
Chapter 1: Introduction: What are natural frequencies, and why are 

they relevant for physicians and patients? 

 

 

It just takes a look at the daily newspaper to remind us that statistics are an important part of 

our everyday lives: We read about the voter turnout in political polls, gains and losses on the 

stock market, food risks, unemployment rates, the probability of rain tomorrow – and this is 

still the front page. In medicine, too, statistics have become indispensable: How frequently 

does a specific disease occur? How often does it come with a certain symptom? How often 

does a drug cause side effects? What is the risk of treatment A, compared to treatment B? 

Physicians have to deal with these questions all the time, and the statistics that form the 

answers to these questions guide decisions on the assignment of diagnostic tests and 

treatments. For instance, assumptions about the probability with which a suspicious x-ray 

picture of the breast actually predicts breast cancer can influence the decision about 

subsequent diagnostic tests, that is, if an invasive test (a biopsy) or a non-invasive test 

(ultrasound) should be performed (Eddy, 1982).  

Not only physicians but also patients have to deal with statistical information that 

concerns their health status. Physicians are legally obliged to obtain consent from the patient 

for treatment, except in the rare cases in which the patient is not mentally capable to make 

decisions or there is extreme time pressure. This guideline follows directly from the 

constitutional right of individual autonomy (Bundesärztekammer, 1990). The respect for 

individual autonomy is not only legally prescribed, but is also included in the three basic 

principles of biomedical ethics (the other two principles being “do no harm” and “do good”; 

Marshall, 1996). Both legal and ethical principles imply that not only consent, but “informed 

consent” should be obtained: Ideally, patients should be informed about both benefits and 

risks of a treatment and its alternatives before the decision to enter treatment is made 

(Bundesärztekammer, 1990; Doyal, 2001; General Medical Council, 1998; Gigerenzer, 2002; 

Marshall, 1996; Ubel & Loewenstein, 1997). Only when patients have sufficient and 

understandable information about pros and cons can they evaluate their options according to 

their personal values and decide on the course of treatment that is best for them – either alone 

or together with the physician (Charles, Gafni, & Whelan, 1999; Coulter, 1997a).  

Information about benefits and risks includes statistical information (e.g., the 

probability of a certain complication associated with an operation). Given the omnipresence 
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of statistics in everyday life and their importance in medical practice, one could assume that 

medical professionals and medical laymen alike have learned to understand and use such 

statistical information without problems. Unfortunately, this is not the conclusion that can be 

drawn from the empirical evidence. For instance, medical professionals have repeatedly been 

shown to misjudge the positive predictive value of a diagnostic test, that is, the probability 

with which it can be predicted that a person has a disease, given a positive test result. In one 

study, medical professionals from Harvard Medical School were given the following text 

problem: “If a test to detect a disease whose prevalence is 1/1000 has a false positive rate of 5 

percent, what is the chance that a person found to have a positive result actually has the 

disease, assuming that you know nothing about the person's symptoms or signs?” (Casscells, 

Schoenberger, & Graboys, 1978, p. 999). Only 11 of the 60 participating medical 

professionals inferred the correct positive predictive value that is 2%. Answers ranged from 

0.095% to 99%, the most common answer was 95%. Similarly, in an informal sample taken 

by Eddy (1982), most physicians overestimated the positive predictive value of a 

mammogram by about one order of magnitude (75% instead of 8%). In another study, half of 

20 AIDS counselors said that a positive HIV test for a low-risk client predicts an HIV 

infection with absolute certainty, that is, 100% (Gigerenzer, Hoffrage, & Ebert, 1998). 

However, the positive predictive value of HIV tests for low-risk clients can be as low as 50%.  

Also patients have repeatedly been shown to have problems in understanding clinical 

information containing statistical information (e.g. Coulter, 1997b; Doyal, 2001; Lloyd, 2001; 

Schwartz, Woloshin, Black, & Welch, 1997; Weinstein, 1999). For example, in a sample of 

56 patients who were counseled on their risk of having a stroke with or without a certain 

operation (the operation lowered the stroke risk, but operation-induced stroke could occur in 

rare cases as a complication), only one patient was able to recall the two risk figures he was 

told one month later. The risk estimates of the others were very variable and generally much 

too high; some had even forgotten that there was a stroke risk associated with the operation 

(Lloyd, Hayes, London, Bell, & Naylor, 1999). In another study, only 56% of 633 women 

were able to answer correctly the question of which is greater, a risk of 1 in 112 or 1 in 384 

(Grimes & Snively, 1999; see also Yamagishi, 1997). Given such difficulties in obtaining a 

basic understanding of statistical information, some physicians ask themselves if they should 

not “recognize the utopian nature of the goal of properly informed consent and return to the 

more honest and realistic paternalism of the past” (Doyal, 2001, p. i29) – even if there 

actually is a broad legal and professional consensus about the clinical duty to obtain informed 
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consent (Bundesärztekammer, 1990; Coulter, 1997a, 1997b; Doyal, 2001; General Medical 

Council, 1998; Marteau, 1995; Ubel & Loewenstein, 1997).  

