSL influence different immune outcomes or the nature of the polysaccharide antigen used plays an important role. The latter seems to responsible for the outcome as the CRM_{197} -CPS3 protein conjugate prepared in-house also recognized the same sub-structures recognized by the physical mixture immunized sera, however associated with hyporesponsiveness. Another important observation between the Prevnar 13[®] sera and the physical mixture immunized sera is the abundance of antibodies against the cell-wall polysaccharide structures in the former. This might have originated on account of the conjugation reactions which further get amplified. Hence, immunizing the polysaccharide without conjugating to a protein but with a glycolipid adjuvant seems to produce very specific antibodies against the thereby minimizing unwanted immune responses against contaminating glycans.

Collectively the results presented here highlight the potential of using glycolipid adjuvants with T-independent antigens to increase the efficacy of polysaccharide vaccines with a reduced cost. The results obtained here have to be further validated using the other vaccine serotypes of *S. pneumoniae*. Further knowledge of the minimal epitope required to produce a robust and protective immune response can facilitate the chemical synthesis of the antigen resulting in a completely synthetic and controlled vaccine formulation. The particulate delivery system fabricated here were less robust in eliciting an immune response due to the various parameter constraints discussed above which have to be addressed methodically. However, the polymeric particulate system developed here hold great promise for the future vaccine delivery systems, some of which are mentioned here

- i. The polymeric system fabricated here used a simple encapsulation process to introduce the polysaccharide and the glycolipid adjuvant as a single component, compared to complex chemistries involved in the glycoconjugate vaccines.
- ii. The encapsulation of both the antigen and the adjuvant can be easily quantified and this allows better control of the formulation parameters.
- iii. As the glycoconjugate vaccines are formulated by individually conjugating carbohydrate antigens to the carrier protein CRM₁₉₇, the general problem associated with carrier protein induced immunosuppression can be overcome by using polylactide delivery systems with glycolipid adjuvants
- iv. The polymeric system can act as excellent systems in the future development of multicomponent vaccines comprising of many antigens but a single adjuvant type formulated on a common carrier platform.
- v. A tremendous potential of polymeric carrier systems is the formulation of dry powder form of the vaccine that can be packed in inhalers with increased shelf life promoting self-administration.

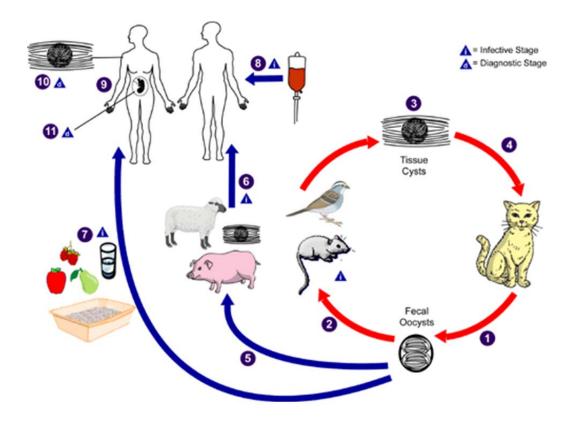

4. Toxoplasma gondii Exosome Like Vesicles (ELVs) act as Carriers of Virulence Factors

This chapter describes the experiments performed to study the role of extracellular vesicles in the Host-Pathogen interaction of the protozoan parasites *Toxoplasma gondii*. The study highlights the capacity of the parasite *Toxoplasma gondii* to produce exosome like extracellular vesicles that might function as unconventional modes of communication between the parasite and the host. The study focuses on the isolation and characterization of extracellular vesicles from *Toxoplasma gondii* tachyzoites and characterizes the various protein and glycolipid cargo of the vesicles. The study further compares the extracellular vesicles produced by the virulent strain Type-I (RH) and the avirulent strain Type-II (PTG) and highlights their strain specific antigen expression and effector functions.

4.1 Introduction

4.1.1 Extracellular Vesicles

Intercellular communication is pivotal in multicellular organisms, both in healthy and diseased conditions. Most of the intercellular communication is mediated either by a direct cell-cell contact or by hormones and chemical messengers in a paracrine or endocrine manner [227]. In addition to the above mentioned modes of cellular communication, extra cellular vesicles in the form of exosomes, ectosomes, microvesicles and microparticles are fast gaining importance as modulators of both systemic and cellular responses in higher eukaryotes [228, 229]. Though initially thought as contaminants of cellular debris, such vesicular components have now been purified and characterized in great detail both from *in vivo* and *in vitro* sources with origins from various pathological conditions , biological fluids and an array of cells types ranging from macrophages, B cells, T cells, dendritic cells and endothelial cells [230-233].


Figure 35. Schematic of intercellular communication mediated by exosomes and microvesicles. Formation of microvesicles and exosomes either by direct budding or fusion and release of multivesicular bodies contain membrane proteins (triangles and bars), RNA (curves), soluble proteins and lipids of the secreting cells. The released microvesicles and exosomes interact with the recipient cells either by 1) docking, 2) direct fusion or 3) endocytosis followed by 4) fusion to the endocytic compartment resulting in the release of cargo (proteins, RNA, lipids) leading to modulation of the recipient cell. Figure adopted from [234]. The extracellular vesicles have defined and characteristic functions ranging from reticulocyte maturation, immune modulation and also serve the potential as a delivery system [235, 236]. The biogenesis of extracellular vesicles is from the plasma membrane and hence is classified into either exosomes or microvesicles [237]. Exosomes are formed by the inward invagination of the plasma membrane forming endosomes which later fuse forming multivesicular endosomes with the plasma membrane to release their content as exosomes [238, 239]. On the other hand, microvesicles are thought to be produced by the outward blebbing of the plasma membrane [240]. In either case, the extracellular vesicles encompass proteins, lipids and nucleic acids (RNA, mRNA) molecules which serve as a cargo forming a signalasomes that can modulate the properties of the interacting cell [241, 242]. Although exosomes are microvesicles are characterized based on biochemical and biophysical properties of size, density, morphology, protein composition a clear distintion cannot be made between the two[243]. However, the role of exosomes and microvesicles in disease conditions is under intense investigation as both lower eukaryotes and prokaryotes are also known to secrete extracellular vesicles.

4.1.2 Extracellular Vesicles of Pathogens

In the recent past, there has been renewed interest and reports of unicellular and infectious pathogens like *Trypanosama cruzi, Lesihmania, Cryptococcous neoforms*, secreting extracellular vesicles. The secreted vesicles are involved in modulation of macrophage monocyte functions, carriers of virulence factors; innate and adaptive immunity and intercellular protein transport [244-247]. In the case of *Apicomplexcan* parasites, such extracellular vesicles of parasite origin have been isolated from the plasma of mice infected with *P. bergeie* 9 (ANKA) and were shown to be highly pro inflammatory [248]. However these vesicles in this case were defined as Microparticles. Quite recently, Reticulocyte derived extracellular vesicles of parasite origin in the form of exosomes have been reported from mice infected with *Plasmodium yoelii* and these exosomes have been used as sub unit vaccine component protecting the mice from lethal infections [249]. Exosomes from *Plasmodium falciparum* infected red blood cells have been shown to be associated with transfer of genetic information within a population [250]. In the case of *Toxoplasma gondii*, exosomes derived from dendritic cells exposed to *Toxoplasma gondii* lysates have been shown to be protective against infection in a mice model [251].

4.1.3 Toxoplasmosis

Toxoplasma gondii is one of the most important Protozoan pathogen with a seroprevalance of over 30%. It is an obligate intracellular parasite and is one of the most successful pathogens capable of infecting almost every warm blooded animal resulting in Toxoplasmosis [252]. The lifecycle of the parasite comprises of the asexual and sexual stages comprising different parasitic forms like tachyzoites, bradyzoites, tissue cysts and fecal oocystoocyst. The members of the cat family (*Felids*) form the definitive hosts of *Toxoplasma* for sexual reproduction forming fecal oocysts and other warm blooded animals serve as intermediary hosts for asexual reproduction forming tachyzoites, bradyzoite and oocysts. Primary infection of a non-immune host (humans/ animals) might start with the ingestion of food contaminated with fecal oocysts from the cat or direct ingestion of animal harbouring tissue cysts. Humans are at high risk either directly or indirectly as undiagnosed benign

Figure 36. Life Cycle of *Toxoplasma gondii.* The life cycle of *T. gondii* traversing through tissue cyst and oocyst forms (1-4) in the definitive host (cats) represented by red arrows and their acquition by humans either by consumption of other infected animals (5-6) which act as intermediary hosts represented by blue arrows. Parasite acquisition by humans can also be through the consumption of contaminated fruits, vegetables and diary (7), by blood transfusion (8) or by direct materno-foetal transmission (11). Figure adopted from [253]

infections cause miscarriage and abortion in gestating mothers and loss of vision and encephalitis in new born babies, immune compromised individuals undergoing transplantation therapy and those suffering from HIV or cancer. The infection of farm animals with this pathogen also leads to the death and miscarriages resulting in huge economic burden for humans [254].

4.1.4 Infection Biology of Toxoplasma gondii

The primary infection in humans by T. gondii is asymptomatic followed by flu like symptoms. An important feature of toxoplasma infection is the efficiency with which it infects and disseminates in the various tissues of the host. Part of this feat is achieved by the remarkably ability of the parasite to hijack the host cell machinery and modulate the host responses to its favor. The primary route of infection in humans is the gastro intestinal tract by ingestion of contaminated or uncooked meat or by fecal contamination by cats where the parasite exists as a dormant tissue cyst or fecal oocyst. Upon ingestion, the parasite rapidly develops into the invasive form called tachyzoites which are capeable of infecting every nucleated and can also cross barriers like the placenta and brain. The tachyzoite form of the parasite gains entry through the gut epithelial cells, and primarily interacts with the cells of the Lamina propia and Peyers patch which are rich in tissue resident macrophages and dendritic cells [255]. This breach of the gut epithelia exposes the gut microflora which along with with the parasitic components synergistically interacts with the innate immune cells like resident macrophages and dendritic cells through their PRR initiating an inflammatory response [256, 257]. A, remarkable property of the parasite is to hijack the host cell machinery, especially the dendritic cells, which it used as a Trojan horse to traverse and disseminate to different parts of the body [258]. The disseminated parasites undergo rapid replication and establish itself in various tissues by which time the adaptive immunity kicks in with overwhelming production of IFN- γ and NO which now limits the infection [256, 259]. Under this pressure exerted by the host immune system, the parasite now converts into a more slow growing form called Bradyzoite; a slow growing form limits the adverse effect of host cell destruction and forms tissue cysts which when transferred to the definite host (Felids) forms the oocyst thereby restarting the infection cycle [260].

4.1.5 Host Resistance and Immunity to Toxoplasma gondii Infections

Apart from the first line innate defense mechanisms, adaptive immunity characterized by CD4⁺CD8⁺ T_H1 response and a T_H2 humoral immunity mediated by antibodies are critical for long lasting protection against *T. gondii* infections with CD4⁺ T cells mediating a critical role [261-263]. The professional antigen presenting cells, mainly dendritic cells are involved in the phagocytosis of the parasite and presentation of the antigens to CD4⁺ T cells thereby bridging the innate and adaptive immune responses [264]. Furthermore, it has been shown that uninfected DC can also present antigens and it is yet not clear how the antigens apart from dead parasites are acquired by the dendritic cell. One of the proposed mechanisms for this unconventional antigen uptake is by abortive infections, or by direct acquisition of parasite debris or soluble antigens. This presence of soluble antigens is further confirmed by the observation that parasite specific protein antigens can be detected in circulation as early as day 1 post infection and peaks up at day 5-7 to high levels [265, 266]. More recently, ROP family of proteins which are virulence factors were identified in uninfected host cells which suggests that toxoplasma have the ability to modulate distant uninfected host cells [267] through an un-conventional transport of parasite virulence factors. Several parasite virulence factors (proteins and glycolipids) have been identified which are thought to be important for the parasite survival, host cell modulation and evasion. Of these virulence factors, the family of surface proteins namely Sag-1, -2 and -3, the dense granule family namely Gra-2, -6, -7 and proteins belonging to the apical membrane region and microneme family namely MIC-1 and -2 are thought to play a very important role in the invasion and infection process. Pathogenicity associated with T. gondii infections is further complicated due to the three different clonal lineages of the parasite namely Type-I, II and III. The parasite strains differ considerably in their capacity to cause infection and the resulting pathogenesis with the Type-I strain being the most virulent with a LD 50 of 1 as compared to the Type-II&III with a LD 50 of 1000 [268, 269].

Hence, extracellular vesicles might function as important mediators of host-pathogen interaction and a understanding of such intercellular communications might give useful insights for designing reliable prevention and prophylactic strategies against Toxoplasmosis.

4.2 Results and Discussion

4.2.1 *Toxoplasma gondii* Tachyzoites Secrete Exosome Like Vesicles (ELVs) in a Time Dependent Manner

The role of extracellular vesicles like exosome and microvesicles in the infection biology of Toxoplasm gondii, a unicellular pathogen capable of infecting every nucleated cell and modulating its function has not been explored. Toxoplasma gondii tachyzoite, the unicellular form of the parasite causing active infections is ultrastructurally similar to a eukaryotic cell. Hence, I investigated whether the Toxoplasma gondii tachyzoites are qualified to secrete extracellular vesicles. Towards this aim, tachyzoites of the mouse virulent strain Type-I (RH) grown in Human Foreskin Fibroblasts (HFF) as the host cell system were incubated for different times (1, 3, 6, 18 h) to elucidate the kinetics of vesicle production. The spent medium from these incubation time-points was subjected to an ELV isolation protocol using sequential centrifugation steps, to first remove large cellular debris followed by a high speed centrifugation step to pellet the secretory vesicles. It was envisaged that the secreted vesicles were formed either by the inward/ outward blebbing of the cell membrane with the incorporation of membrane/ cellular proteins and hence the protein profile of the pellets obtained from the different time-point isolations were analyzed by SDS-PAGE. As shown in Figure 37A, an increase in protein content was observed at different time- points of vesicle isolation with the optimal time being 6 h. This time point was employed for all further isolations. There was no major qualitative difference observed between isolations at different time points but the quantitative representation of individual proteins varied, especially in the 35 KDa regions and below. It is also evident that some protein bands were selectively enriched in the ELV fractions as compared to the total tachyzoite lysate. This could be due to the complexity of the tachyzoite cell lysate that contain far more proteins than the pellet of secretory vesicles. To confirm the presence of vesicular components in the isolated pellet, electron microscopy analysis was performed. Exosomes and microvesicles are reported to have a size in the range of 100-200 nm in diameter with a cup-shaped morphology [270]. To conserve the morphology of the secreted vesicles, cryo-electron microscopy analyses were performed as a less invasive technique of sample processing. As seen in Figure 37B, (Left panel) vesicular structures in the size range of 100-200 nm matching that of exosomes and microvesicles were observed but did not exhibit a cup-shaped morphology. However, when the same set of vesicles was analyzed by TEM analysis using uranyl acetate staining, the

vesicles displayed a cup-shaped morphology with a size of 100 nm, a descriptive feature of exosomes (Figure 37B, Right panel). It is worth to note that the cup shaped morphology

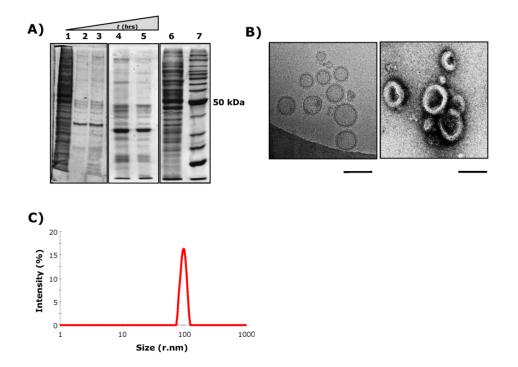
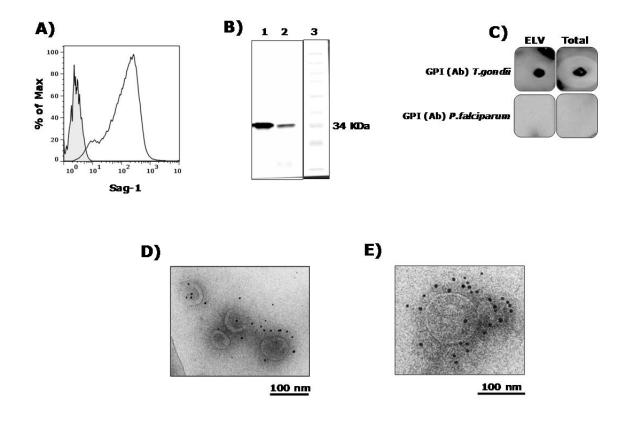



Figure 37. Characterization of ELVs isolated from the spent medium of *in vitro* grown *Toxoplasma gondii* RH strain tachyzoites. (A) Coomassie stained SDS-PAGE profiles depicting the time course of vesicle production in hours 1. *Toxoplasma* whole cell lysate, 2. Pellet of 1 h spent medium, 3. Pellet of 3 h spent medium, 4. Pellet of 6 h spent medium, 5. Pellet of 18 h spent medium, 6. *Toxoplasma* whole cell lysate, 7. Protein ladder ranging from 250-12 KDa M.Wt with highlighted 50 KDa band). (B) Electron micrographs of 6 h spent medium pellet as observed by Cryo-TEM analysis (left panel) and by TEM with negative staining using Uranyl acetate (right panel). Scale bars represent 100 nm. (C) Size distribution and polydispersity of 6 h spent medium pellet as measured by Dynamic Light Scattering.

described for identification of exosomes might be staining artifacts originating on account of harsh sample treatment as compared with the softer technique of cryo-imaging. To obtain information on the size and distribution of the isolated vesicles, Dynamic Light Scattering measurements were performed. As seen in (Figure 37C), the isolated vesicles were very homogenous and had an average size of 116 nm with a polydispersity index of 0.330. Based on the above experiments, the size and morphology of the isolated extracellular vesicles were in-between that of microvesicles and exosomes and hence are referred as Exosome Like Vesicles (ELVs).

4.2.2 Toxoplasma gondii ELVs Contain Parasitic Proteins and Glycolipids

The cell surface of Toxoplasma gondii tachyzoite is densely covered with the protein Sag-1/ Protein-30 (P-30) which belongs to the SAG (Surface antigen) protein family. Sag-1 protein is used by the parasite for host cell invasion and it is known to have lectin like activity. It is also known that this protein is rapidly shed from the parasite surface during the course of infections and the protein can be detected in circulation. The Sag protein is posttranslationally modified by the addition of a linker glycosylphosphatidylinositol (GPI), a glycolipid that anchors the protein to the cell membrane. Apart from the protein anchored form of GPI, the parasite membrane is also composed of the free form of the GPI anchor in large excess, the function of which is currently unknown. Hence it was predicted that the isolated ELVs that are membranous particles as inferred from the electron microscopic analysis may be composed of these protein (Sag-1) and glycolipid (GPI) moieties. The presence of Sag-1 in the ELVs was confirmed by western blot analysis or by binding the ELVs to aldehyde functionalized latex beads that covalently trapped all amine containing surface molecules of the ELVs, mostly proteins. The latex beads and the blots were probed using the Anti- Sag-1 antibody as the primary antibody followed by detection with a FITC conjugated secondary antibody for latex bead assay or HRP conjugated secondary antibody for western blots. As seen in Figure 38 A, the beads bound to the ELVs showed major shift when probed with the Anti-Sag-1 antibody as compared to the control beads shown as tinted histograms. The same result was observed in western blot analysis (Figure 38B) which showed the presence of Sag-1 at approximately 35 KDa, the reported molecular weight of Sag-1 protein. The comparison between the Toxoplasma whole cell lysate (lane 2) with the ELV fraction (lane 1) showed the over representation of the protein Sag-1 although the concentration of the ELVs loaded was 1/5 th of that of the cell lysate. Next, to analyze the presence of GPI, the ELVs and the total parasite pellet (approximately 10^8) were subjected to GPI isolation protocol [271] to separate the protein bound form from the free form of the GPI that formed a pellet. This protein free GPI pellet was subjected to dot blot analysis and probed with the Toxoplasma GPI specific monoclonal antibody T5 4E10 [272]. As seen in Figure 38C, both the ELV and whole parasite GPI fractions stained positive for the Toxoplasma GPI antibody as compared to the *Plasmodium* specific antibody that served as a control. Next, to demonstrate the specific localization of the protein (Sag-1) and the glycolipid (GPI) on the surface of the vesicles immune electron microscopy analysis was performed on the ELVs.

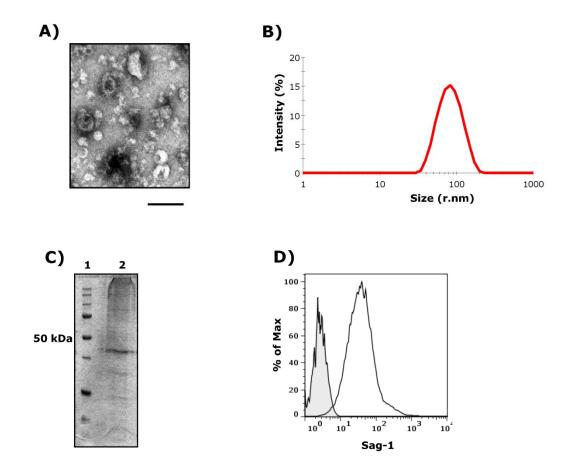


Figure 38. Characterization of the protein and glycolipid content of ELVs. (A) Histogram representation of SAG-1 expression analyzed by flow cytometry where ELVs were coated on latex beads and Sag-1 protein analyzed by monoclonal Sag-1 antibody (1:100) probed with a FITC conjugated secondary detection antibody (1:500) and the fluorescent beads detected by flow cytometry (clear histograms). Corresponding controls included the beads with primary and secondary antibodies but no ELVs (tinted histogram). (B) The presence of surface protein Sag-1 analyzed by western blot using the Sag-1 monoclonal antibody (1:1000) and probed with a HRP conjugated secondary antibody (1:5000) where 1.2 μ g ELV fractions isolated at 6 h production time, 2. 10 μ g whole cell parasite lysate, 3. Dual color protein ladder ranging from 250-12.5 KDa). (C) Dot blots of ELV isolated GPI content (ELV) and total GPI isolated from parasite (Total) probed with monoclonal antibody T5 4E10 (1:100) and Plasmodium specific antibody T3 (1:100). (D & E) Immuno-gold TEM micrographs showing the surface localization of Sag-1 protein and glycolipid GPI probed with Sag-1 and T5 4E10 primary antibodies (1:50) and detected by 5 nm gold conjugated secondary antibody (1:100) seen as black dots. Scale bar represents 100 nm.

Here, the ELVs were separately probed with the primary antibodies against Sag-1 and T5 4E10 against GPI followed by detection using a 5 nm gold conjugated secondary antibody. As seen in Figure 38D, there was specific localization of the Sag-1 and GPI (Figure 38E) on the ELVs, indicated by the black dots representing the gold conjugate. These experiments confirmed the specific localization of parasitic protein (Sag-1) and glycolipid (GPI) on the ELVs ruling out their presence as co-contaminants of the ELV isolation procedure. It can also be inferred that the Sag-1 protein is one of the major constituents of the ELVs and along with the GPI; the ELVs are to be of parasite membrane origin.

4.2.3 Peritonial Fluid of *Toxoplasma gondii* Infected Mice Contains ELVs with Parasite Proteins

To corroborate the *in vitro* findings on the production of ELVs from tachyzoites it was decided to passage/ infect mice intraperitoneally with the tachyzoites and isolate the ELVs from the intraperitoneal fluid. Therefore, BALB/c mice were infected intraperitoneally with Toxoplasma gondii tachyzoites and ELVs were isolated from the peritoneal lavage. The ELV pellet obtained from the centrifugation step was analyzed by transmission electron microscopy following uranylacetate staining. As seen in Figure 39A, the pellet comprised of vesicular structures with exosome like morphology were coarse compared to ELVs obtained by growing parasites in vitro. This can be due to the low sample volume, complexity of the peritoneal fluid and handling. To obtain information on the size and distribution of the ELVs, Dynamic Light Scattering measurements were performed. As seen in Figure 39B the vesicles had an average size of 80 nm with a polydispersity index of 0.260. This lower size distribution of ELVs obtained from in vivo source in comparison to ELVs isolated from in vitro grown parasites can be due to the presence of small particulate vesicular structures that are clearly visible in the electron micrographs (Figure 39A). Analysis of the protein content by SDS-PAGE showed enrichment in the band at 35 KDa corresponding to Sag-1 protein (Figure 39C). However, the other protein bands that were present in the protein profile of ELVs obtained by in vitro culturing of tachyzoites were not visible or were very weak. This can again be due to the complexity and low volume of the peritoneal fluid resulting in a lower yield of ELVs. Here again, the presence of surface antigen (Sag-1) in the ELVs was confirmed by latex beads which covalently trapped all amine containing surface molecules of the ELVs, which was probed using the Anti-sag-1 antibody as the primary antibody followed by detection with a FITC conjugated secondary antibody (Figure 39D). These results indicate a significant similarity between the Toxoplasma ELVs isolated from in vivo infections and ELVs obtained from in vitro grown Toxoplasma. Hence, it can be inferred that Toxoplasma gondii tachyzoite secrete or shed exosome like membranous vesicles composed of parasitic proteins and glycolipids.

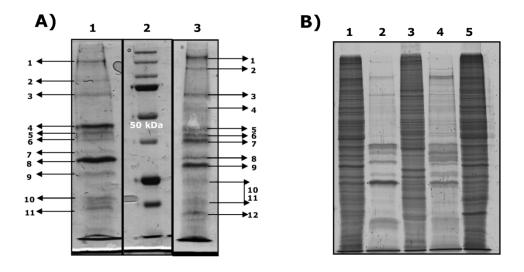


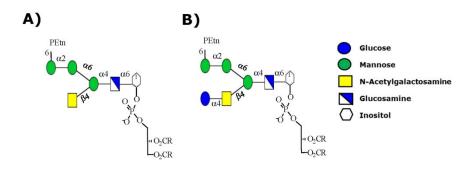
Figure 39. Characterization of ELVs from peritoneal fluid *Toxoplasma* infected mice (A) Electron micrographs of peritoneal fluid isolated ELVs as observed byTEM-with uranyl acetate negative staining. Scale bar represents 100 nm. (B) ELV size distribution and polydispersity as measured by Dynamic Light Scattering. (C) Coomassie stained SDS-PAGE profile of ELV fraction (1. Dual color protein ladder with 250-12.5 KDa, 2. Peritoneal fluid isolated ELV pellet). (D) Histogram representation of SAG-1 expression analyzed by flow cytometry where in *Toxoplasma* infected peritoneal fluid ELVs were coated on latex beads and Sag-1 protein analyzed by monoclonal Sag-1 antibody (1:100) probed with a FITC conjugated secondary detection antibody (1:500) and the flourecsnt beads were detected by flow cytometry (clear histograms). Corresponding controls included the beads with primary and secondary antibodies but no ELVs as shown by the (tinted histogram).

4.2.4 *Toxoplasma* ELVs from RH and PTG Strains are Composed of Different Parasitic Proteins

Toxoplasma gondii is a ubiquitous pathogen capable of infecting a wide variety of species and different cell types. Based on the pathogenicity, the parasites are divided into three different clonal lineages with Type-I (RH) being the hypervirulent strain with a LD 50 of 1 capable of killing a immunocompetent host whereas Type-II (PTG) & Type-III are

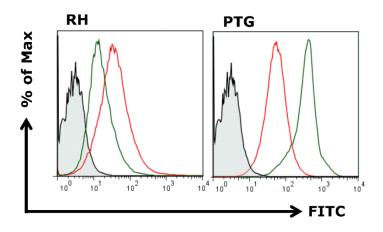
lowvirulent strains causing latent infections with a LD 50 of 1000. This difference in parasite pathogenicity of the parasite is due to their resistance of host responses mediated by parasite related virulence factors. However, it has been reported that there is no major difference in the total proteome between the RH and PTG strains [273]. Hence it was envisaged that the ELVs secreted by the parasite can act as carriers for the unconventional delivery of virulence factors. This would be important in devising novel prevention methods or for the design of new drugs. In order to identify such novel virulence factors, the ELVs were isolated from the spent medium of the RH and PTG parasite strains grown in HFF cells. To determine the role of the host cells and their effects on the quality of the ELVs produced, parallel experiments were performed where RH and PTG strains were grown in VERO cells and the ELVs were isolated and their protein profiles were compared. The isolated ELVs from the RH and PTG strains grown in two different host cell systems were first analyzed for their protein expression by SDS-PAGE. There was no major difference in the protein profile of ELVs isolated from the tachyzoites grown in HFF cells or VERO cells (Figure 40A and B). This demonstrates that Toxoplasma gondii produce ELVs and in a strain specific manner irrespective of the host/ cell type infected.

Figure 40. Proteomic profile of RH and PTG ELVs. (A) SDS–PAGE profile of ELVs isolated from RH and PTG strains grown in HFF cells. 1. RH-ELV (2 μ g), 2. Dual color protein ladder with 250-12.5 KDa bands. 3. PTG-ELV (2 μ g), (B) SDS–PAGE profile of ELVs isolated from RH and PTG strains grown in VERO cells as host. (1. Strain-RH whole cell lysate (10 μ g), 2. RH-ELV (2 μ g), 3. VERO whole cell lysate (10 μ g), 4.PTG-ELV (2 μ g), 5. Strain-PTG whole cell lysate (10 μ g).)


When the protein profile of the ELVs isolated from RH and PTG strains grown in HFF cells were analyzed, there was a significant difference in the protein expression between the two strains. There was also a significant difference in the protein content of the bands that are

common to both strains (Fig 40A). It is worth to note that in the RH strain, the protein at 35 kDa range (band 8) was over-expressed when compared to that on the PTG strain (band 9). There was a visible difference in the expression of proteins in the 50-43 kDa range (bands 4, 5, 6 for RH and 5, 6, 7 for PTG) and a major difference in the low molecular weight region with the band at position 9 of RH sample missing in the PTG strain. The bands corresponding to 10 and 11 of the RH strain were also missing or underexpressed in the PTG strain. Equal concentrations of ELVs in terms of protein content were used in both cases.

Proteomic analysis of the bands revealed several surface antigen (SAG) and dense granule (GRA) family of proteins. The proteins SAG-1 and GRA-6 have been identified as immunodominant epitopes, antibodies against which are used for diagnostic purposes. The presence of GRA-7 protein also draws attention as this is the only protein of parasitic origin found to be present on the surface of an infected cell that is constitutively expressed in all forms of the parasite lifecycle.


4.2.5 *Toxoplasma* ELVs from RH and PTG Strains Differ in Parasitic Glycolipid (GPI) Composition.

Next, the differences in the glycolipid content of ELVs between the RH and PTG strains grown in HFF as host cell were analyzed. There are two forms of GPI anchor reported in the parasite that differ in their glycan architecture particularly in their side chains either terminating with a *N*-acetylgalactosamine (GalNac) (Figure 41A) residue or with a glucose residue terminally attached to the GalNac (Figure 41B) [274].

Figure 41. Schematic representation of the two glycan isoforms of *Toxoplasma gondii* **GPI.** (A) GPI core glycan ending with *N*-acetylgalactosamine and (B) core glycan ending with glucose attached to *N*-acetylgalactosamine.

The ELVs obtained from the two parasite strains RH and PTG were analyzed with the monoclonal antibodies T3 3F12 that binds specifically the GalNac structure and T5 4E10 that binds specifically to the glucose terminating structure. To evaluate the differences in GPI expression, the latex bead assay combined with flow cytometry approach was used as mentioned earlier. As seen in Figure 42(left panel), the glucose terminated structure (red histogram) is expressed higher in the RH strain when compared to the PTG strain Figure 42 (right panel), whereas the GalNac containing structure (green histogram) was expressed more in the PTG strain when compared to the RH strain. It is well known that many of the parasitic membrane proteins are GPI anchored. Hence, it can be reasoned that the differences in the staining pattern observed are due to differences in the amount of free and protein bound GPI expressed on the ELVs.

Figure 42. Glycolipid profile of RH and PTG ELVs. Histogram representation of GPI expression analyzed by flow cytometry ELVs from RH and PTG strains were coated on latex beads and the GPI isoforms analyzed by monoclonal antibodies T33F12 (Green histogram) and T54E10 (Red histogram) (1:100) probed with a FITC conjugated secondary detection antibody (1:500) and the flourecsnt beads were detected by flow cytometry. Corresponding controls included the beads with primary and secondary antibodies but no ELVs depicted as tinted histogram.

4.2.6 *Toxoplasma* ELVs Enhance Apoptosis of RAW Macrophages in the Presence of Exogenous IFN-γ

Although the proteins and glycolipids represented on the ELVs might potentially serve as a sub-unit vaccine component, the virulence and evasion mechanism between the two strains especially RH is partly attributed to the Rophtry associated injectable protein ROP18, kinase which along with the pseudo-kinase ROP5 and certain unidentified parasite components, target the IFN- γ inducible immunity related GTPase (IRG) thereby preventing destruction of the parasite by the host [275-278]. It is also known that *Toxoplasma gondii* can deliver proteins to distant cells that it does not invade and modulate the behavior of these cells [267]. However, the mechanism of delivery of parasite factors and proteins is not completely understood. Such mechanisms might act as a decoy to direct the immune response away from the actual infected cell forming a mechanism of host resistance by the parasite. It has also been reported that one of the mechanisms of host resistance employed by Toxoplasma gondii is by immunosuppression which is mediated by the apoptosis of uninfected by the macrophages inhibiting monocyte function and hence favoring parasite growth. It has been reported that macrophages in the lower chamber of a trans-well assay system undergo apoptosis when co-cultured with Toxoplasma gondii parasites in the upper chamber. This bystander cell apoptosis has been shown to be mediated by IFN- γ and NO in addition with certain unidentified parasite molecules [279]. Hence, it was hypothesized that the ELVs, by virtue of their size, form perfect particulate systems that pack a rich cargo of proteins and glycolipids to form unconventional delivery systems of virulence factors. To confirm this hypothesis, a trans-well system was used with a 0.45 µm filter disc, where tachyzoites were incubated in the upper chamber for 6 h with the lower chamber containing culture medium. After the incubation time, the medium from the lower chamber was analyzed for the presence of ELVs that might have traversed from the upper chamber. As expected, parasite derived vesicular components were observed in the lower chamber of the trans-well system when analyzed by electron microscopy where the vesicles had a size of 80-100 nm with a surface morphology similar to that of ELVs (Figure 43A). The vesicles from the lower chamber had an average size 83 nm and a polydispersity index of 0.26 and their protein profile was similar to that of ELVs isolated under normal conditions (Figure 43B and C). With this observation, it was investigated whether the ELVs can induce apoptosis in the murine macrophages (RAW 264.7) and if there was a strain specific effect. Hence, ELVs isolated from the RH and PTG strains of the parasite were incubated with the murine macrophage cell-line RAW264.7 for 12 h followed by the addition of 50 IU/ml of IFN- γ for an additional 24 h. After the incubation time, the level of apoptosis was measured using fluorescently labelled Annexin-V which binds phososerine residues on the apoptotic cell. As seen in Figure 43D, there was a 10% increase in apoptosis in cells treated with ELVs from RH and PTG strains incubated with IFN- γ as compared to the cells which were treated with IFN- γ alone. The control cells that were incubated with ELVs alone showed apoptotic levels similar to the mock treated cells that were incubated with PBS.

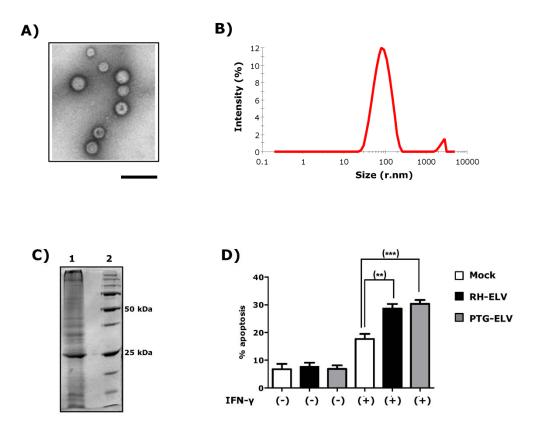


Figure 43. Apoptotic assay of RAW 264.7 macrophages with RH and PTG ELVs. (A) Electron micrograph of ELVs isolated from the lower chamber of the transwell assay system observed by TEM-with uranyl acetate negative staining. Scale bar represents 100 nm (B) Coomassie stained SDS-PAGE profile of ELV pellet from lower chamber (1. Dual color protein ladder with 250-12.5 KDa bands, 2.2 μ g RH- ELV). (C) ELV size distribution and polydispersity measured by Dynamic Light Scattering. (D) Percentage apoptosis of RAW macrophages induced by 2 μ g ELVs of RH and PTG strains in presence/ absence of 50 U/mL IFN- γ . (n=3 independent experiments)

These results imply that ELVs by themselves do not induce apoptosis under the experimental conditions but in the presence of an external inducer of apoptosis like IFN- γ they enhance the apoptotic process. These results also gain importance as the mechanism of immune response against *Toxoplasma gondii* is primarily mediated by a Th-1 response with IFN- γ being one of the most important host-resistance factors. However, both the RH and PTG ELVs induced a similar level of apoptosis and there was no significant strain specific difference between the two at the level of apoptosis. These results also indicate that the ELVs described in this thesis might have a greater role in the innate immune mechanisms involved during *Toxoplasma gondii* infections *in vivo*.

4.3 Conclusion

In the present study the isolation and characterization of extracellular vesicles of Toxoplasma gondii both from in vivo and in vitro sources are reported. The term Exosome Like Vesicels (ELV) was used as the morphology and size of these vesicles was in range between that of exosomes and microvesicles and a clear distintion could not be made [270]. However, this finding is important as both exosomes and microvesicles are known to be involved in unconventional transport of cargo in other cell types and also in other unicellular pathogens. Hence the ELVs might represent a novel mode of pathogenesis used by T. gondii. A large body of literature points to the fact that T. gondii can be induced to secret or release certain effector molecules into the surrounding medium [280]. This is also true in the in vivo context where *Toxoplasma* protein antigens are detected in circulation at high quantities as early as 6 Hrs post parasite infection/invasion [281]. Although the total time required for the successful invasion event of the host ranges between 1-2 mins, this high abundance of secretory proteins can be explained by clinical observation of live parasites in the peripheral blood of immunocompetent individuals with either acute or chronic infection [282]. It has been shown that tachyzoites of Toxoplasma gondii modify the invading host cell by secretion of membranous vesicles comprising of the SAG and GRA family of proteins which impair the normal endocytic machinery of the host cell, favouring parasite growth [283, 284]. Hence the ELVs described in this thesis might be involved in these processes.

The isolated ELVs contained several important parasitic proteins in addition to SAG and GRA family of proteins. However, the analysis of the ELVs between the RH and PTG strains showed no major differences in the protein profile. This was in agreement with the total proteome of the two strains reported [273]. The virulence between the two strains especially RH strain is attributed to the Rophtry associated injectable protein ROP18 kinase along with the pseudo-kinase ROP5 which together target the IFN- γ inducible imunity related GTPase (IRG) thereby preventing destruction of the parasite by the host [275-278]. We did not find any ROP family of proteins in the ELV fraction and also the apoptosis assay showed no significant difference between the RH and PTG strains. However, the increase in apoptosis as compared to the mock might have been due to other parasitic components. GPIs are known to induce the production of significant amounts of TNF- α and IL-12 with no distinction between the two strains and the isolated pure fractions of GPI are shown to have neither pro nor anti-apoptotic activity [285, 286] [287]. However, in case of ELVs, immuno electron microscopy analysis reveal that the GPIs are present in a particulate form along with various

parasitic proteins and this combination could have promoted apoptosis. Recent reports suggest that *T. gondii* can deliver proteins to distant host cells that it does not invade and can modulate the behavior of these cells [267]. Hence the ELVs isolated here might function as a decoy by directing the immune response away from the actual infected cell. Extracellular vesicles like exosomes and microparticles are involved in the horizontal transfer of RNA. *Toxoplasma gondii* when exposed to extracellular stress is shown to produce RNA granuels which improve the fitness and survival of the parasite [288]. Exosome mediated RNA transfer from HFF cells infected with *Toxoplasma gondii* has been recently reported [289]. The authors however could not detect any RNA of parasite origin. The ELVs characterized in this thesis contained mi-RNA like species but no m-RNA when subjected to RNA isolation protocols. This was in agreement with exosomal RNAs analysed from other cell types [290]. However, these were prilimary observations that needs further investigation and is not part of this thesis.

The observations reported here draws attention to the previously unnoticed role of Toxoplama ELVs. The role of ELVs in the context of *in vivo Toxoplasma* infection needs further investigation and the results might give useful insights for designing reliable prevention and propylactic strategies against Toxoplasmosis.

5. References

- 1. Casadevall, A., Pirofski, LA., *Host-Pathogen Interactions: Basic Concepts of Microbial Commensalism, Colonization, Infection, and Disease.* Infect Immun 2000. **68**(12): p. 6511–6518.
- 2. Pirofski, L., Casadevall, A., *The meaning of microbial exposure, infection, colonisation, and disease in clinical practice.* Lancet Infect Dis, 2002. **2**(10): p. 628-35.
- 3. Pirofski, L., Casadevall, A., *The damage-response framework of microbial pathogenesis and infectious diseases*. Adv Exp Med Biol, 2008. **635**: p. 135-46.
- 4. Casadevall, A., Pirofski, L., *Host-pathogen interactions: the attributes of virulence*. J Infect Dis, 2001. **184**(3): p. 337-44.
- 5. Casadevall, A., Pirofski, LA., *Virulence factors and their mechanisms of action: the view from a damage-response framework.* J Water Health, 2009. **7 Suppl 1**: p. S2-S18.
- 6. von Graevenitz, A., *The role of opportunistic bacteria in human disease*. Annu Rev Microbiol, 1977. **31**: p. 447-71.
- 7. Armstrong, D., *History of opportunistic infection in the immunocompromised host*. Clin Infect Dis, 1993 **17 Suppl 2**: p. S318-21.
- 8. Matzinger, P., *The danger model: a renewed sense of self.* Science, 2002. **296**(5566): p. 301-5.
- 9. Medzhitov, R., Janeway, C Jr., *Innate immunity*. N Engl J Med, 2000. 343(5): p. 338-44.
- 10. Medzhitov, R., Janeway, CA Jr., *Innate immune recognition and control of adaptive immune responses*. Semin Immunol, 1998. **10**(5): p. 351-3.
- 11. Stern, A., Markel, H., *The history of vaccines and immunization: familiar patterns, new challenges.* Health Aff (Millwood), 2005. **24**(3): p. 611-21.
- 12. De Gregorio, E., Rappuoli, R., From empiricism to rational design: a personal perspective of the evolution of vaccine development. Nat Rev Immunol, 2014. **14**(7): p. 505-14.
- 13. Ramon, G., Sur la toxine et sur l'anatoxine diphtheriques. Ann. Inst. Pasteur 1924. 38: p. 1–10
- 14. Vogel, F., Adjuvants in perspective. Dev Biol Stand, 1998. 92: p. 241-8.
- 15. Singh, M., O'Hagan, D., Advances in vaccine adjuvants. Nature Biotechnology 1999. 17 p. 1075 1081
- 16. Zepp, F., *Principles of vaccine design-Lessons from nature*. Vaccine, 2010. **28 Suppl 3**: p. C14-24.
- 17. Kawai, T., Akira, S., *TLR signaling*. Semin Immunol, 2007. **19**(1): p. 24-32.
- 18. Leroux-Roels, G., Unmet needs in modern vaccinology: adjuvants to improve the immune response. Vaccine, 2010. 28 Suppl 3: p. C25-36.
- 19. Cox, J., Coulter, AR., *Adjuvants--a classification and review of their modes of action*. Vaccine, 1997 **15**(3): p. 248-56.
- 20. Aguilar, J., Rodriguez, EG., Vaccine adjuvants revisited. Vaccine, 2007. 25(19): p. 3752-62.
- 21. Rice-Ficht, A., Arenas-Gamboa, AM., Kahl-McDonagh, MM., Ficht, TA., *Polymeric particles in vaccine delivery*. Curr Opin Microbiol, 2010. **13**(1): p. 106-12.
- 22. Guy, B., *The perfect mix: recent progress in adjuvant research*. Nat Rev Microbiol, 2007. **5**(7): p. 505-17.
- 23. Aucouturier, J., Dupuis, L., Deville, S., Ascarateil, S., Ganne, V., *Montanide ISA 720 and 51: a new generation of water in oil emulsions as adjuvants for human vaccines.* Expert Rev Vaccines, 2002 1(1): p. 111-8.
- 24. Ciofani, G., Raffa, V., Menciassi, A., Dario, P., *Alginate and chitosan particles as drug delivery system for cell therapy*. Biomed Microdevices, 2008. **10**(2): p. 131-40.
- 25. HogenEsch, H., *Mechanisms of stimulation of the immune response by aluminum adjuvants.* Vaccine, 2002 **20** (Suppl 3): p. S34-9.
- 26. Petrovsky, N., Aguilar, JC., *Vaccine adjuvants: Current state and future trends*. Immunology and Cell Biology, 2004 **82**: p. 488–496.
- 27. Scheerlinck, J., Greenwood, DL., *Virus-sized vaccine delivery systems*. Drug Discov Today, 2008. **13**(19-20): p. 882-7.
- 28. Hamdy, S., Molavi, O., Ma, Z., Haddadi, A., Alshamsan, A., Gobti, Z., Elhasi, S., Samuel, J., Lavasanifar, A., *Co-delivery of cancer-associated antigen and Toll-like receptor 4 ligand in PLGA nanoparticles induces potent CD8+ T cell-mediated anti-tumor immunity.* Vaccine, 2008. **26**(39): p. 5046-57.

- 29. Heit, A., Busch, D. H., Wagner, H., Schmitz, F., *Vaccine protocols for enhanced immunogenicity of exogenous antigens.* Int J Med Microbiol, 2008. **298**(1-2): p. 27-32.
- 30. Skountzou, I., Martin Mdel, P., Wang, B., Ye, L., Koutsonanos, D., Weldon, W., Jacob, J., Compans, RW., *Salmonella flagellins are potent adjuvants for intranasally administered whole inactivated influenza vaccine*. Vaccine, 2010. **28**(24): p. 4103-12.
- 31. O'Hagan, D., Valiante, NM., *Recent advances in the discovery and delivery of vaccine adjuvants*. Nat Rev Drug Discov, 2003. **2**(9): p. 727-35.
- 32. Clapp, T., Siebert, P., Chen, D., Jones Braun, L., *Vaccines with aluminum-containing adjuvants: optimizing vaccine efficacy and thermal stability.* J Pharm Sci, 2011. **100**(2): p. 388-401.
- 33. Reed, S., Orr, MT., Fox, CB., *Key roles of adjuvants in modern vaccines*. Nat Med, 2013. **19**(12): p. 1597-608.
- 34. Mohan, T., Verma, P., Rao, DN., Novel adjuvants & delivery vehicles for vaccines development: A road ahead. Indian J Med Res, 2013. **138**(5): p. 779–795.
- 35. Greenwald, D., Shumway, S., Albear, P., Gottlieb L., *Mechanical comparison of 10 suture materials before and after in vivo incubation.* J Surg Res, 1994 **56**(4): p. 372-7.
- 36. Le Corre, P., Rytting JH, Gajan V, Chevanne F, Le Verge R., *In vitro controlled release kinetics of local anaesthetics from poly(D,L-lactide) and poly(lactide-co-glycolide) microspheres.* J Microencapsul, 1997 14(2): p. 243-55.
- 37. Dawes, G., Fratila-Apachitei, LE., Necula, BS., Apachitei, I., Witkamp, GJ., Duszczyk, J., *Release of PLGA–encapsulated dexamethasone from microsphere loaded porous surfaces.* J Mater Sci Mater Med, 2010. **21**(1): p. 215–221.
- 38. Stevanovi, M., Uskokovi, D., *Poly(lactide-co-glycolide)-based Micro and Nanoparticles for the Controlled Drug Delivery of Vitamins*. Current Nanoscience, 2009. **5**(1): p. 1-15.
- 39. Boddu S, H., Vaishya, R., Jwala, J., Vadlapudi, A., Pal, D., Mitra, AK., *Preparation and Characterization of Folate Conjugated Nanoparticles of Doxorubicin using PLGA-PEG-FOL Polymer*. Medicinal Chemistry, 2012. **2**(4): p. 068-075.
- 40. Aline, F., et al., *Dendritic cells loaded with HIV-1 p24 proteins adsorbed on surfactant-free anionic PLA nanoparticles induce enhanced cellular immune responses against HIV-1 after vaccination.* Vaccine, 2009. **27**(38): p. 5284-91.
- 41. Cohen, S., Alonso, MJ., Langer, R., *Novel approaches to controlled-release antigen delivery*. Int J Technol Assess Health Care, 1994 **10**(1): p. 121-30.
- 42. Beck, L., Pope, VZ., Flowers, CE., Jr., Cowsar, DR., Tice, TR., Lewis, DH., Dunn, RL., Moore, AB., Gilley, RM., *Poly(DL-lactide-co-glycolide)/norethisterone microcapsules: an injectable biodegradable contraceptive.* Biol Reprod, 1983. **28**(1): p. 186-95.
- 43. Huang, X., Brazel, CS., On the importance and mechanisms of burst release in matrixcontrolled drug delivery systems. Journal of Controlled Release 2001. **73**: p. 121-136.
- 44. Bonelli, P., Tuccillo, FM., Federico, A., Napolitano, M., Borrelli, A., Melisi, D., Rimoli, MG., Palaia, R., Arra, C., Carinci, F., *Ibuprofen delivered by poly(lactic-co-glycolic acid) (PLGA) nanoparticles to human gastric cancer cells exerts antiproliferative activity at very low concentrations.* Int J Nanomedicine, 2012. 7: p. 5683-91.
- 45. Wang, J., Wang, BM., Schwendeman, SP., *Characterization of the initial burst release of a model peptide from poly(D,L-lactide-co-glycolide) microspheres.* J Control Release, 2002 **82**(2-3): p. 289-307.
- 46. Tamber, H., Johansen, P., Merkle, HP., Gander, B., *Formulation aspects of biodegradable polymeric microspheres for antigen delivery*. Adv Drug Deliv Rev, 2005. **57**(3): p. 357-76.
- 47. Yushu, H., Venkatraman, S., *The effect of process variables on the morphology and release characteristics of protein-loaded PLGA particles*. Journal of Applied Polymer Science, 2006. 101(5): p. 3053-3061.
- 48. Young-II Jeonga, J.-G.S., Sam-Suk Kangb, Hyang-Hwa Ryua, Young-Hwa Leea, Chan Choic, Boo-Ahn Shinc, Kyung-Keun Kimc, Kyu-Youn Ahnc, Shin Junga, b, , *Preparation of poly(dl-lactide-co-glycolide) microspheres encapsulating all-trans retinoic acid.* International Journal of Pharmaceutics, 2003. **259**(1–2): p. 79–91.
- 49. Liu, J., Meisner, D., Kwong, E., Wu, XY., Johnston, MR., *A novel trans-lymphatic drug delivery system: implantable gelatin sponge impregnated with PLGA-paclitaxel microspheres.* Biomaterials, 2007. **28**(21): p. 3236-44.

- 50. Pinto Reis, C., Neufeld, RJ., Ribeiro, AJ., Veiga, F., *Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles*. Nanomedicine, 2006. **2**(1): p. 8-21.
- 51. Kumari, A., Yadav, SK., Yadav, SC., *Biodegradable polymeric nanoparticles based drug delivery systems*. Colloids Surf B Biointerfaces, 2010. **75**(1): p. 1-18.
- 52. Carrasquillo, K., Stanley, AM., Aponte-Carro, JC., De Jésus, P., Costantino, HR., Bosques, CJ., Griebenow, K., *Non-aqueous encapsulation of excipient-stabilized spray-freeze dried BSA into poly(lactide-co-glycolide) microspheres results in release of native protein.* J Control Release, 2001 **76**(3): p. 199-208.
- 53. Gupta, R., Alroy, J., Alonso, MJ., Langer, R., Siber, GR., *Chronic local tissue reactions, longterm immunogenicity and immunologic priming of mice and guinea pigs to tetanus toxoid encapsulated in biodegradable polymer microspheres composed of poly lactide-co-glycolide polymers.* Vaccine, 1997 **16**: p. 1716-23.
- 54. Mutoloki, S., Reite, OB., Brudeseth, B., Tverdal, A., Evensen, O., *A comparative immunopathological study of injection site reactions in salmonids following intraperitoneal injection with oil-adjuvanted vaccines.* Vaccine, 2006. **24**(5): p. 578-88.
- 55. Rejman, J., Oberle, V., Zuhorn, IS., Hoekstra, D., *Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis.* Biochem J, 2004. **377**(1): p. 159-69.
- 56. Xiang, S., Scholzen, A., Minigo, G., David, C., Apostolopoulos, V., Mottram, PL., Plebanski, M., *Pathogen recognition and development of particulate vaccines: does size matter?* Methods, 2006. **40**(1): p. 1-9.
- 57. Foster, K., Yazdanian, M., Audus, KL., *Microparticulate uptake mechanisms of in-vitro cell culture models of the respiratory epithelium*. J Pharm Pharmacol, 2001. **53**(1): p. 57-66.
- 58. Desai, M., Labhasetwar, V., Walter, E., Levy, RJ., Amidon, GL., *The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent*. Pharm Res, 1997 **14**(11): p. 1568-73.
- 59. Kohane, D., Tse, JY., Yeo, Y., Padera, R., Shubina, M., Langer, R., *Biodegradable polymeric microspheres and nanospheres for drug delivery in the peritoneum*. J Biomed Mater Res A, 2006. 77(2): p. 351-61.
- 60. Dobrovolskaia, M., Aggarwal, P., Hall, JB., McNeil, SE., *Preclinical studies to understand* nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharm, 2008 **5**(4): p. 487-95.
- 61. Tomazic-Jezic, V., Merritt, K., Umbreit, TH., Significance of the type and the size of biomaterial particles on phagocytosis and tissue distribution. J Biomed Mater Res A, 2001 **55**(4): p. 523-9.
- 62. Katare, Y., Panda, AK., Lalwani, K., Haque, IU., Ali, MM., Potentiation of Immune Response from Polymer-Entrapped Antigen: Toward Development of Single Dose Tetanus Toxoid Vaccine. Drug Delivery, 2003. **10**: p. 231–238.
- 63. Singh, M., Li, XM., McGee, JP., Zamb, T., Koff, W., Wang, CY., O'Hagan, DT., Controlled release microparticles as a single dose hepatitis B vaccine: evaluation of immunogenicity in mice. Vaccine, 1997. **15**(5): p. 475-81.
- 64. Kanchan, V., Katare, YK., Panda, AK., *Memory antibody response from antigen loaded polymer particles and the effect of antigen release kinetics*. Biomaterials, 2009. **30**(27): p. 4763-76.
- 65. Ramachandra, L., Harding, CV., *Phagosomes Acquire Nascent and Recycling Class II MHC Molecules but Primarily Use Nascent Molecules in Phagocytic Antigen Processing.* The Journal of Immunology, 2000. **164**(10): p. 5103-5112.
- 66. Vidard, L., Kovacsovics-Bankowski, M., Kraeft, SK., Chen, LB., Benacerraf, B., Rock, KL., *Analysis of MHC class II presentation of particulate antigens of B lymphocytes.* J Immunol Methods, 1996. **156**(8): p. 2809-18.
- 67. Kanchan, V., Panda, AK., *Interactions of antigen-loaded polylactide particles with macrophages and their correlation with the immune response*. Biomaterials, 2007. **28**(35): p. 5344-57.
- 68. Heit, A., Schmitz, F., Haas, T., Busch, DH., Wagner, H., *Antigen co-encapsulated with adjuvants efficiently drive protective T cell immunity*. Eur J Immunol, 2007. **37**(8): p. 2063-74.

- 69. Lee, Y., Lee, YH., Im, SA., Yang, IH., Ahn, GW., Kim, K., Lee, CK., *Biodegradable* nanoparticles containing *TLR3* or *TLR9* agonists together with antigen enhance MHC-restricted presentation of the antigen. Arch Pharm Res, 2010. **33**(11): p. 1859-66.
- 70. Fischer, S., Schlosser, E., Mueller, M., Csaba, N., Merkle, HP., Groettrup, M., Gander, B., *Concomitant delivery of a CTL-restricted peptide antigen and CpG ODN by PLGA microparticles induces cellular immune response.* J Drug Target, 2009. **17**(8): p. 652-61.
- 71. Hamdy, S., Elamanchili, P., Alshamsan, A., Molavi, O., Satou, T., Samuel, J., *Enhanced* antigen-specific primary CD4+ and CD8+ responses by codelivery of ovalbumin and toll-like receptor ligand monophosphoryl lipid A in poly(D,L-lactic-co-glycolic acid) nanoparticles. J Biomed Mater Res A, 2007. **81**(3): p. 652-62.
- 72. Schlosser, E., Mueller, M., Fischer, S., Basta, S., Busch, DH., Gander, B., Groettrup, M., *TLR* ligands and antigen need to be coencapsulated into the same biodegradable microsphere for the generation of potent cytotoxic T lymphocyte responses. Vaccine, 2008. **26**(13): p. 1626-37.
- 73. Godfrey, D., MacDonald, HR., Kronenberg, M., Smyth, MJ., Van Kaer, L., *NKT cells: what's in a name?* Nat Rev Immunol, 2004. **4**(3): p. 231-7.
- 74. Makino, Y., Kanno, R., Ito, T., Higashino, K., Taniguchi, M., *Predominant expression of invariant V alpha 14+ TCR alpha chain in NK1.1+ T cell populations*. Int Immunol, 1995 7(7): p. 1157-61.
- 75. Budd, C., Miescher, GV., Howe, RC., Lees, RK., Bron, C., MacDonald, HR., *Developmentally regulated expression of T cell receptor beta chain variable domains in immature thymocytes.* J Exp Med, 1987. **166**: p. 577-82.
- 76. Fowlkes, B., Kruisbeek, AM., Ton-That, H., Weston, MA., Coligan, JE., Schwartz, RH., Pardoll, DM., *A novel population of T-cell receptor alpha beta-bearing thymocytes which predominantly expresses a single V beta gene family*. Nature, 1987 **329**(6136): p. 251-4.
- 77. Bendelac, A., *CD1: presenting unusual antigens to unusual T lymphocytes.* Science, 1995 **269**(5221): p. 185-6.
- 78. Zajonc, D., Kronenberg, M., *CD1 mediated T cell recognition of glycolipids*. Curr Opin Struct Biol, 2007. **17**(5): p. 521–529.
- 79. Berkers, C., Ovaa, H., *Immunotherapeutic potential for ceramide-based activators of iNKT cells*. Trends Pharmacol Sci, 2005. **26**(5): p. 252-7.
- 80. Wu, D., Fujio, M., Wong, CH., *Glycolipids as immunostimulating agents*. Bioorg Med Chem, 2008. **16**(3): p. 1073-83.
- 81. Wang, J., Li, Y., Kinjo, Y., Mac, TT., Gibson, D., Painter, GF., Kronenberg, M., Zajonc, DM., *Lipid binding orientation within CD1d affects recognition of Borrelia burgorferi antigens by NKT cells.* Proc Natl Acad Sci U S A, 2010. **107**(4): p. 1535-40.
- 82. Cernadas, M., Cavallari, M., Watts, G., Mori, L., De Libero, G., Brenner, MB., *Early recycling compartment trafficking of CD1a is essential for its intersection and presentation of lipid antigens*. J Immunol, 2010. **184**(3): p. 1235-41.
- 83. Godfrey, D., Pellicci, DG., Patel, O., Kjer-Nielsen, L., McCluskey, J., Rossjohn, J., *Antigen recognition by CD1d-restricted NKT T cell receptors*. Semin Immunol, 2010. **22**(2): p. 61-7.
- 84. Godfrey, D., Berzins, SP., *Control points in NKT-cell development*. Nat Rev Immunol, 2007. 7(7): p. 505-18.
- 85. Brossay, L., Chioda, M., Burdin, N., Koezuka, Y., Casorati, G., Dellabona, P., Kronenberg, M., *CD1d-mediated recognition of an alpha-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution.* J Exp Med, 1998 **188**(8): p. 1521-8.
- Bendelac, A., Savage, PB., Teyton, L., *The biology of NKT cells*. Annu Rev Immunol, 2007.
 25: p. 297-336.
- 87. Im, J., Arora, P., Bricard, G., Molano, A., Venkataswamy, MM., Baine, I., Jerud, ES., Goldberg, MF., Baena, A., Yu, KO., Ndonye, RM., Howell, AR., Yuan, W., Cresswell, P., Chang, YT., Illarionov, PA., Besra, GS., Porcelli, SA., *Kinetics and cellular site of glycolipid loading control the outcome of natural killer T cell activation*. Immunity, 2009. **30**(6): p. 888-98.
- 88. Jahng, A., Maricic, I., Aguilera, C., Cardell, S., Halder, RC., Kumar, V., *Prevention of autoimmunity by targeting a distinct, noninvariant CD1d-reactive T cell population reactive to sulfatide.* J Exp Med, 2004. **199**(7): p. 947-57.

- 89. Zajonc, D., Maricic, I., Wu, D., Halder, R., Roy, K., Wong, CH., Kumar, V., Wilson, IA., *Structural basis for CD1d presentation of a sulfatide derived from myelin and its implications for autoimmunity.* J Exp Med, 2005. **202**(11): p. 1517-26.
- 90. Lawson, V., *Turned on by danger: activation of CD1d-restricted invariant natural killer T cells.* Immunology, 2012. **137**(1): p. 20-7.
- 91. Savage, P., Teyton, L., Bendelac, A., *Glycolipids for natural killer T cells*. Chem Soc Rev, 2006. **35**(9): p. 771-9.
- 92. Matsuda, J., Mallevaey, T., Scott-Browne, J., Gapin, L., *CD1d-restricted iNKT cells, the 'Swiss-Army knife' of the immune system.* Curr Opin Immunol, 2008. **20**(3): p. 358-68.
- 93. Kinjo, Y., Ueno, K., *iNKT cells in microbial immunity: recognition of microbial glycolipids.* Microbiol Immunol, 2011. **55**(7): p. 472-82.
- 94. Steinman, R., Banchereau, J., *Taking dendritic cells into medicine*. Nature, 2007. **449**(7161): p. 419-26.
- 95. Fujii, S., Liu, K., Smith, C., Bonito, AJ., Steinman, RM., *The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation.* J Exp Med, 2004. **199**(12): p. 1607-18.
- 96. Fujii, S., Shimizu, K., Kronenberg, M., Steinman, RM., *Prolonged IFN-gamma-producing NKT response induced with alpha-galactosylceramide-loaded DCs*. Nat Immunol, 2002. **3**(9): p. 867-74.
- Barral, P., Sanchez-Nino, MD., van Rooijen, N., Cerundolo, V., Batista, FD., *The location of splenic NKT cells favours their rapid activation by blood-borne antigen*. EMBO J, 2012. 31(10): p. 2378-90.
- 98. Brennan, P., Tatituri, RV., Brigl, M., Kim, EY., Tuli, A., Sanderson, JP., Gadola, SD., Hsu, FF., Besra, GS., Brenner, MB., *Invariant natural killer T cells recognize lipid self antigen induced by microbial danger signals*. Nat Immunol, 2011. **12**(12): p. 1202-11.
- 99. Scanlon, S., Thomas, SY., Ferreira, CM., Bai, L., Krausz, T., Savage, PB., Bendelac, A., *Airborne lipid antigens mobilize resident intravascular NKT cells to induce allergic airway inflammation.* J Exp Med, 2011. **208**(10): p. 2113-24.
- 100. Salio, M., Speak, AO., Shepherd, D., Polzella, P., Illarionov, PA., Veerapen, N., Besra, GS., Platt, FM., Cerundolo, V., *Modulation of human natural killer T cell ligands on TLR-mediated antigen-presenting cell activation*. Proc Natl Acad Sci U S A, 2007. **104**(51): p. 20490-5.
- 101. Kitamura, H., Iwakabe, K., Yahata, T., Nishimura, S., Ohta, A., Ohmi, Y., Sato, M., Takeda, K., Okumura, K., Van Kaer, L., Kawano, T., Taniguchi, M., Nishimura, T., *The natural killer T (NKT) cell ligand α-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells.* J. Exp. Med, 1999. **189**: p. 1121–1128
- 102. Brigl, M., Tatituri, RV., Watts, GF., Bhowruth, V., Leadbetter, EA., Barton, N., Cohen, NR., Hsu, FF., Besra, GS., Brenner, MB., *Innate and cytokine-driven signals, rather than microbial antigens, dominate in natural killer T cell activation during microbial infection.* J Exp Med, 2011. **208**(6): p. 1163-77.
- 103. Carnaud, C., Lee, D., Donnars, O., Park, SH., Beavis, A., Koezuka, Y., Bendelac, A., *Cutting edge: Cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells.* J Immunol Methods, 1999. **163**(9): p. 4647-50.
- 104. Schmieg, J., Yang, G., Franck, RW., Tsuji, M., Superior protection against malaria and melanoma metastases by a C-glycoside analogue of the natural killer T cell ligand alpha-Galactosylceramide. J Exp Med, 2003. **198**(11): p. 1631-41.
- 105. Bai, L., Constantinides, MG., Thomas, SY., Reboulet, R., Meng, F., Koentgen, F., Teyton, L., Savage, PB., Bendelac, A., *Distinct APCs explain the cytokine bias of alpha-galactosylceramide variants in vivo.* J Immunol, 2012. **188**(7): p. 3053-61.
- 106. Hayakawa, Y., Takeda, K., Yagita, H., Smyth, MJ., Van Kaer, L., Okumura, K., Saiki, I., *IFN-gamma-mediated inhibition of tumor angiogenesis by natural killer T-cell ligand, alpha-galactosylceramide.* Blood, 2002 **100**(5): p. 1728-33.
- 107. Leadbetter, E., Brigl, M., Illarionov, P., Cohen, N., Luteran, MC., Pillai, S., Besra, GS., Brenner, MB., *NK T cells provide lipid antigen-specific cognate help for B cells*. Proc Natl Acad Sci U S A, 2008. **105**(24): p. 8339-44.

- 108. Barral, P., Eckl-Dorna, J., Harwood, NE., De Santo, C., Salio, M., Illarionov, P., Besra, GS., Cerundolo, V., Batista, FD., *B cell receptor-mediated uptake of CD1d-restricted antigen augments antibody responses by recruiting invariant NKT cell help in vivo*. Proc Natl Acad Sci U S A, 2008. **105**(24): p. 8345-50.
- 109. Hermans, I., Silk, JD., Gileadi, U., Masri, SH., Shepherd, D., Farrand, KJ., Salio, M., Cerundolo, V., *Dendritic Cell Function Can Be Modulated through Cooperative Actions of TLR Ligands and Invariant NKT Cells.* The Journal of Immunology, 2007. **178**(5): p. 2721-2729.
- 110. Galli, G., Nuti, S., Tavarini, S., Galli-Stampino, L., De Lalla, C., Casorati, G., Dellabona, P., Abrignani, S., *CD1d-restricted help to B cells by human invariant natural killer T lymphocytes.* J Exp Med, 2003. **197**(8): p. 1051-7.
- 111. Galli, G., Pittoni, P., Tonti, E., Malzone, C., Uematsu, Y., Tortoli, M., Maione, D., Volpini, G., Finco, O., Nuti, S., Tavarini, S., Dellabona, P., Rappuoli, R., Casorati, G., Abrignani, S., *Invariant NKT cells sustain specific B cell responses and memory*. Proc Natl Acad Sci U S A, 2007. **104**(10): p. 3984-9.
- 112. Kawano, T., CD1d-Restricted and TCR-Mediated Activation of V14 NKT Cells by Glycosylceramides. Science, 1997. 278(5343): p. 1626-1629.
- 113. Natori, T., Koezuka, Y., Higa, T., *Agelasphins, novel alpha-galactosylceramides from the marine sponge agelas-mauritianus*. Tetrahedron Lett, 1993. **34**: p. 5591–5592.
- 114. Morita, M., Motoki, K., Akimoto, K., Natori, T., Sakai, T., Sawa, E., Yamaji, K., Koezuka, Y., Kobayashi, E., Fukushima, H., *Structure-activity relationship of alpha-galactosylceramides against B16-bearing mice*. J Med Chem, 1995 **38**(12): p. 2176-87.
- 115. Morita, M., Natori, T., Akimoto, K., Osawa, T., Fukushima, H., Koezuka, Y., *Syntheses of alpha-monoglycosylceramides, beta-monoglycosylceramides and 4 diastereomers of an alpha-galactosylceramide.* Bioorg. Med. Chem. Lett, 1995. **5**: p. 699–704.
- 116. Matsuda, J., Gapin, L., Baron, JL., Sidobre, S., Stetson, DB., Mohrs, M., Locksley, RM., Kronenberg, M., *Mouse V alpha 14i natural killer T cells are resistant to cytokine polarization in vivo.* Proc Natl Acad Sci U S A, 2003. **100**(14): p. 8395-400.
- 117. Parekh, V., Wilson, MT., Olivares-Villagomez, D., Singh, AK., Wu, L., Wang, CR., Joyce, S., Van Kaer, L., *Glycolipid antigen induces long-term natural killer T cell anergy in mice*. J Clin Invest, 2005. **115**(9): p. 2572-83.
- 118. Kinjo, Y., Wu, D., Kim, G., Xing, GW., Poles, MA., Ho, DD., Tsuji, M., Kawahara, K., Wong, CH., Kronenberg, M., *Recognition of bacterial glycosphingolipids by natural killer T cells*. Nature, 2005. **434**(7032): p. 520-5.
- Mattner, J., Debord, KL., Ismail, N., Goff, RD., Cantu, C., Zhou, D., Saint-Mezard, P., Wang, V., Gao, Y., Yin, N., Hoebe, K., Schneewind, O., Walker, D., Beutler, B., Teyton, L., Savage, PB., Bendelac, A., *Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections*. Nature, 2005 434(7032): p. 525-9.
- Sriram, V., Du, W., Gervay-Hague, J., Brutkiewicz, RR., Cell wall glycosphingolipids of Sphingomonas paucimobilis are CD1d-specific ligands for NKT cells. Eur J Immunol, 2005. 35(6): p. 1692-701.
- 121. Kawahara, K., Moll, H., Knirel, YA., Seydel, U., Zähringer, U., *Structural analysis of two glycosphingolipids from the lipopolysaccharide-lacking bacterium Sphingomonas capsulata*. Eur J Biochem, 2000. **267**(6): p. 1837-46.
- 122. Kawahara, K., Kubota, M., Sato, N., Tsuge, K., Seto, Y., Occurrence of an alphagalacturonosyl-ceramide in the dioxin-degrading bacterium Sphingomonas wittichii. FEMS Microbiol Lett, 2002. **214**(2): p. 289-294.
- 123. Kawahara, K., , Sato, N., Tsuge, K., Seto, Y., Confirmation of the anomeric structure of galacturonic acid in the galacturonosyl-ceramide of Sphingomonas yanoikuyae. Microbiol Immunol, 2006. **50**(1): p. 67-71.
- 124. Long, X., et al., *Synthesis and evaluation of stimulatory properties of Sphingomonadaceae glycolipids*. Nat Chem Biol, 2007. **3**(9): p. 559-64.
- 125. Wu, D., Zajonc, DM., Fujio, M., Sullivan, BA., Kinjo, Y., Kronenberg, M., Wilson, IA., Wong, CH., *Design of natural killer T cell activators: structure and function of a microbial glycosphingolipid bound to mouse CD1d.* Proc Natl Acad Sci U S A, 2006. **103**(11): p. 3972-7.

- 126. Kinjo, Y., Tupin, E., Wu, D., Fujio, M., Garcia-Navarro, R., Benhnia, MR., Zajonc, D. M., Ben-Menachem, G., Ainge, GD., Painter, GF., Khurana, A., Hoebe, K., Behar, SM., Beutler, B., Wilson, IA., Tsuji, M., Sellati, TJ., Wong, CH., Kronenberg, M., *Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria*. Nat Immunol, 2006. 7(9): p. 978-86.
- 127. Kinjo, Y., Illarionov, P., Vela, JL., Pei, B., Girardi, E., Li, X., Li, Y., Imamura, M., Kaneko, Y., Okawara, A., Miyazaki, Y., Gomez-Velasco, A., Rogers, P., Dahesh, S., Uchiyama, S., Khurana, A., Kawahara, K., Yesilkaya, H., Andrew, PW., Wong, CH., Kawakami, K., Nizet, V., Besra, GS., Tsuji, M., Zajonc, DM., Kronenberg, M., *Invariant natural killer T cells recognize glycolipids from pathogenic Gram-positive bacteria*. Nat Immunol, 2011. 12(10): p. 966-74.
- 128. Chang, Y., Kim, HY., Albacker, LA., Lee, HH., Baumgarth, N., Akira, S., Savage, PB., Endo, S., Yamamura, T., Maaskant, J., Kitano, N., Singh, A., Bhatt, A., Besra, GS., van den Elzen, P., Appelmelk, B., Franck, RW., Chen, G., DeKruyff, RH., Shimamura, M., Illarionov, P., Umetsu, DT., *Influenza infection in suckling mice expands an NKT cell subset that protects against airway hyperreactivity*. J Clin Invest, 2011. **121**(1): p. 57-69.
- 129. Amprey, J., Im, JS., Turco, SJ., Murray, HW., Illarionov, PA., Besra, GS., Porcelli, SA., Spath, GF., *A subset of liver NK T cells is activated during Leishmania donovani infection by CD1d-bound lipophosphoglycan.* J Exp Med, 2004. **200**(7): p. 895-904.
- 130. Fischer, K., Scotet, E., Niemeyer, M., Koebernick, H., Zerrahn, J., Maillet, S., Hurwitz, R., Kursar, M., Bonneville, M., Kaufmann, SH., Schaible, UE., *Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells.* Proc Natl Acad Sci U S A, 2004. **101**(29): p. 10685-90.
- 131. Zhou, D., Mattner, J., Cantu, C., 3rd, Schrantz, N., Yin, N., Gao, Y., Sagiv, Y., Hudspeth, K., Wu, YP., Yamashita, T., Teneberg, S., Wang, D., Proia, RL., Levery, SB., Savage, PB., Teyton, L., Bendelac, A., *Lysosomal glycosphingolipid recognition by NKT cells*. Science, 2004. **306**(5702): p. 1786-9.
- Cox, D., Fox, L., Tian, R., Bardet, W., Skaley, M., Mojsilovic, D., Gumperz, J., Hildebrand, W., *Determination of cellular lipids bound to human CD1d molecules*. PLoS One, 2009. 4(5): p. e5325.
- 133. Kolarich, D., et al., *Determination of site-specific glycan heterogeneity on glycoproteins*. Nature protocols, 2012. 7(7): p. 1285-98.
- 134. Talaga P., V.S., Moreau M., Development of a high-performance anion-exchange chromatography with pulsed-amperometric detection based quantification assay for pneumococcal polysaccharides and conjugates. Vaccine, 2002 **20**(19-20): p. 2474-84.
- 135. Théry C., A.S., Raposo G., Clayton A., *Isolation and characterization of exosomes from cell culture supernatants and biological fluids*. Curr Protoc Cell Biol, 2006 Chapter 3(Unit 3.22).
- 136. Astronomo, R., Burton, DR., *Carbohydrate vaccines: developing sweet solutions to sticky situations?* Nat Rev Drug Discov, 2010. **9**(4): p. 308-24.
- 137. Feldman, C., Anderson, R., *Recent advances in our understanding of Streptococcus pneumoniae infection*. F1000Prime Rep, 2014. **6**: p. 82.
- 138. Krzysciak, W., Pluskwa, KK., Jurczak, A., Koscielniak, D., *The pathogenicity of the Streptococcus genus*. Eur J Clin Microbiol Infect Dis, 2013. **32**(11): p. 1361-76.
- 139. O'Brien, K., Wolfson, LJ., Watt, JP., Henkle, E., Deloria-Knoll, M., McCall, N., Lee, E., Mulholland, K., Levine, OS., Cherian, T.; Hib and Pneumococcal Global Burden of Disease Study Team., Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet, 2009. **374**(9693): p. 893-902.
- 140. Ludwig, E., Bonanni, P., Rohde, G., Sayiner, A., Torres, A., *The remaining challenges of pneumococcal disease in adults*. Eur Respir Rev, 2012. **21**(123): p. 57-65.
- 141. World Health Organization (WHO) Weekly epidemiological record, . 2013. 88: p. 117–128.
- 142. van der Poll, T., Opal, SM., *Pathogenesis, treatment, and prevention of pneumococcal pneumonia*. Lancet, 2009 **374**(9700): p. 1543-56.
- 143. Berry, A., Lock, RA., Thomas, SM., Prasanna Rajan, D., Hansman, D., Paton, JC., Cloning and Nucleotide Sequence of the Streptococcus pneumoniae Hyaluronidase Gene and Purification of the Enzyme from Recombinant Escherichia coli. Infection and Immunity, 1994. 62(3): p. 1101-1108.

- 144. Holmes, A., McNab, R., Millsap, KW., Rohde, M., Hammerschmidt, S., Mawdsley, JL., Jenkinson, HF., *The pavA gene of Streptococcus pneumoniae encodes a fibronectin-binding protein that is essential for virulence*. Molecular Microbiology 2001. **41**(6): p. 1395–1408.
- 145. Bergmann, S., Rohde, M., Chhatwal, GS., Hammerschmidt, S., α-Enolase of Streptococcus pneumonia is a plasmin (ogen) - binding protein displayed on the bacterial cell surface. Molecular Microbiology, 2001. 40(6): p. 1273-1287.
- Heidelberger M., A.O., *The Soluble Specific Substance of Pneumococcus*. J Exp Med, 1924.
 40(3): p. 301-17.
- Heidelberger M., A.O., *The Soluble Specific Substance of Pneumococcus*. J Exp Med, 1923 38(1): p. 73-79.
- 148. AlonsoDeVelasco, E., Verheul, AF., Verhoef, J., Snippe, H., *Streptococcus pneumoniae:* virulence factors, pathogenesis, and vaccines. Microbiol Rev, 1995. **59**(4): p. 591–603.
- 149. Skov Sørensen, U.B., Blom, J., Birch-Andersen, A., Henrichsen, J., Ultrastructural localization of capsules, cell wall polysaccharide, cell wall proteins, and F antigen in pneumococci. Infection and Immunity, 1988. **56**(8): p. 1890–1896.
- 150. MacLeod, C., Krauss, MR., *Relation of Virulence of Pneumococcal Strains for Mice to the Quantity of Capsular Polysaccharide formed In Vitro*. J Exp Med, 1950. **92**(1): p. 1–9.
- 151. Kadioglu, A., Weiser, JN., Paton, JC., Andrew, PW., *The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease*. Nat Rev Microbiol, 2008. 6(4): p. 288-301.
- 152. JN., W., *Phase variation in colony opacity by Streptococcus pneumoniae*. Microb Drug Resist, 1998. **4**(2): p. 129-135.
- 153. Kolkman, M., van der Zeijst, BA., Nuijten, PJ., *Diversity of capsular polysaccharide synthesis gene clusters in Streptococcus pneumoniae*. J Biochem 1998. **123**(5): p. 937-45.
- 154. Yother, J., Capsules of Streptococcus pneumoniae and other bacteria: paradigms for polysaccharide biosynthesis and regulation. Annu Rev Microbiol, 2011. 65: p. 563-81.
- 155. Bentley, S., Aanensen, DM., Mavroidi, A., Saunders, D., Rabbinowitsch, E., Collins, M., Donohoe, K., Harris, D., Murphy, L., Quail, MA., Samuel, G., Skovsted, IC., Kaltoft, MS., Barrell, B., Reeves, PR., Parkhill, J., Spratt, BG., *Genetic analysis of the capsular biosynthetic locus from all 90 pneumococcal serotypes*. PLoS Genet, 2006. **2**(3): p. e31.
- 156. Llull, D., Muñoz, R., López, R., García, E., *A single gene (tts) located outside the cap locus directs the formation of Streptococcus pneumoniae type 37 capsular polysaccharide. Type 37 pneumococci are natural, genetically binary strains.* J Exp Med, 1999 **190**(2): p. 241-51.
- 157. Weinberger, D., Trzcinski, K., Lu, YJ., Bogaert, D., Brandes, A., Galagan, J., Anderson, PW., Malley, R., Lipsitch, M., *Pneumococcal capsular polysaccharide structure predicts serotype prevalence*. PLoS Pathog, 2009. **5**(6): p. e1000476.
- 158. van Selm, S., van Cann, LM., Kolkman, M AB., van der Zeijst B AM., van Putten J PM., Genetic Basis for the Structural Difference between Streptococcus pneumoniae Serotype 15B and 15C Capsular Polysaccharides. Infection and Immunity, 2003. **71**(11): p. 6192-6198.
- 159. Croucher, N., Harris, SR., Fraser, C., Quail, MA., Burton, J., van der Linden, M., McGee, L., von Gottberg, A., Song, JH., Ko, KS., Pichon, B., Baker, S., Parry, CM., Lambertsen, LM., Shahinas, D., Pillai, DR., Mitchell, TJ., Dougan, G., Tomasz, A., Klugman, KP., Parkhill, J., Hanage, WP., Bentley, SD., *Rapid pneumococcal evolution in response to clinical interventions.* Science, 2011. **331**(6016): p. 430-4.
- 160. Muñoz, R., Mollerach, M., López, R., García, E., Molecular organization of the genes required for the synthesis of type 1 capsular polysaccharide of Streptococcus pneumoniae: formation of binary encapsulated pneumococci and identification of cryptic dTDP-rhamnose biosynthesis genes. Mol Microbiol, 1997 **25**(1): p. 79-92.
- 161. Heidelberger, M., Kendall, FE., Studies on the Precipitin Reaction: Precipitating Haptens; Species Diffrerences in Antibodies. J Exp Med, 1933. **57**(3): p. 373-9.
- 162. Mage, R., Kabat, EA., *The Combining Regions of the Type III Pneumococcus Polysaccharide and Homologous Antibody.* Biochemistry, 1963. **2**: p. 1278-88.
- 163. Laferrière, C., Sood, RK., de Muys, JM., Michon, F., Jennings, HJ., *The synthesis of Streptococcus pneumoniae polysaccharide-tetanus toxoid conjugates and the effect of chain length on immunogenicity.* Vaccine, 1997 **15**(2): p. 179-86.

