
Linear Programming and Integer
Linear Programming in

Bioinformatics

Dissertation zur Erlangung des Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

vorgelegt von

Sandro Andreotti

am Fachbereich Mathematik und Informatik
der Freien Universität Berlin

February 4, 2015

Datum der Disputation: 15.12.2014

Gutachter:
Prof. Dr. Knut Reinert, Freie Universität Berlin, Deutschland

Prof. Dr. Gunnar W. Klau, CWI Amsterdam / Vrije Universiteit Amsterdam,
Niederlande

Da ist das Ding!

Oliver Kahn (* 15. Juni 1969), ehem. deutscher Fußballtorhüter.

v

Abstract

A wide range of important problems related to bioinformatics and computational
biology are optimization problems asking for a solution that minimizes or max-
imizes a certain objective function. Often, these problems are combinatorial
optimization problems that can be formulated as integer linear programs. While
for some of these problems polynomial time algorithms are known, for many other
problems it is unlikely that such algorithms exist. However, much work has been
dedicated to develop algorithms that are capable of solving many interesting inte-
ger linear programming problems on real live instances with acceptable memory
and running time requirements. These algorithms are implemented in a variety of
free or commercial solver software packages. In situations where the performance
of general purpose solvers is insufficient, often problem specific integer linear pro-
gramming techniques can be applied that take advantage of knowledge about the
particular structure of the integer linear programming formulation to solve the
problem in a much more time- or space-efficient way.

In this thesis we present our algorithmic approaches to three relevant bioin-
formatic problems, each involving certain linear programming and integer linear
programming techniques.

The first problem is the de novo peptide sequencing problem, which consists
in identifying a peptide’s sequence solely from its tandem mass spectrum without
any additional information stored in genome databases or protein databases. This
problem can be formulated as a graph theoretical problem asking for the compu-
tation of a longest antisymmetric path in a directed acyclic graph. The particular
structure of the associated integer linear programming formulation facilitates the
application of a technique called Lagrangian relaxation, which yields an algorithm
that outperforms state-of-the-art commercial integer linear programming solvers
by orders of magnitude.

The second problem is the isoform inference and abundance estimation prob-
lem from RNA-Seq data. This problem consists in predicting a set of expressed
RNA isoforms, i.e., full length RNA transcripts corresponding to alternative splice
variants, together with an estimate of their individual expression levels. We apply
a linear programming technique called delayed column generation, which allows
us to increase the search space without explicitly enumerating the potentially
huge set of candidate isoforms. As a consequence, our approach allows for the
identification of isoforms that otherwise could not be recovered due to incomplete
read coverage. A central component of our delayed column generation algorithm
is an integer linear programming formulation.

The third problem is the duplication-loss alignment problem, which asks for
a labeled alignment of two genome sequences that implies the minimal number of

vi

loss and duplication events in the evolutionary history from an unknown nearest
common ancestor. In a labeled alignment, every unaligned gene must be labeled
either as a loss or as the product of a duplication event. Once an optimal labeled
alignment has been computed, a common ancestor genome with minimal implied
evolutionary operations can be derived in a straight forward way. In our approach
we identified problem specific cutting planes and developed efficient separation al-
gorithms to obtain a branch and cut algorithm that is several orders of magnitude
faster than existing approaches based on integer linear programming.

vii

Zusammenfassung

Viele bedeutende Probleme im Forschungsbereich der Bioinformatik sind Opti-
mierungsprobleme, bei denen eine Lösung errechnet werden muss, welche eine
gegebene Zielfunktion minimiert oder maximiert. Bei einigen dieser Probleme
handelt es sich um kombinatorische Optimierungsprobleme, welche als ganz-
zahlige lineare Optimierungsprobleme formuliert werden können. Während für
eine Teilmenge dieser Probleme effiziente Polynomialzeit-Algorithmen bekannt
sind, ist es für viele Probleme unwahrscheinlich, dass solche Algorithmen über-
haupt existieren. Infolge kontinuierlicher Forschung wurden jedoch Algorith-
men und Methoden entwickelt, die es erlauben viele ganzzahlige lineare Opti-
mierungsprobleme für reale Instanzen mit vertretbarem Rechenaufwand zu lösen.
Diese Algorithmen sind in einer Vielzahl von freien oder kommerziellen Löser Soft-
ware Paketen implementiert. In Situationen, in denen die Effizienz solcher Löser
unzureichend ist, kann die Anwendung problemspezifischer Methoden der ganz-
zahligen linearen Optimierung, welche die spezielle Struktur der Formulierung
berücksichtigen, den Zeit- oder Speicherbedarf signifikant reduzieren.

In dieser Arbeit werden algorithmische Ansätze für drei relevante Probleme
der Bioinformatik vorgestellt, die jeweils bestimmte Methoden der linearen Op-
timierung und ganzzahligen linearen Optimierung verwenden.

Als erstes wird das Problem der de novo Peptidsequenzierung betrachtet,
welches darin besteht, die Sequenz eines unbekannten Peptids aus seinem Tandem
Massenspektrum zu rekonstruieren, ohne zusätzliche Informationen aus Genom-
oder Proteindatenbanken zu verwenden. Dieses Problem lässt sich als das graphen-
theoretische Problem des längsten antisymmetrischen Pfads in einem gerichteten
azyklischen Graphen formulieren. Die besondere Struktur der Formulierung als
ganzzahliges lineares Optimierungsproblem ermöglicht eine effektive Anwendung
von Lagrange Relaxierung. Der resultierende Algorithmus ist ummehrere Größen-
ordnungen schneller als leistungsfähige kommerzielle Löser Software.

Das zweite Problem behandelt die Vorhersage exprimierter RNA-Isoformen,
welche alternativen Spleißvarianten desselben Gens entsprechen, basierend auf
RNA-Seq Daten. Gleichzeitig sollen die individuellen Expressionsniveaus der
einzelnen Isoformen bestimmt werden. Der vorgestellte Ansatz verwendet die
Methode der verzögerten Spaltengenerierung, die es ermöglicht den Suchraum der
Isoform Kandidaten zu erweitern, ohne eine vollständige Aufzählung dieser Kan-
didaten erforderlich zu machen. Durch die gezielte Erweiterung des Suchraums
können auch Isoformen korrekt vorhergesagt werden die zuvor aufgrund unvoll-
ständiger Abdeckung durch sequenzierte reads nicht betrachtet werden konnten.
Ein zentraler Bestandteil des vorgestellten Algorithmus zur Generierung neuer
Spalten ist ein ganzzahliges lineares Optimierungsproblem.

viii

Als drittes Problem wird das Duplikation und Verlust Alignment Problem be-
trachtet, bei dem für zwei Gensequenzen ein gelabeltes Alignment gesucht wird.
In einem gelabelten Alignment ist jedes ungepaarte Gen entweder als Produkt
einer Duplikation oder als Genverlust gelabelt. Aus einem berechneten optimalen
gelabelten Alignment kann anschließend die Gensequenz eines gemeinsamen Vor-
fahren konstruiert werden, welches die Anzahl an erforderlichen Verlust- und
Duplikationsereignissen in der Evolutionsgeschichte minimiert. Der vorgestellte
branch and cut Algorithmus basiert auf neuen, problemspezifischen Schnittebe-
nen und effizienten Separierungsalgorithmen und ist um mehrere Größenordnun-
gen schneller bei der Berechnung eines optimalen gelabelten Alignments als ex-
istierende Ansätze.

ix

Acknowledgements

I want to express my gratitude to everyone who supported me throughout the
long and exhausting course of this thesis. I thank my supervisor Prof. Knut Rein-
ert for giving me the opportunity to work on several interesting problems, for his
continuous support and advices. My thanks also go to Prof. Gunnar W. Klau for
his constant support, his valuable scientific input and motivation over the past
years and for offering me scientific research visits at the CWI Amsterdam. I also
want to thank the IMPRS-CBSC for their financial support of my scientific re-
search visits, for the enjoyable retreats and social events. Special thanks go to my
colleagues, first of all to Dr. Stefan Canzar for close and successful collaborations
on two interesting research projects and also many interesting discussions about
current issues related to FCB and BVB. Further, I want to thank the whole
AG-ABI group, especially Stephan, David and Chris for their mental support
and several inspiring burger and schnitzel eating orgies. Also special thanks go
to Kathrin for many helpful comments on this thesis. Finally, I want to thank my
friends, family and especially Michèle for their selfless and unconditional support
and their patience during the last months.