Do psychologists share the pessimism of medical professionals concerning statistical 

thinking in lay people? For a large part of the last thirty years, the answer was “yes”. Take, 

for example, the diagnostic inference problem that was briefly sketched above. Here, the prior 

probability of a hypothesis (e.g. that a woman might have breast cancer) is supplemented with 

new evidence (e.g. a positive mammogram) and has to be updated accordingly. Psychologists 

have studied this type of problem, also called a “Bayesian” inference problem, since the 

1960s (e.g. Edwards, 1968). Numerous experiments had revealed that not only lay people, but 

also experts have substantial trouble solving them, either overweighting the prior evidence 

(“conservatism”, Edwards, 1968) or neglecting it (“base-rate neglect”, e.g. Bar-Hillel, 1980; 

see review by Koehler, 1996a). By 1980 it was concluded that humans are not equipped to 

solve these problems and that therefore “the genuineness, the robustness, and the generality of 

the base-rate fallacy are matters of established fact” (Bar-Hillel, 1980, p. 215).  

But in the 1990s, some authors offered a new interpretation of the results. Whereas the 

conclusion that humans simply cannot reason the Bayesian way was based on the assumption 

of processing errors inherent in our minds (e. g., Kahneman, Slovic, & Tversky, 1982), they 

made the ecological argument that people are indeed able to solve Bayesian inference 

problems when given an external representation of the data that facilitates rather than 

complicates human reasoning (Cosmides & Tooby, 1996; Gigerenzer and Hoffrage, 1995). 

Gigerenzer and Hoffrage (1995) reported that their participants performed much better when 

the statistical information was represented in a so-called “natural frequency format” (will be 

described in detail later in the text), rather than in other formats such as probabilities or 

percentages. The facilitating effect of natural frequencies on Bayesian inference problems has 

been replicated several times (Cosmides & Tooby, 1996; Hoffrage, Lindsey, Hertwig & 

Gigerenzer, 2000; Hoffrage & Gigerenzer, 1998; Hoffrage & Gigerenzer, in press; Koehler, 

1996b). These findings allow for a much more positive appraisal of our ability to understand 

statistical information, also because frequency representations were shown to reduce or 

eliminate other well-known “cognitive illusions” such as the conjunction fallacy (Hertwig & 

Gigerenzer, 1999) or the overconfidence bias (Gigerenzer, Hoffrage, & Kleinbölting, 1991).  

In the present dissertation, I would like to explore how natural frequencies can be used 

as a tool to improve statistical thinking in physicians and patients. Before I elaborate on this 

question, I first describe the tool in more detail.  
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What are natural frequencies?   

 

Natural frequencies are the result of an information-sampling process called “natural 

sampling” (Gigerenzer & Hoffrage, 1995; Kleiter, 1994). Natural sampling is described as a 

sequential process of observing and counting events. To illustrate this process, think of a 

physician who learns from direct experience rather than from books with statistics. She 

observes, case by case, whether her patients have a disease and whether the outcome of a test 

is positive or negative; thus she counts individuals according to their features (e.g., disease 

versus no disease, positive test result vs. negative test result; Hoffrage, Gigerenzer, Krauss, & 

Martignon, 2002). For example, the physician could observe whether the women in her 

practice received a positive or negative result in a routine screening for breast cancer, and 

whether they have breast cancer or not. The result of such a natural sampling process can be 

displayed in a natural frequency tree (Figure 1.1).  
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Figure 1.1 Natural frequency tree. The figure shows the sequential partitioning of one total 

sample into subsamples. The result of this sampling process are natural frequencies. 
 

Natural frequencies are the result of the sequential partitioning of one total sample 

(here: 1,000 women) into subsamples. The base rates in the sample and the subsamples (e. g., 

the number of women who have breast cancer) correspond to the natural base rates as they 

could be obtained by observation of all cases or a representative draw. This is opposed to 

systematic sampling in scientific research, where often base rates are artificially fixed a priori 

to compare, for example, 100 people with disease to 100 without (Gigerenzer & Hoffrage, 

1995; Kleiter, 1994). Please also note that an isolated number, such as 95, is not by itself a 
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natural frequency; it only becomes one in its relation to other numbers in the tree. Without 

this relation, it is simply an absolute frequency. 