- 164. Poolman, J., Kriz, P., Feron, C., Di-Paolo, E., Henckaerts, I., Miseur, A., Wauters, D., Prymula, R., Schuerman, L., *Pneumococcal serotype 3 otitis media, limited effect of polysaccharide conjugate immunisation and strain characteristics.* Vaccine, 2009. **27**(24): p. 3213-22.
- Macleod, C., Hodges, RG., Heidelberger, M., Bernhard, WG., Prevention of Pneumococcal Pneumonia by Immunization with Specific Capsular Polysaccharides. J Exp Med, 1945.
 82(6): p. 445-65.
- 166. Janeway, C., Paul, T., Mark, WJ., Donald, C., *Immunobiology, The Immune System in Health and Disease.* Elsevier Science London: London, UK, 1999.
- 167. Mosier, D., Zaldivar, NM., Goldings, E., Mond, J., Scher, I., Paul, WE., Formation of antibody in the newborn mouse: study of T-cell-independent antibody response. J Infect Dis, 1977 **136**: p. S14-9.
- 168. Mosier, D., Mond, JJ., Goldings, EA., *The ontogeny of thymic independent antibody responses in vitro in normal mice and mice with an X-linked B cell defect.* J Immunol, 1977 **119**(6): p. 1874-8.
- 169. Bondada, S., Wu, H., Robertson, DA., Chelvarajan, RL., Accessory cell defect in unresponsiveness of neonates and aged to polysaccharide vaccines. Vaccine, 2000. **19**(4-5): p. 557-65.
- 170. Haneberg, B., Dalseg, R., Wedege, E., Høiby, EA., Haugen, IL., Oftung, F., Andersen, SR., Naess, LM., Aase, A., Michaelsen, TE., Holst, J., Intranasal administration of a meningococcal outer membrane vesicle vaccine induces persistent local mucosal antibodies and serum antibodies with strong bactericidal activity in humans. Infect Immun, 1998 66(4): p. 1334-41.
- 171. Sela, M., Mozes, E., Shearer, GM., *Thymus-independence of slowly metabolized immunogens*. Proc Natl Acad Sci U S A, 1972 **69**(9): p. 2696-700.
- 172. Mazmanian, S., Kasper, DL., *The love-hate relationship between bacterial polysaccharides and the host immune system*. Nat Rev Immunol, 2006. **6**(11): p. 849-58.
- 173. Eskola, J., Anttila, M., *Pneumococcal conjugate vaccines*. Pediatr Infect Dis J, 1999 **18**(6): p. 543-51.
- 174. Akin, L., Kaya, M., Altinel, S., Durand, L., Cost of pneumococcal infections and costeffectiveness analysis of pneumococcal vaccination at risk adults and elderly in Turkey. Human Vaccines, 2011. 7(4): p. 441-450.
- 175. Prevention of pneumococcal disease: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep, 1997 **46**(RR-8): p. 1-24.
- Avery, O., Goebel, WF., Chemo-Immunological Studies on Conjugated Carbohydrate-Proteins II. Immunological Specificity of Synthetic Sugar-Protein Antigens. J Exp Med, 1929. 50(4): p. 533–550.
- 177. Schneerson, R., Robbins, JB., Barrera, O., Sutton, A., Habig, WB., Hardegree, MC., Chaimovich, J., *Haemophilus influenzae type B polysaccharide-protein conjugates: model for a new generation of capsular polysaccharide vaccines.* Prog Clin Biol Res, 1980. **47**: p. 77-94.
- 178. Black, S., Shinefield, H., Fireman, B., Lewis, E., Ray, P., Hansen, JR., Elvin, L., Ensor, KM., Hackell, J., Siber, G., Malinoski, F., Madore, D., Chang, I., Kohberger, R., Watson, W., Austrian, R., Edwards, K., *Efficacy, safety and immunogenicity of heptavalent pneumococcal conjugate vaccine in children. Northern California Kaiser Permanente Vaccine Study Center Group.* Pediatr Infect Dis J, 2000. **19**(3): p. 187-95.
- 179. Shelly, M., Jacoby, H., Riley, GJ., Graves, BT., Pichichero, M., Treanor, JJ., *Comparison of pneumococcal polysaccharide and CRM197-conjugated pneumococcal oligosaccharide vaccines in young and elderly adults*. Infect Immun, 1997. **65**(1): p. 242-7.
- 180. Jackson, L., Neuzil, KM., Nahm, MH., Whitney, CG., Yu, O., Nelson, JC., Starkovich, PT., Dunstan, M., Carste, B., Shay, DK., Baggs, J., Carlone, GM., *Immunogenicity of varying* dosages of 7-valent pneumococcal polysaccharide-protein conjugate vaccine in seniors previously vaccinated with 23-valent pneumococcal polysaccharide vaccine. Vaccine, 2007. 25(20): p. 4029-37.
- 181. Lindberg, A., *Glycoprotein conjugate vaccines*. Vaccine, 1999 17(Suppl 2): p. S28-36.

- 182. Eskola, J., Kilpi, T., Palmu, A., Jokinen, J., Haapakoski, J., Herva, E., Takala, A., Käyhty, H., Karma, P., Kohberger, R., Siber, G., Mäkelä, PH., *Efficacy of a pneumococcal conjugate vaccine against acute otitis media*. N Engl J Med, 2001 **344**(6): p. 403-9.
- 183. Weinberger, D., Malley, R., Lipsitch, M., *Serotype replacement in disease after pneumococcal vaccination*. The Lancet, 2011. **378**(9807): p. 1962-1973.
- 184. Hsu, H., Shutt, KA., Moore, MR., Beall, BW., Bennett, NM., Craig, AS., Farley, MM., Jorgensen, JH., Lexau, CA., Petit, S., Reingold, A., Schaffner, W., Thomas, A., Whitney, CG., Harrison, LH., *Effect of pneumococcal conjugate vaccine on pneumococcal meningitis*. N Engl J Med, 2009 360(3): p. 244-56.
- 185. Soininen, A., Pursiainen, H., Kilpi, T., Käyhty, H., *Natural development of antibodies to pneumococcal capsular polysaccharides depends on the serotype: association with pneumococcal carriage and acute otitis media in young children.* J Infect Dis, 2001. **184**(5): p. 569-76.
- 186. Weinberger, D., Dagan, R., Givon-Lavi, N., Regev-Yochay, G., Malley, R., Lipsitch, M., Epidemiologic evidence for serotype-specific acquired immunity to pneumococcal carriage. J Infect Dis, 2008. 197(11): p. 1511-8.
- 187. Snapper, C., *Mechanisms underlying in vivo polysaccharide-specific immunoglobulin responses to intact extracellular bacteria.* Ann N Y Acad Sci, 2012. **1253**: p. 92-101.
- 188. Goldblatt, D., Hussain, M., Andrews, N., Ashton, L., Virta, C., Melegaro, A., Pebody, R., George, R., Soininen, A., Edmunds, J., Gay, N., Kayhty, H., Miller, E., *Antibody responses to nasopharyngeal carriage of Streptococcus pneumoniae in adults: a longitudinal household study.* J Infect Dis, 2005 **192**(3): p. 387-93.
- 189. Malley, R., Trzcinski, K., Srivastava, A., Thompson, CM., Anderson, PW., Lipsitch, M., *CD4+ T cells mediate antibody-independent acquired immunity to pneumococcal colonization.* Proc Natl Acad Sci U S A, 2005. **102**(13): p. 4848-53.
- 190. Holmgren, J., Czerkinsky, C., *Mucosal immunity and vaccines*. Nat Med, 2005. **11**(4 Suppl): p. S45-53.
- 191. Fukuyama, Y., King, JD., Kataoka, K., Kobayashi, R., Gilbert, RS., Oishi, K., Hollingshead, SK., Briles, DE., Fujihashi, K., *Secretory-IgA antibodies play an important role in the immunity to Streptococcus pneumoniae*. J Immunol, 2010. **185**(3): p. 1755-62.
- 192. Service, R., Triggering the first line of defense. Science, 1994. 265(5178): p. 1522-4.
- Rognum, T., Thrane, S., Stoltenberg, L., Vege, A., Brandtzaeg, P., Development of intestinal mucosal immunity in fetal life and the first postnatal months. Pediatr Res, 1992 32(2): p. 145-9.
- 194. Arranz, E., O'Mahony, S., Barton, JR., Ferguson, A., Immunosenescence and mucosal immunity: significant effects of old age on secretory IgA concentrations and intraepithelial lymphocyte counts. Gut, 1992 33(7): p. 882-6.
- 195. Lewis, D., Gilks, CF., Ojoo, S., Castello-Branco, LR., Dougan, G., Evans, MR., McDermott, S., Griffin, GE., *Immune response following oral administration of cholera toxin B subunit to HIV-1-infected UK and Kenyan subjects.* AIDS, 1994. **8**(6): p. 779-85.
- 196. O'Hagan, D., Singh, M., *Microparticles as vaccine adjuvants and delivery systems*. Expert Rev Vaccines, 2003. **2**(2): p. 269-83.
- 197. Shalaby, W., Development of oral vaccines to stimulate mucosal and systemic immunity: barriers and novel strategies. Clin Immunol Immunopathol, 1995 **74**(2): p. 127-34.
- 198. *<REF5.pdf>*.
- 199. Muttil, P., Prego, C., Garcia-Contreras, L., Pulliam, B., Fallon, JK., Wang, C., Hickey, AJ., Edwards, D., *Immunization of guinea pigs with novel hepatitis B antigen as nanoparticle aggregate powders administered by the pulmonary route.* AAPS J, 2010. **12**(3): p. 330-7.
- 200. Al-Hallak, K., Azarmi, S., Anwar-Mohamed, A., Roa, WH., Lobenberg, R., Secondary cytotoxicity mediated by alveolar macrophages: a contribution to the total efficacy of nanoparticles in lung cancer therapy? Eur J Pharm Biopharm, 2010. **76**(1): p. 112-9.
- 201. Ranade, V., Inhalation therapy: new delivery systems. Am J Ther, 2001. 8(5): p. 367-81.
- 202. Carvalho, T., Peters, JI., Williams III, RO., *Influence of particle size on regional lung deposition--what evidence is there?* Int J Pharm, 2011. **406**(1-2): p. 1-10.
- 203. LiCalsi, C., Christensen, T., Bennett, JV., Phillips, E., Witham, C., *Dry powder inhalation as a potential delivery method for vaccines.* Vaccine, 1999 **17**(13-14): p. 1796-803.

- 204. Lu, D., Hickey, AJ., *Pulmonary vaccine delivery*. Expert Rev Vaccines, 2007 Apr;6. **2**: p. 213-26.
- 205. Raychaudhuri, S., Rock, KL., *Fully mobilizing host defense: building better vaccines*. Nat Biotechnol., 1998 Nov;. **16**(11): p. 1025-31.
- 206. Parekh, V.V., S. Lalani, and L. Van Kaer, *The in vivo response of invariant natural killer T cells to glycolipid antigens.* Int Rev Immunol, 2007. **26**(1-2): p. 31-48.
- 207. Lindblad, E., *Aluminium adjuvants--in retrospect and prospect*. Vaccine, 2004. **22**(27-28): p. 3658-68.
- 208. Raghuvanshi RS., S.O., Panda AK., Formulation and characterization of immunoreactive tetanus toxoid biodegradable polymer particles. Drug Deliv, 2001. **8**(2): p. 99-106.
- 209. Anish, C., Goswami, DG., Kanchan, V., Mathew, S., Panda, AK., *The immunogenic characteristics associated with multivalent display of Vi polysaccharide antigen using biodegradable polymer particles.* Biomaterials, 2012. **33**(28): p. 6843-57.
- 210. Azizi, M. and F. Farahmandghavi, Joghataei, M., Zandi, M., Imani, M., Bakhtiary, M., Dorkoosh, FA., Ghazizadeh, F., *Fabrication of protein-loaded PLGA nanoparticles: effect of selected formulation variables on particle size and release profile.* Journal of Polymer Research, 2013. **20**(4).
- 211. Anish, C., Khan, N., Upadhyay, AK., Sehgal, D., Panda, AK., *Delivery of polysaccharides using polymer particles: implications on size-dependent immunogenicity, opsonophagocytosis, and protective immunity.* Mol Pharm, 2014. **11**(3): p. 922-37.
- 212. Macho Fernandez, E., et al., Activation of invariant Natural Killer T lymphocytes in response to the alpha-galactosylceramide analogue KRN7000 encapsulated in PLGA-based nanoparticles and microparticles. Int J Pharm, 2012. **423**(1): p. 45-54.
- 213. McKee, S.J., et al., *Virus-like particles and alpha-galactosylceramide form a self-adjuvanting composite particle that elicits anti-tumor responses.* J Control Release, 2012. **159**(3): p. 338-45.
- 214. Zuckerman, J., *The importance of injecting vaccines into muscle. Different patients need different needle sizes.* BMJ, 2000. **321**(7271): p. 1237–1238.
- 215. Poland, G., Borrud, A., Jacobson, RM., McDermott, K., Wollan, PC., Brakke, D., Charboneau, JW., *Determination of deltoid fat pad thickness. Implications for needle length in adult immunization.* JAMA, 1997 **277**(21): p. 1709-11.
- 216. Chernyak, A., Antonov, KV., Kochetkov, NK., Padyukov, LN., Tsvetkova, NV., *Two* synthetic antigens related to Streptococcus pneumoniae type 3 capsular polysaccharide. Carbohydr Res, 1985. **141**(2): p. 199-212.
- 217. Levesque, P., Foster, K., de Alwis, U., *Association between immunogenicity and adsorption of a recombinant Streptococcus pneumoniae vaccine antigen by an aluminum adjuvant.* Hum Vaccin., 2006 **2**(2): p. 74-7.
- 218. Bai, L., et al., *Natural killer T (NKT)-B-cell interactions promote prolonged antibody responses and long-term memory to pneumococcal capsular polysaccharides.* Proc Natl Acad Sci U S A, 2013. **110**(40): p. 16097-102.
- 219. Seppälä, I., Mäkelä, O., Antigenicity of dextran-protein conjugates in mice. Effect of molecular weight of the carbohydrate and comparison of two modes of coupling. J Immunol, 1989. **143**(4): p. 1259-64.
- 220. Peeters, C., Evenberg, D., Hoogerhout, P., Käyhty, H., Saarinen, L., van Boeckel, CA., van der Marel, GA., van Boom, JH., Poolman, JT., *Synthetic trimer and tetramer of 3-beta-D-ribose-(1-1)-D-ribitol-5-phosphate conjugated to protein induce antibody responses to Haemophilus influenzae type b capsular polysaccharide in mice and monkeys*. Infect Immun, 1992. **60**(5): p. 1826-33.
- 221. Nakaoka, R., Inoue, Y., Tabata, Y., Ikada, Y., *Size effect on the antibody production induced by biodegradable microspheres containing antigen.* Vaccine, 1996 **14**(13): p. 1251-6.
- 222. Vu, D., de Boer, AW., Danzig, L., Santos, G., Canty, B., Flores, BM., Granoff, DM., *Priming for immunologic memory in adults by meningococcal group C conjugate vaccination*. Clin Vaccine Immunol, 2006. **13**(6): p. 605-10.
- 223. Russell, F.M., et al., *Hyporesponsiveness to re-challenge dose following pneumococcal polysaccharide vaccine at 12 months of age, a randomized controlled trial.* Vaccine, 2010. **28**(19): p. 3341-9.

- 224. Clutterbuck, E.A., et al., *Pneumococcal conjugate and plain polysaccharide vaccines have divergent effects on antigen-specific B cells*. J Infect Dis, 2012. **205**(9): p. 1408-16.
- 225. Bjarnarson, S.P., et al., *Pneumococcal polysaccharide abrogates conjugate-induced germinal center reaction and depletes antibody secreting cell pool, causing hyporesponsiveness.* PLoS One, 2013. **8**(9): p. e72588.
- 226. Poolman, J., Borrow, R., *Hyporesponsiveness and its clinical implications after vaccination with polysaccharide or glycoconjugate vaccines*. Expert Rev Vaccines, 2011 **10**(3): p. 307-22.
- 227. Ruch, R., *Intercellular communication, homeostasis, and toxicology*. Toxicol Sci, 2002 **68**(2): p. 265-6.
- 228. Silverman, J., Reiner, NE., *Exosomes and other microvesicles in infection biology: organelles with unanticipated phenotypes.* Cellular Microbiology, 2011. **13**(1): p. 1-9.
- 229. Beyer, C., Pisetsky, DS., *The role of microparticles in the pathogenesis of rheumatic diseases*. Nat Rev Rheumatol, 2010. **6**(1): p. 21-9.
- 230. Raposo, G., Nijman, HW., Stoorvogel, W., Liejendekker, R., Harding, CV., Melief, CJ., Geuze, HJ., *B lymphocytes secrete antigen-presenting vesicles*. J Exp Med, 1996 **183**(3): p. 1161-72.
- 231. Blanchard, N., Lankar, D., Faure, F., Regnault, A. Dumont, C., Raposo, G., Hivroz, C., *TCR Activation of Human T Cells Induces the Production of Exosomes Bearing the TCR/CD3/ Complex.* The Journal of Immunology, 2002. **168**(7): p. 3235-3241.
- 232. Zitvogel, L., Regnault, A., Lozier, A., Wolfers, J., Flament, C., Tenza, D., Ricciardi-Castagnoli, P., Raposo, G., Amigorena, S., *Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes.* Nat Med, 1998 **4**(5): p. 594-600.
- 233. Kapsogeorgou, E., Abu-Helu, RF., Moutsopoulos, HM., Manoussakis, MN., Salivary gland epithelial cell exosomes: A source of autoantigenic ribonucleoproteins. Arthritis Rheum, 2005. **52**(5): p. 1517-21.
- 234. Raposo, G., Stoorvogel, W., *Extracellular vesicles: exosomes, microvesicles, and friends.* J Cell Biol, 2013. 200(4): p. 373-83.
- 235. Denkers, E.Y., et al., *Neutrophils, dendritic cells and Toxoplasma*. Int J Parasitol, 2004. **34**(3): p. 411-21.
- 236. Tan, A., De La Pena, H., Seifalian, AM., *The application of exosomes as a nanoscale cancer vaccine*. Int J Nanomedicine, 2010. **5**: p. 889-900.
- 237. Johnstone, R., *Exosomes biological significance: A concise review*. Blood Cells Mol Dis, 2006. **36**(2): p. 315-21.
- 238. Chaput, N., Thery, C., *Exosomes: immune properties and potential clinical implementations*. Semin Immunopathol, 2011. **33**(5): p. 419-40.
- 239. Heijnen, H., Schiel, AE., Fijnheer, R., Geuze, HJ., Sixma, JJ., Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood, 1999 **94**(11): p. 3791-9.
- 240. Al-Nedawi, K., Meehan, B., Rak, J., *Microvesicles: Messengers and mediators of tumor progression.* Cell Cycle, 2014. **8**(13): p. 2014-2018.
- 241. Rak, J., *Microparticles in cancer*. Semin Thromb Hemost, 2010. 36(8): p. 888-906.
- 242. Kahlert, C., Kalluri, R., *Exosomes in tumor microenvironment influence cancer progression and metastasis.* J Mol Med (Berl), 2013. **91**(4): p. 431-7.
- 243. Bobrie, A., Colombo, M., Raposo, G., Thery, C., *Exosome secretion: molecular mechanisms and roles in immune responses.* Traffic, 2011. **12**(12): p. 1659-68.
- 244. Silverman, J., Clos, J., Horakova, E., Wang, AY., Wiesgigl, M., Kelly, I., Lynn, MA., McMaster, WR., Foster, LJ., Levings, MK., Reiner, NE., *Leishmania exosomes modulate innate and adaptive immune responses through effects on monocytes and dendritic cells.* J Immunol, 2010. **185**(9): p. 5011-22.
- 245. Oliveira, D., Freire-de-Lima, CG., Nosanchuk, JD., Casadevall, A., Rodrigues, ML., Nimrichter, L., *Extracellular vesicles from Cryptococcus neoformans modulate macrophage functions*. Infect Immun, 2010. **78**(4): p. 1601-9.
- 246. Trocoli Torrecilhas, A., Tonelli, RR., Pavanelli, WR., da Silva, JS., Schumacher, RI., de Souza, W., E. Silva NC., de Almeida Abrahamsohn, I., Colli, W., Manso Alves, MJ., *Trypanosoma cruzi: parasite shed vesicles increase heart parasitism and generate an intense inflammatory response*. Microbes Infect, 2009. **11**(1): p. 29-39.

- 247. Silverman, J., Clos, J., Camargo de'Oliveira, C., Shirvani, O., Fang, Y., Wang, C., Foster, LJ., Reiner, NE., *An exosome-based secretion pathway is responsible for protein export from Leishmania and communication with macrophages.* Journal of Cell Science 2010. **123**(6): p. 842-852.
- 248. Couper, K., Barnes, T., Hafalla, JC., Combes, V., Ryffel, B., Secher, T., Grau, GE., Riley, EM., de Souza, JB., *Parasite-derived plasma microparticles contribute significantly to malaria infection-induced inflammation through potent macrophage stimulation*. PLoS Pathog, 2010. **6**(1): p. e1000744.
- Martin-Jaular, L., Nakayasu, ES., Ferrer, M., Almeida, IC., Del Portillo, HA., *Exosomes from Plasmodium yoelii-infected reticulocytes protect mice from lethal infections*. PLoS One, 2011. 6(10): p. e26588.
- 250. Regev-Rudzki, N., Wilson, DW., Carvalho, TG., Sisquella, X., Coleman, BM., Rug, M., Bursac, D., Angrisano, F., Gee, M., Hill, A. F., Baum, J., Cowman, A. F., *Cell-Cell Communication between Malaria-Infected Red Blood Cells via Exosome-like Vesicles*. Cell, 2013. **153**(5): p. 1120-33.
- 251. Aline, F., Bout, D., Amigorena, S., Roingeard, P., Dimier-Poisson, I., *Toxoplasma gondii* antigen-pulsed-dendritic cell-derived exosomes induce a protective immune response against *T. gondii infection.* Infect Immun, 2004. **72**(7): p. 4127-37.
- 252. Montoya, J., Liesenfeld, O., Toxoplasmosis. The Lancet, 2004. 363(9425): p. 1965-1976.
- 253. *Toxoplasmosis (Toxoplasma infection biology).* Centers for Disease Control and Prevention., 2013.
- 254. Boothroyd, J., *Toxoplasma gondii: 25 years and 25 major advances for the field.* Int J Parasitol, 2009. **39**(8): p. 935-46.
- 255. Harker, K., Ueno, N., Lodoen, MB., *Toxoplasma gondii Dissemination: A Parasite's Journey through the Infected Host.* Parasite Immunol, 2014.
- 256. Yarovinsky, F., *Innate immunity to Toxoplasma gondii infection*. Nat Rev Immunol, 2014. **14**(2): p. 109-21.
- 257. Hunter, C., Sibley, LD., *Modulation of innate immunity by Toxoplasma gondii virulence effectors*. Nat Rev Microbiol, 2012. **10**(11): p. 766-78.
- 258. Lambert, H., Vutova, PP., Adams, WC., Loré ,K., Barragan, A., *The Toxoplasma gondii-shuttling function of dendritic cells is linked to the parasite genotype*. Infect Immun, 2009. 77(4): p. 1679-88.
- 259. Alexander, J., Scharton-Kersten, TM., Yap, G., Roberts, CW., Liew, FY., Sher, A., *Mechanisms of innate resistance to Toxoplasma gondii infection*. Philos Trans R Soc Lond B Biol Sci, 1997. **352**(1359): p. 1355-9.
- 260. Yano, A., Mun, HS., Chin, M., Norose, K., Hata, K., Kobayashi, M., Aosai, F., Iwakura, Y., *Roles of IFN-gamma on stage conversion of an obligate intracellular protozoan parasite, Toxoplasma gondii.* Int Rev Immunol., 2002. **21**(4-5): p. 405-21.
- 261. Suzuki, Y., Remington, JS., Dual Regulation of Resistance Against Toxoplasma gondii Infection by Lyt-2+ and Lyt-1+, L3T4+ T cells in Mice. The Journal of Immunology, 1988.
 140(11): p. 3943-3946.
- 262. Gazzinelli, R., Hakim, FT., Hieny, S., Shearer, GM., Sher, A., *Synergestic Role of CD4+ and CD8+ T Lymphocytes in IFN-γ Production and Protective Immunity Induced by anToxoplasma gondii Vaccine.* The Journal of Immunology, 1991. **Vol. 146**(1): p. 286-292.
- 263. Gazzinelli, R., XU, Y., Hieny, S., Cheever, A., Sher, A., Simultaneous Depletion of CD4+ AND CD8+ T Lymphocytes is Required to Reactivate Chronic Infection with Toxoplasma gondii. The Journal of Immunology, 1992. **149**(1): p. 175-180.
- 264. Sousa, e., CR., Hieny, S., Scharton-Kersten, T., Jannkovic, D., Charest, H., Germain, RN., and Sher, A., *In Vivo Microbial Stimulation Induces Rapid CD40 Ligand–independent Production of Interleukin 12 by Dendritic Cells and their Redistribution to T Cell Areas.* J Exp Med, 1997: p. 1819-29.
- Huges, H., van Knapen, F., Characterization of a Secretory Antigen from Toxoplasma gondii and its Role in Circulating Antigen Production. International journal for Parasitology, 1982. 12(5): p. 433-437.

- 266. Asai, T., Kim, TJ., Kobayashi, M., Kojima, S., *Detection of nucleoside triphosphate hydrolase* as a circulating antigen in sera of mice infected with Toxoplasma gondii. Infect. Immun, 1987. **55**(5): p. 1332.
- 267. Koshy, A., Dietrich, HK., Christian, DA., Melehani, JH., Shastri, AJ., Hunter, CA., Boothroyd, JC., *Toxoplasma co-opts host cells it does not invade*. PLoS Pathog, 2012. **8**(7): p. e1002825.
- 268. Howe, D., Sibley, LD., *Toxoplasma gondii comprises three clonal lineages: correlation of parasite genotype with human disease.* J Infect Dis, 1995. **172**(6): p. 1561-6.
- 269. Saeij, J., Boyle, JP., Boothroyd, JC., *Differences among the three major strains of Toxoplasma gondii and their specific interactions with the infected host.* Trends Parasitol, 2005. **21**(10): p. 476-81.
- 270. Kastelowitz, N., Yin, H., *Exosomes and Microvesicles: Identification and Targeting By Particle Size and Lipid Chemical Probes.* Chembiochem, 2014.
- 271. Azzouz, N., Shams-Eldin, H., Schwarz, RT., *Removal of phospholipid contaminants through precipitation of glycosylphosphatidylinositols*. Anal Biochem, 2005. **343**(1): p. 152-8.
- 272. Tomavo, S., Couvreur, G., Leriche, MA., Sadak, A., Achbarou, A., Fortier, B., and Dubremetz, JF Immunolocalization and characterization of the low molecular weight antigen (4—5 kDa) of Toxoplasma gondii that elicits an early IgM response upon primary infection. Parasitology, 1994. 108: p. 139-145.
- 273. Zhou, H., Zhao, Q., Das Singla, L., Min, J., He, S., Cong, H., Li, Y., Su, C., *Differential proteomic profiles from distinct Toxoplasma gondii strains revealed by 2D-difference gel electrophoresis.* Exp Parasitol, 2013. **133**(4): p. 376-82.
- 274. Striepen, B., Zinecker, CF., Damm J, BL., Melgers P, AT., Gerwig, GJ., Koolen, M., Vliegenthart J, FG., Dubremetz, JF., Schwarz, RT., Molecular Structure of the 'Low Molecular Weight Antigen' of Toxoplasma gondii : A Glucose α1-4 N- Acetylgalactosamine Makes Free Glycosyl-Phosphatidylinositols Highly Immunogenic. J. Mol. Biol, 1997. 266: p. 797-813.
- 275. Saeij, J., Boyle, JP., Coller, S., Taylor, S., Sibley, LD., Brooke-Powell, ET., Ajioka, JW., Boothroyd, JC., *Polymorphic secreted kinases are key virulence factors in toxoplasmosis*. Science, 2006. **314**(5806): p. 1780-3.
- 276. Behnke, M., Khan, A., Wootton, JC., Dubey, JP., Tang, K., Sibley, LD., *Virulence differences in Toxoplasma mediated by amplification of a family of polymorphic pseudokinases*. Proc Natl Acad Sci U S A, 2011. **108**(23): p. 9631-6.
- Reese, M., Zeiner, GM., Saeij, JP., Boothroyd, JC., Boyle, JP., *Polymorphic family of injected pseudokinases is paramount in Toxoplasma virulence*. Proc Natl Acad Sci U S A, 2011. 108(23): p. 9625-30.
- 278. Fleckenstein, M., Reese, ML., Konen-Waisman, S., Boothroyd, JC., Howard, JC., Steinfeldt, T., *A Toxoplasma gondii pseudokinase inhibits host IRG resistance proteins*. PLoS Biol, 2012. 10(7): p. e1001358.
- 279. Nishikawa, Y., Kawase, O., Vielemeyer, O., Suzuki, H., Joiner, KA., Xuan, X., Nagasawa, H., *Toxoplasma gondii infection induces apoptosis in noninfected macrophages: role of nitric oxide and other soluble factors.* Parasite Immunol, 2007. **29**(7): p. 375-85.
- 280. <very imp for immunity, antigen acquition.pdf>.
- 281. van Knapen, F., Panggabean, SO., Detection of circulating antigen during acute infections with Toxoplasma gondii by enzyme-linked immunosorbent assay. J. Clin. Microbiol, 1977. 6(6): p. 545.
- 282. Silveira, C., Vallochi, AL., Rodrigues da Silva, U., Muccioli, C., Holland, GN., Nussenblatt, RB., Belfort, R., Rizzo, LV., *Toxoplasma gondii in the peripheral blood of patients with acute and chronic toxoplasmosis*. Br J Ophthalmol, 2011. **95**(3): p. 396-400.
- 283. Sibley, D., Krahenbuhl, JL., Adams MW. G., Weidner, E., *Toxoplasma Modifies Macrophage Phagosomes by Secretion of a Vesicular Network Rich in Surface Proteins*. The Journal of Cell Biology, 1986. **103**: p. 867-874.
- 284. Sibley D, L., Niesman, IR., Parmley, SF., Cesbron-Delauw, MF., *Regulated secretion of multi-lamellar vesicles leads to formation of a tubulo-vesicular network in host-cell vacuoles occupied by Toxoplasma gondii*. Journal of Cell Science 1995. **108**: p. 1669-1677

- 285. Niehus, S., Smith, TK., Azzouz, N., Campos, MA., Dubremetz, JF., Gazzinelli, RT., Schwarz, RT., Debierre-Grockiego, F., Virulent and avirulent strains of Toxoplasma gondii which differ in their glycosylphosphatidylinositol content induce similar biological functions in macrophages. PLoS One, 2014. **9**(1): p. e85386.
- 286. Debierre-Grockiego, F., Azzouz, N., Schmidt, J., Dubremetz, JF., Geyer, H., Geyer, R., Weingart, R., Schmidt, R. R., Schwarz, RT., *Roles of glycosylphosphatidylinositols of Toxoplasma gondii. Induction of tumor necrosis factor-alpha production in macrophages.* J Biol Chem, 2003. **278**(35): p. 32987-93.
- 287. Debierre-Grockiego, F., Hippe, D., Schwarz, RT., Luder, CG., *Toxoplasma gondii* glycosylphosphatidylinositols are not involved in T. gondii-induced host cell survival. Apoptosis, 2007. **12**(4): p. 781-90.
- 288. Lirussi, D., Matrajt, M., RNA Granules Present Only in Extracellular Toxoplasma Gondii Increase Parasite Viability. Int. J. Biol. Sci., 2011. 7(7): p. 960-967.
- 289. Pope, S., Lasser, C., Toxoplasma gondii infection of fibroblasts causes the production of exosome-like vesicles containing a unique array of mRNA and miRNA transcripts compared to serum starvation. J Extracell Vesicles, 2013. **2**.
- 290. Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, JJ., Lotvall, JO., *Exosome-mediated* transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol, 2007. **9**(6): p. 654-9.

Peptides and Corresponding Modifications of Peptides Identified by Mass Spectrometry

Sample Name:	Info & Prot		RH1								
Search Search Search		F		-08-2	IS - Protein 0 16:00:10	Extracto	r				
Protein 1 Accessio Database Seq. Cov Modificat	erage [%]:	9 N 4	i 22219177 ICBInr 8.40 %		ructure Of A F Oxidation, De		otein	Score: MW [kDa]: pl: No. of Pep	tides:	758.55 29.80 7.73 15	
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
176	3	815.8800	-55.64	2	33.5	41.9	0	38-52	K.TALTEPPTLAYSPNR.Q		
21	3	749.2950	-56.37	2	20.1	47.4	0	53-66	R.QICPAGTTSSCTSK.A		Carbamidomethyl: 3, 11
252	9	798.8860	-50.51	2	40.3	64.9	0	103-116	K.FPVTTQTFVVGCIK.G		Carbamidomethyl: 12
137	1	869.3720	-30.32	2	30.7	45.6	0	117-132	K.GDDAQSCMVTVTVQAR.A		Carbamidomethyl: 7
95	1	877.8790	-10.05	2	26.9	43.3	0	117-132	K.GDDAQSCMVTVTVQAR.A		Carbamidomethyl: 7; Oxidation: 8; Deamidated: 5
39	4	508.7550	-44.82	2	21.8	64.9	0	133-142	R.ASSVVNNVAR.C		
15	3	509.2610	-17.30	2	20.6	62.8	0	133-142	R.ASSVVNNVAR.C		Deamidated: 6
44	3	509.2330	-72.29	2	22.4	48.6	0	133-142	R.ASSVVNNVAR.C		Deamidated: 7
96	3	677.7710	-70.83	2	27.4	70.9	0	143-155	R.CSYGADSTLGPVK.L		Carbamidomethyl: 1
157	2	782.8480	-52.51	2	32.5	39.8	0		K.LSAEGPTTMTLVCGK.D		Carbamidomethyl: 13
131	3	790.8560	-38.65	2	30.2	29.7	0	156-170	K.LSAEGPTTMTLVCGK.D		Carbamidomethyl: 13; Oxidation: 9
78	1	585.3310	-50.63	1	25.2	23.9	0	198-202	K.DILPK.L		
104	4	774.3190	592.81	2	27.8	45.7	0	203-216	K.LTENPWQGNASSDK.G		
77	2	652,7850	-67.98	2	25.3	54.0	0	233-245	K.SVIIGCTGGSPEK.H		Carbamidomethyl: 6
75	2	511.2350	-67.05	2	26.0	52.7	0	252-262	K.LEFAGAAGSAK.S		

Protein 2		s	RS domain	-contai	nina protein. c	outative (To	oxoola	sma qondii G	T11		
Accessio	m:	a	122148460	5				Score:	-	471.10	
Database	e:	Ň	CBInr					MW [kDa]:		34.90	
Sea. Cov	erage [%]:	3	5.40 %					pl:		8.07	
								No. of Pept	ides:	10	
Modificat	tion(s):	c	Carbamidon	nethyl, I	Deamidated						
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Ρ		Sequence		Modification
165	1	645.8010	-12.35	2	32.7	48.0	0		K.CDQDGSLLNLR.V		Carbamidomethyl: 1
39	1	534.2440	-52.45	2	22.8	57.0	0	53-62	R.VTGNSSVEFK.C		
56	1	534.7150	-91.68	2	24.3	26.5	0		R.VTGNSSVEFK.C		Deamidated: 4
45	1	473.2500	24.62	3	23.3	39.5	0		K.CGGAVPNLHPNPGK.T		Carbamidomethyl: 1
7	1	525.7390	-27.53	2	19.2	67.6	0		K.CSSLANTAAR.V		Carbamidomethyl: 1
1	1	476.5580	-37.11	3	17.1	30.5	1		R.VGAGQPGQEAEKEK.T		
222	1	793.3900	-42.82	2	37.9	32.0	0		K.TCIVQTSVWGPPIK.G		Carbamidomethyl: 2
27	1	540.6750	-114.58	2	21.8	43.0	0		K.EYPTPDACK.N		Carbamidomethyl: 8
148 146	1	630.2830	-70.64	2	31.5	43.3 68.2	0		K.NGTLSLEVNPSK.K K.ECTTSSTLAEHLSGASLVOH		Deamidated: 1
146	1	785.7180	1.57	3	31.3	68.2	U	213-234	K.ECTISSTEAEHESGASEVQH T	AR.	Carbamidomethyl: 2
Protein 3		а	ctin (Toxon	lasma o	ondii ME491						
			123784073	1				Score:		443.08	
	n:										
Accessio			ICBInr					MW [kDa]:		41.90	
Accessio Database	9:	Ň									
Accessio Database		Ň	CBInr					pl:	ides:	41.90 4.91 14	
Accessio Database Seq. Cov	erage [%]:	N 3	CBInr		Oxidation				ides:	4.91	
Accessio Database Seq. Cov	erage [%]: tion(s): No. of	N 3	CBInr 8.30 % Carbamidor <u>Am/z</u>		Rt	Score	P	pl: No. of Pept	ides: Sequence	4.91	Modification
Accessio Database Seq. Cov Modificat Cmpd.	erage [%]: tion(s): No. of Cmpds.	N 3 m/z meas.	CBInr 8.30 % Carbamidor <u>A m/z</u> [ppm]	nethyl, i	Rt [min]			pl: No. of Pept Range	Sequence	4.91	Modification
Accessio Database Seq. Cov Modificat Cmpd. 137	erage [%]: tion(s): No. of Cmpds. 2	M/2 meas.	CBInr 8.30 % Carbamidor <u>A m/z [ppm]</u> -26.65	rethyl, i z 2	Rt [min] 29.9	35.8	0	pl: No. of Pept Range 30-40	Sequence R.AVFPSIVGKPK.N	4.91	
Accessio Database Seq. Cov Modificat Cmpd. 137 103	erage [%]: tion(s): No. of Cmpds. 2 2	m/z meas. 571.8350 610.7770	CBInr 8.30 % Carbamidor <u>A m/z [ppm]</u> -26.65 -14.94	z 2 2	Rt [min] 29.9 27.1	35.8 24.5	0	pl: No. of Pept Range 30-40 41-51	Sequence R.AVFPSIVGKPK.N K.NPGIMVGMEEK.D	4.91	Oxidation: 5
Accessio Database Seq. Cov Modificat Cmpd. 137 103 65	9: erage [%]: tion(s): No. of <u>Cmpds.</u> 2 2 2	m/z meas. 571.8350 610.7770 618.7540	CBInr 8.30 % Carbamidon <u>A m/z</u> [ppm] -26.65 -14.94 -47.81	z 2 2 2 2	Rt [min] 29.9 27.1 24.3	35.8 24.5 26.3	0	pl: No. of Pept Range 30-40 41-51 41-51	Sequence RAVFPSIVGKPK.N K.NPGINVGMEEK.D K.NPGIMVGMEEK.D	4.91	Oxidation: 5 Oxidation: 5, 8
Accessio Database Seq. Cov Modificat Cmpd. 137 103 65 24	2 2 2 2 2 2 2 2 2 2 2	m/z meas. 571.8350 610.7770 618.7540 636.2200	CBInr 8.30 % Carbamidon <u>A m/z [ppm]</u> -26.65 -14.94 -47.81 -69.26	z 2 2 2 2 2 2	Rt [min] 29.9 27.1 24.3 21.2	35.8 24.5 26.3 31.7	0 0 0 0 0	pl: No. of Pept Range 30-40 41-51 41-51 52-62	Sequence R.AVFPSIVGKPK.N K.NPGIMVGMEEK.D K.NPGIMVGMEEK.D K.CCYYGDEAQSK.R	4.91	Oxidation: 5
Accessio Database Seq. Cov Modificat Cmpd. 137 103 65	9: erage [%]: tion(s): No. of <u>Cmpds.</u> 2 2 2	m/z meas. 571.8350 610.7770 618.7540	CBInr 8.30 % Carbamidon <u>A m/z</u> [ppm] -26.65 -14.94 -47.81	z 2 2 2 2	Rt [min] 29.9 27.1 24.3	35.8 24.5 26.3	0	pl: No. of Pept Range 30-40 41-51 41-51 52-62 70-85	Sequence RAVFPSIVGKPK.N K.NPGINVGMEEK.D K.NPGIMVGMEEK.D	4.91	Oxidation: 5 Oxidation: 5, 8

193	2	651,9830	-66.44	3	34.0	29.2	0	97-11-	R.VAPEEHPVLLTEAPLNPK.A		1
150	1	523,7000	-57.83	2	31.1	37.8	0	185-19	R.DLTEYMMK.I		Oxidation: 7
71	1	530,7140	-69.56	2	24.9	23.2	0		R.GYGFTTSAEK.E		
225	1	888,9170	-27.87	2	37.0	50.2	0	240-25	K.SYELPDGNIITVGNER.F		
70	1	479 7010	-62.83	2	24.7	24.5	0	278-28	R.TTFDSIMK.C		Oxidation: 7
115	4	597.2600	-79,94	2	28.2	24.0	0		K.ELTSLAPSTMK.I		Oxidation: 10
75	1	759.3140	-43.43	2	25.1	27.3	0	361-373	K.EEYDESGPSIVHR.K		
Protein 4: Accession Database Seq. Cove	n:	9 N	ctin [Symbi i 86562730 ICBInr 3.00 %		n sp. clade C]			Score: MW [kDa]: pl:		357.04 41.80 5.22	
Modificati	ion(s):	c	Oxidation					No. of Pep	tides:	4	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
37	1	488.7170	-22.06	2	22.2	74.5	0		K.AGFAGDDAPR.A		
17	2	599.7230	-69.62	2	20.5	52.7	0	52-6	K.DSYVGDEAQSK.R		
195	1	651.6790	498.29	3	33.9	21.7	0	97-114	R.PAPEEHPVLLTEAPLNPK.A		
93	1	566.7440	-40.76	2	26.5	32.7	0	198-203	R.GYSFTTTAER.E		
Protein 5: Accession Database Seq. Cove Modificati	n: : erage [%]:	9 N 4	ctin [Pyroc: i 27450759 ICBInr .30 % Oxidation		nula]			Score: MW [kDa]: pl: No. of Pep		321.12 41.70 5.83 1	
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
240	1	895.9210	-31.92	2	38.3	56.7	0	239-254	K.SYELPDGQVITIGNER.F		
Protein 6: Accession	n:	g	AG-3 [Toxi i 30068003 ICBInr		a gondii]			Score: MW (kDal:		288.09 41 70	

	erage [%]:	1	2.70 %					pl: No. of Pept	ides:	6.59 5	
lodificat	tion(s):	0	Deamidated							-	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence		Modification
179	3	586.2790	-72.51	2	33.0	41.1	0	55-64	K.ITYFGTLTQK.A		
79	2	470.5620	-47.37	3	25.4	35.0	0	76-88	R.ANEEVVGHVTLNK.E		
258	2	591.2790	-58.66	2	39.3	35.6	0	135-145	K.GFLTDYIPGAK.Q		
91	1	584.2680	-54.95	3	26.2	42.4	1	151-165	K.IEKVENNGEQSVLYK.F		Deamidated: 7
81	2	690.8150	-29.98	2	25.7	57.6	0	154-165	K.VENNGEQSVLYK.F		Deamidated: 3
lodificat	erage [%]: ion(s):	-	7.00 % Carbamidor	nethyl,	Deamidated			pl: No. of Pept	ides:	6.02 7	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence		Modification
80	1	932,3890	-52.57	2	25.1	51.2	0	71-86	K.QETQLCAISSEGKPCR.N		Carbamidomethyl: 6, 15
	1	603.6130	-1.53	3	30.3	29.7	0		R.QLHTDNGYFIGASCPK.S		Carbamidomethyl: 14; Deamidated: 1
131		603,2630	-37.99	3	30.4	33.4	0	89-104	R.QLHTDNGYFIGASCPK.S		Carbamidomethyl: 14
146	2				24.4	35.9	0		K.NAECVENLDAGGGVHCK.C		Carbamidomethyl: 4, 16
146 58	4	610.5670	-56.81	3							
146 58 173	4	610.5670 915.3660	-56.81 -23.66	2	32.6	37.4	0	176-192	K.DGFVGTGLTCSEDPCSK.R		Carbamidomethyl: 10, 15
146 58 173 100	4 2 1	610.5670 915.3660 831.5920	-56.81 -23.66 -71.07	2 3	32.6 26.5	23.1	ō	176-192 249-269	K.DGFVGTGLTCSEDPCSK.R R.CIDDASHENGYTCECPTGYS	SR.E	Carbamidomethyl: 1, 13, 15; Deamidated: 9
146 58 173	4	610.5670 915.3660	-56.81 -23.66	2	32.6			176-192 249-269	K.DGFVGTGLTCSEDPCSK.R	SR.E	Carbamidomethyl: 1, 13, 15;
146 58 173 100 92 Protein 8 Accessio Database	4 2 1 2 :	610.5670 915.3660 831.5920 543.2140 c g	-56.81 -23.66 -71.07 -66.69	2 3 2 ypothet	32.6 26.5	23.1 58.0	0	176-192 249-269 294-303	K DGFVGTGLTCSEDPCSK R R CIDDASHENGYTCECPTGYS K EFGISASSCK.C	261.19 33.90 6.04 6	Carbamidomethyl: 1, 13, 15; Deamidated: 9

2

Peptides and Corresponding Modifications of Peptides Identified by Mass Spectrometry

Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
14	1	637.2820	-63.98	2	19.9	41.7	0	36-50	R.AAVAAAAANGAETGK.A		Deamidated: 9
23	1	636.7840	-73.43	2	20.6	57.7	0	36-50	R.AAVAAAAANGAETGK.A		
42	1	517.2620	-28,19	2	22.1	42.9	0	56-65	K.LAGOMSLAAR.S		Oxidation: 5
53	1	627.7970	-77.55	2	22.9	43.0	0	114-124	K.APPYKPIPESR.F		
288	1	817.3980	-42.64	2	41.9	51.0	0	180-192	K.QPFTILYLEPEQR.T		
165	1	751.8670	-7.04	2	31.9	24.9	0	193-205	R.TFAEPEQPDIEVK.D		
Protein 9 Accessio Database	n: c	g	i 23783516 ICBInr		I CoA ligase,	outative (T	oxopla	Score: MW [kDa]:	IE49]	177.82 82.10	
seq. Cov	erage [%]:	6	.40 %					pl:		5.21	
Modificat			Carbamidor	a a the of a	Quidatian			No. of Pept	tides:	4	
nounical	lon(s):	,	alpannoon	neuriyi,	JXIUalion						
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence		Modification
37	1	551.7730	-64.82	2	22.1	51.3	1		K.AVAELKAGESK.A		
137	1	541.2890	54.54	3	29.6	42.9	0		R.IDDPEHPAGELCLR.G		Carbamidomethyl: 12
	1			2	32.0	38.5	0	554-563	R.GPTITPGYFR.N		
170	1	554.8010	14.56	-							
170 143	1	554.8010 801.3460	-9.50	2	30.0	25.4	0		K.EIDALYSEMETER.A		Oxidation: 9
143 Protein 1 Accessio Database	1 0: n:	801.3460 d 9 N	-9.50	2			0		K.EIDALYSEMETER.A	176.49 25.30 4.80 4	Oxidation: 9
143 Protein 1 Accessio Database	0: m:	801.3460 d 9 N	-9.50 ense granu i 2062409 ICBInr	2	30.0		P	732-744 Score: MW [kDa]: pl: No. of Pept	K.EIDALYSEMETER.A	25.30 4.80	Oxidation: 9 Modification
143 Protein 1 Accessio Database Seq. Cov	1 0: n: erage [%]: No. of	801.3460 d N 2	-9.50 ense granu i 2062409 ICBInr 3.30 %	2 ile prote	30.0 iin (Toxoplasn Rt	na gondii]		732-744 Score: MW [kDa]: pl: No. of Pept Range	K.EIDALYSEMETER.A	25.30 4.80	
143 Protein 1 Accessio Database Geq. Cov	1 0: n: erage [%]: No. of	801.3460 d g N 2 m/z meas.	-9.50 ense granu i 2062409 ICBInr 3.30 % Δ m/z [ppm]	2 ile prote	30.0 iin (Toxoplasn Rt (min)	na gondii] Score	P	732-744 Score: MW [kDa]: pl: No. of Pept Range 72-80	K.EIDALYSEMETER.A ides: Sequence	25.30 4.80	

39	1	671.3710	25.21	2	28.9	30.6	0	156-166	R.LVPELTEEQQR.G	
rotein 1			DC demain		nina protein 🛙			HE ME 401		
ccessio			il23783781		ning protein [loxopiasii	ia gon	Score:	173.95	
atabase			JCBInr	9				MW [kDa]:	39.10	, ,
			3 70 %							
eq. Cov	rerage [%]:	1	3.70 %					pl:	7.76 ides: 5	
lodificat	tion(s):		Carbamidor	nethyl,	Oxidation			No. of Pept	ides: 5	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [mqq]	z	Rt [min]	Score	Ρ	Range	Sequence	Modification
255	3	702.8260	-65.59	2	38.9	51.8	0	136-148	K.EWVTGDSVLTGLK.I	
102	3	702.3150	-66.77	2	27.2	34.3	0	149-161	K.ISVPESQYPANAK.S	
112	2	548.9320	-1.09	3	28.0	25.3	0	173-186	K.TGNTCMLTIHVEPR.D	Carbamidomethyl: 5; Oxidati
		E 40 E000	10.10		00.0	00.0		470.400	C TOUTON THUS DD D	o de la contra de la
					30.9 24.2 Jen GRA6 [To	36.6 26.0 xoplasma	0 0 gondii	197-207	K.TGNTCMLTIHVEPR.D R.CSYTENSTLPK.I	Carbamidomethyl: 5 Carbamidomethyl: 1
59 Protein 1 Accessio Database	2 2: on:	650.2650 C	-50.61	2 ile antig	24.2	26.0	ō	197-207 Score: MW [kDa]: pl:	R.CSYTENSTLPK.I 148.55 23.90 5.66	Carbamidomethyl: 1
59 Protein 1 Accessio Database	2 2: on: e: verage [%]:	650.2650 C C I 1	-50.61 lense granu ji 89572499 VCBInr	2 ule antig	24.2	26.0	ō	197-207] Score: MW [kDa]:	R.CSYTENSTLPK.I 148.55 23.90 5.66	Carbamidomethyl: 1
59 rotein 1 accessio latabase leq. Cov lodificat Cmpd.	2 2: on: e: verage [%]:	650.2650 C 1 1 m/z meas.	-50.61 lense granu il[89572499 VCBInr 11.70 % Deamidated (ppm)	2 ule antig	24.2	26.0 xoplasma Score	gondii	197-207 Score: MW [kDa]: pl: No. of Pept Range	R.CSYTENSTLPK.) 148.54 23.90 5.66 ides: 4 Sequence	Carbamidomethyl: 1
59 rotein 1 accessio atabase eq. Cov lodificat Cmpd. 10	2 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2:	650.2650 C 1 1 m/z meas. 847.9980	-50.61 lense granu ji]89572499 VCBInr 1.70 % Deamidatec <u>A m/z [ppm]</u> -29.05	2 ule antig	24.2 Ien GRA6 [To Rt [min] 18.4	26.0 xoplasma Score 51.0	gondii	197-207 Score: MW [kDa]: pl: No. of Pept Range 177-203	R.CSYTENSTLPK.I 148.54 23.90 ides: 4 Sequence R.RSPGEPSGDGGGNDAGNNAGNGG NGRA.	Carbamidomethyl: 1 Modification Desmidated: 21
59 rotein 1 cccessio atabase eq. Cov lodificat Cmpd. 10 5	2 2: on: erage [%]: tion(s): No. of <u>Cmpds.</u> 8 3	650.2650 C P 1 1 m/z meas. 847.9980 848.0140	-50.61 lense granu ijl89572499 NCBInr 1.70 % Deamidatec <u>A m/z [ppm]</u> -29.05 -10.18	2 ule antig 1 2 3 3	24.2 en GRA6 [To Rt [min] 18.4 17.8	26.0 xoplasma Score 51.0 38.0	gondii P 1	197-207 Score: MW [kDa]: pl: No. of Pept Range 177-203 177-203	R.CSYTENSTUPKI 148.55 23.90 5.66 ides: 4 Sequence 4 RESPORPSOBGENDAGNAGINAGINAGINAGINAGINAGINAGINAGINAGINA	Carbamidomethyl: 1 Modification Deamidated: 21 Deamidated: 18
59 rotein 1 accessio atabase eq. Cov lodificat Cmpd. 10	2 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2:	650.2650 C 1 1 m/z meas. 847.9980	-50.61 lense granu ji]89572499 VCBInr 1.70 % Deamidatec <u>A m/z [ppm]</u> -29.05	2 ule antig	24.2 Ien GRA6 [To Rt [min] 18.4	26.0 xoplasma Score 51.0	gondii P 1	197-207 Score: MW [kDa]: pl: No. of Pept Range 177-203 177-203	R.CSYTENSTLPK.I 148.54 23.90 5.66 Ides: 4 Sequence REGRA REGRA REGRA RESPAPSCDGGGNDAGNNAGNGG	Carbamidomethyl: 1 Modification Deamidated: 21

iccessio latabase leq. Covi		Ň	i 13957751 CBInr 1.50 %					Score: MW [kDa]: pl:		137.13 19.00 9.35	
Aodificat	ion(s):	C	arbamidom	nethyl				No. of Pept	ides:	3	
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence		Modification
76	1	785.8590	592.83	2	35.2	24.7	0	61-75	K.LTISPSGEGDVFYGK.E		
66	2	706.4370	-15.26	2	33.8	49.8	1		R.KLTTVLPGAVLTAK.V		
5	3	529.6970	-111.40	2	19.2	62.6	0	124-134	K.CVAEAGAPAGR.N		Carbamidomethyl: 1
Protein 1 Accessio Database Seq. Cove	n:	gi N	ubtilisin-like i(15419013 CBInr 50 %		n [Toxoplasma	a gondii]		Score: MW [kDa]: pl: No. of Pept	ides:	136.55 85.00 5.07 4	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Ρ		Sequence		Modification
		603.2110	-88.52	2	21.1	21.1	0		R.DNMEVNQAER.D		
27	1		-46.53	2	20.8	44.7	0	615-625	R.TPPSAPSPSPR.T		
24	1	547.2600									
24 2	1	547.2600 561.6180	2.99	3	18.4	25.2	0		R.SGSQPKPPQDNTTTPK.M		
24	1	547.2600		3	18.4 28.4	25.2 45.5	0		R.SGSQPKPPQDNTTTPK.M R.EEEPPTDEDDFSSVK.G		
24 2 122 Protein 1 Accessio Database	1 3 1 5: n: : erage [%]:	547.2600 561.6180 862.3040 gi N 2.	2.99 -68.05	2 tokinas 3		45.5	0	746-760	R.EEEPPTDEDDFSSVK.G	133.85 131.30 5.82 3	
24 2 122 Protein 1: Accessio Database Seq. Cove	1 3 1 5: : : erage [%]: ion(s):	547.2600 561.6180 862.3040 gi N 2.	2.99 -68.05 hosphofruct i/23783410: CBInr .80 % Carbamidon	2 tokinas 3 nethyl	28.4 e, putative [To	45.5 oxoplasma	gondi	746-760 ME49] Score: MW [kDa]: pl: No. of Pept	R.EEEPPTDEDDFSSVK.G	131.30 5.82	Medification
24 2 122 Protein 1 Accessio Database Seq. Cove	1 3 1 5: n: : erage [%]:	547.2600 561.6180 862.3040 gi N 2.	2.99 -68.05 hosphofruct i[23783410: CBInr .80 %	2 tokinas 3	28.4	45.5	0	746-760 ME49] Score: MW [kDa]: pl: No. of Pept	R.EEEPPTDEDDFSSVK.G	131.30 5.82	Modification

94	1	676.8230	-22.54	2	26.0	24.9	1	744-754	R.TEREEAELFTK.E		
119	1	644.3100	-18.19	2	28.1	58.9	0	798-80	R.VVCVEPSGDLGR.F		Carbamidomethyl: 3
Protein 1	6:		onserved h	vnothe	tical protein [T	oxoplasma		ii GT11			
Accessio	in:		122148182					Score:		133 11	
Database	e:	Ň	CBInr					MW [kDa]:		45.10	
Seq. Cov	erage [%]:	1	0.00 %					pl:		7.74	
								No. of Pep	tides:	3	
Nodificat	tion(s):	c	Carbamidor	nethyl							
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
329	1	780.3650	-48.99	2	46.1	51.9	0	58-7	R.FLDPIDELPEPFK.A		
169	1	547.2190	-122.67	3	32.7	42.9	0		K.SPISPDVAVYVHAER.L		
210	1	705.2920	-68.21	2	35.7	38.3	1	000 (0)	K.LCDAFTDVAIRE		Carbamidomethyl: 2
Protein 1 Accessio Database	7: on: o:	d g N	ense granu i 23783414 ICBInr	ile prote	ein 3 (Toxopla		· ·	9] Score: MW [kDa]:	KLCDAFTDVAIRE	120.94 23.90	Carbandoneury. 2
Protein 1 Accessio Database Seq. Cov	7: on: erage [%]:	d g N 8	ense granu i 23783414 ICBInr .60 %	ile prote			· ·	9] Score:			Carbandoneery. 2
Protein 1 Accessio Database	7: on: erage [%]:	d g N 8	ense granu i 23783414 ICBInr	ile prote			· ·	9] Score: MW [kDa]: pl:		23.90 9.71	parbamooneury, z
Protein 1 Accessio Database Seq. Cov	7: on: erage [%]:	d g N 8	ense granu i 23783414 ICBInr .60 %	ile prote		sma gondi Score	· ·	9] Score: MW [kDa]: pl: No. of Pep Range	tides: Sequence	23.90 9.71	Modification
Protein 1 Accessio Database Seq. Cov Modificat	7: m: erage [%]: tion(s): No. of	d 9 N 8	ense granu i 23783414 ICBInr .60 % Dxidation Δm/z	ile proti 7	ein 3 [Toxopla	sma gondi	i ME4	9] Score: MW [kDa]: pl: No. of Pep Range 114-12:	tides: Sequence X KVEEELSLLR.R	23.90 9.71	
Protein 1 Accessio Database Seq. Cov Modificat Cmpd.	7: on: erage [%]: tion(s): No. of Cmpds.	d 9 N 8 0 m/z meas.	ense granu i 23783414 ICBInr .60 % Dxidation A m/z [ppm]	z	ein 3 [Toxopla Rt [min]	sma gondi Score	i ME4	9] Score: MW [kDa]: pl: No. of Pep Range 114-12:	tides: Sequence	23.90 9.71	
rotein 1 ccessio atabase eq. Cov lodificat Cmpd. 157	7: on: erage [%]: tion(s): No. of <u>Cmpds.</u> 1	d 9 N 8 0 m/z meas. 608.3400	ense granu i[23783414 ICBInr .60 % Dxidation Δ m/z [ppm] -17.76	ule prote 7 z 2	Rt [min] 31.4	sma gondi Score 39.9	P	9] Score: MW [kDa]: pl: No. of Pep Range 114-12:	tides: Sequence X KVEEELSLLR.R	23.90 9.71	
Protein 1 Accessio Database Seq. Cov Modificat Cmpd. 157 194 15	7: n1: 2: erage [%]: tion(s): No. of <u>Cmpds.</u> 1 1 1	d 9 N 8 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ense gran. i[23783414 ICBInr .60 % Dxidation <u>A m/z</u> [ppm] -17.76 -46.52 -29.93	z z z z z z	Rt [min] 31.4 34.4 19.6	sma gondi Score 39.9 59.8 21.6	P 1 1	9] Score: MW [kDa]: pl: No. of Pep Range 114-12: 115-12: 192-201	tides: Sequence X KVEEELSLLR.R	23.90 9.71	
Protein 1 Accessio Database Seq. Cov Modificat Cmpd. 157 194 15 Protein 1	7: pn: erage [%]: tion(s): No. of <u>Cmpds.</u> 1 1 8:	d 9 8 608.3400 544.2780 548.2680	ense granu il23783414 ICBInr .60 % Dxidation <u>A m/z [ppm]</u> -17.76 -46.52 -29.93 -type ATPa	z z z z z z z z z z z z z z z z z z z	Rt [min] 31.4 34.4	sma gondi Score 39.9 59.8 21.6	P 1 1	9] Score: MW [kDa]: pl: No. of Pep Range 114-12: 115-12: 192-201	tides: Sequence KKVEEELSLLR.R KVEEELSLLR.R	23.90 9.71 3	Modification
Protein 1 Accessic Database Seq. Cov Modificat Cmpd. 157 194 15 Protein 1 Accessic	7: nn: erage [%]: tion(s): No. of <u>Cmpds.</u> 1 1 1 8: nn:	d 9 N 8 0 1 608.3400 544.2780 548.2680 9 9	ense gran. i[23783414 ICBInr .60 % Dxidation <u>A m/z</u> [ppm] -17.76 -46.52 -29.93	z z z z z z z z z z z z z z z z z z z	Rt [min] 31.4 34.4 19.6	sma gondi Score 39.9 59.8 21.6	P 1 1	9] Score: MW [kDa]: pl: No. of Pep Range 114-12: 115-12: 192-201	tides: Sequence K-VVEEELSLLRR K-VVEEELSLLRR K-ROPFMSSVKN	23.90 9.71	Modification
Protein 1 Accessic Database Seq. Cov Modificat Cmpd. 157 194 15 Protein 1 Accessic Database	7: nn: erage [%]: tion(s): No. of <u>Cmpds.</u> 1 1 1 8: nn:	d 9 8 608.3400 544.2780 548.2680 P 9 9 8	ense granu i[23783414 (CBInr .60 % Dxidation <u>A m/z</u> [ppm] -17.76 -46.52 -29.93 -type ATPa i[22150268	z z z z z z z z z z z z z z z z z z z	Rt [min] 31.4 34.4 19.6	sma gondi Score 39.9 59.8 21.6	P 1 1	9] Score: MW [kDa]: pl: No. of Pep Range 114-12: 115-12: 115-12: 1192-201 ;] Score:	tides: Sequence K-VVEEELSLLRR K-VVEEELSLLRR K-ROPFMSSVKN	23.90 9.71 3 120.50	Modification
Protein 1 Accessic Database Seq. Cov Modificat Cmpd. 157 194 15 Protein 1 Accessic Database	7: on: erage [%]: tion(s): No. of <u>Cmpds.</u> 1 1 1 8: s:	d 9 8 608.3400 544.2780 548.2680 P 9 9 8	ense grant i[23783414 (CBInr .60 % Dxidation <u>A m/z</u> [ppm] -17.76 -46.62 -29.93 -type ATPa i[22150268 (CBInr	z z z z z z z z z z z z z z z z z z z	Rt [min] 31.4 34.4 19.6	sma gondi Score 39.9 59.8 21.6	P 1 1	9] Score: MW [kDa]: pl: No. of Pep Range 114-12: 115-12: 115-12: 192-200 9] Score: MW [kDa]:	tides: Sequence K-VYEEELSLLRR K-VYEEELSLLRR K-ROPFMSSVKN	23.90 9.71 3 120.50 144.50	Modification

5

Appendix

6

8

Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
19	1	621.8260	9.86	2	20.1	59.6	0	46-58	K.VGSQPVAAGAEEK.V		
189	1	702.8200	-56.23	2	33.5	25.9	0	673-684	R.VQELEVPFNSSR.K		
Protein 19 Accession Database Seq. Cove	n:	2	neat shock p pi[5738968 VCBInr 0.00 %	orotein 7	70 [Toxoplasn	na gondii]		Score: MW [kDa]: pl: No. of Pept	ides:	120.12 68.50 5.03 0	
Cmpd.	No. of Cmpds.	m/z meas.	Δm/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence		Modification
Protein 20 Accession Database Seq. Cove Modificati	n: : erage [%]:	9 1	SRS domair ji 23784104 VCBInr I1.30 % Carbamidor	9	ning protein [1	Foxoplasm	a gono	III ME49] Score: MW [kDa]: pl: No. of Pept	ides:	118.79 39.40 4.66 3	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence		Modification
328	1	748.9970	54.79	2	45.0	51.4	0	133-146	R.LVDVSTLIPTAIVR.G		
122	1	503.7470	-72.87	2	28.4	25.2	0		R.SCIVTVTVK.K		Carbamidomethyl: 2
350	1	1072.5000	-25.51	2	48.4	25.3	0	313-332	R.QDEGLGVCIMQALLPASEGR	R	Carbamidomethyl: 8
Protein 21 Accession Database Seq. Cove Modificati	n: : erage [%]:	9 1 4	iypothetical ji 23783668 NCBInr I.80 % Carbamidor	9	TGME49_00	3600 [Tox	oplasm	a gondii ME4 Score: MW [kDa]: pl: No. of Pept		87.16 47.20 8.46 2	

Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence	Modification
50	1	559,7660	-1.04	2	22.6	22.3	0	194-204	K.TGSPVCAVGDR.D	Carbamidomethyl: 6
209	1	548,7660	-35.16	2	35.5	64,9	0	322-331	K.SGYSLSDLVR.S	
Protein 22 Accessio Database Seq. Cove	n:	ç I	MORN repe gi 23783851 NCBInr 3.40 %		aining protein	[Toxoplas	ma go	ndii ME49] Score: MW [kDa]: pl: No. of Pep	49	i.36 120 15
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence	Modification
4	1	745.8750	15.65	2	17.3	85.4	0	408-423	R.QTASTAGSAQPATGSR.A	
Database Seq. Cove	: erage [%]:		NCBInr I.90 %					MW [kDa]: pl: No. of Pep	5.	.50 55
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence	Modification
49	1	560.7540	-84.66	2	21.7	68.2	0	579-590	R.LSGTGSTGATIR.V	
Protein 24 Accessio Database Seq. Cove Modificat	n: : erage [%]:	9 1 4	conserved h gi 22148067 NCBInr 4.10 % Carbamidor	9	tical protein [1	oxoplasm	a gond	ii GT1] Score: MW [kDa]: pl: No. of Pep	36	
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence	Modification

234	1	797.8430	-67.22	2	37.4	49.6	0	115-129	K.GIDASAFTFTPPSQR.A		
Protein 2	5:	s	mc familv/s	tructur	al maintenanc	e of chrom	nosome	Babesia bo	visl		
ccessio			i 15608443					Score:		54 17	
Database			CBInr					MW [kDa]:		137.40	
Sea. Cov	erage [%]:		70 %					pl:		8.63	
								No. of Pep	tides:	1	
Cmpd.	No. of	m/z meas.	Δm/z	z	Rt	Score	P	Range	Sequence		Modification
	Cmpds.		[ppm]		[min]			-	-		
86	1	479.7500	947.99	2	25.5	54.2	1	955-962	R.VVSDRLLR.D		
			CBInr					MW [kDa]:		38.60	
	: erage [%]:		.90 %					No. of Pep	tides:	7.55 1	
ieq. Cov Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	pl: No. of Pep Range	Sequence	7.55	Modification
ieq. Cov	No. of	3	.90 % Δ m/z	z 2		Score 50.0	P 0	pl: No. of Pep Range		7.55	Modification
Cmpd. 129 Protein 2 Accessio Database	No. of Cmpds. 2 7: n:	3 m/z meas. 666.8350 n 9	.90 % Δ m/z [ppm] -28.35	2 protein	[min]	50.0	0	pl: No. of Pep Range 21-34 GT1] Score: MW [kDa]: pl:	Sequence K.GILAADESTGTIGK.K	7.55	Modification
Cmpd. 129 Protein 2 Accessio Database Seq. Cov	No. of Cmpds. 2 7: n: : erage [%]:	3 m/z meas. 666.8350 g N 3	.90 % ▲ m/z [ppm] -28.38 nicroneme ii]22148683 ICBInr	2 protein 5	[min] 29.3	50.0	0	pl: No. of Pep Range 21-34 GT1] Score: MW [kDa]:	Sequence K.GILAADESTGTIGK.K	7.55 1 49.39 36.30	Modification
Cmpd. 129 Protein 2 Accessio Database	No. of Cmpds. 2 7: n: : erage [%]:	3 m/z meas. 666.8350 g N 3	.90 % [ppm] -28.35 nicroneme i]22148683 ICBInr .80 %	2 protein 5	[min] 29.3	50.0	0	pl: No. of Pep Range 21-34 ST1] Score: MW [kDa]: pl: No. of Pep Range	Sequence K.GILAADESTGTIGK.K	7.55 1 49.39 36.30	Modification

earch Type earch Result earch Location	F		2014	IS - Protein 09-10 10:2		r				
rotein 1: .ccession: atabase: eq. Coverage [%]: lodification(s):	9 14	ii 22219177 VCBInr I8.40 %		ructure Of A P Oxidation, De		otein	Score: MW [kDa]: pl: No. of Pept	ides:	758.55 29.80 7.73 15	
Cmpd. No. of Cmpds.	m/z meas.	∆ m/z [mqq]	z	Rt [min]	Score	Р	Range	Sequence		Modification
176 3	815.8800	-55.64	2	33.5	41.9	0	38-52	K.TALTEPPTLAYSPNR.Q		
21 3	749.2950	-56.37	2	20.1	47.4	0	53-66	R.QICPAGTTSSCTSK.A		Carbamidomethyl: 3, 11
252 9	798.8860	-50.51	2	40.3	64.9	0	103-116	K.FPVTTQTFVVGCIK.G		Carbamidomethyl: 12
137 1	869.3720	-30.32	2	30.7	45.6	0	117-132	K.GDDAQSCMVTVTVQAR.A		Carbamidomethyl: 7
95 1	877.8790	-10.05	2	26.9	43.3	0	117-132	K.GDDAQSCMVTVTVQAR.A		Carbamidomethyl: 7; Oxidatio 8; Deamidated: 5
39 4	508.7550	-44.82	2	21.8	64.9	0	133-142	R.ASSVVNNVAR.C		
15 3	509.2610	-17.30	2	20.6	62.8	0	133-142	R.ASSVVNNVAR.C		Deamidated: 6
44 3	509.2330	-72.29	2	22.4	48.6	0	133-142	R.ASSVVNNVAR.C		Deamidated: 7
96 3	677,7710	-70.83	2	27.4	70.9	0	143-155	R.CSYGADSTLGPVK.L		Carbamidomethyl: 1
157 2	782.8480	-52.51	2	32.5	39.8	Ö		K.LSAEGPTTMTLVCGK.D		Carbamidomethyl: 13
131 3	790.8560	-38.65	2	30.2	29.7	0		K.LSAEGPTTMTLVCGK.D		Carbamidomethyl: 13; Oxidation: 9
78 1	585.3310	-50.63	1	25.2	23.9	0	198-202	K.DILPK.L		
104 4	774.3190	592.81	2	27.8	45.7	0	203-216	K.LTENPWQGNASSDK.G		
77 2	652,7850	-67.98	2	25.3	54.0	0	233-245	K.SVIIGCTGGSPEK.H		Carbamidomethyl: 6
75 2	511.2350	-67.05	2	26.0	52.7	0	252-262	K.LEFAGAAGSAK.S		
77 2	652.7850 511.2350	-67.98 -67.05	2 2	25.3	54.0 52.7	0	233-245 252-262	K.SVIIGCTGGSPEK.H K.LEFAGAAGSAK.S	471.10 34.90 8.07	Carbamidomethyl: (

9

Appendix

Nodificat	tion(s):	(Carbamidor	methyl,	Deamidated			No. of Pept	tides: 10	
Cmpd.	No. of Cmpds.	m/z meas.	Δm/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence	Modification
165	1	645.8010	-12.35	2	32.7	48.0	0	42-52	K.CDQDGSLLNLR.V	Carbamidomethyl: 1
39	1	534.2440	-52.45	2	22.8	57.0	0	53-62	R.VTGNSSVEFK.C	
56	1	534,7150	-91.68	2	24.3	26.5	0	53-62	R.VTGNSSVEFK.C	Deamidated: 4
45	1	473.2500	24.62	3	23.3	39.5	0	63-76	K.CGGAVPNLHPNPGK.T	Carbamidomethyl: 1
7	1	525.7390	-27.53	2	19.2	67.6	0		K.CSSLANTAAR.V	Carbamidomethyl: 1
1	1	476.5580	-37.11	3	17.1	30.5	1	136-149	R.VGAGQPGQEAEKEK.T	
222	1	793.3900	-42.82	2	37.9	32.0	0	150-163	K.TCIVQTSVWGPPIK.G	Carbamidomethyl: 2
27	1	540 6750	-114 58	2	21.8	43.0	0		K.EYPTPDACK.N	Carbamidomethyl: 8
148	1	630,2830	-70.64	2	31.5	43.3	0		K NGTI SI EVNPSK K	Deamidated: 1
146	1	785.7180	1.57	3	31.3	68.2	ō	213-234	K.ECTTSSTLAEHLSGASLVQHAR.	Carbamidomethyl: 2
Protein 3 Accessio Database	n:	g	actin [Toxop ji 23784073 VCBInr		gondii ME49]			Score: MW [kDa]:	443.08 41.90	
Accessio Database	on: erage [%]:	9 N 3	i 23784073	31					41.90 4.91	
atabase eq. Cov	verage [%]: tion(s):	9 N 3	ji[23784073 VCBInr 88.30 % Carbamidor Δm/z	31		Score	Ρ	MW [kDa]: pl:	41.90 4.91	Modification
ccessio atabase eq. Cov lodificat	in: erage [%]: tion(s):	9 N 3	ji 23784073 NCBInr 38.30 % Carbamidor	nethyl,	Oxidation Rt	Score 35.8	P 0	MW [kDa]: pl: No. of Pept Range	41.90 4.91 tides: 14	Modification
ccessio atabase eq. Cov lodificat Cmpd.	in: erage [%]: tion(s): No. of Cmpds. 2	9 3 (m/z meas. 571.8350	ij[23784073 NCBInr 88.30 % Carbamidor Δm/z [ppm] -26.65	nethyl, z	Oxidation Rt [min] 29.9	35.8	0	MW [kDa]: pl: No. of Pept Range 30-40	41.90 4.91 tides: 14 Sequence R.AVFPSIVGKPK.N	Modification
accessio latabase leq. Cov lodificat Cmpd. 137	n: erage [%]: tion(s): No. of Cmpds.	g N 3 (m/z meas.	ji[23784073 VCBInr 88.30 % Carbamidor Am/z [ppm]	nethyl,	Oxidation [min] 29.9 27.1			MW [kDa]: pl: No. of Pept Range 30-40 41-51	41.90 4.91 tides: 14	
ccessio latabase ieq. Cov lodificat Cmpd. 137 103	verage [%]: tion(s): No. of Cmpds. 2 2	g N 3 (m/z meas. 571.8350 610.7770	ij[23784073 VCBInr 88.30 % Carbamidor Δ m/z [ppm] -26.65 -14.94	nethyl, z 2 2	Oxidation Rt [min] 29.9	35.8	0	MW [kDa]: pl: No. of Pept Range 30-40 41-51 41-51	41.90 4.91 14 Sequence RAVFPSIVGKPK.N K.NPGINVGKEEK.D	Oxidation: 5
ccessio latabase leq. Cov lodificat Cmpd. 137 103 65	n: erage [%]: tion(s): No. of Cmpds. 2 2 2	9 3 3 (m/z meas. 571.8350 610.7770 618.7540	ij[23784073 VCBInr 38.30 % Carbamidor Δ m/z [ppm] -26.65 -14.94 -47.81	z 2 2 2 2	Oxidation Rt [min] 29.9 27.1 24.3	35.8 24.5 26.3	0	MW [kDa]: pl: No. of Pept Range 30-40 41-51 41-51 52-62	41.90 4.91 tides: 14 Sequence R.AVFPSIVGKPK.N K.NPGIM/GMEEK.D K.NPGIM/GMEEK.D	Oxidation: 5 Oxidation: 5, 8
ccessid atabase eq. Cov lodificat Cmpd. 137 103 65 24 209		9 M 3 (m/z meas. 571.8350 610.7770 618.7540 636.2540 973.9500	ij[23784073 VCBInr 8.30 % Carbamidor Δ m/z [ppm] -26.65 -14.94 -47.81 -69.26 -1.32	2 2 2 2 2 2 2	Oxidation Rt [min] 29.9 27.1 24.3 21.2 35.6	35.8 24.5 26.3 31.7 24.1	0 0 0 0 0 0 0 0 0	MW [kDa]: pl: No. of Pept Range 30-40 41-51 52-62 70-85	41:00 4.511 kides: 14 Sequence R.AVFPSIVGKPK.N K.NPGIMVGMEEK.D K.DCYVGDEAGSK.R K.VPEINGIVTMODMEK.I	Oxidation: 5 Oxidation: 5, 8 Carbamidomethyl: 2
ccessio latabase leq. Cov lodificat Cmpd. 137 103 65 24 209 172	No. of Cmpds. 2 No. of Cmpds. 2 2 2 2 1 1	9 M 3 (m/z meas. 571.8350 610.7770 618.7540 636.2200 973.9500 981.9100	ji 23784073 NCBInr 188.30 % Carbamidor ∆m/z [ppm] -26.65 -14.94 -47.81 -69.26 -1.32 -39.45	31 z 2 2 2 2 2 2 2 2	Oxidation [min] 29.9 27.1 24.3 21.2 35.6 33.0	35.8 24.5 26.3 31.7 24.1 23.9	0 0 0 0 0 0 0 0 0 0 0 0	MW [kDa]: pl: No. of Pept Range 30-40 41-51 41-51 52-62 70-85 70-85	41:00 4.01 kides: 14 Sequence RAVF29RXXBVK.N XNPGBVXDVREX.D XNPGBVXDVREX.D XNPGBVXDVREX.D XVPEVGVTVNXDDVEK.I X.YPEVGVTVNXDDVEK.I	Oxidation: 5 Oxidation: 5, 8
ccessio atabase eq. Cov lodificat Cmpd. 137 103 65 24 209 172 140	Nr: 2: erage [%]: tion(s): No. of Cmpds. 2 2 2 2 1 3	m/z meas. 571.8350 610.7770 618.7540 636.2200 973.9500 981.9100 505.8980	ji 23784073 NCBInr 18.30 % Carbamidor ∆ m/z [ppm] -26.68 -14.94 -47.81 -69.26 -1.32 -39.48 -45.93	31 z 2 2 2 2 2 2 2 3	Rt [min] 29.9 27.1 24.3 36.6 33.0 30.2	35.8 24.5 26.3 31.7 24.1 23.9 43.4	0 0 0 0 0 0	MW [kDa]: pl: No. of Pept 30-40 41-51 52-62 70-85 70-85 86-96	4190 491 kavresvarker kavresvarker kavreaver kov kov kov kov kov kov kov kov kov kov	Oxidation: 5 Oxidation: 5, 8 Carbamidomethyl: 2
ccessio atabase eq. Cov lodificat Cmpd. 137 103 65 24 209 172 140 193	No. of Cmpds. 2 No. of Cmpds. 2 2 2 2 1 1 3 2 2 2 2 2 2 2 2 2 2 2 2 2	m/z meas. 571.8350 610.7770 618.7540 973.9500 973.9500 981.9100 505.8980 651.9830	ij[23784073 VCBInr 38.30 % Carbamidor Δ m/z [ppm] -26.65 -14.94 -47.81 -69.26 -1.32 -39.45 -45.93 -66.44	81 z 2 2 2 2 2 2 3 3	Rt [min] 29.9 27.1 24.3 21.2 35.6 33.0 30.2 34.0 34.0	35.8 24.5 26.3 31.7 24.1 23.9 43.4 29.2	0 0 0 0 0 0 0	MW [kDa]: pl: No. of Pept Range 30-40 41-51 41-51 52-62 70-85 70-85 86-96 97-114	41:00 4.91 Itdes: 14 Sequence RUNPERVOKPKIN AUPOINTOVERCIA AUPOINTOVERCIA KUPPENOTVINODAREKI KVPEHOLYTWODAREKI KVPEHOLYTWODAREKI KUPPENOTVINCIA	Oxidation: 5 Oxidation: 5,8 Carbamidomethyl: 2 Oxidation: 14
ccessio latabase leq. Cov lodificat Cmpd. 137 103 65 24 209 172 140 193 150	No. of Cmpds. 2 No. of Cmpds. 2 2 2 1 1 1 3 2 1 1 1 3 2 1	m/z meas. 571.8350 610.7770 618.7540 636.2200 973.9550 981.9100 505.8880 651.9830 651.9830	ji[23784073 NCBInr 38.30 % Carbamidor Δ m/z [ppm] -26.65 -14.94 -47.81 -69.26 -1.32 -39.45 -45.94 -66.44 -57.83	2 2 2 2 2 2 3 3 2 2	Oxidation Rt [min] 29.9 27.1 24.3 21.2 35.6 33.0 30.2 34.0 31.1	35.8 24.5 26.3 31.7 24.1 23.9 43.4 29.2 37.8	0 0 0 0 0 0 0 0 0 0	MW [kDa]: pl: No. of Pept Range 30-40 41-51 52-62 70-85 86-96 97-114 185-192	4190 491 Ides: 11 Sequence KAVPERVOKPK.N KAPGINYOMEEKD KAVPGINYOMEEKD KAVPGINYOMEEKD KAVPERVOKPKI. KAVPERVERVITER/EV/	Oxidation: 5 Oxidation: 5, 8 Carbamidomethyl: 2
ccessio atabase eq. Cov lodificat Cmpd. 137 103 65 24 209 172 140 193	No. of Cmpds. 2 No. of Cmpds. 2 2 2 2 1 1 3 2 2 2 2 2 2 2 2 2 2 2 2 2	m/z meas. 571.8350 610.7770 618.7540 973.9500 973.9500 981.9100 505.8980 651.9830	ij[23784073 VCBInr 38.30 % Carbamidor Δ m/z [ppm] -26.65 -14.94 -47.81 -69.26 -1.32 -39.45 -45.93 -66.44	81 z 2 2 2 2 2 2 3 3	Rt [min] 29.9 27.1 24.3 21.2 35.6 33.0 30.2 34.0 34.0	35.8 24.5 26.3 31.7 24.1 23.9 43.4 29.2	0 0 0 0 0 0 0	MW [kDa]: pl: No. of Pept Range 30-40 41-51 41-51 52-62 70-85 70-85 86-96 97-114 185-192 198-207	41:00 4.91 Itdes: 14 Sequence RUNPERVOKPKIN AUPOINTOVERCIA AUPOINTOVERCIA KUPPENOTVINODAREKI KVPEHOLYTWODAREKI KVPEHOLYTWODAREKI KUPPENOTVINCIA	Oxidation: 5 Oxidation: 5, 8 Carbamidomethyl: 2 Oxidation: 14