CONTENTS

Part I INTRODUCTION 1

1. Introduction . 3
1.1 About bioinformatics . 3
1.2 About this thesis . 4
1.3 Mathematical optimization in bioinformatics 7

2. Mathematical Preliminaries . 9
2.1 Linear programming . 9

2.1.1 The simplex method . 14
2.2 Integer linear programming . 18

2.2.1 Branch and cut . 18
2.2.2 Lagrangian relaxation . 22

Part II THREE APPLICATIONS 27

3. de novo Peptide Sequencing With Lagrangian Relaxation 29
3.1 Background . 29
3.2 A Lagrangian relaxation algorithm . 35

3.2.1 Graph-theoretical formulation . 35
3.2.2 Integer linear programming formulation 39
3.2.3 Applying Lagrangian relaxation 41
3.2.4 Solving the longest antisymmetric path problem by Lagrangian

relaxation and branch and bound 42
3.2.5 Polynomial algorithm for longest antisymmetric paths with re-

stricted sets of ion types . 43
3.3 Enumeration of suboptimal antisymmetric paths 47

3.3.1 Enumerating longest unconstrained paths 50
3.3.2 Backward heuristic . 52

3.4 Scoring model . 52
3.4.1 Scoring vertices in the spectrum graph 52
3.4.2 Re-scoring of candidate peptides 55

3.5 Results . 56
3.5.1 Running time . 56

xii

3.5.2 Sequencing performance . 59
3.6 Conclusion . 62

4. Isoform Inference And Abundance Estimation With Delayed Column
Generation . 67
4.1 Background . 67
4.2 Basic definitions and data structures . 73

4.2.1 Definitions . 73
4.3 Core mathematical model . 80

4.3.1 Linear least squares formulation 80
4.3.2 Regularized linear least squares formulation 81

4.4 A delayed column generation approach 82
4.4.1 Piecewise linear approximation of regularized linear least squares

formulation . 82
4.4.2 Pricing ILP for piecewise linear approximation 83

4.5 Model selection . 88
4.6 Post-processing . 89
4.7 Experimental results . 90
4.8 Conclusion . 98
4.9 Contributions . 100

5. Solving The Duplication-Loss Alignment Problem With Branch And
Cut . 101
5.1 Background . 101
5.2 The duplication-loss model for two species 104

5.2.1 Basic definitions . 104
5.3 Problem formulation and valid inequalities 106

5.3.1 Graph-theoretical formulation . 106
5.3.2 Initial ILP formulation . 109

5.4 Valid cuts and separation . 110
5.4.1 Lifted duplication cycle inequalities 111
5.4.2 Maximal clique inequalities . 114
5.4.3 Duplication island inequalities . 118

5.5 The duplication-loss model for three species 121
5.5.1 Additional constraints . 123

5.6 Results . 125
5.6.1 Two species duplication-loss alignment 126
5.6.2 Median-of-three . 128

5.7 Conclusion . 129

6. Closing Remarks . 133

xiii

Part III APPENDIX 135

A. Declaration . 137

B. Curriculum Vitae . 139

Bibliography . 141

Index . 167

xiv

Part I

INTRODUCTION

Chapter

1 Introduction

1.1 About bioinformatics

Bioinformatics and computational biology

Bioinformatics and computational biology are two relatively young but rapidly
emerging interdisciplinary research fields, studying the solution of computational
problems arising from theoretical models of biological processes and systems.
While bioinformatics is rather focused on the development of software tools and
algorithms to efficiently process large amounts of biological data or complex bio-
logical data, computational biology is focused on the development of large scale
data-analytical and theoretical models and computational simulation techniques
(see exact definitions in [Huerta et al., 2000]). However, as it is hardly possible to
find a clear separation between these two research fields, we put no emphasis on
a discrimination between them throughout this thesis and use “bioinformatics” as
an umbrella term for both.

Research areas

One of the most intensively studied areas in bioinformatics is sequence analysis,
which addresses problems like the comparison of genomic sequences, identification
of genes, efficient search in large sequence databases, or identification of sequence
motifs in a collection of functionally related sequences.

At a higher level, computational evolutionary biology studies the evolution-
ary mechanisms in the speciation process, based on available genomic sequence
information and large scale genome comparison.

Another research area is focused on the quantitative analysis of gene expres-
sion or protein expression, which involves algorithms and statistical methods to
interpret the experimental data obtained by different experimental workflows.
This analysis demands robust methods to account for noise or other artifacts
often present in experimental data, to avoid misleading interpretations.

Structural bioinformatics aims at predicting the three-dimensional structure
of biomolecules, especially proteins and RNA, which is of particular interest, since

4

the three-dimensional structure determines their function and also the interac-
tions between different molecules. Hence, the structural information can give
insights into more complex biological systems. The analysis and simulation of
such systems like networks of metabolites, protein-protein interaction networks,
gene-regulatory networks, and signal transduction pathways is addressed by the
research area of network and systems biology.

1.2 About this thesis

In this thesis, we present algorithmic approaches to three relevant problems re-
lated to bioinformatics. All three approaches are based on a linear programming
(LP) or integer linear programming (ILP) formulation of the problem. This
means, we optimize a linear objective function over some set of variables, sub-
ject to a set of linear constraints that must be fulfilled by the solution. In case
of integer linear programming, all variables are restricted to take integer values,
which renders the problem computationally hard.

While there exist general purpose solver software solutions that can be applied
to general LP or ILP formulations, the formulations considered in this thesis de-
mand advanced techniques that exploit their specific properties. For each of the
three approaches, we apply a different technique to deal with the specific prop-
erties of the associated formulation and to obtain algorithms with good practical
performance.

After a brief introduction to basic concepts in linear programming and integer
linear programming in Chapter 2, we proceed with a comprehensive discussion of
the three algorithmic approaches in the following chapters.

In Chapter 3, we present our algorithmic approach to the de novo peptide
sequencing problem for tandem mass spectrometry data, which aims at the infer-
ence of the amino acid sequence of an unknown peptide solely from its tandem
mass spectrum. As sketched in Figure 1.1, this important problem in the area
of computational proteomics can be formulated as a graph-theoretical problem,
asking for a so-called longest antisymmetric path. This problem corresponds
to the longest path problem in an directed acyclic graph, complicated by a set
of additional constraints to prevent the simultaneous selection of certain vertex
pairs. As this problem is known to be NP-hard in the general case, without
restrictions on the structure of forbidden vertex pairs, most existing approaches
consider only restricted models that allow to solve the problem in polynomial
time. However, the structure of the integer linear programming formulation for
the longest antisymmetric path problem is particularly well suited for application
of the Lagrangian relaxation technique, which is based on the idea of relaxing
complicating constraints and adding their violation as a penalty to the objective

5

m/z

in
t
e
n
s
it
y

1. VLVDLER

2. PNVDELR

3. VLVPFLR

4. PDVDLER

5. VLVENNR

...

...