Gigerenzer and Hoffrage (1995) introduced natural frequencies as an alternative way 

to represent statistical information in Bayesian inference problems. Prior to that, the 

information was typically represented as single-event probabilities or, as a variant, relative 

frequencies1. Table 1.1 shows the text of the same Bayesian inference problem for these three 

statistical formats (adapted from Gigerenzer & Hoffrage, 1995).  

 

Table 1.1 
Text of the mammography problem for three statistical formats 
Format Problem text – Standard menu a 
Natural 
frequencies 

Ten of every 1,000 women at age forty who participate in routine screening have 
breast cancer. Eight of every 10 women with breast cancer will have a positive 
mammogram. Ninety-five of every 990 women without breast cancer will also have a 
positive mammogram. Here is a new representative sample of women in this age group 
who had a positive mammogram in a routine screening. How many of these women do 
you expect actually to have breast cancer? ___ out of ___ 
 

Relative 
frequencies  

One percent of women at age forty who participate in routine screening have breast 
cancer. Eighty percent of the women with breast cancer will have a positive 
mammogram. Of the women without breast cancer, 9.6% will also have a positive 
mammogram. A woman in this age group had a positive mammogram in a routine 
screening. What is the probability that she actually has breast cancer? ___% 
 

Single-event 
probabilities 

The probability of breast cancer is 1% for women at age forty who participate in 
routine screening. If a woman has breast cancer, the probability is 80% that she will 
have a positive mammogram. If a woman does not have breast cancer, the probability 
is 9.6% that she will also have a positive mammogram. A woman in this age group had 
a positive mammogram in a routine screening. What is the probability that she actually 
has breast cancer? ____% 

Note. a The problems are shown in the standard information menu, i.e. they display three pieces of 
information (Gigerenzer & Hoffrage, 1995). See text for further information. 

 

The mammography problem displayed in Table 1.1 is a basic version of a Bayesian 

inference problem: The situation consists of a binary hypothesis H or ¬H (here: breast cancer 

or no breast cancer; the “¬” stands for absence) and one binary cue D or ¬D (D stands for 

data, here: test positive; ¬D is a negative test result in this example). Three pieces of 

information are specified (this is also called a standard information menu; for other ways to 

segment the statistical information, see Gigerenzer & Hoffrage, 1995, and Chapter 3): 

− The prior probability or base rate p(H), here the probability of having breast cancer. 

                                                
1 In the terminology of Gigerenzer and Hoffrage (1995), the term “relative frequencies” denotes percentages that 
refer to multiple events (“1% of the women ...”). The probability format can also contain percentages, as in the 
example above, but these refer to single cases (“The probability is 1% that a woman ...”). 
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− The sensitivity of the data p(D|H), here the proportion of positive mammograms among 

women with breast cancer. 

− The false-alarm rate of the test p(D|¬H), here the proportion of positive mammograms 

among women without breast cancer. 

The task is to find the posterior probability, or positive predictive value p(H|D), 

namely, the probability of the hypothesis, given the data: Of all the women with a positive 

mammogram, how many women do also have breast cancer? Or, for the other versions, 

respectively: What is the probability that a woman who tests positive actually has breast 

cancer? 

The normatively correct solution to the mammography problem is 8 out of 103, or 

7.7% (see below). Gigerenzer and Hoffrage (1995, Study 1) found that with natural 

frequencies, considerably more Bayesian inference problems were solved correctly (46%) 

than with single-event probabilities (18%). The performance rate with relative frequencies 

was comparable to the low performance with probabilities. The two latter results were 

consistent with previous findings on low performance in Bayesian inference problems (Bar-

Hillel, 1980). The former result was new. What is the explanation for the advantage of natural 

frequencies over probabilities and relative frequencies? The main argument for the facilitative 

effect of natural frequencies is computational: Bayesian computations are simpler when the 

information is represented in natural frequencies rather than with probabilities or relative 

frequencies (Gigerenzer & Hoffrage, 1995; see also Kleiter, 1994). Equation 1 shows the 

computational steps for the natural frequency format.  