70	1	479.7010	-62.83	2	24.7	24.5	0		R.TTFDSIMK.C		Oxidation: 7
115	4	597.2600	-79.94	2	28.2	24.0	0		K.ELTSLAPSTMK.I		Oxidation: 10
75	1	759.3140	-43.43	2	25.1	27.3	0	361-373	K.EEYDESGPSIVHR.K		
Protein 4:		а	ictin [Symbi	iodiniun	n sp. clade C]						
Accession	n:	g	i 86562730					Score:		357.04	
Database		Ň	CBInr					MW [kDa]:		41.80	
Seq. Cove	erage [%]:	1	3.00 %					pl:		5.22	
								No. of Pept	ides:	4	
Modificati	ion(s):	(Oxidation								
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [mqq]	z	Rt [min]	Score	Ρ	Range	Sequence		Modification
37	1	488.7170	-22.06	2	22.2	74.5	0	20-29	K.AGFAGDDAPR.A		
17	2	599,7230	-69.62	2	20.5	52.7	0	52-62	K.DSYVGDEAQSK.R		
195	1	651,6790	498.29	3	33.9	21.7	0	97-114	R.PAPEEHPVLLTEAPLN	PK.A	
93	1	566 7440	-40.76	2	26.5	32.7	0	198-207	R.GYSFTTTAER.E		
Accession Database Seq. Cove		Ň	ij27450759 VCBInr I.30 %					Score: MW [kDa]: pl: No. of Pept	ides:	321.12 41.70 5.83 1	
Modificati	ion(s):	0	Oxidation								
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [mqq]	z	Rt [min]	Score	Р	Range	Sequence		Modification
240	1	895.9210	-31.92	2	38.3	56.7	0	239-254	K.SYELPDGQVITIGNER.F	1	
Protein 6: Accession Database: Seq. Cove	n:	9	AG-3 [Tox i 30068003 ICBInr 2.70 %		a gondii]			Score: MW [kDa]: pl: No. of Pepi	idae	288.09 41.70 6.59 5	

Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence Modification	
179	3	586.2790	-72.51	2	33.0	41.1	0		K.ITYFGTLTQK.A	
79	2	470.5620	-47.37	3	25.4	35.0	0	76-88	R.ANEEVVGHVTLNK.E	
258	2	591.2790	-58.66	2	39.3	35.6	0	135-145	K.GFLTDYIPGAK.Q	
91	1	584,2680	-54.95	3	26.2	42.4	1	151-165	K.IEKVENNGEQSVLYK.F Deamidated: 7	
81	2	690.8150	-29.98	2	25.7	57.6	0	154-165	K.VENNGEQSVLYK.F Deamidated: 3	-
rotein 7					MIC3 [Toxopla	asma gon	dii ME4			
ccessic			ji 23784107	'1				Score:	268.58	
atabase			VCBInr					MW [kDa]:	37.90	
eq. Cov	erage [%]:	2	27.00 %					pl:	6.02	
								No. of Pep	ides: 7	
lodifica	tion(s):	(Carbamidor	nethyl,	Deamidated					
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence Modification	
80	1	932.3890	-52.57	2	25.1	51.2	0	71-86	K.QETQLCAISSEGKPCR.N Carbamidomethyl: 6, 1	5
131	1	603.6130	-1.53	3	30.3	29.7	0		R.QLHTDNGYFIGASCPK.S Carbamidomethyl: 14; Deamidated: 1	
146	2	603.2630	-37.99	3	30.4	33.4	0		R.QLHTDNGYFIGASCPK.S Carbamidomethyl: 14	
58	4	610.5670	-56.81	3	24.4	35.9	0		K.NAECVENLDAGGGVHCK.C Carbamidomethyl: 4, 1	
173	2	915.3660	-23.66	2	32.6	37.4	0		K.DGFVGTGLTCSEDPCSK.R Carbamidomethyl: 10,	
100	1	831.5920	-71.07	3	26.5	23.1	0		R.CIDDASHENGYTCECPTGYSR.E Carbamidomethyl: 1, 1 Deamidated: 9	3, 15;
92	2	543.2140	-66.69	2	26.1	58.0	0	294-303	K.EFGISASSCK.C Carbamidomethyl: 9	
rotein 8			onconvod b	wootho	tical protein IT	ovonlarm	-	E GT 11		
ccessic			il22148864		ucai protein [1	охоріазін	a gone	Score:	261.19	
latabase			ICBInr	0				MW [kDa]:	33.90	
			9 70 %					niv [kDaj.	6.04	
	erage [%]:		9.70 %					No. of Pep		
Seq. Cov		(Oxidation, D	Deamid	ated			NO. OI Pep	ides. 0	
	tion(s):									
Nodifica		m/r mase	A m/r		D+	Score	D			
	No. of Cmpds.	m/z meas. 637.2820	∆ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence Modification RAAVAAAANGAETGK.A Deamidated: 9	

	1	636.7840	-73.43	2	20.6	57.7	0	36-50	R.AAVAAAAANGAETGK.A		
42	1	517.2620	-28.19	2	22.1	42.9	0	56-65	K.LAGQMSLAAR.S		Oxidation: 5
53	1	627.7970	-77.55	2	22.9	43.0	0	114-124	K.APPYKPIPESR.F		
288	1	817.3980	-42.64	2	41.9	51.0	0	180-192	K.QPFTILYLEPEQR.T		
165	1	751.8670	-7.04	2	31.9	24.9	0	193-205	R.TFAEPEQPDIEVK.D		
Protein 9											
Accessio		le	ong-chain fa	itty acio	d CoA ligase,	putative [I	oxopla	isma gondii N	1E49]	177 82	
Accessio			ii 23783516 JCBInr	3				Score:		82 10	
			40 %					MW [kDa]:			
seq. Cov	erage [%]:	6	0.40 %					pl:		5.21	
								No. of Pept	lides:	4	
Nodificat	ion(s):	(Carbamidon	nethyl, i	Oxidation						
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence		Modification
37	1	551.7730	-64.82	2	22.1	51.3	1	240-250	K.AVAELKAGESK.A		
137	1	541.2890	54.54	3	29.6	42.9	0	540-553	R.IDDPEHPAGELCLR.G		Carbamidomethyl: 12
170	1	554.8010	14.56	2	32.0	38.5	0	554-563	R.GPTITPGYFR.N		
143	1	801.3460	-9.50	2	30.0	25.4	0	732-744	K.EIDALYSEMETER.A		Oxidation: 9
									CEIDAE I VEINE LEILA		
Protein 1 Accessio Database Seq. Cov	n:	9	lense granu ji 2062409 VCBInr !3.30 %	le prote	ain [Toxoplasn	na gondii]		Score: MW [kDa]: pl: No. of Pept		176.49 25.30 4.80 4	
Accessio Database Seq. Cov	n: :: erage [%]:	9 N 2	il2062409 VCBInr 13.30 %					MW [kDa]: pl: No. of Pept	tides:	25.30 4.80	
Accessio Database Seq. Cov Cmpd.	n: K	g N 2 m/z meas.	ij 2062409 VCBInr !3.30 % <u>A m/z</u> [ppm]	z	ein [Toxoplasn Rt [min]	Score	P	MW [kDa]: pl: No. of Pept Range	tides: Sequence	25.30 4.80	Modification
Accessio Database Seq. Cov Cmpd. 71	No. of Cmpds.	9 N 2 m/z meas. 493.7560	ij 2062409 VCBInr !3.30 % Δ m/z [ppm] -22.09	z 2	Rt [min] 24.4	Score 23.8	0	MW [kDa]: pl: No. of Pept Range 72-80	lides: Sequence KASVESQLPR.R	25.30 4.80	
Accessio Database Seq. Cov Cmpd. 71 123	No. of Cmpds.	9 N 2 m/z meas. 493.7560 713.9800	ij 2062409 VCBInr 13.30 % <u>A m/z [ppm]</u> -22.09 -32.08	z 2 3	Rt [min] 24.4 28.4	Score 23.8 56.0	0	MW [kDa]: pl: No. of Pept Range 72-80 81-97	tides: Sequence K.ASVESQLPR.R R.REPLETEPDEQEEVHFR.K	25.30 4.80	
Accessio Database Seq. Cov Cmpd. 71	No. of Cmpds.	9 N 2 m/z meas. 493.7560	ij 2062409 VCBInr !3.30 % Δ m/z [ppm] -22.09	z 2	Rt [min] 24.4	Score 23.8	0	MW [kDa]: pl: No. of Pept Range 72-80 81-97	lides: Sequence KASVESQLPR.R	25.30 4.80	

13

Appendix

Accessio Database Seq. Cov		Ň	i 23783781 ICBInr 3.70 %	9				Score: MW [kDa]: pl: No. of Pept	173.95 39.10 7.76 5	
Modificat	tion(s):	0	Carbamidor	nethyl, (Oxidation			110. 01 1 Cp.		
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence	Modification
255	3	702.8260	-65.59	2	38.9	51.8	0	136-148	K.EWVTGDSVLTGLK.I	
102	3	702.3150	-66.77	2	27.2	34.3	0	149-161	K.ISVPESQYPANAK.S	
112	2	548.9320	-1.09	3	28.0	25.3	0		K.TGNTCMLTIHVEPR.D	Carbamidomethyl: 5; Oxidation 6
151	2	543.5920	-16.48	3	30.9	36.6	0		K.TGNTCMLTIHVEPR.D	Carbamidomethyl: 5
59	2	650.2650	-50.61	2	24.2	26.0	0	197-207	R.CSYTENSTLPK.I	Carbamidomethyl: 1
	erage [%]:		1 70 %						5.66	
Modificat	,	ſ	Deamidated		-	- 1		pl: No. of Pept	tides: 4	
Modificat Cmpd.	tion(s): No. of Cmpds.	m/z meas.	Dearnidated Δ m/z [ppm]	z	Rt [min]	Score	Р	No. of Pept	sequence	Modification
	No. of Cmpds. 5	m/z meas. 847.9980	Deamidated ∆ m/z [ppm] -29.05	z 3	[min] 18.4	51.0	P 1	No. of Pept Range 177-203	ides: 4 Sequence RRSPQEPSQDGGGNDAGNNAGNGG NEGR.G	Deamidated: 21
Cmpd. 10 5	No. of Cmpds. 5 3	m/z meas. 847.9980 848.0140	Deamidated <u> </u>	z 3 3	[min] 18.4 17.8	51.0	÷	No. of Pepi Range 177-203	ides: 4 Sequence R.RSPQEPSGDGGNDAGNNAGNGG NRGR.G R.RSPQEPSGDGGGNDAGNNAGNGG NRGR.G	Deamidated: 21 Deamidated: 18
Cmpd. 10	No. of Cmpds. 5	m/z meas. 847.9980	Deamidated ∆ m/z [ppm] -29.05	z 3	[min] 18.4	51.0	1	No. of Pepi Range 177-203	ides: 4 Sequence R.RSPQEPSGDGGGNDAGNNAGNGG NEGR.G R.RSPQEPSGDGGGNDAGNNAGNGG	Deamidated: 21
Cmpd. 10 5	No. of Cmpds. 5 3	m/z meas. 847.9980 848.0140	Deamidated <u> </u>	z 3 3	[min] 18.4 17.8	51.0	1	No. of Pepi Range 177-203 177-203 177-203	Ides: 4 Sequence RRSPOEPSGOGGONDAGNNAGNGG REGR.G RRSPOEPSGOGGGNDAGNNAGNGG NEGR.G RSPOEPSGOGGGNDAGNNAGNGG	Deamidated: 21 Deamidated: 18

lodifica	tion(s):	(Carbamido	methyl				No. of Pep	tides:	3	
Cmpd.	No. of Cmpds.	m/z meas.	Δm/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
76	1	785.8590	592.83	2	35.2	24.7	0		K.LTISPSGEGDVFYGK.E		
66	2	706.4370	-15.26	2	33.8	49.8	1	82-95	R.KLTTVLPGAVLTAK.V		
5	3	529.6970	-111.40	2	19.2	62.6	0	124-134	K.CVAEAGAPAGR.N		Carbamidomethyl: 1
Protein 1 Accessic Database Seq. Cov	in:	g	ubtilisin-lik ji 15419013 VCBInr \$.50 %		n [Toxoplasma	a gondii]		Score: MW [kDa]: pl: No. of Pep	tides:	136.55 85.00 5.07 4	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [mqq]	z	Rt [min]	Score	Р	Range	Sequence		Modification
27	Cmpas.	603.2110	-88.52	2	[min] 21.1	21.1	0	271-280	R.DNMEVNQAER.D		
24	1	547,2600	-46.53	2	20.8	44.7	0	615-625	R.TPPSAPSPSPR.T		
2	3	561,6180	2.99	3	18.4	25.2	0	706-721	R.SGSQPKPPQDNTTTPK.M		
122	1	862.3040	-68.05	2	28.4	45.5	0	746-760	R.EEEPPTDEDDFSSVK.G		
Protein 1 Accessic Database Seq. Cov Modifica	on: e: erage [%]:	9 N 2	hosphofrug i 23783410 VCBInr 2.80 % Carbamidor	03	e, putative (To	oxoplasma	a gondi	i ME49] Score: MW [kDa]: pl: No. of Pep	tides:	133.85 131.30 5.82 3	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence		Modification
	1	647.3240	6.64	2	32.5	50.0	0		R.SVFEELPESTR.R		
178	1	676.8230	-22.54	2	26.0	24.9	1		R.TEREEAELFTK.E		Carbamidomethyl: 3
178 94 119	1	644.3100	-18.19	2	28.1	58.9	0		R.VVCVEPSGDLGR.F		

	n: : erage [%]:	9 N 1	i 22148182 ICBInr 0.00 %	6	tical protein [T	oxoplasm	a gond	ii GT1] Score: MW [kDa]: pl: No. of Pept	ides:	133.11 45.10 7.74 3	
Modificat	ion(s):	C	Carbamidon	nethyl							
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
329	1	780.3650	-48.99	2	46.1	51.9	0		R.FLDPIDELPEPFK.A		
169	1	547.2190	-122.67	3	32.7	42.9	0		K.SPISPDVAVYVHAER.L		
210	1	705.2920	-68.21	2	35.7	38.3	1	389-400	K.LCDAFTDVAIRE		Carbamidomethyl: 2
Accessio Database Seq. Cove Modificat	: erage [%]:	N 8	i 23783414 ICBInr .60 % Dxidation	7				Score: MW [kDa]: pl: No. of Pept	tides:	120.94 23.90 9.71 3	
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
157	1	608.3400	-17.76	2	31.4	39.9	1		K.KVEEELSLLR.R		
194	1	544.2780	-46.52	2	34.4	59.5	0		K.VEEELSLLR.R		
15	1	548.2680	-29.93	2	19.6	21.6	1	192-200	K.RQPFMSSVK.N		Oxidation: 5
Protein 11 Accessio Database Seq. Cove Modificat	n: : erage [%]:	9 N 1	-type ATPa i 22150268 ICBInr .90 % Dxidation		ative [Toxopla	asma goni	dii VEG] Score: MW [kDa]: pl: No. of Pept	ides:	120.50 144.50 5.80 2	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
19	1	621.8260	9.86	2	20.1	59.6	0	46-58	K.VGSQPVAAGAEEK.V		
15		021.0200	5.00	-	20.1	00.0	Ū	40-00	CTODAL TAXOALLICT		

	1	702.8200	-56.23	2	33.5	25.9	0	673-684	R.VQELEVPFNSSR.K		
Protein 1	9:	h	eat shock	protein 1	70 (Babesia gi	ibsonil					
Accessio	in:		il15651105					Score:		120.12	
Database	9:		CBInr					MW [kDa]:		39.50	
Sea. Cov	erage [%]:	6	40 %					pl:		6.36	
		-						No. of Pept	tides:	2	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence		Modification
188	1	744.3300	-32.61	2	31.9	85.6	0		R.TTPSYVAFTDTER.L		
144	1	574.7890	10.87	2	28.7	34.5	0	61-70	R.NPENTIFDAK.R		
	erage [%]:	Ñ 1	i 23784104 ICBInr 1.30 %					Score: MW [kDa]: pl: No. of Pept	tides:	118.79 39.40 4.66 3	
	tion(s):	0	Carbamido	nethyl							
woultica											
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence		Modification
Cmpd.	No. of Cmpds.	m/z meas. 748.9970	[ppm] 54.79	2	[min] 45.0	51.4	0	133-146	R.LVDVSTLIPTAIVR.G		
Cmpd. 328 122	No. of Cmpds. 1	m/z meas. 748.9970 503.7470	[ppm] 54.79 -72.87	2	[min] 45.0 28.4	51.4 25.2	0	133-146 188-196	R.LVDVSTLIPTAIVR.G R.SCIVTVTVK.K		Carbamidomethyl: 2
Cmpd. 328	No. of Cmpds.	m/z meas. 748.9970	[ppm] 54.79	2	[min] 45.0	51.4	0	133-146 188-196	R.LVDVSTLIPTAIVR.G	GR.R	
Cmpd. 328 122 350	No. of Cmpds. 1 1	m/z meas. 748.9970 503.7470 1072.5000	[ppm] 54.79 -72.87 -25.51	2 2 2	[min] 45.0 28.4 48.4	51.4 25.2 25.3	0 0 0	133-146 188-196 313-332	R.LVDVSTLIPTAIVR.G R.SCIVTVTVK.K R.QDEGLGVCIMQALLPASE	GR.R	Carbamidomethyl: 2
Cmpd. 328 122 350 Protein 2	No. of Cmpds. 1 1 1	m/z meas. 748.9970 503.7470 1072.5000 h	[ppm] 54.79 -72.87 -25.51	2 2 2 protein	[min] 45.0 28.4	51.4 25.2 25.3	0 0 0	133-146 188-196 313-332	R.LVDVSTLIPTAIVR.G R.SCIVTVTVK.K R.QDEGLGVCIMQALLPASE	GR.R 87.16	Carbamidomethyl: 2
Cmpd. 328 122 350 Protein 2 Accessio	No. of Cmpds. 1 1 1	m/z meas. 748.9970 503.7470 1072.5000 h	[ppm] 54.79 -72.87 -25.51 ypothetical	2 2 2 protein	[min] 45.0 28.4 48.4	51.4 25.2 25.3	0 0 0	133-146 188-196 313-332 na gondii ME4 Score:	R.LVDVSTLIPTAIVR.G R.SCIVTVTVK.K R.QDEGLGVCIMQALLPASE		Carbamidomethyl: 2
Cmpd. 328 122 350 Protein 2 Accessic Database	No. of Cmpds. 1 1 1 1	m/z meas. 748.9970 503.7470 1072.5000 h g N	[ppm] 54.79 -72.87 -25.51 ypothetical	2 2 2 protein	[min] 45.0 28.4 48.4	51.4 25.2 25.3	0 0 0	133-146 188-196 313-332 na gondii ME4 Score: MW [kDa]:	R.LVDVSTLIPTAIVR.G R.SCIVTVTVK.K R.QDEGLGVCIMQALLPASE	87.16 47.20	Carbamidomethyl: 2
Cmpd. 328 122 350 Protein 2 Accessic Database	No. of Cmpds. 1 1 1	m/z meas. 748.9970 503.7470 1072.5000 h g N	[ppm] 54.79 -72.87 -25.51 ypothetical ij23783668 ICBInr	2 2 2 protein	[min] 45.0 28.4 48.4	51.4 25.2 25.3	0 0 0	133-146 188-196 313-332 ha gondii ME4 Score: MW [kDa]: pl:	RLVDVSTLIPTAIVR.G R.SCIVTVTVK.K R.QDEGLGVCIMQALLPASE 19]	87.16	Carbamidomethyl: 2
Cmpd. 328 122 350 Protein 2 Accessic Database Seq. Cov	No. of Cmpds. 1 1 1 1 1 : : : : : : : : : : : : : :	m/z meas. 748.9970 503.7470 1072.5000 h 9 N 4	[ppm] 54.79 -72.87 -25.51 ypothetical ij23783668 ICBInr	2 2 2 9 9	[min] 45.0 28.4 48.4	51.4 25.2 25.3	0 0 0	133-146 188-196 313-332 na gondii ME4 Score: MW [kDa]:	RLVDVSTLIPTAIVR.G R.SCIVTVTVK.K R.QDEGLGVCIMQALLPASE 19]	87.16 47.20 8.46	Carbamidomethyl: 2
Cmpd. 328 122 350 Protein 2 Accessic Database	No. of Cmpds. 1 1 1 1 1 : : : : : : : : : : : : : :	m/z meas. 748.9970 503.7470 1072.5000 h 9 N 4	[ppm] 54.79 -72.87 -25.51 ypothetical il[23783666 ICBInr .80 %	2 2 2 9 9	[min] 45.0 28.4 48.4	51.4 25.2 25.3	0 0 0	133-146 188-196 313-332 ha gondii ME4 Score: MW [kDa]: pl:	RLVDVSTLIPTAIVR.G R.SCIVTVTVK.K R.QDEGLGVCIMQALLPASE 19]	87.16 47.20 8.46	Carbamidomethyl: 2

60 1 209 1 Protein 22: Accession: Database: Seq. Coverage [Cmpd. Cong 4 1 Protein 23: Accession: Database: Seq. Coverage [Gmpd. Cong 4 1 Protein 23: Seq. Coverage [Gmpd. Mon. 49 1 Protein 24: Accession:	. of m/z meas. . of 745.8756	66 -35.16 MORN repea gi[237838512 NCBInr 3.40 % s. Δ m/z [ppm] 50 15.68 phosphoglucc gi[15419635 NCBInr 1.90 %	3 z 2 comuta:	Rt [min] 17.3	64.9 [Toxoplas Score 85.4	P 0	322-331 dii ME49] Score: MW [kDa]: pl: No. of Pepl Range 408-423	tides: Sequence R.QTASTAGSAQPATGSI gondii] tides:	85.36 49.20 5.15 1 RA 68.23 70.50 5.55 1	Earbanidomethyl: 6
Accession: Database: Seq. Coverage [Cmpd. No. 4 1 Protein 23: Accession: Database: Seq. Coverage [Cmpd. No. Cmpd. No. Cmpd. No. Cmpd. No. 49 1 Protein 24: 1	[%]: of m/z meas. 745.8750	gi[237838513 NCBInr 3.40 % [ppm] 50 15.65 phosphoglucc gi[15419635 NCBInr 1.90 %	z 2 comutas	Rt [min] 17.3 se/parafusin r	Score 85.4 elated pro	P 0	Score: MW [kDa]: pl: No. of Pepl Range 408-423 Toxoplasma g Score: MW [kDa]: pl: No. of Pepl No. of Pepl	tides: Sequence R.QTASTAGSAQPATGSI gondii] tides:	49.20 5.15 1 R.A 68.23 70.50	Modification
Cmp 4 1 Protein 23: Accession: Database: Seq. Coverage [Cmpd. No. Cmpd. Cmp 49 1 Protein 24: 1	ods. 745.875	[ppm] 50 15.68 phosphogluc gi 15419635 NCBInr 1.90 %	2 comuta:	[min] 17.3 se/parafusin r	85.4 elated pro	• • •	408-423 Toxoplasma g Score: MW [kDa]: pl: No. of Pept	gondii] tides:	68.23 70.50	Modification
Protein 23: Accession: Database: Seq. Coverage [Cmpd. No. Cmp 49 1 Protein 24:		phosphogluci gi 15419635 NCBInr 1.90 %	comuta	se/parafusin r	elated pro	itein 1 (Toxoplasma g Score: MW [kDa]: pl: No. of Pept	gondii] tides:	68.23 70.50	
Accession: Database: Seq. Coverage [Cmpd. No. Cmp 49 1 Protein 24:		gi 15419635 NCBInr 1.90 %		-			Score: MW [kDa]: pl: No. of Pept	tides:	70.50	
49 1 Protein 24:		Δm/z	z	Rt	Score	Р				
Protein 24:		[ppm]		[min]			-	Sequence		Modification
	560.754	40 -84.66	2	21.7	68.2	0	579-590	R.LSGTGSTGATIR.V		
Database: Seq. Coverage [Modification(s):	[%]:	conserved hy gi 221480679 NCBInr 4.10 % Carbamidom	9	tical protein [1	Foxoplasm	a gond	ii GT1] Score: MW [kDa]: pl: No. of Pept		65.86 38.60 6.59 1	
Cmpd. No.		s. Δm/z	z	Rt	Score	Р	Range	Sequence		Modification
234 Cmp		f						ocquence		
	ods.	[ppm] 30 -67.22	2	[min] 37.4	49.6	0	-	K.GIDASAFTFTPPSQR.A		

Protein 2 Accessio Database Seq. Cov	n:	9 N	imc family/s ji 15608443 VCBInr I.70 %		al maintenano	e of chrorr	nosome	[Babesia bo Score: MW [kDa]: pl: No. of Pep		54.17 137.40 8.63 1	
Cmpd.	No. of Cmpds.	m/z meas.	Δm/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
86	1	479.7500	947.99	2	25.5	54.2	1	955-962	R.VVSDRLLR.D		
Protein 2 Accessio Database Seq. Cov	n:	9 N	ructose-bis ji 11840120 VCBInr I.90 %		ate aldolase o	dass-I fan	nily prot	ein [Tetrahyr Score: MW [kDa]: pl: No. of Pep	nena thermophila] tides:	50.04 38.60 7.55 1	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [mqq]	z	Rt [min]	Score	Р	Range	Sequence		Modification
129	2	666.8350	-28.35	2	29.3	50.0	0	21-34	K.GILAADESTGTIGK.K		
Protein 2 Accessio Database Seq. Cov Modificat	n: : erage [%]:	9 N 3	nicroneme ii 22148683 VCBInr I.80 % Carbamidor	35	putative [Tox	oplasma g	jondii G	⊤1] Score: MW [kDa]: pl: No. of Pep	tides:	49.39 36.30 5.01 1	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
Cmpa.			-4.96	2	20.4	49.4	0	249-261	R.YQGCASDNAGSYR.C		Carbamidomethyl: 4
21 21	1	724.7930	-4.96	2	20.4	45.4	•				ourbuindomenyi. 4

Search Search	Result Location		RH1_3rd_ BOPS/RF		09-10 10:35	5:52					
Protein 1: Accessio Database Seq. Cove Modificat	n: : erage [%]:	1	gi 22219177 NCBInr 48.40 %		ructure Of A F Oxidation, De		rotein	Score: MW [kDa]: pl: No. of Pept	ides:	758.55 29.80 7.73 15	
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
176	3	815.8800	-55.64	2	33.5	41.9	0	38-52	K.TALTEPPTLAYSPNR.Q		
21	3	749.2950	-56.37	2	20.1	47.4	0	53-66	R.QICPAGTTSSCTSK.A		Carbamidomethyl: 3, 11
252	9	798.8860	-50.51	2	40.3	64.9	0	103-116	K.FPVTTQTFVVGCIK.G		Carbamidomethyl: 12
137	1	869.3720	-30.32	2	30.7	45.6	0	117-132	K.GDDAQSCMVTVTVQAR.A		Carbamidomethyl: 7
95	1	877.8790	-10.05	2	26.9	43.3	0		K.GDDAQSCMVTVTVQAR.A		Carbamidomethyl: 7; Oxidation: 8; Deamidated: 5
39	4	508.7550	-44.82	2	21.8	64.9	0		R.ASSVVNNVAR.C		
15	3	509.2610	-17.30	2	20.6	62.8	0	133-142	R.ASSVVNNVAR.C		Deamidated: 6
44	3	509.2330	-72.29	2	22.4	48.6	0	133-142	R.ASSVVNNVAR.C		Deamidated: 7
96	3	677.7710	-70.83	2	27.4	70.9	0		R.CSYGADSTLGPVK.L		Carbamidomethyl: 1
157	2	782.8480	-52.51	2	32.5	39.8	0		K.LSAEGPTTMTLVCGK.D		Carbamidomethyl: 13
131	3	790.8560	-38.65	2	30.2	29.7	0		K.LSAEGPTTMTLVCGK.D		Carbamidomethyl: 13; Oxidation: 9
78	1	585.3310	-50.63	1	25.2	23.9	0		K.DILPK.L		
104	4	774.3190	592.81	2	27.8	45.7	0	203-216	K.LTENPWQGNASSDK.G		
77	2	652.7850	-67.98	2	25.3	54.0	0		K.SVIIGCTGGSPEK.H		Carbamidomethyl: 6
75	2	511.2350	-67.05	2	26.0	52.7	0	252-262	K.LEFAGAAGSAK.S		
Protein 2: Accessio Database Seq. Cove Modificat	n: : erage [%]:		gi 22148460 NCBInr 35.40 %	15	ining protein, p Deamidated	outative [T	oxopla	sma gondii G Score: MW [kDa]: pl: No. of Pept		471.10 34.90 8.07 10	
											23

Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence	Modification
165	1	645.8010	-12.35	2	32.7	48.0	0		K.CDQDGSLLNLR.V	Carbamidomethyl: 1
39	1	534.2440	-52.45	2	22.8	57.0	0	53-62	R.VTGNSSVEFK.C	
56	1	534,7150	-91.68	2	24.3	26.5	0	53-62	R.VTGNSSVEFK.C	Deamidated: 4
45	1	473.2500	24.62	3	23.3	39.5	0		K.CGGAVPNLHPNPGK.T	Carbamidomethyl: 1
7	1	525.7390	-27.53	2	19.2	67.6	0		K.CSSLANTAAR.V	Carbamidomethyl: 1
1	1	476.5580	-37.11	3	17.1	30.5	1	136-149	R.VGAGQPGQEAEKEK.T	
222	1	793.3900	-42.82	2	37.9	32.0	0		K.TCIVQTSVWGPPIK.G	Carbamidomethyl: 2
27	1	540.6750	-114.58	2	21.8	43.0	0	167-175	K.EYPTPDACK.N	Carbamidomethyl: 8
148	1	630.2830	-70.64	2	31.5	43.3	Ó		K.NGTLSLEVNPSK.K	Deamidated: 1
146	1	785.7180	1.57	3	31.3	68.2	0	213-234	K.ECTTSSTLAEHLSGASLVQHAR. T	Carbamidomethyl: 2
			ICBInr					MW [kDa]:	41.9	
atabase leq. Cov Iodificat	erage [%]:	3	ICBInr 8.30 % Carbamidor A m/z	nethyl,	Oxidation Rt	Score	P	pl: No. of Pep	4.91 tides: 14	
eq. Cov Iodificat Cmpd.	erage [%]: tion(s): No. of Cmpds.	3 (m/z meas.	8.30 % Carbamidor A m/z [ppm]	z	Rt [min]			pl: No. of Pep Range	4.91 tides: 14	-
eq. Cov lodificat Cmpd. 137	erage [%]: tion(s): No. of Cmpds. 2	3 (m/z meas. 571.8350	8.30 % Carbamidon <u>A m/z</u> [ppm] -26.65	z 2	Rt [min] 29.9	35.8	0	pl: No. of Pep Range 30-40	4.91 tides: 14 Sequence RAVFPSIVGKPK.N	Modification
eq. Cov Iodificat Cmpd. 137 103	erage [%]: tion(s): No. of Cmpds. 2 2	3 m/z meas. 571.8350 610.7770	8.30 % Carbamidon <u>A m/z</u> [ppm] -26.65 -14.94	z 2 2	Rt [min] 29.9 27.1	35.8 24.5	0	pl: No. of Pep Range 30-40 41-51	4.91 tides: 14 Sequence R.AVFPSIVGKPK.N K.NPGIMVGMEEK.D	Modification Oxidation: 5
eq. Cov Iodificat Cmpd. 137 103 65	erage [%]: ion(s): No. of Cmpds. 2 2 2 2	3 m/z meas. 571.8350 610.7770 618.7540	8.30 % Carbamidon Δ m/z [ppm] -26.65 -14.94 -47.81	2 2 2 2	Rt [min] 29.9 27.1 24.3	35.8 24.5 26.3	0	pl: No. of Pep Range 30-40 41-51 41-51	4.97 tides: 14 Sequence RAVFPSIVGKPK.N K.NFGINVGMEEK.D K.NFGINVGMEEK.D	Modification Dxidation: 6 Dxidation: 5, 8
eq. Cov lodificat Cmpd. 137 103 65 24	erage [%]: ion(s): No. of Cmpds. 2 2 2 2 2 2 2	3 m/z meas. 571.8350 610.7770 618.7540 636.2200	8.30 % Carbamidon [ppm] -26.65 -14.94 -47.81 -69.26	z 2 2 2 2 2	Rt [min] 29.9 27.1 24.3 21.2	35.8 24.5 26.3 31.7	0	pl: No. of Pep Range 30-40 41-51 41-55 52-62	4.91 tides: 4.91 Sequence RAVFPSIVGKPK.N K.NPGIMVGMEEK.D K.NPGIMVGMEEK.D K.OCYVGDEAGSK.R	Modification Oxidation: 5
eq. Cov lodificat Cmpd. 137 103 65 24 209	erage [%]: iion(s): No. of Cmpds. 2 2 2 2 2 1	3 m/z meas. 571.8350 610.7770 618.7540 638.5200 973.9500	8.30 % Carbamidon [ppm] -26.65 -14.94 -47.81 -69.26 -1.32	z 2 2 2 2 2 2 2	Rt [min] 29.9 27.1 24.3 21.2 35.6	35.8 24.5 26.3 31.7 24.1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	pl: No. of Pepi Range 30-40 41-51 41-51 52-62 70-85	4.97 tides: 4.97 Sequence RAVFPSIVGKPK.N K.NPGIMVGWEK.D K.NPGIMVGWEK.D K.VPGIMVGWEK.D K.VPGIMVGWEK.D K.VPGIMVGWINDDMEK.I	Modification Dxidation: 5 Dxidation: 5, 8 Carbamidomethyl: 2
eq. Cov lodificat Cmpd. 137 103 65 24 209 172	erage [%]: ion(s): No. of Cmpds. 2 2 2 1 1 1	3 m/z meas. 571.8350 610.7770 618.7540 636.2200 973.9500 981.9100	8.30 % Carbamidon [ppm] -26.65 -14.94 -47.81 -69.26 -1.32 -39.45	z 2 2 2 2 2 2 2 2 2 2	Rt [min] 29.9 27.1 24.3 21.2 35.6 33.0	35.8 24.5 26.3 31.7 24.1 23.9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	pl: No. of Pepi Range 30-40 41-51 52-62 70-82 70-82	4 97 tides: 14 Sequence % AVF5SVGKPK.N K.NPGIMVGMEEK.D K.NPGIMVGMEEK.D K.OCYUGDEAGSK.R % YPEIHGIVTNWDDMEK.I % YPEIHGIVTNWDDMEK.I	Modification Dxidation: 6 Dxidation: 5, 8
eq. Cov lodificat Cmpd. 137 103 65 24 209 172 140	erage [%]: tion(s): No. of Cmpds. 2 2 2 2 1 1 3	3 m/z meas. 571.8350 610.7770 618.7540 636.2200 973.9500 981.9100 505.8980	8.30 % Carbamidon (ppm) -26.65 -14.94 -47.81 -69.26 -1.32 -39.45 -45.93	z 2 2 2 2 2 2 2 3	Rt [min] 29.9 27.1 24.3 21.2 35.6 33.0 30.2	35.8 24.5 26.3 31.7 24.1 23.9 43.4	0 0 0 0 0 0	pl: No. of Pep Range 30-40 41-51 52-62 70-85 70-85 86-96	4.97 tides: 14 Sequence RAVFPSWCKKN KNCKNCKN KNPCWVCBACSKN KDCYVODEACSKR KVPENGVTNWDDMEKI KYPEIGVTNWDDMEKI KYPEIGVTNWDDMEKI	Modification Dxidation: 5 Dxidation: 5, 8 Carbamidomethyl: 2
eq. Cov lodificat Cmpd. 137 103 65 24 209 172	erage [%]: ion(s): No. of Cmpds. 2 2 2 1 1 1	3 m/z meas. 571.8350 610.7770 618.7540 636.2200 973.9500 981.9100	8.30 % Carbamidon [ppm] -26.65 -14.94 -47.81 -69.26 -1.32 -39.45	z 2 2 2 2 2 2 2 2 2 2	Rt [min] 29.9 27.1 24.3 21.2 35.6 33.0	35.8 24.5 26.3 31.7 24.1 23.9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	pl: No. of Pep Range 30-40 41-51 52-62 70-85 70-85 86-96 86-96	4 97 tides: 14 Sequence % AVF5SVGKPK.N K.NPGIMVGMEEK.D K.NPGIMVGMEEK.D K.OCYUGDEAGSK.R % YPEIHGIVTNWDDMEK.I % YPEIHGIVTNWDDMEK.I	Modification Dxidation: 5 Dxidation: 5, 8 Carbamidomethyl: 2
eq. Cov lodificat Cmpd. 137 103 65 24 209 172 140 193 150	erage [%]: tion(s): No. of Cmpds. 2 2 2 1 1 3 2 1 1	3 m/z meas. 571.8350 610.7770 618.7540 636.2200 973.9500 981.9100 505.8980 651.9830 523.7000	8.30 % Carbamidon Δ m/z (ppm) -26.65 -14.94 -47.81 -69.26 -1.32 -39.45 -45.93 -66.44 -57.83	z 2 2 2 2 2 2 2 2 2 3 3 3 2	Rt [min] 29.9 27.1 24.3 21.2 35.6 33.0 30.2 34.0 34.0	35.8 24.5 26.3 31.7 24.1 23.9 43.4 29.2 37.8	0 0 0 0 0 0 0 0 0	pl: No. of Pep Range 30-44 41-51 52-62 70-88 70-88 86-99 97-114 185-192	4.97 tides: 14 Sequence RAVPSIVGKPK.N KAPGINVGMEEK.D KDG:VYGBAGKK.R KVPEHAITYMODMEK.I KVPEHAITYMODMEK.I KVPEHAITYMODMEK.I KVPEHAITYMODMEK.I RVAPEEHIVLITAPALIPPCA ROLTEYMIKI.	Modification Dxidation: 5 Dxidation: 5, 8 Carbamidomethyl: 2
eq. Cov lodificat Cmpd. 137 103 65 24 209 172 140 193	erage [%]: tion(s): No. of Cmpds. 2 2 2 2 1 1 3 2	3 m/z meas. 571.8350 610.7770 618.7540 973.9500 973.9500 981.9100 505.8880 651.9830	8.30 % Carbamidon <u>A m/z</u> [ppm] -26.65 -14.94 -47.81 -69.26 -1.32 -39.45 -45.93 -66.44	z 2 2 2 2 2 2 2 2 3 3 3	Rt [min] 29.9 27.1 24.3 21.2 35.6 33.0 30.2 34.0	35.8 24.5 26.3 31.7 24.1 23.9 43.4 29.2	0 0 0 0 0 0 0	pl: No. of Pep Range 30-44 41-51 52-62 70-88 70-88 86-99 97-114 185-192	4.97 tides: 14 Sequence RAVFPSVGKPK.N KAPGMV90KEFK.D KAPGMV90KEFK.D KAPGMV90KEFK.D KVPEHGVTW90DMEKLI KVPEHGVTW90DMEKLI KVPEHGVTW90DKELI	- Dxidation: 5 Dxidation: 5 Carbanidomethyl: 2 Oxidation: 14
eq. Cov lodificat Cmpd. 137 103 65 24 209 172 140 193 150	erage [%]: tion(s): No. of Cmpds. 2 2 2 1 1 3 2 1 1	3 m/z meas. 571.8350 610.7770 618.7540 636.2200 973.9500 981.9100 505.8980 651.9830 523.7000	8.30 % Carbamidon Δ m/z (ppm) -26.65 -14.94 -47.81 -69.26 -1.32 -39.45 -45.93 -66.44 -57.83	z 2 2 2 2 2 2 2 2 2 3 3 3 2	Rt [min] 29.9 27.1 24.3 21.2 35.6 33.0 30.2 34.0 34.0	35.8 24.5 26.3 31.7 24.1 23.9 43.4 29.2 37.8	0 0 0 0 0 0 0 0 0	pl: No. of Pep Range 30-40 41-51 52-62 70-88 70-88 70-88 70-88 70-88 70-88 70-88 70-88 70-88 70-88 70-88 70-88 70-88 70-88 70-88 70-88 70-88 70-88 70-80 70 70-80 70 70-80 70 70 70 70 70 70 70 70 70 70 70 70 70	4.97 tides: 14 Sequence RAVPSIVGKPK.N KAPGINVGMEEK.D KOCYVGBACKK.R KVPEHORTYNMODMEK.I KVPEHORTYNMODMEK.I KVPEHORTYNMODMEK.I KVPEHORTYNKOMEK.I RVAPEEHVLLTEAPL.NPK.A ROLTEYNMKI.	- Dxidation: 5 Dxidation: 5 Carbanidomethyl: 2 Oxidation: 14
eq. Cov lodificat Cmpd. 137 103 65 24 209 172 140 193 150 71	erage [%]: tion(s): No. of Cmpds. 2 2 2 1 1 3 2 1 1 1 1 1	3 m/z meas. 571.8350 610.7770 618.7540 636.2200 973.9500 981.9100 505.8980 651.9830 651.9830 523.7000 530.7140	8.30 % Carbamidon <u>A m/z [ppm]</u> -26.65 -14.94 -47.81 -69.26 -1.32 -39.45 -45.93 -66.44 -57.83 -69.56	z 2 2 2 2 2 2 2 2 2 3 3 2 2 2 2 2 2 2 2	Rt [min] 29.9 27.1 24.3 21.2 35.6 33.0 30.2 34.0 31.1 24.9	35.8 24.6 26.3 31.7 24.1 23.9 43.4 29.2 37.8 23.2	0 0 0 0 0 0 0 0 0 0 0	pl: No. of Pep Range 30-40 41-51 41-51 52-62 70-80 70-80 70-80 97-114 185-192 198-202 198-202 240-255	4.91 tides: 14 Sequence RAVPPSIVGKPK.N K.NPGIMVGMEEK.D K.NPGIMVGMEEK.D K.OPVYGBAGK.R EKL K.OPVYGBAGK.R EKL K.VMFEHGYTWOREK.I K.VMFEHGYTWOREK.I R.VMFEHGYTWOREK.I R.VMFEHGYTWOREK.I R.VMFEHGYTWOREK.I R.VMFEHGYTWOREK.I	- Dxidation: 5 Dxidation: 5 Carbanidomethyl: 2 Oxidation: 14

21

Appendix

75	1	759.3140	-43.43	2	25.1	27.3	0	361-373	K.EEYDESGPSIVHR.K		
							-				
rotein 4	k:	a	ctin (Svmbi	iodiniur	n sp. clade C]						
ccessio	on:		il86562730					Score:		357.04	
atabase	e:	Ň	CBInr					MW [kDa]:		41.80	
en Cov	verage [%]:	1	3.00 %					pl:		5.22	
								No. of Pept	tides:	4	
Nodificat	tion(s):	(Dxidation								
	No. of				Rt	Score	Р	-	-		Modification
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
37	1	488.7170	-22.06	2	22.2	74.5	0		K.AGFAGDDAPR.A		
17	2	599.7230	-69.62	2	20.5	52.7	0		K.DSYVGDEAQSK.R		
195	1	651.6790	498.29	3	33.9	21.7	0	97-114	R.PAPEEHPVLLTEAPLNPK.A		
93	1	566.7440	-40.76	2	26.5	32.7	0	198-207	R.GYSFTTTAER.E		
ccessio	on:	g	ctin [Pyroc i 27450759		nula]			Score:		321.12	
Protein 5 Accessic Database Seq. Cov	on:	9			nula]			MW [kDa]: pl:		41.70 5.83	
Accessio	on: e: verage [%]:	9 N 4	i 27450759 ICBInr		nula]			MW [kDa]:	ides:	41.70	
Accessic Database Seq. Cov Modifica	on: e: verage [%]: tion(s):	9 N 4	il 27450759 ICBInr .30 % Dxidation			0		MW [kDa]: pl: No. of Pept		41.70 5.83	Internet of the second s
atabase eq. Cov	on: B: rerage [%]: tion(s): No. of	9 N 4	il/27450759 ICBInr .30 % Dxidation		nula] Rt (min)	Score	P	MW [kDa]: pl: No. of Pept	ides: Sequence	41.70 5.83	Modification
ccessic atabase eq. Cov lodifica	on: e: verage [%]: tion(s):	9 N 4	il 27450759 ICBInr .30 % Dxidation	z	Rt	Score 56.7	P 0	MW [kDa]: pl: No. of Pept Range		41.70 5.83	Modification
ccessic latabase leq. Cov lodifica Cmpd. 240 Protein 6 ccessic latabase	br: B: tion(s): No. of Cmpds. 1 5: Dn: B:	9 4 ((((((((((((((((((il[27450759 ICBInr .30 % Dxidation <u>A m/z [ppm]</u> .31.92 SAG-3 [Tox il]30068003 ICBInr	z 2 oplasm	Rt [min] 38.3		· ·	MW [kDa]: pl: No. of Pept Range 239-254 Score: MW [kDa]:	Sequence	41.70 5.83 1 288.09 41.70	Modification
Accessic Database Seq. Cov Modifica Cmpd. 240 Protein 6 Accessic Database Seq. Cov	verage [%]: No. of Cmpds. 1 5: on: e: verage [%]:	9 4 (m/z meas. 895.9210 5 9 1	ii 27450759 ICBInr .30 % Dxidation ▲ m/z [ppm] -31.92 AG-3 [Tox i 30068003 ICBInr 2.70 %	z 2 Dplasm	Rt [min] 38.3		· ·	MW [kDa]: pl: No. of Pept Range 239-254 Score:	Sequence K.SYELPDGQVITIGNER.F	41.70 5.83 1 288.09	Modification
Accessic Jatabase Seq. Cov Modifica Cmpd. 240 Protein 6 Accessic Database	verage [%]: No. of Cmpds. 1 5: on: e: verage [%]:	9 4 (m/z meas. 895.9210 5 9 1	il[27450759 ICBInr .30 % Dxidation <u>A m/z [ppm]</u> .31.92 SAG-3 [Tox il]30068003 ICBInr	z 2 Dplasm	Rt [min] 38.3		· ·	MW [kDa]: pl: No. of Pept Range 239-254 Score: MW [kDa]: pl:	Sequence K.SYELPDGQVITIGNER.F	41.70 5.83 1 288.09 41.70 6.59	Modification

179	3	586.2790	-72.51	2	33.0	41.1	0		K.ITYFGTLTQK.A	
79	2	470.5620	-72.51	3	25.4	41.1	0		R.ANEEVVGHVTLNK.E	
258	2	591.2790	-58.66	2	39.3	35.6	0		K.GFLTDYIPGAK.Q	
91	1	584.2680	-54.95	3	26.2	42.4	1		K.IEKVENNGEQSVLYK.F	Deamidated: 7
81	2	690.8150	-29.98	2	25.7	57.6	0	154-165	K.VENNGEQSVLYK.F	Deamidated: 3
rotein 7					MIC3 [Toxopla	asma gon	dii ME4			
ccessio			i 23784107	'1				Score:	268.58	
atabase		1	ICBInr					MW [kDa]:	37.90	
eq. Cov	erage [%]:	2	7.00 %					pl:	6.02	
								No. of Pept	ides: 7	
odificat	ion(s):	(Carbamidor	nethyl,	Deamidated			-		
Cmpd.	No. of	m/z meas.	∆ m/z	z	Rt	Score	Р	Range	Sequence	Modification
	Cmpds.		[ppm]		[min]			-	-	
80	1	932.3890	-52.57	2	25.1	51.2	0		K.QETQLCAISSEGKPCR.N	Carbamidomethyl: 6, 15
131	1	603.6130	-1.53	3	30.3	29.7	0		R.QLHTDNGYFIGASCPK.S	Carbamidomethyl: 14; Deamidated: 1
146	2	603.2630	-37.99	3	30.4	33.4	0		R.QLHTDNGYFIGASCPK.S	Carbamidomethyl: 14
58	4	610.5670	-56.81	3	24.4	35.9	0		K.NAECVENLDAGGGVHCK.C	Carbamidomethyl: 4, 16
173	2	915.3660	-23.66	2	32.6	37.4	0		K.DGFVGTGLTCSEDPCSK.R	Carbamidomethyl: 10, 15
100	1	831.5920	-71.07	3	26.5	23.1	0		R.CIDDASHENGYTCECPTGYSR.E	Carbamidomethyl: 1, 13, 1 Deamidated: 9
92	2	543.2140	-66.69	2	26.1	58.0	0	294-303	K.EFGISASSCK.C	Carbamidomethyl: 9
rotein 8 ccessio atabase eg. Cov	n:	9 1	onserved h il 22148864 VCBInr 9.70 %		tical protein [T	oxoplasm	a gond	ii GT1] Score: MW [kDa]: pl:	261.19 33.90 6.04	
								No. of Pept	ides: 6	
lodificat	ion(s):		Oxidation, D	Deamid	ated					
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence	Modification
	1	637,2820	-63.98	2	19.9	41.7	0	36-50	R.AAVAAAAANGAETGK.A	Deamidated: 9
14				2	20.6	57.7	0		R.AAVAAAAANGAETGK.A	
14 23	1	636.7840	-73.43							

Appendix

114-124K.APPYKPIPESR.F 180-192K.QPFTILYLEPEQR.T 193-205R.TFAEPEQPDIEVK.D -77.55 2 -42.64 2 -7.04 2 43.0 0 51.0 0 24.9 0 288 165 sma gondii ME49] Score: MW [kDa]: pl: No. of Peptides: Protein 9: Accession: Database: Seq. Coverage [%]: long-chain fatty gi|237835163 NCBInr 6.40 % 177.82 82.10 5.21 4 Modification(s): Carbamid ivl Ox
 Range
 Sequence

 240-250
 K.AVAELKAGESK.A

 540-553
 R.IDDPEHPAGELCLR.G

 554-563
 R.GPTITPGYFR.N

 732-744
 K.EIDALYSEMETER.A
 Cmpd. No. of Cmpds. Δ m/z [ppm] 10 -64.82 10 54.54 10 14.56 10 -9.50 n/z me z Rt thvi: 12 42.9 38.5 25.4 dense granule gi|2062409 NCBInr 23.30 % Protein 10: Accession: Database: Seq. Coverage [%]: ein [Toxoplasma gondii] 176.49 25.30 4.80 4 Score: MW [kDa]: pl: No. of Peptides: EEVHFR.K EEHTDR.K -30.93 25.21 103-119 156-166 Protein 11: Accession: Database: SRS domain-gi|237837819 NCBInr dii ME49] Score: MW [kDa]: 173.95 39.10 27

	erage [%]:	1	3.70 %					pl: No. of Pept	ides:	7.76 5	
Aodificat	ion(s):	(Carbamidor	nethyl,	Oxidation			-			
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
255	3	702.8260	-65.59	2	38.9	51.8	0	136-148	K.EWVTGDSVLTGLK.I		
102	3	702.3150	-66.77	2	27.2	34.3	0	149-161	K.ISVPESQYPANAK.S		
112	2	548.9320	-1.09	3	28.0	25.3	0	173-186	K.TGNTCMLTIHVEPR.D		Carbamidomethyl: 5; Oxidation 6
151	2	543.5920	-16.48	3	30.9	36.6	0		K.TGNTCMLTIHVEPR.D		Carbamidomethyl: 5
59	2	650.2650	-50.61	2	24.2	26.0	0	197-207	R.CSYTENSTLPK.I		Carbamidomethyl: 1
ieq. Cov	erage [%]:	1	1.70 %					MW [kDa]: pl:	idos	23.90 5.66	
Seq. Cove Nodificat			1.70 % Deamidated						ides:		
	tion(s): No. of		Deamidated	z	Rt	Score	P	pl:	ides: Sequence	5.66	Modification
Modificat	ion(s):	ſ	Deamidated		Rt [min] 18.4	Score 51.0	P 1	pl: No. of Pept Range 177-203		5.66 4	Modification Deamidated: 21
Aodificat	ion(s): No. of Cmpds.	m/z meas.	Deamidated ∆m/z [ppm]	z	[min]			pl: No. of Pept Range 177-203	Sequence R.RSPQEPSGDGGGNDAGI NEGR.G R.RSPQEPSGDGGGNDAGI NEGR.G	5.66 4 INAGNGG	
Modificati Cmpd. 10 5 5	ion(s): No. of Cmpds. 5 3 1	m/z meas. 847.9980 848.0140 848.3400	Deamidated Δ m/z [ppm] -29.05 -10.18 -12.54	z 3 3 3	[min] 18.4 17.8 18.4	51.0 38.0 25.1	1 1 1	pl: No. of Pept Range 177-203 177-203	Sequence R.RSPOEPSGDGGGNDAGH NEGR.G R.RSPOEPSGDGGGNDAGH NEGR.G R.RSPOEPSGDGGGNDAGH NEGR.G	5.66 4 INAGNGG INAGNGG	Deamidated: 21 Deamidated: 18 Deamidated: 17, 21
Modificati Cmpd. 10 5	ion(s): No. of Cmpds. 5 3	m/z meas. 847.9980 848.0140	Deamidated <u> </u>	z 3 3	[min] 18.4 17.8	51.0	1	pl: No. of Pept Range 177-203 177-203 177-203 178-203	Sequence R.RSPQEPSGDGGGNDAGF NEGR.G R.RSPQEPSGDGGGNDAGF NEGR.G R.RSPQEPSGDGGGNDAGF	5.66 4 INAGNGG INAGNGG	Deamidated: 21 Deamidated: 18
Aodificati Cmpd. 10 5 5	ion(s): No. of Cmpds. 5 3 1 3	m/z meas. 847.9980 848.0140 848.3400 795.9600	Deamidatec [ppm] -29.05 -10.18 -12.54 -36.35	z 3 3 3 3	[min] 18.4 17.8 18.4 19.1	51.0 38.0 25.1 26.4	1 1 1	pl: No. of Pept Range 177-203 177-203 177-203 178-203	Sequence RRSPQEPSGDGGGNDAGI NEGR.G RRSPQEPSGDGGGNDAGI NEGR.G RRSPQEPSGDGGGNDAGI NEGR.G RSPQEPSGDGGGNDAGIN	5.66 4 INAGNGG INAGNGG	Deamidated: 21 Deamidated: 18 Deamidated: 17, 21
Modificati Cmpd. 10 5 5 13 Protein 13 Accessio	tion(s): No. of Cmpds. 5 3 1 3 3 3: n:	m/z meas. 847.9980 848.0140 848.3400 795.9600	Deamidated [ppm] -29.05 -10.18 -12.54 -36.35 urface antig i]13957751	z 3 3 3 3 3 9 gen P22	[min] 18.4 17.8 18.4	51.0 38.0 25.1 26.4	1 1 1	pl: No. of Pept Range 177-203 177-203 177-203 178-203 Score:	Sequence RRSPQEPSGDGGGNDAGI NEGR.G RRSPQEPSGDGGGNDAGI NEGR.G RRSPQEPSGDGGGNDAGI NEGR.G RSPQEPSGDGGGNDAGIN	5.66 4 INAGNGG INAGNGG INAGNGG IAGNGGN 137.13	Deamidated: 21 Deamidated: 18 Deamidated: 17, 21
Nodificati Cmpd. 10 5 13 Protein 13 Accessio Database	ion(s): No. of Cmpds. 5 3 1 3 3: n: 5:	m/z meas. 847.9980 848.0140 848.3400 795.9600 s g	Deamidated (ppm) -29.05 -10.18 -12.54 -36.35 urface antig il[13957751] ICBInr	z 3 3 3 3 3 9 gen P22	[min] 18.4 17.8 18.4 19.1	51.0 38.0 25.1 26.4	1 1 1	pl: No. of Pepl Range 177-203 177-203 177-203 177-203 Score: MW [kDa]:	Sequence RRSPQEPSGDGGGNDAGI NEGR.G RRSPQEPSGDGGGNDAGI NEGR.G RRSPQEPSGDGGGNDAGI NEGR.G RSPQEPSGDGGGNDAGIN	5.66 4 INAGNGG INAGNGG INAGNGG IAGNGGN 137.13 19.00	Deamidated: 21 Deamidated: 18 Deamidated: 17, 21
Nodificati Cmpd. 10 5 13 Protein 13 Accessio Database	tion(s): No. of Cmpds. 5 3 1 3 3 3: n:	m/z meas. 847.9980 848.0140 848.3400 795.9600 s g	Deamidated [ppm] -29.05 -10.18 -12.54 -36.35 urface antig i]13957751	z 3 3 3 3 3 9 gen P22	[min] 18.4 17.8 18.4 19.1	51.0 38.0 25.1 26.4	1 1 1	pl: No. of Pept Range 177-203 177-203 177-203 178-203 Score:	Sequence R.RSPGEPSODGGNDAG RRSPG RRSPG RRSPG RSS RSS RSS RSS RSS RSS RSS RSS RSS RS	5.66 4 INAGNGG INAGNGG INAGNGG IAGNGGN 137.13	Deamidated: 21 Deamidated: 18 Deamidated: 17, 21

28

	[ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
785.8590	592.83	2	35.2	24.7	0	61-75	K.LTISPSGEGDVFYGK.E		
706.4370	-15.26	2	33.8	49.8	1	82-95	R.KLTTVLPGAVLTAK.V		
529.6970	-111.40	2	19.2	62.6	0	124-134	K.CVAEAGAPAGR.N		Carbamidomethyl: 1
			n [Toxoplasma	a gondii]		C		100 55	
6	3.50 %								
						NO. OT PEPI	lides:	4	
m/z meas.	Δ m/z	z	Rt	Score	Р	Range	Sequence		Modification
603.2110	(ppm) -88.52	2	(minj 21.1	21.1	0	271-280	R.DNMEVNQAER.D		
547.2600	-46.53	2	20.8	44.7	0	615-625	R.TPPSAPSPSPR.T		
561.6180	2.99	3	18.4	25.2	0	706-721	R.SGSQPKPPQDNTTTPK.M		
862.3040	-68.05	2	28.4	45.5	0	746-760	R.EEEPPTDEDDFSSVK.G		
	hosphofnuc	tokinas	e putative (To	oxonlasma	a aond	ii ME491			
	ail23783410	3			.	Score:		133.85	
						MW [kDa]:		131.30	
2	2.80 %					pl:		5.82	
						No. of Pept	tides:	3	
(Carbamidon	nethyl							
m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence		Modification
647.3240	6.64	2	32.5	50.0	0				
676.8230	-22.54	2	26.0	24.9	1				
644.3100	-18.19	2	28.1	58.9	0	798-809	R.VVCVEPSGDLGR.F		Carbamidomethyl: 3
	529.6970 S 529.6970 S 603.2110 S 547.2600 S 603.2110 S 603.2110 S 603.2110 S 9 S 2 C m/z meas. S 647.3240 S	529.8970 -111-40 subbilianité subbilianité qil 551.9013 65.0% 65.2110 68.2 66.2210 48.32 66.2400 48.32 967.2600 46.32	528.6970 -111.40 2 subbilisin-like protein off 541 (P013)	523.6970 -111.40 2 19.2 subtlisi-like protein [Toxplasm: gf[161/90/3 Toxplasm: fmil Toxplasm: fmil Toxplasm: fmil 60.51710	528.8970 -111.40 2 19.2 62.6 subbilisin-like protein [Toxoplasma gondii] gi[154] (9013	528.8970 -111.40 2 19.2 62.6 0 subbilisin-like protein [Toxoplasma gondii] gi[154] (9013 1	528.6970 -111.44 2 19.2 62.4 0 124.134 subbilian-like protein [Toxoplasma gondii] gr[161/1013 Score: MW [Kb0]: 6.50 % Score: MW [Kb0]: bit Score: MW [Kb0]: bit MW [Kb0]: bit 65.0 % 21.1 21.1 0 271286 66.1 110 68.2 2 21.4 0 615423 66.6 00 23.3 21.4 21.4 0 615423 66.6 00 23.4 23.4 45.4 0 615423 66.6 00 23.4 23.4 45.4 0 615423 9000 46.8.8 2 24.4 45.6 0 74-703 91237534103 Score: NCBIrr 2.80 % MW [Kb0]: pl: Locarbamidomethyl No. of Pept No. of Pept 647.2 20.4 2.81 % 50.6 0 464-64 1 No. of Pept 767508 2.82 % 2 50.6 0 464-64 1 No. of Pept	523.6970 -111.40 2 15.2 62.4 0 124.134/CCVAEAGAPAGEN subtilisi-like protein [Toxoplasma gondi] g(154)/90/3 GCVPr SCOVPr SCOVPr SCOVPr MV [Do]: 6.50 % MV [Do]: 7 SCOVP SCOVPr SCOVPr SCOVPr 663.7160 d82.2 2.21.1 21.4 0 274.334/COVMERVEAGEN 642.600 d43.2 2.21.1 21.4 0 615.433/TPPS.4593/RR/TTPFX.49 643.600 443.2 2.21.1 21.4 0 765.438/DPPS.4593/RR/TTPFX.49 643.600 443.2 2.21.1 21.4 0 765.438/DPPS.4593/RR/TTPFX.49 643.600 464.351 2.21.4 21.4 0 765.438/DPPS.4593/RR/TTPFX.49 90.5004 456.300 760.716.500/SPPS/DR/TTPX.400/SPR/C Scover: NCBIn/ Carbanidomethyl Scover: MV [bD]: NC. of Peptides: mini Scover P Range Sequence 647.3200 2.24 2.26 9.4 464.418,397EELPESTRR	523.6970 -111.40 2 15.2 62.6 0 124.134/.CVAE.AGAPAGR.N subtilisit-lise protein [Toxoplasma gondi] gl1[51/19/13 50.55 Score ; 130.55 MV [RoDa]: 50.07 Score ; 50.77 6.50 % P Range Sequence 50.7 663.7160 48.2 2.21.1 21.4 9.73.200 642.606 46.3.2 2.21.1 21.4 9.73.200 200.979.970 643.500 4.63.2 2.21.1 21.4 9.74.200 154.328/.DPPAGPS/RKT.TPPAGPS/RKT.TPPAGPS/RKT.TPPAGPS/RKT.CP 90.500 4.63.20 2.21.1 21.4 0 154.328/.DPPAGPS/RKT.CP 90.5010/utobkinase, putative [Toxoplasma gondi ME49] 0 174.748/.000.9757K.CB 133.85 mV[kDa]: 5.32 0.7 133.85 0.200.97470.00757K.CB 0.5011 Score ; 133.85 0.200.97470.00757K.CB 133.85 0.2015 Score ; 133.85 0.200.97470.00757K.CB 133.85 0.502 MCBir ; 5.82 0.200.97470.00757K.CB

eq. Cov	: erage [%]:		CBInr 0.00 %					MW [kDa]: pl:		45.10 7.74	
odificat	ion(s):	c	arbamidor	nethyl				No. of Pept	ides:	3	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence		Modification
329	1	780.3650	-48.99	2	46.1	51.9	0		R.FLDPIDELPEPFK.A		
169	1	547.2190	-122.67	3	32.7	42.9	0		K.SPISPDVAVYVHAER.L		
210	1	705.2920	-68.21	2	35.7	38.3	1	389-400	K.LCDAFTDVAIRE		Carbamidomethyl: 2
Protein 1 Accessio Database Seq. Cov Modificat	n: :: erage [%]:	gi N 8	il23783414 CBInr 60 % Xidation		in 3 [Toxopla	sina gonui	I IVIE48	9 Score: MW [kDa]: pl: No. of Pept	ides:	120.94 23.90 9.71 3	
Cmpd.	No. of Cmpds.	m/z meas.	∆m/z [ppm]	z	Rt [min]	Score	Ρ		Sequence		Modification
157	1	608.3400	-17.76	2	31.4	39.9	1		K.KVEEELSLLR.R		
194	1	544.2780	-46.52	2	34.4	59.5	0	115-123	K.VEEELSLLR.R		
15	1	548.2680	-29.93	2	19.6	21.6	1	192-200	K.RQPFMSSVK.N		Oxidation: 5
Protein 1 Accessio Database Seq. Cov Modificat	erage [%]:	gi N 1	-type ATPa 22150268 CBInr 90 % 0xidation	ise, put 8	ative [Toxopla	sma gond	lii VEG] Score: MW [kDa]: pl: No. of Pept	ides:	120.50 144.50 5.80 2	
Accessio Database Seq. Cov	erage [%]:	gi N 1	(22150268 CBInr .90 %	se, put	ative (Toxopla Rt (min)	sma gond	III VEG	Score: MW [kDa]: pl: No. of Pept	ides: Sequence	144.50 5.80	Modification
Accessio Database Seq. Cov Modificat	n: erage [%]: ion(s): No. of	gi N 1. C	i(22150268 CBInr .90 % Dxidation Δm/z	8	Rt	-		Score: MW [kDa]: pl: No. of Pept Range 46-58		144.50 5.80	Modification

Protein 1 Accessio Database Seq. Cov	n:	2	neat shock p gi 15651105 VCBInr 3.40 %		70 (Babesia g	ibsoni]		Score: MW [kDa]: pl: No. of Pept	ides:	120.12 39.50 6.36 2	
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
188	1	744.3300	-32.61	2	31.9	85.6	0	36-48	R.TTPSYVAFTDTER.L		
144	1	574.7890	10.87	2	28.7	34.5	0	61-70	R.NPENTIFDAK.R		
Protein 2 Accessio Database Seq. Cov Modificat	n: : erage [%]:	9 1	SRS domair gi 23784104 NCBInr 11.30 % Carbamidor	9	ning protein [Foxoplasn	na gono	III ME49] Score: MW [kDa]: pl: No. of Pept	ides:	118.79 39.40 4.66 3	
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
328	1	748.9970	54.79	2	45.0	51.4	0	133-146	R.LVDVSTLIPTAIVR.G		
122	1	503.7470	-72.87	2	28.4	25.2	0	188-196	R.SCIVTVTVK.K		Carbamidomethyl: 2
350	1	1072.5000	-25.51	2	48.4	25.3	0	313-332	R.QDEGLGVCIMQALLPASEGF	L.R	Carbamidomethyl: 8
Protein 2 Accessio Database Seq. Cov Modificat	n: : erage [%]:	9 1 4	nypothetical gi[23783668 NCBInr 4.80 % Carbamidor	9	TGME49_00	3600 (Tox	oplasm	a gondii ME4 Score: MW [kDa]: pl: No. of Pept		87.16 47.20 8.46 2	
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
50	1	559.7660	-1.04	2	22.6	22.3	0		K.TGSPVCAVGDR.D		Carbamidomethyl: 6
209	1	548.7660	-35.16	2	35.5	64.9	0	322-331	K.SGYSLSDLVR.S		
-											3

Protein 2 Accessio Database Seq. Cov	n:	9	/IORN repe ii 23783851 ICBInr I.40 %		aining protein	[Toxoplas	ma gor	ndii ME49] Score: MW [kDa]: pl: No. of Pept	ides:	85.36 49.20 5.15 1	
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
4	1	745.8750	15.65	2	17.3	85.4	0	408-423	R.QTASTAGSAQPATGSR.	A	
Accessio Database Seq. Cov		ň	ii 15419635 VCBInr I.90 %					Score: MW [kDa]: pl: No. of Pept	ides:	68.23 70.50 5.55 1	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
49	1	560.7540	-84.66	2	21.7	68.2	0	579-590	R.LSGTGSTGATIR.V		
Protein 2 Accessio Database Seq. Cov Modificat	n: : erage [%]:	9 14	conserved h ii]22148067 VCBInr I.10 % Carbamidor	9	tical protein [T	oxoplasm	a gond	ii GT1] Score: MW [kDa]: pl: No. of Pept	ides:	65.86 38.60 6.59 1	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
234	1	797.8430	-67.22	2	37.4	49.6	0	115-129	K.GIDASAFTFTPPSQR.A		
Protein 2 Accessio			mc family/s ii 15608443		al maintenano	e of chron	nosome	Babesia bo Score:	vis]	54.17	

Database: Seq. Coverage	ə [%]:		CBInr .70 %					MW [kDa]: pl: No. of Pep	tides:	137.40 8.63 1	
	o. of npds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
86	1	479.7500	947.99	2	25.5	54.2	1	955-962	R.VVSDRLLR.D		
Protein 26: Accession: Database: Seq. Coverage	ə [%]:	g N	ructose-bis i[11840120 CBInr .90 %		ate aldolase o	class-I fan	nily prot	tein [Tetrahyr Score: MW [kDa]: pl: No. of Pep	nena thermophila] tides:	50.04 38.60 7.55 1	
	o. of npds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
	2	666.8350	-28.35	2	29.3	50.0	0	21-34	K.GILAADESTGTIGK.K		
Protein 27: Accession: Database: Seq. Coverage Modification(s		g N 3	iicroneme i 22148683 CBInr .80 % Carbamidor	5	putative [Tox	oplasma g	jondii G	ST1] Score: MW [kDa]: pl: No. of Pep	tides:	49.39 36.30 5.01 1	
				z	Rt	Score	Р	Range	Sequence		Modification
Cmpd. No	o. of npds.	m/z meas.	∆ m/z [ppm]	z	fminl	ocore					

Search	Location	/	BOPS/RH	11/Bop	os_No10_B	C3_01_6	621.d/					
	n: erage [%]:	9 N 2	ii 13957751 VCBInr !1.50 %	Ī	2 [Toxoplasma	i gondii]		Score: MW [kDa] pl: No. of Pep		133.84 19.00 9.35 3		
Modificat	ion(s):	(Carbamidor	nethyl								
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification	
76	1	785.8590	592.83	2	35.2	24.7	0	61-7	5K.LTISPSGEGDVFYGK.E			
66	1	706.4370	-15.26	2	33.8	49.8	1		5R.KLTTVLPGAVLTAK.V			
1	1	529.7270	-54.77	2	19.3	59.3	0	124-13	4K.CVAEAGAPAGR.N		Carbamidomethyl: 1	
Search Search	Туре	C A	Combined	MS/N Bops_	05_No11_B IS - Protein NCBI_2014 05_No12_B	Extracto	ır 15:22:2	23				
Search Search Search		Ā	Amazon_E	Bops_	IS - Protein NCBI_2014 os_No11_B	-08-20 1	 15:22:2	23				
Search Search Search		Ā	Amazon_B	Bops_	IS - Protein NCBI_2014 ps_No1_BB	-08-20 1	15:22:2	23				
												34

Protein 1 Accessio Database	on: 9:	, I	i 23783410 VCBInr		e, putative [To	oxoplasma	gond	Score: MW [kDa]:		133.85 131.30	
Seq. Cov	rerage [%]:	2	2.80 %					pl:		5.82	
Modificat	tion(s):		Carbamidor	nethyl				No. of Pep	tides:	3	
Cmpd.	No. of Cmpds.	m/z meas.	∆m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
178	1	647.3240	6.64	2	32.5	50.0	0		R.SVFEELPESTR.R		
94	1	676.8230	-22.54	2	26.0	24.9	1		R.TEREEAELFTK.E		
119	1	644.3100	-18.19	2	28.1	58.9	0	798-809	R.VVCVEPSGDLGR.F		Carbamidomethyl: 3
seq. Cov Nodificat	rerage [%]: tion(s):		1.90 % Oxidation					pl: No. of Pep	tides:	5.80 2	
Cmpd.	No. of Cmpds.	m/z meas.	∆m/z [ppm]	z	Rt [min]	Score	P	Range	Sequence		Modification
19	1	621.8260	9.86	2	20.1	59.6	0		K.VGSQPVAAGAEEK.V		
189	1	702.8200	-56.23	2	33.5	25.9	0	673-684	R.VQELEVPFNSSR.K		
Search Type Search Result Search Location Protein 1:		/	Amazon_I BOPS/RH ong-chain fi	Bops_ 11/Bop atty aci	IS - Protein NCBI_2014 bs_No2_BB	-08-20 1 3_01_61	5:22: 1.d/	ısma gondii N	IE49]		
	on:		i 23783516 CBInr	i3				Score: MW [kDa]:		177.82 82 10	
Accessio											

ieq. Cov	erage [%]:	6	.40 %					pl: No. of Pep	41daa.	5.21 4	
Nodificat	ion(s):	c	Carbamidor	nethyl,	Oxidation			NO. OI Pep	lides.	4	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [mqq]	z	Rt [min]	Score	Р	Range	Sequence		Modification
37	1	551,7730	-64.82	2	22.1	51.3	1	240-250	K.AVAELKAGESK.A		
137	1	541,2890	54.54	3	29.6	42.9	0	540-553	R.IDDPEHPAGELCLR.G		Carbamidomethyl: 12
170	1	554.8010	14.56	2	32.0	38.5	0	554-563	R.GPTITPGYFR.N		
143	1	801.3460	-9.50	2	30.0	25.4	0	732-744	K.EIDALYSEMETER.A		Oxidation: 9
143 1 601.3460 -3.500 2 3.50] Protein 2: subfilian-like protein [Toxoplasma gond Accession: g 15419013 Database: NCBinr Beq. Coverage [%]: 6.50 %								Score: MW [kDa]: pl: No. of Pep	tides:	136.55 85.00 5.07 4	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
27	1	603.2110	-88.52	2	21.1	21.1	0	271-280	R.DNMEVNQAER.D		
24	1	547.2600	-46.53	2	20.8	44.7	0		R.TPPSAPSPSPR.T		
2	1	561.6180	2.99	3	18.4	25.2	0		R.SGSQPKPPQDNTTTPK.M		
122	1	862.3040	-68.05	2	28.4	45.5	0	746-760	R.EEEPPTDEDDFSSVK.G		
Search Type Combined MS/MS - ProteinExtract Search Result Amazon Bops_NCBI_2014-08-20 //BOPS/RH1/Bops_No3_BB4_01_6 Protein 1: heat shock protein 70 [Babesia gibson] Accession: gl1[95511059						-08-20 1 4_01_61	5:22:2	23 Score:		120 12	
Database		Ñ	ICBInr 40 %	9				MW [kDa]: pl:		39.50	

33

								No. of Pept	tides:	2	
Cmpd.	No. of Cmpds.	m/z meas.	∆m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
188	1	744.3300	-32.61	2	31.9	85.6	0	36-48	R.TTPSYVAFTDTER.L		
144	1	574.7890	10.87	2	28.7	34.5	0	61-70	R.NPENTIFDAK.R		
Protein 2 Accessic Database Seq. Cov	n:	9	//ORN repe ji 23783851 VCBInr 3.40 %		aining protein	(Toxoplas	ma go	ndii ME49] Score: MW [kDa]: pl: No. of Pept		85.36 49.20 5.15 1	
Cmpd.	No. of	m/z meas.	Δm/z	z	Rt	Score	Р	Range	Sequence		Modification
Cmpa.		mer meus.			[min]						
4 4	Cmpds.	745.8750	[ppm] 15.65	2	[min] 17.3	85.4	0	-	R.QTASTAGSAQPATGSR.	A	
4 Protein 3 Accessic Database	Cmpds. 1 : on:	745.8750 P 9	[ppm] 15.65	2 comuta:				408-423	R.QTASTAGSAQPATGSR.	68.23 70.50 5.55 1	
4 Protein 3 Accessic Database	Cmpds. 1 : on: o:	745.8750 P 9	[ppm] 15.65 hosphoglu ji 15419635 VCBInr	2 comuta:	17.3			408-423 Toxoplasma o Score: MW [kDa]: pl: No. of Pept	R.QTASTAGSAQPATGSR.	68.23 70.50 5.55	Modification

rotein 1 ccessic atabase eq. Cov	on: e: erage [%]:	9 N 3	il23784073 ICBInr 3.50 % Carbamidor	11	jondii ME49] Ovidation			Score: MW [kDa]: pl: No. of Pept		413.90 41.90 4.91 13	
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z	z	Rt	Score	Р	Range	Sequence		Modification
137	1	571.8350	-26.65	2	29.9	35.8	0	30-40	R.AVFPSIVGKPK.N		
65	2	618,7540	-47.81	2	24.3	26.3	0	41-51	K NPGIMVGMEEK D		Oxidation: 5.8
103	2	610.7770	-14.94	2	27.1	24.5	ŏ		K.NPGIMVGMEEK.D		Oxidation: 5
24	1	636.2200	-69.26	2	21.2	31.7	Ö		K.DCYVGDEAQSK.R		Carbamidomethyl: 2
209	1	973.9500	-1.32	2	35.6	24.1	Ö		K.YPIEHGIVTNWDDMEK.I		
172	1	981.9100	-39.45	2	33.0	23.9	0	70-85	K.YPIEHGIVTNWDDMEK.I		Oxidation: 14
140	3	505.8980	-45.93	3	30.2	43.4	ō		K.IWHHTFYNELR.V		
150	1	523,7000	-57.83	2	31.1	37.8	0	185-192	R.DLTEYMMK.I		Oxidation: 7
71	1	530.7140	-69.56	2	24.9	23.2	0	198-207	R.GYGFTTSAEK.E		
225	1	888.9170	-27.87	2	37.0	50.2	0	240-255	K.SYELPDGNIITVGNER.F		
70	1	479,7010	-62.83	2	24.7	24.5	0	278-285	R.TTFDSIMK.C		Oxidation: 7
115	3	597.2600	-79.94	2	28.2	24.0	0	317-327	K.ELTSLAPSTMK.I		Oxidation: 10
75	1	759.3140	-43.43	2	25.1	27.3	0	361-373	K.EEYDESGPSIVHR.K		
Protein 2 Accessic Database Seq. Cov Modifica	on: e: verage [%]:	9 N 8	ctin [Symbi i 86562730 ICBInr :20 % Oxidation		n sp. clade C]			Score: MW [kDa]: pl: No. of Pept	tides:	306.20 41.80 5.22 3	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence		Modification
37	1	488.7170	-22.06	2	22.2	74.5	0	20-29	K.AGFAGDDAPR.A		
17	1	599.7230	-69.62	2	20.5	52.7	0	52-62	K.DSYVGDEAQSK.R		
	1	566,7440	-40.76	2	26.5	32.7	0	198-207	R.GYSFTTTAER.E		