...

Figure 1.1: Schematic workflow of de novo peptide sequencing. Given a tan-
dem mass spectrum of the unknown peptide, the first step is the
construction of the associated spectrum graph. Every path in the
spectrum graph corresponds to a unique peptide sequence. How-
ever, a simple path search is not sufficient to solve the problem, as
a feasible solution must not contain particular pairs of vertices that
imply ambiguous interpretations of mass peaks. The result is a list
of candidate peptide sequences ranked by some score to estimate
the likelihood of each candidate to generate the given tandem mass
spectrum.

function. We embed our Lagrangian relaxation formulation into a branch and
bound algorithm and a graph algorithm for efficient enumeration of suboptimal
solutions. The resulting algorithm outperforms a straightforward ILP formula-
tion solved by one of the worlds leading commercial solvers by several orders of
magnitude, while, at the same time, it does not depend on a certain structure
of forbidden vertex pairs like existing polynomial time dynamic programming
algorithms.

In Chapter 4, we discuss our approach to the problem of isoform inference and
abundance estimation from whole transcriptome shotgun sequencing (RNA-Seq)
data, as outlined in Figure 1.2. The general idea is to use read mapping coverage
on exons and splice junctions to identify the set of expressed isoforms, e.g., alter-
native splice variants, and their associated abundance. Our approach to select a
subset of expressed isoforms from a possibly very large set of candidate isoforms
and to estimate their abundance is based on regularized linear least squares prob-
lem. While in general a regularized least squares problem can be solved efficiently
using quadratic programming solvers or other special purpose algorithms, the po-
tentially large number of variables, i.e., candidate isoforms, renders these standard
approaches impractical for complex genes. We tackle this problem by means of
a linear programming technique, called delayed column generation, to avoid an
exhaustive enumeration of all variables. As such, we begin with an initial solution
computed for a subset of candidate isoforms and successively modify the model
by adding new variables that lead to an improved solution. The central prob-

6

Figure 1.2: Schematic workflow of isoform inference from RNA-Seq data. From
a set of paired-end reads mapped onto exons and splice junctions
(i.e., exon-exon junctions), we first construct the splicing graph,
which encodes a set of candidate isoforms. The number and location
of mapped reads is then used to infer a (preferably small) set of
expressed isoforms together with an estimate of their respective
abundance that yields an good explanation (prediction) of observed
read mappings.

lem in delayed column generation is the so-called pricing problem, which consists
in the identification of such a variable or a proof that no such variable exists.
We formulate the pricing problem as a graph problem based on a hypergraph,
which we solve by means of an ILP formulation. Our algorithm is therefore ca-
pable of considering a large space of candidate isoforms while, at the same time,
incorporating paired-end read information into the inference process.

In Chapter 5, we describe a branch and cut algorithm for the pairwise dupli-
cation-loss alignment problem, a recently defined problem in the research area
of computational evolutionary biology. In the duplication-loss model of evolu-
tion, genomes are supposed to evolve from the evolutionary ancestor only by the
two content modifying evolutionary operations: loss and duplication. The two
species small phylogeny problem depicted in Figure 1.3 asks for a common an-
cestor genome of two given genome sequences with minimal total cost of implied
evolutionary operations. As the two considered operations preserve gene order,
this problem can be stated as an alignment problem. Given two gene sequences
as input, the duplication-loss alignment problem asks for a labeled alignment of
the two sequences where every unaligned gene is labeled as the product of a du-
plication event or as a loss in the other genome such that the summed cost of
the implied evolutionary operations is minimized. Our approach builds upon an
existing ILP formulation, for which we present several classes of constraints that
yield a stronger LP-relaxation. Since the number of constraints is too large for
an exhaustive enumeration and integration into the ILP model, we use the cut-
ting plane technique, which consists of iteratively solving the LP-relaxation and
adding new valid inequalities that are violated by the current optimal solution.
Further, in a proof of concept study, we extend the model to three species to solve
a restricted version of the median-of-three problem, which is a central component

7

A B C D

E

F

A B D F A B

L
L

G1 :

G2 :

G∗ : ABCDEFG

C D G

G
G2G1

G∗

Figure 1.3: Schematic description of the duplication-loss alignment problem.
Given two gene sequences G1 and G2, we infer a common ancestor
G∗ that implies the least number of duplication events and loss
events by computing an optimal labeled alignment of G1 and G2,
where every unaligned gene is labeled either as a loss (denoted by
blue “L”) or as the product of a duplication event (denoted by red
arcs).

of the Steinerization heuristic for the small phylogeny problem on phylogenetic
trees with more than two extant species.

1.3 Mathematical optimization in bioinformatics

With our application of linear programming and integer linear programming to
problems related to bioinformatics, we extend a considerable library of successful
approaches that have been published within the last 20 years. A comprehen-
sive review summarizing successful applications published before 2006 is given
by Lancia [2008]. We will now briefly present a selection of these approaches,
extended by some more recent publications, without any claim of completeness.

Mathematical optimization approaches have been proposed for a variety of
problems in different areas of bioinformatics. Some applications in sequence anal-
ysis include a branch and cut approach to the multiple sequence alignment prob-
lem by Kececioglu et al. [2000] and Althaus et al. [2005], an ILP formulation for
the inverse alignment problem, which aims at determining a cost function for a
given, biologically validated multiple sequence alignment, proposed by Kececioglu
and Kim [2006], and an ILP formulation to determine the consensus of a given
set of sequences by Meneses et al. [2004]. A more recent application proposed
by Ritz et al. [2010] uses an ILP formulation to identify structural variations in
genomic DNA from strobe sequencing data.

In structural bioinformatics, the protein threading problem gave rise to several
publications describing approaches to this problem by means of an ILP formu-
lation by Xu et al. [2003], a branch and cut formulation by Xu et al. [2004]
and a Lagrangian relaxation approach by Balev [2004]. Another, more recent

8

approach by Collet et al. [2011] studies a local variant of the protein threading
problem. Some approaches to the protein side-chain positioning problem com-
prise ILP formulations by Eriksson et al. [2001] and Kingsford et al. [2005] and
a Lagrangian relaxation algorithm proposed by Canzar et al. [2011]. Althaus
et al. [2002], solve a similar problem in their approach to the protein docking
problem, using a branch and cut approach. For the problem of protein structure
alignment based on the contact map overlap measure, Lancia et al. proposed a
branch and cut algorithm introduced in [Lancia et al., 2001] and a Lagrangian re-
laxation algorithm presented in [Caprara and Lancia, 2002], which has later been
extended by Wohlers et al. [2010]. An alternative ILP model and Lagrangian
relaxation algorithm have been proposed by Andonov et al. [2008; 2011]. In their
approach to the related problem of structural RNA alignment, Bauer et al. [2005;
2007] proposed a Lagrangian relaxation algorithm similar to the one by Caprara
and Lancia [2002]. Motivated by this work, Kato et al. [2010] developed an ILP
formulation for accurate RNA-RNA interaction prediction.

In computational proteomics, two examples for approaches based on ILP for-
mulations are given by Zerck et al. [2013], who propose a model for optimal
precursor ion selection in Liquid chromatography tandem mass spectrometry and
by Bertsch et al. [2010], proposing a model for optimal de novo design of multiple
reaction monitoring (MRM) experiments.

Examples for applications to systems biology are given by the work of Backes
et al. [2012], presenting an ILP formulation and a branch and cut algorithm to
identify deregulated subgraphs in gene regulatory networks, Dittrich et al. [2008]
proposing a branch and cut algorithm to identify functional modules in protein-
protein interaction networks, and a very recent publication by Lu et al. [2014],
who propose an ILP formulation for the design of synthetic metabolic networks
by minimum reaction insertion.