 

p H | D( ) =
H& D

D
=

H& D

H& D+ ¬H& D
=

8

8 + 95
     (1) 

 

The number of H & D cases (i.e. breast cancer and positive mammogram) has to be 

divided by the total number of D cases (i.e. all positive mammograms). D consists of the 

number of H & D cases plus the number of ¬H & D cases (i.e. no breast cancer and positive 

mammogram). In the mammography problem, H & D and ¬H & D are 8 and 95, respectively. 

With natural frequencies, these two numbers can be derived directly from the problem text. 

Having identified these two numbers, only two simple computational steps remain: H & D 

and ¬H & D have to be added to obtain the total number of D cases (103), and then H & D 

has to be divided by this sum (i.e. divide 8 by 103).  
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Computations are more complex for the probability and the relative frequency version. 

This is because probabilities and relative frequencies no longer contain information about the 

actual base rates, because each of the three pieces of information given in the text problem is 

normalized to 100%. For example, the sensitivity tells us that 80% of women with breast 

cancer receive a positive test result, but we cannot see from the 80% whether having breast 

cancer is a frequent or a rare event in the population (the sensitivity in terms of natural 

frequencies, i.e. "8 out of 10", includes this information). The benefit of normalization is that 

the resulting values fall within the uniform range of 0 and 1, and thus can be easily compared 

to each other (for this argument, it does not make a difference whether the probability is 

stated as a decimal in the interval [0, 1] or as a percentage in the interval [0, 100]). As quality 

criteria of diagnostic tests, information about the error rates of diagnostic tests in the medical 

literature is typically stated as percentages to facilitate comparisons of the quality of different 

diagnostic tests. However, if the task is not comparison of several tests, but the interpretation 

of one test as in a Bayesian inference, normalization does have a cost: The base rate 

information has to be put back in by multiplying the conditional probabilities by their 

respective base rates, which makes computation more complex. 

 

p H | D( ) =
p H( ) p D | H( )

p H( )p D | H( ) + p ¬H( ) p D | ¬H( )
=

.01( ) .80( )

.01( ) .80( ) + .99( ) .096( )
  (2) 

 

Equation 2 is Bayes’ rule for probabilities and percentages. Bayes’ rule is named after 

the English reverend Thomas Bayes (1702-1761) who is credited with having discovered it 

(Stigler, 1983). The general idea is the same in both Equation 1 and 2, that is, the proportion 

of correct positives (numerator) is divided by all positives (denominator). The terms 

p(H)p(D|H) and p(¬H)p(D|¬H) correspond to H & D and ¬H & D in Equation 1. The two 

additional computational steps in (2) result from the multiplication of conditional probabilities 

p(D|H) and p(D|¬H) with the base rates p(H) and p(¬H), respectively.  

Computational simplification is one of two explanations that Gigerenzer and Hoffrage 

(1995) originally offered for the natural frequency effect. Note that the computational 

argument consists of two parts: “By ‘computationally simpler’, we mean that (a) fewer 

operations (multiplication, addition, or division) need to be performed in Equation 2 than in 

Equation 1 [here: in Equation 1 than in Equation 2], and (b) the operations can be performed 

on natural numbers (absolute frequencies) rather than fractions (such as percentages).” 

(Gigerenzer & Hoffrage, 1995, p.687). 
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The second explanation brings in an evolutionary perspective. It is argued that the 

human mind appears to be “tuned” to make inferences from natural frequencies rather than 

from probabilities and percentages: For most of their existence, humans and animals have 

made inferences from information encoded sequentially through direct experience, and natural 

frequencies can be seen as the final tally of such a process (hence the term “natural” 

frequencies; see Cosmides & Tooby, 1996; Kleiter, 1994). In contrast, mathematical 

probability did not emerge until the mid-17th century; in other words, probabilities and 

percentages are much more “recent” in evolutionary terms (Gigerenzer & Hoffrage, 1995). 

Therefore, it is assumed that minds have evolved to deal with natural frequencies rather than 

with probabilities.  

Although the beneficial effect of natural frequencies on Bayesian reasoning was 

replicated several times for different groups of lay people and experts (Hoffrage & 

Gigerenzer, 1998; Hoffrage & Gigerenzer, in press; Hoffrage, Lindsey, et al., 2000), there is 

still considerable theoretical controversy in the literature about why this effect can be 

observed (see the discussions in Gigerenzer & Hoffrage, 1999; Hoffrage et al., 2002). Both 

explanations offered by Gigerenzer and Hoffrage (1995) have been heavily disputed, and 

especially the evolutionary argument has been met with skepticism (Fiedler, Brinkmann, 

Betsch, & Wild, 2000; Girotto & Gonzalez, 2001). It should be noted that, strictly speaking, 

the evolutionary argument has yet to be tested, because it is still not clear how the effects of 

the computational and evolutionary explanations can be disentangled (Hoffrage et al., 2002). 