Protein 3 Accessio Database Seq. Cov	n:	9	ctin [Pyrocy i]27450759 ICBInr .30 %		nula]			Score: MW [kDa]: pl: No. of Pept	tides:	291.94 41.70 5.83 1	
Nodificat	ion(s):	C	Oxidation								
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
240	1	895.9210	-31.92	2	38.3	56.7	0	239-254	K.SYELPDGQVITIGNER.F		
Modificat	erage [%]: ion(s):	Ň 1 E	i 30068003 ICBInr 2.70 % Deamidated					Score: MW [kDa]: pl: No. of Pept		195.97 41.70 6.59 5	
Cmpd.	No. of Cmpds.	m/z meas.	Δm/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
174	1	586.2970	-41.81	2	33.1	35.5	0		K.ITYFGTLTQK.A		
79	1	470.5620	-47.37	3	25.4	35.0	0		R.ANEEVVGHVTLNK.E		
251	1	591.2990	-24.84	2	39.3	25.5	0		K.GFLTDYIPGAK.Q		
91 81	1	584.2680 690.8150	-54.95 -29.98	3	26.2	42.4 57.6	1		K.IEKVENNGEQSVLYK.F		Deamidated: 7 Deamidated: 3
Protein 5 Accessio Database Seq. Cov Modificat	n: :: erage [%]:	9 N 1	onserved h i 22148182 ICBInr 0.00 % Carbamidon	6	ical protein [T	oxoplasm	a gond	ii GT1] Score: MW [kDa]: pl: No. of Pept	tides:	133.11 45.10 7.74 3	
					Rt	Score	Р	Range	Sequence		Modification

329	1	780.3650	-48.99	2	46.1	51.9	0		R.FLDPIDELPEPFK.A		
169	1	547.2190	-122.67	3	32.7	42.9	0		C.SPISPDVAVYVHAER.L		
210	1	705.2920	-68.21	2	35.7	38.3	1	389-400	CLCDAFTDVAIRE		Carbamidomethyl: 2
earch	Туре	C	Combined	MS/N	1S - Proteinl	Extractor	r				
earch	Result	A	mazon E	Bops I	NCBI 2014	-08-20 1	5:22:	23			
earch	Location	/E	BOPS/RH	11/Bog	s No5 BB	6 01 61	5.d/				
Protein 1					TGME49_03	2280 [Tox	oplasn	na gondii ME4	9]		
Accessio Database			i 23783760 ICBInr	11				Score:		219.47 33.90	
								MW [kDa]:			
eq. Cov	erage [%]:	1:	9.70 %					pl: No. of Pepti	4	6.04 5	
/odificat	·····	-	Dxidation					NO. OT Pepti	ues:	5	
lounca	lion(s):		xidation								
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Ρ	-	Sequence		Modification
23	1	636.7840	-73.43	2	20.6	57.7	0		R.AAVAAAAANGAETGK.A		
42	1	517.2620	-28.19	2	22.1	42.9	0		CLAGQMSLAAR.S		Oxidation: 5
53	1	627.7970	-77.55	2	22.9	43.0	0		CAPPYKPIPESR.F		
288	1	817.3980	-42.64	2	41.9	51.0	0		CQPFTILYLEPEQR.T		
	1	751.8670	-7.04	2	31.9	24.9	0	193-205	R.TFAEPEQPDIEVK.D		
165		101.0010									
			IIC2 protoi	Toxo	alarma gondii	1					
rotein 2		N	IIC3 protei	n (Toxoj	plasma gondii]		Score:		191.00	
Protein 2 Accessio	n:	N gi	i 17205412	n (Toxo) 6	plasma gondii]		Score:		191.00	
Protein 2 Accessio)n:):	N gi N	i 17205412 ICBInr	n (Toxo) 6	plasma gondii]		MW [kDa]:		37.90	
Protein 2 Accessio Database	n:	N gi N	i 17205412	n (Toxoj !6	plasma gondii]			des:		
Protein 2 Accessio Database Seq. Cov	on: e: erage [%]:	M gi N 2:	i 17205412 ICBInr 2.60 %	16	plasma gondii Deamidated]		MW [kDa]: pl:	des:	37.90 6.02	
Protein 2 Accessio Database	n: erage [%]: tion(s): No. of	M gi N 2:	i 17205412 ICBInr 2.60 % Carbamidor Δm/z	16	-	Score	P	MW [kDa]: pl: No. of Pepti	des: Sequence	37.90 6.02	Modification
Protein 2 Accessio Database Beq. Cov Modificat	on: erage [%]: tion(s):	M gi N 2: C	i(17205412 ICBInr 2.60 % Carbamidor	nethyl, I	Deamidated	-	P	MW [kDa]: pl: No. of Pepti		37.90 6.02	Modification Carbamidomethyl: 6, 15

1	610.5810	-33.88	3	24.4	21.4	0	157-173	K.NAECVENLDAGGGVH	ICK.C	Carbamidomethyl: 4, 16
1	915.3660	-23.66	2	32.6	37.4	0				Carbamidomethyl: 10, 15
1	831.5920	-71.07	3	26.5	23.1	0	249-269	R.CIDDASHENGYTCEC	PTGYSR.E	Carbamidomethyl: 1, 13, 15; Deamidated: 9
1	543.2140	-66.69	2	26.1	58.0	0	294-303	K.EFGISASSCK.C		Carbamidomethyl: 9
[%]:	g	il22148852 CBInr		tical protein [T	oxoplasm	a gonc	Score: MW [kDa]: pl:		155.27 39.20 8.76	
):	(Carbamidon	nethyl,	Oxidation			No. of Pept	ides:	4	
o. of hpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р				Modification
1										
1	702.3070	-78.16	2	27.3		0	149-161	K.ISVPESQYPANAK.S		
1	548.9240	-15.66	3	27.9	22.7	0				Carbamidomethyl: 5; Oxidatio
1	543.5920	-16.48	3	30.9	36.6	0	173-186	K.TGNTCMLTIHVEPR.D		Carbamidomethyl: 5
• [%]:);	9 N 1	i 23784104 ICBInr 1.30 %	9	ning protein [1	Foxoplasm	ia goni	Score: MW [kDa]: pl:	ides:	118.79 39.40 4.66 3	
o. of upds.		Δ m/z [ppm]	z	[min]			-	-		Modification
1										
1										Carbamidomethyl: 2
1	1072.5000	-25.51	2	48.4	25.3	0	313-332	R.QDEGLGVCIMQALLP	ASEGR.R	Carbamidomethyl: 8
		nicroneme p iil22148683		putative [Tox	oplasma g	ondii (GT1] Score:		49.39	
	1 [%]: . of 1 1 1 [%]: . of . of . of	1 83.5800 1 643.2460 0 643.2460 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 83.5820 71.07 1 563.2140 -66.69 conserved h g)[2214852; -66.69 [V4]: NCBIrr -0.00 10 563.2140 -66.69 [V5]: NCBIrr -0.00 10 564.5240 -166.61 17 702.2360 -77.01 1 564.5240 -15.66 1 564.5260 -77.01 1 564.5260 -75.61 1 564.5260 -75.01 1 564.5260 -76.61 1 564.5260 -76.21 1 564.5260 -76.21 1 564.5260 -76.21 1 762.507 -72.21 1 762.707 -72.71 1 762.707 -72.71 1 762.507 -72.71 1 762.707 -72.71 1 772.2007 -72.71 1 772.2007 -72.71 1 <td>1 83.5920 -77.67 3 1 54.32460 -66.69 2 9 54.32460 -66.69 2 9 54.32460 -66.69 2 1 56.42460 -66.69 2 10 56.62 -77.62 -76.62 10 8.05 -77.28 -77.28 1 56.45 -77.28 -77.64 1 77.28 -77.64 -77.64 1 77.28 -77.64 -77.64 1 77.28 -77.64 -77.64 1 77.28 -77.64 -77.64 1 77.28 -77.64 -77.64 1 77.28 -77.64 -77.64 1 54.520 -75.64 -75.66 1 54.520 -75.64 -75.64 1 -76.2707 -75.74 -75.74 1 -76.747 -75.74 -75.74 1 -76.777 -75.74</td> <td>1 83.9820 -71.09 3 26.5.5 1 643.91 2 26.5.5 1 663.92 2 26.5.5 NCBUR conserved hypobenical protein [T gl221488523 10.80.76 NCBIr 10.80.76 70.82.996 2 NCBIr 10.80.76 2 70.1 1 702.8396 2 27.3 1 702.8396 -70.82.936 2 27.3 1 564.9526 -16.5.6 3 3.5.9 2 1 564.9526 -16.5.66 3 3.5.9 2 27.9 1 564.9526 -16.5.66 3 3.5.9 2 27.9 1 564.9526 -16.5.66 3 3.5.9 3 3.5.9 3 3.5.9 3 3.5.9 3 3.5.9 3 3.5.9 3 3.5.9 3 3.5.9 3 3.5.9 3 3.5.9 3 3.5.9 3 3.5.9 3 3.</td> <td>1 83.5820 71.07 3 26.6 23.1 1 54.54246 46.68 2 26.5 86.6 conserved hypothetical protein [Toxoplasm gil221488253 Intervention [Toxoplasm gil221488253 Intervention [Toxoplasm gil221488253 collor a.miz Rt Score 51.8 off 10.80 % [mit] Score 51.8 off 702.2000 mm 71.6 27.5 27.5 1 54.6.8262 15.66 3 27.5 22.7 1 54.6.8262 Intervention 54.8 3 36.9 54.6 SRS domain containing protein [Toxoplasm gil237641049 NCEInr Intervention Score Score f 746.8970 mm 54.7 24.82 54.4 54.4 54.4 54.4 54.4 54.4 54.4 54.4 54.4 54.4 54.4 54.4 54.4 54.4 54.4 54.4 54.4 54.4 54.4 54.4 54.4 54.4 54.4 54.4<!--</td--><td>1 831.9820 71.07 3 2.6.6 23.1 0 1 645.91 2 2.6.6 23.1 0 conserved hypothetical protein [Toxoplasma gond gi[2214982503] NCBirr 10.80 % % 1 0.80 % 2 71.07 % % % % (%) 10.80 % 2 10.80 % % % % % off 702.3300 [pem] x [mii] 5.60 % % % 1 702.3300 [pem] x [mii] 5.60 % % % 1 702.3300 7.51 % 2 7.7 5.86 % % % 1 648.9260 -16.84 3 2.7.8 2.2.7 % % % State -96.87 -97.81 % 2 3.6.4 3.6.4 % % % % % % % % % % % % % % %<td>1 631.5530 -71.67 3 2.8.6 2.3.1 6 2.42-269 1 643.2146 -46.69 2 2.8.6 5.8.1 0 2.94-269 1 543.2146 -46.69 2 2.8.6 5.8.1 0 2.94-269 1 543.2146 -46.69 2 2.8.1 5.8.1 0 2.94-269 1 52.21 52.8523 Totaling Totaling 3.031 571 Score MW (PLO): Score MW (PLO): pit No. of Pept 1 52.856 -17.92.3566 -19.494 2 27.9 52.6 1.54-464 1.54-464 1.54-464 1.54-464 1.54-564 1.54-664 1.52-52 0 1.73-456 1.73-456 1.73-456 1.73-456 1.73-456 1.73-456 1.73-456 1.73-456 1.73-456 3.03.9 56.8 0 1.73-456 Score: MW (PLO): NC of Pept NC of Pept</td><td>1 53.5830 -71.07 3 28.6 23.1 0 284-5896 CIDOSABHENGYTEECI 1 643.2146 -66.49 2 28.6 0 294-3096 EPGIBASSOK.C conserved hycothetical protein [Toxoplasma gond GT1] gl[2214685023 Score: MW [k0a]: pl: No. of Peptides: MW [k0a]: pl: No. of Peptides: v Carbanidomethyl, Oxidation No. of Peptides: No. of Peptides: v Carbanidomethyl, Oxidation 138.6 138.4 138.4 of M2 mess. Amit z Rt Score P Range Sequence of M4 m2 mess. Amit z Rt Score P Range Sequence of M4 m2 mess. Amit z Rt Score P Range Sequence of M4 m2 mess. 3 36.8 Score 177.458K TGMTCMLTHVEPRD SSR domain containing protein [Toxoplasma gondi W-L6] Score: Score: No. of Peptides: (M2 m4 m4 m1 m4) z Rmit Score: No. of Peptides: 1</td><td>1 631.9500 -71.09 3 24.5 23.1 0 249-269K (DDASHENDYTECPTGYSR.E 1 642.9146 -66.89 2 24.5 66.6 0 294-369K (EPGIBASECK C conserved hytobelical protein [Toxoplasma gondii GT1] gl(2214685023) Score: 155.27 NCBinr MW (K0a): 39.20 91.6 70.80 Vitil 10.80 % P Range Sequence 4 04 770.280 -77.6 NO. of Peptides: 4 04 770.280 -77.6 -77.6 NO. of Peptides: 4 1 564.924 -16.548 3 27.7 22.81 0 11.614K (SWPESDYTADWATCH, VEWALS 1 564.9246 -16.548 3 27.7 22.81 0 11.7 116.70 1 564.9246 -16.548 3 27.7 22.81 0 117.144K (TOMTCH, THVEPR.D 116.70 1 564.9246 -16.48 3 35.8 36.4 0 173.144K (TOMTCH, THVE</td></td></td>	1 83.5920 -77.67 3 1 54.32460 -66.69 2 9 54.32460 -66.69 2 9 54.32460 -66.69 2 1 56.42460 -66.69 2 10 56.62 -77.62 -76.62 10 8.05 -77.28 -77.28 1 56.45 -77.28 -77.64 1 77.28 -77.64 -77.64 1 77.28 -77.64 -77.64 1 77.28 -77.64 -77.64 1 77.28 -77.64 -77.64 1 77.28 -77.64 -77.64 1 77.28 -77.64 -77.64 1 54.520 -75.64 -75.66 1 54.520 -75.64 -75.64 1 -76.2707 -75.74 -75.74 1 -76.747 -75.74 -75.74 1 -76.777 -75.74	1 83.9820 -71.09 3 26.5.5 1 643.91 2 26.5.5 1 663.92 2 26.5.5 NCBUR conserved hypobenical protein [T gl221488523 10.80.76 NCBIr 10.80.76 70.82.996 2 NCBIr 10.80.76 2 70.1 1 702.8396 2 27.3 1 702.8396 -70.82.936 2 27.3 1 564.9526 -16.5.6 3 3.5.9 2 1 564.9526 -16.5.66 3 3.5.9 2 27.9 1 564.9526 -16.5.66 3 3.5.9 2 27.9 1 564.9526 -16.5.66 3 3.5.9 3 3.5.9 3 3.5.9 3 3.5.9 3 3.5.9 3 3.5.9 3 3.5.9 3 3.5.9 3 3.5.9 3 3.5.9 3 3.5.9 3 3.5.9 3 3.	1 83.5820 71.07 3 26.6 23.1 1 54.54246 46.68 2 26.5 86.6 conserved hypothetical protein [Toxoplasm gil221488253 Intervention [Toxoplasm gil221488253 Intervention [Toxoplasm gil221488253 collor a.miz Rt Score 51.8 off 10.80 % [mit] Score 51.8 off 702.2000 mm 71.6 27.5 27.5 1 54.6.8262 15.66 3 27.5 22.7 1 54.6.8262 Intervention 54.8 3 36.9 54.6 SRS domain containing protein [Toxoplasm gil237641049 NCEInr Intervention Score Score f 746.8970 mm 54.7 24.82 54.4 54.4 54.4 54.4 54.4 54.4 54.4 54.4 54.4 54.4 54.4 54.4 54.4 54.4 54.4 54.4 54.4 54.4 54.4 54.4 54.4 54.4 54.4 54.4 </td <td>1 831.9820 71.07 3 2.6.6 23.1 0 1 645.91 2 2.6.6 23.1 0 conserved hypothetical protein [Toxoplasma gond gi[2214982503] NCBirr 10.80 % % 1 0.80 % 2 71.07 % % % % (%) 10.80 % 2 10.80 % % % % % off 702.3300 [pem] x [mii] 5.60 % % % 1 702.3300 [pem] x [mii] 5.60 % % % 1 702.3300 7.51 % 2 7.7 5.86 % % % 1 648.9260 -16.84 3 2.7.8 2.2.7 % % % State -96.87 -97.81 % 2 3.6.4 3.6.4 % % % % % % % % % % % % % % %<td>1 631.5530 -71.67 3 2.8.6 2.3.1 6 2.42-269 1 643.2146 -46.69 2 2.8.6 5.8.1 0 2.94-269 1 543.2146 -46.69 2 2.8.6 5.8.1 0 2.94-269 1 543.2146 -46.69 2 2.8.1 5.8.1 0 2.94-269 1 52.21 52.8523 Totaling Totaling 3.031 571 Score MW (PLO): Score MW (PLO): pit No. of Pept 1 52.856 -17.92.3566 -19.494 2 27.9 52.6 1.54-464 1.54-464 1.54-464 1.54-464 1.54-564 1.54-664 1.52-52 0 1.73-456 1.73-456 1.73-456 1.73-456 1.73-456 1.73-456 1.73-456 1.73-456 1.73-456 3.03.9 56.8 0 1.73-456 Score: MW (PLO): NC of Pept NC of Pept</td><td>1 53.5830 -71.07 3 28.6 23.1 0 284-5896 CIDOSABHENGYTEECI 1 643.2146 -66.49 2 28.6 0 294-3096 EPGIBASSOK.C conserved hycothetical protein [Toxoplasma gond GT1] gl[2214685023 Score: MW [k0a]: pl: No. of Peptides: MW [k0a]: pl: No. of Peptides: v Carbanidomethyl, Oxidation No. of Peptides: No. of Peptides: v Carbanidomethyl, Oxidation 138.6 138.4 138.4 of M2 mess. Amit z Rt Score P Range Sequence of M4 m2 mess. Amit z Rt Score P Range Sequence of M4 m2 mess. Amit z Rt Score P Range Sequence of M4 m2 mess. 3 36.8 Score 177.458K TGMTCMLTHVEPRD SSR domain containing protein [Toxoplasma gondi W-L6] Score: Score: No. of Peptides: (M2 m4 m4 m1 m4) z Rmit Score: No. of Peptides: 1</td><td>1 631.9500 -71.09 3 24.5 23.1 0 249-269K (DDASHENDYTECPTGYSR.E 1 642.9146 -66.89 2 24.5 66.6 0 294-369K (EPGIBASECK C conserved hytobelical protein [Toxoplasma gondii GT1] gl(2214685023) Score: 155.27 NCBinr MW (K0a): 39.20 91.6 70.80 Vitil 10.80 % P Range Sequence 4 04 770.280 -77.6 NO. of Peptides: 4 04 770.280 -77.6 -77.6 NO. of Peptides: 4 1 564.924 -16.548 3 27.7 22.81 0 11.614K (SWPESDYTADWATCH, VEWALS 1 564.9246 -16.548 3 27.7 22.81 0 11.7 116.70 1 564.9246 -16.548 3 27.7 22.81 0 117.144K (TOMTCH, THVEPR.D 116.70 1 564.9246 -16.48 3 35.8 36.4 0 173.144K (TOMTCH, THVE</td></td>	1 831.9820 71.07 3 2.6.6 23.1 0 1 645.91 2 2.6.6 23.1 0 conserved hypothetical protein [Toxoplasma gond gi[2214982503] NCBirr 10.80 % % 1 0.80 % 2 71.07 % % % % (%) 10.80 % 2 10.80 % % % % % off 702.3300 [pem] x [mii] 5.60 % % % 1 702.3300 [pem] x [mii] 5.60 % % % 1 702.3300 7.51 % 2 7.7 5.86 % % % 1 648.9260 -16.84 3 2.7.8 2.2.7 % % % State -96.87 -97.81 % 2 3.6.4 3.6.4 % % % % % % % % % % % % % % % <td>1 631.5530 -71.67 3 2.8.6 2.3.1 6 2.42-269 1 643.2146 -46.69 2 2.8.6 5.8.1 0 2.94-269 1 543.2146 -46.69 2 2.8.6 5.8.1 0 2.94-269 1 543.2146 -46.69 2 2.8.1 5.8.1 0 2.94-269 1 52.21 52.8523 Totaling Totaling 3.031 571 Score MW (PLO): Score MW (PLO): pit No. of Pept 1 52.856 -17.92.3566 -19.494 2 27.9 52.6 1.54-464 1.54-464 1.54-464 1.54-464 1.54-564 1.54-664 1.52-52 0 1.73-456 1.73-456 1.73-456 1.73-456 1.73-456 1.73-456 1.73-456 1.73-456 1.73-456 3.03.9 56.8 0 1.73-456 Score: MW (PLO): NC of Pept NC of Pept</td> <td>1 53.5830 -71.07 3 28.6 23.1 0 284-5896 CIDOSABHENGYTEECI 1 643.2146 -66.49 2 28.6 0 294-3096 EPGIBASSOK.C conserved hycothetical protein [Toxoplasma gond GT1] gl[2214685023 Score: MW [k0a]: pl: No. of Peptides: MW [k0a]: pl: No. of Peptides: v Carbanidomethyl, Oxidation No. of Peptides: No. of Peptides: v Carbanidomethyl, Oxidation 138.6 138.4 138.4 of M2 mess. Amit z Rt Score P Range Sequence of M4 m2 mess. Amit z Rt Score P Range Sequence of M4 m2 mess. Amit z Rt Score P Range Sequence of M4 m2 mess. 3 36.8 Score 177.458K TGMTCMLTHVEPRD SSR domain containing protein [Toxoplasma gondi W-L6] Score: Score: No. of Peptides: (M2 m4 m4 m1 m4) z Rmit Score: No. of Peptides: 1</td> <td>1 631.9500 -71.09 3 24.5 23.1 0 249-269K (DDASHENDYTECPTGYSR.E 1 642.9146 -66.89 2 24.5 66.6 0 294-369K (EPGIBASECK C conserved hytobelical protein [Toxoplasma gondii GT1] gl(2214685023) Score: 155.27 NCBinr MW (K0a): 39.20 91.6 70.80 Vitil 10.80 % P Range Sequence 4 04 770.280 -77.6 NO. of Peptides: 4 04 770.280 -77.6 -77.6 NO. of Peptides: 4 1 564.924 -16.548 3 27.7 22.81 0 11.614K (SWPESDYTADWATCH, VEWALS 1 564.9246 -16.548 3 27.7 22.81 0 11.7 116.70 1 564.9246 -16.548 3 27.7 22.81 0 117.144K (TOMTCH, THVEPR.D 116.70 1 564.9246 -16.48 3 35.8 36.4 0 173.144K (TOMTCH, THVE</td>	1 631.5530 -71.67 3 2.8.6 2.3.1 6 2.42-269 1 643.2146 -46.69 2 2.8.6 5.8.1 0 2.94-269 1 543.2146 -46.69 2 2.8.6 5.8.1 0 2.94-269 1 543.2146 -46.69 2 2.8.1 5.8.1 0 2.94-269 1 52.21 52.8523 Totaling Totaling 3.031 571 Score MW (PLO): Score MW (PLO): pit No. of Pept 1 52.856 -17.92.3566 -19.494 2 27.9 52.6 1.54-464 1.54-464 1.54-464 1.54-464 1.54-564 1.54-664 1.52-52 0 1.73-456 1.73-456 1.73-456 1.73-456 1.73-456 1.73-456 1.73-456 1.73-456 1.73-456 3.03.9 56.8 0 1.73-456 Score: MW (PLO): NC of Pept NC of Pept	1 53.5830 -71.07 3 28.6 23.1 0 284-5896 CIDOSABHENGYTEECI 1 643.2146 -66.49 2 28.6 0 294-3096 EPGIBASSOK.C conserved hycothetical protein [Toxoplasma gond GT1] gl[2214685023 Score: MW [k0a]: pl: No. of Peptides: MW [k0a]: pl: No. of Peptides: v Carbanidomethyl, Oxidation No. of Peptides: No. of Peptides: v Carbanidomethyl, Oxidation 138.6 138.4 138.4 of M2 mess. Amit z Rt Score P Range Sequence of M4 m2 mess. Amit z Rt Score P Range Sequence of M4 m2 mess. Amit z Rt Score P Range Sequence of M4 m2 mess. 3 36.8 Score 177.458K TGMTCMLTHVEPRD SSR domain containing protein [Toxoplasma gondi W-L6] Score: Score: No. of Peptides: (M2 m4 m4 m1 m4) z Rmit Score: No. of Peptides: 1	1 631.9500 -71.09 3 24.5 23.1 0 249-269K (DDASHENDYTECPTGYSR.E 1 642.9146 -66.89 2 24.5 66.6 0 294-369K (EPGIBASECK C conserved hytobelical protein [Toxoplasma gondii GT1] gl(2214685023) Score: 155.27 NCBinr MW (K0a): 39.20 91.6 70.80 Vitil 10.80 % P Range Sequence 4 04 770.280 -77.6 NO. of Peptides: 4 04 770.280 -77.6 -77.6 NO. of Peptides: 4 1 564.924 -16.548 3 27.7 22.81 0 11.614K (SWPESDYTADWATCH, VEWALS 1 564.9246 -16.548 3 27.7 22.81 0 11.7 116.70 1 564.9246 -16.548 3 27.7 22.81 0 117.144K (TOMTCH, THVEPR.D 116.70 1 564.9246 -16.48 3 35.8 36.4 0 173.144K (TOMTCH, THVE

Seq. Cove	erage [%]:	3	.80 %					pl: No. of Pept	tides:	5.01 1	
Aodificat	ion(s):	C	Carbamidor	nethyl							
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
21	1	724.7930	-4.96	2	20.4	49.4	0	249-261	R.YQGCASDNAGSYR.C		Carbamidomethyl: 4
rotein 1:	Location	/I s	BOPS/RH RS domair i 23783781	11/Bop	NCBI_2014 os_No6_BB ning protein [7_01_61	6.d/	dii ME49] Score:		109.73	
	: erage [%]:	9	ICBInr .90 % Carbamidor	nethvl				MW [kDa]: pl: No. of Pept	tides:	39.10 7.76 3	
Database	: erage [%]: ion(s): No. of	9	.90 % Carbamidor Δ m/z	nethyl z	Rt	Score	P	pl:	tides: Sequence	7.76	Modification
Database Seq. Cove Modificat Cmpd.	erage [%]: ion(s): No. of Cmpds.	9 m/z meas.	.90 % Carbamidor <u>A m/z</u> [ppm]	z	[min]			pl: No. of Pept Range	Sequence	7.76	Modification
)atabase leq. Cove lodificat	: erage [%]: ion(s): No. of	9	.90 % Carbamidor Δ m/z			49.4	P 0 0	pl: No. of Pept Range 136-148		7.76	Modification
Oatabase Geq. Cove Modificat Cmpd. 250	ion(s): No. of Cmpds.	9 m/z meas. 702.8580	.90 % Carbamidor Δ m/z [ppm] -20.06	z 2	[min] 38.9	49.4	0	pl: No. of Pept Range 136-148 149-161	Sequence K.EWVTGDSVLTGLK.I	7.76	Modification Carbamidomethyl: 1

Appendix

Cmpd.	No. of Cmpds.	m/z meas.	Δm/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence		Modification
234	1	797.8430	-67.22	2	37.4	49.6	0	115-12	9K.GIDASAFTFTPPSQR.A		
Protein 3				ereteie	TGME49 00	2000 17		an nandi ME	401		
Accessio			il23783668		1GWE49_00	3000 [108	opiasi	Score:	49]	64.87	
Database			ICBInr	10				MW [kDa]:		47.20	
	erage [%]:		30 %					pl:		8.46	
		-						No. of Per	tides:	1	
Cmpd.	No. of	m/z meas.	∆ m/z	z	Rt	Score	Р	Range	Sequence		Modification
209	Cmpds.	548,7660	[ppm] -35.16	2	[min] 35.5	64.9	0		1K.SGYSLSDLVR.S		
209	1	548.7660	-35.16	2	35.5	64.9	U	322-33	IN. SGTSLSDLVK.S		
Protein 4			urface anti-	700 P2	2 [Toxoplasma	aondiil					
Accessio			il26983887			gonung		Score:		62.61	
Database			CBInr	0				MW [kDa]		17.30	
Seq. Cov	erage [%]:	é	5.50 %					pl:		9.09	
								No. of Per	tides:	1	
	tion(s):		Carbamidor	nethyl							
Modificat							P	Range	Sequence		Modification
Cmpd.	No. of	m/z meas.	Δm/z	z	Rt	Score	P	Range	Sequence		Modification
Cmpd.	No. of Cmpds.		[ppm]		[min]						
	Cmpds.	m/z meas. 529.6970		z 2		Score 62.6	0		Sequence 8K.CVAEAGAPAGR.N		Carbamidomethyl: 1
Cmpd. 5	Cmpds. 1	529.6970	[ppm] -111.40	2	[min]	62.6	0				
Cmpd.	Cmpds. 1 Type	529.6970	[ppm] -111.40 Combined	2 MS/N	[min] 19.2 1S - Protein	62.6	0 r	108-11			
Cmpd. 5 Search Search	Cmpds. 1 Type	529.6970	[ppm] -111.40 Combined Amazon_li	2 MS/N Bops_	[min] 19.2	62.6 Extracto -08-20 1	o r 5:22:	108-11			
Cmpd. 5 Search Search Search Search Protein 1	Cmpds. 1 Type Result Location	529.6970 () ;	[ppm] -111.40 Combined Amazon_I BOPS/RH	2 MS/N Bops_ 11/Bop	[min] 19.2 IS - Protein NCBI_2014	62.6 Extracto -08-20 1 8_01_61	r 5:22: 17.d/	23 sma gondii (K.CVAEAGAPAGR N		
Cmpd. 5 Search Search Search Search	Cmpds. 1 Type Result Location :	529.6970 () /	[ppm] -111.40 Combined Amazon_I BOPS/RH	2 MS/N Bops_ 11/Bop	[min] 19.2 1S - Protein NCBI_2014 ps_No7_BB	62.6 Extracto -08-20 1 8_01_61	r 5:22: 17.d/	108-11	RCVAEAGAPAGRN	471.10 34 90	

ieq. Cove Iodificati	erage [%]: ion(s):	-	5.40 % Carbamidon	nethyl,	Deamidated			pl: No. of Peptides:	8.07 10	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range Sequence		Modification
165	1	645,8010	-12.35	2	32.7	48.0	0	42-52K.CDQDGSLLNLF	R.V	Carbamidomethyl: 1
39	1	534.2440	-52.45	2	22.8	57.0	0	53-62R.VTGNSSVEFK.	c	
56	1	534.7150	-91.68	2	24.3	26.5	0	53-62R.VTGNSSVEFK.		Deamidated: 4
45	1	473.2500	24.62	3	23.3	39.5	0	63-76K.CGGAVPNLHP	NPGK.T	Carbamidomethyl: 1
7	1	525.7390	-27.53	2	19.2	67.6	0	126-135K.CSSLANTAAR.	v	Carbamidomethyl: 1
1	1	476.5580	-37.11	3	17.1	30.5	1	136-149R.VGAGQPGQEA		
222	1	793.3900	-42.82	2	37.9	32.0	0	150-163K.TCIVQTSVWGP	PPIK.G	Carbamidomethyl: 2
27	1	540.6750	-114.58	2	21.8	43.0	0	167-175K.EYPTPDACK.N		Carbamidomethyl: 8
148	1	630.2830	-70.64	2	31.5	43.3	0	176-187K.NGTLSLEVNPS	SK.K	Deamidated: 1
		785 7180	1.57	3	31.3	68.2	0	213-234K.ECTTSSTLAEH	LSGASLVQHAR.	Carbamidomethyl: 2
146 Protein 2: Accession Database	n: :	s g N	urface antig i 50082488 ICBInr	jen p30	I (Toxoplasma	gondii]		Score: MW [kDa]:	444.33 26.70	
Protein 2: Accession Database: Seq. Cove	: n: : erage [%]:	s g N 4	urface antig i 50082488 ICBInr 0.50 %) [Toxoplasma Oxidation, De	5				
Protein 2: Accession atabase leq. Cove	: n: : erage [%]:	s g N 4	urface antig i 50082488 ICBInr 0.50 %			5	P	MW [kDa]: pl:	26.70 8.91	Modification
rotein 2: ccession latabase eq. Cove	: n: : erage [%]: ion(s): No. of	s g N 4	urface antig il50082488 ICBInr 0.50 % Carbamidon Δ m/z	nethyl,	Oxidation, De	amidated	P	MW [kDa]: pl: No. of Peptides:	26.70 8.91 10	
rotein 2: accession latabase eq. Cove lodificati Cmpd.	: : erage [%]: ion(s): No. of Cmpds.	s g N 4 C m/z meas.	urface antig il50082488 ICBInr 0.50 % Carbamidon A m/z (ppm)	nethyl,	Oxidation, De Rt [min]	amidated Score		MW [kDa]: pl: No. of Peptides: Range Sequence 8-22K.TALTEPPTLAY: 23-36K-QICPAGTTSSC	26.70 8.91 10 SPNR.Q	
rotein 2: accession latabase eq. Cove lodificati Cmpd. 176	: :: :: ion(s): No. of Cmpds. 1	s 9 4 2 m/z meas. 815.8800	urface antig i 50082488 ICBInr 0.50 % Carbamidon Δ m/z [ppm] -55.64	nethyl, z 2	Oxidation, De Rt [min] 33.5	amidated Score 41.9	0	MW [kDa]: pl: No. of Peptides: Range Sequence 8-22K.TALTEPPTLAY:	26.70 8.91 10 SPNR.Q	Modification
Protein 2: Accession Database Geq. Cove Modificati Cmpd. 176 12	: n: : erage [%]: ion(s): No. of <u>Cmpds.</u> 1	s g N 4 (m/z meas. 815.8800 749.3070	urface antig il50082488 ICBInr 0.50 % Carbamidon Δ m/z [ppm] -55.64 -40.36	z 2 2	Oxidation, De Rt [min] 33.5 20.2	amidated Score 41.9 40.5	0	MW [kDa]: pl: No. of Peptides: Range Sequence 8-22K.TALTEPPTLAY: 23-36K-QICPAGTTSSC	26.70 8.91 10 SPNR.Q TSK.A CIK.G	Modification
rotein 2: ccession latabase eq. Cove lodificati Cmpd. 176 12 239	n: : erage [%]: ion(s): No. of <u>Cmpds.</u> 1 1	s 9 4 4 0 m/z meas. 815.8800 749.3070 798.8970	urface antig il[50082488 ICBInr 0.50 % Carbamidon <u>A m/z [ppm]</u> -55.64 -40.36 -36.74	z 2 2 2	Oxidation, De Rt [min] 33.5 20.2 39.2	amidated Score 41.9 40.5 35.5	0	MW [kDa]: pl: No. of Peptides: Range Sequence 8-22K_TALTEPPTLAY: 23-36K_GICPAGTTSSC 73-86K_CPVTQTFVVG	26.70 8.91 10 SPNR.Q TSK.A ICIK.G C	Modification
Protein 2: cccession Database leq. Cove Modificati Cmpd. 176 12 239 20	: erage [%]: ion(s): No. of <u>Cmpds.</u> 1 1 1 1	s 9 N 4 C m/z meas. 815.8800 749.3070 798.5970 508.7440	urface antig il[50082488 ICBInr 0.50 % Carbamidon <u>A m/z [ppm]</u> -55.64 -36.74 -36.74	z 2 2 2 2 2	Oxidation, De Rt [min] 33.5 20.2 39.2 39.2 21.1	amidated Score 41.9 40.5 35.5 58.2	0 0 0	MW [kDa]: pl: No. of Peptides: Range Sequence 8-22K.TALTEPPTLAY: 23-38K.GICPAGTTSSC 73-88K.FPVTTQTFV/G 103-112F.ASSYVNVAR.	26.70 8.91 10 SPNR.Q TSK.A CKK.G C C	Modification Earbamidomethyl: 3, 11 Carbamidomethyl: 12
Protein 2: Accession Jatabase Jeq. Cove Modificati Cmpd. 176 12 239 20 15	: n: : erage [%]: ion(s): No. of <u>Cmpds.</u> 1 1 1 1 2	s g N 4 m/z meas. 815.8800 749.3070 798.8970 508.7440 509.2610	urface antig il50082488 ICBInr 0.50 % Carbamidon A m/z [ppm] -55.64 -40.36 -36.74 -66.44 -17.30	z 2 2 2 2 2 2 2	Oxidation, De Rt [min] 33.5 20.2 39.2 21.1 20.6	amidated Score 41.9 40.5 35.5 58.2 62.8 46.5 70.9	0 0 0 0	MW [kDa]: pl: No. of Peptides: 8-22KTALTEPPTLAY: 23-38R QICPAGTISSC 73-88K-FPVTTQTFVV0 103-112K-ASSVVNVAR. 103-112K-ASSVVNVAR.	26.70 8.91 10 SPNR.Q TSK.A ICIK.G C C C	Modification Carbamidomethyl: 3, 11 Carbamidomethyl: 12 Deamidated: 6
Protein 2: Accession Database: Seq. Cove Modificati Cmpd. 176 12 239 20 15 36	: erage [%]: ion(s): No. of <u>Cmpds.</u> 1 1 1 2 2	s 9 N 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	urface antig il50082488 ICBInr 0.50 % Carbamidon Δ m/z [ppm] -\$5.64 -40.36 -36.74 -66.44 -17.30 -36.94	nethyl, z 2 2 2 2 2 2 2 2	Oxidation, De Rt [min] 33.5 20.2 39.2 21.1 20.6 22.6	amidated Score 41.9 40.5 35.5 58.2 62.8 46.5	0 0 0 0 0 0	MW [kDa]: pl: No. of Peptides: 8-22K.TALTEPPTLAY: 2-38K.CFPYTTGTFVG 103-112K.ASSVVNIVAR. 103-113K.ASSVVNIVAR. 103-113K.ASSVVNIVAR.	26.70 8.91 10 \$\$PNR.Q \$\$K.A C.C C.C C.C PVKL	Modification Extramidomethyl: 3, 11 Extramidomethyl: 12 Deamidiated: 7

75	1	511.2350	-67.05	2	26.0	52.7	0	222-232	K.LEFAGAAGSAK.S		
											-
Search					/IS - Protein						
Search	Result	/	Amazon_E	Bops_	NCBI_2014	-08-20 1	5:22:	23			
Search	Location	/	BOPS/RH	1/Bop	os_No8_BC	1_01_61	18.d/				
Protein 1	:	(Chain F, Stri	ucture	Of The Immun	odominar	it Epito	pe Displayed	By The Surface Antigen 1 (S	ag1) Of Tox	oplasma Gondii Complexed To
			A Monoclona		ody						
Accessio	n:		ji 85543998					Score:		683.48	
Database			VCBInr					MW [kDa]:		26.60	
Seq. Cov	erage [%]:	5	6.70 %					pl:		7.78	
								No. of Pept	ides:	15	
Modificat	tion(s):		Carbamidon	nethyl,	Oxidation, De	amidated					
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence		Modification
129	1	769.3890	-21.81	2	29.9	37.4	0	1-14	.PPLVANQVVTCPDK.K		Carbamidomethyl: 11
112	1	555,9630	-14.87	3	28.2	33.6	1		.PPLVANQVVTCPDKK.S		Carbamidomethyl: 11
177	2	815.8750	-61.76	2	34.3	29.8	0	36-50	K.TALTEPPTLAYSPNR.Q		
34	1	749.2580	-105.75	2	21.3	27.2	0	51-64	R.QICPAGTTSSCTSK.A		Carbamidomethyl: 3, 11
252	8	798.8860	-50.51	2	40.3	64.9	0	101-114	K.FPVTTQTFVVGCIK.G		Carbamidomethyl: 12
137	1	869.3720	-30.32	2	30.7	45.6	0	115-130	K.GDDAQSCMVTVTVQAR.A		Carbamidomethyl: 7
95	1	877.8790	-10.05	2	26.9	43.3	0		K.GDDAQSCMVTVTVQAR.A		Carbamidomethyl: 7; Oxidation 8; Deamidated: 5
39	3	508.7550	-44.82	2	21.8	64.9	0	131-140	R.ASSVVNNVAR.C		
44	1	509.2330	-72.29	2	22.4	49.2	0	131-140	R.ASSVVNNVAR.C		Deamidated: 6
96	2	677.7840	-51.65	2	27.0	43.4	0	141-153	R.CSYGADSTLGPVK.L		Carbamidomethyl: 1
157	2	782.8480	-52.51	2	32.5	39.8	Ö		K.LSAEGPTTMTLVCGK.D		Carbamidomethyl: 13
131	2	790.8560	-38.65	2	30.2	29.7	0		K.LSAEGPTTMTLVCGK.D		Carbamidomethyl: 13; Oxidation: 9
78	1	585.3310	-50.63	1	25.2	23.9	0	196-200	K.DILPK.L		
	3	774.3190	592.81	2	27.8	45.7	0	201-214	K.LTENPWQGNASSDK.G		
104											

45

ocarcii	Location	/	BOPS/RH	H1/Bop	os_No9_BC	2_01_62	:0.d/				
Protein 1 Accessio Databasi Seq. Cov	on:	9	lense granu il 2062409 VCBInr 8.50 %	ule prote	ein (Toxoplasr	na gondii]		Score: MW [kDa]: pl: No. of Pept	ides:	145.84 25.30 4.80 3	
Cmpd.	No. of Cmpds.	m/z meas.	Δm/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence		Modification
71	1	493.7560	-22.09	2	24.4	23.8	0		K.ASVESQLPR.R		
123	1	713.9800	-32.08	3	28.4	56.0	1	81-97	R.REPLETEPDEQEEVHFR.K		
87	1	670.2630	-30.93	3	26.0	47.8	0	103-119	R.SDAEVTDDNIYEEHTDR.K		
Aodifica	verage [%]: tion(s):	N 8 (il 23783414 VCBInr 8.60 % Dxidation					MW [kDa]: pl: No. of Pept		23.90 9.71 3	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
157	1	608.3400	-17.76	2	31.4	39.9	1		K.KVEEELSLLR.R		
194	1	544.2780	-46.52	2	34.4	59.5	0		K.VEEELSLLR.R		
15	1	548.2680	-29.93	2	19.6	21.6	1	192-200	K.RQPFMSSVK.N		Oxidation: 5
	i: on:	g	lense granı ji 89572499 JCBlor		gen GRA6 [To	xoplasma	gondi	i] Score: MW [kDa]:		92.94 23.90	

Seq. Cov Modificat	erage [%]: tion(s):		11.70 % Deamidated	i				pl: No. of Pept	5.66 ides: 3	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence	Modification
10	2	847.9980	-29.05	3	18.4	51.0	1		R.RSPQEPSGDGGGNDAGNNAGNGG NEGR.G	Deamidated: 21
5	2	848.0140		3	17.8				R.RSPQEPSGDGGGNDAGNNAGNGG NEGR.G	Deamidated: 18
13	1	795.9600	-36.35	3	19.1	26.4	0		R.SPQEPSGDGGGNDAGNNAGNGGN EGR.G	Deamidated: 20

by mass spectromet	IY			
• •	•		 -	
RH2			254	3
			 264	
			204	
Combined MS/MS - ProteinExtractor			196	2
RH2 2014-08-20 16:19:08			323	2
/BOPS/RH2/			230	2
			247	2
Chain A, Crystal Structure Of A Parasite Protein			388	3
gi 22219177	Score:	1801.72	295	3
NCBInr	MW [kDa]:	29.80	319	2
80.60 %	pl:	7.73		-
	No. of Peptides:	32	97	2
Carbamidomethyl, Oxidation, Deamidated			67	1

1

Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence	Modification
286	1	623.2820	-67.80	3	26.9	58.6	1	1-17	SDPPLVANQVVTCPDKK.S	Carbamidomethyl: 13
315	1	623.5980	-87.01	3	28.3	20.9	1	1-17	SDPPLVANQVVTCPDKK.S	Carbamidomethyl: 13; Deamidated: 8
462	9	615.0630	96.72	3	36.0	68.7	0	18-34	K.STAAVILTPTENHFTLK.C	
488	2	615.3030	-46.35	3	37.2	49.2	0	18-34	K.STAAVILTPTENHFTLK.C	Deamidated: 12
411	1	743.3420	-73.05	3	33.4	24.5	1		K.STAAVILTPTENHFTLKCPK.T	Carbamidomethyl: 18
381	7	815.8920	-40.93	2	31.9	62.6	0	38-52	K.TALTEPPTLAYSPNR.Q	
82	3	749.2930	-59.04	2	16.0	68.0	0		R.QICPAGTTSSCTSK.A	Carbamidomethyl: 3, 11
275	2	400.2030	-117.00	2	26.3	29.8	0	96-102	K.LTVPIEK.F	
629	2	793.0860	-32.16	3	45.6	34.1	1	96-116	K.LTVPIEKFPVTTQTFVVGCIK.G	Carbamidomethyl: 19
226	2	585.2150	-87.66	3	23.7	49.2	0	117-132	K.GDDAQSCMVTVTVQAR.A	Carbamidomethyl: 7; Oxidation 8
74	16	508.7520	-50.72	2	17.9	72.6	0	133-142	R.ASSVVNNVAR.C	
136	7	509.2140	-109.59	2	19.1	70.5	0		R.ASSVVNNVAR.C	Deamidated: 6
236	6	677.7820	-54.60	2	24.3	79.9	0		R.CSYGADSTLGPVK.L	Carbamidomethyl: 1
373	2	782.8400	-62.73	2	31.4	69.0	0		K.LSAEGPTTMTLVCGK.D	Carbamidomethyl: 13
278	2	790.8560	-38.65	2	26.4	59.1	0		K.LSAEGPTTMTLVCGK.D	Carbamidomethyl: 13; Oxidation: 9
270	2	660,6440	-30.37	3	26.0	63.3	1	156-174	K.LSAEGPTTMTLVCGKDGVK.V	Carbamidomethyl: 13:

Sample Info & Protocols Name:

Search Type Search Result Search Location Protein 1: Accession: Database: Seq. Coverage [%]:

Modification(s):

December 15, 2014

Printed:

											Oxidation: 9
254	3	895.6970	-41.48	3	25.2	43.1	1		4K.DGVKVPQDNNO		Carbamidomethyl: 13, 21
264	1	896.0040	-64.91	3	25.7	49.8	1	171-19	4K.DGVKVPQDNNO K.S	QYCSGTTLTGCNE	Carbamidomethyl: 13, 21; Deamidated: 9
196	2	762.6140	-64.99	3	22.1	30.2	0	175-19	4K.VPQDNNQYCS	STTLTGCNEK.S	Carbamidomethyl: 9, 17
323	2	474.2360	-96.27	2	28.8	48.3	1	195-20	2K.SFKDILPK.L		
230	2	516.2120	-59.26	3	24.0	61.5	0	203-21	6K.LTENPWQGNA	SSDK.G	
247	2	774.3160	-46.83	2	24.8	91.0	0		6K.LTENPWQGNA		Deamidated: 9
388	3	744.3400	-55.89	3	32.2	41.6	1	203-22	3K.LTENPWQGNA	SSDKGATLTIK.K	
295	3	787.0100	-88.84	3	27.5	50.9	2	203-22	K.LTENPWQGNA	SSDKGATLTIKK.	
319	2	590.7650	-72.38	4	28.5	53.2	2	203-22	K.LTENPWQGNA	SSDKGATLTIKK.	Deamidated: 9
97	2	416.1930	-181.50	2	16.9	41.3	1	217-22	4K.GATLTIKK.E		
67	1	503,7510	-25.47	2	15.1	43.9	1	224-23	2K.KEAFPAESK.S		
103	2	439,6550	-139.52	2	17.4	33.8	0	225-23	2K.EAFPAESK.S		
211	2	652 7850	-67.98	2	22.9	94.3	0	233-24	5K SVIIGCTGGSPE	КН	Carbamidomethyl: 6
187	1	614.6920	-30.44	5	28.0	56.8	2	233-26	2K.SVIIGCTGGSPE GAAGSAK.S	KHHCTVKLEFA	Carbamidomethyl: 6, 16
206	4	446.6950	-74.23	4	22.6	54.5	1		2K.HHCTVKLEFAG		Carbamidomethyl: 3
216	2	511.2110	-113.99	2	23.3	77.2	Ó	252-26	2K.LEFAGAAGSAK	LS	
216 Protein 2 Accessio Database Seq. Cov	2 : :: :: erage [%]:	511.2110 (/ / / / / /	-113.99 Chain F, Str Monoclon ji 85543998 VCBInr 5.90 %	2 ucture (al Antib	23.3 Of The Immun	77.2 iodominan	Ó	252-26	EX.LEFAGAAGSAN	LS	
216 Protein 2 Accessio Database Seq. Cov Modificat	2 : :: :: erage [%]:	511.2110 (/ / / / / /	-113.99 Chain F, Str Monoclon ji 85543998 VCBInr 5.90 %	2 ucture (al Antib	23.3 Df The Immun ody	77.2 iodominan	Ó	252-26 pe Displayed Score: MW [kDa]: pl: No. of Pep	ELEFAGAAGSAN	CS Antigen 1 (Sag1) Of To 1617.63 26.60	
216 Protein 2 Accessio Database Seq. Cov Modificat Cmpd.	2 :: :: erage [%]: tion(s):	511.2110 (/ / / / / / / / / / / / / / / / / /	-113.99 Chain F, Str Monoclon ji]85543998 VCBInr 5.90 % Carbamidor	2 ucture (al Antib	23.3 Df The Immun ody Oxidation, De	77.2 odominan amidated Score	0 t Epito	252-26 pe Displayeo Score: MW [kDa]: pl: No. of Pep Range	I By The Surface tides:	LS Antigen 1 (Sag1) Of To 1617.63 26.60 7.78 1	xoplasma Gondii Complexed
216 Protein 2 Accessio Database Seq. Cov Modificat	2 :: :: erage [%]: iion(s): No. of	511.2110 4 5 5	-113.99 Chain F, Str A Monoclon pi 85543998 VCBInr 5.90 % Carbamidor Δ m/z	2 ucture (al Antib	23.3 Of The Immun ody Oxidation, De Rt	77.2 odominan amidated	0 t Epito	252-26 pe Displayeo Score: MW [kDa]: pl: No. of Pep Range	ELEFAGAAGSAN	LS Antigen 1 (Sag1) Of To 1617.63 26.60 7.78 1	xoplasma Gondii Complexed
216 Protein 2 Accessio Database Seq. Cov Modificat Cmpd.	2 :: :: :: :: :: : : : :	511.2110 (/ / 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	-113.99 Chain F, Str Monoclon ij85543998 VCBInr 5.90 % Carbamidor Carbamidor <u>A m/z [ppm]</u> -65.23	2 ucture (al Antib methyl, - z 3 gen pro	23.3 Df The Immun ody Oxidation, De Rt [min]	77.2 odominan amidated Score 84.0	0 t Epito P 1	252-26 pe Displayeo Score: MW [kDa]: pl: No. of Pep Range	I By The Surface tides:	LS Antigen 1 (Sag1) Of To 1617.63 26.60 7.78 1	xoplasma Gondii Complexed

Database Seq. Cov Modificat	erage [%]:	4	ICBInr .40 % Carbamidor	nethyl,	Oxidation, De	amidated		MW [kDa]: pl: No. of Pept	33.00 9.75 1	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z	z	Rt [min]	Score	Р	Range	Sequence	Modification
126	1	744.7630	[ppm] -75.03	2	[minj 18.5	63.4	0	83-96	R.QICSAGTTSSCTSK.A	Carbamidomethyl: 3, 11; Deamidated: 1
Protein 4 Accessio Database Seq. Cov Modificat	n: : erage [%]:	9 N 4	ctin [Toxop il]23784073 ICBInr 9.70 % Carbamidon	1	gondii ME49] Oxidation			Score: MW [kDa]: pl: No. of Pept	1148.04 41.90 4.91 ides: 21	
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence	Modification
54	2	464.6520	-163.06	2	13.9	85.6	0		K.AGVAGDDAPR.A	
367	2	571.8160	-59.88	2	29.6	65.7	0	30-40	R.AVFPSIVGKPK.N	
90	2	476.5080	-78.71	3	15.6	35.5	1		K.DCYVGDEAQSKR.G	Carbamidomethyl: 2
453	8	651.9560	-107.85	3	34.0	82.0	0		R.VAPEEHPVLLTEAPLNPK.A	
375	2	563.2210	-91.44	3	30.1	48.2	1		R.LDLAGRDLTEYMMK.I	Oxidation: 12, 13
209	2	530.6930	-109.13	2	21.7	41.0	0		R.GYGFTTSAEK.E	
352	2	519.9010	-65.59	3	28.9	49.2	1		R.GYGFTTSAEKEIVR.D	
47	2	532.6980	-80.25	2	13.2	69.6	0		K.AAEDSSDIEK.S	
512	1	941.3680	-86.11	3	36.8	32.2	1		K.AAEDSSDIEKSYELPDGNIITVG NER.F	
508	3	592.9430	-34.75	3	36.7	84.1	0	240-255	K.SYELPDGNIITVGNER.F	
596	2	599.6050	-63.81	3	41.1	46.5	1		R.FRCPEALFQPSFLGK.E	Carbamidomethyl: 3
605	2	747.3590	-23.41	2	41.5	75.2	0		R.CPEALFQPSFLGK.E	Carbamidomethyl: 1
521	1	554.2430	-73.19	4	37.3	20.7	1		R.CPEALFQPSFLGKEAAGVHR.T	Carbamidomethyl: 1
357	2	572.8850	-88.83	3	29.1	51.0	1	278-291	R.TTFDSIMKCDVDIR.K	Carbamidomethyl: 9; Oxidation
449	4	792.3530	-46.40	3	33.7	56.7	1	292-313	R.KDLYGNVVLSGGTTMYEGIGER. L	Oxidation: 15
449 Bruker	4	792.3530	-46.40	3	33.7 Printed:	56.7	-	292-313 December 15	L	Oxidation: 15

										A
300	2	512.5910	-49.73	3	26.3	69.2	1		R.LTKELTSLAPSTMK.I	Oxidation: 13
254	2	597.2530	-91.66	2	24.0	66.7	0		K.ELTSLAPSTMK.I	Oxidation: 10
341	2	589.2690	-70.06	2	28.3	41.4	0		K.ELTSLAPSTMK.I	
287	2	478.9020	-66.67	3	25.7	46.2	1		K.ELTSLAPSTMKIK.V	Oxidation: 10
191	1	504.7530	-120.16	2	20.8	28.1	1		K.IKVVAPPER.K	
49	1	448.2210	-112.94	2	13.4	34.6	1	330-337	K.VVAPPERK.Y	
Protein 5		s	urface antic	en P22	2 (Toxoplasma	aondii1				
Accessio	n:	c	il13957751	-				Score:	822.0	7
atabase	0	ň	CBInr					MW [kDa]:	19.00)
en Cov	erage [%]:	6	9 10 %					pl:	9.35	
								No. of Pept		
lodificat	ion(s):		Carbamidor	nethyl, I	Deamidated			110.011.001	1405.	
Cmpd.	No. of	m/z meas	A m/z	7	Rt	Score	Р	Range	Sequence	Modification
	Cmpds.		[ppm]	-	[min]					Modification
319	1	585.2370	-62.47	3	27.7	22.6	0		K.TVDAPSSGSVVFQCGDK.L	Carbamidomethyl: 14
450	2	785.3580	-45.07	2	34.5	37.8	0	61-75	K.LTISPSGEGDVFYGK.E	
456	4	471.2400	-129.31	3	34.6	92.2	1	82-95	R.KLTTVLPGAVLTAK.V	
512	2	428.5840	-43.45	3	38.0	60.2	0	83-95	K.LTTVLPGAVLTAK.V	
497	1	645.6910	-54.35	3	36.9	29.0	1	83-101	K.LTTVLPGAVLTAKVQQPAK.G	
422	1	785.6250	-31.40	4	32.9	22.0	1	96-123	K.VQQPAKGPATYTLSYDGTPEKPQ	Carbamidomethyl: 26
432	2	830.0520	-26.10	3	33.5	89.1	0	102-123	K.GPATYTLSYDGTPEKPQVLCYK.	Carbamidomethyl: 20
45	7	529,7210	-66.10	2	15.1	61.6	0	124-134	K.CVAEAGAPAGR.N	Carbamidomethyl: 1
118	3	709.6410	-37.53	3	17.3	51.8	1	124-145	K.CVAEAGAPAGRNNDGSSAPTPK.	Carbamidomethyl: 1
128	1	709.9700	-36.11	3	17.8	35.0	1	124-145	K.CVAEAGAPAGRNNDGSSAPTPK.	Carbamidomethyl: 1; Deamidated: 13
47	3	544,7090	-68.60	2	12.8	76.3	0	105.115	D R.NNDGSSAPTPK.D	Deamidated: 13
35	4	497.8510	-66.66	3	12.8	67.1	1	135-145	R.NNDGSSAPTPK.D R.NNDGSSAPTPKDCK.L	Carbamidomethyl: 13;
										Deamidated: 2
23	6	497.5170	-78.75	3	11.4	68.1	1		R.NNDGSSAPTPKDCK.L	Carbamidomethyl: 13
311	1	576.8230	-39.91	2	27.4	37.8	1	149-159	K.LIVRVPGADGR.V	
Protein 6	:	ŀ	ypothetical	protein	TGME49_11	2630 [Tox	oplasn	na gondii ME4	9]	
Bruker					Printed [.]			December 15	2014	

Accessio Database Seq. Cov Modificat	: erage [%]:	N 6	il/23783037 ICBInr i.30 % Carbamidor		Oxidation, De	amidated		Score: MW [kDa]: pl: No. of Pept	ides:	801.71 286.30 4.74 16	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
133	Cmpas.	482,7160	.91.63	2	[min] 17.0	28.1	0	333-342	K.IASMISGAAK.M		Oxidation: 4
166	1	501.7250	-78.45	2	19.2	67.0	ō		R.ITGAENLER.C		
184	1	411,1980	-68.61	3	20.3	31.7	1	787-797	K.IDSNVGETLRK.C		-
253	2	461,7000	-75.96	2	25.3	41.2	0	983-990	R.SAELAFER.N		
294	2	417,7130	-63,74	2	28.2	38.2	0	1191-1198	R.LGGELFAK.M		
267	1	565,7740	-51.19	2	26.3	40.3	0	1272-1281	R.LEGNVALVCR.R		Carbamidomethyl: 9
118	1	743.7520	-62.49	2	15.7	46.6	0		R.DCDALMGSNSSSAR.Q		Carbamidomethyl: 2; Oxidation: 6
330	2	738.8550	-45.04	2	30.8	77.8	0		K.AYNDALIQEQALK.K		
262	1	537.2260	-64.40	3	25.8	31.3	0		R.ALQGLSMADVNMTAR.T		Oxidation: 7, 12
255	1	525.2660	-36.04	2	25.4	41.9	0	1743-1751	K.LLQANEFSK.M		
421	1	701.8220	-86.15	2	37.5	57.1	0		K.GQADPEIVLYAVK.A		
296	1	413.6940	-78.61	2	28.4	30.7	0	1821-1826	R.YFLVER.T		
188	2	419.6900	-68.84	2	20.6	31.1	0		K.NTEIFSK.L		
247	2	434.7250	-94.71	2	24.6	66.6	0		K.LGGPALNVK.V		
357	2	613.3210	-65.49	2	32.7	65.4	0		K.LLGTNGAPAALVK.G		Deamidated: 5
135	1	599.7110	-89.63	2	17.0	71.0	0	2025-2035	K.GLSNYDGSEEK.T		
Protein 7 Accessio Database Seq. Cov	n: : erage [%]:	9 N 2	ii 13447088 ICBInr :4.20 %		xoplasma gon Deamidated	ndii]		Score: MW [kDa]: pl: No. of Pept	ides:	795.18 41.70 6.93 14	
			1			-	-	-	-		- Inc
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р		Sequence		Modification
358	2	462.8770	-105.34	3	29.2	78.2	1	53-64	R.SKITYFGTLTQK.A		
Bruker					Printed:			December 15	, 2014		5

485										
	1	544.2760	-26.24	4	35.5	69.3	2	53-70	R.SKITYFGTLTQKAPNWYR.C	
413	2	586.2880	-57.16	2	32.0	50.4	0	55-64	K.ITYFGTLTQK.A	
537	2	653.6450	-46.84	3	38.1	59.7	1	55-70	K.ITYFGTLTQKAPNWYR.C	
207	2	403.6620	-96.20	2	21.6	38.7	0	65-70	K.APNWYR.C	
240	2	470.5510	-70.74	3	23.3	68.4	0	76-88	R.ANEEVVGHVTLNK.E	
35	1	426.4180	-66.48	4	12.0	48.4	2		R.VCHIDAKDKGDCER.N	Carbamidomethyl: 2, 12
471	2	475.2270	-64.21	3	34.9	60.6	1		R.NKGFLTDYIPGAK.Q	
559	2	591.2560	-97.56	2	39.2	64.3	0		K.GFLTDYIPGAK.Q	
244	2	584.2490	-87.47	3	23.5	69.3	1		K.IEKVENNGEQSVLYK.F	Deamidated: 7
220	2	690.7970	-56.04	2	22.4	66.9	0		K.VENNGEQSVLYK.F	Deamidated: 4
220	2	690.7970	656.62	2	22.4	40.3	0		K.VENNGEQSVLYK.F	
695	1	708.3800	-39.42	2	54.2	25.8	0		K.FTVPWIFLPPAK.Q	
412	2	489.2310	-51.45	2	31.9	55.0	0	229-236	K.DANFIEIR.C	
Iodificati	on(s):	c	Carbamidon	nethyl, (Oxidation, Dea	amidated		No. of Pept	ides: 3	
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence	Modification
525	5	908.4050	489.93	2	37.5	52.1	0		M.GEEVVQALVVDNGSGNVK.A	Deamidated: 6
490	6	908.4170	489.93 503.15	2	37.5 35.8	70.4	0	2-19	M.GEEVVQALVVDNGSGNVK.A	Deamidated: 6 Deamidated: 12
			489.93		37.5			2-19		
490	6 1 1: rage [%]:	908.4170 907.8560 907.8560 907.8560	489.93 503.15 427.39 conserved h gi 22148864 VCBInr 54.80 %	2 2 ypothet	37.5 35.8	70.4 20.9 oxoplasm	0	2-19 2-19	M.GEEVVQALVVDNGSGNVK.A M.GEEVVQALVVDNGSGNVK.A 699 333 6.(Deamidated: 12 18.68 1.90 24
490 514 Protein 9: Accession Database: Seq. Cove Modification	6 1 rage [%]: on(s):	908.4170 907.8560 9 9 N 5	2005 2015 2015 2015 2015 2015 2015 2015	2 2 ypothet 0 nethyl, 0	37.6 36.8 36.9 ical protein [T	70.4 20.9 oxoplasma amidated	0 0 a gondi	2-19 2-19 i GT1] Score: MW [kDa]: pl: No. of Pept	M GEEVVOAL WONGSGNVK.A M GEEVVOAL WONGSGNVK.A 69 333 6, ides: 13	Deamidated: 12 18.68 .90 .94
490 514 Protein 9: Accession Database: Seq. Cove	6 1 1: rage [%]:	908.4170 907.8560 907.8560 907.8560	2015 2015 2015 2015 2015 2015 2015 2015	2 2 ypothet	37.8 35.8 36.9 ical protein [T	70.4 20.9 oxoplasm	0	2-19 2-19 i GT1] Score: MW [kDa]: pl: No. of Pept	M.GEEVVQALVVDNGSGNVK.A M.GEEVVQALVVDNGSGNVK.A 699 333 6.(Deamidated: 12 18.68 1.90 24
490 514 Protein 9: Accession Database: Seq. Cove Modification	6 1 rage [%]: on(s): No. of	908.4170 907.8560 9 9 N 5	2005 2015 2015 2015 2015 2015 2015 2015	2 2 ypothet 0 nethyl, 0	37.5 35.8 36.9 ical protein [T- Oxidation, Dea	70.4 20.9 oxoplasma amidated	0 0 a gondi	2-19 2-19 i GT1] Score: MW [kDa]: pl: No. of Pept	M GEEVVOAL WONGSGNVK.A M GEEVVOAL WONGSGNVK.A 69 333 6, ides: 13	Deamidated: 12 18.68 .90 .94

23	2	539,5180	-97.29	3	11.2	48.8	0	10.000	DSHAANADSQTPMQK.L		Oxidation: 13
184	2	455 7220	-97.29	4	20.5	40.0	1		AAVAAAAAANGAETGKAPH	K 1	Deamidated: 9
140	2	517.2580	-35.93	2	18.3	60.8	0		LAGQMSLAAR.S	.R.L	Oxidation: 5
314	2	481.0270	155.52	3	27.0	50.0	0		KPTEQGTVLLQVK.A		Oxidation: 5
169	2	418.8540	-108.74	3	19.7	37.3	0		APPYKPIPESR.F		
74	1	507.5510	-57.56	3	14.8	51.5	1		QNIETMKDTPEAK.A		Oxidation: 6
371	2	751.8180	-72.21	2	29.9	52.6	0		TFAEPEQPDIEVK.D		
97	2	548,8960	-81.41	3	16.2	74.4	1		AAETVAEKEGEQSAPK.N		
26	2	500.1710	-102.12	3	11.3	46.6	0	238-251 K.	NESPESGHDATAOR.K		
198	2	414,5010	-111.66	3	21.1	27.4	0	257-267R.	YLGPESSVPHR.L		
678	1	762.4250	-28.75	2	47.1	55.8	0	268-281 R.I	LLATCGILPLPLDK.A		Carbamidomethyl: 5
107	2	408.6690	-141.21	2	16.8	28.8	0	284-290 K.I	ELIQEGK.R		
679	1	740.8600	-37.45	2	47.3	88.2	0	300-314K.	TIITEAGGFFGTPVA		
Protein 1	0:	0	SPI-anchor	ed surfa	ce protein (To	xoplasma	gondii	ME49]			
Accessio	n:	0	il23783781	13			-	Score:		469.89	
Database	6	i	CBInr					MW [kDa]:		44.20	
Sea. Cov	erage [%]:	2	28.30 %					pl:		7.81	
								No. of Peptid	es:	10	
Modificat	ion(s):		Carbamido	methyl,	Oxidation, De	amidated					
Cmpd.	No. of	m/z meas.	∆ m/z	z	Rt	Score	Р	Range Se	equence		Modification
	Cmpds.		[ppm]		[min]			-			
426	4	788.3160	-49.89		32.6	67.0	0		GAQNDWLNGEDLSR.G		Deamidated: 8
407	6	787.8200	-54.99	2	31.7	52.7	0		GAQNDWLNGEDLSR.G		
326	1	459.2540	-60.95	2	27.6	20.3	1		GITFRVPK.N		
351	2	457.7090	-80.34	2	28.8	37.3	0		NNFPGLPR.I		
403	1	458.2230	-32.26	2	31.5	22.9	0		NNFPGLPR.I		Deamidated: 1
516	1	849.0560	-47.93	3	37.0	46.1	0	K.I		DY	Carbamidomethyl: 12
75	1	556.2110	544.24	3	14.8	30.4	1		KEFCTGEPHTSCGR.Q		Carbamidomethyl: 4, 12
113	1	513.1830	-52.86	3	17.0	26.7	0		EFCTGEPHTSCGR.Q		Carbamidomethyl: 3, 11
129	1	1046.7170	-50.88	3	17.8	57.3	0		EAPNTNNSGGTPTGGGSDE STGSSGTDSR.G	IDTTA	
30	1	438.4120	-86.17	4	11.6	61.6	2	368-384R.	GDLGDGRDQDAKGGMSR.	3	Oxidation: 15

December 15, 2014

Printed:

Bruker

rage [%]:	9 N	i 23784104 ICBInr 8.80 %		ning protein [1			Score: MW [kDa]: pl: No. of Pept	465.15 39.40 4.66 10	
on(s):	c	Carbamidor	nethyl						
No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence	Modification
1	880.7030			38.5	71.0	0		TR.L	Carbamidomethyl: 21
2	748.9320	-32.00	2	47.8	83.9	0			
1	406.6160	-159.18	2	18.1	23.8	0			Carbamidomethyl: 2, 5
1									Carbamidomethyl: 6
								D	
						-		DVSR.S	
2	738.6960	-28.26	3	28.8	46.7	0			
1	668.5770	-29.31	4	27.8	21.2	1		SR.S	
2	525.2490	-56.86	3	28.9	27.3	0	285-298	R.SYLITSTSSFSKPR.I	
n: rage [%]:	9 N 3	i 23783985 ICBInr 2.00 %	15	ning surface a	intigen, pu	tative	Score: MW [kDa]: pl:	422.60 34.90 8.07	
No. of	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence	Modification
Cmpds.		-91.75	2	19.6	59.7	0	53-62	R.VTGNSSVEFK.C	
3	534.2230			15.3	75.5	0		K.CSSLANTAAR.V	Carbamidomethyl: 1
	534.2230 525.7130	-76.98	2						
3		-76.98 -37.74 -64.38	2	12.8	50.2 81.0	0	136-147	R.VGAGQPGQEAEK.E	
	No. of Cmpds. 1 2 1 1 1 1 1 1 2 1 1 2 1	No. of miz meas. Creged. 1 880.7630 2 746.9520 1 465.25407 1 655.25407 1 656.25407 1 656.25407 1 656.2540 1 656.2540 1 656.2570 2 628.2460 1 656.2770 2 628.2460 1 7 63.2460 2 7 7 7 8.4500 2 7 7 7 8.5000 2 7 7 7 7 8.5000 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	No. of Cringde, 1 m/z meas. 680,7030 A m/z (2) 2 748,8320 -32.00 1 466,8160 49.11 1 466,4560 49.11 1 667,9470 -33.16 1 666,75470 -33.16 1 666,877 -23.17 2 738,6660 -68.97 1 666,877 -24.31 2 525,2490 -68.86 1 663,877 -24.31 2 525,2490 -68.86 mg[2]/2763094 -68.86 mg[2]/2763094 -68.86 mg[5]%]: -26.05%	No. of Cripted. miz mess. b (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	No. of Cripole M22 (1) Z (1) (R) (2) (R) (2)	No. of Crepto m/z meas. (2000) D m/z (300,750) Z Rt (m) Score (m) 2 748,530 33,24 2 47,8 85,8 1 460,7501 33,87 3 36,8 71,6 2 748,530 33,24 2 47,8 85,8 1 466,400 193,13 2 16,1 23,13 1 667,630 78,8,7 4 23,24 2 47,8 1 667,630 78,8,7 4 23,3 24,23 3 24,8 48,8 2 738,6460 28,38 3 24,8 42,8 42,8 42,8 42,8 42,8 42,8 42,7 42,9 42,7 42,9 42,9 42,7 42,9 42,7 42,8 42,8 42,8 42,8 42,8 42,8 42,8 42,8 42,8 42,8 42,8 42,8 42,7 42,9 42,7 42,9 42,7 42,9 42,7 42,9	An. of Crepts Int/z mess. (2000) <u>Ann/z</u> (2000) Z Rt (mm) Score P 1 460,7500 -33.87 3 38.6 71.6 0 2 748,8500 332.94 2 47.8 85.8 0 1 460,6700 195.12 16.1 23.24 2 47.8 85.8 1 460,6700 195.12 16.1 23.24 2 47.8 85.9 1 460,4700 43.51 3 64.3 64.3 64.2 1 1 1 640,4200 74.8 42.3 1 42.7 1 1 1 640,4707 43.31 3 24.8 44.7 2 1 1 1 640,877 4 23.8 44.7 2 1 1 2 64.84 2 2 1 1 2 64.84 2 2 1 2 1 2 25.9 46.84 3 24.8 24.7	An. of Creptor m/z meas. (2000) Am/z (2000) Z Rt (min) Score P Range 1 66/002 -33.87 3 38.6 71.6 0 1059-122 2 74.8.530 32.24 2 47.8 85.5 133-46 1 464.01 163.12 21.61 123.23 0 172.79 1 667.020 78.87 42.33 1 44.51 60.3 1 234.60 1 667.020 78.87 42.33 1 245.21 1 235.40 1 234.60 1 234.22 1 235.60 1 234.22 1 235.40 1 235.40 1 235.40 1 235.40 1 235.40 2 255.284 2 255.284 2 255.284 2 255.294 24.64.84 2 255.294 24.64.84 2 255.294 24.64.84 2 255.294 24.64.84 2 255.294 255.294	As. of Chepide Mitz meas. (2) L mitz (2) Rt (m) Score P Range Sequence 1 660,002 33,87 33,87 33,87 9 Range Sequence 2 748,820 32,807 2 47,8 83,9 0 153-4481,LUV9R1_BTAVR.0 1 466,676 195,132 18,1 23,16 17,179K_ACPVCR5.0 1 667,4476 453,16 2 442,1 12,25-2464,LUVV9R1_BTAVR.0 1 667,4476 453,16 2 28,8 442,2 1 225-2464,LEDVVGSOSTKP-WVDSORKA 1 718,3456 40,87 4 28,8 44,7 256-2464,LEDVVGSOSTKP-WVDSORKA 1 718,3456 40,87 4 28,8 44,7 256-2464,LEDVVGSOSTKP-WVDSORKA 2 738,6464 3,828 2 256-2464,LEDVVGSOSTKP-WVDSORKA 108,427 2 66,848 3 28,9 27,3 0 286-2484,LEDVVGSOSTKP-WVDSORKA 2 66,848 3 <

434	2	619.9730	-45.53	3	33.5	24.1	1		K.TCIVQTSVWGPPIKGSK.E	Carbamidomethyl: 2
360	2	589.5260	-22.72	4	30.7	54.1	0	213-234	K.ECTTSSTLAEHLSGASLVQHAR.	Carbamidomethyl: 2
391	2	629.0230	-67.73	4	32.4	52.9	1	235-257	R.TNAADDKKPAYTFSVTSLPTEEK	
76	2	401,1420	-132.06	3	14.8	25.1	1	258-266	K.TLCYQCTKK.N	Carbamidomethyl: 3, 6
Protein 1 Accessio Database Seq. Cov Modificat	n: E erage [%]: ion(s): No. of	9 N 2	i 22148780 ICBInr 66.00 % Carbamidor Δ m/z)2	ning protein, p Rt	Score	oxopla	sma gondii G Score: MW [kDa]: pl: No. of Pept Range	372.6 37.20 5.82	Modification
282	Cmpds.	586,7680	[ppm] -74,15	2	[min] 26.6	83.2	0		K.GGISVEVDPATK.K	
631	2	947.9190	-/4.15	2	45.9	85.3	0		R.ANLQGETPLAEFFGEGSK.A	
20	1	708.2780	-46.48	2	40.6	64.3	0		R.APTGDPSQNSDGNR.G	
540	2	778,7080	-37.73	2	40.1	63.6	0		K.LADVLPSATFQETSSAHVFSVK.	
				-					E	
197	2	501.5520	-51.91	3	22.2	40.6	1		K.ELPKTEATYCYK.C	Carbamidomethyl: 10
51	2	511.8780	-42.66	3	14.2	35.6	1	300-314	K.CSPPVDSGDTADGKK.N	Carbamidomethyl: 1
Modificat	in: erage [%]: ion(s):	9 N 2	il 2305258 ICBInr 11.20 % Carbamidor	nethyl,	ence 3 (Toxop Dxidation, De	amidated		Score: MW [kDa]: pl: No. of Pept		
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence	Modification
414	2	831.8860	-47.71	2	40.2	53.1	0		K.CAIGTVTLPVDLMEK.Q	Carbamidomethyl: 1; Oxidation: 13
109	1	455.7340	-42.28	2	18.9	21.3	0		K.QNLPPVDK.E	
333	2	720.3300	-48.44	3	33.1	28.7	1	158-176	K.QNLPPVDKEFIVGCTQEGK.G	Carbamidomethyl: 14
Bruker					Printed:			December 15	, 2014	g

215	2	634,2840	-29.95	2	25.2	67.5	0	166-176	K.EFIVGCTQEGK.G		Carbamidomethyl: 6
110	2	604.0100	-20.81	4	19.0	33.0	1	189-211	R.ASSKDSQTVTCAYGSASNAD	VHR	Carbamidomethyl: 11; Deamidated: 18
120	4	603.7380	-63.88	4	19.5	65.3	1	189-211	R.ASSKDSQTVTCAYGSASNAD	VHR	Carbamidomethyl: 11
318	2	560.6040	-46.20	3	32.1	52.5	0	278-292	K.AVLTIPHDNFPEAQK.K		
279	1	452.7110	-81.69	4	29.4	42.0	1	278-293	K.AVLTIPHDNFPEAQKK.V		
Protein 1	5·		onserved b	vnothet	ical protein IT	ovonlasm	a nond	i GT1			
Accessio			122148644		ioui protein [1	oxopiaoini	u gonu	Score:		345.80	
atabase			ICBInr	0				MW [kDa]:		50.90	
	erage [%]:		3 80 %					pl:		4.54	
eq. cove	erage [/o].		3.60 %					No. of Pept	ides:	4.54	
Nodificat	ion(s):	(Oxidation					NO. OI PEPI	ides.	0	
Cmpd.	No. of	m/z meas.	Δ m/z	z	Rt	Score	Р	Range	Sequence		Modification
	Cmpds.		[ppm]		[min]						
16	2	483.8870	-49.27	3	11.5	80.5	2		K.VKVEDTEGDKSSR.G		
22	2	420.1580	-90.26	3	13.0	40.9	0		K.QHQMELEAEK.A		Oxidation: 4
86	2	487.2380	-34.55	3	20.6	48.3	1		K.ISAREEIEQQTR.K		
23	1	516.7240	-53.13	2	13.1	45.3	0		R.EEIEQQTR.K		
97	2	588.6090	-30.19	3	21.5	52.7	1		K.QTVEEASKQTVEEASK.Q		
50	1	846.8660	-39.88	2	17.2	62.6	0	470-485	K.QTASEVTKPTEEANTS		
Protein 16	e.		nicronomo	rotoin	MIC3 (Toxopla		-63				
ccessio			134311324		MICS [TOXOPI	asina yon	ang	Score:		337 20	
atabase			JCBInr	5				MW [kDa]:		36.40	
	: erage [%]:		8 30 %					pl:		5.84	
eq. cove	erage [%]:		0.30 76					No. of Pept	idea.	3.04	
lodificat	ion(s):		Carbamidor	nethyl, I	Deamidated			NO. OI Pepi	ides.	4	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence		Modification
338	6	603.5610	-87.67	3	28.2	94.1	0	80-95	R.QLHTDNGYFIGASCPK.S		Carbamidomethyl: 14; Deamidated: 6
52	2	550.2110	-53.47	3	14.1	22.5	1	226-239	R.TGCHAFRENCSPGR.C		Carbamidomethyl: 3, 10
Bruker					Printed:			December 15	, 2014		