This small selection from a plethora of publications describing integer lin-
ear programming approaches to bioinformatics reveals the importance and the
potential of these methods to enhance our understanding of biological processes.

Chapter

2 Mathematical
Preliminaries

This chapter serves as a short introduction to linear and integer linear program-
ming. It is based on the textbooks by Bertsimas and Tsitsiklis [1997] and Wolsey
[1998], but covers only the most important aspects required to follow the ap-
proaches presented throughout this thesis. For a deeper study of this topic,
the interested reader should refer to one of many available textbooks on linear
and combinatorial optimization, e.g., reference material [Bertsimas and Tsitsiklis,
1997; Wolsey, 1998; Nemhauser and Wolsey, 1988; Chvátal, 1983].

2.1 Linear programming

The concepts, definitions, and notation we present in this section are based on the
textbook [Bertsimas and Tsitsiklis, 1997, chap. 1-3]. Note that some definitions
may differ slightly between textbooks.

Linear programming defines the problem of minimizing or maximizing a linear
objective function, subject to a set of linear inequalities and equalities. Since
many important problems in production planning, transporting, scheduling and
other economic fields can be stated as a linear program1 (LP), this mathematical
discipline developed rapidly since 1947 when G. B. Dantzig proposed an algorithm
to solve linear programs, called the simplex method.

The following is an example of a linear program:

max 2x1 + 3x2 + 5x3

subject to 5x1 + 2x2 + 3x3 ≤ 35

3x1 + 4x3 ≥ 3 (2.1)

1x1 + 5x2− 3x3 = 6

x1 ≥ 0

x3 ≤ 0 ,

with decision variables x1, x2, x3 and linear objective function 2x1 + 3x2 + 5x3 to
1 We use the abbreviation LP for both terms “linear programming” and “linear program”.

10

be maximized. The linear equalities and inequalities that have to be fulfilled are
called the constraints of the LP. Often the simple constraints that restrict the sign
of a single decision variable are written separately from the remaining constraints
(see below). Variables without explicit restriction on their sign imposed by a
simple constraint, like variable x2 in (2.1), are called free variables. In case
of a minimization problem, the objective function is usually referred to as cost
function, whereas for a maximization problem it is often called profit function. A
realization of the decision variables that satisfies all constraints is called a feasible
solution. If, in addition, the feasible solution minimizes (resp. maximizes) the
objective function, it is called an optimal solution with associated optimal cost
(resp. optimal profit). The set of all feasible solutions defines the feasible region
of the LP. In case of an empty feasible region, i.e., no feasible solutions exist,
the LP is said to be infeasible. Otherwise, if for a given LP the feasible region is
non-empty but no optimal solutions exists, i.e., the objective function value can
be arbitrarily improved, the optimal cost (resp. profit) as well as the LP itself are
said to be unbounded.

Standard form

For the analysis of LPs and the discussion of related algorithms it is convenient
to define a standard representation of LPs. The following representation of an
LP is called the standard form:

min c>x

subject to Ax = b (2.2)

x ≥ 0 .

The n-dimensional vector c = (c1, . . . , cn)> of objective function coefficients is
called the cost vector and A is the m× n constraint matrix. The i-th row ai for
i = 1, . . . ,m of matrix A is an n-dimensional vector (ai,1, . . . , ai,n) containing the
coefficients of the i-th constraint given by

ai,1x1 + ai,2x2 + · · ·+ ai,nxn = bi .

Every LP formulation can be transformed into an equivalent LP formulation in
standard form such that every feasible solution to the standard form problem can
be directly converted into a feasible solution to the other problem with the same
cost (resp. profit after multiplication with −1). We will use the example LP (2.1)
to demonstrate the transformation rules to generate an equivalent standard form
LP. As a first step, we transform (2.1) into a minimization problem by multiplying
the profit vector by −1. Therefore, the new objective function reads

min −2x1 − 3x2 − 5x3 .

11

Next, we transform the two inequality constraints into equality constraints by
introducing a slack variable xs1 and a surplus variable xs2, both non-negative, into
the first and second constraint, which then become

5x1 + 2x2 + 3x3 + xs1 = 35 and 3x1 + 4x3 − xs2 = 3 .

In the final two steps, we replace the free variable x2 and the non-positive re-
stricted variable x3 by equivalent non-negative variables. We substitute x3 by
some variable x̂3, which is defined as x̂3 := −x3 and therefore restricted to non-
negative values. Finally, we substitute the free variable x2 by the difference
x+

2 − x−2 of two non-negative variables x+
2 and x−2 . After applying these transfor-

mations, we obtain the following LP:

min −2x1− 3x+
2 + 3x−2 + 5x̂3

subject to 5x1 + 2x+
2 − 2x−2 − 3x̂3 + xs1 = 35

3x1 − 4x̂3 − xs2 = 3

1x1 + 5x+
2 − 5x−2 + 3x̂3 = 6

x1,x
+
2 , x

−
2 , x̂3, x

s
1, x

s
2 ≥ 0 ,

which is equivalent to (2.1) and obviously in standard form (2.2) with

c =

−2

−3

3

5

0

0

, A =

5 2 −2 −3 1 0

3 0 0 −4 0 −1

1 5 −5 3 0 0

 , x =

x1

x+
2

x−2
x̂3

xs1
xs2

, and b =

35

3

6

 .

A geometric view on linear programming

To understand the general idea of solving LPs, it is helpful to consider linear
programming from a geometric perspective. Before we discuss the geometric
aspects of linear programming, we begin with some basic geometric definitions.

A set S that can be described by S = {x ∈ Rn | Ax ≥ b} with m× n matrix
A and b ∈ Rm defines a polyhedron. If the absolute value of every component xi
of every element x ∈ S is bounded, then S is a bounded polyhedron, sometimes
denoted as polytope. For every polyhedron S, its dimension dim(S) is defined as
the maximum number of affinely independent points in S minus one.

For polyhedra defined by a single linear constraint two possible
cases are distinguished. If the single constraint is an equality, i.e.,

12

S = {x ∈ Rn | a>x = b ∧ a ∈ Rn}, then S is called a hyperplane. Otherwise, if
the single constraint is an inequality, i.e., S = {x ∈ Rn | a>x ≥ b∧a ∈ Rn}, then
S is called a half-space. According to these definitions, every polyhedron can
be described as the intersection of a finite number of half-spaces, which is some-
times called the outer description of a polyhedron. Another important property
of polyhedra is that they define convex sets, meaning that whenever some point
p ∈ Rn belongs to a line segment between any two points in S, then p must also
be an element of S.

From these definitions it follows that the feasible region of every LP defines
a polyhedron P . An important observation is that whenever an LP has a unique
or multiple optimal solutions, at least one optimal solution will correspond to
an extreme point of P . The extreme points represent the corners of P , also
denoted as vertices, which are the points that do not correspond to the convex
combination of any two other points in P .

In addition to the outer description, every bounded polyhedron has an alterna-
tive description based on extreme points. For a finite set of pointsX = x1, . . . ,xn,
the convex hull of X (CH(X)) is defined as the set of convex combinations of all
points in X:

CH(X) = {y | y =
n∑
i=0

λixi ∧
n∑
i=0

λi = 1 ∧ λ ∈ Rn
+} .

Using this definition, every bounded polyhedron P can be described as the convex
hull of all extreme points of P , sometimes called the inner description of P .
Note that for unbounded polyhedra there exists a similar representation based
on extreme points and so-called extreme rays (details omitted). For a given
polyhedron P , we say that an inequality constraint a>x ≤ b is valid for P if the
half-space S = {x ∈ Rn | a>x ≤ b} contains P , i.e., P ⊆ S.

