Contents

Acknowledgements iv
Abstract v
List of Figures vi
List of Tables x
List of Abbreviations and Symbols xi

1. **Introduction**
 1.1 Some pertinent definitions 2
 1.2 Need for the present study 3
 1.3 Lithospheric field models 4
 1.4 Preparation of field models for interpretation 6
 1.5 The objective of deriving the lithospheric field models 9
 1.6 Ambiguities in interpretation 12
 1.7 The present work 12

2. **Global Crustal Magnetisation Model** 15
 2.1 Introduction 15
 2.2 Geology of the continents 16
 2.2.1 Cathaysian platform 16
 2.2.2 Siberian platform 17
 2.2.3 East European platform 18
 2.2.4 Greenland 20
 2.2.5 South American platform 20
 2.2.6 North American platform 22
 2.2.7 African platform 23
 2.2.8 Indian platform 25
 2.2.9 Australian platform 25
 2.2.10 Antarctic platform 26
 2.3 Oceanic crust 26
 2.3.1 Oceanic plateaus 27
 2.4 Continental and Island arcs 28
 2.5 Phanerozoic cover 28
 2.6 Modelling 29
 2.6.1 Vertically Integrated Susceptibility model 29
 2.6.2 Geographical Information System method 31
 2.7 Flowchart showing the present work 33

3. **Methodology** 35
 3.1 Introduction 35
 3.2 Equivalent dipole method 36
 3.3 Nolte-Siebert method 38

3.4 Comparison of the two methods 41
3.5 Computing vertical field anomaly 42

4. Vertical Field Anomaly Map 44
4.1 Comparison of observed and initial model vertical field anomaly map 44
4.2 Examples of predicted anomalies in agreement and in disagreement with observed anomaly map 45
 4.2.1 Cathaysian platform 45
 4.2.2 Siberian platform 48
 4.2.3 East European platform 50
 4.2.4 North American platform 51
 4.2.5 South American platform 54
 4.2.6 African platform 56
 4.2.7 Australian platform 58
 4.2.8 Greenland 59
 4.2.9 Antarctic platform 60
 4.2.10 Oceanic crust 62
 4.2.11 Oceanic plateaus 64

5. Implications for Geology 68
 5.1 Kentucky-Tennessee region, North America 70
 5.2 North-Greenland, Greenland 72
 5.3 West African Craton, West Africa 74
 5.4 Bangui Anomaly, Africa 76
 5.5 Kolyma-Omolon block, Siberia 78
 5.6 Tarim basin, China 80
 5.7 Global first iteration model 82

6. Discussion 84
 6.1 Curie-temperature isotherm depth 84
 6.2 Remanence 85
 6.3 Continent-Ocean boundary 86
 6.4 Oceanic plateaus 88
 6.5 Key uncertainties 90

7. Conclusions 92
 7.1 Summary 92
 7.2 Outlook 95

Appendix I Magnetic Susceptibilities of rocks and minerals 96
Appendix II Continental crustal composition 99
Appendix III Susceptibility distribution for Cathaysian-Indian platform 100
Appendix IV Susceptibility distribution for Siberian platform 103
Appendix V Susceptibility distribution for East European platform 105
Appendix VI Susceptibility distribution for North American platform 107
Appendix VII Susceptibility distribution for South American platform 110
Appendix VIII Susceptibility distribution for African platform 112
Appendix IX Susceptibility distribution for Australian platform 116
Appendix X Susceptibility distribution for Greenland 118
Appendix XI Susceptibility distribution for Antarctic platform 119
Appendix XII Susceptibility distribution for Oceanic crust and plateaus 120

References 122

Curriculum Vitae 136
Acknowledgements

I wish to thank Prof. Dr. V. Haak for providing me an opportunity to work in GFZ and for the support and advice throughout the course of this work.

My heartfelt thanks for Dr. S. Maus for providing me an interesting research topic. He not only provided the scientific discussions whenever required but also supported by sharing his new ideas with me without which this work would not have been completed.