415	2	765.3570	-21.93	3	32.1	47.8	1	261-281	R.EVTSKAEESCVEGVEVTLA	EK.C	Carbamidomethyl: 10
45	4	583,7460	-27.78	2	13.0	82.5	Ó		K.GESGSEGSLSEK.M		
Protein 1	7.		DC domain	conto	inina protein 🛙	Foxonland					
Accessio			il23783781		and brotening	oxopiasii	a you	Score:		303 54	
Database			Jij23763761 VCBInr	9				MW [kDa]:		39.10	
	erage [%]:		1.80 %					pl:		7.76	
Seq. Covi	erage [%]:		1.00 %					No. of Pept	idea.	6	
Modificat					Oxidation. De			NO. OI Pepi	ides:	0	
viodificat	ion(s):		Jarbamioor	netnyi,	Oxidation, De	amidated					
									-		Modification
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
551	4	702.8400	45.67	2	38.9	72.0	0	136-148	K.EWVTGDSVLTGLK.I		
204	5	702.3290	-46.84	2	24.7	66.3	0		K.ISVPESQYPANAK.S		
204	2	702.3290	-46.84	2	24.7	41.0	0		K.ISVPESQYPANAK.S		Deamidated: 11
279	1	702.8110	-61.05	2	25.3	41.0	0		K.ISVPESQYPANAK.S		Deamidated: 11 Deamidated: 7
190	2	650.2570	-67.91	2	20.8	58.9	0		R.CSYTENSTLPK.I		Carbamidomethyl: 1
491											ourbuillidometriji. I
491	2	448.6870	-70.64	2	35.8	26.2	ő		K.WFFGDPK.S		ourounidomentji. 1
491 Protein 1	2	448.6870	-70.64	2	35.8	26.2	ō	259-265			ourbanidoneury. T
	2 8:	448.6870	-70.64 conserved h	2 ypothe		26.2	ō	259-265		301.85	ourbuildeneury.
Protein 1	2 8: n:	448.6870	-70.64	2 ypothe	35.8	26.2	ō	259-265 lii GT1]		301.85 45.10	on on the second s
Protein 1 Accessio Database	2 8: n: ::	448.6870	-70.64 conserved h ai/22148182	2 ypothe	35.8	26.2	ō	259-265 III GT1] Score: MW [kDa]:			
Protein 1 Accessio Database	2 8: n:	448.6870	-70.64 conserved h ji 22148182 VCBInr	2 ypothe	35.8	26.2	ō	259-265 III GT1] Score: MW [kDa]: pl:	K.WFFGDPK.S	45.10	
Protein 11 Accessio Database Seq. Cove	2 8: n: erage [%]:	448.6870 C	-70.64 conserved h ji 22148182 VCBInr	2 ypothe	35.8	26.2	ō	259-265 III GT1] Score: MW [kDa]:	K.WFFGDPK.S	45.10 7.74	
Protein 1 Accessio Database	2 8: n: erage [%]:	448.6870 C	-70.64 conserved h ji 22148182 NCBInr I7.80 %	2 ypothe	35.8	26.2	ō	259-265 III GT1] Score: MW [kDa]: pl:	K.WFFGDPK.S	45.10 7.74	
Protein 11 Accessio Database Seq. Cove	2 8: n: erage [%]:	448.6870 C	-70.64 conserved h ji 22148182 NCBInr I7.80 %	2 ypothe	35.8	26.2	ō	259-265 Score: MW [kDa]: pl: No. of Pept	K.WFFGDPK.S	45.10 7.74	Modification
Protein 11 Accessio Database Seq. Covi Modificat	2 8: n: erage [%]: tion(s):	448.6870	-70.64 conserved h ji 22148182 NCBInr I7.80 % Dxidation	2 ypothe 6	36.8 tical protein [T	26.2 oxoplasm	0 a gono	259-265 Bii GT1] Score: MW [kDa]: pl: No. of Pept Range	K.WFFGDPK.S ides: Sequence	45.10 7.74	
Protein 11 Accessio Database Seq. Covi Modificat	2 8: n: erage [%]: tion(s): No. of	448.6870 6 1 1	-70.64 conserved h ij[22148182 VCBInr 17.80 % Dxidation Δ m/z	2 ypothe 6	35.8 tical protein [T Rt	26.2 oxoplasm	0 a gono	259-265 GT1] Score: MW [kDa]: pl: No. of Pept Range 58-70	K.WFFGDPK.S ides: Sequence R.FLDPIDELPEPFK.A	45.10 7.74	
Protein 11 Accessio Database Seq. Cove Modificat Cmpd.	2 8: 9: erage [%]: tion(s): No. of Cmpds.	448.6870	-70.64 conserved h ji]22148182 NCBInr 17.80 % Dxidation Δ m/z [ppm]	2 ypothe 6 z	36.8 tical protein [T Rt [min]	26.2 oxoplasm Score	0 a gond	259-265 GT1] Score: MW [kDa]: pl: No. of Pept Range 58-70	K.WFFGDPK.S ides: Sequence	45.10 7.74	
Protein 11 Accessio Database Seq. Cove Modificat Cmpd. 685	2 8: 9: erage [%]: tion(s): No. of Cmpds. 1	448.6870	-70.64 conserved h ji]22148182 NCBInr 17.80 % Dxidation Δ m/z [ppm] -22.08	2 ypothe 6 z	36.8 tical protein [T Rt [min] 49.1	26.2 oxoplasm Score 74.2	a gono	259-265 Score: MW [kDa]: pl: No. of Pept Range 58-70 89-100	K.WFFGDPK.S ides: Sequence R.FLDPIDELPEPFK.A	45.10 7.74	
Protein 1 Accessio Database Seq. Cove Modificat Cmpd. 685 421 419	2 8: erage [%]: tion(s): No. of Cmpds. 1 2 2	448.6870 448.6870 ()))))))))))))	-70.64 conserved h ji]22148182 VCBInr I7.80 % Dxidation <u>A m/z [ppm]</u> -22.08 -82.83 -85.06	2 ypothe 6 z 2 3 3 3	36.8 tical protein [T [min] 49.1 32.4 32.3	26.2 oxoplasm Score 74.2 69.4 33.0	0 a gond P 0 1 0	259-265 III GT1] Score: MW [kDa]: pl: No. of Pept Range 58-70 89-100 101-115	KWFFGDPKS ides: Sequence RFLDPIDELPEPFKA KLGIEGOKTVFLKS KLSIEGOKTVFLKS	45.10 7.74 5	Modification
Protein 1 Accessio Database Seq. Cove Modificat Cmpd. 685 421	2 8: erage [%]: ion(s): No. of Cmpds. 1 2	448.6870	-70.64 conserved h ij[22148182 VCBInr 17.80 % Oxidation Δ m/z [ppm] -22.08 -82.83	2 ypothe 6 z 2 3	35.8 tical protein [T [min] 49.1 32.4	26.2 oxoplasm Score 74.2 69.4	0 a gond P 0 1	259-265 Score: MW [kDa]: pl: No. of Pepi Range 58-70 89-100 101-115 223-240	KWFFGDPK.S ides: Sequence R.FLDPIDELPEPFK.A KLGIEGOKTVFLK.S	45.10 7.74 5	
Protein 11 Accessio Database Seq. Cove Modificat Cmpd. 685 421 419 447	2 8: erage [%]: tion(s): No. of Cmpds. 1 2 2 2	448.6870	-70.64 conserved h ji]22148182 CBInr I7.80 % Oxidation Δ m/z [ppm] -22.08 -82.83 -55.06 -28.67	2 ypothe 6 z 2 3 3 3 3	36.8 tical protein [T [min] 49.1 32.4 33.3	26.2 oxoplasm Score 74.2 69.4 33.0 77.0	0 a gond P 0 1 0 0	259-265 Score: MW [kDa]: pl: No. of Pepi Range 58-70 89-100 101-115 223-240	KWFFGDPK.S ides: Sequence RFLDPIDELPEPFKA K.SPISPDVATYPIAERL K.SPISPDVATYPIAERL	45.10 7.74 5	Modification
Protein 11 Accessio Database Seq. Cove Modificat Cmpd. 685 421 419 447 414	2 8: erage [%]: tion(s): No. of Cmpds. 1 2 2 2 2 2	448.6870 (0 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1	-70.64 conserved h ji 22148182 (CBInr 7.80 % Dxidation Δ m/z (ppm) -22.08 -82.83 -55.66 -28.67 -49.56	2 ypothe 6 2 3 3 3 3 3	35.8 tical protein [T [min] 49.1 32.4 33.7 32.0	26.2 oxoplasm Score 74.2 69.4 33.0 77.0 48.2	0 a gond P 0 1 0 0 1	259-265 GT1] Score: MW [kDa]: pl: No. of Pepl Range 58-70 89-100 101-115 223-240 269-281	KWFFGDPK.S ides: Sequence RFLDPIDELPEPFKA K.SPISPDVATYPIAERL K.SPISPDVATYPIAERL	45.10 7.74 5	Modification
Protein 11 Accessio Database Seq. Covi Modificat Cmpd. 685 421 419 447 414 Protein 11	2 8: erage [%]: tion(s): No. of <u>Cmpds.</u> 2 2 2 2 2 9:	448.6870	70.64 20.64 20.65 21.48182 22.148182 22.148182 22.148182 22.148182 22.08 20.02 22.08 22.08 -22.08 -22.08 -22.08 -23.05 -28.07 -49.56 28.07 -49.56 28.07 -49.56 28.07 -49.56 28.07 -49.56 28.07 -49.56 -28.07 -49.56 -28.07 -49.56 -28.07 -49.56 -28.07 -49.56 -28.07 -49.56 -28.07 -49.56 -28.07 -49.56 -29.57 -49.56 -29.57 -49.56 -29.57 -20.	2 ypothe 6 z 3 3 3 s lle antig	36.8 tical protein [T [min] 49.1 32.4 33.3	26.2 oxoplasm Score 74.2 69.4 33.0 77.0 48.2	0 a gond P 0 1 0 0 1	259-265 GT1] Score: MW [kDa]: pl: No. of Pepi Range 89-100 101-115 223-240 269-281	KWFFGDPK.S ides: Sequence RFLDPIDELPEPFKA K.SPISPDVATYPIAERL K.SPISPDVATYPIAERL	45.10 7.74 5	Modification
Protein 11 Accessio Database Seq. Cove Modificat Cmpd. 685 421 419 447 414	2 8: erage [%]: tion(s): No. of <u>Cmpds.</u> 2 2 2 2 2 9:	448.6870	-70.64 conserved h ji 22148182 (CBInr 7.80 % Dxidation Δ m/z (ppm) -22.08 -82.83 -55.66 -28.67 -49.56	2 ypothe 6 z 3 3 3 s lle antig	35.8 tical protein [T [min] 49.1 32.4 33.7 32.0	26.2 oxoplasm Score 74.2 69.4 33.0 77.0 48.2	0 a gond P 0 1 0 0 1	259-265 GT1] Score: MW [kDa]: pl: No. of Pepl Range 58-70 89-100 101-115 223-240 269-281	KWFFGDPK.S ides: Sequence RFLDPIDELPEPFKA K.SPISPDVATYPIAERL K.SPISPDVATYPIAERL	45.10 7.74 5	Modification
Protein 11 Accessio Database Seq. Covi Modificat Cmpd. 685 421 419 447 414 Protein 11	2 8: erage [%]: tion(s): No. of <u>Cmpds.</u> 2 2 2 2 2 9:	448.6870	70.64 20.64 20.65 21.48182 22.148182 22.148182 22.148182 22.148182 22.08 20.02 22.08 22.08 -22.08 -22.08 -22.08 -23.05 -28.07 -49.56 28.07 -49.56 28.07 -49.56 28.07 -49.56 28.07 -49.56 28.07 -49.56 -28.07 -49.56 -28.07 -49.56 -28.07 -49.56 -28.07 -49.56 -28.07 -49.56 -28.07 -49.56 -28.07 -49.56 -29.57 -49.56 -29.57 -49.56 -29.57 -20.	2 ypothe 6 z 3 3 3 s lle antig	35.8 tical protein [T [min] 49.1 32.4 33.7 32.0	26.2 oxoplasm Score 74.2 69.4 33.0 77.0 48.2	0 a gond P 0 1 0 0 1	259-265 GT1] Score: MW [kDa]: pl: No. of Pepi Range 89-100 101-115 223-240 269-281	KWFFGDPK.S ides: Sequence RFLDPIDELPEPFKA K.SPISPDVATYPIAERL K.SPISPDVATYPIAERL	45.10 7.74 5	Modification

eq. Cov	: erage [%]:		ICBInr 3.90 %					MW [kDa]: pl: No. of Pept	23.90 5.66 7	
odificat	tion(s):	E	Deamidated	ł						
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence	Modification
59	1	410.8420	-77.77	3	16.2	29.4	1		K.SEARGPSLEER.I	
162	1	534.2310	-71.18	3	25.5	28.5	1	116-129	R.GPSLEERIEEQGTR.R	
57	1	568.7620	-36.49	2	16.1	41.5	0	132-141	R.YSSVQEPQAK.V	
32	2	847.9820	-47.92	3	13.1	64.9	1		R.RSPQEPSGDGGGNDAGNNAGNGG NEGR.G	Deamidated: 21
34	1	848.3060	-52.62	-	13.4	31.4	1		R.RSPQEPSGDGGGNDAGNNAGNGG NEGR.G	Deamidated: 13, 21
48	2	795.9480	-51.42		13.8	49.5	0		R.SPQEPSGDGGGNDAGNNAGNGGN EGR.G	Deamidated: 23
36	2	795.9450	-55.19	3	13.8	61.1	0	178-203	R.SPQEPSGDGGGNDAGNNAGNGGN FGR G	Deamidated: 20
Accessio Database	n: :	9	i 23784117 ICBInr		surface protei	n, putative	e [Toxo	Score: MW [kDa]:	284.11 41.50	I
Accessio Database Seq. Cov	n: :: erage [%]:	9 N 1	i 23784117 ICBInr 6.80 %	7	surface protei	n, putative	e [Toxo	Score:	284.11 41.50 6.23	
Accessio Database Seq. Cov	n: :: erage [%]:	9 N 1	i 23784117 ICBInr	7	surface protei	n, putative	e [Toxo	Score: MW [kDa]: pl:	284.11 41.50 6.23	
Accessio Database Seq. Cov	n: :: erage [%]:	9 N 1	i 23784117 ICBInr 6.80 %	7	surface protei Rt [min]	n, putative Score	P [Toxo	Score: MW [kDa]: pl:	284.11 41.50 6.23	Modification
Accessio Database Seq. Cov Modificat Cmpd. 251	in: erage [%]: ion(s): No. of Cmpds. 1	m/z meas.	il/23784117 ICBInr 6.80 % Carbamidor A m/z [ppm] -87.98	r7 methyl z 2	Rt [min] 27.7	Score 72.5	P	Score: MW [kDa]: pl: No. of Pept Range 93-104	284,111 41,50 6,23 ides: 5 Sequence KGSLTATLECTAKD	Modification Carbamidomethyl: 9
Accessio Database Seq. Cov Modificat Cmpd. 251 196	n: erage [%]: ion(s): No. of Cmpds. 1 1	9 1 ((((((((((((((((((il23784117 ICBInr 6.80 % Carbamidor <u>A m/z [ppm]</u> -87.98 -136.74	r7 methyl z 3	Rt [min] 27.7 24.2	Score 72.5 37.0	P 0 1	Score: MW [kDa]: pl: No. of Pept Range 93-104 169-178	284.11 41.50 6.23 Sequence KGSLTATLECTAKD KAJOSOKWTIKL	Carbamidomethyl: 9
Accessio Database Seq. Cov Modificat Cmpd. 251 196 227	n: erage [%]: cion(s): No. of Cmpds. 1 1	9 N 1 ((((((((((((((((((il23784117 ICBInr 6.80 % Carbamidor Carbamidor [ppm] -87.98 -136.74 -33.86	r7 methyl z 3 2	Rt [min] 27.7 24.2 26.2	Score 72.5 37.0 62.0	P 0 1 0	Score: MW [kDa]: pl: No. of Pept 93-104 169-178 190-202	284,111 41,50 6,23 5 Sequence KGSLTATLECTAK.D KAIGSGKWTLKL KAIGSGKWTLKL	Carbamidomethyl: 9
Accessio Database Seq. Cov Modificat Cmpd. 251 196 227 297	n: erage [%]: tion(s): No. of Cmpds. 1 1 1 3	9 N 1 (0 (0 (0 (0) (0) (0) (0) (0) (0) (0) (0	il23784117 ICBInr 6.80 % Carbamidon A m/z [ppm] -87.98 -136.74 -33.86 -40.70	77 methyl 2 3 2 2	Rt [min] 27.7 24.2 26.2 30.5	Score 72.6 37.0 62.0 73.2	P 0 1 0	Score: MW [kDa]: pl: No. of Pept 83-104 169-178 190-202 203-217	284.11 41.50 623 5 Sequence KGSLTATLECTAK.D KADSSAWTUKL KTEPUSCITYITIGKA KADAPAYCOLIVWIKA	Carbamidomethyl: 9 Carbamidomethyl: 6 Carbamidomethyl: 8
Accessio Database Seq. Cov Modificat Cmpd. 251 196 227 297 100	n: erage [%]: ion(s): No. of <u>Cmpds.</u> 1 1 3 3	9 N 1 626.2610 401.5130 725.8050 778.3850 624.9410	il23784117 ICBInr 6.80 % Carbamidor Am/z [ppm] -87.98 -136.74 -33.86 -40.70 -41.82	77 methyl 2 3 2 2 3	Rt [min] 27.7 24.2 26.2 30.5 18.2	Score 72.8 37.0 62.0 73.2 39.4	P 0 1 0 0	Score: MW [kDa]: pl: No. of Pept 83-104 169-178 190-202 203-217	284,111 41,50 6,23 5 Sequence KGSLTATLECTAK.D KAIGSGKWTLKL KAIGSGKWTLKL	Carbamidomethyl: 9
Accessio Database Seq. Cov Modificat Cmpd. 251 196 227 297 100 Protein 2	n: erage [%]: tion(s): No. of Cmpds. 1 1 3 3	9 1 (626.2610 401.5130 725.8050 778.3850 624.9410	il[23784117 ICBInr 6.80 % Carbamidor Δ m/z [ppm] -87.98 -136.74 -33.86 -40.70 -41.82 nyosin D, p	r7 methyl z 2 3 2 3 utative	Rt [min] 27.7 24.2 26.2 30.5	Score 72.8 37.0 62.0 73.2 39.4	P 0 1 0 0	Score: MW [kDa]: pl: No. of Pept 83-104 169-178 190-202 203-217	284.11 41.50 623 5 Sequence KGSLTATLECTAK.D KADSSAWTUKL KTEPUSCITYITIGKA KADAPAYCOLIVWIKA	Carbamidomethyl: 9 Carbamidomethyl: 6 Carbamidomethyl: 8
Modificat Cmpd. 251 196 227 297	n: erage [%]: tion(s): <u>No. of Cmpds.</u> <u>1</u> <u>1</u> <u>3</u> <u>3</u> 1: n:	9 1 (m/z meas. 626.2610 401.5130 725.8050 624.9410 624.9410	il23784117 ICBInr 6.80 % Carbamidor Am/z [ppm] -87.98 -136.74 -33.86 -40.70 -41.82	r7 methyl z 2 3 2 3 utative	Rt [min] 27.7 24.2 26.2 30.5 18.2	Score 72.8 37.0 62.0 73.2 39.4	P 0 1 0 0	Score: MW [kDa]: pl: No. of Pept 93-104 169-178 190-202 203-217 326-342	284.11 41.50 6.23 5 Sequence KOSLTATUECTAK.D K.ANSPARVTKL K.IFGVOGCTYTTGK.A K.IFGVOGCTYTTGK.A K.IGCVPWKAA KLIGCVPWKAA KLIGCVPWKAA	Carbamidomethyl: 9 Carbamidomethyl: 6 Carbamidomethyl: 8

Seq. Cove Modificat	erage [%]: ion(s):		.90 % Carbamidor	nethyl				pl: No. of Pept	ides:	9.39 6	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence		Modification
171	2	662.3210	-35.29	3	28.1	41.5	0	66-83	K.LQQVEPTADSQELTVQAK.E		
184	1	595.7550	-95.41	2	29.3	24.7	0	143-153	K.NAGPDTIALYR.D		
35	2	442.8700	-52.21	3	15.1	38.2	1	409-420	K.TTYAGSNKIESR.W		
214	1	443.7500	-76.69	2	33.2	25.5	0	526-533	K.LIETLLGK.G		
88	2	419.6990	-90.74	2	20.8	26.9	0	555-562	K.FVSSLASK.L		
25	2	431.1890	-83.19	2	13.5	49.1	0	614-621	R.ASTNDVVR.G		
	: erage [%]:	N 7	ii 15419635 ICBInr '.80 %	,				Score: MW [kDa]: pl: No. of Pept		236.79 70.50 5.55 5	
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
123	2	516.2540	-45.78	2	23.3	40.4	0	80-90	K.GGTLLVSGDGR.F		
43	1	445.1940	-91.88	2	15.9	51.1	0	520-528	K.SSPAEITGK.V		
47	1	419.1510	-124.23	2	16.4	25.1	0		K.YTDPVDK.Q		
59	2	560.7710	-54.35	2	18.0	71.5	0	579-590	R.LSGTGSTGATIR.V		
203	1	597.7710	-75.71	2	32.6	22.9	0	627-637	K.YIGTETPTVIT		
Protein 2 Accessio Database Seq. Cove	n:	9 N	RecName: F i 2507039 ICBInr i5.00 %	ull=De	nse granule p	rotein 5; S	ihort=F	rotein GRA 5 Score: MW [kDa]: pl: No, of Pept	AltName: Full=p21; Flags: I	Precursor 221.83 13.00 5.69 4	

Bruker	Printed:	December 15, 2014

Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence		Modification
20	2	502.9610	-47.61	4	11.2	54.9	1		R.GREQQQVQQHEQNEDR.S		
14	2	599.2330	-61.71	3	10.9	47.8	0		R.EQQQVQQHEQNEDR.S		
204	1	607.7590	-45.01	4	21.7	47.8	1		R.EQQQVQQHEQNEDRSLFER.G		
270	1	779.6260	-62.65	3	25.2	71.3	1	100-120	R.AIQEESKESATAEEEEVAEEE.+		
Protein 2	4:	le	ong-chain f	attv acio	d CoA ligase,	outative (T	oxopla	asma qondii N	(E49)		
Accessio			ij23783516					Score:		203.13	
Database		Ň	CBInr					MW [kDa]:		82.10	
Seq. Cov	erage [%]:	7	.50 %					pl:		5.21	
								No. of Pep	tides:	5	
Modifica	tion(s):	(Carbamido	nethyl,	Oxidation						
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
40	1	554.2130	-82.25	2	15.6	35.8	0		R.SVVASEECAR.R		Carbamidomethyl: 8
150	1	480.2550	-39.63	2	26.3	50.1	0		R.LLDSIEAAK.S		
135	1	758.8450	-27.06	2	24.2	29.0	0	192-206	K.SSLAGEPEEAVNASR.V		
65	1	551.7570	-93.82	2	18.6	68.2	1	240-250	K.AVAELKAGESK.A		
41	1	547.2140	-123.39	2	15.7	20.0	0	677-687	R.AVTESMAAVAK.E		Oxidation: 6
Protein 2 Accessic Database Seq. Cov	n:	9	ctin [Pyroc i 27450759 ICBInr .20 %		ula]			Score: MW [kDa]: pl: No. of Pep		187.99 41.70 5.83 2	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	P	Range	Sequence		Modification
385	3	400.1990	-102.48	3	30.7	27.8	0	29-39	R.AVFPSIVGRPR.H		
538	2	895.9050	-49.78	2	38.1	59.8	0	239-254	K.SYELPDGQVITIGNER.F		
Protein 2 Accessio			-type ATP		ative [Toxopla	asma gono	lii VEG] Score:		184.05	

Database	: erage [%]:		ICBInr 60 %					MW [kDa]: pl:		144.50 5.80	
seq. Cov	erage [%]:	5	.00 %					No. of Pept	ides.	5.00	
Modificat	ion(s):	c	Oxidation					110. 01 1 Cp.		5	
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
103	1	621.7870	-52.86	2	16.2	22.1	0		K.VGSQPVAAGAEEK.V		
77	1	501.2250	-42.35	3	14.5	33.8	0		R.ESTVGGSGTGHSQLGK.	S	
316	2	803.8410	-65.88	2	27.8	82.1	0		K.TNEALLTGESEDISK.T		
415	1	702.8110	-69.04	2	32.8	25.4	0		R.VQELEVPFNSSR.K		
204	1	633.2750	-50.95	3	22.3	20.7	0	918-936	R.QGHTVAMTGDGVNDAP	ALK.A	Oxidation: 7
atabase leq. Cov	erage [%]:		ICBInr .00 %					MW [kDa]: pl:		36.60 6.75	
Nodificat	ion(s):	c	Carbamidor	nethyl,	Oxidation			No. of Pept	tides:	0	
Modificat Cmpd.	ion(s): No. of Cmpds.	m/z meas.	Carbamidor Δm/z [ppm]	nethyl, z	Oxidation Rt [min]	Score	Р	No. of Pept Range	tides: Sequence	0	Modification
Protein 2 Accessio Database	No. of Cmpds. 8: n: : erage [%]:	m/z meas. n g N 6	Δ m/z [ppm]	z binding 7	Rt [min] g protein, putal		· ·	Range	Sequence	0 177.75 92.50 9.15 5	Modification
Cmpd. Protein 2 Accessio Database Seq. Cov	No. of Cmpds. 8: n: : erage [%]:	m/z meas. n g N 6	∆m/z [ppm] hicrotubule- i[23783606 ICBInr .90 %	z binding 7	Rt [min] g protein, putal		· ·	Range gondii ME49 Score: MW [kDa]: pl:	Sequence	177.75 92.50 9.15	Modification
Cmpd. rotein 2 ccessio atabase eq. Cov lodificat Cmpd.	No. of Cmpds. 8: n: : erage [%]: ion(s): No. of Cmpds.	m/z meas. 9 N 6 0 m/z meas.	Δ m/z [ppm] hicrotubule: ij23783606 ICBInr .90 % Carbamidor Δ m/z [ppm]	z binding i7 nethyl, z	Rt [min]) protein, putal Oxidation Rt [min]	tive [Toxo Score	plasma P	Range gondii ME49 Score: MW [kDa]: pl: No. of Pept Range	Sequence] ides: Sequence	177.75 92.50 9.15	
Cmpd. rotein 2 ccessio atabase eq. Cov lodificat Cmpd. 168	No. of Cmpds. 8: n: : erage [%]: ion(s): No. of Cmpds. 2	m/z meas. 9 N 6 0 m/z meas. 848.8550	Δ m/z [ppm] hicrotubule- i[23783606 ICBInr .90 % Carbamidor Δ m/z [ppm] -37.30	z binding i7 nethyl, z	Rt [min] g protein, putar Oxidation Rt [min] 27.8	tive [Toxo Score 30.1	plasma P 0	Range gondii ME49 Score: MW [kDa]: pl: No. of Pepl Range 187-200	Sequence] ildes: Sequence R.LNESFDDQTEETLR.V	177.75 92.50 9.15	Modification
Cmpd. Protein 2 Accessio Database Seq. Cov Modificat Cmpd. 168 193	No. of Cmpds. 8: erage [%]: ion(s): No. of Cmpds. 2 1	m/z meas. 9 6 6 7 7 848.8550 648.2630	Δ m/z [ppm] hicrotubule- i[23783606 ICBInr .90 % Carbamidor Δ m/z [ppm] -37.30 -46.00	z binding i7 nethyl, z 2 2	Rt [min] g protein, putal Oxidation Rt [min] 27.8 23.9	tive [Toxo Score 30.1 27.3	plasma P 0 0	Range gondii ME49 Score: MW [kDa]: pl: No. of Pept Range 187-200 285-295	Sequence] ides: Sequence R.INESPDOATETLR.V RAVEVESDOATET.L	177.75 92.50 9.15	
Cmpd. Protein 2 Accessic Database Seq. Cov Modificat Cmpd. 168	No. of Cmpds. 8: n: : erage [%]: ion(s): No. of Cmpds. 2	m/z meas. 9 N 6 0 m/z meas. 848.8550	Δ m/z [ppm] hicrotubule- i[23783606 ICBInr .90 % Carbamidor Δ m/z [ppm] -37.30	z binding i7 nethyl, z	Rt [min] g protein, putar Oxidation Rt [min] 27.8	tive [Toxo Score 30.1	plasma P 0	Range gondii ME49 Score: MW [kDa]: pl: No. of Pepl Range 187-200 285-295 430-438	Sequence] ildes: Sequence R.LNESFDDQTEETLR.V	177.75 92.50 9.15	Modification

62	1	448.7170	-63.38	2	18.2	23.6	0	808-815	K.YTTTAIAR.V		
rotein 3		1	4.2.2 prot	nin hom	oloque (Toxoq	larma gor	diil				
Accessi			i 3123732		ologue [Toxop	asina yoi	ung	Score:		177 67	
Databas			CBInr					MW [kDa]:		30.70	
Sea. Con	verage [%]:		5 00 %					pl:		4 55	
			0.00 /0					No. of Pep	tides:	3	
Cmpd.	No. of	m/z meas.	Δm/z	z	Rt	Score	Р	Range	Sequence		Modification
	Cmpds.		[ppm]		[min]						
164	2	458.5270	-66.80		20.4	70.3	1		R.YISEFSGEEGKK.Q		
46	2	683.7920	-34.09		13.3	57.7	0		K.QAADQAQESYQK.A		
251	2	574.9240	-62.76	3	25.0	49.7	0	167-182	K.ATETAEAELPSTHPIR.L		
Seq. Co	verage [%]:	1	ICBInr 3.40 %					MW [kDa]: pl: No. of Pep		44.60 4.86 4	
Seq. Co Modifica	verage [%]: tion(s):	1	3.40 % Carbamido		D+	Score	D	pl: No. of Pep	tides:	4.86	Modification
Seq. Con Modifica Cmpd.	tion(s): No. of Cmpds.	1 m/z meas.	I3.40 % Carbamido ∆ m/z [ppm]	z	Rt [min]	Score	Ρ	pl: No. of Pep Range	tides: Sequence	4.86	Modification
Seq. Con Modifica Cmpd. 151	verage [%]: tion(s): No. of Cmpds. 2	1 (m/z meas. 750.8300	3.40 % Carbamido Δ m/z [ppm] -50.71	2 2	[min] 18.8	44.2	0	pl: No. of Pep Range 70-82	Sequence	4.86	Modification
Seq. Con Modifica Cmpd. 151 94	verage [%]: tion(s): No. of Cmpds. 2 2	1 m/z meas. 750.8300 437.1790	3.40 % Carbamido Δ m/z [ppm] -50.71 -104.92	2 2 2	[min] 18.8 15.9	44.2 64.8	0	pl: No. of Pep Range 70-82 185-193	tides: Sequence R.QQPVEANETTVER.G R.AAADIAADR.A	4.86 4	
Seq. Con Modifica Cmpd. 151 94 523	verage [%]: tion(s): No. of Cmpds. 2 2 2	1 m/z meas. 750.8300 437.1790 708.3640	3.40 % Carbamido Δ m/z [ppm] -50.71 -104.92 -1.26	2 2 3	[min] 18.8 15.9 38.6	44.2 64.8 20.3	0 0 1	pl: No. of Pep Range 70-82 185-193 226-244	tides: Sequence R.QQPVEANETTVER.G R.AAADIAADR.A R.QGGLLPDVPLDETVEPCR	4.86 4	Modification
Seq. Con Modifica Cmpd. 151 94	verage [%]: tion(s): No. of Cmpds. 2 2	1 m/z meas. 750.8300 437.1790	3.40 % Carbamido Δ m/z [ppm] -50.71 -104.92	2 2 3	[min] 18.8 15.9	44.2 64.8	0	pl: No. of Pep Range 70-82 185-193 226-244	tides: Sequence R.QQPVEANETTVER.G R.AAADIAADR.A	4.86 4	
Seq. Con Modifica Cmpd. 151 94 523 340	verage [%]: tion(s): 2 2 2 2 2	1 (m/z meas. 750.8300 437.1790 708.3640 688.8190	3.40 % Carbamido Δ m/z [ppm] -50.71 -104.92 -1.26 -36.11	z 2 2 3 2	[min] 18.8 15.9 38.6	44.2 64.8 20.3 30.1	0 0 1 0	pl: No. of Pepi Range 70-82 185-193 226-244 398-411	tides: Sequence R.QQPVEANETTVER.G R.AAADIAADR.A R.QGGLLPDVPLDETVEPCR	4.86 4	
Seq. Con Modifica Cmpd. 151 94 523 340 Protein 3	rerage [%]: tion(s):	1 (m/z meas. 750.8300 437.1790 708.3640 688.8190	3.40 % Carbamido Δ m/z [ppm] -50.71 -104.92 -1.26 -36.11	z 2 2 3 2 n-contai	[min] 18.8 15.9 38.6 28.3	44.2 64.8 20.3 30.1	0 0 1 0	pl: No. of Pepi Range 70-82 185-193 226-244 398-411	tides: Sequence R.QQPVEANETTVER.G R.AAADIAADR.A R.QGGLLPDVPLDETVEPCR	4.86 4	
Seq. Con Modifica Cmpd. 151 94 523 340 Protein 3 Accessio	rerage [%]: tion(s): 2 2 2 2 2 31: on:	1 750.8300 437.1790 708.3640 688.8190	3.40 % Carbamido Δ m/z [ppm] -50.71 -104.92 -1.26 -36.11 GRS domai	z 2 2 3 2 n-contai	[min] 18.8 15.9 38.6 28.3	44.2 64.8 20.3 30.1	0 0 1 0	pl: No. of Pepi Range 70-82 185-193 226-244 398-411 dii ME49]	tides: Sequence R. QADVEANETTVER.G R. AAADIAADR.A R. GGGLI POVPLDETVEPCR R. HTPPGADGIELAGA	4.86 4	
Seq. Con Modifica Cmpd. 151 94 523 340 Protein 3 Accessio Databas	rerage [%]: tion(s): 2 2 2 2 2 31: on:	1 m/z meas. 750.8300 437.1790 708.3640 688.8190 S g N	3.40 % Carbamido Δ m/z [ppm] -50.71 -104.92 -1.26 -36.11 SRS domai ji]23784461	z 2 2 3 2 n-contai	[min] 18.8 15.9 38.6 28.3	44.2 64.8 20.3 30.1	0 0 1 0	pl: No. of Pep Range 70-82 185-193 226-244 398-411 dii ME49] Score: MW [kDa]: pl:	tides: Sequence R QOPLEANETTVER G R AAADIAADRA R AGGILIPOVPLDETVEPCR R HTPPGADQIELAGA	4.86 4 K.G 154.15	
Seq. Con Modifica Cmpd. 151 94 523 340 Protein 3 Accessio Databas Seq. Con	rerage [%]: tion(s): No. of Cmpds. 2 2 2 31: on: e: rerage [%]:	1 (750.8300 437.1790 688.8190 688.8190 5 9 1	3.40 % Carbamido Δ m/z [ppm] -80.71 -104.92 -1.26 -36.11 GRS domai µ]23784461 VCBInr 0.20 %	z 2 2 3 2 n-contai 85	[min] 18.8 15.9 38.6 28.3	44.2 64.8 20.3 30.1	0 0 1 0	pl: No. of Pep Range 70-82 185-193 226-244 398-411 dii ME49] Score: MW [kDa]:	tides: Sequence R QOPLEANETTVER G R AAADIAADRA R AGGILIPOVPLDETVEPCR R HTPPGADQIELAGA	4.86 4 •••••••••••••••••••••••••••••••••••	
Seq. Con Modifica Cmpd. 151 94 523 340 Protein 3 Accessio Databas Seq. Con	rerage [%]: tion(s): No. of Cmpds. 2 2 2 31: on: e: rerage [%]:	1 (750.8300 437.1790 688.8190 688.8190 5 9 1	3.40 % Carbamido Δ m/z [ppm] -50.71 -104.92 -1.26 -36.11 SRS domai ij[2378446/ VCBInr	z 2 2 3 2 n-contai 85	[min] 18.8 15.9 38.6 28.3	44.2 64.8 20.3 30.1	0 0 1 0	pl: No. of Pep Range 70-82 185-193 226-244 398-411 dii ME49] Score: MW [kDa]: pl:	tides: Sequence R QOPLEANETTVER G R AAADIAADRA R AGGILIPOVPLDETVEPCR R HTPPGADQIELAGA	4.86 4 KG 154.15 40.90 6.17	
Modifica Cmpd. 161 94 523 340 Protein 3 Accessio Databas Seq. Con Modifica	rerage [%]: tion(s): No. of Cmpds. 2 2 2 31: on: e: rerage [%]:	1 (750.8300 437.1790 688.8190 688.8190 5 9 1	3.40 % Carbamido Δ m/z [ppm] -80.71 -104.92 -1.26 -36.11 GRS domai µ]23784461 VCBInr 0.20 %	z 2 2 3 2 n-contai 85	[min] 18.8 15.9 38.6 28.3 ining protein []	44.2 64.8 20.3 30.1	0 1 0	pl: No. of Pep Range 70-82 185-193 226-244 398-411 dii ME49] Score: MW [kDa]: pl: No. of Pep	tides: sequence a goopveanettiver.g a naoinadir.a coogu.poyn.e rutppg.adgiel.aga nitppg.adgiel.aga	4.86 4 KG 154.15 40.90 6.17	
Addifica Cmpd. 151 94 523 340 Protein 3 Accessio Databas Seq. Con	rerage [%]: tion(s): No. of Cmpds. 2 2 2 31: on: e: rerage [%]:	1 (750.8300 437.1790 688.8190 688.8190 5 9 1	3.40 % Carbamido Δ m/z [ppm] -80.71 -104.92 -1.26 -36.11 GRS domai µ]23784461 VCBInr 0.20 %	z 2 2 3 2 n-contai 85	[min] 18.8 15.9 38.6 28.3	44.2 64.8 20.3 30.1	0 1 0	pl: No. of Pep Range 70-82 185-193 226-244 398-411 dii ME49] Score: MW [kDa]: pl:	tides: sequence a goopveanettiver.g a naoinadir.a coogu.poyn.e rutppg.adgiel.aga nitppg.adgiel.aga	4.86 4 KG 154.15 40.90 6.17	

13

Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence	Modification
184	2	401.6990	-140.08	2	23.4	36.0	0	87-94	K.ATALVLSK.Q	
81	1	644.2840	-39.02	2	16.8	51.8	0	101-113	K.LVCSGDGNAAAPR.N	Carbamidomethyl: 3
141	1	479.7060	-110.23	2	20.8	34.5	0	152-159	R.VNNAVQWK.K	
206	1	615.3040	-38.77	2	24.8	31.8	0	240-250	K.AVQVELTADQR.S	
Protein 3										
Accessio					ning protein, p	outative [1]	oxopia	sma gondii G Score:	11] 154.1	
			i 22148416	12						
Database			CBInr					MW [kDa]:	35.80	1
seq. Cov	erage [%]:	1	3.20 %					pl:	5.20	
Modificat			Carbamidor					No. of Pept	ides: 3	
nodificat	ion(s):	(Jarbamidon	netnyi						
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence	Modification
280	1	507.7170	-97.24	2	25.3	37.7	0	108-116	K.WTVAPPESK.T	
406	2	494.9020	-52.87	3	31.6	58.6	0	117-129	K.THSLTLPAENFPR.V	
667	1	800.0660	-25.02	3	45.0	21.6	0	255-276	K.LVIPEGGFPAQEETIVLGCNVR.	Carbamidomethyl: 19
								I	5	
Protein 3					ical protein [T	oxoplasm	a gono			
Accessio			ji 22148552	8				Score:	147.1	
Database			VCBInr					MW [kDa]:	226.1	0
Seq. Cov	erage [%]:	1	1.20 %					pl:	5.11	
								No. of Pept	ides: 3	
Modificat	ion(s):	(Oxidation							
Cmpd.	No. of	m/z meas.	∆ m/z	z	Rt	Score	Р	Range	Sequence	Modification
	Cmpds.		[ppm]		[min]			-		
43	1	519.2140	-77.35	2	16.1	37.5	0		R.YQAGSGGELR.R	
49	1	455.1840	1000.74	2	15.3	52.5	0		R.VGSLMETR.V	Oxidation: 5
	1	426.1770	-135.40	2	22.2	26.3	0	1545-1551	R.LYASELR.G	
126										
126		h	vpothetical	protein	TGME49_10	9600 [Tox	oplasr	na gondii ME4	9]	
		h	rypothetical	protein	TGME49_10 Printed:	9600 (Tox	-	na gondii ME4 December 15		

Accessio Database Seq. Cove		Ň	i 23782983 ICBInr .90 %	39				Score: MW [kDa]: pl: No. of Pep	tides:	141.54 106.50 10.23 3	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [mag]	z	Rt [min]	Score	Ρ	Range	Sequence		Modification
73	2	480.2150	-96.73	2	19.4	43.2	0	338-34	K.SQQLGGLEK.A		
61	3	509.7260	-70.27	2	18.3	69.8	0	551-56	K.TASVDEVAAR.L		
106	1	492.7410	-36.69	2	21.9	28.5	0	567-57	R.AAEPNVDIR.A		
Database Seq. Cove	erage [%]: No. of		CBInr 2.00 % Δ m/z	z	Rt	Score	Р	MW [kDa]: pl: No. of Pep Range	tides: Sequence	24.40 6.02 3	Modification
	Cmpds.		[ppm]		[min]				-		mouncedon
40	1	434.2020	-69.47	2	14.7	24.9	0		K.QLTTYNK.S		
84	1	658.2700	-63.40	3	18.7	32.0	1		K.KNAAVSSTPVNQDEAA		
104	1	922.8640	-56.87	2	20.5	69.3	0	199-21	K.NAAVSSTPVNQDEAAQI	EN	
Protein 34 Accessio Database Seq. Cove	n:	9 N	ypothetical i 23783441 ICBInr .70 %		TGME49_03	8150 [Toxi	oplasr	na gondii ME Score: MW [kDa]: pl: No. of Pep		119.77 37.00 5.43 3	
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
157	1	534.7590	-19.91	2	25.0	43.3	0	44-5	K.DPVDDAAIPR.V		
Bruker					Printed:			December 1	i, 2014		

Cmpds. [ppm] [min]	90
cccossion: gil21505321 Score: 119.63 atabase: NCClin: MW [L02]: 61.90 eq. Coverage [%]: 3.40 % MW [L02]: 479 No. of Peptides: 2 Cmpd. No. of miz meas. A miz Rt. Score P Range Modificat	90
iaq. Coverage [%]: 3.40 % pt: 4.79 No. of Peptides: 2 Cmpd. Mod. fmiz.mess. Amiz. rest. fmid. [mid] P Range Sequence Modificat	9
No. of Peptides: 2 Cmpd. No. of Peptides: 2 Cmpd. Cmpd.s. Amic X Piperiji X Pit Score P Range Sequence Modificat	
Cmpds. [ppm] [min]	Modification
55 2 583.2530 -42.58 2 17.6 59.2 0 347-356R.VTFAENDNQK.V	
Seq. Coverage [%]: 0.20 % pi: 5.40 Modification(s): Deamidated No. of Peptides: 3	
Cmpd. No. of m/z meas. A m/z z Rt Score P Range Sequence Modificat	
Cmpds. [ppm] [min]	Modification
Cmpds. [ppm] [min] 300 5 487.2190 -129.00 2 26.7 44.8 0 1088-1096K.IQLSQLAAK.W Deamidat	Modification Deamidated: 2, 5 Deamidated: 5

Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence	Modification
48	2	510.2490	-32.79	3	16.5	30.6	1	393-407	R.SANAAPARTDTNAIR.Q	
28	2	745.8350	-37.98	2	12.8	58.0	0	408-423	R.QTASTAGSAQPATGSR.A	
91	1	789.3610	-23.23	2	20.9	23.0	0	424-440	R.ASLNGAQLSSQGSGSGR.T	Deamidated: 7
Protein 40 Accessio Database Geq. Cove	n:	9	onserved h i 22148477 ICBInr 1.50 %		tical protein (T	oxoplasm	a gond	ii GT1] Score: MW [kDa]: pl: No. of Pept	20	17-24 1.80 68
odificat	ion(s):	(Carbamidon	nethyl				110. 01 T Cp.	1005. L	
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence	Modification
398	2	898.4190	-42.24	3	31.6	50.3	0		R.ILVHSGDSVTIQCPGAIASNPQD VSK.Y	Carbamidomethyl: 13
164	1	870.8150	-56.06	2	19.7	56.9	0	70-84	K.YVCPGEEPNCTDATK.A	Carbamidomethyl: 3, 10
Accessio Database Seq. Cove Modificat	: erage [%]:	9 N 7	i 22150443 ICBInr .00 % Deamidated	4	tical protein (T			Score: MW [kDa]: pl: No. of Pept	46)3.36 .90 .17
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence	Modification
67	2	502.1910	-141.34	2	14.4	60.7	0		R.VATVNAGTNR.L	Deamidated: 5
448	1	762.3590	-48.41	3	33.7	42.6	1	231-250	R.NRIPLTATQLSAESQEIQER.L	Deamidated: 9
Protein 42 Accessio Database Seq. Cove	n:	9 N	ypothetical i 23784169 ICBInr .20 %		TGME49_09	13440 [Tox	oplasn	na gondii ME4 Score: MW [kDa]: pl: No. of Pept	- 10 58 5.	12.72 3.70 00
Bruker					Printed:			December 15	2014	

Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence		Modification
183	1	596.2670	-49.01	2	20.2	30.1	0	341-352	K.SEENSGSLIGAK.S		
486	2	618.6410	-36.18	3	36.3	57.1	0	434-449	K.LKPSDPADVQVITEWR.	9	
Protein 4					Paramecium	n tetraurelia	a stra				
ccessio			gi 14549871	8				Score:		100.68	
Database			VCBInr					MW [kDa]:		52.30	
Seq. Cov	erage [%]:	2	2.30 %					pl:		8.76	
								No. of Pept	tides:	2	
Nodificat	tion(s):	1	Deamidated								
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
324	Cmpas.	595,7870	(ppm) -93.34	2	[min] 32.3	51,4	0	129-138	K.INTNNIFIIK.S		Deamidated: 5
200	4	595,7930	743.08	2	32.3	49.3	0		K.INTNNIFIIK.S		ocumulated. o
Accessio Database	n: c	2	gi 23783198 VCBInr		ein L7a, putati	ve [Toxopl	lasma	gondii ME49] Score: MW [kDa]:		95.74 31.00	
Protein 4 Accessio Database Seq. Cov	n:	2	gi 23783198		ein L7a, putati	ve (Toxopi	lasma	Score:			
Accessio Database	n: c	2	gi 23783198 VCBInr		ein L7a, putati	ve [Toxopl	lasma	Score: MW [kDa]: pl:		31.00 10.46	
Accessio Database	n: c	2	gi 23783198 NCBInr 5.40 % Δ m/z		ein L7a, putati Rt (min)	ve [Toxopl	lasma P	Score: MW [kDa]: pl:		31.00 10.46	Modification
Accessio Database Seq. Cov	n: :: erage [%]: No. of	5	gi[23783198 NCBInr 5.40 % <u>A m/z</u> [ppm] -154.37	13	Rt			Score: MW [kDa]: pl: No. of Pept Range 49-56	tides: Sequence R.VGGNIQPR.R	31.00 10.46	Modification
Accessio Database Seq. Cov Cmpd.	No. of Cmpds.	m/z meas.	gi 23783198 VCBInr 5.40 % Δ m/z [ppm]	13 ⁻	Rt [min]	Score	Р	Score: MW [kDa]: pl: No. of Pept Range 49-56	tides: Sequence	31.00 10.46	Modification
Accessio Database Seq. Cov Cmpd. 44 64	No. of Cmpds. 1	m/z meas. 420.6730 429.7050	ji 23783198 VCBInr 5.40 % Δ m/z [ppm] -154.37 -75.90	z 2 2	Rt [min] 16.9	Score 59.7 36.1	P 0 0	Score: MW [kDa]: pl: No. of Pept Range 49-56 122-128	tides: Sequence R.VGGNIQPR.R R.LLQEAER.Q	31.00 10.46	Modification
Accessio Database Seq. Cov Cmpd. 44 64 Protein 4	No. of Cmpds. 1 5:	m/z meas. 420.6730 429.7050	pi[23783198 NCBInr 5.40 % Δ m/z [ppm] -154.37 -75.90 acilitative gi	z 2 2 100056 t	Rt [min] 16.9	Score 59.7 36.1	P 0 0	Score: MW [kDa]: pl: No. of Pept Range 49-56 122-128 sma gondii ME	tides: Sequence R.VGGNIQPR.R R.LLQEAER.Q	31.00 10.46 2	Modification
Accessio Database Seq. Cov Cmpd. 44 64 Protein 4 Accessio	No. of Cmpds. 3 5: n:	m/z meas. 420.6730 429.7050	ji[23783198 NCBInr 5.40 % Δ m/z [Ppm] -154.37 -75.90 acilitative g ji]23784293	z 2 2 100056 t	Rt [min] 16.9	Score 59.7 36.1	P 0 0	Score: MW [kDa]: pl: No. of Pept Range 49-56 122-128 sma gondii ME Score:	tides: Sequence R.VGGNIQPR.R R.LLQEAER.Q	31.00 10.46 2 94.70	Modification
Accessio Database Seq. Cov Cmpd. 44 64 Protein 4 Accessio Database	No. of Cmpds. 3 5: 	m/z meas. 420.6730 429.7050	ji 23783198 NCBInr 5.40 % [ppm] -154.37 -75.90 acilitative gi ji 23784293 NCBInr	z 2 2 100056 t	Rt [min] 16.9	Score 59.7 36.1	P 0 0	Score: MW [kDa]: pl: No. of Pepl Range 49-56 122-128 sma gondii ME Score: MW [kDa]:	tides: Sequence R.VGGNIQPR.R R.LLQEAER.Q	31.00 10.46 2 94.70 61.60	Modification
Accessio Database Seq. Cov Cmpd. 44 64 Protein 4 Accessio Database	No. of Cmpds. 3 5: n:	m/z meas. 420.6730 429.7050	ji[23783198 NCBInr 5.40 % Δ m/z [Ppm] -154.37 -75.90 acilitative g ji]23784293	z 2 2 100056 t	Rt [min] 16.9	Score 59.7 36.1	P 0 0	Score: MW [kDa]: pl: No. of Pept Range 49-56 122-128 sma gondii ME Score: MW [kDa]: pl:	tides: RvGGNIGPR.R RLLGEAER.Q :49]	31.00 10.46 2 94.70 61.60 6.67	Modification
Accessio Database Seq. Cov Cmpd. 44 64 Protein 4 Accessio Database	No. of Cmpds. 3 5: 	m/z meas. 420.6730 429.7050	ji 23783198 NCBInr 5.40 % [ppm] -154.37 -75.90 acilitative gi ji 23784293 NCBInr	z 2 2 100056 t	Rt [min] 16.9	Score 59.7 36.1	P 0 0	Score: MW [kDa]: pl: No. of Pepl Range 49-56 122-128 sma gondii ME Score: MW [kDa]:	tides: RvGGNIGPR.R RLLGEAER.Q :49]	31.00 10.46 2 94.70 61.60	Modification
Accessio Database Seq. Cov Cmpd. 44 64 Protein 4 Accessio Database Seq. Cov	No. of Cmpds. 3 5: 	m/z meas. 420.6730 429.7050	ji 23783198 NCBInr 5.40 % [ppm] -154.37 -75.90 acilitative gi ji 23784293 NCBInr	z 2 2 100056 t	Rt [min] 15.0 16.9 transporter, pu	Score 59.7 36.1	P 0 0	Score: MW [kDa]: pl: No. of Pepl 49-56 122-128 sma gondii ME Score: MW [kDa]: pl: No. of Pepl	tides: RvogNioPR.R RLLOEAER.Q 449] tides:	31.00 10.46 2 94.70 61.60 6.67	Modification
Cccessio atabase eq. Cov Cmpd. 44 64 rotein 4 cccessio atabase	No. of Cmpds. 3 5: 	m/z meas. 420.6730 429.7050	ji 23783198 NCBInr 5.40 % [ppm] -154.37 -75.90 acilitative gi ji 23784293 NCBInr	z 2 2 100056 t	Rt [min] 16.9	Score 59.7 36.1	P 0 0	Score: MW [kDa]: pl: No. of Pept Range 49-56 122-128 sma gondii ME Score: MW [kDa]: pl:	tides: RvogNioPR.R RLLOEAER.Q 449] tides:	31.00 10.46 2 94.70 61.60 6.67	Modification

Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
470	1	635.3130	-13.71	2	34.8	51.0	0	495-505	K.GLSIEESPYFK.G		
372	2	660.2830	-83.43	2	29.9	43.7	1	556-568	R.GVSDDLTKGTEVV		
Protein 4					[Toxoplasma	gondii]		-			
Accessio			ij12128179	12				Score:		89.49	
Database			VCBInr					MW [kDa]:		40.50	
Seq. Cov	erage [%]:	e	6.30 %					pl:		5.29	
								No. of Pept	tides:	2	
Modifica	tion(s):	(Oxidation					-			
Cmpd.	No. of	m/z meas.	Δm/z	z	Rt	Score	Р	Range	Sequence		Modification
	Cmpds.		[ppm]		[min]			-	-		
101	2	734.7740	-48.59	2	16.4	62.8	0		K.GGSMPQQDAGDYAR.S		Oxidation: 4
237	1	460.6940	-111.65	2	23.2	26.7	0	263-271	R.SLGFAPSNK.E		
Accessio	n: :	9	i 23783325 CBInr		ning protein [1	Foxoplasm	ia gon	Score: MW [kDa]:		87.85 40.00	
Accessic Database	n:	9	i 23783325		ning protein [1	Foxoplasm	ia gon	Score:	tides:		
Protein 4 Accessic Database Seq. Cov Cmpd.	n: :: erage [%]: No. of	9	il[23783325 ICBInr I.80 % ∆m/z		Rt	Foxoplasm Score	a gon P	Score: MW [kDa]: pl:	tides: Sequence	40.00 5.60	Modification
Accessic Database Seq. Cov Cmpd.	No. of Cmpds.	m/z meas.	il[23783325 ICBInr I.80 % Δ m/z [ppm]	13 z	Rt [min]	Score	Р	Score: MW [kDa]: pl: No. of Pept	Sequence	40.00 5.60	Modification
Accessic Database Seq. Cov Cmpd. 173	No. of Cmpds.	m/z meas.	ij 23783325 VCBInr I.80 % <u>A m/z</u> [ppm] -120.68	2	Rt [min] 22.5	Score 54.6	P	Score: MW [kDa]: pl: No. of Pept Range 199-206	Sequence K.VAVTLQAR.A	40.00 5.60	Modification
Accessic Database Seq. Cov Cmpd.	No. of Cmpds.	m/z meas.	il[23783325 ICBInr I.80 % Δ m/z [ppm]	2	Rt [min]	Score	Р	Score: MW [kDa]: pl: No. of Pept Range 199-206	Sequence	40.00 5.60	Modification
Accessic Database Seq. Cov Cmpd. 173 37	No. of Cmpds. 1	m/z meas. 429.2120 566.2210	il23783325 CBInr i.80 % Δ m/z [ppm] -120.68 -91.98	z 2 2	Rt [min] 22.5 12.2	Score 54.6 33.3	P 0	Score: MW [kDa]: pl: No. of Pept Range 199-206 321-330	Sequence K.VAVTLQAR.A	40.00 5.60	Modification
Accessic Database Seq. Cov Cmpd. 173 37 Protein 4	No. of Cmpds. 2 1 8:	m/z meas. 429.2120 566.2210	L23783325 Δ m/z [ppm] -120.68 -91.98 ructose-1,6	z 2 -bispho	Rt [min] 22.5	Score 54.6 33.3	P 0	Score: MW [kDa]: pl: No. of Pept Range 199-206 321-330 gondii]	Sequence K.VAVTLQAR.A	40.00 5.60 2	Modification
Accessic Database Seq. Cov Cmpd. 173 37 Protein 4 Accessic	No. of Cmpds. 2 1 8: n:	m/z meas. 429.2120 566.2210	il23783325 CBInr i.80 % Δ m/z [ppm] -120.68 -91.98 ructose-1,6 il25989716	z 2 -bispho	Rt [min] 22.5 12.2	Score 54.6 33.3	P 0	Score: MW [kDa]: pl: No. of Pept 199-206 321-330 gondii] Score:	Sequence K.VAVTLQAR.A	40.00 5.60 2 76.31	Modification
Accessic Database Seq. Cov 173 37 Protein 4 Accessic Database	No. of Cmpds. 2 1 8: 	m/z meas. 429.2120 566.2210	Δ m/z [ppm] -120.68 -91.98 ructose-1,6 ij[25989716 VCBInr	z 2 -bispho	Rt [min] 22.5 12.2	Score 54.6 33.3	P 0	Score: MW [kDa]: pl: No. of Pept 199-206 321-330 gondii] Score: MW [kDa]:	Sequence K.VAVTLQAR.A	40.00 5.60 2 76.31 39.10	Modification
Accessic Database Seq. Cov Cmpd. 173 37 Protein 4 Accessic Database	No. of Cmpds. 2 1 8: n:	m/z meas. 429.2120 566.2210	il23783325 CBInr i.80 % Δ m/z [ppm] -120.68 -91.98 ructose-1,6 il25989716	z 2 -bispho	Rt [min] 22.5 12.2	Score 54.6 33.3	P 0	Score: MW [kDa]: pl: No. of Pept 199-206 321-330 gondii] Score: MW [kDa]: pl:	Sequence KVAVTLQAR.A KISDPNNQTSR.S	40.00 5.60 2 76.31 39.10 8.67	Modification
Accessic Database Seq. Cov 173 37 Protein 4 Accessic Database	No. of Cmpds. 2 1 8: 	m/z meas. 429.2120 566.2210	Δ m/z [ppm] -120.68 -91.98 ructose-1,6 ij[25989716 VCBInr	z 2 -bispho	Rt [min] 22.5 12.2	Score 54.6 33.3	P 0	Score: MW [kDa]: pl: No. of Pept 199-206 321-330 gondii] Score: MW [kDa]:	Sequence KVAVTLQAR.A KISDPNNQTSR.S	40.00 5.60 2 76.31 39.10	Modification
Accessic Database Seq. Cov 173 37 Protein 4 Accessic Database	No. of Cmpds. 2 1 8: 	m/z meas. 429.2120 566.2210	Δ m/z [ppm] -120.68 -91.98 ructose-1,6 ij[25989716 VCBInr	z 2 -bispho	Rt [min] 22.5 12.2	Score 54.6 33.3	P 0 0 asma	Score: MW [kDa]: pl: No. of Pept 199-206 321-330 gondii] Score: MW [kDa]: pl:	Sequence K VAVTLOAR A K ISDPNNQTSR S	40.00 5.60 2 76.31 39.10 8.67	Modification

Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence		Modification
119	1	533.7150	-81.61	2	17.3	47.8	0	175-183	R.YAAICQANR.L		Carbamidomethyl: 5
104	1	495.7200	-71.58	2	16.6	28.5	0	324-331	K.AQQVLMER.A		Oxidation: 6
rotein 4 ccessio atabase eq. Cov odificat	n: : erage [%]:	9 1 0	nypothetical ji 11835449 VCBInr 0.60 % Deamidated	97	TTHERM_00	357130 (T	etrahy	mena thermo Score: MW [kDa]: pl: No. of Pept		75.95 187.80 9.51 2	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
291	4	592.7730	-126.33	2	26.6	50.1	0		K.NVQINLLLQK.G		Deamidated: 3, 5
291	1	592.7730	704.16	2	26.6	25.8	0	1240-1249	K.NVQINLLLQK.G		Deamidated: 3
ccessio atabase eq. Cov odificat	: erage [%]:	ř 1	ji 14554119 NCBInr I.80 % Deamidated					Score: MW [kDa]: pl: No. of Pept	ides:	70.26 45.30 9.44 1	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
327	1	430.7170	-10.76	2	29.0	50.4	0	97-103	K.QDLLDEK.C		
otein 5 cessio	n:	2	iypothetical ji 23784398 VCBInr I.20 %		TGME49_01	1630 [Toxi	oplasr	na gondii ME4 Score: MW [kDa]: pl: No, of Pept		67.48 23.60 9.06 1	

Cmpd.	No. of	m/z meas.	Δm/z	z	Rt	Score	Р	Range	Sequence		Modification	
-	Cmpds.		[ppm]		[min]			-				
90	2	486.2410	-79.48	2	19.4	67.5	0	193-201	R.AAQEALIQK.N			
Protein 5: Accessio Database Seq. Cov	n:	2	Fructose-bis gi 11840120 NCBInr 3.90 %		ate aldolase	class-I far	nily prol	tein [Tetrahyn Score: MW [kDa]: pl: No. of Pept	nena thermophila] ides:	63.42 38.60 7.55 1		
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [maga]	z	Rt [min]	Score	Р	Range	Sequence		Modification	
240	3	666.8190	-52.34	2	27.1	63.4	0	21-34	K.GILAADESTGTIGK.K			
Protein 5 Accessio Database Seq. Cov	n:	2	ibosomal pl gi 14579678 VCBInr 3.80 %		protein P0 [To	xoplasma	ı gondiij	Score: MW [kDa]: pl: No. of Pept	ides:	54.71 34.10 5.34 1		
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification	
148	2	422.1760	-176.63	3	19.6	54.7	1	102-113	R.IVAENKVPAPAR.Q			
Search Search Search Protein 1 Accessio	Result Location	F /	RH2_2nd BOPS/RH	_2014- 12/ /stal Str	IS - Protein 09-10 11:0 ructure Of A F	7:42		Score:	<u>.</u>	1801.72		
Bruker					Printed:		1	December 15	, 2014			24

Database Seq. Cov Modificat	erage [%]:	8	NCBInr 80.60 % Carbamidor	nethyl,	Oxidation, De	amidated		MW [kDa]: pl: No. of Pept		29.80 7.73 32
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence	Modification
286	1	623.2820	-67.80	3	26.9	58.6	1	1-17	-SDPPLVANQVVTCPDKK.S	Carbamidomethyl: 13
315	1	623.5980	-87.01	3	28.3	20.9	1	1-17	SDPPLVANQVVTCPDKK.S	Carbamidomethyl: 13; Deamidated: 8
462	9	615.0630	96.72	3	36.0	68.7	0	18-34	K.STAAVILTPTENHFTLK.C	
488	2	615.3030	-46.35	3	37.2	49.2	0	18-34	K.STAAVILTPTENHFTLK.C	Deamidated: 12
411	1	743.3420	-73.05	3	33.4	24.5	1	18-37	K.STAAVILTPTENHFTLKCPK.T	Carbamidomethyl: 18
381	7	815.8920	-40.93	2	31.9	62.6	0	38-52	K.TALTEPPTLAYSPNR.Q	
82	3	749.2930	-59.04	2	16.0	68.0	0	53-66	R.QICPAGTTSSCTSK.A	Carbamidomethyl: 3, 11
275	2	400.2030	-117.00	2	26.3	29.8	0	96-102	K.LTVPIEK.F	
629	2	793 0860	-32.16	3	45.6	34.1	1	96-116	K.LTVPIEKFPVTTQTFVVGCIK.G	Carbamidomethyl: 19
226	2	585.2150	-87.66	3	23.7	49.2	Ó		K.GDDAQSCMVTVTVQAR.A	Carbamidomethyl: 7; Oxidation 8
74	16	508.7520	-50.72	2	17.9	72.6	0	133-142	R.ASSVVNNVAR.C	
136	7	509.2140	-109.59	2	19.1	70.5	0	133-142	R.ASSVVNNVAR.C	Deamidated: 6
236	6	677,7820	-54.60	2	24.3	79.9	0	143-155	R.CSYGADSTLGPVK.L	Carbamidomethyl: 1
373	2	782.8400	-62.73	2	31.4	69.0	0		K.LSAEGPTTMTLVCGK.D	Carbamidomethyl: 13
278	2	790.8560	-38.65	2	26.4	59.1	0		K.LSAEGPTTMTLVCGK.D	Carbamidomethyl: 13; Oxidation: 9
270	2	660.6440	-30.37	3	26.0	63.3	1		K.LSAEGPTTMTLVCGKDGVK.V	Carbamidomethyl: 13; Oxidation: 9
254	3	895.6970	-41.48	3	25.2	43.1	1		K.DGVKVPQDNNQYCSGTTLTGC K.S	
264	1	896.0040	-64.91	3	25.7	49.8	1		K.DGVKVPQDNNQYCSGTTLTGC K.S	Deamidated: 9
196	2	762.6140	-64.99	3	22.1	30.2	0		K.VPQDNNQYCSGTTLTGCNEK.	S Carbamidomethyl: 9, 17
323	2	474.2360	-96.27	2	28.8	48.3	1		K.SFKDILPK.L	
230	2	516.2120	-59.26	3	24.0	61.5	0	203-216	K.LTENPWQGNASSDK.G	
247	2	774.3160	-46.83	2	24.8	91.0	0	203-216	K.LTENPWQGNASSDK.G	Deamidated: 9
388	3	744.3400	-55.89	3	32.2	41.6	1	203-223	K.LTENPWQGNASSDKGATLTIK.	к
295	3	787.0100	-88.84	3	27.5	50.9	2	203-224	K.LTENPWQGNASSDKGATLTIKI E	к.
Bruker					Printed:			December 15	i, 2014	:

319	2	590.7650	-72.38	4	28.5	53.2	2	203-224	K.LTENPWQGNASSDKGATLTIKK.	Deamidated: 9
97	2	416.1930	-181.50	2	16.9	41.3	1	217-224	K.GATLTIKK.E	
67	1	503.7510	-25.47	2	15.1	43.9	1	224-232	K.KEAFPAESK.S	
103	2	439.6550	-139.52	2	17.4	33.8	0		K.EAFPAESK.S	
211	2	652.7850	-67.98	2	22.9	94.3	0		K.SVIIGCTGGSPEK.H	Carbamidomethyl: 6
187	1	614.6920	-30.44	5	28.0	56.8	2		K.SVIIGCTGGSPEKHHCTVKLEFA GAAGSAK.S	Carbamidomethyl: 6, 16
206	4	446.6950	-74.23	4	22.6	54.5	1		K.HHCTVKLEFAGAAGSAK.S	Carbamidomethyl: 3
216	2	511.2110	-113.99	2	23.3	77.2	0	252-262	K.LEFAGAAGSAK.S	
	n: erage [%]:	A g N 5	Monoclona i 85543998 ICBInr .90 %	al Antib	ody		t Epito	Score: MW [kDa]: pl: No. of Pep	By The Surface Antigen 1 (Sag1) Of To 1617.63 26.60 7.78 ides: 1	xoplasma Gondii Complexed To
Modificat	on(s):	C	Carbamidor	nethyl,	Oxidation, De	amidated				
Cmpd.	No. of	m/z meas.	Δm/z	z	Rt					
	Cmpds.		[ppm]		[min]	Score	Р	Range	Sequence	Modification
250	Cmpds. 2	555.9350		3		Score 84.0	Р 1	-	Sequence PPLVANQVVTCPDKK.S	Modification Carbamidomethyl: 11
Protein 3: Accessio Database Seq. Cove	2 n: erage [%]:	s 9 N 4	[ppm] -65.23 urface antig ij56157026 ICBInr .40 %	3 gen pro	[min]	84.0 asma gon	1	-	, PPLVANQVVTCPDKK.S 1595.19 33.00 9.75	
Protein 3: Accessio Database Seq. Cove	2 n: erage [%]: on(s): No. of	s 9 N 4	[ppm] -65.23 urface antig il56157026 ICBInr .40 % Carbamidon	3 gen pro	[min] 25.1 tein 1 [Toxopl	84.0 asma gon	1	1-18 Score: MW [kDa]: pl:	, PPLVANQVVTCPDKK.S 1595.19 33.00 9.75	
Protein 3: Accessio Database Seq. Cove Modificat	2 n: erage [%]: on(s):	s 9 N 4	[ppm] -65.23 urface antig il)56157026 ICBInr .40 % Carbamidor	3 gen pro	[min] 25.1 tein 1 [Toxopl Oxidation, De	84.0 asma gon amidated	dii]	1-18 Score: MW [kDa]: pl: No. of Pepi Range	1595.19 33.00 9.75 1	Carbamidomethyl: 11
Protein 3: Accessio Database Seq. Cove Modificat Cmpd.	2 rrage [%]: on(s): <u>No. of Cmpds.</u> 1	s 9 N 4 0 m/z meas. 744.7630 a	[ppm] -65.23 urface antig il56157026 ICBInr .40 % Carbamidor Carbamidor Δ m/z [ppm] -75.03	gen pro nethyl, z 2	[min] 25.1 tein 1 [Toxopl Oxidation, De Rt [min]	84.0 asma gon amidated Score	dii) P	1-18 Score: MW [kDa]: pl: No. of Pepi Range	PPLVANQVVTCPDKK.S 1505.19 33.00 9.75 1 Ides: 1 Sequence	Carbamidomethyl: 11 Carbamidomethyl: 11 Modification Earbamidomethyl: 3, 11;

Database Seq. Cove Modificat	erage [%]:	4	ICBInr 9.70 % Carbamidor	nethyl,	Oxidation			MW [kDa]: pl: No. of Pep	ides:	41.90 4.91 21	
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence		Modification
54	2	464.6520	-163.06	2	13.9	85.6	0	20-29	K.AGVAGDDAPR.A		
367	2	571,8160	-59.88	2	29.6	65.7	0	30-40	R AVEPSIVGKPK N		
90	2	476,5080	-78.71	3	15.6	35.5	1	52.63	K.DCYVGDEAQSKR.G		Carbamidomethyl: 2
453	8	651,9560	-107.85	3	34.0	82.0	ò	97-114	R.VAPEEHPVLLTEAPLNP	'K.A	ourbanidometriji. E
375	2	563.2210	-91,44	3	30.1	48.2	1	170-103	R.LDLAGRDLTEYMMK.I		Oxidation: 12, 13
209	2	530 6930	-109.13	2	21.7	41.0	0		R.GYGFTTSAEK.E		Oxidation: 12, 10
352	2	519 9010	-65.59	3	28.9	49.2	1		R.GYGFTTSAEKEIVR.D		
47	2	532,6980	-80.25	2	13.2	69.6	0		K.AAEDSSDIEK.S		
512	ĩ	941.3680	-86.11	3	36.8	32.2	1		K.AAEDSSDIEKSYELPDG	NIITVG	
508	3	592,9430	-34,75	3	36.7	84.1	0	240-255	K.SYELPDGNIITVGNER.F		
596	2	599,6050	-63.81	3	41.1	46.5	1	256-270	R.FRCPEALFOPSFLGK.E		Carbamidomethyl: 3
605	2	747.3590	-23.41	2	41.5	75.2	Ó		R.CPEALFOPSFLGK.E		Carbamidomethyl: 1
521	1	554.2430	-73.19	4	37.3	20.7	1	258-277	R.CPEALFOPSFLGKEAA	GVHR.T	Carbamidomethyl: 1
357	2	572.8850	-88.83	3	29.1	51.0	1	278-291	R.TTFDSIMKCDVDIR.K		Carbamidomethyl: 9; Oxidation: 7
449	4	792.3530	-46.40	3	33.7	56.7	1	292-313	R.KDLYGNVVLSGGTTMY	EGIGER.	Oxidation: 15
300	2	512.5910	-49.73	3	26.3	69.2	1	314-327	R.LTKELTSLAPSTMK.I		Oxidation: 13
254	2	597.2530	-91.66	2	24.0	66.7	0		K.ELTSLAPSTMK.I		Oxidation: 10
341	2	589.2690	-70.06	2	28.3	41.4	0	317-327	K.ELTSLAPSTMK.I		
287	2	478.9020	-66.67	3	25.7	46.2	1		K.ELTSLAPSTMKIK.V		Oxidation: 10
191	1	504.7530	-120.16	2	20.8	28.1	1		K.IKVVAPPER.K		
49	1	448.2210	-112.94	2	13.4	34.6	1	330-337	K.VVAPPERK.Y		
Protein 5: Accessio Database Seq. Cove	n:	9 N	urface antig i 13957751 ICBInr 9.10 %		2 [Toxoplasma	a gondii]		Score: MW [kDa]: pl: No. of Pep	ides:	822.07 19.00 9.35 14	
Bruker					Printed:			December 15	, 2014		27

Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence	Modification
319	1	585.2370	-62.47	3	27.7	22.6	0	44-60	K.TVDAPSSGSVVFQCGDK.L	Carbamidomethyl: 14
450	2	785.3580	-45.07	2	34.5	37.8	0	61-75	K.LTISPSGEGDVFYGK.E	
456	4	471.2400	-129.31	3	34.6	92.2	1	82-95	R.KLTTVLPGAVLTAK.V	
512	2	428.5840	-43.45	3	38.0	60.2	0	83-95	K.LTTVLPGAVLTAK.V	
497	1	645.6910	-54.35	3	36.9	29.0	1	83-101	K.LTTVLPGAVLTAKVQQPAK.G	
422	1	785.6250	-31.40	4	32.9	22.0	1	96-123	K.VQQPAKGPATYTLSYDGTPEKPQ VLCYK.C	Carbamidomethyl: 26
432	2	830.0520	-26.10	3	33.5	89.1	0	102-123	K.GPATYTLSYDGTPEKPQVLCYK. C	Carbamidomethyl: 20
45	7	529.7210	-66.10	2	15.1	61.6	0		K.CVAEAGAPAGR.N	Carbamidomethyl: 1
118	3	709.6410	-37.53	3	17.3	51.8	1		K.CVAEAGAPAGRNNDGSSAPTPK. D	Carbamidomethyl: 1
128	1	709.9700	-36.11	3	17.8	35.0	1		K.CVAEAGAPAGRNNDGSSAPTPK. D	Carbamidomethyl: 1; Deamidated: 13
47	3	544.7090	-68.60	2	12.8	76.3	0		R.NNDGSSAPTPK.D	Deamidated: 1
35	4	497.8510	-66.66	3	12.0	67.1	1		R.NNDGSSAPTPKDCK.L	Carbamidomethyl: 13; Deamidated: 2
23 311	6	497.5170 576.8230	-78.75	3	11.4	68.1 37.8	1		R.NNDGSSAPTPKDCK.L K.LIVRVPGADGR.V	Carbamidomethyl: 13
rotein 6: ccessio atabase	n: :	9	i 23783037 ICBInr		TGME49_11:	2630 [Tox	oplasm	Score: MW [kDa]:	801.71 286.30	
lodificat		(nethyl,	Oxidation, Dea			pl: No. of Pep		
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence	Modification
133	1	482.7160	-91.63	2	17.0	28.1	0		K.IASMISGAAK.M	Oxidation: 4
166	1	501.7250	-78.45	2	19.2	67.0	0		R.ITGAENLER.C	
184	1	411.1980	-68.61	3	20.3	31.7	1		K.IDSNVGETLRK.C	
253	2	461.7000	-75.96	2	25.3	41.2	0	983-990	R.SAELAFER.N	
Bruker					Printed:			December 15	i, 2014	

	2	417.7130	-63.74	2	28.2	38.2	0	1191-1198	R.LGGELFAK.M		
267	1	565.7740	-51.19	2	26.3	40.3	0		R.LEGNVALVCR.R		Carbamidomethyl: 9
118	1	743.7520	-62.49	2	15.7	46.6	0		R.DCDALMGSNSSSAR.Q		Carbamidomethyl: 2; Oxidation 6
330	2	738.8550	-45.04	2	30.8	77.8	0		K.AYNDALIQEQALK.K		
262	1	537.2260	-64.40	3	25.8	31.3	0		R.ALQGLSMADVNMTAR.T		Oxidation: 7, 12
255	1	525.2660	-36.04	2	25.4	41.9	0	1743-1751	K.LLQANEFSK.M		
421	1	701.8220	-86.15	2	37.5	57.1	0	1759-1771	K.GQADPEIVLYAVK.A		
296	1	413.6940	-78.61	2	28.4	30.7	0		R.YFLVER.T		
188	2	419.6900	-68.84	2	20.6	31.1	0	1965-1971	K.NTEIFSK.L		
247	2	434.7250	-94.71	2	24.6	66.6	0	1972-1980	K.LGGPALNVK.V		
357	2	613.3210	-65.49	2	32.7	65.4	0		K.LLGTNGAPAALVK.G		Deamidated: 5
135	1	599.7110	-89.63	2	17.0	71.0	0	2025-2035	K.GLSNYDGSEEK.T		
Accessio Database Seq. Cov Modificat	erage [%]:	N 2	ji 13447088 NCBInr 24.20 %		Deamidated			Score: MW [kDa]: pl: No. of Pept	tides:	795.18 41.70 6.93 14	
			Calibattituot	neuryi,	Dearnidated						
Cmpd.	No. of	m/z meas.	Δm/z	z	Rt	Score	Р	Range	Sequence		Modification
Cmpd. 358					Rt	Score 78.2	P 1		Sequence R.SKITYFGTLTQK.A		Modification
	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]			53-64			Modification
358	No. of Cmpds. 2	m/z meas. 462.8770	Δ m/z [ppm] -105.34	z 3	Rt [min] 29.2	78.2	1	53-64 53-70	R.SKITYFGTLTQK.A		Modification
358 485	No. of Cmpds. 2 1	m/z meas. 462.8770 544.2760	Δ m/z [ppm] -105.34 -26.24	z 3 4	Rt [min] 29.2 35.5	78.2	1 2	53-64 53-70 55-64	R.SKITYFGTLTQK.A R.SKITYFGTLTQKAPNWYR.C		Modification
358 485 413	No. of Cmpds. 2 1 2	m/z meas. 462.8770 544.2760 586.2880	∆ m/z [ppm] -105.34 -26.24 -57.16	z 3 4 2	Rt [min] 29.2 35.5 32.0	78.2 69.3 50.4	1 2 0	53-64 53-70 55-64 55-70	R.SKITYFGTLTQK.A R.SKITYFGTLTQKAPNWYR.C K.ITYFGTLTQK.A		Modification
358 485 413 537	No. of Cmpds. 2 1 2 2 2 2	m/z meas. 462.8770 544.2760 586.2880 653.6450	Δ m/z [ppm] -105.34 -26.24 -57.16 -46.84	z 3 4 2 3	Rt [min] 29.2 35.5 32.0 38.1	78.2 69.3 50.4 59.7	1 2 0	53-64 53-70 55-64 55-70 65-70	R.SKITYFGTLTQK.A R.SKITYFGTLTQKAPNWYR.C K.ITYFGTLTQK.A K.ITYFGTLTQKAPNWYR.C		Modification
358 485 413 537 207	No. of Cmpds. 2 1 2 2 2 2	m/z meas. 462.8770 544.2760 586.2880 653.6450 403.6620	Δ m/z [ppm] -105.34 -26.24 -57.16 -46.84 -96.20	z 3 4 2 3 2	Rt [min] 29.2 35.5 32.0 38.1 21.6	78.2 69.3 50.4 59.7 38.7	1 2 0 1 0	53-64 53-70 55-64 55-70 65-70 76-88	R.SKITYFGTLTQK.A R.SKITYFGTLTQKAPNWYR.C K.ITYFGTLTQK.A K.ITYFGTLTQKAPNWYR.C K.APNWYR.C		Modification
358 485 413 537 207 240	No. of Cmpds. 2 1 2 2 2 2 2	m/z meas. 462.8770 544.2760 586.2880 653.6450 403.6620 470.5510	Δ m/z [ppm] -105.34 -26.24 -57.16 -46.84 -96.20 -70.74	z 3 4 2 3 2 3	Rt [min] 29.2 35.5 32.0 38.1 21.6 23.3	78.2 69.3 50.4 59.7 38.7 68.4	1 2 0 1 0	53-64 53-70 55-64 55-70 65-70 65-70 76-88 119-132	R.SKITYFGTLTQKA R.SKITYFGTLTQKAPNWYR.C K.ITYFGTLTQKA K.ITYFGTLTQKAPNWYR.C K.APNWYR.C R.APREVYGHVTLNK.E		
358 485 413 537 207 240 35	No. of Cmpds. 2 1 2 2 2 2 2 2 1	m/z meas. 462.8770 584.2760 586.2880 653.6450 403.6620 470.5510 426.4180	Δ m/z [ppm] -105.34 -26.24 -57.16 -46.84 -96.20 -70.74 -66.48	z 3 4 2 3 2 3 4	Rt [min] 29.2 36.5 32.0 38.1 21.6 23.3 12.0	78.2 69.3 50.4 59.7 38.7 68.4 48.4	1 2 0 1 0 0 2	53-64 53-70 55-64 55-70 65-70 76-88 119-132 133-145	R.SKITYFGTLTQK.A R.SKITYFGTLTQKAPNWYR.C K.ITYFGTLTQKAPNWYR.C K.APNWYR.C R.ANEEVVGHVTLNK.E R.ANEEVVGHVTLNK.E R.VCHIDAADKGDCER.N		
358 485 413 537 207 240 35 471 559 244	No. of Cmpds. 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	m/z meas. 462.8770 544.2760 586.2880 653.6450 403.6620 470.5510 426.4180 476.2270 591.2660 584.2490	∆ m/z [ppm] -105.34 -26.24 -57.16 -46.84 -96.20 -70.74 -66.48 -64.21 -97.56 -87.47	z 3 4 2 3 2 3 4 3 4 3 2 3 3	Rt [min] 29.2 35.5 32.0 38.1 21.6 23.3 12.0 34.9 39.2 23.5	78.2 69.3 50.4 59.7 38.7 68.4 48.4 60.6 64.3 69.3	1 2 0 1 0 0 2 1 0 1	53-64 53-70 55-64 55-70 65-70 76-88 119-132 133-145 135-145 135-145	RSKITYFGTLTQKAP RSKITYFGTLTQKAPNWYRC KLITYFGTLTQKAPNWYRC KAPNWYRC RANEEVYGHVTLNKE RANEEVGHVTLNKE RNGFLTDYIFGAKQ KGFLTDYIFGAKQ KGFLTDYIFGAKQ KGFLTDYIFGAKQ		Carbamidomethyl: 2, 12
358 485 413 537 207 240 35 471 559 244 220	No. of Cmpds. 2 1 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2	m/z meas. 462.8770 544.2760 586.2880 653.6450 470.5510 426.4180 475.2270 591.2660 584.2490 690.7970	Δ m/z [ppm] -105.34 -26.24 -57.16 -46.84 -96.20 -70.74 -66.48 -64.21 -97.56 -87.47 -56.04	z 3 4 2 3 2 3 4 3 2 3 4 3 2 3 2	Rt [min] 29.2 335.5 332.0 38.1 21.6 23.3 12.0 34.9 39.2 23.5 22.4	78.2 69.3 50.4 59.7 38.7 68.4 48.4 60.6 64.3 64.3 69.3 66.9	1 2 0 1 0 2 1 0 2 1 0 1 0	53-64 53-70 55-64 85-70 76-88 119-132 133-145 135-145 151-165 154-165	R.SKITYFGTLTQKA R.SKITYFGTLTQKAPNWYR.C K.ITYFGTLTQKAPNWYR.C K.APNWYR.C R.ANEEVYGHYTLNK.E R.VEIDAKOKGDCER.N R.NKGFLTDYIPGAK.Q K.GFLTDYIPGAK.Q K.JENTQGEXU.YK.F K.VEINNGEQSVLYK.F		Carbamidomethyl: 2, 12
358 485 413 537 207 240 35 471 559 244	No. of Cmpds. 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	m/z meas. 462.8770 544.2760 586.2880 653.6450 403.6620 470.5510 426.4180 476.2270 591.2660 584.2490	∆ m/z [ppm] -105.34 -26.24 -57.16 -46.84 -96.20 -70.74 -66.48 -64.21 -97.56 -87.47	z 3 4 2 3 2 3 4 3 4 3 2 3 3	Rt [min] 29.2 35.5 32.0 38.1 21.6 23.3 12.0 34.9 39.2 23.5	78.2 69.3 50.4 59.7 38.7 68.4 48.4 60.6 64.3 69.3	1 2 0 1 0 0 2 1 0 1	53-64 53-70 55-64 85-70 76-88 119-132 133-145 135-145 151-165 154-165	RSKITYFGTLTQKAP RSKITYFGTLTQKAPNWYRC KLITYFGTLTQKAPNWYRC KAPNWYRC RANEEVYGHVTLNKE RANEEVGHVTLNKE RNGFLTDYIFGAKQ KGFLTDYIFGAKQ KGFLTDYIFGAKQ KGFLTDYIFGAKQ		Carbamidomethyl: 2, 12