In Figure 2.1 we present a two-dimensional example (n = 2) to illustrate
the geometric representation of a general LP formulation. As we can observe in
this example, every constraint defines an (n − 1)-dimensional hyperplane that
separates the space Rn into two half-spaces such that exactly one of them con-
tains the feasible region. Obviously, in R2 every hyperplane is of dimension
one and presents a line. Only four of the five hyperplanes in the example
are supporting hyperplanes, meaning they have a non-empty intersection with
the feasible region and therefore define its boundaries, called faces. A face
F = P ∩ {x ∈ Rn | a>x ≥ b ∧ a ∈ Rn} is a proper face if F ⊂ P , and, depend-
ing on their dimension, proper faces have special names like “vertex” and “edge”
for faces of dimension zero and one respectively. Every vertex of a polyhedron
corresponds to the intersection of at least n supporting hyperplanes. Another im-
portant class of faces are the (n− 1)-dimensional facets of the polyhedron, which

13

max 14x1 + 5x2

subject to x1 + 2x2 ≥ 4

2x1 + 3x2 ≤15

x1− x2 ≤ 2

−2x1 + x2 ≤ 1

x2 ≤ 5

x1, x2 ≥ 0
x1

x2

2x1 + 3x2 ≤ 15

x1 − x2 ≤ 2

x2 ≤ 5

x1 + 2x2 ≥ 4

−2x1 + x2 ≤ 1

c

Figure 2.1: Graphical geometric representation of an LP in R2. Every line is
annotated with the corresponding inequality. Vertices of the feasi-
ble region (gray area) are denoted by dots and the red dot marks
the optimal solution x = (4.2, 2.2)> with optimal profit 69.8. The
optimal solution is obtained by moving the dashed line, which is
perpendicular to the vector c = (14, 5)>, as far as possible into di-
rection c without leaving the feasible region. Note that inequality
x2 ≤ 5 does not define a supporting hyperplane.

are of particular interest, as they are the only hyperplanes required to completely
define the polyhedron. In the two-dimensional example in Figure 2.1, four of the
five constraints define supporting hyperplanes, each containing one of the four
facets of the polyhedron. Further, in the two-dimensional example the optimal
solution can be obtained by drawing the line that is perpendicular to the profit
vector and moving it as far as possible towards the direction of the profit vector
such that it still intersects the feasible region. This intersection then contains all
optimal feasible solutions of the LP.

An algebraic view on linear programming

In addition to the geometric definition of the corners of a polyhedron as ex-
treme points or vertices, there exists an equivalent algebraic definition. Given a
polyhedron P defined by a set of equality and inequality constraints, every vector
x∗ ∈ Rn that fulfills n linearly independent constraints, including all equality con-
straints, with equality is called a basic solution. The corresponding constraints
fulfilled with equality are denoted as active constraints. If, in addition, the vector
x∗ does not violate any of the remaining constraints, it is called a basic feasible
solution.

For a given LP in standard form with m × n constraint matrix A, every

14

basic feasible solution x∗ corresponds to a certain subset of column indices
B = B1, . . . ,Bm such that the basic columns AB1 , . . . ,ABm are linearly indepen-
dent and all components of x∗, except x∗B1

, . . . , x∗Bm , have value zero. The set B
is called a basis with corresponding vector of basic variables xB = (xB1 , . . . , xBm)

and m×m basis matrix B = [AB1 , . . . ,ABm].
A pair of distinct basic solutions that share (n− 1) basic columns are said to

be adjacent basic solutions with adjacent bases. With these definitions we are
now prepared for a brief outline of the predominantly applied simplex method,
which employs the equivalence between extreme points of the polyhedron and
basic feasible solutions of the LP.

2.1.1 The simplex method

From a geometric perspective, the simplex method finds the optimal solution of
a given LP in standard form by traversing the extreme points of the feasible
region until it identifies an optimal solution. From an algebraic perspective, in
every iteration of this search, the simplex method moves from one basic feasible
solution to an adjacent basic feasible solution such that the cost is improved. One
important property of linear programs is that every local optimal solution is also
a global optimal solution, since a convex function is optimized over a convex set
of feasible solutions.

Therefore, in every iteration the simplex method determines whether the cost
of the current basic feasible solution is at most the cost of all adjacent basic
feasible solutions. In this case, the algorithm stops since a local, and therefore
also global, optimal solution has been found. Otherwise, it proceeds to one of the
adjacent basic feasible solutions with improved cost and starts the next iteration.
Finally, the simplex method will either find an optimal basic feasible solution, or
it will determine that the problem is unbounded and no optimal solution exists.

We will now briefly review the most important steps of a single iteration of
the simplex method. Starting at a basic feasible solution x∗ with basis B, the
first step is to determine whether x∗ is an optimal solution or whether the cost
can be improved by moving to an adjacent basic feasible solution. Moving to
an adjacent basic solution means to construct a new basic feasible solution by
replacing one basic column Aj′ with a nonbasic column Aj. Consequently the
value of the leaving variable xj′ will be set to zero, while the value of the entering
variable xj can possibly be increased to a value greater than zero.

The first step is to determine the entering variable by computing for every
nonbasic variable xj the reduced cost c̄j, defined as

c̄j := cj − c>BB
−1Aj , (2.3)

15

with cB = (cB1 , . . . , cBm). The reduced cost intuitively represents the rate at
which the cost changes when the value of variable xj is increased while main-
taining feasibility. If the reduced costs of all nonbasic variables are non-negative,
the current basic feasible solution x∗ is an optimal solution and the algorithm
stops. Otherwise, one of the nonbasic variables xj with negative reduced cost c̄j
is selected as entering variable.

Once the entering variable has been determined, the next step is to identify the
variable that will leave the basis. Increasing the value of variable xj corresponds
to moving along the j-th basic direction d ∈ Rn with components given by

dj = 1 , dB = −B−1Aj , and di = 0 ∀ i /∈ B ∪ {j} .

If all entries of d are non-negative, it is possible to move infinitely far towards
direction d without leaving the feasible region, and therefore the algorithm ter-
minates as the problem is unbounded. Otherwise, for every dBi < 0, the value
ΘBi = −x∗Bi/dBi is computed, which indicates how far to move into direction d

until the basic variable xBi becomes zero. Let ΘBk be the minimum of all com-
puted ΘBi , then xBk is selected as leaving variable and is set to zero. The new
basic feasible solution x̂∗ is then constructed as follows:

x̂∗j = ΘBk , x̂∗Bk = 0 and x̂∗Bi = x∗Bi + ΘBkdBi , ∀ i 6= k .

Finally, updating the basis by setting Bk to j completes the iteration.

Degeneracy

Problems for the simplex method can arise in case of degenerate basic feasible
solutions, which are basic solutions with more than n active constraints. In the
context of the simplex algorithm, a degenerate basis corresponds to basic vari-
ables with value zero, which can cause infinite cycling through different bases,
all defining the same basic solution. This cycling can be avoided by clever rules
for the selection of entering and leaving variables, e.g., Bland’s anti cycling rule
[Bland, 1977], such that the simplex method is guaranteed to either find an op-
timal solution or determine unboundedness after a finite number of iterations.

Initial basic feasible solution

Before the simplex method can be applied to solve an LP, it requires an initial
feasible basis and the corresponding basic feasible solution. Therefore, the process
of solving an LP is usually divided into two phases. In phase I, an initial solution
is computed by solving an auxiliary LP that corresponds to the original LP with
additional artificial variables. For an LP in standard form with the additional

16

property that all entries of the right hand side vector b are non-negative, the
auxiliary LP with artificial variables y1, . . . , ym is given by

min y1 + y2 + . . .+ ym

subject to Ax + y = b

x ≥ 0

y ≥ 0 .