I wish to thank Prof. H. Luehr for his consistent support and encouragement throughout this work. I would take this opportunity to thank the CHAMP satellite group for their support and discussions. I particularly like to thank Dr. M. Rother whose help always kept our machines running. Not forgetting the other members of CHAMP data processing group, Dr. W. Mai and Dr. S. Choi, I wish to thank them for providing us the good quality satellite data, which forms the basis of the present work. I wish to thank I. Wardinski and J. Schwarte for their constant help throughout the course of my work. The cooperation and help from my colleagues Dr. P. Ritter, Dr. M. Korte and Dr. H. McCreadie had been a consistent source of encouragement.

I particularly wish to thank Dr. G. Balasis who helped not only reviewing the final version of this thesis but also kept providing me with valuable comments.

Another perennial source of inspiration were the members of the Electromagnetic Deep Sounding group. I particularly wish to thank Dr. O. Ritter and Dr. U. Weckmann, not only for their continuous advice related to technical problems but they also volunteered to read and correct parts of this thesis and of whom I received many valuable comments. I wish to thank Dr. P. Bedrosian for his critical suggestions to improve the thesis.

I should also like to thank Dr. D. N. Ravat, faculty at University of South Carolina, US for his valuable discussions during his visit to GFZ in the summer 2002. I also like to thank Prof. Dr. C. Reeves, faculty at ITC, Holland for his suggestions via email for improving the thesis.
Abstract

After a gap of nearly two decades since the Magsat mission in 1980, the dedicated low-orbit potential field mission CHAMP is now in the third of its seven year mission. Already, the new magnetic total intensity and vector data have yielded maps of the global crustal field of unprecedented accuracy and resolution. Here, we assess the value of these maps to infer deep crustal structure of regions overlain by younger cover. A GIS based modelling technique has been developed to model the various geological units of the continents starting from the geological map of the world. Depending upon the known rock types of the region, they are assigned a standard susceptibility value and using the global seismic crustal structure, a vertically integrated susceptibility (VIS) model is computed at each point of the region. Starting with this initial VIS model, the vertical field anomaly is computed at a satellite altitude of 400 km and compared with the corresponding CHAMP vertical field anomaly map. The first comparison is carried out against a model using the lateral extent of a cratonic region as given by published tectonic maps. In the subsequent modelling step, depending upon the extent of the observed anomaly pattern of that region, the surface geology is extended beneath the sediments until the recomputed map fits the observed magnetic anomaly map. Here, we focus on modelling results for the selected few provinces of the world where the initial model does not agree with the observed anomaly map. Similar modelling of CHAMP satellite magnetic anomalies can constrain the subsurface structure hidden by Phanerozoic cover in many parts of the world.
List of figures

1.1. Power Spectra of the total intensity anomaly (Lowes spectra/2n+1) at 400 km altitude of lithospheric field models derived by various workers from Magsat, POGO, Ørsted and CHAMP data. 6

1.2. Power Spectra of the total intensity anomaly (Lowes spectra/2n+1) at 400 km altitude of Ørsted and CHAMP lithospheric field models derived by our group. 6

1.3. Internal field model for the vertical component at an altitude of 400 km. 7

1.4. Lowes power spectra (Lowes, 1966) of an internal field model from CHAMP and Ørsted data. 8

1.5. Lithospheric field model for vertical component derived from CHAMP scalar data at 400 km for degrees 16-80. 9

1.6. Lithospheric field model for vertical component derived from Ørsted scalar data at 400 km for degrees 16-80. 9

1.7. Profiles for (a) vertical dipole located at north pole, (b) horizontal dipole located at equator, and, (c) vertical dipole located at south pole. Lines in red are the total field anomaly and in blue the vertical field anomaly for a dipole (marked in arrows) induced and directed along the main field of the earth. 10