Furthermore, many authors have argued that it is not the use of frequency formats per se, but 

rather some third factor that could be the explanation for the obtained results. Although this 

debate is highly interesting, I will address it only partially in this dissertation. The reason is 

that only part of it is relevant for the main question of the dissertation, namely, how natural 

frequencies can be used to improve statistical thinking in physicians and patients. I will not 

address the studies showing that natural frequencies are not the only tool to improve Bayesian 

reasoning (e.g., Evans, Handley, Perham, Over, & Thompson, 2000; Girotto & Gonzalez, 

2001; Johnson-Laird, Legrenzi, Girotto, Legrenzi, & Caverni, 1999; Macchi, 2000), because I 

do not want to argue here that natural frequencies are the only tool to improve medical risk 

communication. I will also not address studies that were based on an incorrect interpretation 

of natural frequencies (e.g., Evans et al., 2000; Johnson-Laird et al., 1999; Lewis & Keren, 

1999; Macchi & Mosconi, 1998; Macchi, 2000), because most of the conclusions drawn there 

do not apply to natural frequencies as defined here (the misinterpretations have been 

addressed extensively in Gigerenzer & Hoffrage, 1999; Hoffrage et al., 2002). I will only 
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address those studies that are relevant for predictions made in this dissertation (see Chapter 

3). 

 

Natural frequencies in the medical context 

 

I said above that the main question of this dissertation is how natural frequencies can be used 

as a tool to improve statistical thinking in physicians and patients. The effect of natural 

frequencies on statistical thinking has been typically studied with text problems such as the 

mammography problem introduced above. I will subsequently refer to this method of 

studying Bayesian inferences as the “text problem paradigm”. Within the text problem 

paradigm, there have already been studies that explored if not only students, but also medical 

experts could benefit from natural frequencies when solving Bayesian inference tasks 

(Hoffrage & Gigerenzer 1998, in press). In these studies, 48 experienced physicians and 96 

medical students were given four diagnostic inference problems. The results were basically 

the same as those described above: Performance was low with probability formats (18% 

medical students, 10% physicians), and clearly higher with natural frequency formats (57% 

medical students, 46% physicians). It can therefore be concluded that not only lay people, but 

also medical experts do benefit from the use of natural frequency formats in Bayesian 

inference tasks. 

In their daily work, physicians will only rarely encounter written Bayesian inference 

problems. But they nevertheless make diagnostic inferences. As mentioned above, the 

information to base these inferences on (e.g., the sensitivity of a diagnostic test that is 

mentioned in a medical journal) is typically represented in terms of percentages or 

probabilities, and not in terms of natural frequencies. How can the insights on intuitive 

information representation be applied to this situation? One idea was to use natural 

frequencies in a tutorial on diagnostic inferences for medical students. The question tested in 

Chapter 2 was whether teaching medical students how to translate probabilities into natural 

frequencies would help them to make diagnostic inferences based on these probabilities.  

Using natural frequencies to teach (future) medical experts to draw correct diagnostic 

inferences is one way of applying this tool in the medical context. A second application was 

explored in the following chapters of this dissertation: How can natural frequencies be used to 

educate medical lay people about the uncertainties and risks associated with diagnostic tests? 

To explore this question, I chose one specific example of a diagnostic test: the screening 
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mammography. In a screening mammography, women who do not show any symptoms of 

breast cancer get an x-ray picture of their breasts (a mammogram). The goal is to detect breast 

cancer in its early stages to reduce mortality. As mentioned at the beginning of this chapter, to 

make a truly informed decision about participation in mammography screening, women have 

to understand the risks, benefits and the efficiency of this diagnostic test. In Chapter 4, I 

analyzed how currently available German mammography pamphlets inform women about 

these issues and identified a number of factors that could influence understanding. In Chapter 

5, I tested if a mammography pamphlet that includes natural frequencies would be better 

understood than one that includes percentages, and what kind of information members of the 

main audience of mammography pamphlets actually request.  

To summarize, out of the many potential applications of the tool of natural frequencies 

to the medical domain, in this dissertation I looked at two specific applications: One, using 

natural frequencies to teach medical students how to interpret diagnostic test results. And two, 

using natural frequencies to help medical lay people to understand statistical information 

given in health information pamphlets. 

 

 

 

 