This problem has a trivial initial basic feasible solution given by x = 0, y = b,
and the m × m identity matrix as initial basis matrix. Using this initial basis,
the simplex method can be applied to solve the auxiliary LP. If the optimal
cost of the auxiliary LP is not equal to zero, the original LP must be infeasible.
Otherwise, the returned optimal solution can be transformed into a initial basic
feasible solution of the original LP such that the simplex method can be applied
(phase II).

Duality

An important concept in linear programming, also employed in a variant of the
simplex method, is linear programming duality . For any given primal LP in
standard form with m × n matrix A, its corresponding dual LP is defined as
follows:

Primal:

min c>x

subject to Ax = b

x ≥ 0

⇐⇒
Dual:

max b>u

subject to A>u ≤ c

u ∈ Rm .

For every equality constraint in the primal LP, the dual LP problem contains a
free variable, and every variable in the primal LP has a corresponding constraint
in the dual LP. The important relation between the primal LP and its dual is
stated by two theorems known as the weak duality theorem and the strong duality
theorem. Given an arbitrary feasible solution x∗ to the primal problem and an
arbitrary feasible solution u∗ to the dual problem, the weak duality theorem
states that c>x∗ ≥ b>u∗. The points x∗ and u∗ are also said to be primal
feasible and dual feasible respectively. Additionally, the strong duality theorem
states that if an LP has an optimal solution x̂∗, then its dual problem must
also have an optimal solution û∗ and it holds that c>x̂∗ = b>û∗. Based on the
complementary slackness property (not shown) between primal and dual problem,
an optimal solution to the primal problem can be derived from an optimal solution

17

to the dual problem and vice versa. The complementary slackness property also
underlies the so-called dual simplex method that solves an LP by maintaining
dual feasibility and working towards a primal feasible and hence optimal solution.
Working with the dual simplex can be particularly favorable in scenarios where
the problem is repeatedly solved and modified by changing the right hand side
b or by adding additional constraints. The latter usually occurs when solving
integer linear programs as discussed in Section 2.2. These modifications can
render the previous optimal basic feasible solution of the primal LP infeasible,
and therefore, the modified problem must be solved starting from a new initial
basic feasible solution. In contrast, the previous optimal feasible basis remains
feasible for the dual of the modified problem, but it is possibly no longer optimal.
Therefore, the dual simplex can start from the previous optimal basis, which
often requires only a few simplex iterations to find the optimal solution of the
modified problem.

Complexity of the simplex method

Although the simplex method may require an exponential number of iterations to
find an optimal solution in the worst case, in practical observations it “typically”
requires only O(m) iterations [Bertsimas and Tsitsiklis, 1997]. Other algorithms,
called interior points methods, that start at an internal point of the polyhedron
and move in the interior of the feasible regions towards the optimal solution,
have a theoretical polynomial worst case time complexity, and in some cases they
outperform the simplex method in practical applications. Nevertheless, especially
in integer linear programming applications the (dual) simplex method performs
very well due to its practical efficiency in re-optimizing an LP that has been
modified by additional constraints.

Delayed column generation

For some optimization problems, the number of variables of the associated LP
formulation in standard form is too large to generate and hold the complete con-
straint matrix A in memory. Delayed column generation is a linear programming
technique to handle such large scale problems, based on the observation that dur-
ing the complete course of the Simplex algorithm most of these columns usually
never enter the basis. Hence, a feasible approach to solve some of these large
scale problems is to circumvent the generation of such columns. Therefore, start-
ing from an initial basic feasible solution computed for a smaller subset of all
variables, in every iteration of the simplex algorithm with basis matrix B and
associated simplex multipliers ρ> = c>BB

−1, a secondary algorithm is applied to
either identify a variable xi with negative reduced cost c̄i = ci−ρ>Ai or prove that

18

no such variable exists. The latter case then proves the optimality of the current
basic solution. The subproblem of identifying variables with negative reduced
cost, called pricing problem, is often stated as an optimization problem searching
for a variable with minimum reduced cost. In this way, some LPs involving an
exponential number of variables can be solved efficiently if the associated pricing
problem has a certain structure that allows for efficient identification of variables
with minimum reduced cost.

2.2 Integer linear programming

The following descriptions of integer linear programming methods are based on
the textbook [Bertsimas and Tsitsiklis, 1997, chap. 11].

Many optimization problems that can be formulated as linear programs have
the additional requirement that some or all of the decision variables are restricted
to be integer numbers, as they represent undividable entities. A linear program
where all the decision variables are restricted to integer values is called an integer
linear program2 (ILP). If only a fraction of decision variables are restricted to
integers, it is called mixed integer program (MIP). The special case of an ILP
where all the decision variables are restricted to be either zero or one is sometimes
referred to as zero-one integer program (ZOIP). However, in the remainder of this
thesis, we will not distinguish between ILP and ZOIP and refer to both as ILP.

Unlike LPs, which can be solved in polynomial time, no efficient algorithm
is known for solving a general ILP, and the problem is known to be NP-hard.
Nevertheless, there exist algorithmic approaches that allow to solve many real
life ILP instances in a reasonable amount of time despite their exponential worst
case complexity. We will now introduce two of these algorithmic approaches,
known as branch and cut and Lagrangian relaxation, both of which we apply to
the ILP formulations presented in Chapter 3 and Chapter 5.

2.2.1 Branch and cut

The Branch and cut method for solving ILPs is based on the combination of the
two methods branch and bound and cutting planes.

2 We use the abbreviation ILP for both terms “integer linear programming” and “integer
linear program”.

19

Cutting planes

For a given ILP defined by

min c>x

subject to Ax ≤ b

x ∈ Zn+ ,

the corresponding LP-relaxation is obtained by removing the integrality restric-
tion:

min c>x

subject to Ax ≤ b

x ≥ 0 .

The general idea of cutting plane algorithms for integer linear programming is to
repeatedly solve and modify the LP-relaxation. Whenever the optimal solution
x∗ of the LP-relaxation is integer, then x∗ defines also an optimal solution to the
original ILP and the algorithm terminates. Otherwise, if x∗ contains fractional
elements, new inequalities are added to the LP-relaxation that are violated by x∗

but fulfilled by all feasible solutions of the ILP, and the modified LP-relaxation
is re-optimized (see example in Figure 2.2). These new inequalities are called
cutting planes, or simply cuts, as they “cut off” the fractional solution x∗.

One example for cutting plane algorithms is the well known cutting plane
algorithm proposed by Gomory [1958]. While this algorithm has been proven to
solve general ILPs within a finite number of iterations, its practical performance
is often insufficient.

The practical performance of every cutting plane algorithm depends on the
strength of the cutting planes, that is, how much of the feasible region of the LP-
relaxation not containing any integer feasible solutions can be cut off by the new
inequality. To compare the strength of two valid cuts π>0 x ≤ µ0 and π>1 x ≤ µ1,
we say that π>0 x ≤ µ0 dominates π>1 x ≤ µ1 if

{x ∈ R+ | π>0 x ≤ µ0} ⊆ {x ∈ R+ | π>1 x ≤ µ1} .

If, in addition, the two cuts do not define the same hyperplane, i.e.,
(π0, µ0) 6= λ(π1, µ1) for all λ ∈ R, we say that π>0 x ≤ µ0 strictly dominates
π>1 x ≤ µ1.