2.1. Tectonic map of Cathaysian platform (Goodwin, 1991). 17

2.2. Tectonic map of Siberian platform (Shatzki and Bogdanoff, 1959; Salop, 1977). 18

2.3. Tectonic map of East European platform (based on Khain, 1985; Shatzki and Bogdanoff, 1959). 19

2.4. Tectonic map of Greenland shield (Escher and Watt, 1976). 20

2.5 Tectonic map of the South American platform (Almeida et al., 1981; Litherland et al., 1985) 21

2.6 Tectonic map of the North American platform (Hoffman, 1989). 22

2.7. Tectonic map of African platform (Saggerson, 1978). 24

2.8. Tectonic map of Indian platform (Naqvi and Rogers, 1987). 25

2.9. Tectonic map of Australian platform (Wyborn, 1988). 26

2.10. Tectonic map of Antarctica platform (James and Tingey, 1983). 27

2.11. Diagram shows a geological cross-section of a region, for which a VIS value is computed. 31

2.12. Initial model Vertically Integrated Susceptibility (VIS) map of the world. 32

2.13. The curve shows the admissible values for the factor of maximum susceptibility for a minimum misfit. 33

2.14. Flowchart showing the modelling steps involved in the present work. 34

3.1. Schematic diagram showing an elemental dipole moment producing a potential at point O. 36
3.2. The distribution of induced dipoles on the surface of Earth in an inducing dipole field. Each dipole is aligned with the direction of the inducing field.

3.3. Correlation coefficients between the Gauss coefficients derived using Nolte-Siebert and equivalent dipole method.

4.1. Observed vertical field anomaly map for spherical harmonic degrees 16-80 at an altitude of 400 km.

4.2. Predicted vertical field anomaly map (initial model) for spherical harmonic degrees 16-80 at an altitude of 400 km.

4.3a. Observed vertical field anomaly map for spherical harmonic degrees 16-80 at an altitude of 400 km for the Cathaysian platform and Indian subcontinent.

4.3b. Initial model vertical field anomaly map for spherical harmonic degrees 16-80 at an altitude of 400 km for the Cathaysian platform and Indian subcontinent.

4.4a. Observed vertical field anomaly map for spherical harmonic degrees 16-80 at an altitude of 400 km for the Siberian platform.

4.4b. Initial model vertical field anomaly map for spherical harmonic degrees 16-80 at an altitude of 400 km for the Siberian platform.

4.5a. Observed vertical field anomaly map for spherical harmonic degrees 16-80 at an altitude of 400 km for the European platform.

4.5b. Initial model vertical field anomaly map for spherical harmonic degrees 16-80 at an altitude of 400 km for the European platform.

4.6a. Observed vertical field anomaly map for spherical harmonic degrees 16-80 at an altitude of 400 km for the North American platform.

4.6b. Initial model vertical field anomaly map for spherical harmonic degrees 16-80 at an altitude of 400 km for the North American platform.

4.7a. Observed vertical field anomaly map for spherical harmonic degrees 16-80 at an altitude of 400 km for the South American platform.

4.7b. Initial model vertical field anomaly map for spherical harmonic degrees 16-80 at an altitude of 400 km for the South American platform.

4.8a. Observed vertical field anomaly map for spherical harmonic degrees 16-80 at an altitude of 400 km for the African platform.

4.8b. Initial model vertical field anomaly map for spherical harmonic degrees 16-80 at an altitude of 400 km for the African platform.

4.9a. Observed vertical field anomaly map for spherical harmonic degrees 16-80 at an altitude of 400 km for the Australian platform.

4.9b. Initial model vertical field anomaly map for spherical harmonic degrees 16-80 at an altitude of 400 km for the Australian platform.

4.10a. Observed vertical field anomaly map for spherical harmonic degrees 16-80 at an altitude of 400 km for the Greenland.

4.10b. Initial model vertical field anomaly map for spherical harmonic degrees 16-80 at an altitude of 400 km for the Greenland.

4.11a. Observed vertical field anomaly map for spherical harmonic degrees 16-80 at an altitude of 400 km for the Antarctica.

4.11b. Initial model vertical field anomaly map for spherical harmonic degrees
4.12. Observed vertical field anomaly map for spherical harmonic degrees 16-80 at an altitude of 400 km shown in cylindrical equidistant projection. The numbers shown in white is marked over the plateaus.