695	1	708.3800	-39.42	2	54.2	25.8	0	166-177	K.FTVPWIFLPPAK.Q		
412	2	489.2310	-51.45	2	31.9	55.0	0	229-236	K.DANFIEIR.C		
rotein 8		а	ctin I (Plasr	nodium	falciparum)						
ccessio	n:	0	15911379					Score:		733 50	
atabase	6		CBInr					MW [kDa]: 41.80			
ea. Cov	erage [%]:	4	.80 %					pl:		5.15	
								No. of Pept	ides:	3	
odificat	ion(s):	c	Carbamidon	nethyl,	Oxidation, De	amidated					
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
525	5	908.4050	489.93	2	37.5	52.1	0		M.GEEVVQALVVDNGSGNVK.		Deamidated: 6
490	6	908.4170	503.15	2	35.8	70.4	0		M.GEEVVQALVVDNGSGNVK.		Deamidated: 12
514	1	907.8560	427.39	2	36.9	20.9	0	2-19	M.GEEVVQALVVDNGSGNVK.		
ccessio	n:	g N	i 22148864 ICBInr	ypotnet 0	ical protein [T	oxoplasm	a gono	Score: MW [kDa]:		698.68 33.90	
atabase eq. Cov	n: :: erage [%]:	9 N 5	i 22148864 ICBInr 4.80 %	Ö	Oxidation, De		a gond	Score:	ides:		
atabase eq. Cov	n: :: erage [%]:	9 N 5	i 22148864 ICBInr 4.80 %	Ö			p gond	Score: MW [kDa]: pl: No. of Pept	ides: Sequence	33.90 6.04	Modification
ccessio latabase eq. Cov lodificat Cmpd. 23	n: erage [%]: ion(s): No. of Cmpds. 2	9 N 5 m/z meas. 539.5180	il22148864 ICBInr 4.80 % Carbamidor <u>A m/z [ppm]</u> -97.29	oʻ nethyl, i z 3	Oxidation, De Rt [min] 11.2	amidated Score 48.8	P 0	Score: MW [kDa]: pl: No. of Pept Range 16-30	Sequence K.DSHAANADSQTPMQK.L	33.90 6.04 13	Oxidation: 13
ccessio latabase eq. Cov lodificat Cmpd. 23 184	n: erage [%]: tion(s): <u>No. of Cmpds.</u> 2 2	9 N 5 (m/z meas. 539.5180 455.7220	il22148864 ICBInr 4.80 % Carbamidor Carbamidor (ppm) -97.29 -54.81	o nethyl, i z 3 4	Oxidation, De [min] 11.2 20.5	Score 48.8 61.0	P 0 1	Score: MW [kDa]: pl: No. of Pept Range 16-30 36-55	Sequence K.DSHAANADSQTPMQK.L R.AAVAAAAANGAETGKAPHL	33.90 6.04 13	Oxidation: 13 Deamidated: 9
ccessio eatabase eq. Cov lodificat Cmpd. 23 184 140	n: erage [%]: ion(s): No. of Cmpds. 2 2 2 2	9 N 5 (m/z meas. 539.5180 455.7220 517.2580	il22148864 ICBInr 4.80 % Carbamidon <u>A m/z [ppm]</u> -97.29 -54.81 -35.93	0 nethyl, 1 z 3 4 2	Oxidation, De Rt [min] 11.2 20.5 18.3	amidated Score 48.8 61.0 60.8	P 0 1 0	Score: MW [kDa]: pl: No. of Pept Range 16-30 36-55 56-65	Sequence K.DSHAANADSQTPMQK.L R.AAVAAAAANGAETGKAPHL K.LAGQMSLAAR.S	33.90 6.04 13	Oxidation: 13
Accessio Database leq. Cov Modificat Cmpd. 23 184 140 314	n: erage [%]: tion(s): No. of Cmpds. 2 2 2 2 2	g N 5 0 (m/z meas. 539.5180 455.7220 517.2580 481.0270	il22148864 ICBInr 4.80 % Carbamidor A m/z [ppm] -97.29 -54.81 -35.93 155.52	0 nethyl, 1 <u>z</u> <u>3</u> <u>4</u> <u>2</u> 3	Oxidation, De [min] 11.2 20.5 18.3 27.0	amidated Score 48.8 61.0 60.8 50.0	P 0 1 0	Score: MW [kDa]: pl: No. of Pept Range 16-30 36-55 56-65 101-113	Sequence K.DSHAANADSQTPMQK.L R.AAVAAAAANGAETGKAPHL K.LAGQMSLAAR.S K.KPTEQGTVLLQVK.A	33.90 6.04 13	Oxidation: 13 Deamidated: 9
Accessio Database leq. Cov Modificat Cmpd. 23 184 140 314 169	n: erage [%]: tion(s): 2 2 2 2 2 2 2 2	g N 5 5 5 339.5180 455.7220 517.2580 481.0270 418.8540	il22148864 ICBInr 4.80 % Carbamidor Carbamidor 	0 z z 3 4 2 3 3 3	Oxidation, De [min] 11.2 20.5 18.3 27.0 19.7	amidated <u>48.8</u> 61.0 60.8 50.0 37.3	P 0 1 0 0	Score: MW [kDa]: pl: No. of Pept Range 16-30 38-55 56-65 101-113 114-124	Sequence K.DSHAANADSQTPMQK.L R.AAVAAAAANGAETGKAPHL K.LAGQMSLAAR.S K.KPTEQGTVLLQVK.A K.APTYKPIPESR.F	33.90 6.04 13	Oxidation: 13 Deamidated: 9 Oxidation: 5
Cccessio Database Req. Cov Modificat Cmpd. 23 184 140 314 169 74	n: erage [%]: ion(s): No. of <u>Cmpds.</u> 2 2 2 2 2 2 2 2 1	g N 5 5 5 339.5180 455.7220 517.2580 481.0270 418.8540 507.5510	ij22148864 ICBinr 4.80 % Carbamidon (ppm) -97.29 -54.81 -35.93 155.52 -108.74 -57.56	0 nethyl, 1 z 3 4 2 3 3 3 3	Oxidation, De [min] 11.2 20.5 18.3 27.0 19.7 14.8	amidated Score 48.8 61.0 60.8 50.0 37.3 51.5	P 0 1 0 0 0	Score: MW [kDa]: pl: No. of Pept Range 16-30 36-55 56-65 101-113 114-124 136-148	Sequence K.DSHAANADSQTPMQKL R.AAVAAAANGABETGKAPHL K.LAGQMSLAAR S K.KPTEQGTVLLQVK.A K.APPTKPIPESR.F R.QNIETMKDTPEAK.A	33.90 6.04 13	Oxidation: 13 Deamidated: 9
Ccessio Database Seq. Cov Modificat Cmpd. 23 184 140 314 169 74 371	n: erage [%]: tion(s): No. of <u>Cmpds.</u> 2 2 2 2 2 1 2 2 1 2	g N 5 5 5 5 5 5 5 5 5 5 5 7 2 8 0 4 5 5 7 2 8 9 4 8 1.0270 4 8 1.0270 4 8 1.0270 5 17.2580 5 7 5 18.05 5 5 7 20 5 5 7 20 5 5 7 20 5 5 7 20 5 5 7 20 5 5 7 20 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5	il22148864 ICBInr 4.80 % Carbamidon (ppm) -97.29 -54.81 -35.93 155.52 -108.74 -57.56 -72.21	0 nethyl, 1 z 3 4 2 3 3 3 3 2	Oxidation, De Rt [min] 11.2 20.5 18.3 27.0 19.7 14.8 29.9	amidated Score 48.8 61.0 60.8 50.0 37.3 51.5 52.6	P 0 1 0 0 1 0	Score: MW [kDa]: pl: No. of Pept 16-30 36-55 56-65 101-113 114-124 136-148 193-205	Sequence KDSHAANADSQTPMOKL RAAVAAAANGAETGKAPHL KLAGQMSLAARS KAPPYKPIPESRF R.QNETMKDTPEAKA R.TFAEPEQPIEVKD	33.90 6.04 13	Oxidation: 13 Deamidated: 9 Oxidation: 5
Ccessio Database Seq. Cove Modificat Cmpd. 23 184 140 314 169 74 371 97	n: :: erage [%]: ion(s): No. of <u>Cmpds.</u> 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	g N 5 5 5 5 5 5 5 5 5 5 5 5 7 5 5 8 5 7 2 5 8 0 5 7 2 5 10 5 7 2 5 10 5 10 5 10 5 10 5 10 5 10 5 5 5 5 5	il22148864 (CBInr 4.80 % Carbamidor (ppm) -97.29 -54.81 -35.93 155.52 -108.74 -57.56 -72.21 -81.41	0 nethyl, 1 z 3 4 2 3 3 3 2 3	Rt [min] 20.8 18.3 27.0 19.7 14.8 29.9 16.2	amidated Score 48.8 61.0 60.8 50.0 37.3 51.6 52.6 74.4	P 0 1 0 0 1 0 1 0	Score: MW [kDa]: pl: No. of Pept Range 16-30 36-55 56-65 101-113 114-124 136-148 193-205 222-237	Sequence KDSHAANADSQTPMQKL RAAVAAAANGAETGKAPHL KLAGQMSLAARS KKPTEQGTVLLQVKA KAPYKPIESRF RQNIETMKDTPEAKA R.TFAEPEQPDIEVKD KAAETVAEKEEGSAPKD	33.90 6.04 13	Oxidation: 13 Deamidated: 9 Oxidation: 5
Cccessio Database ieq. Cove Modificat Cmpd. 23 184 140 314 169 74 371 97 26	n: erage [%]: ion(s): No. of <u>Cmpds.</u> 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	9 N 5 5 5 339.5180 485.7220 517.2580 481.0270 418.8540 507.5510 751.8180 548.8960 500.1710	ij22148864 (CBInr 4.80 % Carbamidon <u>A m/z (ppm)</u> -97.29 -54.81 -35.93 155.52 -108.74 -57.56 -72.21 -81.41 -81.41 -102.12	0 nethyl, 1 3 4 2 3 3 3 3 2 3 3 3 3	Oxidation, De Rt [min] 11.2 20.5 18.3 27.0 19.7 14.8 29.9 16.2 11.3	amidated 48.8 61.0 60.8 50.0 37.3 51.5 52.6 74.4 46.6	P 0 1 0 0 1 0 1 0	Score: MW [kDa]: pl: No. of Pept Range 16-30 36-55 566-65 101-113 114-124 136-148 193-205 222-237 238-251	Sequence KOSHAANADSQTPMOKL KLAGOMSLAARS KAPTEQGTVLLQWKA KAPPGGTVLLQWKA KAPPYKPIPESRF R.ONIETINKOTPEAKA R.THAEPEGODIEVK.D KAAETYAENEGEGSARKIN K.NESPESGINGDTAGR.K	33.90 6.04 13	Oxidation: 13 Deamidated: 9 Oxidation: 5
Aodificat Cmpd. 23 184 140 314 169 74 371 97	n: :: erage [%]: ion(s): No. of <u>Cmpds.</u> 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	g N 5 5 5 5 5 5 5 5 5 5 5 7 5 5 8 5 7 2 5 8 0 4 5 7 2 5 1 2 5 0 5 7 2 5 1 8 0 5 7 2 8 0 5 5 7 2 8 0 5 5 7 8 0 7 5 7 8 0 7 5 7 8 9 9 5 7 8 9 5 7 8 9 9 9 7 8 9 9 9 9 7 8 9 9 9 9 9 9 9	il22148864 (CBInr 4.80 % Carbamidor (ppm) -97.29 -54.81 -35.93 155.52 -108.74 -57.56 -72.21 -81.41	0 nethyl, 1 z 3 4 2 3 3 3 2 3	Rt [min] 20.8 18.3 27.0 19.7 14.8 29.9 16.2	amidated Score 48.8 61.0 60.8 50.0 37.3 51.6 52.6 74.4	P 0 1 0 0 1 0 1 0	Score: MW [kDa]: pl: No. of Pept 16-30 38-55 56-65 101-113 114-124 136-148 193-205 222-237 238-251 257-267	Sequence KDSHAANADSQTPMQKL RAAVAAAANGAETGKAPHL KLAGQMSLAARS KKPTEQGTVLLQVKA KAPYKPIESRF RQNIETMKDTPEAKA R.TFAEPEQPDIEVKD KAAETVAEKEEGSAPKD	33.90 6.04 13	Oxidation: 13 Deamidated: 9 Oxidation: 5

284-290K.ELIQEGK.R 300-314K.TIITEAGGFFGTPVA.
 107
 2
 408.6690

 679
 1
 740.8600
 -141.21 2 -37.45 2 16.8 47.3 28.8 0 88.2 0 GPI-anchored gi[237837813 NCBInr 28.30 % Protein 10: Accession: Database: Seq. Coverage [%]: ME49] Score: MW [kDa]: pl: No. of Peptides: 469.89 44.20 7.81 10 Modification(s): Carb Cmp Δ m/z z [ppm] -49.89 2 -54.99 2 -60.95 2 426 407 326 351 403 516 788.3160 787.8200 459.2540 132-145K.GAQNDWLNGEDLSR.G 132-145K.GAQNDWLNGEDLSR.G 146-153R.GITFRVPK.N eamidated: 8 32.6 31.7 67.0 52.7 0 457.7090 458.2230 849.0560 -80.34 2 -32.26 2 -47.93 3 28.8 31.5 37.0 37.3 0 22.9 0 46.1 0 154-161K.NNFPGLPR.I 154-161K.NNFPGLPR.I 207-230R.ITPATNHATIVCGPYGGISPLDY leamidated: 1 arbamidomethyl: 12 556.2110 513.1830 1046.7170 75 113 129 544.24 3 -52.86 3 -50.88 3 14.8 231-244K. 232-244K. 334-367K. N KEFCTGEPHTSCGR.Q EFCTGEPHTSCGR.Q FAPNTNNSGGTPTGGGSDDDTTA 30.4 26.7 57.3 domethyl: 4, 12 domethyl: 3, 11 PGTGSSGTDSR.G 368-384R.GDLGDGRDQDAKGGMSR.G 30 438.4120 -86.17 4 61.6 2 11.6 on: 15 Protein 11: Accession: Database: Seq. Coverage [%]:
 SRS domain containing protein [Toxoplasma gondii ME49]
 g(227841049
 Score;

 NCBinr
 MW [K0a];
 Pi:

 28.80 %
 Pi:
 No. of Peptides:

 Carbanidomethyl
 No. of Peptides:
 No.
 465.15 39.40 4.66 10 Modification(s): Carbamido
 Cmpd.
 No. of Cmpds.
 m/z meas.
 Δ m/z [ppm]
 z

 545
 1
 880.7030
 -33.97
 3
 Rt [min] 38.5 Range Sequence 108-132K.SQNLSPTELDTAFGVDAAGNCDT P 0 arbamidomethyl: 21 71.0 TR.L 133-146R.LVDVSTLIPTAIVR.G 680 748.9320 -32.00 47.8 2 83.9 Bruker Printed: December 15, 2014 31

135	1	406.6160	-159.18	2	18.1	23.8	0	174-179K.ACFVCR.		Carbamidomethyl: 2, 5
77	1	463.2160	-73.04	2	15.0	23.7	0	227-234R.SVVVHCF		Carbamidomethyl: 6
670	1	567.9470	-53.15	3	45.3	60.3	1	235-249K.GLPVLDI		
360	1	604.0260	-76.97	4	29.3	42.2	1	D	GSGSTIKPVNVDSQNR	
342	1	718.3430	-50.97	4	28.4	49.5	2	DVSR.S	GSGSTIKPVNVDSQNR	
350	2	738.6960	-28.26	3	28.8	46.7	0		GSTIKPVNVDSQNR.D	
330	1	668.5770	-29.31	4	27.8	21.2	1	SR.S	GSTIKPVNVDSQNRDV	
354	2	525.2490	-56.86	3	28.9	27.3	0	285-298R.SYLITSTS	SFSKPR.I	
atabase leq. Cove lodificat	erage [%]:	3	VCBInr I2.00 % Carbamidor	nethyl				MW [kDa]: pl: No. of Peptides:	34.90 8.07 8	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [mqq]	z	Rt [min]	Score	Ρ	Range Sequence		Modification
147	3	534,2230	-91.75	2	19.6	59.7	0	53-62 R.VTGNSSV	EFK.C	
70	1	525,7130	-76.98	2	15.3	75.5	0	126-135K.CSSLANT	AARV	Carbamidomethyl: 1
38	1	585,7690	-37.74	2	12.8	50.2	ō	136-147 R.VGAGQP		
40	2	476,5450	-64.38	3	12.9	81.0	1	136-149R.VGAGQP	SOFAFKEK T	
434	2	619,9730	-45.53	3	33.5	24.1	1	150-166K.TC/VQTS	WOPPIKOSKE	Carbamidomethyl: 2
360	2	589,5260	-22 72	4	30.7	54.1	ò		LAEHLSGASLVQHAR.	Carbamidomethyl: 2
	-							т		,
391	2	629.0230	-67.73	4	32.4	52.9	1	т	KPAYTFSVTSLPTEEK	
76	2	401.1420	-132.06	3	14.8	25.1	1	258-266K.TLCYQCT	KK.N	Carbamidomethyl: 3, 6
Protein 13 Accessio Database Seq. Cove	n:	9 N	SRS domair ji 22148780 VCBInr 16.00 %		ning protein, p	outative (T	oxopla	sma gondii GT1] Score: MW [kDa]: pl: No. of Peptides:	372.61 37.20 5.82 6	
Bruker					Printed [.]			December 15. 2014		

Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence	Modification
282	1	586.7680	-74.15	2	26.6	83.2	0	81-92	K.GGISVEVDPATK.K	
631	2	947,9190	-46.10	2	45.9	85.3	0	122-139	R.ANLQGETPLAEFFGEGSK.A	
20	1	708.2780	-46.48	2	11.4	64.3	0	184-197	R.APTGDPSQNSDGNR.G	
540	2	778.7080	-37.73	3	40.1	63.6	0	266-287	K.LADVLPSATFQETSSAHVFSVK.	
197	2	501.5520	-51.91	3	22.2	40.6	1		K.ELPKTEATYCYK.C	Carbamidomethyl: 10
51	2	511.8780	-42.66	3	14.2	35.6	1	300-314	K.CSPPVDSGDTADGKK.N	Carbamidomethyl: 1
odificat	erage [%]: ion(s):		1.20 % Carbamidon	nethyl,	Oxidation, De	amidated		pl: No. of Pept	ides: 5.75	
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence	Modification
414	2	831.8860	-47.71	2	40.2	53.1	0	91-105	K.CAIGTVTLPVDLMEK.Q	Carbamidomethyl: 1; Oxidation 13
109	1	455.7340	-42.28	2	18.9	21.3	0	158-165	K.QNLPPVDK.E	
333	2	720.3300	-48.44	3	33.1	28.7	1	158-176	K.QNLPPVDKEFIVGCTQEGK.G	Carbamidomethyl: 14
215	2	634.2840	-29.95	2	25.2	67.5	0		K.EFIVGCTQEGK.G	Carbamidomethyl: 6
110	2	604.0100	-20.81	4	19.0	33.0	1		R.ASSKDSQTVTCAYGSASNADVHR .V	Carbamidomethyl: 11; Deamidated: 18
120	4	603.7380	-63.88	4	19.5	65.3	1		R.ASSKDSQTVTCAYGSASNADVHR .V	Carbamidomethyl: 11
318	2	560.6040	-46.20	3	32.1	52.5	0	278-292	K.AVLTIPHDNFPEAQK.K	
279	1	452.7110	-81.69	4	29.4	42.0	1	278-293	K.AVLTIPHDNFPEAQKK.V	
rotein 1 ccessio atabase	n:	g	onserved h il22148644 ICBInr 3.80 %		tical protein [T	oxoplasm	a gond	ii GT1] Score: MW [kDa]: pl:	345.80 50.90 4.54	

Critical Critical 16 22 86 23 97 50 50 25 eq. Coverage odification (stress of the stress	No. of m/z meas. mpds. 2 483.8877 2 480.158 2 487.238 1 516.724 2 588.609 1 846.866 1 846.866	-90.26 -34.55 -33.13 -30.19 -39.88 microneme p gij34311324: NCBInr 18.30 % Carbamidon Carbamidon	3	Rt [min] 13.0 20.6 13.1 21.5 17.2 MIC3 [Toxopla Dearnidated Rt [min] 28.2	Score 80.5 40.9 48.3 45.3 52.7 62.6 asma goni Score 94.1	P 2 0 1 1 0 dii]	55-67 97-106 146-157 150-157 438-453 470-485 Score: MW [kDa]: pl: No. of Pept Range	tides: 5.84 Sequence	40 4 Modification
Cr Cr 16 22 86 23 97 50 cotein 16: cccession: cccession: stabase: sq. Coverage codification(s Cmpd. N Crnpd. N 338 52 415 45	mpds. 2 463.8877 2 462.8877 2 467.2804 1 516.724 2 688.609 1 846.8609 1 846.8609	[ppm] -49.27 -90.26 -34.55 -53.13 -30.19 -39.88 microneme p gi]343113243 NCBInr 18.30 % Carbamidon Δ m/z [ppm]	3 3 2 3 2 2 orotein 3 nethyl, 1 z	[min] 11.8 13.0 20.6 13.1 21.5 17.2 MIC3 [Toxopla Deamidated Rt [min]	80.5 40.9 48.3 45.3 52.7 62.6 asma goni	2 0 1 0 1 0 dii]	55-67 97-106 146-157 150-157 438-453 470-485 Score: MW [kDa]: pl: No. of Pept Range	Vonver provides of or constraints of the constraint of the constraint of the constraints	Dxidation: 4 Dxida
22 86 23 97 50 rotein 16: ccession: atabase: eq. Coverage lodification(s Cmpd. N Cr 338 52 45	2 420.158 2 487.238 1 516.724 2 588.609 1 846.866 1 846.866 1 858.009 1 846.866 1	-90.26 -34.55 -33.13 -30.19 -39.88 microneme p gij34311324: NCBInr 18.30 % Carbamidon Carbamidon	3 2 3 2 brotein 1 3 nethyl, 1 z	13.0 20.6 13.1 21.5 17.2 MIC3 [Toxopla Deamidated Rt [min]	40.9 48.3 45.3 52.7 62.6 asma goni	0 1 1 0 dii]	97-106 146-157 150-157 438-453 470-485 Score: MW [kDa]: pl: No. of Pept Range	K OHOMELEAEKA KISAREEIEGATTK REEEEGATTRK K. ATTVEEASKATVIEEASKA K. OTASEVTKPTEEANTS 337 36. 58. tides: 4 Sequence	20 10 4 Modification
86 23 97 50 crotein 16: cccession: atabase: eq. Coverage Nodification(s Cmpd. N 338 52 416 45	2 487.238 1 516.724 2 588.609 1 846.866 1 846.866	-34.56 -53.13 -30.19 -39.88 microneme p gi 343113243 NCBInr 18.30 % Carbamidon Δ m/z [ppm]	3 2 3 2 brotein 3 nethyl, 1 z	20.6 13.1 21.8 17.2 MIC3 [Toxople Deamidated Rt [min]	48.3 45.3 52.7 62.6 asma gon Score	1 0 1 dii]	146-157 150-157 438-453 470-485 Score: MW [kDa]: pl: No. of Pepl Range	KISÄREEREOTRK KISTREEREOTRK KOTVEEASKOTVEEASKO KOTASEVTKPTEEANTS 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,	20 10 4 Modification
23 97 50 brotein 16: uccession: Database: ieq. Coverag: Modification(s Cmpd. N Cr 338 52 415 45	1 516.724 2 588.609 1 846.866 1	-63.13 -30.19 -39.88 microneme p gij34311324: NCBInr 18.30 % Carbamidon Δ m/z [ppm]	2 3 2 protein 3 nethyl, I z	13.1 21.8 17.2 MIC3 [Toxopla Deamidated Rt [min]	45.3 52.7 62.6 asma gon Score	0 1 0 dii]	150-157 438-453 470-485 Score: MW [kDa]: pl: No. of Pept Range	R LEFECATR.K K.GTVECASK.G K.GTASEVTKPTEEANTS 337 36. 34 tides: 4 Sequence	40 4 Modification
97 50 Protein 16: uccession: Database: leq. Coveragy Modification(s Cmpd. N Cri 338 52 415 45	2 588.609 1 846.866 pe [%]: s): No. of m/z meas. m/z.	-30.19 -39.88 microneme p gi[343113243 NCBInr 18.30 % Carbamidon Δ m/z [ppm]	3 2 protein 3 nethyl, 1 z	21.5 17.2 MIC3 [Toxopla Deamidated Rt [min]	52.7 62.6 asma gon Score	dii)	438-453 470-485 Score: MW [kDa]: pl: No. of Pept Range	K OTVEEASKOTVEEASKO K OTASEVTKPTEEANTS. 337 36. 5.84 tides: 4 Sequence	40 4 Modification
50 Protein 16: Accession: Jatabase: Seq. Coverage Modification (s Cmpd. N Cri 338 52 415 45	1 846.866 [e [%]: s): No. of m/z meas. mpds.	-39.88 microneme p gi[34311324 NCBInr 18.30 % Carbamidon Δ m/z (ppm)	2 protein 3 nethyl, I	17.2 MIC3 [Toxopla Deamidated Rt [min]	62.6 asma gon Score	dii] P	470-485 Score: MW [kDa]: pl: No. of Pept Range	C QTASEVTKPTEEANTS. 337 36. 58 tides: 4 Sequence	40 4 Modification
Protein 16: Accession: Jatabase: Seq. Coverage Modification(s Cmpd. N 338 52 415 45	le [%]: s): m/z meas. mpds.	microneme p gi[34311324 NCBInr 18.30 % Carbamidom A m/z (ppm]	nethyl, I	MIC3 [Toxopla Deamidated Rt [min]	asma gon Score	dii] P	Score: MW [kDa]: pl: No. of Pept Range	337 36. 5.84 tides: 4 Sequence	40 4 Modification
Accession: Jatabase: Seq. Coverage Modification(s Cmpd. N Cr 338 52 416 45	e [%]: s): No. of m/z meas. mpds.	gi[34311324 NCBInr 18.30 % Carbamidom <u>A m/z</u> (ppm]	3 nethyl, I z	Deamidated Rt [min]	Score	P	MW [kDa]: pl: No. of Pept	36.4 5.84 tides: 4	40 4 Modification
Accession: Jatabase: Jatabase: Jatabase: Jatabase: Jatabase: And Accession A	e [%]: s): No. of m/z meas. mpds.	gi[34311324 NCBInr 18.30 % Carbamidom <u>A m/z</u> (ppm]	3 nethyl, I z	Deamidated Rt [min]	Score	P	MW [kDa]: pl: No. of Pept	36.4 5.84 tides: 4	40 4 Modification
Database: Seq. Coverage Modification (s Cmpd. N Cr 338 52 415	ne [%]: s): No. of m/z meas. mpds.	NCBInr 18.30 % Carbamidon (ppm)	nethyl, I	Rt [min]			MW [kDa]: pl: No. of Pept Range	36.4 5.84 tides: 4	40 4 Modification
Addification (s Cmpd. N 338 52 415 45	e [%]: s): No. of m/z meas. mpds.	18.30 % Carbamidon (ppm)	z	Rt [min]			pl: No. of Pept Range	tides: 5.84 Sequence	Modification
Cmpd. N 338 Cr 52 415 45 45	s): No. of m/z meas. mpds.	Carbamidon	z	Rt [min]			No. of Pept Range	Sequence	Modification
Cmpd. N C: 338 52 415 45	No. of m/z meas. mpds.	∆ m/z [ppm]	z	Rt [min]			Range	Sequence	
Cmpd. N C: 338 52 415 45	No. of m/z meas. mpds.	∆ m/z [ppm]	z	Rt [min]					
C: 338 52 415 45	mpds.	[ppm]		[min]					
52 415 45	6 603.5610	-87.67	3	28.2	04.4				
415 45		1 1		20.2		U		R.QLHTDNGYFIGASCPK.S	Carbamidomethyl: 14; Deamidated: 6
45	2 550.2110		3	14.1	22.5	1		R.TGCHAFRENCSPGR.C	Carbamidomethyl: 3, 10
	2 765.3570		3	32.1	47.8	1		R.EVTSKAEESCVEGVEVTLAEK.C	Carbamidomethyl: 10
rotein 17:	4 583.7460	-27.78	2	13.0	82.5	0	312-323	K.GESGSEGSLSEK.M	
		SRS domain		ning protein [1	Toyonlasm	12 000	Hii ME401		
Accession:		ail23783781		ing protein [1	oxopiusii	iu goin	Score:	303	54
Database:		NCBInr					MW [kDa]:		
Seg. Coverage		11.80 %					pl:	7.76	
	- 1.1.						No. of Pept		-
Aodification(s):	Carbamidom	nethyl,	Oxidation, Dea	amidated				
Cmpd. N	No. of m/z meas.	Δm/z	z	Rt	Score	Р	Range	Sequence	Modification
	mpds.	[ppm]	-	[min]					
Bruker									

551										
	4	702.8400	-45.67	2	38.9	72.0	0		K.EWVTGDSVLTGLK.I	
204	5	702.3290	-46.84	2	24.7	66.3	0		K.ISVPESQYPANAK.S	
279	2	702.8110	-61.05	2	25.3	41.0	0		K.ISVPESQYPANAK.S	Deamidated: 11
279	1	702.8110	-61.05	2	25.3	22.9	0		K.ISVPESQYPANAK.S	Deamidated: 7
190	2	650.2570	-62.91	2	20.8	58.9	0		R.CSYTENSTLPK.I	Carbamidomethyl: 1
491	2	448.6870	-70.64	2	35.8	26.2	0	259-265	K.WFFGDPK.S	
Protein 1	8:	c	onserved h	voothet	ical protein IT	oxoolasma	a cond	i GT11		
Accessio	n:	a	il22148182	6				Score:	301.85	
atabase	e:	Ň	CBInr					MW [kDa]:	45.10	
en Cov	erage [%]:	1	7 80 %					pl:	7 74	
								No. of Pep	ides: 5	
Nodifica	tion(s):	c	Dxidation							
Cmpd.	No. of	m/z meas.	Δm/z	z	Rt	Score	Р	Range	Sequence	Modification
	Cmpds.		[ppm]		[min]					
685	1	780.3860	-22.08	2	49.1	74.2	0	58-70	R.FLDPIDELPEPFK.A	
421	2	440.5540	-82.83	3	32.4	69.4	1		K.LGIEGDKTVFLK.S	
419	2	547.2560	-55.06	3	32.3	33.0	0	101-115	K.SPISPDVAVYVHAER.L	
447	2	610.3190	-28.67	3	33.7	77.0	0		K.SVELTRPQAVLGAVGMGK.K	Oxidation: 16
414	2	484.9090	-49.56	3	32.0	48.2	1	269-281	R.ALQFGKDFQVTAK.K	
Protein 1	q.	d	lonso aranu	ilo antic	en GRA6 (To:	ronlasma	aondii			
Accessio			il89572499			-opiusiinu	gonun	Score:	299.63	
Database			ICBInr					MW [kDa]:	239.03	
	erage [%]:		3.90 %					pl:	5.66	
Seq. Cov	erage [%]:	2	3.90 %					No. of Pep		
	tion(c):		Deamidated					NO. OT PEP	ides: /	
Modificat			Journautoa							
Modifica										
Modifica Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence	Modification
		m/z meas. 410.8420		z 3		Score 29.4	P 1	-	Sequence K.SEARGPSLEER.I	Modification
Cmpd.	Cmpds.		[ppm]		[min]		÷	112-122		Modification
Cmpd. 59	Cmpds. 1	410.8420	[ppm] -77.77	3	[min] 16.2	29.4	1	112-122	K.SEARGPSLEER.I	Modification

34	1	848.3060	-52.62	3	13.4	31.4	1	177,203	R.RSPQEPSGDGGGNDAGNNAGNGG	Deamidated: 13, 21
				-					NEGR.G	
48	2	795.9480	-51.42	3	13.8	49.5	0		R.SPQEPSGDGGGNDAGNNAGNGGN FGR G	Deamidated: 23
36	2	795.9450	-55.19	3	13.8	61.1	0	178-203	R.SPQEPSGDGGGNDAGNNAGNGGN EGR.G	Deamidated: 20
Protein 2					surface protei			-	ME403	
ccessio			il23784117		surface protei	n, putative	[10x0]	Score:	284.1	
Database			CBInr	<i>'</i>				MW [kDa]:	41.50	
	erage [%]:		6 80 %					pl:	6.23	
	erage [/ø].		0.00 /0					No. of Pept		
Modificat	tion(s):	c	Carbamidon	nethyl				110.011.001		
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence	Modification
251	1	626.2610	-87.98	2	27.7	72.5	0	93-104	K.GSLTATLECTAK.D	Carbamidomethyl: 9
196	1	401.5130	-136.74	3	24.2	37.0	1	169-178	K.AIQSQKWTLK.L	
227	1	725.8050	-33.86	2	26.2	62.0	0	190-202	K.TFDVGCTYTTTGK.A	Carbamidomethyl: 6
297	3	778.3850	-40.70	2	30.5	73.2	0		K.AAANPAVCQLTVNVK.A	Carbamidomethyl: 8
100	3	624.9410	-41.82	3	18.2	39.4	1	326-342	R.LGCVPNKAPQSDSQDTR.V	Carbamidomethyl: 3
Protein 2		п	nyosin D, pı	tative	Toxoplasma	gondii ME4	9]	-		
Accessio			i 23783224	1				Score:	239.1	5
Database			ICBInr					MW [kDa]:	91.00	
	erage [%]:	7	.90 %					pl:	9.39	
5eq. Cov								No. of Pept	ides: 6	
	tion(s):	C	Carbamidon	nethyl						
	tion(s): No. of Cmpds.	m/z meas.	Carbamidon Δm/z [ppm]	z z	Rt [min]	Score	Р	Range	Sequence	Modification
Modificat	No. of		Δ m/z			Score 41.5	P 0	66-83	K.LQQVEPTADSQELTVQAK.E	Modification
Modificat Cmpd.	No. of Cmpds.	m/z meas.	Δm/z [ppm]	z	[min]			66-83 143-153	K.LQQVEPTADSQELTVQAK.E K.NAGPDTIALYR.D	Modification
Modificat Cmpd. 171	No. of Cmpds. 2	m/z meas. 662.3210	Δ m/z [ppm] -35.29	z 3	[min] 28.1	41.5	0	66-83 143-153	K.LQQVEPTADSQELTVQAK.E	Modification
Modificat Cmpd. 171 184	No. of Cmpds. 2 1	m/z meas. 662.3210 595.7550	∆ m/z [ppm] -35.29 -95.41	z 3 2	[min] 28.1 29.3	41.5	0	66-83 143-153 409-420	K.LQQVEPTADSQELTVQAK.E K.NAGPDTIALYR.D	Modification
Modificat Cmpd. 171 184 35	No. of Cmpds. 2 1 2	m/z meas. 662.3210 595.7550 442.8700	Δ m/z [ppm] -35.29 -95.41 -52.21	z 3 2 3	[min] 28.1 29.3 15.1	41.5 24.7 38.2	0 0 1	66-83 143-153 409-420 526-533	K.LQQVEPTADSQELTVQAK.E K.NAGPDTIALYR.D K.TTYAGSNKIESR.W	Modification
Modificat Cmpd. 171 184 35 214	No. of Cmpds. 2 1 2 1	m/z meas. 662.3210 595.7550 442.8700 443.7500	Δ m/z [ppm] -35.29 -95.41 -52.21 -76.69	z 3 2 3 2	[min] 28.1 29.3 15.1 33.2	41.5 24.7 38.2 25.5	0 0 1 0	66-83 143-153 409-420 526-533	K.LQQVEPTADSQELTVQAK.E K.NAGPDTIALYR.D K.TTYAGSNKIESR.W K.LIETLLGK.G	Modification
Modificat Cmpd. 171 184 35 214	No. of Cmpds. 2 1 2 1	m/z meas. 662.3210 595.7550 442.8700 443.7500	Δ m/z [ppm] -35.29 -95.41 -52.21 -76.69	z 3 2 3 2	[min] 28.1 29.3 15.1 33.2	41.5 24.7 38.2 25.5	0 0 1 0 0	66-83 143-153 409-420 526-533	KLQQVEPTADSQELTVQAK.E KNAGPDTALTVR.D K.TTYAGSNKIESR.W K.ITYLAGSNKIESR.W KFVSSLASK.L	Modification

	2	431.1890	-83.19	2	13.5	49.1	0	614-621	R.ASTNDVVR.G	
Protein 22 Accession Database Sen, Cove	n:	9 N	hosphogluo i 15419635 ICBInr '80 %		se/parafusin n	elated prot	ein 1 (Toxoplasma g Score: MW [kDa]: pl:	ondii] 236 70.: 5.5	50
								No. of Pept	ides: 5	
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence	Modification
123	2	516.2540	-45.78	2	23.3	40.4	0	80-90	K.GGTLLVSGDGR.F	
43	1	445.1940	-91.88	2	15.9	51.1	0		K.SSPAEITGK.V	
47	1	419.1510	-124.23	2	16.4	25.1	0	551-557	K.YTDPVDK.Q	
59	2	560.7710	-54.35	2	18.0	71.5	0	579-590	R.LSGTGSTGATIR.V	
203	1	597.7710	-75.71	2	32.6	22.9	0	627-637	K.YIGTETPTVIT	
			5 00 %					nl:	56	9
	erage [%]:	3	5.00 %					pl: No. of Pept		9
	oruge [76].	3	5.00 %							9
Cmpd.	No. of Cmpds.	m/z meas.	Δm/z [ppm]	z	Rt [min]	Score	P	No. of Pept	ides: 4	9 Modification
Cmpd.	No. of Cmpds. 2	m/z meas. 502.9610	Δ m/z [ppm] -47.61	4	[min] 11.2	54.9	1	No. of Pept Range 43-58	ides: 4 Sequence R.GREQQQVQHEQNEDR.S	-
Cmpd. 20 14	No. of Cmpds. 2 2	m/z meas. 502.9610 599.2330	Δ m/z [ppm] -47.61 -61.71	4 3	[min] 11.2 10.9	54.9 47.8	1	No. of Pept Range 43-58 45-58	ides: 4 Sequence R.GREQQQVQQHEQNEDR.S R.EQQQVQQHEQNEDR.S	-
Cmpd. 20 14 204	No. of Cmpds. 2 2	m/z meas. 502.9610 599.2330 607.7590	Δ m/z [ppm] -47.61 -61.71 -45.01	4 3 4	[min] 11.2 10.9 21.7	54.9 47.8 47.8	1 0 1	No. of Pept Range 43-58 45-58 45-63	ides: 4 Sequence R.GREQQQVQQHEQNEDR.S R.EQQQVQQHEQNEDR.S R.EQQQVQQHEQNEDR.SIFER.G	-
Cmpd. 20 14	No. of Cmpds. 2 2	m/z meas. 502.9610 599.2330	Δ m/z [ppm] -47.61 -61.71	4 3	[min] 11.2 10.9	54.9 47.8	1	No. of Pept Range 43-58 45-58 45-63	ides: 4 Sequence R.GREQQQVQQHEQNEDR.S R.EQQQVQQHEQNEDR.S	-
Cmpd. 20 14 204 270	No. of Cmpds. 2 2 1 1	m/z meas. 502.9610 599.2330 607.7590 779.6260	Δ m/z [ppm] -47.61 -61.71 -45.01 -62.65	4 3 4 3	[min] 11.2 10.9 21.7 25.2	54.9 47.8 47.8 71.3	1 0 1 1	No. of Pept Range 43-58 45-58 45-63	ides: 4 Sequence R.GREQQQVQAHEQNEDR.S REQQQVQAHEQNEDR.S REQQQVQQHEQNEDRS.FER.G R.AIQEESKESATAEEEEVAEEE.	-
Cmpd. 20 14 204 270 Protein 24 Accession	No. of Cmpds. 2 2 1 1 4: n:	m/z meas. 502.9610 599.2330 607.7590 779.6260 kg	Δ m/z [ppm] -47.61 -61.71 -62.65 ong-chain fa ii[23783516	4 3 4 3 atty acid	[min] 11.2 10.9 21.7 25.2	54.9 47.8 47.8 71.3	1 0 1 1	No. of Pept Range 43-58 45-58 100-120 asma gondii M Score:	ides: 4 Sequence R.GREQQQVQOHEQNEDR.S R.EGQQVQOHEQNEDR.S R.EGQQVQOHEGNEDR.S R.EQQQVQOHEGNEDRS.FR.G R.JAGEESKESATAEEEEVAEEE. E49] 200	Modification
Cmpd. 20 14 204 270 Protein 24 Accession	No. of Cmpds. 2 2 1 1 4: n:	m/z meas. 502.9610 599.2330 607.7590 779.6260 k g N	Δ m/z [ppm] -47.61 -61.71 -45.01 -62.65 ong-chain fa ii[23783516 iCBInr	4 3 4 3 atty acid	[min] 11.2 10.9 21.7 25.2	54.9 47.8 47.8 71.3	1 0 1 1	No. of Pept Range 43-58 45-58 45-63 100-120 asma gondii M	Ides: 4 Sequence R GRECOQVQCHEQNEDR.S RECOQVQCHEQNEDR.S RECOQVQCHEQNEDRS.FER.G RAQCESKESATAEEEEVAEEE E49] 200 82.2	Modification
Cmpd. 20 14 204 270 Protein 24 Accession Database	No. of Cmpds. 2 2 1 1 4: n:	m/z meas. 502.9610 599.2330 607.7590 779.6260 k g N	Δ m/z [ppm] -47.61 -61.71 -62.65 ong-chain fa ii[23783516	4 3 4 3 atty acid	[min] 11.2 10.9 21.7 25.2	54.9 47.8 47.8 71.3	1 0 1 1	No. of Pept Range 43-58 45-58 100-120 asma gondii M Score:	ides: 4 Sequence R.GREQQQVQOHEQNEDR.S R.EGQQVQOHEQNEDR.S R.EGQQVQOHEGNEDR.S R.EQQQVQOHEGNEDRS.FR.G R.JAGEESKESATAEEEEVAEEE. E49] 200	Modification
Cmpd. 20 14 270 Protein 24 Accession Database:	No. of Cmpds. 2 1 1 4: n:	m/z meas. 502.9610 599.2330 607.7590 779.6260 k g N	Δ m/z [ppm] -47.61 -61.71 -45.01 -62.65 ong-chain fa ii[23783516 iCBInr	4 3 4 3 atty acid	[min] 11.2 10.9 21.7 25.2	54.9 47.8 47.8 71.3	1 0 1 1 0 0 0	No. of Pept Range 43-58 45-58 45-58 45-53 100-120 ssma gondii M Score: MW [kDa]:	ides: 4 Sequence 6 REGOQOVQCHEQNEDR.S REGOQVQCHEVERS.FER.G REGOQVQCHEVERS.FER.G RADEESKESATAEEEVAEEE. E49] 200 62 5.2	Modification

5 6 Modification 6 September 2 Settember 2
ECCAR.R.C.arbanidomethyl: 8 EAAK.S.C.BEREAVNASR.V EXAGESK.A.D.Dutation: 6 MAAVAK.E.Dutation: 6 187.99 41.70 5.83
EAAKS EXPERIMANSR V LKAGESK A Datation: 6 MAAVAK E Datation: 6 187.99 41.70 5.83
26PEEAWASE V LKAGESKA D SMAAVAK E Dxidation: 6 187.99 41.70 5.83
LKAGESK.A Dxidstion: 6 187.99 41.70 5.83
SMAAVAK.E Dxidation: 6 187.99 41.70 5.83
187.99 41.70 5.83
41.70 5.83
ce Modification
SIVGRPR.H
PDGQVITIGNER.F
184.05 144.50 5.80 5
ce Modification
PVAAGAEEK.V
PVAAGAEEK.V
SIVGRPR.

204	1	633.2750	-50.95	3	22.3	20.7	0	918-936	R.QGHTVAMTGDGVNDAPAL	K.A	Oxidation: 7
rotein 2		g	lyceraldehy	de 3-p	hosphate deh	ydrogenas	e, rela		a caninum Liverpool]		
ccessio			i 32511556	4				Score:		179.64	
Database			ICBInr					MW [kDa]:		36.50	
Seq. Cov	erage [%]:	1	7.40 %					pl:		6.83	
								No. of Pept	ides:	4	
Modificat	ion(s):	(Carbamidor	netnyi,	Oxidation						
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Ρ	-	Sequence		Modification
345	1	736.6810	-15.86	3	34.2	58.4	0		K.SSDVIVSNASCTTNCLAPL	AK.I	Carbamidomethyl: 11, 15
264	2	678.8600	-26.10	2	28.4	51.1	0		R.SAGVNIIPASTGAAK.A		
260	1	504.2410	-65.50	2	28.2	30.8	0		K.YEDIVAAVK.E		
285	2	774.8220	-64.23	2	29.6	21.9	0	327-340	R.LVELAHYMSVQDGA		Oxidation: 8
Modificat	erage [%]: tion(s):	-	i.90 % Carbamidor	nethyl,	Oxidation			pl: No. of Pept	ides:	9.15 5	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence		Modification
168	2	848.8550	-37.30	2	27.8	30.1	0		R.LNESFDDQTEETLR.V		
193	1	648.2630	-46.00	2	23.9	27.3	0		R.MDVEVSDIDTR.L		Oxidation: 1
267	1	439.2030	-102.79	2	28.6	32.4	0		K.LFGGLGSAR.A		
158	2	526.2630	-23.26	3	19.2	64.3	1		R.APTCGATITSSGVAKR.F		Carbamidomethyl: 4
62	1	448.7170	-63.38	2	18.2	23.6	0	808-815	K.YTTTAIAR.V		
Protein 2 Accessio Database Seq. Cov	n:	9 M	4-3-3 prote i 3123732 ICBInr 5.00 %	in hom	ologue (Toxop	lasma gor	ndii)	Score: MW [kDa]: pl: No. of Pept	ides:	177.67 30.70 4.55 3	

164 46 251	Cmpds.		[mag]	z	Rt [min]	Score	Р	Range	Sequence	Modification
	2	458.5270	-66.80	3	20.4	70.3	1	143-154	R.YISEFSGEEGKK.Q	
254	2	683.7920	-34.09	2	13.3	57.7	0	155-166	K.QAADQAQESYQK.A	
	2	574.9240	-62.76	3	25.0	49.7	0	167-182	K.ATETAEAELPSTHPIR.L	
	-									
Protein 3					TGME49_093	3430 [1 ox	oplasn	a gondii ME4 Score:	9] 159	
Accessio			ii 23784169 ICBInr	5				Score: MW [kDa]:	159	
			3.40 %					pl:	44.6	
seq. Cov	erage [%]:	1	3.40 %					No. of Pept		D
Modificat								NO. OT PEPT	ides: 4	
viodificat	tion(s):		Carbamidor	netnyi						
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence	Modification
151	2	750.8300	-50.71	2	18.8	44.2	0	70-82	R.QQPVEANETTVER.G	
94	2	437.1790	-104.92	2	15.9	64.8	0	185-193	R.AAADIAADR.A	
523	2	708.3640	-1.26	3	38.6	20.3	1	226-244	R.QGGLLPDVPLDETVEPCRK.G	Carbamidomethyl: 17
340	2	688.8190	-36.11	2	28.3	30.1	0	398-411	R.HTPPGADQIELAGA	
Protein 3 Accessio Database Seq. Cov	in:	g N	SRS domain ji 23784468 VCBInr I0.20 %		ning protein (1	oxoplasm	na gono	iii ME49] Score: MW [kDa]: pl: No. of Pept	154 40.9 6.11 ides: 4	90
Modificat	tion(s):	(Carbamidor	nethyl						
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence	Modification
184	2	401.6990	-140.08	2	23.4	36.0	0		K.ATALVLSK.Q	
81	1	644.2840	-39.02	2	16.8	51.8	0		K.LVCSGDGNAAAPR.N	Carbamidomethyl: 3
141	1	479.7060	-110.23	2	20.8	34.5	0		R.VNNAVQWK.K	
206	1	615.3040	-38.77	2	24.8	31.8	0	240-250	K.AVQVELTADQR.S	
Bruker	· ·	010.0040	-50.11	-	Printed:	01.0	-	December 15		

Protein 32 Accession Database Seq. Cove	n:	9	RS domair i 22148416 ICBInr 3.20 %		ning protein, p	outative (T	oxopla	sma gondii G Score: MW [kDa]: pl: No. of Pep		154.10 35.80 5.20 3	
Modificati	on(s):	0	Carbamidor	nethyl				110. 01 1 Cp.		0	
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
280	1	507.7170	-97.24	2	25.3	37.7	0	108-116	K.WTVAPPESK.T		
406	2	494.9020	-52.87	3	31.6	58.6	0		K.THSLTLPAENFPR.V		
667	1	800.0660	-25.02	3	45.0	21.6	0	255-276	K.LVIPEGGFPAQEETIVLGC S	NVR.	Carbamidomethyl: 19
Modificati	erage [%]: ion(s):	N 1 (il/22148552 ICBInr .20 % Dxidation		-		-	MW [kDa]: pl: No. of Pept		226.10 5.11 3	- he - ee - e
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
43	1	519.2140	-77.35	2	16.1	37.5	0		R.YQAGSGGELR.R		
49	1	455.1840	1000.74	2	15.3	52.5	0		R.VGSLMETR.V		Oxidation: 5
126	1	426.1770	-135.40	2	22.2	26.3	0	1545-1551	R.LYASELR.G		
Protein 34 Accession Database Seq. Cove	n:	9 M	ypothetical i 23782983 ICBInr 1.90 %		TGME49_10	9600 (Tox	oplasn	na gondii ME4 Score: MW [kDa]: pl: No. of Pept		141.54 106.50 10.23 3	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
Bruker					Printed:			December 15	, 2014		

73	2	480.2150	-96.73	2	19.4	43.2	0	338-346	K.SQQLGGLEK.A		
61	3	509.7260	-70.27	2	18.3	69.8	0	551-560	K.TASVDEVAAR.L		
106	1	492.7410	-36.69	2	21.9	28.5	Ö	567-575	R.AAEPNVDIR.A		
Protein 3 Accessio Database	n:	g	ıbiquitin, pu ji 23783579 VCBInr		Foxoplasma g	ondii ME4	9]	Score: MW [kDa]:		26.22	
Seq. Cove	erage [%]:	1	2.00 %					pl: No. of Pep		5.02 8	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
40	1	434.2020	-69.47	2	14.7	24.9	0		K.QLTTYNK.S		
84	1	658.2700	-63.40	3	18.7	32.0	1		K.KNAAVSSTPVNQDEAAQEN		
104	1	922.8640	-56.87	2	20.5	69.3	0	199-216	K.NAAVSSTPVNQDEAAQEN		
Database Seq. Cove	erage [%]:	Ň	ii 23783441 \CBInr).70 %					MW [kDa]: pl: No. of Pep	t i i i i i i i i i i i i i i i i i i i	87.00 5.43	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
157	1	534.7590	-19.91	2	25.0	43.3	0		K.DPVDDAAIPR.V		
92	2	438.6990	-58.59	2	19.6	50.7	0		K.STALDDVR.A		
113	1	859.8500	-45.82	2	21.3	25.8	1	334-349	R.NAAVKDEESVEQAEEA		
Protein 3 Accessio Database Seq. Cove	n:	9	onserved h ii 22150532 VCBInr 1.40 %	iypothe 21	tical protein [T	oxoplasm	a gon	dii VEG] Score: MW [kDa]: pl: No. of Pep	6	19.63 31.90 4.79	
Bruker					Printed:			December 15	, 2014		

Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
136	1	537.2760	-12.88	2	24.4	42.3	0	60-69	R.LQALDSVDGR.S		
55	2	583.2530	-42.58	2	17.6	59.2	0	347-356	R.VTFAENDNQK.V		
Protein 3					NCLIV_0218	00 [Neosp	oora ca	aninum Liverp	ool]		
Accessio			i 32511683	38				Score:		115.85	
Database			ICBInr					MW [kDa]:		522.10	
Seq. Cov	erage [%]:	(.20 %					pl:		5.40	
Modificat	tion(s):	I	Deamidated	ł				No. of Pept	ildes:	3	
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Ρ		Sequence		Modification
300	5	487.2190	-129.00		26.7	44.8	0		K.IQLSQLAAK.W		Deamidated: 2, 5
155	3	487.2080	859.00	2	26.8	26.5	0		K.IQLSQLAAK.W		Deamidated: 5
300	2	487.2190	881.59	2	26.7	53.8	0	1088-1096	K.IQLSQLAAK.W		Deamidated: 2
	erage [%]:	9 1	il23783851 ICBInr 0.30 %	13	aining protein	(Toxoplas	ma go	ndii ME49] Score: MW [kDa]: pl: No. of Pept	ides:	111.65 49.20 5.15 3	
Modificat	ion(s):	1	Deamidated	ł							
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	-	Sequence		Modification
48	2	510.2490	-32.79	3	16.5	30.6	1		R.SANAAPARTDTNAIR.Q		
28	2	745.8350	-37.98	2	12.8	58.0	0		R.QTASTAGSAQPATGSR.A		
91	1	789.3610	-23.23	2	20.9	23.0	0	424-440	R.ASLNGAQLSSQGSGSGR.T		Deamidated: 7
Protein 4 Accessio Database	n:	ç	onserved h il 22148477 ICBInr		ical protein [1	oxoplasm	a gono	dii GT1] Score: MW [kDa]:		107.24 20.80	
Bruker					Printed:			December 15	. 2014		

	erage [%]:		1.50 %					pl: No. of Pep	tides:	5.68 2	
odificat	ion(s):	(Carbamidor	nethyl							
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence		Modification
398	2	898.4190	-42.24	3	31.6	50.3	0		R.ILVHSGDSVTIQCPGAL VSK.Y		Carbamidomethyl: 13
164	1	870.8150	-56.06	2	19.7	56.9	0	70-84	K.YVCPGEEPNCTDATK.	4	Carbamidomethyl: 3, 10
Protein 4 Accessio Database	n:	g	onserved h i 22150443 ICBInr		ical protein [T	oxoplasm	a gono	lii VEG] Score: MW [kDa]:		103.36 46.90	
	erage [%]:	7	.00 %					pl: No. of Pep		10.17	
Modificat	ion(s):	[Deamidated								
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Ρ	-	Sequence		Modification
67	2	502.1910	-141.34	2	14.4	60.7	0		R.VATVNAGTNR.L		Deamidated: 5
448	1	762.3590	-48.41	3	33.7	42.6	1	231-250	R.NRIPLTATQLSAESQEI	QER.L	Deamidated: 9
Protein 4 Accessio Database Seq. Cov	n:	9 N	ypothetical i 23784169 ICBInr I.20 %		TGME49_09	3440 [Tox	oplasr	na gondii ME4 Score: MW [kDa]: pl: No. of Pep	-	102.72 58.70 5.00 2	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence		Modification
183	1	596.2670	-49.01	2	20.2	30.1	0		K.SEENSGSLIGAK.S		
486	2	618.6410	-36.18	3	36.3	57.1	0	434-449	K.LKPSDPADVQVITEWR	.Q	
Protein 4 Accessio			ypothetical i 14549871		[Paramecium	ı tetraureli	a strai	n d4-2] Score:		100.68	
Bruker					Printed:			December 15	5. 2014		

Database Seq. Cove	: erage [%]:		ICBInr .30 %					MW [kDa]: pl: No. of Pep	tides.	52.30 8.76 2	
lodificat	ion(s):	0	Deamidated					110. 011 00		-	
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence		Modification
324	8	595.7870	-93.34	2	32.3	51.4	0		K.INTNNIFIIK.S		Deamidated: 5
200	4	595.7930	743.08	2	32.3	49.3	0	129-138	K.INTNNIFIIK.S		
Protein 4 Accessio Database Seq. Cove	n:	g	0S riboson i 23783198 ICBInr .40 %		in L7a, putati	ve (Toxop	lasma	gondii ME49] Score: MW [kDa]: pl: No. of Pep		95.74 31.00 10.46 2	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence		Modification
44	3	420.6730	-154.37	2	15.0	59.7	0	49-56	R.VGGNIQPR.R		
64	1	429.7050	-75.90	2	16.9	36.1	0	122-128	R.LLQEAER.Q		
Protein 4 Accessio Database Seq. Cove	n:	9	acilitative g i 23784293 ICBInr .20 %		ransporter, pu	ıtative (To	xoplas	ma gondii ME Score: MW [kDa]: pl: No. of Pep		94.70 61.60 6.67 2	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
470	1	635.3130	-13.71	2	34.8	51.0	0	495-505	K.GLSIEESPYFK.G		
372	2	660.2830	-83.43	2	29.9	43.7	1	556-568	R.GVSDDLTKGTEVV		
Protein 4 Accessio			1yosin light i 12128179		[Toxoplasma	gondii]		Score:		89.49	
Bruker					Printed:			December 15	i, 2014		

Database			ICBInr					MW [kDa]:		40.50		
	erage [%]:		30 %					pl:		5 29		
004.001	erage [70].							No. of Pep	tides:	2		
Modificat	tion(s):	(Oxidation					110.011.00		-		
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification	
101	2	734 7740	-48.59	2	16.4	62.8	0	249-26	K.GGSMPQQDAGDYAR.S		Oxidation: 4	
237	1	460.6940	-111.65	2	23.2	26.7	0	263-27	R.SLGFAPSNK.E			
Protein 4 Accessio Database Seq. Cov	n:	9 N	RS domair i 23783325 ICBInr .80 %		ning protein [1	Toxoplasn	na gono	iii ME49] Score: MW [kDa]: pl: No. of Pep		87.85 40.00 5.60 2		
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification	
173	2	429.2120	-120.68	2	22.5	54.6	0	199-20	K.VAVTLQAR.A			
37	1	566.2210	-91.98	2	12.2	33.3	0	321-33	K.ISDPNNQTSR.S			
	n: :: erage [%]:	9 N 4	i 25989716 ICBInr .70 %		sphate aldola:	se (Toxop	lasma (ondii] Score: MW [kDa]: pl: No. of Pep		76.31 39.10 8.67 2		
Modificat	ion(s):	(Carbamidor	nethyl,	Oxidation							
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification	
119	1	533.7150	-81.61	2	17.3	47.8	0		R.YAAICQANR.L		Carbamidomethyl: 5	
104	1	495.7200	-71.58	2	16.6	28.5	0	324-33	K.AQQVLMER.A		Oxidation: 6	
Protein 4 Accessio			ypothetical i 11835449		TTHERM_00)357130 ["	Fetrahy	mena thermo Score:	ophila]	75.95		
Bruker					Printed:			December 15	5, 2014			46

Database	e.	N	ICBInr					MW [kDa]:		187.80	
Seq. Cov	erage [%]:	0	.60 %					pl:		9.51	
								No. of Pep	tides:	2	
Modificat	tion(s):		Deamidated								
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
291	4	592.7730	-126.33	2	26.6	50.1	0	1240-124	K.NVQINLLLQK.G		Deamidated: 3, 5
291	1	592.7730	704.16	2	26.6	25.8	0	1240-124	K.NVQINLLLQK.G		Deamidated: 3
Protein 5 Accessio Database Seq. Cov Modificat	erage [%]:	9 N 1	ypothetical i 14554119 ICBInr .80 % Deamidated	17	I [Parameciun	1 tetraureli	ia strai	n d4-2] Score: MW [kDa]: pl: No. of Pep		70.26 45.30 9.44 1	
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
327	1	430.7170	-10.76	2	29.0	50.4	0	97-10	K.QDLLDEK.C		
Protein 5 Accessio Database Seq. Cov	n:	9	ypothetical i 23784398 ICBInr .20 %	protein 1	1 TGME49_01	1630 [Tox	oplasr	na gondii ME- Score: MW [kDa]: pl: No. of Pep		67.48 23.60 9.06 1	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
90	2	486.2410	-79.48	2	19.4	67.5	0	193-20	R.AAQEALIQK.N		
Protein 5 Accessio Database Seq. Cov	n:	9	bosomal pl i 14579678 ICBInr .80 %		protein P0 (To	xoplasma	gondi	i] Score: MW [kDa]: pl:		54.71 34.10 5.34	
Bruker					Printed:			December 15	5, 2014		

	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence		Modification
148	2	422.1760	-176.63	3	19.6	54.7	1	102-113	R.IVAENKVPAPAR.Q		
	Type Result Location	A	mazon_	Bops_I	IS - Protein NCBI_2014 1_GA2_01_	-08-20 1		38			
Protein 1 Accessic Database Seq. Cov Modifica	on: e: erage [%]:	9 N 6	i 22148756 ICBInr .10 %	2	ical protein [T Oxidation, De		a gond	ii GT1] Score: MW [kDa]: pl: No. of Pep	tides:	801.71 293.50 4.78 16	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence		Modification
133	1	482.7160	-91.63	2	17.0	28.1	0		K.IASMISGAAK.M		Oxidation: 4
166	1	501.7250	-78.45	2	19.2	67.0	0		R.ITGAENLER.C		
184	1	411.1980	-68.61	3	20.3	31.7	1		K.IDSNVGETLRK.C		
253	2	461.7000	-75.96	2	25.3	41.2	0		R.SAELAFER.N		
294	2	417.7130	-63.74	2	28.2	38.2	0		R.LGGELFAK.M		
267	1	565.7740	-51.19	2	26.3	40.3	0		R.LEGNVALVCR.R		Carbamidomethyl: 9
118	1	743.7520	-62.49	2	15.7	46.6	0	1519-1532	R.DCDALMGSNSSSAR.Q		Carbamidomethyl: 2; Oxidation
	2	738.8550	-45.04	2	30.8	77.8	0	1548-1560	K.AYNDALIQEQALK.K		ľ
330	1	537.2260	-64.40	3	25.8	31.3	0	1630-1644	R.ALQGLSMADVNMTAR.T		Oxidation: 7, 12
330 262	1	525.2660	-36.04	2	25.4	41.9	0		K.LLQANEFSK.M		
262 255		701 8220	-86.15	2	37.5	57.1	0		K.GQADPEIVLYAVK.A		
262	1	413 6940	-78.61	2	28.4	30.7			R.YFLVER.T		

188	2	419.6900	-68.84	2	20.6	31.1	0		K.NTEIFSK.L	
247	2	434.7250	-94.71	2	24.6	66.6	0	2039-2047	K.LGGPALNVK.V	
357	2	613.3210	-65.49	2	32.7	65.4	0		K.LLGTNGAPAALVK.G Deamidated: 5	
135	1	599.7110	-89.63	2	17.0	71.0	0	2092-2102	K.GLSNYDGSEEK.T	
Search Search Search		A	mazon_l	Bops_	IS - Protein NCBI_2014 2_GA3_01_	-08-20 1	5:22:3	88		
rotein 1: accessio latabase leq. Covi lodificat	n: : erage [%]:	9 N 5	P-type Ca(2 i 23784254 ICBInr i.60 % Dxidation		ase, putative	[Toxoplas	ma gon	dii ME49] Score: MW [kDa]: pl: No. of Pept	184.05 144.60 5.77 ides: 5	
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence Modification	
103	1	621.7870	-52.86	2	16.2	22.1	0	46-58	K.VGSQPVAAGAEEK.V	
77	1	501.2250	-42.35	3	14.5	33.8	0	82-97	R.ESTVGGSGTGHSQLGK.S	
316	1	803.8410	-65.88	2	27.8	82.1	0	338-352	K.TNEALLTGESEDISK.T	
415	1	702.8110	-69.04	2	32.8	25.4	0	673-684	R.VQELEVPFNSSR.K	
204	1	633.2750	-50.95	3	22.3	20.7	0	918-936	R.QGHTVAMTGDGVNDAPALK.A Oxidation: 7	
	Type Result Location	A	mazon_l	Bops_	IS - Protein NCBI_2014 3_GA4_01_	-08-20 1	5:22:3	8		
Protein 1:			onserved h iil22148644		ical protein [T	oxoplasm	a gond	i GT1] Score:	330.22	

December 15, 2014

Printed:

Bruker	

Database Seq. Cov	e: verage [%]:		ICBInr 3.80 %					MW [kDa]: pl:		50.90 4.54	
Modificat	tion(s):	(Oxidation					No. of Peptic	les:	6	
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Ρ		equence		Modification
16	2	483.8870	-49.27	3	11.5	80.5	2		VKVEDTEGDKSSR.G		
22	2	420.1580	-90.26		13.0	40.9	0		QHQMELEAEK.A		Oxidation: 4
86	2	487.2380	-34.55		20.6	48.3	1		ISAREEIEQQTR.K		
23	1	516.7240	-53.13	2	13.1	45.3	0		EEIEQQTR.K		
97	2	588.6090	-30.19	3	21.5	52.7	1	438-453K	QTVEEASKQTVEEASK.Q		
50	1	846.8660	-39.88	2	17.2	62.6	0	470-485K	QTASEVTKPTEEANTS		
Seq. Cov Nodificat	erage [%]: tion(s):		.90 % Carbamidor	methyl				pl: No. of Peptic	les:	9.39 6	
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р		equence		Modification
171	2	662.3210	-35.29	3	28.1	41.5	0		LQQVEPTADSQELTVQAK.		
184	1	595.7550	-95.41	2	29.3	24.7	0		NAGPDTIALYR.D		
35	2	442.8700	-52.21	3	15.1	38.2	1	409-420K	TTYAGSNKIESR.W		
	1	443.7500	-76.69	2	33.2	25.5	0		LIETLLGK.G		
214	2	419.6990	-90.74	2	20.8	26.9	0	555-562K	FVSSLASK.L		
214 88	2	431.1890	-83.19	2	13.5	49.1	0	614-621R	ASTNDVVR.G		
	2										
88 25 Protein 3 Accessio Database	: in:	9 N	ong-chain fi i 23783516 ICBInr 1.50 %		l CoA ligase, p	outative (1	oxopla	asma gondii ME Score: MW [kDa]: pl: No. of Peptic		203.13 82.10 5.21 5	

Appendix

52

December 15, 2014 Printed:

49

Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
40	1	554,2130	-82.25	2	15.6	35.8	0	172-181	R.SVVASEECAR.R		Carbamidomethyl: 8
150	1	480.2550	-39.63	2	26.3	50.1	0		R.LLDSIEAAK.S		, , ,
135	1	758.8450	-27.06	2	24.2	29.0	0	192-206	K.SSLAGEPEEAVNASR.V		
65	1	551.7570	-93.82	2	18.6	68.2	1	240-250	K.AVAELKAGESK.A		
41	1	547.2140	-123.39	2	15.7	20.0	0	677-687	R.AVTESMAAVAK.E		Oxidation: 6
ccessio atabase eq. Cov		Ň	il 22150532 ICBInr I.40 %	- 1				Score: MW [kDa]: pl: No. of Pept	iides:	119.63 61.90 4.79 2	
Cmpd.	No. of Cmpds.	m/z meas.	Δm/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
136	1	537.2760	-12.88	2	24.4	42.3	0		R.LQALDSVDGR.S		
55	2	583.2530	-42.58	2	17.6	59.2	0	347-356	R.VTFAENDNQK.V		
	Type Result Location	Ā	mazon_	Bops_	IS - Protein NCBI_2014 4_GA5_01_	-08-20 1		38			
Protein 1 Accessio Database	n:	9	hosphoglu i 15419635 ICBInr i.90 %		se/parafusin n	elated prot	ein 1 [Toxoplasma g Score: MW [kDa]: pl: No. of Pept		236.79 70.50 5.55 6	

Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence Modification
123	2	516.2540	-45.78	2	23.3	40.4	0		0K.GGTLLVSGDGR.F
58	1	408.6760	-124.09	2	18.0	25.8	0		1R.ELLQEGK.S
43	1	445.1940	-91.88	2	15.9	51.1	0	520-528	8K.SSPAEITGK.V
47	1	419.1510	-124.23	2	16.4	25.1	0		7K.YTDPVDK.Q
59	2	560.7710	-54.35	2	18.0	71.5	0		0R.LSGTGSTGATIR.V
203	1	597.7710	-75.71	2	32.6	22.9	0	627-637	7K.YIGTETPTVIT
Protein 2 Accessio Database Seq. Cov Modificat	n: E erage [%]:	9 N 1	IORN repe ij22148417 ICBInr 0.30 % Deamidated	7	iining protein,	, putative	Toxopla	asma gondii (Score: MW [kDa]: pl: No. of Pept	111.65 49.30 5.15
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence Modification
48	2	510.2490	-32.79	3	16.5	30.6	1		7R.SANAAPARTDTNAIR.Q
28	2	745.8350	-37.98	2	12.8	58.0	0		3R.QTASTAGSAQPATGSR.A
91	1	789.3610	-23.23	2	20.9	23.0	0	424-440	0R.ASLNGAQLSSQGSGSGR.T Deamidated: 7
Search Search Search		Ā	mazon_	Bops_I	IS - Protein NCBI_2014 5_GA6_01_	-08-20 1	5:22:3	38	
Protein 1 Accessio Database Seq. Cov Modificat	n: :: erage [%]:	9 N 4	i 23784073 ICBInr 9.70 %	11	ondii ME49] Dxidation			Score: MW [kDa]: pl: No. of Pept	4.91

Bruker December 15, 2014 Printed:

Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence	Modification
54	2	464.6520	-163.06	2	13.9	85.6	0	20-29	K.AGVAGDDAPR.A	
367	2	571.8160	-59.88	2	29.6	65.7	0	30-40	R.AVFPSIVGKPK.N	
90	2	476,5080	-78.71	3	15.6	35.5	1	52-63	K.DCYVGDEAQSKR.G	Carbamidomethyl: 2
453	3	651.9560	-107.85	3	34.0	82.0	0		R.VAPEEHPVLLTEAPLNPK.A	
375	2	563.2210	-91,44	3	30.1	48.2	1	179-192	R.LDLAGRDLTEYMMK.I	Oxidation: 12, 13
209	2	530.6930	-109.13	2	21.7	41.0	0	198-207	R.GYGFTTSAEK.E	
352	2	519.9010	-65.59	3	28.9	49.2	1	198-211	R.GYGFTTSAEKEIVR.D	
47	2	532.6980	-80.25	2	13.2	69.6	0	230-239	K.AAEDSSDIEK.S	
512	1	941.3680	-86.11	3	36.8	32.2	1	230-255	K.AAEDSSDIEKSYELPDGNIITVG NER.F	
508	3	592.9430	-34.75	3	36.7	84.1	0	240-255	K.SYELPDGNIITVGNER.F	
596	2	599.6050	-63.81	3	41.1	46.5	1	256-270	R.FRCPEALFQPSFLGK.E	Carbamidomethyl: 3
605	2	747.3590	-23.41	2	41.5	75.2	0	258-270	R.CPEALFQPSFLGK.E	Carbamidomethyl: 1
521	1	554.2430	-73.19	4	37.3	20.7	1		R.CPEALFQPSFLGKEAAGVHR.T	Carbamidomethyl: 1
357	2	572.8850	-88.83	3	29.1	51.0	1	278-291	R.TTFDSIMKCDVDIR.K	Carbamidomethyl: 9; Oxidatio
449	2	792.3530	-46.40	3	33.7	56.7	1	292-313	R.KDLYGNVVLSGGTTMYEGIGER.	Oxidation: 15
300	2	512.5910	-49.73	3	26.3	69.2	1		R.LTKELTSLAPSTMK.I	Oxidation: 13
254	2	597.2530	-91.66	2	24.0	66.7	0		K.ELTSLAPSTMK.I	Oxidation: 10
341	2	589.2690	-70.06	2	28.3	41.4	0		K.ELTSLAPSTMK.I	
287	2	478.9020	-66.67	3	25.7	46.2	1		K.ELTSLAPSTMKIK.V	Oxidation: 10
191	1	504.7530	-120.16	2	20.8	28.1	1		K.IKVVAPPER.K	
49	1	448.2210	-112.94	2	13.4	34.6	1	330-337	K.VVAPPERK.Y	
Protein 2: Accessio Database Seq. Covi Modificat	n: : erage [%]:	9 1 2	ii 13447088 NCBInr 24.20 %		xoplasma gor Deamidated	ndii]		Score: MW [kDa]: pl: No. of Pept	795.18 41.70 6.93 ides: 14	
Cmpd.	No. of	m/z meas.	Δm/z	z	Rt	Score	Р	Range	Sequence	Modification
	Cmpds.		[ppm]		[min]			-		
358	2	462.8770	-105.34	3	29.2	78.2	1	53-64	R.SKITYFGTLTQK.A	
Bruker					Printed:			December 15	, 2014	

							-				
485	1	544.2760	-26.24	4	35.5	69.3	2		R.SKITYFGTLTQKAPNWYR.C		
413	2	586.2880	-57.16	2	32.0	50.4	0		K.ITYFGTLTQK.A		
537	2	653.6450	-46.84	3	38.1	59.7	1		K.ITYFGTLTQKAPNWYR.C		
207	2	403.6620	-96.20	2	21.6	38.7	0		K.APNWYR.C		
240	2	470.5510	-70.74	3	23.3	68.4	0		R.ANEEVVGHVTLNK.E		
35	1	426.4180	-66.48	4	12.0	48.4	2		R.VCHIDAKDKGDCER.N		Carbamidomethyl: 2, 12
471	2	475.2270	-64.21	3	34.9	60.6	1		R.NKGFLTDYIPGAK.Q		
559	2	591.2560	-97.56	2	39.2	64.3	0		K.GFLTDYIPGAK.Q		
244	2	584.2490	-87.47	3	23.5	69.3	1		K.IEKVENNGEQSVLYK.F		Deamidated: 7
220	2	690.7970	-56.04	2	22.4	66.9	0		K.VENNGEQSVLYK.F		Deamidated: 4
220	2	690.7970	656.62	2	22.4	40.3	0		K.VENNGEQSVLYK.F		
695	1	708.3800	-39.42	2	54.2	25.8	0		K.FTVPWIFLPPAK.Q		
412	2	489.2310	-51.45	2	31.9	55.0	0	229-236	K.DANFIEIR.C		
Seq. Cove Aodificati	erage [%]: tion(s):		.80 %	nethvl	Oxidation. De	a midata d		MW [kDa]: pl: No. of Pept	ides:	5.15 3	
Cound	No of	min mene			, .			Banna	Paguanaa		Nedification
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
525	Cmpds. 5	908.4050	∆ m/z [ppm] 489.93	z 2	Rt [min] 37.5	Score 52.1	0	2-19	M.GEEVVQALVVDNGSGNVK.A		Deamidated: 6
525 490	Cmpds. 5 6	908.4050 908.4170	Δ m/z [ppm] 489.93 503.15	2 2 2	Rt [min] 37.5 35.8	Score 52.1 70.4	0	- 2-19 2-19	M.GEEVVQALVVDNGSGNVK.A M.GEEVVQALVVDNGSGNVK.A		
525	Cmpds. 5	908.4050	∆ m/z [ppm] 489.93	z 2	Rt [min] 37.5	Score 52.1	0	- 2-19 2-19	M.GEEVVQALVVDNGSGNVK.A		Deamidated: 6
525 490 514 Protein 4: Accession Database: Seq. Cove	Cmpds. 5 6 1 : : : : : : : : : : : : : : : : : :	908.4050 908.4170 907.8560 h g N S	Δ m/z [ppm] 489.93 503.15 427.39 ypothetical il[23783760 dCBInr 4.80 %	z 2 2 protein 1	Rt [min] 37.5 35.8	Score 52.1 70.4 20.9 2280 [Tox	0	2-19 2-19 2-19	M. GEEVVQAL VVDNGSGNVK. A M. GEEVVQAL VVDNGSGNVK. A M. GEEVVQAL VVDNGSGNVK. A 9]	698.68 33.90 6.04 13	Deamidated: 6
525 490 514 Protein 4: Accession Database	Cmpds. 5 6 1 : : : : : : : : : : : : : : : : : :	908.4050 908.4170 907.8560 h g N S	Δ m/z [ppm] 489.93 503.15 427.39 ypothetical il[23783760 dCBInr 4.80 %	z 2 2 protein 1	Rt [min] 37.5 35.8 36.9 TGME49_03	Score 52.1 70.4 20.9 2280 [Tox	0	2-19 2-19 2-19 2-19 a gondii ME4 Score: MW [kDa]: pl: No. of Pept	M. GEEVVQAL VVDNGSGNVK. A M. GEEVVQAL VVDNGSGNVK. A M. GEEVVQAL VVDNGSGNVK. A 9]	33.90 6.04	Deamidated: 6