The central problem in the design of cutting plane algorithms is the separation
problem defined as follows: Given a polyhedron P ⊂ Rn and a point x∗ ∈ Rn,
decide whether x∗ ∈ P and if not, find an inequality π>x ≤ µ that separates P
from x∗, i.e., π>y ≤ µ ∀y ∈ P and π>x∗ > µ. While there exist general purpose

20

cutting planes, like Gomory’s cuts, usually stronger, problem specific cutting
planes can be identified by exploiting the polyhedral structure of the particular
problem.

x2

c

x1

x2

x1

x2

x1

c

c

x2

x1

c

(a) (b)

(c) (d)

Figure 2.2: Cutting planes example: In (a)-(d) the white region represents the
convex hull PIP of all feasible solutions of some ILP defined by four
inequalities, and the grey region denotes the feasible region of the
associated LP-relaxation. Red dots mark the optimal solution for
the current LP-relaxation, and dashed lines represent cutting planes
subsequently added to the problem. In (d) the optimal solution
of the LP-relaxation with three cutting planes equals the optimal
solution of the original ILP. The last cutting plane added contains
a facet of PIP .

A particularly important class of cutting planes are inequalities that define the
facets of the polyhedron PIP = CH({x ∈ Zn

+ | Ax ≤ b}). Like every polyhedron,
PIP can be completely described by only facet defining inequalities, and there-
fore these inequalities represent the strongest cuts to be separated in a cutting

21

plane algorithm. An important theorem based on the work of Grötschel et al.
[1981] states that the optimization problem for a given polyhedron is polynomial
time solvable if and only if the separation problem is polynomial time solvable.
This implies that the separation problem for NP-hard problems is also NP-hard,
which implies that the separation of certain classes of facet defining inequalities
is also NP-hard or not all classes of facet defining inequalities are known. As a
consequence, the practical performance of pure cutting plane algorithms is often
insufficient and the cutting plane approach is embedded into a branch and bound
framework.

Branch and bound

Branch and bound is a divide and conquer approach to solve an optimization
problem over some set of feasible solutions S by partitioning S into subsets
S1, S2, . . . , Sn with S1 ∪ . . . ∪ Sn = S and solving the optimization problem for
each of the subsets separately. This process of partitioning into subproblems,
called branching, is usually performed recursively, resulting in a branch tree as
depicted in Figure 2.3. In the remainder, we will consider the case of a min-
imization problem. While the original problem and even the subproblems can
be computationally hard to solve, in many cases a lower bound for the optimal
value can be computed efficiently. We will denote this lower bound computed for
some subproblem Si as its associated local lower bound LLB(Si). Whenever one
of the subproblems can be solved optimally, this solution constitutes a feasible
solution to the original problem, and therefore its associated cost cost(Si) defines
an upper bound to the optimal cost of the original problem. Whenever cost(Si)

is lower than the lowest upper bound computed so far, called global upper bound
GUB , we update GUB to cost(Si), and the associated solution of Si is marked
as incumbent solution.

The central idea of the branch and bound algorithm is that whenever the lower
bound for some subproblem Si is greater than the current value of GUB , i.e.,
LLB(Si) ≥ GUB , Si and all subproblems Sj ⊆ Si can be discarded, since their
optimal costs will also be greater than GUB . According to the representation in
a branch tree this process is often denoted as pruning.

When solving some ILP IP by branch and bound, an obvious choice for com-
puting a lower bound is to solve the LP-relaxation of IP . If the optimal solution
x∗ of this relaxation is integer, it is also a feasible solution for IP . Otherwise,
if the obtained lower bound does not allow for pruning, some variable xk with
fractional optimal solution value x∗k is selected for branching, and two subprob-
lems are generated, the first by adding constraint xk ≤ bx∗kc and the second by
adding constraint xk ≥ dx∗ke. Obviously, the union of all feasible solutions for the

22

two subproblems equals the set of all feasible solutions for IP , but the fractional
solution x∗ is not a feasible solution to the LP-relaxation of either subproblem.
Therefore, the optimal solutions of the LP-relaxation for both subproblems will
be different from x∗ and, since the feasible regions of the subproblems are disjoint,
they will also be distinct.

Combining branch and bound with cutting planes

In the branch and bound approach for ILPs, as described above, the lower bound
for every subproblem is obtained by solving the LP-relaxation. A crucial factor
that determines the performance of the algorithm is the quality of the computed
bounds, since tighter bounds allow for more rigorous pruning and can therefore
lead to a significant reduction of the number of subproblems to be considered. To
obtain tighter bounds, the branch and cut algorithm embeds cutting planes into
the branch and bound algorithm to improve the bounds for every subproblem by
iteratively adding cutting planes and re-solving the LP-relaxation. A schematic
workflow of the branch and cut algorithm is depicted in Figure 2.3. The practical
performance of a branch and cut algorithm depends on several parameters like,
e.g.,

• the choice of the branching variable if multiple fractional variables exist
(branching rule),

• the order of subproblem processing,

• the choice of cutting planes to be separated, and

• the maximum number of cutting planes generated per subproblem,

which are often adjusted for the particular problem.

2.2.2 Lagrangian relaxation

An alternative approach to obtain tight bounds for the optimal cost of ILPs is
Lagrangian relaxation. This method is motivated by the observation that some
difficult ILPs could be solved efficiently if only some of the constraints are ignored.
Given the ILP IP defined by

ZIP = min c>x

subject to Ax ≥ b (2.4)

Dx ≥ d

x ∈ Zn+ ,

23

Input: ILP

add x1 ≤ 5

• fractional solution x∗

• LLB = 30.5, GUB = ∞
• variable x1 fractional with x∗

1 = 5.7

add x1 ≥ 6

• fractional solution x∗

• LLB = 33.2, GUB = ∞
• variable x2 fractional with x∗

2 = 7.5

• integer solution x∗ with cost 37

• LLB = 37, GUB = 37

• new incumbent solution

• fractional solution x∗

• LLB = 37.5, GUB = 37

• LLB ≥ GUB → prune

• integer solution x∗ with cost 35

• LLB = 35, GUB = 35

• final optimal solution

add x2 ≤ 7 add x2 ≥ 8

(2) (3)

(4) (5)

(1)

branch and bound
• solve LP relaxation

branch and cut
repeat:

1. solve LP relaxation
2. add cutting planes

until:
• integer solution or
• infeasibility detected or
• max number of iterations

Figure 2.3: An example workflow of a branch and bound (resp. branch and
cut) algorithm for ILPs. Numbers represent the order of subprob-
lem computation. In case of a pure branch and bound algorithm,
the bound computation step represented by yellow circles corre-
sponds to solving the LP-relaxation of the subproblem once. In a
branch and cut algorithm, the bounds are iteratively improved by
cutting planes until some termination criterion is met. Subtrees
under subproblem (3) and (5) are pruned due to integer feasibility,
while subtree under subproblem (4) is pruned by bounding.

where the constraints are divided into two sets, Ax ≥ b and Dx ≥ d, of cardi-
nality mA and mD. Now, assume this problem is efficiently solvable after relaxing
(i.e., removing) the set of constraints Dx ≥ d. Obviously, the optimal cost for
this relaxed problem serves as a lower bound to the optimal cost of IP . In many
cases this bound will not be very tight, since the relaxation allows for violating
probably very important constraints. The idea of Lagrangian relaxation is to
generate tighter bounds by penalizing the violation of relaxed constraints by a
certain factor, called Lagrange multiplier. This leads to the Lagrangian relaxation

24

LR of the problem IP , defined as

Z(λ) = min c>x + λ(d−Dx)

subject to Ax ≥ b (2.5)

x ∈ Zn+ ,

with λ ∈ RmD
+ denoting the vector of Lagrange multipliers.