4.13. Predicted vertical field anomaly map (initial model) for spherical harmonic degrees 16-80 at an altitude of 400 km shown in cylindrical equidistant projection.

5.1a. World geological map (CGWM, 2000). The white rectangles show the areas to be studied in this chapter.

5.1b. Initial model vertical field anomaly map for spherical harmonic degrees 16-80 at an altitude of 400 km shown in cylindrical equidistant projection.

5.2. Distribution of major Mid-proterozoic anorogenic granites and anorthosites in North America. (Anderson, 1983).

5.3. The geological map of the southwest USA region. Thick black line is the previous boundary and the red line marks the new boundary.

5.4a. First iteration (predicted) vertical field anomaly map for spherical harmonic degrees 16-80 at an altitude of 400 km following the boundary of mid-proterozoic province shown in Fig.5.2.

5.4b. Observed vertical field anomaly map for spherical harmonic degrees 16-80 at an altitude of 400 km for the southwest USA region. Line AA’ shows the profile section.

5.5. Profile section along AA’, shown for initial model (green line), first iteration (red line), and the observed anomaly (blue line) map.

5.6. Depths to Moho in km for all the stations in the map of Greenland. The suggested division of the Proterozoic part of Greenland is marked in pink (Dahl-Jensen, 2003).

5.7. Geological map of Greenland (Henriksen, 2000). The region marked in red line is the possible plume passage and symbol ‘?’ suggests that it has not been proved (Wölbern et al., 2002).

5.8a. First iteration (predicted) vertical field anomaly map for spherical harmonic degrees 16-80 at an altitude of 400 km for Greenland.

5.8b. Observed vertical field anomaly map for spherical harmonic degrees 16-80 at an altitude of 400 km for Greenland. Lines AA’ and BB’ show the profile sections.

5.9. Profile sections along AA’ and BB’, shown for initial model (green line), First iteration (red line), and the observed anomaly (blue line) map.

5.10. The geological map of the West African region. Thick black line is the previous boundary and the red line marks the new boundary.

5.11. The geological map of the West African region (Goodwin, 1991).

5.12a. First iteration (predicted) vertical field anomaly map for spherical harmonic degrees 16-80 at an altitude of 400 km for West African region.

5.12b. Observed vertical field anomaly map for spherical harmonic degrees 16-80 at an altitude of 400 km for West African region. Line AA’ show the profile section.

5.13. Profile section along AA’, shown for initial model (green line), First Iteration (red line), and the Observed anomaly (blue line) map.

5.16a. First iteration (predicted) vertical field anomaly map for spherical harmonic degrees 16-80 at an altitude of 400 km for Central African region.

5.16b. Observed vertical field anomaly map for spherical harmonic degrees 16-80 at an altitude of 400 km for Central African region. Line BB’ show the profile section.

5.17. Profile section along BB’, shown for initial model (green line), First iteration (red line), and the observed anomaly (blue line) map.

5.19. The geological map eastern region of Siberian platform. Thick black line is the previous boundary and the red line marks the new boundary of the Kolyma block.

5.20a. First iteration (predicted) vertical field anomaly map for spherical harmonic degrees 16-80 at an altitude of 400 km for Kolyma block.

5.20b. Observed vertical field anomaly map for spherical harmonic degrees 16-80 at an altitude of 400 km for Kolyma block.

5.21. Profile section along AA’, shown for initial model (green line), First iteration (red line), and the observed anomaly (blue line) map.

5.22. Main outline of Tarim craton within the Cathayan platform. (Goodwin, 1991).

5.23a. First iteration (predicted) vertical field anomaly map for spherical harmonic degrees 16-80 at an altitude of 400 km for Tarim basin.

5.23b. Observed vertical field anomaly map for spherical harmonic degrees 16-80 at an altitude of 400 km for Tarim basin.

5.24. Profile sections along AA’ and BB’, shown for initial model (green line), first iteration (red line), and the observed anomaly (blue line) map.