23	2	539.5180	-97.29	3	11.2	48.8	0		K.DSHAANADSQTPMQK.L	Oxidation: 13
184	2	455.7220	-54.81	4	20.5	61.0	1		R.AAVAAAAANGAETGKAPHLK.L	Deamidated: 9
140	2	517.2580	-35.93	2	18.3	60.8	0		K.LAGQMSLAAR.S	Oxidation: 5
314	2	481.0270	155.52	3	27.0	50.0	0		K.KPTEQGTVLLQVK.A	
169	2	418.8540	-108.74	3	19.7	37.3	0	114-124	K.APPYKPIPESR.F	
74	1	507.5510	-57.56	3	14.8	51.5	1		R.QNIETMKDTPEAK.A	Oxidation: 6
371	2	751.8180	-72.21	2	29.9	52.6	0		R.TFAEPEQPDIEVK.D	
97	2	548.8960	-81.41	3	16.2	74.4	1		K.AAETVAEKEGEQSAPK.N	
26	2	500.1710	-102.12	3	11.3	46.6	0	238-251	K.NESPESGHDATAQR.K	
198	2	414.5010	-111.66	3	21.1	27.4	0	257-267	R.YLGPESSVPHR.L	
678	1	762.4250	-28.75	2	47.1	55.8	0	268-281	R.LLATCGILPLPLDK.A	Carbamidomethyl: 5
107	1	408.6690	-141.21	2	16.8	28.8	0		K.ELIQEGK.R	
679	1	740 8600	-37.45	2	47.3	88.2	0			
rotein 5: ccessio atabase eq. Cove	: in: i: erage [%]:	0 9 N 2	GPI-anchore ii 1718389 ICBInr 8.30 %	- d surfa	ece protein [To Oxidation, Dec	xoplasma			K TIITEAGGFFGTPVA- 469.89 44.20 7.81 10	
rotein 5: accessio latabase leq. Covi	: in: erage [%]: tion(s): No. of	0 9 N 2	SPI-anchore i 1718389 ICBInr 8.30 % Carbamidon Δ m/z	- d surfa	oce protein [To Oxidation, Dea	xoplasma] Score: MW [kDa]: pl:	469.89 44.20 7.81	Modification
rotein 5: ccessio atabase eq. Cove lodificat Cmpd.	: n: erage [%]: tion(s): No. of Cmpds.	G 9 2 (m/z meas.	SPI-anchore ii 1718389 ICBInr 8.30 % Carbamidon A m/z (ppm)	ed surfa nethyl, s	oce protein [To Oxidation, Dea Rt [min]	xoplasma amidated Score	gondii P] Score: MW [kDa]: pl: No. of Pept Range	460.89 44.20 7.81 10 Sequence	
rotein 5: ccessio atabase eq. Cove lodificat Cmpd. 426	: erage [%]: tion(s): No. of Cmpds. 4	(9 2 (m/z meas. 788.3160	GPI-anchore ii 1718389 ICBInr 8.30 % Carbamidon Δ m/z [ppm] -49.89	nethyl, r	Oxidation, Dec Rt [min] 32.6	xoplasma amidated Score 67.0	gondii P 0	Score: MW [kDa]: pl: No. of Pept Range 132-145	469.89 44.20 7.81 ides: 10 Sequence K.G.ADNOWLINGEDLSR.G	Modification Deamidated: 8
rotein 5: ccessio atabase eq. Cove lodificat Cmpd. 426 407	: in: erage [%]: tion(s): No. of <u>Cmpds</u> 6	(0 9 2 (0 788.3160 787.8200	GPI-anchore ii 1718389 ICBInr !8.30 % Carbamidon Carbamidon <u>A m/z [ppm]</u> -49.89 -54.99	nethyl, z	Oxidation, Dec Rt [min] 32.6 31.7	xoplasma amidated Score 67.0 52.7	gondii P 0] Score: MW [kDa]: pl: No. of Pepi Range 132-145 132-145	469.99 44.20 7.81 10 Sequence K.G.ADWULKGEDLSR.G K.G.ADWULKGEDLSR.G	
rotein 5: ccessio atabase eq. Cove lodificat Cmpd. 426 407 326	: erage [%]: tion(s): <u>No. of Cmpds.</u> <u>6</u> 1	0 9 1 2 0 1 788.3160 787.3200 459.2540	CBI-anchore ii 1718389 ICBInr 18.30 % Carbamidon Carbamidon Carbamidon -49.89 -54.99 -60.95	nethyl, i z 2 2 2	Oxidation, Der Rt [min] 32.6 31.7 27.6	xoplasma amidated Score 67.0 52.7 20.3	gondii P 0 1	Score: MW [kDa]: pl: No. of Pept Range 132-145 132-145	469.89 44.20 7,81 10 Sequence K.GANDWLINGEDLSR.G K.GANDWLINGEDLSR.G K.GANDWLINGEDLSR.G	
rotein 5: cccessio latabase leq. Covi lodificat Cmpd. 426 407 326 351	: n: erage [%]: tion(s): No. of <u>Cmpds.</u> 4 6 1 2	(9 1 2 (788.3160 787.8200 459.2540 457.7090	GPI-anchore ij1718389 iCBInr 8.30 % Carbamidon Δ m/z [ppm] -49.89 -60.98 -80.34	nethyl, i z 2 2 2	Cxidation, Dec Rt [min] 32.6 31.7 27.6 28.8	xoplasma amidated Score 67.0 52.7 20.3 37.3	gondii P 0 1 0	Score: MW [kDa]: pl: No. of Pept 132-145 146-153 154-161	469.89 44.20 7.31 10 Sequence KOADIVILINGEDISEG KOMPOWILINGEDISEG KOMPOWILINGEDISEG KOMPOWILINGEDISEG	Deamidated: 8
rotein 5: accessio latabase leq. Covi lodificat Cmpd. 426 407 326 351 403	: n: erage [%]: tion(s): No. of <u>Cmpds.</u> 4 4 6 1 2	(0 9 2 (0 m/z mess. 788.3160 787.8200 459.2540 459.2540 458.2230	GPI-anchore i 1718389 ICBInr 8.30 % Carbamidon Δ m/z [ppm] -49.89 -60.95 -80.34 -80.34 -32.26	nethyl, i z 2 2 2 2 2	Acce protein [To Oxidation, Dev [min] 32.6 31.7 27.6 31.5 31.5	xoplasma amidated <u>Score</u> <u>67.0</u> 52.7 20.3 37.3 22.9	gondii P 0 1 0 0	Score: MW [kDa]: pl: No. of Pept 132-145 132-145 146-153 154-161 154-161	469.89 44.20 7.81 10 Sequence K GADROW WOEDLSR G K GADROW WOEDLSR G K GADROW WOEDLSR G K MWFGURJ KNWFGURJ	Deamidated: 8 Deamidated: 1
rotein 5: cccessio latabase leq. Covi lodificat Cmpd. 426 407 326 351	: n: erage [%]: tion(s): No. of <u>Cmpds.</u> 4 6 1 2	(9 1 2 (788.3160 787.8200 459.2540 457.7090	GPI-anchore ij1718389 iCBInr 8.30 % Carbamidon Δ m/z [ppm] -49.89 -60.98 -80.34	nethyl, i z 2 2 2	Cxidation, Dec Rt [min] 32.6 31.7 27.6 28.8	xoplasma amidated Score 67.0 52.7 20.3 37.3	gondii P 0 1 0	Score: MW [kDa]: pl: No. of Pept 132-145 146-153 154-161 154-161 207-230	469.89 44.20 7.81 10 Sequence K.G.AQANYWLNGEDLSR.G K.G.AQANYWLNGEDLSR.G K.G.AQANYWLNGEDLSR.G K.G.AQANYMLNGEDLSR.G K.MIYPEOJCPHI K.MIYPEOJCPHI	Deamidated: 8
rotein 5: accessio latabase leq. Covi lodificat Cmpd. 426 407 326 351 403	: n: erage [%]: tion(s): No. of <u>Cmpds.</u> 4 4 6 1 2	m/z meas. 788.3160 787.8200 459.2540 457.7090 458.2230 849.0560	SPI-anchore ii 1718389 (CBInr 8.30 % Carbamidon Δ m/z (ppm) -49.89 -60.95 -80.34 -80.34 -32.26 -47.93	nethyl, i z 2 2 2 2 2	Ace protein [To Oxidation, Dec [min] 32.6 31.6 28.8 31.6 37.0	xoplasma amidated <u>Score</u> <u>67.0</u> 52.7 20.3 37.3 22.9	gondii P 0 1 0 0	Score: MW [kDa]: pl: No. of Pepi 132:145 132:145 134:161 154:161 207-230	469.99 44.20 7.81 0 9squence K 6ADOWLWGEUSR 6 K CADIWULKEUSR 6 K CADIWULKEUSR 6 K KINFGLPKI K KINFGLPKI K KINFGLPKI	Deamidated: 8 Deamidated: 1 Carbamidomethyl: 12
Protein 5: accessio latabase leq. Covi Nodificat Cmpd. 426 407 326 351 403 516	: erage [%]: tion(s): <u>No. of Cmpds.</u> 4 6 1 2 1 1	(0 9 2 (0 m/z mess. 788.3160 787.8200 459.2540 459.2540 458.2230	GPI-anchore i 1718389 ICBInr 8.30 % Carbamidon Δ m/z [ppm] -49.89 -60.95 -80.34 -80.34 -32.26	nethyl, i z 2 2 2 3	Acce protein [To Oxidation, Dev [min] 32.6 31.7 27.6 31.5 31.5	xoplasma amidated Score 67.0 52.7 20.3 37.3 22.9 46.1	gondii P 0 1 0 0	Score: MW [kDa]: pl: No. of Pepl 132-146 132-146 134-161 154-161 154-161 207-230 231-244	469.89 44.20 7.81 10 Sequence K.G.AQANYWLNGEDLSR.G K.G.AQANYWLNGEDLSR.G K.G.AQANYWLNGEDLSR.G K.G.AQANYMLNGEDLSR.G K.MIYPEOJCPHI K.MIYPEOJCPHI	Deamidated: 8 Deamidated: 1
Protein 5: Accessio Jatabase Seq. Covid Modificat Cmpd. 426 407 326 351 403 516 75	: erage [%]: tion(s): No. of <u>Cmpds.</u> 4 6 1 1 1 1	m/z meas. 788.3160 787.8200 459.2840 457.7090 458.2230 849.0560 556.2110	3PI-anchore i 1718389 (CBInr 8.30 % Carbamidon △m/z [ppm] -49.89 -60.98 -80.34 -92.26 -47.93 544.24	nethyl, z 2 2 2 3 3	Oxidation, Der Rt [min] 32.6 31.7 27.6 28.8 31.6 37.0 14.8	xoplasma amidated Score 67.0 52.7 20.3 37.3 22.9 46.1 30.4	gondii P 0 0 1 0 0 0	Score: MW [kDa]: pl: No. of Pepl 132-145 132-145 132-145 132-145 132-145 132-145 134-161 207-230 231-244 233-244 334-367	409.89 44.20 70 8equance KaAONOW NGEDLSR 6 KANNFOLPSI KINNFOLPSI KINNFOLPSI KINNFOLPSI KINNFOLPSI KINNFOLPSI KINNFOLPSI KIPATINATIVCOFOGISPLDY	Deamidated: 8 Deamidated: 1 Carbamidomethyl: 12 Carbamidomethyl: 4, 12

ccessio atabase aq. Cov		9 N	il23784104 CBInr 8.80 %		ning protein [1	loxopiasin	ia gon	Score: MW [kDa]: pl:	465.15 39.40 4.66 10	
Aodificat	tion(s):	(Carbamido	methyl				No. of Pept	ides: 10	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence	Modification
545	1	880.7030	-33.97	3	38.5	71.0	0		K.SQNLSPTELDTAFGVDAAGNCDT TR.L	Carbamidomethyl: 21
680	2	748.9320	-32.00	2	47.8	83.9	0	133-146	R.LVDVSTLIPTAIVR.G	
135	1	406.6160	-159.18	2	18.1	23.8	0		K.ACFVCR.E	Carbamidomethyl: 2, 5
77	1	463.2160	-73.04	2	15.0	23.7	0		R.SVVVHCPK.G	Carbamidomethyl: 6
670	1	567.9470	-53.15	3	45.3	60.3	1		K.GLPVLDIFKESDNVR.A	
360	1	604.0260	-76.97	4	29.3	42.2	1		K.AKLEDVVGSGSTIKPVNVDSQNR .D	
342	1	718.3430	-50.97	4	28.4	49.5	2		K.AKLEDVVGSGSTIKPVNVDSQNR DVSR.S	
350	2	738.6960	-28.26	3	28.8	46.7	0	260-280	K.LEDVVGSGSTIKPVNVDSQNR.D	
330	1	668.5770	-29.31	4	27.8	21.2	1	260-284	K.LEDVVGSGSTIKPVNVDSQNRDV SR.S	
354	2	525.2490	-56.86	3	28.9	27.3	0	285-298	R.SYLITSTSSFSKPR.I	
Protein 7 Accessio Database Seq. Cov Modificat	n: :: erage [%]:	9 N 1	inserved F il 22148182 VCBInr 17.80 % Dxidation		ical protein [T	oxoplasm	a gono	dii GT1] Score: MW [kDa]: pl: No. of Pept	301.85 45.10 7.74 tides: 5	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence	Modification
685	1	780.3860	-22.08		49.1	74.2	0		R.FLDPIDELPEPFK.A	
	2	440.5540	-82.83	3	32.4	69.4	1		K.LGIEGDKTVFLK.S	
421	2	547.2560	-55.06	3	32.3	33.0	0	101-115	K.SPISPDVAVYVHAER.L	
421 419				3	33.7	77.0	0		K.SVELTRPQAVLGAVGMGK.K	Oxidation: 16

414	2	484.9090	-49.56	3	32.0	48.2	1	269-281	R.ALQFGKDFQVTAK.K	
	erage [%]:	g N 1	i 22150432 ICBInr 3.60 %	4	putative [Tox	oplasma ç	gondii \	EG] Score: MW [kDa]: pl: No. of Pept	296 37.8 5.91 ides: 3	0
Modificat	ion(s):	C	Carbamidon	nethyl,	Deamidated					
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	P	Range	Sequence	Modification
338	2	603.5610	-87.67	3	28.2	94.1	0		R.QLHTDNGYFIGASCPK.S	Carbamidomethyl: 14; Deamidated: 6
415	1	765.3570	-21.93	3	32.1	47.8	1		R.EVTSKAEESCVEGVEVTLAEK.C	Carbamidomethyl: 10
45	2	583.7460	-27.78	2	13.0	82.5	0	321-332	K.GESGSEGSLSEK.M	
Protein 9 Accessio Database Seq. Cov Modificat	erage [%]:	g N 1	i 23783781 ICBInr 1.80 %	9	ning protein [Oxidation, De			Score: MW [kDa]: pl: No. of Pept	288 39.1 7.76 ides: 5	0
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence	Modification
551	2	702.8400	-45.67	2	38.9	72.0	0	136-148	K.EWVTGDSVLTGLK.I	
279	2	702.8110	-61.05	2	25.3	41.0	0		K.ISVPESQYPANAK.S	Deamidated: 11
279	1	702.8110	-61.05	2	25.3	22.9	0		K.ISVPESQYPANAK.S	Deamidated: 7
190	2	650.2570	-62.91	2	20.8	58.9	0		R.CSYTENSTLPK.I	Carbamidomethyl: 1
491	2	448.6870	-70.64	2	35.8	26.2	0	259-265	K.WFFGDPK.S	
Protein 1 Accessio Database Seq. Cov	n:	9 N	ctin [Pyrocy i 27450759 ICBInr .20 %	rstis lur	nula]			Score: MW [kDa]: pl: No. of Pept	187 41.7 5.83 ides: 2	0
Bruker					Printed:			December 15	, 2014	57

Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence	Modification
385	3	400.1990	-102.48	3	30.7	27.8	0	29-39	R.AVFPSIVGRPR.H	
538	2	895.9050	-49.78	2	38.1	59.8	0	239-254	K.SYELPDGQVITIGNER.F	
Protein 1	<i>.</i>				TGME49 09					
Accessio			il23784169		1GME49_09	3430 [10X	opiasn	Score:	155 59	
Database			109 ICBInr	5				MW [kDa]:	44.60	
	erage [%]:		80 %					pl:	44.60	
sed. Cov	erage [%]:	a	0.00 76					No. of Pept		
Modificat			Carbamidon					NO. OT PEPT	ides: 3	
viodificat	tion(s):	(Jarbamidon	netnyi						
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Ρ	-	Sequence	Modification
151	2	750.8300	-50.71	2	18.8	44.2	0	70-82	R.QQPVEANETTVER.G	
94	2	437.1790	-104.92	2	15.9	64.8	0		R.AAADIAADR.A	
340	1	688.8190	-36.11	2	28.3	30.1	0	398-411	R.HTPPGADQIELAGA	
340 Protein 1 Accessio Database	1 2: on:	688.8190 S 9	-36.11	2 contai		30.1	0	398-411 sma gondii G Score: MW [kDa]: pl:	R HTPPGADQIELAGA T1] 154.10 35.80 5.20	
340 Protein 1 Accessio Database Seq. Cov	1 2: on: o: verage [%]:	688.8190 688.190 9 N 1	-36.11 GRS domain ji 22148416 VCBInr	2 I contai 2	28.3	30.1	0	398-411 sma gondii G Score: MW [kDa]:	R HTPPGADQIELAGA T1] 154.10 35.80 5.20	
340 Protein 1 Accessio Database Seq. Cov Modificat	1 2: on: 2: erage [%]: tion(s): No. of Cmpds.	688.8190 688.8190 9 N 1 () ()	-36.11 SRS domain il/22148416 VCBInr 3.20 % Carbamidon Δ m/z (ppm)	2 i contai 2 nethyl z	28.3 ning protein, p Rt [min]	30.1 outative [To Score	0 Doxopla	398-411 sma gondii G Score: MW [kDa]: pl: No. of Pept Range	RHTPPGADQIELAGA. T1] 154.10 35.80 5.20 iddes: 3 Sequence	Modification
340 Protein 1 Accessio Database Seq. Cov Modificat	1 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2:	688.8190 688.8190 9 N 1 0 m/z meas. 507.7170	-36.11 SRS domain ij[22148416 VCBInr 3.20 % Carbamidon Carbamidon (ppm) -97.24	2 i contai 2 nethyl z 2	28.3 ning protein, p Rt	30.1 outative [To Score 37.7	0 Dxopla	398-411 sma gondii G Score: MW [kDa]: pl: No. of Pept Range 108-116	R-HTPPGADQIELAGA - T1] 154 10 35 80 5 20 ides: 3 Sequence K-WTVAPPESK.T	
340 Protein 1 Accessio Database Seq. Cov Modificat Cmpd.	1 2: on: 2: erage [%]: tion(s): No. of Cmpds.	688.8190 688.8190 9 N 1 () ()	-36.11 SRS domain il/22148416 VCBInr 3.20 % Carbamidon Δ m/z (ppm)	2 i contai 2 nethyl z	28.3 ning protein, p Rt [min]	30.1 outative [To Score	0 Doxopla	398-411 sma gondii G Score: MW [kDa]: pl: No. of Pept Range 108-116	RHTPPGADQIELAGA. T1] 154.10 35.80 5.20 iddes: 3 Sequence	
340 Protein 1 Accessio Database Seq. Cov Modificat Cmpd. 280	1 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2:	688.8190 688.8190 9 N 1 0 m/z meas. 507.7170	-36.11 SRS domain ij[22148416 VCBInr 3.20 % Carbamidon Carbamidon (ppm) -97.24	2 i contai 2 nethyl z 2	28.3 ning protein, p Rt [min] 25.3	30.1 outative [To Score 37.7	0 Dxopla	398-411 sma gondii G Score: MW [kDa]: pl: No. of Pepi Range 108-116 117-129	R-HTPPGADQIELAGA - T1] 154 10 35 80 5 20 ides: 3 Sequence K-WTVAPPESK.T	
340 Protein 1 Accessic Database Seq. Cov Modificat Cmpd. 280 406 667	1 2: mr: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 3: 2: 1: 3: 2: 1: 3: 2: 1: 3: 2: 1: 3: 2: 1: 3: 2: 1: 3: 2: 2: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3:	688.8190 688.8190 9 N 1 (m/z meas. 507.7170 494.9020 800.0660	-36.11 SRS domain sRS domain (122148416 VCBInr (3.20 % Carbamidon <u>A m/z</u> (ppm) -97.24 -52.87 -25.02	2 i contai 2 nethyl z 3 3	28.3 ning protein, p [min] 25.3 31.6 45.0	30.1 outative [To Score 37.7 58.6 21.6	0 pxopla P 0 0 0	398-411 sma gondii G Score: MW [kDa]: pl: No. of Pept 108-116 117-129 255-276	R HTPPGADQIELAGA - T1] 154.10 35.80 520 Ides: 30 Sequence KWTVAPPESKT KUTVAPPESKT KUTVAPPESKT	Modification
340 Protein 1 Accessio Database Seq. Cov Modificat Cmpd. 280 406	1 2: m: erage [%]: tion(s): No. of Cmpds. 1 2 1	688.8190 59 1 1 507.7170 494.9020 800.0660	-36.11 SRS domain sRS domain (122148416 VCBInr (3.20 % Carbamidon <u>A m/z</u> (ppm) -97.24 -52.87 -25.02	2 i contai 2 nethyl z 3 3 ypothet	28.3 ning protein, p Rt [min] 25.3 31.6	30.1 outative [To Score 37.7 58.6 21.6	0 pxopla P 0 0 0	398-411 sma gondii G Score: MW [kDa]: pl: No. of Pept 108-116 117-129 255-276	R HTPPGADQIELAGA - T1] 154.10 35.80 520 Ides: 30 Sequence KWTVAPPESKT KUTVAPPESKT KUTVAPPESKT	Modification Carbamidomethyl: 19

Database Seq. Cov Modificat	erage [%]:	7	NCBInr 7.00 % Deamidated	I				MW [kDa]: pl: No. of Pep	tides:	46.90 10.17 2	
Cmpd.	No. of	m/z meas.	∆ m/z	z	Rt	Score	Р	Range	Sequence		Modification
67	Cmpds.	502,1910	[ppm] -141.34	2	[min] 14.4	60.7	0	100 200	R.VATVNAGTNR.L		Deamidated: 5
448	1	762.3590	-141.34	3	14.4	42.6	1		R.NRIPLTATQLSAESQEIQE	P I	Deamidated: 5 Deamidated: 9
Accessio Database Seq. Cov		Ň	ji 23784293 VCBInr I.20 %	5				Score: MW [kDa]: pl: No. of Pep	tides:	94.70 61.60 6.67 2	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
470	1	635.3130	-13.71	2	34.8	51.0	0	495-505	K.GLSIEESPYFK.G		
372	2	660.2830	-83.43	2	29.9	43.7	1	556-568	R.GVSDDLTKGTEVV		
Protein 1 Accessio Database	Result Location : on: erage [%]:	A N S S S S S S S S S S S S S S S S S S	Amazon_E BOPS/RH SAG1-relate ji 2305258 VCBInr 21.20 %	Bops_I I2/RH d sequ	IS - Protein NCBI_2014 5_GA7_01_ ence 3 (Toxop Dxidation, De	-08-20 1 2149.d/ lasma gor	5:22:3	Score: MW [kDa]: pl: No. of Pep		363.35 36.20 5.75 8	

Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence	Modification
414	2	831.8860	-47.71	2	40.2	53.1	0	91-105	K.CAIGTVTLPVDLMEK.Q	Carbamidomethyl: 1; Oxidation 13
109	1	455.7340	-42.28	2	18.9	21.3	0	158-165	K.QNLPPVDK.E	
333	2	720.3300	-48.44	3	33.1	28.7	1		K.QNLPPVDKEFIVGCTQEGK.G	Carbamidomethyl: 14
215	2	634.2840	-29.95	2	25.2	67.5	0		K.EFIVGCTQEGK.G	Carbamidomethyl: 6
110	2	604.0100	-20.81	4	19.0	33.0	1		R.ASSKDSQTVTCAYGSASNADVHR V	Carbamidomethyl: 11; Deamidated: 18
120	4	603.7380	-63.88	4	19.5	65.3	1		R.ASSKDSQTVTCAYGSASNADVHR .V	Carbamidomethyl: 11
318	2	560.6040	-46.20	3	32.1	52.5	0		K.AVLTIPHDNFPEAQK.K	
279	1	452.7110	-81.69	4	29.4	42.0	1	278-293	K.AVLTIPHDNFPEAQKK.V	
Modificati		(6.80 % Carbamidor	nethyl				pl: No. of Pept		
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [mgg]	z	Rt [min]	Score	Р	Range	Sequence	Modification
251	1	626.2610	-87.98	2	27.7	72.5	0		K.GSLTATLECTAK.D	Carbamidomethyl: 9
196	1	401.5130	-136.74	3	24.2	37.0	1		K.AIQSQKWTLK.L	
227	1	725.8050	-33.86	2	26.2	62.0	0		K.TFDVGCTYTTTGK.A	Carbamidomethyl: 6
297	2	778.3850	-40.70	2	30.5	73.2	0		K.AAANPAVCQLTVNVK.A	Carbamidomethyl: 8
100	1	624.9410	-41.82	3	18.2	39.4	1	326-342	R.LGCVPNKAPQSDSQDTR.V	Carbamidomethyl: 3
Protein 3: Accession Database Seq. Cove Modificati	n: erage [%]:	9 N 1	lyceraldehy i 32511556 ICBInr 7.40 % Carbamidor	4		ydrogenas	ie, relat	ed [Neospora Score: MW [kDa]: pl: No. of Pept	i caninum Liverpool] 179.64 36.50 6.83 ides: 4	
	(-)-									

Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence	Modification
345	Cmpas.	736.6810	(ppm) -15.86	3	[min] 34,2	58.4	0	142-162	K.SSDVIVSNASCTTNCLAPLAK.I	Carbamidomethyl: 11, 15
264	2	678,8600	-26.10	2	28.4	51.1	ő		R.SAGVNIIPASTGAAK.A	ourbuilluoineuryi. 11, 10
260		504 2410	-65.50	2	28.2	30.8	0		K.YEDIVAAVK.E	
285	2	774.8220	-64.23	2	29.6	21.9	0		R.LVELAHYMSVQDGA	Oxidation: 8
Protein 4: Accession Database: Seq. Cove Modificati	n: : erage [%]:	9 N 1	SRS domair ji 23784468 VCBInr I0.20 % Carbamidor	5	ning protein [Toxoplasn	na goni	dii ME49] Score: MW [kDa]: pl: No. of Pept	154.15 40.90 6.17 ides: 4	5
	(-)-									
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence	Modification
184	2	401.6990	-140.08	2	23.4	36.0	0		K.ATALVLSK.Q	
81	1	644.2840	-39.02	2	16.8	51.8	0		K.LVCSGDGNAAAPR.N	Carbamidomethyl: 3
141	1	479.7060	-110.23	2	20.8	34.5	0	152-159	R.VNNAVQWK.K	
206	1	615.3040	-38.77	2	24.8	31.8	0	240-250	K.AVQVELTADQR.S	
	n: : erage [%]:	9 N 3	pi 23783781 NCBInr 3.50 %	9	ning protein [Score: MW [kDa]: pl: No. of Pept		-
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence	Modification
204	2	702.3290	-46.84	2	24.7	66.3	0	149-161	K.ISVPESQYPANAK.S	
204 Protein 6:	Ż		-46.84 Chain F, Str	ucture (24.7 Of The Immun		-		K.ISVPESQYPANAK.S By The Surface Antigen 1 (Sag1) Of	Toxoplasma Gondii Comple:
Accessio Database		g	A Monocloni ji 85543998 VCBInr		bdy			Score: MW [kDa]:	97.18 26.60	

											Appendi	х
Seq. Cove	erage [%]:	7	.10 %					pl: No. of Pept	ides:	7.78 2		
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification	
94	2	508.7500	-54.65	2	17.8	69.4	0		R.ASSVVNNVAR.C			
89	1	439.6670	-112.23	2	17.5	27.8	0	223-230	K.EAFPAESK.S			
Modificat	n: : erage [%]: ion(s):	2 M 8	ji 34311324 NCBInr I.10 % Carbamidor	3	MIC3 [Toxopl Deamidated	-	-	Score: MW [kDa]: pl: No. of Pept		91.84 36.40 5.84 2		
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification	
261	2	603.5800	-56.20	3	28.3	37.8	0	80-95	R.QLHTDNGYFIGASCPK.S		Carbamidomethyl: 14; Deamidated: 6	
39	2	583.7520	-17.50	2	13.0	54.1	0	312-323	K.GESGSEGSLSEK.M			_
Search Search Search Protein 1:	Result Location	ļ	Amazon_E BOPS/RF	Bops_I 12/RH	IS - Protein NCBI_2014 7_GA8_01_ ructure Of A F	-08-20 1 2151.d/	5:22:	38				
Accessio Database	n: : erage [%]:	9 M 8	i 22219177 VCBInr 10.60 %		Oxidation, De		olen i	Score: MW [kDa]: pl: No. of Pept	ides:	1685.20 29.80 7.73 30		
Bruker					Printed:			December 15	, 2014			6

Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence	Modification
286	1	623.2820	-67.80	3	26.9	58.6	1	1-17	SDPPLVANQVVTCPDKK.S	Carbamidomethyl: 13
315	1	623.5980	-87.01	3	28.3	20.9	1	1-13	SDPPLVANQVVTCPDKK.S	Carbamidomethyl: 13; Deamidated: 8
462	7	615.0630	96.72	3	36.0	68.7	0	18-34	K.STAAVILTPTENHFTLK.C	
488	2	615.3030	-46.35	3	37.2	49.2	0	18-34	K.STAAVILTPTENHFTLK.C	Deamidated: 12
411	1	743.3420	-73.05	3	33.4	24.5	1		K.STAAVILTPTENHFTLKCPK.T	Carbamidomethyl: 18
381	4	815.8920	-40.93	2	31.9	62.6	0		K.TALTEPPTLAYSPNR.Q	
82	2	749.2930	-59.04	2	16.0	68.0	0		R.QICPAGTTSSCTSK.A	Carbamidomethyl: 3, 11
275	1	400.2030	-117.00	2	26.3	29.8	0	96-102	K.LTVPIEK.F	
629	2	793.0860	-32.16	3	45.6	34.1	1	96-116	K.LTVPIEKFPVTTQTFVVGCIK.G	Carbamidomethyl: 19
226	2	585.2150	-87.66	3	23.7	49.2	0	117-132	K.GDDAQSCMVTVTVQAR.A	Carbamidomethyl: 7; Oxidation 8
136	4	509.2140	-109.59	2	19.1	70.5	0		R.ASSVVNNVAR.C	Deamidated: 6
236	5	677.7820	-54.60	2	24.3	79.9	0		R.CSYGADSTLGPVK.L	Carbamidomethyl: 1
373	2	782.8400	-62.73	2	31.4	69.0	0		K.LSAEGPTTMTLVCGK.D	Carbamidomethyl: 13
278	2	790.8560	-38.65	2	26.4	59.1	0		K.LSAEGPTTMTLVCGK.D	Carbamidomethyl: 13; Oxidation: 9
270	2	660.6440	-30.37	3	26.0	63.3	1	156-174	K.LSAEGPTTMTLVCGKDGVK.V	Carbamidomethyl: 13; Oxidation: 9
254	3	895.6970	-41.48	3	25.2	43.1	1		K.DGVKVPQDNNQYCSGTTLTGCNE K.S	Carbamidomethyl: 13, 21
264	1	896.0040	-64.91	3	25.7	49.8	1		K.DGVKVPQDNNQYCSGTTLTGCNE K.S	Carbamidomethyl: 13, 21; Deamidated: 9
196	2	762.6140	-64.99	3	22.1	30.2	0		K.VPQDNNQYCSGTTLTGCNEK.S	Carbamidomethyl: 9, 17
323	2	474.2360	-96.27	2	28.8	48.3	1		K.SFKDILPK.L	
230	2	516.2120	-59.26	3	24.0	61.5	0	203-216	K.LTENPWQGNASSDK.G	
247	2	774.3160	-46.83	2	24.8	91.0	0	203-216	K.LTENPWQGNASSDK.G	Deamidated: 9
388	3	744.3400	-55.89	3	32.2	41.6	1	203-223	K.LTENPWQGNASSDKGATLTIK.K	
295	3	787.0100	-88.84	3	27.5	50.9	2	203-224	K.LTENPWQGNASSDKGATLTIKK.	
319	2	590.7650	-72.38	4	28.5	53.2	2		K.LTENPWQGNASSDKGATLTIKK. E	Deamidated: 9
97	2	416.1930	-181.50	2	16.9	41.3	1	217-224	K.GATLTIKK.E	
67	1	503.7510	-25.47	2	15.1	43.9	1	224-232	K.KEAFPAESK.S	
103	1	439.6550	-139.52	2	17.4	33.8	0	225-232	K.EAFPAESK.S	
211	2	652.7850	-67.98	2	22.9	94.3	0	233-245	K.SVIIGCTGGSPEK.H	Carbamidomethyl: 6

206	2	446.6950	-74.23	4	22.6		1		K.HHCTVKLEFAGAAGSAK.S		Carbamidomethyl: 3	
216	2	511.2110	-113.99	2	23.3	77.2	0	252-262	K.LEFAGAAGSAK.S			
Protein 2 Accessio Database Seq. Cov Modificat	n: : erage [%]:	A S N S	A Monoclon gi[85543998 NCBInr 5.90 %	al Antib			nt Epito	Sag1) Of Toxo 1557.93 26.60 7.78 1	plasma Gondii Complexed	To		
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification	٦
250	2	555.9350	-65.23	3	25.1	84.0	1	1-18	.PPLVANQVVTCPDKK.S		Carbamidomethyl: 11	-
Protein 3 Accessio Database Seq. Cov Modificat	n: : erage [%]:	9 M 4	ji 56157026 NCBInr 1.40 %		tein 1 [Toxopl Oxidation, De		aiij	Score: MW [kDa]: pl: No. of Pep	ides:	1535.49 33.00 9.75 1		
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [mag]	z	Rt [min]	Score	Р	Range	Sequence		Modification	
126	1	744.7630	-75.03	2	18.5	63.4	0	83-96	R.QICSAGTTSSCTSK.A		Carbamidomethyl: 3, 11; Deamidated: 1	
Protein 4 Accessio Database Seq. Cov Modificat	n: : erage [%]:	9 1 2	SRS domair gi[23783985 VCBInr 26.80 % Carbamidor	15	ning surface a	antigen, pi	utative	Toxoplasma Score: MW [kDa]: pl: No. of Pep		393.74 34.90 8.07 7		
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification	
Bruker					Printed:			December 15	, 2014			64

147										
	3	534.2230	-91.75	2	19.6	59.7	0		R.VTGNSSVEFK.C	
70	1	525.7130	-76.98	2	15.3	75.5	0		K.CSSLANTAAR.V	Carbamidomethyl: 1
38	1	585.7690	-37.74	2	12.8	50.2	0	136-147	R.VGAGQPGQEAEK.E	
40	2	476.5450	-64.38	3	12.9	81.0	1	136-149	R.VGAGQPGQEAEKEK.T	
360	1	589.5260	-22.72	4	30.7	54.1	0	213-234	K.ECTTSSTLAEHLSGASLVQHAR. T	Carbamidomethyl: 2
391	2	629.0230	-67.73	4	32.4	52.9	1	235-257	R.TNAADDKKPAYTFSVTSLPTEEK	
59	1	401.1620	-82.21	3	14.7	20.4	1	258-266	K.TLCYQCTKK.N	Carbamidomethyl: 3, 6
	on: e: verage [%]:	9 N 2	i 22148780 ICBInr 6.00 %	12	ning protein, p	outative (T	oxopla	sma gondii G Score: MW [kDa]: pl: No. of Pep	372.6 37.20 5.82	
Modifica	tion(s):	(Carbamidor	nethyl						
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence	Modification
282	1	586.7680	-74.15	2	26.6	83.2	0	81-92	K.GGISVEVDPATK.K	
631	2	947.9190	-46.10	2	45.9	85.3	0	122-139	R.ANLQGETPLAEFFGEGSK.A	
20	1	708.2780	-46,48	2	11.4	64.3	0	184-197	R.APTGDPSQNSDGNR.G	
540	2	778.7080	-37.73	3	40.1	63.6	0	266-287	K.LADVLPSATFQETSSAHVFSVK.	
197	2	501.5520	-51.91	3	22.2	40.6	1		K.ELPKTEATYCYK.C	Carbamidomethyl: 10
51	2	511.8780	-42.66	3	14.2	35.6	1	300-314	K.CSPPVDSGDTADGKK.N	Carbamidomethyl: 1
Protein 6			4-3-3 prote	in hom	ologue (Toxop	lasma goi	ndii]	Score:	177.6	_
Accessio Databas		Ň	ICBInr 5.00 %					MW [kDa]: pl: No. of Pep	30.70 4.55	7

164	2	458.5270	-66.80	3	20.4	70.3	1	442.46	R.YISEFSGEEGKK.Q	
46	2	683 7920	-34.09	2	13.3	57.7	-		K.QAADQAQESYQK.A	
251	2	574.9240	-62.76	3	25.0	49.7	0		K.ATETAEAELPSTHPIR.L	
Protein 7 Accessio Database	n:	g	iypothetical ii 14554119 VCBInr		I (Paramecium	ı tetraureli	a strai	n d4-2] Score: MW (kDa):	70.26 45.30	
Seq. Cov	erage [%]:	1	.80 %					pl:	9.44	
Aodificat	ion(s):	[Deamidated	ł				No. of Pep	tides: 1	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence	Modification
327	1	430.7170	-10.76	2	29.0	50.4	0	97-10	K.QDLLDEK.C	
Accessio Database Seq. Cov Modificat Cmpd.	erage [%]:	N 1	ij89572499 VCBInr 1.30 % Deamidated		Rt	Score	Р	Score: MW [kDa]: pl: No. of Pep Range	56.22 23.90 5.66 1 Isequence	
	Cmpds.		[ppm]		[min]			-		
48	1	795.9480	-51.42	3	13.8	49.5	0	178-203	R.SPQEPSGDGGGNDAGNNAGNGGN EGR.G	Deamidated: 23
Protein 9 Accessio Database Seq. Cov	n:	9 N	ibosomal pl ji 14579678 VCBInr I.80 %		protein P0 [To	xoplasma	gondii] Score: MW [kDa]: pl: No. of Pep	54.71 34.10 5.34 1	
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	P	Range	Sequence	Modification

148	2	422.1760	-176.63	3	19.6	54.7	1	102-113	R.IVAENKVPAPAR.Q		
Search					/IS - Protein						
Search					NCBI_2014		5:22:	38			
Search	Location	/	BOPS/RI	12/RH	8_GB1_01_	2152.d/					
Protein 1											
Accessio		n	najor surrac ail10725	ce antig	en P30 precur	sor (1 oxo	piasma	Score:		421.38	
Database			CBInr					MW [kDa]:		33.00	
Sea. Cov	erage [%]:		2.50 %					pl:		9.62	
								No. of Pept	ides:	2	
Nodificat	ion(s):	(Carbamido	methyl,	Deamidated						
Cmpd.	No. of	m/z meas.	Δm/z	z	Rt	Score	Р	Range	Sequence		Modification
	Cmpds.		[ppm]		[min]						
74	4	508.7520	-50.72	2	17.9	72.6	0		R.ASSVVNNVAR.C		
187	1	614.6920	-30.44	5	28.0	56.8	2	263-292	K.SVIIGCTGGSPEKHHCTV GAAGSAK.S	KLEFA	Carbamidomethyl: 6, 16
		••									
Protein 2					gen GRA6 [To	xoplasma	gondii				
Accessio		g	i 89572499 CBlnr	9				Score:		273.88	
Database	erage [%]:		VCBInr 23.90 %					MW [kDa]: pl:		23.90 5.66	
seq. Cov	erage [%]:	2	3.90 %					No. of Pept	idae:	5.00	
Modificat	ion(s):	ſ	Deamidated	1				No. of Pepi	1065.	0	
Cmpd.	No. of	m/z meas.	Δ m/z	z	Rt	Score	Ρ	Range	Sequence		Modification
59	Cmpds.	410.8420	[ppm] -77,77	3	[min] 16.2	29.4	1	112.122	K.SEARGPSLEER.I		
162	1	534.2310	-71.18	3	25.5	28.5	1		R.GPSLEERIEEQGTR.R		
57	1	568.7620	-36.49	2	16.1	41.5	0		R.YSSVQEPQAK.V		
32	1	847.9820	-47.92	3	13.1	64.9	1	177-203	R.RSPQEPSGDGGGNDAG	NNAGNGG	Deamidated: 21
									NEGR.G		
Bruker					Printed:			December 15	2014		

34	1	848.3060	-52.62	3	13.4	31.4	1		RSPQEPSGDGGGND	AGNNAGNGG	Deamidated: 13, 21
36	1	795,9450	-55.19	3	13.8	61.1	0		EGR.G SPQEPSGDGGGNDA	GNNAGNGGN	Deamidated: 20
				-			-		GR.G		
rotein 3:			biquitin pu	ative F	Toxoplasma g	ondii ME4	01				
ccessio			il23783579		roxopidorna g	ondir Mic-4	-J	Score:		126 22	
atabase	c		CBInr					MW [kDa]:		24.40	
leq. Cove	erage [%]:	1	2.00 %					pl:		6.02	
								No. of Peptid	es:	3	
Cmpd.	No. of	m/z meas.	Δm/z	z	Rt	Score	Р	Range S	equence		Modification
	Cmpds.		[ppm]		[min]			-			
40 84	1	434.2020 658.2700	-69.47 -63.40	2	14.7	24.9 32.0	0		QLTTYNK.S KNAAVSSTPVNQDE	11051	
84 104	1	922.8640	-63.40	2	18.7	69.3	0		NAAVSSTPVNQDEA		
Protein 4: Accessio	n:	g	ypothetical i 23783441	proteir			-	na gondii ME49] Score:		119.77	1
Accessio Database	n:	9	ypothetical	proteir			-	na gondii ME49] Score: MW [kDa]: pl:		119.77 37.00 5.43	
ccessio atabase	n: :	9	ypothetical i 23783441 ICBInr	proteir			-	na gondii ME49] Score: MW [kDa]:		119.77 37.00	
Accessio Database	n: :	9	ypothetical i 23783441 ICBInr	proteir			-	na gondii ME49] Score: MW [kDa]: pl: No. of Peptid Range S	equence	119.77 37.00 5.43	Modification
Ccessio Database leq. Cove Cmpd. 157	n: : erage [%]: No. of Cmpds. 1	9 N 9 m/z meas. 534.7590	ypothetical i 23783441 ICBInr .70 % Δ m/z [ppm] -19.91	proteir 9 z 2	Rt [min] 25.0	8150 [Tox Score 43.3	oplasr P 0	na gondii ME49] Score: MW [kDa]: pl: No. of Peptid Range S 44-53K	es: equence DPVDDAAIPR.V	119.77 37.00 5.43	Modification
Accessio Database Seq. Cove Cmpd. 157 92	n: erage [%]: No. of Cmpds. 1 2	9 9 9 534.7590 438.6990	ypothetical i 23783441 ICBInr .70 % Δ m/z [ppm] .19.91 .58.59	proteir 9 z 2 2	Rt [min] 25.0 19.6	8150 [Tox Score 43.3 50.7	oplasr P 0	na gondii ME49] Score: MW [kDa]: pl: No. of Peptid Range S 44-53K. 121-128K	es: equence DPVDDAAIPR.V STALDDVR.A	119.77 37.00 5.43 3	Modification
Accessio Database Seq. Cove Cmpd. 157	n: : erage [%]: No. of Cmpds. 1	9 N 9 m/z meas. 534.7590	ypothetical i 23783441 ICBInr .70 % Δ m/z [ppm] -19.91	proteir 9 z 2	Rt [min] 25.0	8150 [Tox Score 43.3	oplasr P 0	na gondii ME49] Score: MW [kDa]: pl: No. of Peptid Range S 44-53K. 121-128K	es: equence DPVDDAAIPR.V	119.77 37.00 5.43 3	Modification
Accessio Database Seq. Cove Cmpd. 157 92	n: : erage [%]: No. of <u>Cmpds.</u> 1 2 1	9 N 9 m/z meas. 534.7590 438.6990 859.8500	ypothetical il[23783441 ICBInr .70 % <u>A m/z</u> [ppm] -19.91 -58.59 -45.82	proteir 9 z 2 2 2	Rt [min] 25.0 19.6	Score 43.3 50.7 25.8	plasr P 0 1	na gondii ME49] Score: MW [kDa]: pl: No. of Peptid Range S 44-53K 121-128K 334-349R	es: equence DPVDDAAIPR.V STALDDVR.A	119.77 37.00 5.43 3	Modification
Cmpd. Cmpd. 157 92 113 Protein 5: Accessio	n: erage [%]: No. of <u>Compds.</u> 1 2 1 : n:	9 N 9 534.7590 438.6990 859.8500	ypothetical il[23783441 ICBInr .70 % <u>A m/z</u> [ppm] -19.91 -58.59 -45.82	proteir 9 z 2 2 al prot	Rt [min] 25.0 19.6 21.3	Score 43.3 50.7 25.8	plasr P 0 1	na gondii ME49] Score: MW [kDa]: pl: No. of Peptid Range S 44-53K 121-128K 334-349R gondii ME49] Score:	es: equence DPVDDAAIPR.V STALDDVR.A	119.77 37.00 5.43 3	Modification
Accessio Database Seq. Cove 157 92 113 Protein 5: Accessio Database	n: erage [%]: No. of <u>Cmpds.</u> 1 2 1 : :	9 N 9 534.7590 438.6990 859.8500 6 9	ypothetical iJ23783441 ICBInr .70 % Δ m/z [ppm] .19.91 .58.59 .45.82 IOS ribosom	proteir 9 z 2 2 al prot	Rt [min] 25.0 19.6 21.3	Score 43.3 50.7 25.8	plasr P 0 1	ha gondii ME49] Score: MW [kDa]: pl: No. of Peptid Range S 44-53K 121-128K 334-349R gondii ME49] Score: MW [kDa]:	es: equence DPVDDAAIPR.V STALDDVR.A	119.77 37.00 5.43 3	Modification
Accessio Database Seq. Cove 157 92 113 Protein 5: Accessio Database	n: erage [%]: No. of <u>Compds.</u> 1 2 1 : n:	9 N 9 534.7590 438.6990 859.8500 6 9 N	ypothetical ij23783441 iCBInr .70 % <u>A m/z</u> [ppm] -19.91 -58.59 -45.82 OS ribosom ij23783198	proteir 9 z 2 2 al prot	Rt [min] 25.0 19.6 21.3	Score 43.3 50.7 25.8	plasr P 0 1	Ana gondii ME49 Score: MW [kDa]: pl: No. of Peptid 44-53K 121-128K 334-349R gondii ME49] Score: MW [kDa]: pl:	es: equence DPVDDAAIPR.V STALDOVR.A NAAVKDEESVEQAEI	119.77 37.00 5.43 3 3 EA - 95.74 31.00 10.46	Modification
Accessio Database Seq. Cove 157 92 113 Protein 5: Accessio Database	n: erage [%]: No. of <u>Cmpds.</u> 1 2 1 : :	9 N 9 534.7590 438.6990 859.8500 6 9 N	ypothetical i[23783441 ICBInr .70 % <u>A m/z</u> (ppm) .19.91 .58.59 .45.82 OS ribosom i[23783198 ICBInr	proteir 9 z 2 2 al prot	Rt [min] 25.0 19.6 21.3	Score 43.3 50.7 25.8	plasr P 0 1	ha gondii ME49] Score: MW [kDa]: pl: No. of Peptid Range S 44-53K 121-128K 334-349R gondii ME49] Score: MW [kDa]:	es: equence DPVDDAAIPR.V STALDOVR.A NAAVKDEESVEQAEI	119.77 37.00 5.43 3 EA- 95.74 31.00	Modification
Accessio Database Seq. Cove 157 92 113 Protein 5: Accessio Database	n: erage [%]: No. of <u>Cmpds.</u> 1 2 1 : :	9 N 9 534.7590 438.6990 859.8500 6 9 N	ypothetical i[23783441 ICBInr .70 % <u>A m/z</u> (ppm) .19.91 .58.59 .45.82 OS ribosom i[23783198 ICBInr	proteir 9 z 2 2 al prot	Rt [min] 25.0 19.6 21.3	Score 43.3 50.7 25.8	P 0 1 lasma	Ana gondii ME49 Score: MW [kDa]: pl: No. of Peptid 44-53K 121-128K 334-349R gondii ME49] Score: MW [kDa]: pl:	es: equence DPVDDAAIPR.V STALDDVR.A NAAVKDEESVEQAEI es:	119.77 37.00 5.43 3 3 EA - 95.74 31.00 10.46	Modification

			Carbamidor								
		-						No. of Pept	tides:	1	
	erage [%]:		.50 %					pl:		9.09	
Accessio Database			126983887 ICBInr					Score: MW [kDa]:		17.30	
Protein 8:			urface antig ill26983887		2 [Toxoplasma	a gondii]		Score:		61.60	
90	2	466.2410	-/9.48	2	19.4	67.5	U	193-201	R.AAQEALIQK.N		
Cmpd. 90	No. of Cmpds. 2	m/z meas. 486.2410	∆ m/z [ppm] -79.48	z 2	Rt [min] 19.4	Score 67.5	P	-	Sequence R.AAQEALIQK.N		Modification
	c.ugc [/0].							No. of Pept	ides:	1	
	erage [%]:		20 %					pl:		9.06	
atabase			1 23784398 ICBInr					Score: MW [kDa]:		67.48 23.60	
rotein 7:			ypothetical		TGME49_01	1630 [Tox	oplasm	a gondii ME4 Score:	19]	67.48	
126	1	426.1770	-135.40	2	22.2	26.3	0	1545-1551	R.LYASELR.G		
49	1	455.1840	(ppm) 1000.74	2	[min] 15.3	52.5	0	1533-1540	R.VGSLMETR.V		Oxidation: 5
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
Modificat	ion(s):	C	Dxidation								
								No. of Pept	tides:	2	
Seq. Cov	erage [%]:	0	.70 %					pl:		5.11	
Database			CBInr					MW [kDa]:		226.10	
Protein 6:			onserved h iil22148552		tical protein [T	oxoplasm	a gond	ii GT1] Score:		78 76	
64	1	429.7050	-75.90	2	16.9	36.1	0	122-128	R.LLQEAER.Q		
44	1	420.6730	-154.37	2	15.0	59.7	0		R.VGGNIQPR.R		
	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification

Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence	Modification
45	1	529.7210	-66.10	2	15.1	61.6	0	108-118	K.CVAEAGAPAGR.N	Carbamidomethyl: 1
Search Search Search		1	Amazon_B	Bops_I	IS - Protein NCBI_2014 9_GB2_01_	-08-20 1	5:22:	38		
Protein 1: Accessio Database Seq. Cove Modificat	n: : erage [%]:	9 1 5	ii 13957751 VCBInr i9.10 %	Ī	? [Toxoplasma Deamidated	a gondii]		Score: MW [kDa]: pl: No. of Pept	815.1 19.00 9.35 13	I
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [mqq]	z	Rt [min]	Score	Р	Range	Sequence	Modification
319	1	585.2370	-62.47	3	27.7	22.6	0	44-60	K.TVDAPSSGSVVFQCGDK.L	Carbamidomethyl: 14
450	2	785.3580	-45.07	2	34.5	37.8	0	61-75	K.LTISPSGEGDVFYGK.E	
456	4	471.2400	-129.31	3	34.6	92.2	1	82-95	R.KLTTVLPGAVLTAK.V	
512	2	428.5840	-43.45	3	38.0	60.2	0	83-95	K.LTTVLPGAVLTAK.V	
497	1	645.6910	-54.35	3	36.9	29.0	1	83-101	K.LTTVLPGAVLTAKVQQPAK.G	
422	1	785.6250	-31.40	4	32.9	22.0	1		K.VQQPAKGPATYTLSYDGTPEKPQ VLCYK.C	Carbamidomethyl: 26
432	2	830.0520	-26.10	3	33.5	89.1	0		K.GPATYTLSYDGTPEKPQVLCYK. C	Carbamidomethyl: 20
128	1	709.9700	-36.11	3	17.8	35.0	1		K.CVAEAGAPAGRNNDGSSAPTPK. D	Carbamidomethyl: 1; Deamidated: 13
118	3	709.6410	-37.53	3	17.3	51.8	1		K.CVAEAGAPAGRNNDGSSAPTPK. D	Carbamidomethyl: 1
47	3	544.7090	-68.60	2	12.8	76.3	0		R.NNDGSSAPTPK.D	Deamidated: 1
35	4	497.8510	-66.66	3	12.0	67.1	1		R.NNDGSSAPTPKDCK.L	Carbamidomethyl: 13; Deamidated: 2
23	6	497.5170	-78.75	3	11.4	68.1	1	135-148	R.NNDGSSAPTPKDCK.L	Carbamidomethyl: 13
Bruker					Printed:			December 15	, 2014	

311	1	576.8230	-39.91	2	27.4	37.8	1	149-159	K.LIVRVPGADGR.V			-
Protein 2			Rochlama: I	ull=Do		rotain E: S	bort=0	rotain CRA 6	: AltName: Full=p21: Flags: P	rocurror		
Accessio			il2507039	uii-De	nse granule p	rotein 5, c	non-r	Score:	, Autoante, i dii-p21, i laga. i	221.83		
Database			ICBInr					MW [kDa]:		13 00		
	erage [%]:		5 00 %					pl:		5.69		
004.001	ciuge [/ej.	5	5.00 /6					No. of Pep	tides:	4		
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence		Modification	
20	2	502.9610	-47.61	4	11.2	54.9	1		R.GREQQQVQQHEQNEDR.S			
14	2	599.2330	-61.71	3	10.9	47.8	0	45-58	R.EQQQVQQHEQNEDR.S			
204	1	607.7590	-45.01	4	21.7	47.8	1	45-63	R.EQQQVQQHEQNEDRSLFER.	3		
270	1	779.6260	-62.65	3	25.2	71.3	1	100-120	R.AIQEESKESATAEEEEVAEEE	e		-
Database Seq. Cov Modificat	erage [%]:	0	ICBInr 1.00 % Carbamidor	methyl,	Deamidated			MW [kDa]: pl: No. of Pep	lides:	17.90 7.47 0		
Cmpd.	No. of Cmpds.	m/z meas.	Δm/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification	
Protein 4 Accessio Database Seq. Cov Modificat	erage [%]:	9 N 2	onserved h il 22148477 ICBInr 11.50 % Carbamidor	78	tical protein [T	oxoplasm	a gond	ii GT1] Score: MW [kDa]: pl: No. of Pep	ides:	107.24 20.80 5.68 2		
Cmpd.	No. of	m/z meas.	∆ m/z	z	Rt	Score	Р	Range	Sequence		Modification	
	Cmpds.		[ppm]		[min]							
398	2	898.4190	-42.24	3	31.6	50.3	0	44-69	R.ILVHSGDSVTIQCPGAIASNPC	D	Carbamidomethyl: 13	_
Bruker					Printed:			December 15	, 2014			

									VSK.Y		
164	1	870.8150	-56.06	2	19.7	56.9	0	70-84	K.YVCPGEEPNCTDATK.A		Carbamidomethyl: 3, 10
Protein \$					NCLIV_0218	00 [Neosp	ora ca		ool]		
Accessi			gi 32511683	18				Score:		98.55	
Databas			VCBInr					MW [kDa]:		522.10	
Seq. Co	verage [%]:	(0.20 %					pl:		5.40	
								No. of Pep	tides:	2	
Modifica	tion(s):		Deamidated								
Cmpd.	No. of	m/z meas.	Δm/z	z	Rt	Score	Р	Range	Sequence		Modification
ompu.	Cmpds.	mer mens.	[ppm]	-	[min]	00010		runge	ocquence		mouncedon
300	1	487.2190	-129.00	2	26.7	44.8	0		K.IQLSQLAAK.W		Deamidated: 2, 5
300	1	487.2190	881.59	2	26.7	53.8	0	1088-1096	K.IQLSQLAAK.W		Deamidated: 2
Seq. Co	/erage [%]:	3						No. of Pep	tides:	1	
Seq. Con Cmpd.	No. of	m/z meas.	∆ m/z	z	Rt	Score	Р	No. of Pep Range	Sequence	1	Modification
-			[ppm]		Rt [min] 36.3	Score 57.1	P	Range			Modification

December 15, 2014

72

Printed:

Bruker

Name:	Info & Prot		тG							
Protein 1 Accessio	Result Location :	F // s	PTG2_20 BOPS/PT surface anti- pi 11252376	14-08- G2/ gen 1 [T	IS - Protein 20 15:51:32 ⁻ oxoplasma go	2	-	Score:	1322.33	
Database			VCBInr					MW [kDa]: pl:	34.70	
seq. Cov	erage [%]:	4	18.20 %					No. of Pep	9.29 tides: 22	
Modificat	tion(s):	(Carbamidor	nethyl (Oxidation. De	amidated		NO. OI Pep	1065. 22	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence	Modification
385	3	615.0020	-2.46	3	36.0	76.9	0		K.STAAVILTPTENHFTLK.C	
336	1	557.7730	-46.70	4	33.3	74.0	1		K.STAAVILTPTENHFTLKCPK.T	Carbamidomethyl: 18
310	2	544.2640	-40.46	3	32.0	50.2	0	85-99	K.TALTEPPTLAYSPNR.Q	
36	2	749.3170	-27.01	2	16.1	63.1	0	100-112	R.QICPAGTTSSCTSK.A	
										Carbamidomethyl: 3, 11
60	5	508.7140	-125.41	2	17.8	54.2	0		R.ASSVVNNVAR.C	Carbamidomethyl: 3, 11
	5	508.7140 509.2460	-46.76	2	17.8 19.3	81.3	0	180-189	R.ASSVVNNVAR.C R.ASSVVNNVAR.C	Deamidated: 6
60	•						-	180-189	R.ASSVVNNVAR.C	
60 84 169 156	4 2 4	509.2460 677.7940 677.3090	-46.76 -36.90 -26.58	2 2 2	19.3 24.2 23.5	81.3 64.2 85.6	0	180-189 180-189 190-202 190-202	R.ASSVVNNVAR.C R.ASSVVNNVAR.C R.CSYGANSTLGPVK.L R.CSYGANSTLGPVK.L	Deamidated: 6 Carbamidomethyl: 1; Deamidated: 6 Carbamidomethyl: 1
60 84 169 156 303	4 2 4 2 2	509.2460 677.7940 677.3090 782.8550	-46.76 -36.90 -26.58 -43.57	2 2 2 2 2	19.3 24.2 23.5 31.5	81.3 64.2 85.6 76.8	0	180-189 180-189 190-202 190-202 203-217	RASSVVNNVAR.C RASSVVNNVAR.C R.CSYGANSTLGPVK.L R.CSYGANSTLGPVK.L K.LSAEGPTTMTLVCGK.D	Deamidated: 6 Carbamidomethyl: 1; Deamidated: 6 Carbamidomethyl: 1 Carbamidomethyl: 13
60 84 169 156 303 206	4 2 4 2 2	509.2460 677.7940 677.3090 782.8550 790.8600	-46.76 -36.90 -26.58 -43.57 -33.59	2 2 2 2 2 2 2	19.3 24.2 23.6 31.6 26.3	81.3 64.2 85.6 76.8 57.2	0	180-185 180-185 190-202 190-202 203-217 203-217	RASSVVNNVAR.C RASSVVNNVAR.C R.CSYGANSTLGPVKL R.CSYGANSTLGPVKL KLSAEGPTTMTLVCGK.D KLSAEGPTTMTLVCGK.D	Deamidated: 6 Carbamidomethyl: 1; Deamidated: 6 Carbamidomethyl: 1 Carbamidomethyl: 13 Carbamidomethyl: 13; Oxidation: 9
60 84 169 156 303 206 197	4 2 4 2 2	509.2460 677.7940 677.3090 782.8550 790.8600 660.6490	-46.76 -36.90 -26.58 -43.57 -33.59 -22.80	2 2 2 2 2 2 3	19.3 24.2 23.6 31.6 26.3 25.9	81.3 64.2 85.6 76.8 57.2 29.2	0	180-185 180-185 190-202 203-211 203-217 203-221	R ASSVIVNIVAR C RASSVIVNIVAR C R CSYGANSTLGPVK L R CSYGANSTLGPVK L K LSAEGPTTMTLVCGK D K LSAEGPTTMTLVCGK D K LSAEGPTTMTLVCGKDGVK V	Deamidated: 6 Carbamidomethyl: 1; Deamidated: 6 Carbamidomethyl: 1 Carbamidomethyl: 13 Carbamidomethyl: 13; Oxidation: 9 Carbamidomethyl: 13; Oxidation: 9
60 84 169 156 303 206 197 184	4 2 4 2 2 2 1	509.2460 677.7940 677.3090 782.8550 790.8600 660.6490 895.6980	-46.76 -36.90 -26.58 -43.57 -33.59 -22.80 -40.37	2 2 2 2 2 2 2	19.3 24.2 23.5 31.5 26.3 25.9 25.3	81.3 64.2 85.6 76.8 57.2 29.2 61.4	0	180-185 180-185 190-202 203-217 203-217 203-221 203-221 203-221	R ASSVIVNIVAR C RASSVIVNIVAR C R CSYGANSTLGPVK L R CSYGANSTLGPVK L K LSAEGPTTMTLVCGK D K LSAEGPTTMTLVCGK D K LSAEGPTTMTLVCGKDGVK V K DGVKVPQDNNQYCSGTTLTGCNE K S	Deamidatad: 5 Carbamidomethyl: 1; Deamidated: 6 Carbamidomethyl: 13 Carbamidomethyl: 13 Carbamidomethyl: 13; Oxidation: 9 Carbamidomethyl: 13; Oxidation: 9 Carbamidomethyl: 13, 21
60 84 169 156 303 206 197	4 2 4 2 2 2	509.2460 677.7940 677.3090 782.8550 790.8600 660.6490	-46.76 -36.90 -26.58 -43.57 -33.59 -22.80	2 2 2 2 2 2 3	19.3 24.2 23.6 31.6 26.3 25.9	81.3 64.2 85.6 76.8 57.2 29.2	0 0 0 0 0	180-185 180-185 190-202 203-217 203-221 203-221 218-241 222-241	RASSVWNIVARC RASSVWNIVARC RCSYGANSTLGPVKL KLSAEGPTTMTLVCGKD KLSAEGPTTMTLVCGKD KLSAEGPTTMTLVCGKDKV KLSAEGPTTMTLVCGKDGKV KLSAEGPTTMTLVCGKDGKV	Deamidated: 6 Carbamidomethyl: 1; Deamidated: 6 Carbamidomethyl: 1 Carbamidomethyl: 13 Carbamidomethyl: 13; Oxidation: 9 Carbamidomethyl: 13; Oxidation: 9

Bruker

December 15, 2014

Printed:

318	6	773.0150	-32.36	3	32.3	54.6	0	250-271	K.LSENPWQGNASSDNGATLTINK.	
330	3	773.3500	-23.30	3	32.9	71.5	0	250-271	K.LSENPWQGNASSDNGATLTINK.	Deamidated: 14
330	3	773.3500	-23.30	3	32.9	48.5	0	250-271	K.LSENPWQGNASSDNGATLTINK. E	Deamidated: 9
374	1	1059.4900	-18.13	3	35.5	80.5	1	250-279	K.LSENPWQGNASSDNGATLTINKE AFPAESK.S	
387	1	1059.8180	-18.13	3	36.1	56.2	1		K.LSENPWQGNASSDNGATLTINKE AFPAESK.S	Deamidated: 14
372	1	795.1200	-12.24	4	35.4	34.5	1		K.LSENPWQGNASSDNGATLTINKE AFPAESK.S	Deamidated: 21
54	2	439.6620	-123.60	2	17.4	39.0	0	272-279	K.EAFPAESK.S	
148	2	652.8070	-34.28	2	22.9	67.1	0	280-292	K.SVIIGCTGGSPEK.H	Carbamidomethyl: 6
Modificat		(Oxidation, De			pl: No. of Pept		
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р		Sequence	Modification
74				2	18.4	49.3	0			
/4	1	744.7800	-52.20	2	10.4	45.3		83-96	R.QICSAGTTSSCTSK.A	Carbamidomethyl: 3, 11; Deamidated: 1
Protein 3	: n:	C A g	Chain F, Str Monoclon ii 85543998	ucture I	Of The Immur		-	pe Displayed Score:	By The Surface Antigen 1 (Sag1) Of T 1029.26	Deamidated: 1
Protein 3 Accessio Database		C A g	Chain F, Str Monoclon ii 85543998 VCBInr	ucture I	Of The Immur		-	pe Displayed Score: MW [kDa]:	By The Surface Antigen 1 (Sag1) Of T 1029.26 26.60	Deamidated: 1
Protein 3 Accessio Database	: n:	C A g	Chain F, Str Monoclon ii 85543998	ucture I	Of The Immur		-	pe Displayed Score: MW [kDa]: pl:	By The Surface Antigen 1 (Sag1) Of T 1029.26 26.60 7.78	Deamidated: 1
Protein 3 Accessio Database Seq. Cov	n: :: erage [%]:	0 4 9 1 5	Chain F, Str Monoclon ii 85543998 NCBInr 5.90 %	ucture (al Antib	Of The Immur	nodominan	-	pe Displayed Score: MW [kDa]:	By The Surface Antigen 1 (Sag1) Of T 1029.26 26.60 7.78	Deamidated: 1
Protein 3 Accessio Database Seq. Cov	n: :: erage [%]:	0 4 9 1 5	Chain F, Str Monoclon ii 85543998 NCBInr 5.90 %	ucture (al Antib	Of The Immur ody	nodominan	-	pe Displayed Score: MW [kDa]: pl: No. of Pept	By The Surface Antigen 1 (Sag1) Of T 1029.26 26.60 7.78	Deamidated: 1 oxoplasma Gondii Complexed T
Protein 3 Accessio Database Seq. Cov Modificat	n: :: erage [%]: ion(s): No. of	0 A 9 N 5	Chain F, Str A Monoclon pij85543998 VCBInr 5.90 % Carbamidor A m/z	ucture i al Antib l nethyl,	Of The Immur ody Oxidation, De	nodominan amidated	nt Epito	pe Displayed Score: MW [kDa]: pl: No. of Pept Range	By The Surface Antigen 1 (Sag1) Of T 1029.26 26.60 7.78 1 ides: 1	Deamidated: 1

Protein 4 Accessio Database Seq. Cov Modificat	n: : erage [%]:	9 N 2	i 23783781 ICBInr 14.70 %	9	ning protein [1 Oxidation, De		a gon	dii ME49] Score: MW [kDa]: pl: No. of Pep	ides:	667.49 39.10 7.76 13	
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
320	4	702.8600	-17.21	2	38.9	90.6	0	136-148	K.EWVTGDSVLTGLK.I		
189	4	702.8100	-62.47	2	25.4	35.0	0	149-161	K.ISVPESQYPANAK.S		Deamidated: 11
176	3	702.8280	-36.86	2	25.4	27.2	0		K.ISVPESQYPANAK.S		Deamidated: 7
166	5	468.5520	-53.41	3	24.7	76.1	0	149-161	K.ISVPESQYPANAK.S		
205	4	548.9320	-1.09	3	26.4	44.2	0	173-186	K.TGNTCMLTIHVEPR.D		Carbamidomethyl: 5; Oxidation: 6
17	2	585.7770	-33.67	2	12.5	25.4	1	187-196	R.DPAVERQEAR.C		
117	7	650.2740	-36,77	2	20.8	62.6	0	197-207	R.CSYTENSTLPK.I		Carbamidomethyl: 1
142	1	650.7570	-50.58	2	22.2	24.7	0		R.CSYTENSTLPK.I		Carbamidomethyl: 1; Deamidated: 6
299	2	448.6890	-66.18	2	35.9	22.4	Ö	259-265	K.WFFGDPK.S		
152	3	430.6910	-105.78	2	23.0	54.5	0	266-273	K.SPLGAMLR.I		Oxidation: 6
280	5	422.7030	-85.41	2	30.6	65.8	0	266-273	K.SPLGAMLR.I		
29	2	645,7590	-43.49	2	13.5	79.6	0	330-345	R.GGGQGGGGGGLAGSDSR.Q		Deamidated: 4
22	8	645.2550	-62.11	2	12.7	80.5	0	330-345	R.GGGQGGGGGGLAGSDSR.Q		
Protein 5 Accessio Database Seq. Cov Modificat	n: : erage [%]:	9 N 3	ii 13957753 ICBInr i6.90 %	ī	2 [Toxoplasma Deamidated	a gondii]		Score: MW [kDa]: pl: No. of Pep	tides:	463.39 19.10 9.33 9	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
192	1	884.3860	-32.26	2	28.0	34.6	0	44-60	K.TVEAPSSGSVVFQCGDK.L		Carbamidomethyl: 14
Bruker					Printed:			December 15	2014		3

244	1	785.3740	-24.70	2	34.2	23.5	0		K.LTISPSGEGDVFYGK.E		
256	1	556.3420	-28.58	2	36.7	49.0	0		K.LTTVLPGAVLK.A		
47	7	529.7410	-28.34	2	15.1	67.5	0		K.CVAEAGAPAGR.N		Carbamidomethyl: 1
47	2	728.6560	-25.79	3	17.4	44.9	1		K.CVAEAGAPAGRNNDGG		Carbamidomethyl: 1
51	1	728.9960	-9.32	3	17.8	48.5	1		K.CVAEAGAPAGRNNDGG	SSAPTPK	Carbamidomethyl: 1; Deamidated: 12
19	2	573.2280	-50.76	2	12.6	73.5	0		R.NNDGGSSAPTPK.D		Deamidated: 1
11	3	516.5330	-58.73	3	11.6	64.7	1		R.NNDGGSSAPTPKDCK.L		Carbamidomethyl: 14
15	2	516.8720	-37.42	3	12.2	42.1	1	135-149	R.NNDGGSSAPTPKDCK.L		Carbamidomethyl: 14; Deamidated: 1
Protein 6: Accession atabase ieg. Cove	n:	9 N	urface antig i 23784524 ICBInr 0.00 %		xoplasma gon	dii ME49]		Score: MW [kDa]: pl:		449.64 41.90 8.67	
Modificati	on(s):	c	Carbamidon	nethyl, I	Deamidated			No. of Pept	ides:	11	
Cmpd.	No. of Cmpds.	m/z meas.	∆m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence		Modification
273	2	586.2920	-50.34	2	32.0	35.0	0		K.ITYFGTLTQK.A		
131	2	403.6860	-36.75	2	21.6	40.5	0	65-70	K.APNWYR.C		
100	2	475.2460	-46.93	3	20.4	33.0	1	76-88	R.AKEEVVGHVTLNK.E		
28	2	440.9210	-39.96	4	13.8	28.8	1	119-132	R.VCHIDAKDODDCER.N		Carbamidomethyl: 2, 12
355	2	591.2830	-51.90	2	39.3	59.2	0	135-145	R.GFLTDYIPGAK.Q		
165	2	588,9550	-28.85	3	23.6	51.3	1	151-165	K.IEKVEQNGEQSVLYK.F		Deamidated: 7
165	2	588.9550	-28.85	3	23.6	39.0	1		K.IEKVEQNGEQSVLYK.F		Deamidated: 10
133	3	697.8150	-40.90	2	22.3	73.9	0		K.VEQNGEQSVLYK.F		Deamidated: 4
144	5	697.7980	640.24	2	22.3	34.9	0	154-165	K.VEQNGEQSVLYK.F		
274	5	488.7320	-65.81	2	30.2	70.4	0	229-236	K.NANFIEIR.C		
312	1	489.2150	-84.16	2	33.4	28.6	0	229-236	K.NANFIEIR.C		Deamidated: 1
Protein 7: Accession Database Seq. Cove	n:	9 N	RS domain i 23783082 ICBInr 3.10 %		ning protein [T	oxoplasm	ia gono	dii ME49] Score: MW [kDa]: pl:		387.23 34.20 5.55	
Bruker					Printed:			December 15	, 2014		

Modificat	ion(s):	0	Carbamidor	nethyl				No. of Pept	ides:	7	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
210	2	586.7720	-67.33	2	26.7	35.3	0		K.GGISVEVDPATK.K		
162	2	434.2040	-86.94	3	23.7	27.3	1	52-64	K.GGISVEVDPATKK.V		
304	2	638.3020	-25.32	3	31.5	65.4	0	93-110	R.VNLQGETPLAEHFGEGSK.A		
270	1	582.0330	-31.43	4	29.7	98.4	1		R.VNLQGETPLAEHFGEGSKANV T	К.	
13	1	708.2830	-39.43	2	11.3	80.9	0		R.APTGDPSQNSDGNR.G		
134	1	501.5460	-63.87	3	22.2	46.1	1		K.ELPKTEATYCYK.C		Carbamidomethyl: 10
62	2	517.1830	-117.17	3	17.8	33.9	1	271-285	K.CSPLVDSGDTADGKK.N		Carbamidomethyl: 1
Accessio Database Seq. Cov Modificat	: erage [%]:	N 3	il 3123732 ICBInr I3.10 % Dxidation					Score: MW [kDa]: pl: No. of Pept	ides:	366.08 30.70 4.55 8	
Cmpd.	No. of	m/z meas.	Δ m/z	z	Rt	Score	Ρ	Range	Sequence		Modification
100	Cmpds.	639.5920	[ppm] -39.09	3	[min] 20.2	50.1	1	40.99	K.LAEQAERYDEMAEAMK.N		Oxidation: 11, 15
286	1	454.2440	-48.45	2	30.6	28.8	0		R.NLLSVAYK.N		Oxidation: 11, 15
49	2	452,2000	-134.71	2	17.0	51.8	0		R.IISSVEQK.E		
115	1	454,2370	-52.67	3	21.2	24.6	1	74-85	R.IISSVEQKELSK.Q		
159	1	485.2160	-35.11	3	23.6	36.5	1	124-135	K.TSDSESKVFYYK.M		
102	1	458,5320	-55.89	3	20.5	42.0	1	143-154	R.YISEFSGEEGKK.Q		
19	2	683.7970	-26.78	2	13.2	89.5	0	155-166	K.QAADQAQESYQK.A		
180	1	574.9590	-1.89	3	25.0	42.7	0	167-182	K.ATETAEAELPSTHPIR.L		
Protein 9 Accessio Database	n:	g	ctin [Toxop i 23784073 ICBInr 10.50 %	lasma (1	gondii ME49]			Score: MW [kDa]: pl:		349.56 41.90 4 91	
004.001	eruge [/e].		0.00 /0							4.01	

							No. of Pept	ides:	7	
odification(s):	(Carbamidor	nethyl,	Oxidation						
Cmpd. No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence		Modification
34 4	464.6880	-85.60	2	14.0	69.8	0		K.AGVAGDDAPR.A		
41 1	476.5250	-43.03	3	15.7	28.1	1		K.DCYVGDEAQSKR.G		Carbamidomethyl: 2
287 4	652.0080	-28.10	3	34.2	68.3	0		R.VAPEEHPVLLTEAPLNPK.A		
24 3	532.7100	-57.72	2	13.2	50.4	0		K.AAEDSSDIEK.S		
307 2	888.9120	-33.49	2	36.7	52.3	0		K.SYELPDGNIITVGNER.F		
221 1	589.2890	-36.13	2	28.3	20.7	0	317-327	K.ELTSLAPSTMK.I		
159 3	597.2780	-49.80	2	24.1	59.9	0	317-327	K.ELTSLAPSTMK.I		Oxidation: 10
eq. Coverage [%]: lodification(s):	-	23.40 % Carbamidor	nethyl,	Oxidation, De	amidated		pl: No. of Pept	ides:	6.03 8	
Cmpd. No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
86 2	419.8610	-42.69	3	18.7	20.1	0	91-101	K.VPGKPDSEWSR.N		
52 2	401.1880	-96.92	2	16.1	25.8	0	114-120	R.EIGQNIK.K		
230 4	589.2790	-59.76	2	27.7	75.9	0	168-178	R.YVADALSVSPR.D		
283 1	695.3160	-44.52	3	33.3	20.6	0	179-197	R.DVQATVIGTHGDCMVPLVR.	Y	Carbamidomethyl: 13; Oxidation: 14
248 1	648.8260	-29.83	2	30.0	29.5	0		R.YITVNGYPIQK.F		Deamidated: 5
271 1	648.3010	-80.74	2	30.0	33.0	0		r.yitvngypiqk.f		
	408.6850	-115.81	2	17.0	44.5	0		K.VSGGEIVR.F		
59 3		-94.65	2	27.5	46.1	0	313-322	K.SVDDVMALNK.A		
59 3 211 1	546.2220									

	Dearnidated					No. of Pep	tides:	7	
m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence		Modification
441.6930	-59.82	2	18.9	26.2	0	52-59	R.LTSFSDGR.L		
537.2770	-11.02	2	24.4	41.5	0	60-69	R.LQALDSVDGR.S		
628.2820	-26.69	3	32.7	57.8	0	70-86	R.SAPPEFTDTVTGQYDVR.T		
571.7800	-17.57	2	33.9	35.2	0	323-332	K.TFFSAEELAK.I		
576.7540	-45.44	2	18.6	81.8	0	347-356	R.VTFAENDTQK.V		
577.2520	-35.02	2	19.3	26.9	0				Deamidated: 6
412.7120	-85.90	2	19.6	24.1	0	401-408	R.EIVAPAPK.G		
g N 1	i 13957751 ICBInr 5.10 %	-		gondig		Score: MW [kDa]: pl: No. of Pep	tides:	238.14 19.00 9.35 3	
m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence		Modification
m/z meas. 471.2790		z 3		52.1	P 1	82-95	R.KLTTVLPGAVLTAK.V		Modification
	[ppm]		[min]			82-95	-		Modification
471.2790	[ppm] -46.56	3	[min] 34.7	52.1	1	82-95 83-95	R.KLTTVLPGAVLTAK.V		Modification Carbamidomethyl: 13
471.2790 642.3970 497.5300 b g N N	[ppm] -46.56 -5.13 -52.62	3 2 3 pecific : 7	[min] 34.7 38.1	52.1 35.6 44.3	1 0 1	82-95 83-95 135-148	R.KLTTVLPGAVLTAK.V K.LTTVLPGAVLTAK.V R.NNDGSSAPTPKDCK.L ii ME49]	232.47 41.50 6.23 5	
471.2790 642.3970 497.5300 b g N N	[ppm] -46.56 -5.13 -52.62 radyzoite-s ii]23784117 ICBInr 7.80 %	3 2 3 pecific : 7	[min] 34.7 38.1 11.5	52.1 35.6 44.3	1 0 1	82-95 83-95 135-145 plasma gond Score: MW [kDa]: pl:	R.KLTTVLPGAVLTAK.V K.LTTVLPGAVLTAK.V R.NNDGSSAPTPKDCK.L ii ME49]	41.50 6.23	
	537.2770 628.2820 571.7800 576.7540 577.2620 412.7120 S 9 N 1	577.2770 -11.02 628.2820 -26.68 571.7800 -17.57 576.7540 -45.44 577.252 -35.02 412.7120 -85.90 surface antig gi[13957751 NCEInr 15.10 %	537,2770 -11.02 2 628,2828 -26.68 3 571,760 -17.57 2 576,7540 -46.44 2 412,7120 -85.90 2 412,7120 -85.90 2 surface antigen P22 g)(13957751 NCBInr	637.2776 -11.62 2 2.44 628.2828 -26.69 3.27 91.7890 -17.87 2 3.9.9 976.7864 -45.44 2 15.6 91.72520 -35.62 15.8 977.2529 -35.62 2 15.9 -45.44 2 15.6 977.2529 -35.62 2 15.9 -45.44 2 15.6 surface antigen P22 [Toxoplasme gl13957751 NCEInr NCEInr NCEInr 15.10 %	897.2778 -11.02 2 2.44 41.8 678.2828 26.66 3 32.7 67.8 677.1760 -17.57 2 3.3 3.2 677.1760 -17.57 2 3.3 3.2 677.1760 -17.57 2 3.3 3.2 677.1760 -17.57 2 3.5 3.2 677.1760 -17.57 2 3.5 3.2 677.1760 -17.57 2 3.5 3.2 677.28 -3.8.9 2 19.8 5.4.1 91.3057751 NCBInv NCBInv 15.10 %	937.2776 -11.22 2.44 41.5 0 671.7860 -17.57 2 3.84 5.27 67.6 671.7860 -17.57 2 3.84 5.27 67.6 671.7860 -17.57 2 3.84 0 67.7 671.7860 -17.57 2 3.84 0 67.7 671.7860 -17.57 1.84 2.44 1.84 1.84 2.44 127.1720 -38.38 -18.6 2.44 0 1.84 2.44 0 127.1720 -38.38 -18.6 2.44 0 1.84 2.44 0 127.1720 -38.38 -19.2 1.84 2.44 0 1.92 sulface antigen P22 [Coxoptissma gondii] 0[[1307751 1.92 1.92 1.92 1.92 VCBInr VCBInr 1.51.10 % 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4	937.2776 -1122 2.44 41.5 0 6646 628.2826 327.7 77.4 0 75.4 77.5 0 75.4 677.7666 -17.87 2 3.38 3.22.33 35.2 67.8 0 323.33 57.4 0 37.4 3.4 0 37.4 3.4 0 37.4 3.4 0 37.4 3.4 0 37.4 3.4 0 37.4 3.4 0 37.4 3.4 0 37.4 3.4 0 37.4 3.4 0 37.4 3.4 0 37.4 3.4 0 37.4 3.4 0 37.4 3.4 0 37.4 3.4 0 37.4 3.4 0 37.4 3.4 0 37.4 3.4 0 37.4 0 37.4 0 37.4 0 37.4 0 37.4 0 37.4 0 37.4 0 37.4 0 37.4 37.5 37.5 </td <td>937.2770 11.22 2.44 41.5 0 64-08kLOLDSYDGR.8 528.1260 328.43 3.52.7 67.8 0 70.845.80PEFT01Y003Y0VK.1 67.1760 17.57 2.33.8 3.52.8 0 23.33.5 178.842.80PEFT01Y003Y0VK.1 67.1760 17.57 2.33.8 0.52.33.5 0 23.33.5 178.642.41 76.1760 17.87 1.6 0.1 0.14.61.97.178.807.074.9 16.7 76.1760 1.6 0.1 0.14.61.98.177.84.070.42 16.6 16.7 0.14.778.407.074.9 76.176.01 1.6 0.1 0.14.84.2 1.6 0.1 0.14.94.177.14.1076.42 127.128 0.83.89 2 1.6 0.3.3 0 67.463.86.EVA.84.94.05.0 surface antigen P22 [Toxoplasma gondij 0.11.48.97.75.1 Score: 16.10.96.16 NCEIn: NUCEIN: NCEIN: NUCEIN: NCEIN: NUCEIN: NCEIN: <t< td=""><td>937.2770 -11.22 2 2.4.4 41.5 0 64-0#k.LOLDSPORERS 528.1260 328.48 3 3.27 67.8 0 76.95.85.89 76.74.8 677.1660 -17.87 2 3.3 35.2 0 25.33.24.17#5AECLAVL 677.1660 -17.87 2 3.3 35.2 0 22.33.24.17#5AECLAVL 677.1660 -17.87 1.6 61.6 2.43.34.977AEATORAV - 677.1680 -16.4 61.6 2.43.34.17#FAEATORAV - - 777.1 -16.8 61.6 2.43.34.977AEATORAV - - 712.71.23 -63.83.89 2 1.5.4 61.463.87EVAEATORAV - surface antigen F22 [Toxoplasma gondi) pi(1367751 Score: 28.14 10.0 NCEInr MW [KDa]: 10.00 10.0 0.0 20.0 10.0 0.0 10.0 0.0 10.0 0.0 10.0 0.0 0.0 10.0 0.0 10.0</td></t<></td>	937.2770 11.22 2.44 41.5 0 64-08kLOLDSYDGR.8 528.1260 328.43 3.52.7 67.8 0 70.845.80PEFT01Y003Y0VK.1 67.1760 17.57 2.33.8 3.52.8 0 23.33.5 178.842.80PEFT01Y003Y0VK.1 67.1760 17.57 2.33.8 0.52.33.5 0 23.33.5 178.642.41 76.1760 17.87 1.6 0.1 0.14.61.97.178.807.074.9 16.7 76.1760 1.6 0.1 0.14.61.98.177.84.070.42 16.6 16.7 0.14.778.407.074.9 76.176.01 1.6 0.1 0.14.84.2 1.6 0.1 0.14.94.177.14.1076.42 127.128 0.83.89 2 1.6 0.3.3 0 67.463.86.EVA.84.94.05.0 surface antigen P22 [Toxoplasma gondij 0.11.48.97.75.1 Score: 16.10.96.16 NCEIn: NUCEIN: NCEIN: NUCEIN: NCEIN: NUCEIN: NCEIN: <t< td=""><td>937.2770 -11.22 2 2.4.4 41.5 0 64-0#k.LOLDSPORERS 528.1260 328.48 3 3.27 67.8 0 76.95.85.89 76.74.8 677.1660 -17.87 2 3.3 35.2 0 25.33.24.17#5AECLAVL 677.1660 -17.87 2 3.3 35.2 0 22.33.24.17#5AECLAVL 677.1660 -17.87 1.6 61.6 2.43.34.977AEATORAV - 677.1680 -16.4 61.6 2.43.34.17#FAEATORAV - - 777.1 -16.8 61.6 2.43.34.977AEATORAV - - 712.71.23 -63.83.89 2 1.5.4 61.463.87EVAEATORAV - surface antigen F22 [Toxoplasma gondi) pi(1367751 Score: 28.14 10.0 NCEInr MW [KDa]: 10.00 10.0 0.0 20.0 10.0 0.0 10.0 0.0 10.0 0.0 10.0 0.0 0.0 10.0 0.0 10.0</td></t<>	937.2770 -11.22 2 2.4.4 41.5 0 64-0#k.LOLDSPORERS 528.1260 328.48 3 3.27 67.8 0 76.95.85.89 76.74.8 677.1660 -17.87 2 3.3 35.2 0 25.33.24.17#5AECLAVL 677.1660 -17.87 2 3.3 35.2 0 22.33.24.17#5AECLAVL 677.1660 -17.87 1.6 61.6 2.43.34.977AEATORAV - 677.1680 -16.4 61.6 2.43.34.17#FAEATORAV - - 777.1 -16.8 61.6 2.43.34.977AEATORAV - - 712.71.23 -63.83.89 2 1.5.4 61.463.87EVAEATORAV - surface antigen F22 [Toxoplasma gondi) pi(1367751 Score: 28.14 10.0 NCEInr MW [KDa]: 10.00 10.0 0.0 20.0 10.0 0.0 10.0 0.0 10.0 0.0 10.0 0.0 0.0 10.0 0.0 10.0

