Spektroskopie und Steuerung der Photodissoziation von HCl in Edelgasmatrizen

INAUGURAL-DISSERTATION zur Erlangung der Doktorwürde des Fachbereichs Physik der Freien Universität Berlin

vorgelegt von DIPL. CHEM. VOLKER BERGHOF aus Mannheim 2001

- 1. Gutachter: Prof. Dr. N. Schwentner
- 2. Gutachter: Prof. Dr. H. Gabriel

Tag der Disputation: 13. Juli 2001

Fest gemauert in der Erden steht die Form, aus Lehm gebrannt. Heute muß die Glocke werden. Frisch Gesellen, seid zur Hand. Von der Stirne heiß Rinnen muß der Schweiß, soll das Werk den Meister loben, doch der Segen kommt von oben.

Friedrich Schiller

für meine Eltern

Inhaltsverzeichnis

1	Ein	leitung und Problemstellung	9		
Ι	Ei	nführung	13		
2	Grundlagen der Matrixspektroskopie				
	2.1	Matrixisolationsspektroskopie	16		
	2.2	Edelgase als Matrixmaterial	18		
	2.3	Exzitonen in Edelgasen	20		
3	Pho	otoanregung in der Matrix	21		
4	Photodissoziation von Halogenverbindungen				
	4.1	HCl als Modellsystem zur Photodissoziation	29		
	4.2	HCl: Grund- und erste angeregte Zustände in der Gasphase	30		
	4.3	Photodissoziation von binären HCl-Edelgasmischungen in der Gasphase	34		
	4.4	Photodissoziation in der Matrix	36		
	4.5	Mechanismen der Zwei-Photonen- HCl/Cl_2 Photodissoziation in Vononmetrizen	41		
	4.6	Veränderung der Zustände von HCl durch Wirt-Gast-Wechsel- wirkung	41		
	4.7	Emissionsspektren von XeCl	44		
	4.8	Emissionsspektren von Xe_2Cl	46		
	4.9	Anregungsspektren von Xe_2Cl und $XeCl$	48		
5	Gesteuerte Photodissoziation 53				
	5.1	Die Zwei-Stufen-Photodissoziation von HCl	56		
	5.2	IR-Schwingungsanregung des HCl-Moleküls	57		
	5.3	IR-Anregung von HCl in Edelgasmatrizen und Erklärungsmodelle	59		

II Experimenteller Aufbau

6	Exp	Experimenteller Aufbau zur laserinduzierten, zustandsselekti-				
	ven	Photodissoziation	69			
	6.1	Das Lasersystem	69			
	6.2	Strahlführung und Probenkammer	'78 80			
	0.3 6.4	Aristalizuent	80 82			
	0.4		00			
7	\mathbf{Exp}	erimenteller Aufbau bei Bessy I	89			
	7.1	Strahlführung und Primärmonochromator	89			
	7.2	Probenkammer und Sekundärmonochromatoren	91			
	7.3	Matrixzucht und Probenkammer	93			
	7.4	FTIR-Spektrometer	93			
II	ΙI	Ergebnisse der Studien mit Synchrotronstrahlung	97			
8	Mot	ivation und Konzeption der Messungen bei Bessy I	99			
0	WIO	ivation and Rohzeption der Wessungen bei Dessy i	00			
9	Spe	ktroskopie der Dissoziation von HCl in Krypton- und Xe	-			
	non	matrizen	103			
	$9.1 \\ 9.2$	Quantitative Untersuchungen zur 255 nm-Fluoreszenz von Xe_nH IR-Absorptionsbanden bei der Photodissoziation von HCl in	105			
		Edelgasmatrizen	112			
	9.3	Bildung der neutralen Moleküle HXeCl, HKrCl, XeD ₂ und XeH ₂	113			
	9.4	XeCl: Ein neues Fragment der HCl-Dissoziation in Xenonmatrizer	116			
	9.5	Mogliche Bildungsprozesse für XeCl	120			
10	Med	chanismen der HCl-Dissoziation	123			
	10.1	Simulation der Photodissoziation von HCl	125			
	10.2	Ergebnisse der Simulation — Absorption der Produkte	126			
	10.3	Ergebnisse der Simulation — Dissoziationseffizienz des Edukts .	131			
	10.4	Die HCI-Dissoziation über ionische Zustände	137			
IV	⁷ I	Ergebnisse der Photoanregung mit Lasern	145			
11 Die IR-Anregung des HCl-Moleküls in Edelgasmatrizen als mo-						
	leku	lare Sonde für die Umgebung	147			
	11.1	Grundtonanregung von HCl in Argon-, Krypton- und Xenonma-				
		trizen	148			

$\mathbf{65}$

11.3	Die Rotation des HCl-Moleküls in Edelgasmatrizen und der Iso- topeneffekt	163
Die 12.1 12.2	Zwei-Stufen-Dissoziation von HCl Zwei-Stufen-Photodissoziation von HCl in Kryptonmatrizen HCl Zwei-Stufen-Dissoziation in Xenonmatrizen	183 185 202
Zus	ammenfassung	205
Α	nhang	209
Mo A.1 A.2 A.3	delle zur Beschreibung von EdelgasexzitonenDas Wannier-Mott ModellDas Frenkel ModellModelle der mittleren Kopplung	211 213 214 214
Ana	lyse der Emissionsbandenstruktur zwischen $380-450\mathrm{nm}$	219
Wel C.1	lenlängenabhängigkeit der Fragmentproduktion Beeinflussung der Produktfluoreszenzsignale durch das Tempern der Matrizen	225 226
U.2	zuwachs	230 243
Unt	ersuchungen zur Dissoziation aus dem $R(1)$ -Zustand von lin Krypton	2 10 n 247
	 11.3 Die 12.1 12.2 Zusa A Moo A.1 A.2 A.3 Ana Wel C.1 C.2 Verz Unt HCI 	 11.3 Die Rotation des HCl-Moleküls in Edelgasmatrizen und der Isotopeneffekt. Die Zwei-Stufen-Dissoziation von HCl 12.1 Zwei-Stufen-Photodissoziation von HCl in Kryptonmatrizen 12.2 HCl Zwei-Stufen-Dissoziation in Xenonmatrizen Zusammenfassung Anhang Modelle zur Beschreibung von Edelgasexzitonen A.1 Das Wannier-Mott Modell A.2 Das Frenkel Modell A.3 Modelle der mittleren Kopplung Analyse der Emissionsbandenstruktur zwischen 380 – 450 nm Wellenlängenabhängigkeit der Fragmentproduktion C.1 Beeinflussung der Produktfluoreszenzsignale durch das Tempern der Matrizen C.2 Quantitativer Vergleich zwischen Eduktabnahme und Produktzuwachs Verzeichnis der IR-Übergänge Untersuchungen zur Dissoziation aus dem R(1)-Zustand vor HCl in Krypton