5.25. First iteration VIS map of the world.

5.26. First iteration vertical field anomaly map for spherical harmonic degrees 16-80 at an altitude of 400 km.

5.27. Initial model vertical field anomaly map for spherical harmonic degrees 16-80 at an altitude of 400 km.

6.1. First iteration vertical field anomaly map for degrees 1-80 at an altitude of 400 km.

6.2. First iteration vertical field anomaly map for degrees 16-80 predicted for Model-1, at an altitude of 400 km.

6.3. First iteration vertical field anomaly map for degrees 16-80 predicted for Model-2, at an altitude of 400 km.

6.4. First iteration vertical field anomaly map for degrees 16-80 predicted for Model-3, at an altitude of 400 km.
List of Tables

1.1 The parameters used for VIS modelling. 30
6.1 The susceptibility distribution of continents and oceans to study the continent-ocean boundary effect. 87
List of Abbreviations and Symbols

VIS Vertically Integrated Susceptibility
3SMAC Global seismic model by Nataf and Ricard (1996)
CRUST5.1 Global seismic model by Mooney et al. (1998)
 (Resolution: 5° X 5°)
CRUST2.1 Improved version of global seismic model CRUST5.1
 (Resolution: 2° X 2°)
CTD Depth of the Curie-temperature isotherm
VRM Viscous Remanent Magnetisation
GFZ GeoForschungsZentrum

F magnitude of the geomagnetic main field of the Earth (nT)
\(V_c \) magnetic potential outside the Earth’s core (v)
\(c \) ‘core’ of the Earth
I inclination of the geomagnetic field (deg.)
D declination of the geomagnetic field (deg.)
\(M \) magnetisation or (dipole moment per unit volume, A/m)
\(d\tau' \) elemental volume over the Earth’s surface (km³)
\(dm' \) magnetisation of the elemental volume \(d\tau' \) (A-m²)
\(r'(r',\theta',\phi') \) source coordinates of the elemental volume \(d\tau' \) (m)
\(r(r,\theta,\phi) \) distance from the center of the Earth to the point of observation (m)
\(dV(r',r) \) magnetic potential at point \(r \) (v)
\(\chi(r') \) susceptibility at point \(r' \) (dimensionless in SI units)
\(\tilde{\chi}(\theta',\phi') \) vertically integrated susceptibility (m)
\(\tilde{M}(\theta',\phi') \) vertically integrated magnetisation (A)
\(d \) thickness of the crust (m)
\(ds' \) elemental surface area at the source (m²)
\(r' \) radial distance of the source from the Earth’s center (m)
\(\theta' \) colatitude at the source (deg.)
\(\phi' \) longitude at the source (deg.)
\(r \) radial position coordinate at the point of observation (m)
\(\theta \) colatitude at the point of observation (deg.)
\(\phi \) longitude at the point of observation (deg.)
\(R \) \(|r-r'| \) (m)
\(s_0 \) area of cell size at the equator (m²)
\(\mu_0 \) magnetic permeability of free space \([4\pi \cdot 10^{-7} \text{ Henry/m}]\)
\(p_n^m, q_n^m \) spherical harmonic coefficients of the VIS

\(g_n^m, h_n^m \) Gauss coefficients of the Geomagnetic main field

\(G_N^M, H_N^M \) Gauss coefficients of the crustal field

\(n \) spherical harmonic degree of the main field

\(m \) spherical harmonic order of the main field

\(N \) degree of spherical harmonic expansion for the crustal field

\(M \) order of spherical harmonic expansion for the crustal field

\(\delta_{MN} \) Kronecker delta

\(p_n^m \) Legendre’s associated functions

\(V(r, \theta, \phi) \) magnetic potential at the point of observation (v)

\(B_r \) component of the crustal magnetic field in radial direction (nT)

\(B_\theta \) component of the crustal magnetic field in colatitude direction (nT)

\(B_\phi \) component of the crustal magnetic field in longitude direction (nT)

\(B_z \) vertical component of the crustal magnetic field (nT), positive downward