204	1	725.8020	-37.99	2	26.3	24.1	0	190-202	K.TFDVGCTYTTTGK.A		Carbamidomethyl: 6
278	2	778.3830	-43.27	2	30.4	65.6	0		K.AAANPAVCQLTVNV		Carbamidomethyl: 8
77	2	624.9420	-40.22	3	18.2	44.3	1		R.LGCVPNKAPQSDSC		Carbamidomethyl: 3
270	1	732.3680	-33.24	2	29.9	36.5	0	353-366	R.TSAPTTCSVLVTVK.	A	Carbamidomethyl: 7
Protein 1 Accessio Database Geq. Cov Nodificat	on: e: verage [%]:	9 N 1	RS domair i 23782971 ICBInr 6.10 % Carbamidor	5	ning protein [1	Foxoplasm	ia goni	dii ME49] Score: MW [kDa]: pl: No. of Pept	ides:	211.33 38.00 5.76 4	
						-		-	1-		las un c
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
310	cilipus.	720.3510	(ppin) -19.29	3	33.3	22.1	1	173-191	K.QNLPPVDKEFIVGCT	OFGKG	Carbamidomethyl: 14
96	1	804,6390	-75.39	3	19.5	72.6	1		RASSKDSQTVTCAYG		Carbamidomethyl: 11
									v		
274	4	560.6280	-3.39	3	32.1	49.9	0		K.AVLTIPHDNFPEAQK		
262	2	452,7260	-48.56	4	29.5						
Protein 1			biquitin, pu	tative [1	Foxoplasma g	51.1 ondii ME4	1 9]		K.AVLTIPHDNFPEAQK		
Accessio Database	on: e: verage [%]:	u 9 N 2		tative [1				293-308 Score: MW [kDa]: pl: No. of Pept	~	186.11 24.40 6.02 5	
Accessio Database Seq. Cov Modificat Cmpd.	on: e: verage [%]:	u 9 2 (m/z meas.	biquitin, pu il23783579 ICBInr 1.30 % Dxidation A m/z (ppm)	tative [1 11	Rt (min)	ondii ME4 Score	9] P	Score: MW [kDa]: pl: No. of Pept Range	ides: Sequence	186.11 24.40 6.02	Modification
Accessio Database Seq. Cov Modificat Cmpd. 130	rerage [%]: tion(s): No. of Cmpds. 1	u 9 2 (m/z meas. 448.5470	biquitin, pu il23783579 ICBInr 1.30 % Dxidation Δ m/z [ppm] -89.12	tative [1 11 z 3	Rt [min] 23.1	Score 21.4	9] P 0	Score: MW [kDa]: pl: No. of Pept Range 40-51	ides: Sequence K.IIDMRPGLVASR.I	186.11 24.40 6.02	Modification Oxidation: 4
Accessio Database Seq. Cov Modificat Cmpd. 130 24	on: erage [%]: tion(s): No. of Cmpds. 1 1	u 9 2 (1 1 1 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	biquitin, pu il23783579 ICBInr 1.30 % Dxidation Δ m/z [ppm] -89.12 -87.90	tative [1 11 z 3 2	Rt [min] 14.6	Score 21.4 29.2	9] P 0 0	Score: MW [kDa]: pl: No. of Pept Range 40-51 66-72	ides: Sequence KIIDMRPGLVASR.I KQLTTYNK.S	186.11 24.40 6.02	
Accessio Database Seq. Cov Modificat Cmpd. 130 24 225	on: erage [%]: tion(s): No. of Cmpds. 1 1 2	448.5470 337.2840	biquitin, pu il/23783579 ICBInr 1.30 % Dxidation <u>A m/z [ppm]</u> -89.12 -87.90 17.93	tative [1 11 2 2 2	Rt [min] 23.1 14.6 31.0	Score 21.4 29.2 25.3	9] P 0 0	Score: MW [kDa]: pl: No. of Pept Range 40-51 66-72 182-189	ides: Sequence KIIDMRPGLVASRJ K.QLTYYNKS	186.11 24.40 6.02 5	
Accessio Database Seq. Cov Modificat Cmpd. 130 24 225 59	n: erage [%]: tion(s): No. of Cmpds. 1 1 2 1	m/z meas. 448.5470 434.1940 537.2840 658.2740	biquitin, pu il/23783579 ICBInr 1.30 % Dxidation Δ m/z [ppm] -89.12 -87.90 17.93 -67.32	tative [1 11 2 2 3	Rt [min] 23.1 14.6 31.0 18.6	Score 21.4 29.2 25.3 35.6	9] P 0 0 1	Score: MW [kDa]: pl: No. of Pept Range 40-51 66-72 182-189 198-216	ides: Sequence KIIDMRPGLVASR.I K.QLTYTYNKS K.LFYFNNQKA K.KNAAVSSTPVNQDE	186.11 24.40 6.02 5	
Accessio Database Seq. Cov Modificat Cmpd. 130 24 225	on: erage [%]: tion(s): No. of Cmpds. 1 1 2	448.5470 337.2840	biquitin, pu il/23783579 ICBInr 1.30 % Dxidation <u>A m/z [ppm]</u> -89.12 -87.90 17.93	tative [1 11 2 2 2	Rt [min] 23.1 14.6 31.0	Score 21.4 29.2 25.3	9] P 0 0	Score: MW [kDa]: pl: No. of Pept Range 40-51 66-72 182-189 198-216	ides: Sequence KIIDMRPGLVASRJ K.QLTYYNKS	186.11 24.40 6.02 5	
Accessio Database Seq. Cov Modificat Cmpd. 130 24 225 59	n: =: tion(s): No. of Cmpds. 1 1 1 1 1 1 1 1 1 1	u 9 2 0 1 448.5470 434.1940 537.2840 658.2740 922.8880	biquitin, pu il23783579 (CBInr 1.30 % Dxidation (pm) -89.12 -87.90 17.93 -67.32 -30.86	z 2 2 2 2 2 2 2	Rt [min] 23.1 14.6 31.0 18.6	Score 21.4 29.2 25.3 35.6 74.7	9] P 0 0 1 0	Score: MW [kDa]: pl: No. of Pept 40-51 66-72 182-189 198-216 199-216	ides: Sequence KIIDMRPGLVASR.I K.QLTYTYNKS K.LFYFNNQKA K.KNAAVSSTPVNQDE	186.11 24.40 6.02 5	

Database: Seq. Cove	accession: latabase: leq. Coverage [%]: lodification(s):		i 22148225 CBInr .90 % 0xidation	5	Score: MW (kDa): pi: No. of Peptides:				184.94 63.20 5.30 4			
Cmpd.	No. of	m/z meas.	Δm/z	z	Rt	Score	Р	Range	Sequence		Modification	
cnipu.	Cmpds.	mvz meas.	[ppm]	2	[min]	acore		Range	Sequence		modification	
27	1	435.2150	-57.42	2	14.2	30.3	0	10-18	R.TPATPSPAK.V			
29	1	610.2620	-46.57	2	14.6	53.4	0		K.NAGPVTQTEMR.N		Oxidation: 10	
93	2	602.3060	-44.18	2	23.2	71.3	0		R.VVELVGGGSASTK.H			
103	1	422.7390	-21.25	2	25.1	30.0	0	274-280	R.LSNELLR.V			
Protein 17 Accession Database: Seq. Cove Modificati	n: erage [%]:	gi N 1	onserved hy i 22148864 CBInr 5.60 % 0xidation		iical protein (T	oxoplasm	ia gond	i GT1] Score: MW [kDa]: pl: No. of Pept	ides:	168.98 33.90 6.04 4		
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification	
7	d Cmpas.	539,5450	(ppm) -47.25	3	[min] 11.0	45.9	0	16-30	K.DSHAANADSQTPMQK.L		Oxidation: 13	
67	2	517.2530	-45.59	2	18.3	50.5	ō		K.LAGQMSLAAR.S		Oxidation: 5	
102	3	418.8590	-96.80	3	19.8	39.5	0	114-124	K.APPYKPIPESR.F			
32	2	507.5650	-29.98	3	14.8	33.2	1	136-148	R.QNIETMKDTPEAK.A		Oxidation: 6	
Protein 18 Accessior Database: Seq. Cove	n:	gi N	-type ATPa i 22150268 CBInr .30 %		ative [Toxopla	asma goni	dii VEG	Score: MW [kDa]: pl: No. of Pept	ides:	127.51 144.50 5.80 2		
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification	
Bruker					Printed:			December 15	2014			ç

501.2290 803.8820	-34.37								
803.8820		3	14.4	84.7	0		R.ESTVGGSGTGHSQLGK.S		
	-14.87	2	27.9	42.8	0	338-352	K.TNEALLTGESEDISK.T		
	lyceraldehy il22150568		hosphate deh	ydrogenas	se, puta	tive (Toxopla Score:	sma gondii VEG]	127 51	
		0							
								7 16	
-							tides:	3	
c	Oxidation, D	leamida	ated						
m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
678.8580									
421.7180	1085.48	2	25.7		0	255-262	K.IIPSLNGK.L		
774.8110	-78.43	2	29.7	24.6	0	360-373	R.LVELAHYMSVQDGA		Oxidation: 8
								44.20 7.81	
c	Carbamidor	nethyl				No. of Pept		3	
m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	No. of Pept Range	Sequence		Modification
m/z meas. 787.8260	Δ m/z [ppm] -47.38	z 2	[min] 31.7	49.8	0	No. of Pept Range 132-145	Sequence K.GAQNDWLNGEDLSR.G		
m/z meas. 787.8260 513.1930	∆ m/z [ppm] -47.38 -33.38	z 2 3	[min] 31.7 17.1	49.8	0	No. of Pept Range 132-145 232-244	Sequence K.GAQNDWLNGEDLSR.G K.EFCTGEPHTSCGR.Q		Modification Carbamidomethyl: 3, 11
m/z meas. 787.8260	Δ m/z [ppm] -47.38	z 2	[min] 31.7	49.8	0	No. of Pept Range 132-145 232-244	Sequence K.GAQNDWLNGEDLSR.G		
m/z meas. 787.8260 513.1930 417.2110	Δ m/z [ppm] -47.38 -33.38 -44.17 onserved h	z 2 3 2 ypothet	[min] 31.7 17.1	49.8 23.8 42.0	0	No. of Pept Range 132-145 232-244 247-253 ii VEG]	Sequence K.GAQNDWLNGEDLSR.G K.EFCTGEPHTSCGR.Q	3	
m/z meas. 787.8260 513.1930 417.2110	Δ m/z [ppm] -47.38 -33.38 -44.17	z 2 3 2 ypothet	[min] 31.7 17.1 24.8	49.8 23.8 42.0	0	No. of Pept Range 132-145 232-244 247-253	Sequence K.GAQNDWLNGEDLSR.G K.EFCTGEPHTSCGR.Q		
m/z meas. 787.8260 513.1930 417.2110 0 9 N	∆ m/z [ppm] -47.38 -33.38 -44.17 onserved h i]22150182	z 2 3 2 ypothet	[min] 31.7 17.1 24.8	49.8 23.8 42.0	0	No. of Pept Range 132-145 232-244 247-253 ii VEG] Score:	Sequence K.GAQNDWLNGEDLSR.G K.EFCTGEPHTSCGR.Q	99.27	
m/z meas. 787.8260 513.1930 417.2110 0 9 N	∆ m/z [ppm] -47.38 -33.38 -44.17 onserved h i]22150182 ICBInr	z 2 3 2 ypothet	[min] 31.7 17.1 24.8	49.8 23.8 42.0	0	No. of Pept Range 132-145 232-244 247-253 ii VEG] Score: MW [kDa]:	Sequence K GAQNDWLNGEDLSR.G K EFCTGEPHTSCGR.Q K YADVLPR.Y	99.27 40.90	
	N 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NCBInr 9.90 % Oxidation, E m/z m/z mess. A m/z (ppm) 778.8580 421.7760 1085.48 774.8110 -78.43 surface protein surface protein	NČElnr 9.90 % Oxidation, Deamida m/z res. [ppm] r 678.8580 (-23.04 - 23.04	NCBInr P3.0 % Oxidation, Deamidated Imiz mess. Pit (min) 475.860 -28.04 2.24.4 421.7146 196.46 2.22.7 7774.4716 .78.45 2.23.7 surface option, publicity pit21500930 NCBinr	NCBInr 9.90% Oxidation, Deamidated Intiz measurement Imtz measurement Amtrix [Rt] GF8.6560 228.4 226.4 GF8.71100 768.41 2.25.7 T774.4110 764.81 2.25.7 Subscript=Content optionin, putative [Toxoplasma gono mj221500930 NCBInr	NCEInr 9.90% Oxidation, Deamidated Imiz mass. <u>Amiz</u> <u>R1</u> Score <u>P</u> 678.5809 -23.64 <u>28.44</u> 2.28.4 6.37 0 471.7180 168.44 2 2.29.7 21.4 0 777.6410 .78.64 2 2.37 21.4 0 gri221500130 uptable [Toxoplasma gondii VEG gri221500130 NCBinr NCBinr NCEInr	NCBInr MW (R08): pl: No. of Pep Oxidation, Deamidated Press Oxidation, Deamidated Press Fitzman Anic 678.5800 -23.44 471.7180 106.44 774.4110 -78.45 774.4110 -78.45 92.392 24.67 92.302 -23.7 surface protein, putative [Toxoplasma gondii VEG] NCBinr Sorree:	NCBinr MW [bDa]: pl: No. of Peptides: Oxidation, Deamidated pl: No. of Peptides: miz mess. Amiz 2171480 2 477.4580 -28.64 2 477.4161 38.64 2 477.4161 -38.64 2 92.57 24.8 0 295-395 97.74.719 -38.64 2 29.7 21.8 97.74.719 -38.64 2 29.7 21.4 0 295-375 97.74.719 -38.64 2 29.7 21.4 0 295-375 LVELAWYMBYADGA 177.4.719 -38.61 2 29.7 21.4 0 295-375 LVELAWYMBYADGA sturface protein, publisme (Toxoplasma gondii VEG) NCBinr Scorres: MW [bDe]: MW [bDe]: Scorres	NCBInr WW [kDa]: 40.40 9.90 % pl: No. of Peptides: 7.16 Oxidation, Deamidated No. of Peptides: 3 miz mess. A miz 2 Rt Score P Range Sequence 475.860 -28.04 2 24.4 6.37 0 225-200 K SAGYNIP/RSTGAAK A 47.1716 19.64 2 22.37 27.4 0 225-200 K SAGYNIP/RSTGAAK A 774.4716 .78.45 2 23.7 24.4 0 236-372 K LVELAY/MSVG0GA 774.5716 .78.45 2 23.7 24.4 0 236-372 K LVELAY/MSVG0GA 1774.5716 .78.45 2 23.7 24.4 0 236-372 K LVELAY/MSVG0GA 1775.5716 .78.45 2 23.7 24.4 0 236-372 K LVELAY/MSVG0GA 175.5017 .6018r .6028r .6028r 15.50

Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence		Modification
153	1	401.7130	-105.23	2	23.6	25.0	0	87-94	K.ATALVLSK.Q		
49	4	644.2970	-18.85	2	16.7	74.2	0	101-113	K.LVCSGDGNAAAPR.N		Carbamidomethyl: 3
rotein 2	.		DS domain	contai	inina protein l	Toxoplace					
cessio			il23783325		ining protein [гохоріазії	a you	Score:		74 94	
atabase			ICBInr	5				MW [kDa]:		40.00	
	erage [%]:		.80 %					pl:		5.60	
.q. 001	inge [/i].							No. of Pep	tides:	2	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
147	1	429.2370	-62.44	2	22.5	26.1	0		K.VAVTLQAR.A		
17	2	566.2550	-31.93	2	12.2	48.8	0	321-330	K.ISDPNNQTSR.S		
eq. Covi odificat	erage [%]: ion(s):	-	0.20 % Deamidated	I				pl: No. of Pep	ides:	4.78 1	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence		Modification
256	1	430.7190	(ppin) -6.11	2	29.0	55.4	0	2354-2360	K.QNLIDEK.E		Deamidated: 2
rotein 24 ccessio latabase leq. Cove	n:	9	0S riboson i 23783768 ICBInr '.30 %		ein S3a, putat	ive (Toxop	lasma	gondii ME49] Score: MW [kDa]: pl: No. of Pep		67.07 29.40 9.63 1	
Bruker					Printed:			December 15	, 2014		

Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
121	2	659.3130	-34.70	3	21.5	67.1	2	241-259	R.KVQAESGEAQNTLTAETKA	L-	
									·		
Protein 25					ng protein [To	oxoplasma	gondii				
Accession			i 23783604	3				Score:		49.74	
Database			ICBInr					MW [kDa]:		40.80	
Seq. Cove	erage [%]:	2	.60 %					pl:		9.08 1	
								No. of Pept	ides:	1	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
172	1	543.2930	-48.42	2	24.3	49.7	0	142-151	K.VVVLTAEQAR.A		
looroh 1	Turne		ombinod	MCA	IS Brotoin	Extracto					
Search I Search I Protein 1: Accession Database	Result Location	A / s g	mazon_E BOPS/PT	Bops_I G2/P1 ten P22	IS - Protein NCBI_2014 ГG1_GB3_(? [Toxoplasma	-08-20 1 01_2154	5:22:0)7 Score: MW [kDa]: pl:		199.45 17.30 9.09	
Protein 1: Accession Database	Result Location : n: : erage [%]:	A // s g N 2	umazon_E BOPS/PT urface antic i[26983887 ICBInr	Bops_I G2/P1 gen P22 0	NCBI_2014 FG1_GB3_0	-08-20 1 01_2154	5:22:0	Score: MW [kDa]:	ides:	17.30	
Search I Search I Protein 1: Accession Database Seq. Cove Modificati Cmpd.	Result Location : : erage [%]: ion(s): No. of Cmpds.	A S 9 N 2 (m/z meas.	Amazon_E BOPS/PT urface antig i[26983887 ICBInr 2.90 % Carbamidor Am/z (ppm)	Bops_I G2/P1 gen P22 0 nethyl z	NCBI_2014 TG1_GB3_(? [Toxoplasma Rt [min]	-08-20 1 01_2154 a gondii] Score	5:22:0	Score: MW [kDa]: pl: No. of Pept Range	Sequence	17.30 9.09	Modification
Search I Search I Protein 1: Accession Database: Seq. Cove Modificati Cmpd. 196	Result Location : : : erage [%]: ion(s): No. of <u>Cmpds.</u> 2	/ // 9 N 2 ((m/z meas. 471.2790	mazon_E BOPS/PT urface antig i[26983887 ICBInr 2.90 % Carbamidor Carbamidor (ppm) -46.56	Bops_I G2/P1 gen P22 0 nethyl z 3	NCBI_2014 rG1_GB3_(? [Toxoplasma [min] 34.7	-08-20 1 01_2154 a gondii] Score 52.1	.5:22:(.d/	Score: MW [kDa]: pl: No. of Pept Range 66-79	Sequence R.KLTTVLPGAVLTAK.V	17.30 9.09	Modification
Search I Search I Protein 1: Accession Database Seq. Cove Modificati Cmpd.	Result Location : : erage [%]: ion(s): No. of Cmpds.	A S 9 N 2 (m/z meas.	Amazon_E BOPS/PT urface antig i[26983887 ICBInr 2.90 % Carbamidor Am/z (ppm)	Bops_I G2/P1 gen P22 0 nethyl z	NCBI_2014 TG1_GB3_(? [Toxoplasma Rt [min]	-08-20 1 01_2154 a gondii] Score	.5:22:(.d/	Score: MW [kDa]: pl: No. of Pept Range 66-79	Sequence	17.30 9.09	Modification
Search I Search I Protein 1: Accession Database: Seq. Cove Modificati Cmpd. 196	Result Location : : : erage [%]: ion(s): No. of <u>Cmpds.</u> 2	/ // 9 N 2 ((m/z meas. 471.2790	mazon_E BOPS/PT urface antig i[26983887 ICBInr 2.90 % Carbamidor Carbamidor (ppm) -46.56	Bops_I G2/P1 gen P22 0 nethyl z 3	NCBI_2014 rG1_GB3_(? [Toxoplasma [min] 34.7	-08-20 1 01_2154 a gondii] Score 52.1	.5:22:(.d/	Score: MW [kDa]: pl: No. of Pept Range 66-79 67-79 108-118	Sequence R.KLTTVLPGAVLTAK.V	17.30 9.09	Modification

Bruker

Accessio Database Seq. Cov		9 N	-type ATPa i 22150268 ICBInr .30 %		ative [Toxopla	isma goni	dii VEG	Score: MW [kDa]: pl: No. of Peptides:			
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
45	2	501.2290	-34.37	3	14.4	84.7	0	82-97	R.ESTVGGSGTGHSQLGK.S		
149	1	803.8820	-14.87	2	27.9	42.8	0	338-352	K.TNEALLTGESEDISK.T		
	erage [%]:	-	7.50 %					pl: No. of Pep		5.33 1	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
122	1	779.6490	-33.15	3	25.1	69.3	1	100-120	R.AIQEESKESATAEEEEVAE	EE	
Search	Type Result Location	A	mazon_E	Bops_	IS - Protein NCBI_2014 FG2_GB4_0	-08-20 1	5:22:0	07			
Search Protein 1 Accessio Database	n:	9 N			TGME49_00	2390 [Tox	oplasm	Score: MW [kDa]: pl:		293.62 61.80 4.80 7	
Search Protein 1 Accessio Database	erage [%]:	9 N 1	ypothetical i 23783645 ICBInr	3	TGME49_00	2390 [Tox	oplasm	Score: MW [kDa]:		61.80	

	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence	Modification
46	2	441.6930	-59.82	2	18.9	26.2	0	52-59	R.LTSFSDGR.L	
99	2	537.2770	-11.02	2	24.4	41.5	0	60-69	R.LQALDSVDGR.S	
151	2	628.2820	-26.69	3	32.7	57.8	0	70-86	R.SAPPEFTDTVTGQYDVR.T	
158	1	571.7800	-17.57	2	33.9	35.2	0	323-332	K.TFFSAEELAK.I	
44	2	576.7540	-45.44	2	18.6	81.8	0	347-356	R.VTFAENDTQK.V	
49	1	577.2520	-35.02	2	19.3	26.9	0	347-356	R.VTFAENDTQK.V	Deamidated: 6
53	2	412.7120	-85.90	2	19.6	24.1	0	401-408	R.EIVAPAPK.G	
atabase:		2	il 22148225 ICBInr 5.90 %		ical protein (T	oxoplasma	a gond	Score: MW [kDa]: pl:	184.9 63.20 5.30 4	
lodificati	n: : erage [%]: ion(s):	e (ji 22148225 VCBInr 5.90 % Dxidation	5		·	a gond	Score: MW [kDa]: pl: No. of Pept	63.20 5.30 ides: 4	
atabase: eq. Cove lodificati Cmpd.	n: : erage [%]:	m/z meas.	ij22148225 CBInr 5.90 % Dxidation <u>A m/z</u> [ppm]	5 z	Rt [min]	Score	P	Score: MW [kDa]: pl: No. of Pept Range	63.20 5.30 ides: 4	i .
eq. Cove lodificati Cmpd. 27	n: : erage [%]: ion(s): No. of	m/z meas.	ij 22148225 VCBInr i.90 % Dxidation <u>A m/z [ppm]</u> -57.42	5 z 2	Rt [min] 14.2	Score 30.3	P 0	Score: MW [kDa]: pl: No. of Pept Range 10-18	63.20 5.30 4 Sequence R.TPATPSPAK.V	Modification
eq. Cove lodificati Cmpd. 27 29	n: : erage [%]: ion(s): No. of Cmpds. 1 1	m/z meas. 435.2150 610.2620	ij 22148225 VCBInr 5.90 % Oxidation (ppm) -57.42 -46.57	2 2 2	Rt [min] 14.2 14.6	Score 30.3 53.4	P	Score: MW [kDa]: pl: No. of Pept Range 10-18 36-46	63.20 5.30 4 Sequence R.TPATPSPAK.V K.NAGPYTOTEMR.N	i .
eq. Cove lodificati Cmpd. 27	n: : erage [%]: ion(s): No. of	m/z meas.	ij 22148225 VCBInr i.90 % Dxidation <u>A m/z [ppm]</u> -57.42	5 z 2	Rt [min] 14.2	Score 30.3	P 0	Score: MW [kDa]: pl: No. of Pept Range 10-18 36-46 174-186	63.20 5.30 4 Sequence R.TPATPSPAK.V	Modification

December 15, 2014

Combined MS/MS - ProteinExtractor

Printed:

Search Type

Bruker

Appendix

Search	Result Location				NCBI_2014)7			
Protein 1 Accessio Database	 : n:	S		n-contai	ning protein [-		iii ME49] Score: MW [kDa]: pl: No. of Pep	ides:	608.08 39.10 7.76 11	
Modificat	ion(s):		Carbamidor	nethyl,	Oxidation, De	amidated					
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
348	2	702.8400	-45.67	2	38.8	83.7	0	136-148	K.EWVTGDSVLTGLK.I		
189	2	702.8100	-62.47	2	25.4	35.0	0	149-161	K.ISVPESQYPANAK.S		Deamidated: 11
178	3	468.5500	-57.67	3	24.7	65.7	0	149-161	K.ISVPESQYPANAK.S		
205	2	548.9320	-1.09	3	26.4	44.2	0		K.TGNTCMLTIHVEPR.D		Carbamidomethyl: 5; Oxidation 6
117	3	650.2740	-36.77	2	20.8	62.6	0	197-207	R.CSYTENSTLPK.I		Carbamidomethyl: 1
142	1	650.7570	-50.58	2	22.2	24.7	0		R.CSYTENSTLPK.I		Carbamidomethyl: 1; Deamidated: 6
326	1	448.6790	-88.47	2	35.9	20.8	0	259-265	K.WFFGDPK.S		
280	2	422,7030	-85.41	2	30.6	65.8	0	266-273	K.SPLGAMLR.I		-
152	1	430.6910	-105.78	2	23.0	54.5	0	266-273	K.SPLGAMLR.I		Oxidation: 6
22	3	645.2550	-62.11	2	12.7	80.5	0	330-345	R.GGGQGGGGGGLAGSDSR.Q		
29	1	645.7590	-43.49	2	13.5	79.6	0	330-345	R.GGGQGGGGGGLAGSDSR.Q		Deamidated: 4
Protein 2 Accessio Database Seq. Cov Modificat	n: : erage [%]:	9 1	i 23784524 VCBInr 17.40 %	13	xoplasma gor Deamidated	ndii ME49]	I	Score: MW [kDa]: pl: No. of Pep	ides:	352.55 41.90 8.67 9	
0 mm d	No. 17			_	D 1	0	Р	D	0		An attraction
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
131	1	403.6860	-36.75	2	21.6	40.5	0	65-70	K.APNWYR.C		
Bruker					Printed:			December 15	, 2014		15

111	1	475.2510	-36.41	3	20.3	20.8	1		R.AKEEVVGHVTLNK.E		
32	1	440.9120	-60.38	4	13.9	21.6	1		R.VCHIDAKDQDDCER.N		Carbamidomethyl: 2, 12
355	2	591.2830	-51.90	2	39.3	59.2	0		R.GFLTDYIPGAK.Q		
165	2	588.9550	-28.85	3	23.6	51.3	1	151-165	K.IEKVEQNGEQSVLYK.F		Deamidated: 7
165	2	588.9550	-28.85	3	23.6	39.0	1	151-165	K.IEKVEQNGEQSVLYK.F		Deamidated: 10
144	2	697.7980	-65.26	2	22.3	60.3	0		K.VEQNGEQSVLYK.F		Deamidated: 4
312	1	489.2150	-84.16	2	33.4	28.6	0		K.NANFIEIR.C		Deamidated: 1
274	3	488.7320	-65.81	2	30.2	70.4	0	229-236	K.NANFIEIR.C		
rotein 3					gondii ME49]			-			
ccessio			i 23784073	1				Score:		268.14	
atabase			CBInr					MW [kDa]:		41.90	
ieq. Cov	erage [%]:	1	7.30 %					pl:		4.91	
								No. of Pept	ides:	5	
Aodificat	ion(s):		Oxidation					-			
	No. of	m/z meas				Score	P	-	-		Modification
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	-	Sequence		Modification
34	2	464.6880	-85.60	2	14.0	69.8	0		K.AGVAGDDAPR.A		
315	2	652.0160	-15.83	3	34.1	65.8	0		R.VAPEEHPVLLTEAPLNPK.	A	
28	2	532.7140	-50.21	2	13.2	45.6	0	230-239	K.AAEDSSDIEK.S		
335	1	888.9200	-24.49	2	36.7	44.2	0		K.SYELPDGNIITVGNER.F		
169	1	597.2710	-61.52	2	24.0	42.6	0	317-327	K.ELTSLAPSTMK.I		Oxidation: 10
Protein 4									With Nad And Oxo		
Accessio			il31068995		Bradyzoite-Sp	ecific Lan	(Lan1)	Score:	with Nad And Oxq	216 14	
Accessio			IIJ31068995 ICBInr	U						216.14	
								MW [kDa]:			
Seq. Cov	erage [%]:	1	4.60 %					pl:		6.06	
								No. of Pept	ides:	5	
	No. of	m/z meas.	Δm/z	z	Rt	Score	Р	Range	Sequence		Modification
Cmpd.			[mag]		[min]		· ·				
Cmpd.	Cmpds.								K.VPGKPDSEWSR.N		
86	1	419.8610	-42.69	3	18.7	20.1	0				
		419.8610 401.1880 589.2790		3 2 2	18.7 16.1 27.7	20.1 25.8 75.9	0	112-118	K.VPGKPDSEWSR.N R.EIGQNIK.K R.YVADALSVSPR.D		

No. of Peptides: 2 Original Control (No. of Construction (N	
Cmpd. No. of 260 mitz mass. Δ.mitz (pm) z Rt (pm) Score P Range Sequence Modification 265 1 774.619 78.619 <th></th>	
Cimpsk. Dpml ppml	
240 2 074,880 2/354 2 284 6.33 0 203-371K SAGWARPSTAAK.A Didation: 8 268 1 774.61 2 293 24.6 0 233-374K SAGWARPSTAAK.A Didation: 8 Protein 8: Accession: SFG domain-containing protein [Toxoplasma gordi M640] Seq. Coverage [Vi]: 4.00 % 4.00 % With [Pol2]: 4.00 % 4.00 % With [Pol2]: 4.	
Protein 8: SRS domain-containing protein [Toxoplasma gordil ME40] Accession: g[23783325 Datasse: NCBur Seq. Coverage [V]: 4.00 % Frequence MW [K0a]; Seq. Coverage [V]: 4.00 % Frequence Modification 100 Anix z 111 Seq. Coverage [V]: 4.00 % 111 Seq. Coverage [V]: 4.00 % 111 Seq. Coverage [V]: 4.00 % 111 Seq. Coverage [V]: 1.00 % 111 1.00 % 1.00 % 111 1.00 % 1.00 % 111 1.00 % 1.00 % 1111 1.00 % 1.00 % 1111 1.00 % 1.00 % 1111 Seq. Coverage [V]: 0.00 % 1111 Seq. Coverage [V]: 3.00 % 1111 Seq.	
Accession: p[[23783223] Score 74,94 Datasse: NCBInr MW [k0]: 40,00 Seq. Coverage [%]: 4,80 % MW [k0]: 40,00 Model Model Seq. Seq. Cmpd. No. of mix mess. Amix Immodel 1 656,256 10,213 24,80 9 195-208(KVAVTLOAK A 1 1 562,856 31,53 2 12,2 44,80 9 251-336(ISOPHAGTSR A 1 Protein 9: conserved hypothetical protein [Toxoplasma gondii VEG] Score: 61,04 Datasse: NO. Of 24,000 40,000 1 40,000 1 40,000 1 56,10 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 0 1 0 1	
Accession: g[23783323 Score 74,94 Database: NCEINT MV [k0]: 40,00 Seq. Coverage [%]: 4.50 % MV [k0]: 40,00 Seq. Coverage [%]: 4.50 % MV [k0]: 560 for Coved F Score P Range Sequence Modification 17 1 S642506 -11.32 21.2 44.8 0 21.5330(SDPHNOTSR.S - Protein 9: consort (%) consort (%) 12.2 44.8 0 21.5330(SDPHNOTSR.S - Protein 9: consort (%) Consort (%) Score: 61.04 Database: NC.01 21.2 56.1 Modification (%): 56.1 Modification(s): Carbamidomethyl Score: 61.04 Database: 1 56.1 Modification(s): Carbamidomethyl Koort (%) 1 56.1 Modification 1 Compd. No.0 miz meas fmit Score P Range Sequence </td <td></td>	
Database: NCBinr MW (fb0a): 40.00 pl: 40.00 5.00 Seq. Covrage [Vi]: 4.80 % Provides: 5.60 No. of Peptides: 2 Cmpd. Mondt Immin. 2 Immin. 5.60 No. of Peptides: 2 Cmpd. Mondt Immin. 2 Immin. 5.60 No. of Peptides: 2 Cmpd. Mondt Immin. 2 Immin. 9 Range Sequence Modification 147 1 4232339 45.44 2 122 44.4 9 321304/ISOPNATSRS 1 Protein 9: conserved hypothetical protein (Toxoplasma gondii VEG) 61.04 40.00 Seq. Coverage [Wi]: 3.30 % Modification Accession: gi22 (50162) Score P Range Seq. 1 Modification(s): Carbamidomethyl Modification 1 No. of Peptides: 1 Modification(s): Carbamidomethyl Score P Range Sequence Modification 87	
Seq. Coverage [%]: 4.80 % p: 5.60 Cmod. No. of Peptides: 2 Cmod. Mo. of Peptides: 2 T1 662300 318,12 12.2 Constasse: collocation: gl[221501820 Contasse: NCB/r Score: 61.04 Potabase: NCB/r Modification (b): 40.90 Cmod. No. of Peptides: 1 56.1 Modification(b): Carbamidomethyl No. of Peptides: 1 Cmod. No. of Modification (b): Carbamidomethyl 1 Cmod. No. of Modification (b): Carbamidomethyl 1 Cmod. No. of Modification (b): 2 1 1 Cmod.	
Cropd. No. of 147 Protein 148 No. of 147 Protein 148 Score 148 P 149:208 Range 149:208 Sequence Modification 147 1 56:256 26:16 9 99:208 VAVILADKA Image Modification 171 1 56:256 31:31 2 12:2 44:41 0 32:339(JSOPHARKA Image Modification Protein 9: conserved hypothetical protein [Toxoplasma gondi VEG] Accession: g[[22:150182) Score: 61:04 Database: NEM NM [KDa]: 50:1 40:00 56:1 Modification(b): Cartamidomethyl No. of Peptides: 1 Modification Empd. No. of mix mess. Amix 2 16:1 91:91:10;KLVGSGDGMAAAPR N Range Modification(b) 97 2 64:43:340 7:81:2 1:81:91:10;KLVGSGDGMAAPR N Range Modification(c)	
Cringd. No. of Cringd. No. of (147) No. of (147) <td></td>	
Cropps. Depmin permin construction permin construction 147 1 252.49 22.6 22.6 0 195.9964/X0VTLOAR.A 195.9964/X0VTLOAR.A 17 1 562.49 2 22.6 22.6 0 195.9964/X0VTLOAR.A 195.9964/X0VTLOAR.A 17 1 562.598 31.53 2 12.2 22.6 26.6 0 195.9964/X0VTLOAR.A 100.996 Protein 9: conserved hypothetical protein [Toxoplasma goodil VEG] Scorers. 61.04 Database: NC.Birr MV [t0:2]: 40.90 56.5 10 Database: NC.Birr MV [t0:2]: 5.6 1 Modification(s): Carbamdomethyl 10 <t< td=""><td></td></t<>	
Complex Dem perind Complex Dem Dem perind Complex Dem Dem <thdem< th=""> <thdem< th=""> <thdem< th=""></thdem<></thdem<></thdem<>	
147 1 4254 2 223 26.6 0 199-208/LVAVICARA. 17 1 564.2580 31.91 2 22.8 0 199-208/LVAVICARA. 1 Protein 9: conserved hypothetical protein [Toxoplasma gondii VEG] 8 1 4 4 1 1 1 6 1<	
17 1 666.2580 -31.83 2 12.2 48.8 0 231-339KISDPMNGTSR.S Protein 9: conserved hypothetical protein [Toxoplasma gondii VEG] Score: 61.04 Database: NCEInr Score: 61.04 Backase: NCEInr MW [KDa]: 40.90 Seq. Coverage [Vg]: 3.30 % pl: 56.1 Modification(s): Carbamidomethyl No. of Peptides: 1 Cimpd. No. of Ippmint Z 11.8 Score: P Range Modification 87 2 644.3980 7.88 2 16.7 61.6 191-113/KLVCSGOGNAAAPR.N Earbamidomethyl	
Protein 9: conserved hypothetical protein [Toxoplasma gondii VEG] 61.04 Accession: gl[221501829 Score: 61.04 Database: NCB/nr MW [k0a]: 40.90 Seq. Coverage [%]: 5.61 Modification(s): 5.61 Modification(s): Carbamdomethyl No. of Peptides: 1 Cmpd. No. of miz mesh 2 Minit 16.7 9.1 9.1 40.01 sp 3 644.3240 (pem) 16.7 61.9 1.91-113/k.LVCSODGNAAAPR.N Partemistion	
Accession: gi[22150182] Score: 61.04 Database: NCENr MW [to]a]: 40.90 Seq. Goverage [Vg]: 3.30 % pl: 56.1 Modification(s): Carbamidomethyl No. of Peptides: 1 Gmdd. No. of miz meas. [gent]. 56.6 p: 2 644.304 [gent]. 51.6 Modification(s): Carbamidomethyl	
Accession: gi[22150182] Score: 61.04 Database: NCENr MW [to]a]: 40.90 Seq. Goverage [Vg]: 3.30 % pl: 56.1 Modification(s): Carbamidomethyl No. of Peptides: 1 Gmdd. No. of miz meas. [gent]. 56.6 p: 2 644.304 [gent]. 51.6 Modification(s): Carbamidomethyl	
Database: NCBinr MW (fb0a): 40.00 Seq. Coverage [%]: 3.30 % pi: 5.61 Modification[s]: Carbamidomethyl No. of Peptides: 1 Compd. No. of mizmess Amiz Rt Score P Range Sequence Modification 87 2 644.3949 -7.98 2 16.7 61.6 0 191-113KLVCSGOGNAAPR.N Darbenidion	
Seq. Coverage [%]: 3.30 % pl: 5.61 Modification(s): Carbamidomethyl No. of Peptides: 1 Cmpd. mod. Am/z z Rt Score P Range Sequence Modification 87 2 644.3440 -7.581 2 16.7 61.8 0 101-113KLVCSOGRAAAPR.N Earbamidom	
Modification(s): Carbamidomethyl No. of Peptides: 1 Cmpd. No. of miz mesa A miz z Rt Score P Range Sequence Modification 57 2 644.3940 7.981 2 (min) 1.97 9.16 0 101-113/LVCSDGRAAAPR N Parbamidion	
Modification(s): Carbamidomethyl Cmpd,	
Cmpd. No. of miz meas. Amiz z Rt Score P Range Sequence Modification 57 2 644.340 [gen] 19:7 19:7 19:113K,LVCSODGMAAAPR.N Zarbamidom	
Cmpds. [ppm] [min] 57 2 644.3040 -7.98 2 16.7 61.8 0 101-113KLVCSGDGNAAAPR.N Carbamidom	
57 2 644.3040 -7.38 2 16.7 61.0 0 101-113/LVCSGDGNAAAPR.N Carbamidom	
Protein 10: C2 domain-containing protein (Toxoplasma gondii ME49)	hyl: 3
Accession: dil237836043 Score: 49.74	hyl: 3
Database: NCBInr MW (kDa): 40.80	hyl: 3
Seq. Coverage [%]: 2.60% pl: 9.08	hyl: 3
No. of Peptides: 1	hyl: 3
	hyl: 3
Bruker Printed: December 15 2014	hyl: 3
Bruker Printed: December 15, 2014	thyl: 3

Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence		Modification
172	1	543.2930	-48.42	2	24.3	49.7	0	142-15	K.VVVLTAEQAR.A		
Search Search	Result	,	Amazon_l	Bops_	/IS - Protein NCBI_2014	-08-20 1	5:22:	07			
Protein 1		5	SRS domair	n-contai	TG5_GB7_(ining protein [-				550.00	
Accessio Database Seq. Cov		i	ai 23783781 NCBInr 24.70 %	9				Score: MW [kDa]: pl: No. of Pep	ides:	558.89 39.10 7.76 11	
Modificat	ion(s):		Carbamidor	nethyl,	Oxidation, De	amidated					
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
320	2	702.8600	-17.21	2	38.9	90.6	0	136-14	K.EWVTGDSVLTGLK.I		
176	1	702.8280	-36.86	2	25.4	27.2	0	149-16	K.ISVPESQYPANAK.S		Deamidated: 7
166	2	468.5520	-53.41	3	24.7	76.1	0	149-16	K.ISVPESQYPANAK.S		
189	2	548.9330	0.73	3	26.3	32.6	0		K.TGNTCMLTIHVEPR.D		Carbamidomethyl: 5; Oxidation: 6
17	1	585.7770	-33.67	2	12.5	25.4	1		R.DPAVERQEAR.C		
105	2	650.2830	-22.93	2	20.7	47.9	0		R.CSYTENSTLPK.I		Carbamidomethyl: 1
299	1	448.6890	-66.18	2	35.9	22.4	0		K.WFFGDPK.S		
142	1	430.7020	-80.24	2	22.8	30.6	0		K.SPLGAMLR.I		Oxidation: 6
259	2	422.7090	-71.22	2	30.8	48.8	0		K.SPLGAMLR.I		
26	1	645.7550	-49.69	2	13.5	61.8	0		R.GGGQGGGGGGLAGSDSR.Q		Deamidated: 4
18	3	645.2470	-74.51	2	12.7	69.8	0	330-34	R.GGGQGGGGGGLAGSDSR.Q		
Protein 2		a	actin (Toxop	lasma	gondii ME49]						
Bruker					Printed:			December 15	, 2014		19

Accessio Database Seq. Cov Modificat	erage [%]:	N 2	i 23784073 ICBInr 10.50 % Carbamidor		Oxidation			Score: MW [kDa]: pl: No. of Pept	ides:	336.78 41.90 4.91 7		
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence		Modification	
29	2	464.6780	-107.12	2	14.1	57.1	0	20-29	K.AGVAGDDAPR.A			
41	1	476.5250	-43.03	3	15.7	28.1	1		K.DCYVGDEAQSKR.G		Carbamidomethyl: 2	
287	2	652.0080	-28.10	3	34.2	68.3	0		R.VAPEEHPVLLTEAPLNPK.A			
24	1	532.7100	-57.72	2	13.2	50.4	0	230-239	K.AAEDSSDIEK.S			
307	1	888.9120	-33.49	2	36.7	52.3	0		K.SYELPDGNIITVGNER.F			
221	1	589.2890	-36.13	2	28.3	20.7	0	317-327	K.ELTSLAPSTMK.I			
159	2	597.2780	-49.80	2	24.1	59.9	0	317-327	K.ELTSLAPSTMK.I		Oxidation: 10	
Modificat	erage [%]: tion(s):	1	ICBInr 6.40 % Carbamidor	nethyl,	Deamidated			MW [kDa]: pl: No. of Pept		41.90 8.67 6		
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification	
273	2	586.2920	-50.34	2	32.0	35.0	0		K.ITYFGTLTQK.A			
122	1	403.6600	-101.16	2	21.7	29.9	0	65-70	K.APNWYR.C			
100	1	475.2460	-46.93	3	20.4	33.0	1	76-88	R.AKEEVVGHVTLNK.E			
28	1	440.9210	-39.96	4	13.8	28.8	1		R.VCHIDAKDQDDCER.N		Carbamidomethyl: 2, 12	
133	1	697.8150	-40.90	2	22.3	73.9	0		K.VEQNGEQSVLYK.F		Deamidated: 4	
252	2	488.7450	-39.21	2	30.2	51.9	0	229-236	K.NANFIEIR.C			
Protein 4 Accessio Database Seq. Cov	n:	9	Chain A, T. i 31068995 ICBInr 10.10 %		Bradyzoite-Sp	ecific Ldh	(Ldh1) In Complex) Score: MW [kDa]: pl:	With Nad And Oxq	260.09 35.50 6.06		
Bruker					Printed:			December 15	, 2014			20

Modificat	ion(s):	c	Carbamidon	nethyl,	Oxidation, De	amidated		No. of Pep	ides:	6	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
44	1	401,1610	-164.21	2	16.2	24.4	0	112-118	R.EIGQNIK.K		
214	2	589.2780	-61.46	2	27.9	69.4	0	166-176	R.YVADALSVSPR.D		
283	1	695.3160	-44.52	3	33.3	20.6	0	177-195	R.DVQATVIGTHGDCMVPLVR.	Y	Carbamidomethyl: 13; Oxidation: 14
248	1	648.8260	-29.83	2	30.0	29.5	0	196-206	R.YITVNGYPIQK.F		Deamidated: 5
51	2	408.6980	-84.00	2	17.1	34.1	0	227-234	K.VSGGEIVR.F		
211	1	546.2220	-94.65	2	27.5	46.1	0	311-320	K.SVDDVMALNK.A		
Database Seq. Cove Modificat	erage [%]:	1	ICBInr 2.10 % Dxidation					MW [kDa]: pl: No. of Pep	iides:	33.90 6.04 3	
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
9	2	539.5370	-62.07	3	11.1	20.3	0		K.DSHAANADSQTPMQK.L		Oxidation: 13
67	1	517.2530	-45.59	2	18.3	50.5	0		K.LAGQMSLAAR.S		Oxidation: 5
32	1	507.5650	-29.98	3	14.8	33.2	1	136-148	R.QNIETMKDTPEAK.A		Oxidation: 6
Protein 6: Accessio Database Seq. Cove Modificat	n: : erage [%]:	9 N 6	radyzoite-s i 23784117 ICBInr i.80 % Carbamidon	7	surface protei	n, putative	(Toxo	plasma gond Score: MW [kDa]: pl: No. of Pep		112.72 41.50 6.23 2	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
215	1	626.2990	-27.31	2	27.8	45.1	0	93-104	K.GSLTATLECTAK.D		Carbamidomethyl: 9
Bruker					Printed:			December 15	, 2014		21

257	1	778.3800	-47.12	2	30.5	48.8	0	203-217	K.AAANPAVCQLTVNVK.A	Carbamidomethyl: 8
Protein 7			AG1_relate	d sonu	ence 3 (Toxop	lasma nor	ndiil			
Accessio			il2305258	a ocqu	ande o [roxop	nuonnu goi	ion]	Score:	110	16
Database			CBInr					MW [kDa]:	36.2	
Sea. Cov	erage [%]:	1	1.30 %					pl:	5.75	
								No. of Pept	ides: 3	
Aodificat	tion(s):	(Carbamidor	nethyl						
Cmpd.	No. of	m/z meas.	Δm/z	z	Rt	Score	Ρ	Range	Sequence	Modification
85	Cmpds.	603,7300	[ppm] -77.13	4	[min] 19.6	31.5	1	100.011	RASSKDSQTVTCAYGSASNADVHR	Carbamidomethyl: 11
85	2	603.7300	-//.13	4	19.6	31.5	1	189-211	V	Carbamidomethyl: 11
274	2	560.6280	-3.39	3	32.1	49.9	0	278-292	K.AVLTIPHDNFPEAQK.K	
241	1	452,7260	-48.56	4	29.4	28.7	1	278-293	K.AVLTIPHDNFPEAQKK.V	
rotein 8 ccessio atabase	on:	c g N			ical protein [T		a gono	dii VEG] Score: MW [kDa]: pl:	99.2 40.9 5.61	
Protein 8 Accessio Database Seq. Cov Modificat	on: e: rerage [%]: tion(s):	9 9 5 0	onserved h il22150182 ICBInr .40 % Carbamidor	i9 nethyl		oxoplasm		tii VEG] Score: MW [kDa]: pl: No. of Pept	99.2 40.9 5.61 2)
Protein 8 Accessio Database Seq. Cov	on: e: verage [%]:	g N 5 (m/z meas.	onserved h il/22150182 ICBInr .40 % Carbamidor Carbamidor (ppm)	i9 nethyl z	Rt [min]	oxoplasmi Score	a gono	tii VEG] Score: MW [kDa]: pl: No. of Pept Range	99.2 40.9 5.61 2 Sequence	
rotein 8 accessio latabase eq. Cov lodificat Cmpd. 153	rerage [%]: tion(s): No. of Cmpds. 1	0 9 N 5 ((m/z meas. 401.7130	onserved h il/22150182 ICBInr .40 % Carbamidor Carbamidor <u>(ppm)</u> .105.23	i9 nethyl z 2	Rt [min] 23.6	oxoplasmi Score 25.0	P	tii VEG] Score: MW [kDa]: pl: No. of Pept Range 87-94	99.2 40.9 5.6(5.2 Sequence KATALVLSKQ	Modification
Protein 8 Accessio Database Seq. Cov Modificat Cmpd.	rerage [%]: tion(s): No. of Cmpds.	g N 5 (m/z meas.	onserved h il/22150182 ICBInr .40 % Carbamidor Carbamidor (ppm)	i9 nethyl z	Rt [min]	oxoplasmi Score	Р	tii VEG] Score: MW [kDa]: pl: No. of Pept Range 87-94	99.2 40.9 5.61 2 Sequence)
Protein 8 Accessio Database Seq. Cov Modificat Cmpd. 153 49 Protein 9 Accessio	n: erage [%]: tion(s): No. of <u>Cmpds.</u> 1 2 : :	m/z meas. 401.7130 644.2970	onserved h il/22150182 ICBInr .40 % Carbamidor Carbamidor [ppm] -105.23 -18.85 urface prot il/22150903	i9 nethyl z 2 ein, put	Rt [min] 23.6	Score 25.0 74.2	P 0	hii VEG] Score: MW [kDa]: pl: No. of Pept Range 87-94 101-113	99.2 40.9 5.61 Sequence KLVCSGDGNAAAPR N 94.9	Modification Carbamidomethyl: 3
Protein 8 Accessio Database Seq. Cow Modificat Cmpd. 153 49 Protein 9 Accessio Database	n: erage [%]: tion(s): No. of <u>Cmpds.</u> 1 2 : : :	c 9 5 (10 401.7130 644.2970 8 9 8 9 8	onserved h il22150182 ICBInr .40 % Carbamidor <u>A m/z [ppm]</u> -105.23 -18.85 urface prot il22150903 ICBInr	i9 nethyl z 2 ein, put	Rt [min] 23.6 16.7	Score 25.0 74.2	P 0	dii VEG] Score: MW [kDa]: pl: No. of Pept Range 87-94 101-113 5] Score: MW [kDa]:	99.2 40.9 5.61 5.61 5.62 5.62 5.62 5.62 KIVCSGDGNAAAPR.N KLVCSGDGNAAAPR.N 94.9 44.2 44.2	Modification Carbamidomethyl: 3
Protein 8 Accessio Database Seq. Cov Modificat Cmpd. 153 49 Protein 9 Accessio Database	n: erage [%]: tion(s): No. of <u>Cmpds.</u> 1 2 : :	c 9 5 (10 401.7130 644.2970 8 9 8 9 8	onserved h il/22150182 ICBInr .40 % Carbamidor Carbamidor [ppm] -105.23 -18.85 urface prot il/22150903	i9 nethyl z 2 ein, put	Rt [min] 23.6 16.7	Score 25.0 74.2	P 0	iii VEG] Score: MW [kDa]: pl: No. of Pept Range 87.94 101.113 Score: MW [kDa]: pl:	99.2 40.9 561 561 562 564 564 564 564 564 564 564 564 564 564	Modification Carbamidomethyl: 3
Protein 8 Accessio Database Seq. Cov Modificat Cmpd. 153 49 Protein 9 Accessio Database	No. of Cmpds. 1 2 No. of Cmpds. 1 2 2 0 : pn: 2 : pn: 2 : pn: 2 : pn: 2 : pn: 2 : :	c 9 5 (401.7130 644.2970 s 9 8 8	onserved h il22150182 ICBInr .40 % Carbamidor <u>A m/z [ppm]</u> -105.23 -18.85 urface prot il22150903 ICBInr	ý nethyl z 2 ein, put 0	Rt [min] 23.6 16.7	Score 25.0 74.2	P 0	dii VEG] Score: MW [kDa]: pl: No. of Pept Range 87-94 101-113 5] Score: MW [kDa]:	99.2 40.9 561 561 562 564 564 564 564 564 564 564 564 564 564	Modification Carbamidomethyl: 3

Appendix

22

Bruker Printed: December 15, 2014

Cmpds.	m/z meas.	Δm/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence		Modification
269 1	787.8260	-47.38	2	31.7	49.8	0	132-145	K.GAQNDWLNGEDLSR.G		
52 1	513.1930	-33.38	3	17.1	23.8	0	232-244	K.EFCTGEPHTSCGR.Q		Carbamidomethyl: 3, 11
170 1	417.1610	-164.01	2	24.9	21.3	0	247-253	K.YADVLPR.Y		
Protein 10:		lyceraldeb	/de-3-ni	hosohate deb	vdronenas	e nut	ative (Toxoola	sma gondii VEG1		
ccession:		122150568			,	, p	Score:		91.24	
atabase:	Ň	CBInr					MW [kDa]:		40.40	
eq. Coverage [%]:	6	6.20 %					pl:		7.16	
							No. of Pep	tides:	2	
Nodification(s):	[Deamidated	1							
Cmpd. No. of Cmpds.	m/z meas.	Δm/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
224 2	678.8610	-24.62	2	28.4	52.0	0		R.SAGVNIIPASTGAAK.A		
181 1	421.7180	1085.48	2	25.7	21.5	0	255-262	K.IIPSLNGK.L		
Accession: Database: Seq. Coverage [%]: Modification(s):	Ň 8	ji 11834652 VCBInr 3.00 % Dearnidated					Score: MW [kDa]: pl: No. of Pep	tides:	49.36 10.70 10.35 1	
Cmpd. No. of	m/z meas.	Δm/z	z	Rt [min]	Score	Р	Range	Sequence		Modification
60 Cmpds.	401.6900	[ppm] -131.19	2	[min] 17.9	49,4	2	21.23	K.KAVKNNK.K		Deamidated: 6
Search Type			Bops_I	IS - Protein NCBI_2014		5:22:	07	-		

cessior tabase: q. Cove odificati	erage [%]:	N 5	i 23783781 ICBInr 0.80 % Carbamidor		Oxidation, De	amidated		Score: MW [kDa]: pl: No. of Pept	32.9 9.29	
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Ρ	Range	Sequence	Modification
385	3	615.0020	-2.46	3	36.0	76.9	0	48-64	K.STAAVILTPTENHFTLK.C	
336	1	557,7730	-46,70	4	33.3	74.0	1	48-67	K.STAAVILTPTENHFTLKCPK.T	Carbamidomethyl: 18
310	2	544.2640	-40.46	3	32.0	50.2	Ó		K.TALTEPPTLAYSPNR.Q	
36	2	749.3170	-27.01	2	16.1	63.1	0	83-96	R.QICPAGTTSSCTSK.A	Carbamidomethyl: 3. 11
60	5	508,7140	-125.41	2	17.8	54.2	ō		R.ASSVVNNVAR.C	semingred to
84	4	509,2460	-46.76	2	19.3	81.3	0	163-172	R.ASSVVNNVAR.C	Deamidated: 6
169	2	677.7940	-36.90	2	24.2	64.2	Ō		R.CSYGANSTLGPVK.L	Carbamidomethyl: 1; Deamidated: 6
156	4	677.3090	-26.58	2	23.5	85.6	0		R.CSYGANSTLGPVK.L	Carbamidomethyl: 1
303	2	782.8550	-43.57	2	31.5	76.8	0	186-200	K.LSAEGPTTMTLVCGK.D	Carbamidomethyl: 13
206	2	790.8600	-33.59	2	26.3	57.2	0		K.LSAEGPTTMTLVCGK.D	Carbamidomethyl: 13; Oxidation: 9
197	2	660.6490	-22.80	3	25.9	29.2	1		K.LSAEGPTTMTLVCGKDGVK.V	Carbamidomethyl: 13; Oxidation: 9
184	1	895.6980	-40.37	3	25.3	61.4	1		K.DGVKVPQDNNQYCSGTTLTGCNE K.S	Carbamidomethyl: 13, 21
133	2	762.6300	-44.01	3	22.2	39.5	0		K.VPQDNNQYCSGTTLTGCNEK.S	Carbamidomethyl: 9, 17
252	2	474.2690	-26.69	2	28.9	44.1	1		K.SFKDILPK.L	
318	5	773.0150	-32.36	3	32.3	54.6	0		K.LSENPWQGNASSDNGATLTINK. E	
330	3	773.3500	-23.30	3	32.9	71.5	0		K.LSENPWQGNASSDNGATLTINK. E	Deamidated: 14
330	3	773.3500	-23.30	3	32.9	48.5	0		K.LSENPWQGNASSDNGATLTINK. E	Deamidated: 9
374	1	1059.4900	-18.13	3	35.5	80.5	1		K.LSENPWQGNASSDNGATLTINKE AFPAESK.S	
387	1	1059.8180	-18.13	3	36.1	56.2	1		K.LSENPWQGNASSDNGATLTINKE AFPAESK.S	Deamidated: 14
372	1	795.1200	-12.24	4	35.4	34.5	1	233-262	K.LSENPWQGNASSDNGATLTINKE	Deamidated: 21

									AFPAESK.S	
54	2	439.6620	-123.60	2	17.4	39.0	0	255-262	K.EAFPAESK.S	
148	2	652.8070	-34.28	2	22.9	67.1	0	263-275	K.SVIIGCTGGSPEK.H	Carbamidomethyl: 6
rotein 2:					tein 1 [Toxopl	asma gon	aiij		1045	70
Accession: Database:	:		i 56157026 CBInr)				Score:	1048	
								MW [kDa]:		J
eq. Covera	age [%]:	4	.40 %					pl: No. of Pep	9.75	
lodificatio	n(s):		Carbamido	methyl	Oxidation. De	amidated		NO. OI Pep	ides.	
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence	Modification
74	1	744,7800	-52.20	2	18.4	49.3	0	83.00	R.QICSAGTTSSCTSK.A	Carbamidomethyl: 3. 11:
Accession: Database:) 4 1		ucture (al Antib	Of The Immur		-	ope Displayed Score: MW [kDa]: pl:	By The Surface Antigen 1 (Sag1) 0 1025 26.6 7.78	Deamidated: 1 of Toxoplasma Gondii Complexed
Protein 3: Accession: Database: Seq. Covers Modification	rage [%]:	() / ! !	Chain F, Str A Monoclon pi 85543998 NCBInr 5.90 %	ucture (al Antib 3	Of The Immur	nodominar	-	ope Displayed Score: MW [kDa]:	By The Surface Antigen 1 (Sag1) 0 1025 26.6 7.78	Deamidated: 1 of Toxoplasma Gondii Complexed
Accession: Database: Beq. Covera Modification	rage [%]: on(s):		Chain F, Str A Monoclon ji[85543998 VCBInr 5.90 % Carbamidor	ucture (al Antib 3 nethyl,	Of The Immur ody Oxidation, De	nodominar amidated	t Epito	ope Displayed Score: MW [kDa]: pl: No. of Pep	By The Surface Antigen 1 (Sag1) C 1022 28.6 7.78 1 ides: 1	Deamidated: 1
ccession: latabase: leq. Covera lodification Cmpd.	rage [%]:	() / ! !	Chain F, Str A Monoclon pi 85543998 NCBInr 5.90 %	ucture (al Antib 3	Of The Immur ody	nodominar	-	ope Displayed Score: MW [kDa]: pl:	By The Surface Antigen 1 (Sag1) 0 1025 26.6 7.78	Deamidated: 1 of Toxoplasma Gondii Complexed
ccession: latabase: leq. Covera lodification Cmpd.	rage [%]: on(s): No. of		Chain F, Str A Monoclon pij85543998 VCBInr 5.90 % Carbamidor	ructure (al Antib 3 methyl, z	Of The Immur ody Oxidation, De	nodominar amidated	t Epito	Score: MW [kDa]: pl: No. of Pep	By The Surface Antigen 1 (Sag1) C 1022 28.6 7.78 1 ides: 1	Deamidated: 1
Accession: Database: Beq. Covera Modification Cmpd. 183	n(s): No. of Cmpds.	()) () m/z meas. 555.9710	Chain F, Str A Monoclon gi[85543998 VCBInr 5.90 % Carbamidor Carbamidor <u>A m/z [ppm]</u> -0.48	ructure (al Antib 3 methyl, 2 3	Df The Immur ody Oxidation, De Rt [min] 25.2	amidated Score 55.2	P 1	Score: MW [kDa]: pl: No. of Pep Range	By The Surface Antigen 1 (Sag1) (1022 2866 7.78 1ides: 1 Sequence	Deamidated: 1 / / / / / / / / / / / / / / / / / /
Accession: Database: Beq. Covera Modification Cmpd. 183 Protein 4:	nage [%]: on(s): No. of Cmpds. 2	() // m/z meas. 555.9710	Chain F, Str A Monoclon ji]85543998 VCBInr 5.90 % Carbamidor Carbamidor Carbamidor (ppm) -0.48 GRS domain	methyl, r z n-contai	Of The Immur ody Oxidation, De Rt [min]	amidated Score 55.2	P 1	Score: MW [kDa]: pl: No. of Pep Range 1-18 dii ME49]	By The Surface Antigen 1 (Sag1) (226 6 1022 26 6 7.78 1 Sequence .PPLVANQVYCPDKK.S	Deamidated: 1 / / / / / / / / / / / / / / / / / /
accession: latabase: leq. Covera lodification Cmpd. 183 rotein 4: accession:	nage [%]: on(s): No. of Cmpds. 2	() // m/z meas. 555.9710	Chain F, Str A Monoclon ji]85543998 VCBInr 5.90 % Carbamidon <u>A m/z</u> [ppm] -0.48 SRS domaii ji]23783082	methyl, r z n-contai	Df The Immur ody Oxidation, De Rt [min] 25.2	amidated Score 55.2	P 1	Displayed Score: MW [kDa]: pl: No. of Pep Range 1-18 dii ME49] Score:	By The Surface Antigen 1 (Sag1) (102 26.6 7.78 10 10 10 10 10 10 10 10 10 10	Deamidated: 1 / / / / / / / / / / / / / / / / / /
ccession: atabase: eq. Covera lodification Cmpd. 183 rotein 4: .ccession: atabase:	rage [%]: on(s): No. of Cmpds. 2	m/z meas.	Chain F, Str A Monoclon ji[85543998 VCBInr 5.90 % Carbamidor -0.48 SRS domaii ji[23783082 VCBInr	methyl, r z n-contai	Df The Immur ody Oxidation, De Rt [min] 25.2	amidated Score 55.2	P 1	Arrow Content of the second of	By The Surface Antigen 1 (Sag1) (102 266 778 ides: 1 Sequence JPPLVANGVVTCPDKK.S 387.3	Deamidated: 1 / / / / / / / / / / / / / / / / / /
Accession: Database: Beq. Covera Modification Cmpd. 183	rage [%]: on(s): No. of Cmpds. 2	m/z meas.	Chain F, Str A Monoclon ji]85543998 VCBInr 5.90 % Carbamidon <u>A m/z</u> [ppm] -0.48 SRS domaii ji]23783082	methyl, r z n-contai	Df The Immur ody Oxidation, De Rt [min] 25.2	amidated Score 55.2	P 1	Displayed Score: MW [kDa]: pl: No. of Pep Range 1-18 dii ME49] Score:	By The Surface Antigen 1 (Sag1) (202 1025 26.6 7.7 sides: 1 Sequence . .PPL VANOWTCPDKK.S 387	Deamidated: 1 / / / / / / / / / / / / / / / / / /

Bruker

December 15, 2014

25

Printed:

Cmpd. No	a of	m/z meas	Λm/z	7	Rt	Score	Р	Range	Sequence		Modification
	npds.	miz meas.	[ppm]	2	[min]	acore		Kange	Sequence		Modification
210	2	586.7720	-67.33	2	26.7	35.3	0		K.GGISVEVDPATK.K		
162	2	434.2040	-86.94	3	23.7	27.3	1	52-64	K.GGISVEVDPATKK.V		
304	2	638.3020	-25.32	3	31.5	65.4	0		R.VNLQGETPLAEHFGEGSK.A		
270	1	582.0330	-31.43	4	29.7	98.4	1	93-114	R.VNLQGETPLAEHFGEGSKANVK.		
13	1	708.2830	-39.43	2	11.3	80.9	0	155-168	R.APTGDPSQNSDGNR.G		
134	1	501.5460	-63.87	3	22.2	46.1	1	259-270	K.ELPKTEATYCYK.C		Carbamidomethyl: 10
62	2	517.1830	-117.17	3	17.8	33.9	1	271-285	K.CSPLVDSGDTADGKK.N		Carbamidomethyl: 1
itabase: q. Coverage odification(s)		3	ICBInr 3.10 % Dxidation					MW [kDa]: pl: No. of Pept	4.).70 55	
Cmpd. No	o. of upds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification
100	1	639.5920	-39.09	3	20.2	50.1	1		K.LAEQAERYDEMAEAMK.N		Oxidation: 11, 15
286	1	454.2440	-48.45	2	30.6	28.8	0		R.NLLSVAYK.N		
	2	452.2000	-134.71	2	17.0	51.8	0		R.IISSVEQK.E		
115	1	454.2370	-52.67	3	21.2	24.6	1		R.IISSVEQKELSK.Q		
	1	485.2160	-35.11	3	23.6	36.5	1		K.TSDSESKVFYYK.M		
	1	458.5320	-55.89	3	20.5	42.0	1		R.YISEFSGEEGKK.Q		
	2	683.7970	-26.78	2	13.2	89.5	0		K.QAADQAQESYQK.A		
180	1	574.9590	-1.89	3	25.0	42.7	0	167-182	K.ATETAEAELPSTHPIR.L		
otein 6: cession: ttabase: q. Coverage	[%]:	9 N	0S ribosom i 23783768 ICBInr .30 %		ain S3a, putat	ive (Toxop	lasma	gondii ME49] Score: MW [kDa]: pl: No. of Pept	67 29 9.	7.07 9.40 63	

Cmpd. No. of Cmpds.
 Score
 P
 Range
 Sequence

 67.1
 2
 241-259R.KVQAESGEAQNTLTAETKA m/z meas. Δ m/z z Rt [ppm] [min] 659.3130 -34.70 3 21.5 Protein 7: Accession: Database: Seq. Coverage [%]: hypothetical | gi|70925394 NCBInr 6.00 % udi] Score: MW [kDa]: pl: No. of Peptides: 55.37 13.60 6.73 1 Modification(s): Deamid
 Cmpd.
 No. of Cmpds.
 m

 256
 1
 1
 Vz meas. Δ m/z z Rt Score P [ppm] [min] 430.7190 -48.35 2 29.0 55.4 1 Range Sequence 30-36R.KNIINEK.S nidated: 2, 5 Protein 8: Accession: Database: Seq. Coverage [%]: in (Paramecium tetraurelia strain d4-2) Score: MW (KDa): pl: No. of Peptides: hypothetical pr gi|145545301 NCBInr 0.90 % 48.87 92.80 6.10 1
 Cmpd.
 No. of Cmpds.
 m/z meas.
 Δ m/z (ppm)
 z
 Rt (min)
 Score
 P

 23
 1
 436.7100
 -39.60
 2
 14.5
 48.9
 0
 Range Sequence 174-180 K.TPEELQR. Combined MS/MS - ProteinExtractor Amazon_Bops_NCBI_2014-08-20 15:22:07 /BOPS/PTG2/PTG7_GC7_01_2161.d/ Search Type Search Result Search Location surface antigen P22 [Toxoplasma gondii] gi|13957753 NCBInr Protein 1: Accession: Database: 461.48 19.10 Score: MW [kDa]: Bruker December 15, 2014 27 Printed:

	erage [%]:		2.80 %					pl: No. of Pept	9.33 tides: 10	
lodificat	tion(s):	(Carbamido	methyl, I	Deamidated					
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence	Modification
192	1	884.3860	-32.26	2	28.0	34.6	0		K.TVEAPSSGSVVFQCGDK.L	Carbamidomethyl: 14
244	1	785.3740	-24.70	2	34.2	23.5	Ö	61-75	K.LTISPSGEGDVFYGK.E	
256	1	556.3420	-28.58	2	36.7	49.0	0	83-93	K.LTTVLPGAVLK.A	
26	5	529,7270	-54 77	2	14.9	65.6	0	124-134	K CVAFAGAPAGR N	Carbamidomethyl: 1
47	2	728.6560	-25.79	3	17.4	44.9	1	124-146	K.CVAEAGAPAGRNNDGGSSAPTPK	Carbamidomethyl: 1
51	1	728.9960	-9.32	3	17.8	48.5	1		K.CVAEAGAPAGRNNDGGSSAPTPK D	Carbamidomethyl: 1; Deamidated: 12
19	2	573.2280	-50.76	2	12.6	73.5	0		R.NNDGGSSAPTPK.D	Deamidated: 1
11	3	516.5330	-58.73	3	11.6	64.7	1		R.NNDGGSSAPTPKDCK.L	Carbamidomethyl: 14
15	2	516.8720	-37.42	3	12.2	42.1	1		R.NNDGGSSAPTPKDCK.L	Carbamidomethyl: 14; Deamidated: 1
Accessio	n:	g	i 23783781		27.4 ining protein [1	15.2 Foxoplasm	1 Ia gon	dii ME49] Score:	KLIVRVPGADGR.V	8
Protein 2 Accessio Database	: in:	s g N	SRS domain	n-contai				dii ME49] Score: MW [kDa]: pl:	204.1 39.10 7.76	В
Protein 2 Accessio Database Seq. Cov	: on: erage [%]:	5 9 N 9	SRS domaii ji 23783781 VCBInr	n-contai 19	ning protein [1			dii ME49] Score: MW [kDa]:	204.1 39.10 7.76	3
Protein 2 Accessio Database Seq. Cov	: on: erage [%]: tion(s): No. of	5 9 N 9	SRS domain ii 23783781 NCBInr 0.40 % Carbamidor Am/z	n-contai 19	ning protein [1 Oxidation Rt			dii ME49] Score: MW [kDa]: pl:	204.1 39.10 7.76	3 Modification
Protein 2 Accessio Database Seq. Cov Modificat	: on: erage [%]: tion(s):	5 9 9 0	SRS domaii ji 23783781 VCBInr 9.40 % Carbamidor	n-contai 19 methyl, i	ining protein [1 Oxidation	Foxoplasm	a gon	dii ME49] Score: MW [kDa]: pl: No. of Pept Range	204.1 39.10 7.76 4	-
Protein 2 Accessio Database Beq. Cov Modificat Cmpd.	:: on: erage [%]: tion(s): No. of Cmpds.	S 9 N 9 (1 m/z meas.	SRS domain i/[23783781 VCBInr I.40 % Carbamidor Carbamidor (ppm]	n-contai 19 methyl, i z	ning protein [1 Oxidation Rt [min]	Foxoplasm Score	ia goni P	dii ME49] Score: MW [kDa]: pl: No. of Pept Range 197-207	204.1 39.10 7.76 tides: 4	Modification
Protein 2 Accessio Database Seq. Cov Modificat Cmpd. 89	: on: erage [%]: tion(s): No. of Cmpds. 2	S 9 N 9 (1 1 2 1 2 8 50.2850	GRS domaii il[23783781 ICBInr 0.40 % Carbamidor Δ m/z [ppm] -19.85	n-contai 19 methyl, i z	ning protein [1 Oxidation Rt [min] 20.8	Foxoplasm Score 57.8	P 0	tii ME49] Score: MW [kDa]: pl: No. of Pept Range 197-207 266-273	204.11 39.10 7.76 Ides: 4 Sequence R.CSYTENSTLPK.I	Modification Carbamidomethyl: 1
Protein 2 Accessio Database Seq. Cov Modificat Cmpd. 89 126	: pr: erage [%]: tion(s): No. of <u>Cmpds.</u> 2 1	5 9 9 0 (m/z meas. 650.2850 430.7100	GRS domaii il23783781 VCBInr 0.40 % Carbamidor Δ m/z [ppm] -19.85 -61.67	n-contai 19 methyl, I 2 2	Oxidation Rt [min] 20.8 22.9	Score 57.8 44.3	P 0 0	tii ME49] Score: MW [kDa]: pl: No. of Pept Range 197-207 266-273	204.11 39.10 7.76 4 Sequence R.GSYTENSTLPK1 K.SPLGAMLR1	Modification Carbamidomethyl: 1
Protein 2 Accessio Database Seq. Cov Modificat Cmpd. 89 126	: n: erage [%]: tion(s): No. of Cmpds. 2 1 1 2	5 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SRS domaii ij[23783781 VCBInr 9.40 % Carbamidor Δ m/z [ppm] -19.85 -61.67 -97.24 -23.37	n-contai 19 methyl, i 2 2 2 2	Ning protein [] Oxidation (min] 22.9 30.7 12.8	Score 57.8 44.3 22.2 79.9	P 0 0 0	tii ME49] Score: MW [kDa]: pl: No. of Pept 197-207 266-273 266-273	204.11 39.10 7.76 4 Sequence R.GSYTENSTLPK1 K.SPLGAMLR1	Modification Carbamidomethyl: 1
Protein 2 Accessio Database Seq. Cov Modificat Cmpd. 89 126 222 20	:: n: erage [%]: tion(s): <u>0</u> <u>0</u> <u>1</u> <u>1</u> <u>1</u> <u>2</u> <u>1</u> <u>1</u> <u>1</u>	5 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SRS domaii ji[237837817 kCBInr k40 % Carbamidor Δ m/z [ppm] -19.85 -61.67 -97.24 -23.37 ibiquitin, pu	n-contai 19 methyl, 1 2 2 2 2 1 tative [1	Ning protein [1 Oxidation [min] 20.8 22.9 30.7	Score 57.8 44.3 22.2 79.9	P 0 0 0	tii ME49] Score: MW [kDa]: pl: No. of Pept 197-207 266-273 266-273	204.1 39.10 7.76 ildes: 4 Sequence KSPLGAMLRI KSPLGAMLRI KSPLGAMLRI	Modification Carbamidomethyl: 1 Oxidation: 6
Protein 2 Accessio Database Seq. Cov Modificat Cmpd. 89 126 222 20 Protein 3 Accessio	: erage [%]: tion(s): No. of Cmpds. 2 1 1 2 : :	5 9 9 (((((((((((((((((RS domaii ij[2378376; 4CBInr i,40 % Carbamidor Carbamidor 19.85 -19.85 -61.67 -97.24 -23.37 ibiquitin, p. ij[2378357(n-contai 19 methyl, 1 2 2 2 2 1 tative [1	Ning protein [] Oxidation (min] 22.9 30.7 12.8	Score 57.8 44.3 22.2 79.9	P 0 0 0	dii ME49] Score: MW [kDa]: pl: No. of Pept Range 197-207 266-273 266-273 266-273 266-273 330-345 Score:	204.1 35.10 7.76 4 Sequence KGSYTEKI KEPLGANI,KI KEPLGANI,KI KGG0206050LA650SR Q 186.1	Modification Carbamidomethyl: 1 Oxidation: 6
Protein 2 Accessio Database Seq. Cov Modificat Cmpd. 89 126 222 20 Protein 3	: erage [%]: tion(s): No. of Cmpds. 2 1 1 2 : :	5 9 9 (((((((((((((((((SRS domaii ji[237837817 kCBInr k40 % Carbamidor Δ m/z [ppm] -19.85 -61.67 -97.24 -23.37 ibiquitin, pu	n-contai 19 methyl, 1 2 2 2 2 1 tative [1	Ning protein [] Oxidation (min] 22.9 30.7 12.8	Score 57.8 44.3 22.2 79.9	P 0 0 0	dii ME49] Score: MW [kDa]: pl: No. of Pept 197-207 266-273 266-273 330-345	204.1 39.10 7.76 4 Sequence xcsythat/LeCi KSPCAMER KSPCAMER KSPCAMER	Modification Carbamidomethyl: 1 Oxidation: 6

Appendix

	erage [%]:	-	1.30 %					pl: No. of Pept	ides:	6.02 5		
Modificat	ion(s):	C	Oxidation									
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification	
130	1	448.5470	-89.12	3	23.1	21.4	0		K.IIDMRPGLVASR.I		Oxidation: 4	
24	1	434.1940	-87.90	2	14.6	29.2	0		K.QLTTYNK.S			-
225	2	537.2840	17.93	2	31.0	25.3	0		K.LFYFNNQK.A			
59	1	658.2740	-57.32	3	18.6	35.6	1		K.KNAAVSSTPVNQDEAAQEN			-
86	1	922.8880	-30.86	2	20.5	74.7	0	199-216	K.NAAVSSTPVNQDEAAQEN			-
atabase eq. Cov lodificat	erage [%]:	Ň	i 32511683 ICBInr .20 % Deamidated					MW [kDa]: pl: No. of Pept	ides:	522.10 5.40 1		
Cmpd.	No. of Cmpds.	m/z meas.	∆ m/z [ppm]	z	Rt [min]	Score	Р	Range	Sequence		Modification	
168	1	487.2280	-110.53	2	26.7	48.8	0	1088-1096	K.IQLSQLAAK.W		Deamidated: 2, 5	
Protein 5 Accessio Database Seq. Cov	n:	9	najor surfac i 4324684 ICBInr .50 %	æ antig	en p30 [Toxoj	olasma go	ndii]	Score: MW [kDa]: pl: No. of Pept	ides:	50.08 26.60 6.38 1		
Cmpd.	No. of Cmpds.	m/z meas.	Δ m/z [ppm]	z	Rt [min]	Score	Р		Sequence		Modification	
234	ì	773.0150	-32.36	3	32.5	50.1	0	173-194	K.LSENPWQGNASSDNGATLT E	INK.		

Appendix

30

December 15, 2014

Printed:

164

Bruker