According to this definition, for every non-negative choice of λ, the optimal
cost Z(λ) of problem LR constitutes a lower bound for the optimal cost ZIP of
problem IP . To obtain the tightest possible bound, Z(λ) is maximized over all
λ ∈ RmD

+ , known as the Lagrangian dual problem:

ZD = max
λ≥0

Z(λ) . (2.6)

Solving the Lagrangian dual problem

An interesting property of the function Z(λ) is that this function is piecewise
linear and concave. A popular approach to maximize a concave and differentiable
function f(u) is the steepest ascent method, which starts at some initial point u0

and iteratively computes the sequence u1, u2, . . . ur according to the formula

uk+1 = uk + µk∇f(uk) ,

where ∇f(uk) defines the gradient of function f at point uk and µk is a non-
negative step size parameter. Since function Z(λ) is piecewise linear and there-
fore not differentiable, the gradient ∇Z(λ) is not always defined for λ ∈ RmD

+ .
Therefore, the frequently used subgradient algorithm to solve the Lagrangian dual
employs a generalization of the gradient of some function. For any given concave
function f : Rn → R, a vector s is called a subgradient of f at point u∗ ∈ Rn if
it satisfies

f(u) ≤ f(u∗) + s>(u− u∗) ,

for all u ∈ Rn. It holds that some point u∗ maximizes f if and only if 0 defines
a subgradient of f at point u∗. It can be shown that for a given solution x∗ of
problem LR at point λ∗, the vector (d − Dx∗) defines a subgradient of Z(λ)

at point λ∗. Hence, the subgradient algorithm for the Lagrangian dual problem
iteratively computes the sequence of nonnegative values λ1,λ2, . . . ,λr according
to the formula

λk+1 = max{λk + µk(d−Dxk), 0} ,

where xk denotes the optimal solution of problem LR at point λk.

25

The practical performance of the subgradient algorithm strongly depends on
the selection of the step size parameter µk in each iteration k. A theoretical result
states that for every sequence of step size parameters fulfilling

∞∑
k=1

µk =∞, and lim
k→∞

µk = 0 ,

the sequence Z(λk) is guaranteed to converge to ZD, unless ZD is infinite. Nev-
ertheless, not every choice of the step size with this property will yield a good
performance, as for example the choice µk = 1/k leads to a very slow convergence
in practice. A widely used and sophisticated choice of the step size that shows
fast convergence in practice is instead given by

µk+1 =
γk(Z

∗ − Z(λk))

‖d−Dxk‖2
, (2.7)

where Z∗ denotes some estimate for the optimal value ZD. One approach is to
update Z∗ to the objective function value of IP at point xk whenever the solution
xk is also feasible for IP and yields a lower value [Fisher, 1985]. Factor γt is a
scalar between 0 and 2, which decreases by a given factor whenever Z(λ) did not
decrease within a specified number of iterations [Fisher, 1985].

Despite guaranteed convergence, the optimality of some value Z(λk) can only
be detected if this value matches the lowest upper bound known for ZIP . Since
this criterion is often not met in practice, usually the subgradient method is
terminated after a predefined number of iterations.

The strength of the Lagrangian dual bound

In contrast to linear programming, there exists no strong duality for ILPs and
therefore the optimal value of the Lagrangian dual problem will not equal the
optimal value of the original ILP in general. Therefore, to solve the ILP optimally,
Lagrangian relaxation is usually embedded into a branch and bound algorithm
as introduced in Section 2.2.1.

An interesting theoretical result states that the bound provided by the optimal
value of the Lagrangian dual problem of an ILP IP is at least as tight as the bound
obtained by solving the LP-relaxation of IP . Therefore, for certain problems,
Lagrangian relaxation combined with branch and bound can achieve a very good
performance and is possibly more effective than pure branch and bound or branch
and cut algorithms. In practice, the performance of a Lagrangian relaxation
formulation is usually a trade-off between the tightness of the relaxation and the
computational complexity of the relaxed problem.

Part II

THREE APPLICATIONS

Chapter

3 de novo Peptide
Sequencing With
Lagrangian Relaxation

In this chapter, we present our algorithmic approach to the de novo peptide
sequencing problem together with experimental results based on our journal pub-
lication [Andreotti et al., 2012] and the preparatory work in [Andreotti, 2008].

3.1 Background

Proteomics describes the large scale study of proteins including their structures,
interactions, and their functions in metabolic pathways. While the name suggests
a high degree of similarity to genomics, the study of the genome, proteomics is
in general more complex. In contrast to the constant genome, the set of ex-
pressed proteins in a certain cell, tissue, or organism, called proteome [Wilkins
et al., 1996], is highly dynamic [Tyers and Mann, 2003]. However, in order to
understand the biological processes of an organism it is indispensable to perform
analyses on the level of proteins, as these processes are governed by their abun-
dances, three-dimensional structures, interactions, complexes, and post transla-
tional modifications [Tyers and Mann, 2003].

Throughout this chapter, we only consider the primary structure of proteins
and peptides. Thus, we define a peptide as a linear chain of amino acids, referred
to as residues, that are linked by peptide bonds between adjacent amino acids.
Short peptides containing only a few residues are called oligopeptides, whereas
longer peptide chains are referred to as polypeptides. The term protein then
describes macromolecules constructed from one or more polypeptides [Lehninger
et al., 2008]. For eucaryotes, 21 proteinogenic amino acids are known, 20 canonical
amino acids that are directly encoded by the universal genetic code [Alberts, 2007]
and the non-canonical amino acid Selenocysteine [Böck et al., 1991]. In addition,
the 22nd proteinogenic amino acid, Pyrrolysine, is used by methanogenic archaea
[Srinivasan et al., 2002]. Peptides are directed, as they contain an N-terminus
with a free amino group and a C-terminus with a free carboxyl group. The amino

30

acid sequence of a peptide is usually represented as a string of the one-letter amino
acid codes (see Table 3.1) in N- to C-terminal direction.

Table 3.1: Amino acid masses
One letter code and monoisotopic masses of the 20 canonical amino acids in

eukaryotes and Selenocysteine.

amino acid code mass (Da) amino acid code mass (Da)
Glycine G 57.02147 Aspartic acid D 115.02695
Alanine A 71.03712 Glutamine Q 128.05858
Serine S 87.03203 Lysine K 128.09497
Proline P 97.05277 Glutamic acid E 129.04260
Valine V 99.06842 Methionine M 131.04049

Threonine T 101.04768 Histidine H 137.05891
Cysteine C 103.00919 Phenylalanine F 147.06842
Isoleucine I 113.08407 Arginine R 156.10112
Leucine L 113.08407 Tyrosine Y 163.06333

Asparagine N 114.04293 Tryptophan W 186.07932
Selenocysteine U 150.95363

For many analysis methods, an important step is the identification and quan-
tification of individual or all proteins in a given sample. In recent years, mass
spectrometry has become the standard technique for high throughput identifica-
tion and quantification of proteins in complex samples.

A mass spectrometer separates ionized analytes in a sample according to their
mass-to-charge ratio (m/z) to produce a mass spectrum - a two-dimensional plot
that displays the absolute or relative abundance of detected ions by mass-to-
charge ratio. In the remainder of this section, masses are always given in unit
Dalton (Da), and mass-to-charge ratios are given in unit Thomson (Th). For the
analysis of proteins, usually a bottom up workflow known as shotgun proteomics
is applied, where proteins are first enzymatically digested into smaller peptides by
a protease (usually trypsin) [Aebersold and Mann, 2003]. The resulting peptide
mixture is subsequently separated by liquid chromatography (LC-MS) or high
performance liquid chromatography (HPLC-MS). Separated peptides are ionized
using either electrospray ionization (ESI) [Fenn et al., 1989] or matrix assisted
laser desorption ionization (MALDI) [Hillenkamp et al., 1991] and subsequently
analyzed by the mass spectrometer. Successfully identified peptides can be used
afterwards for protein identification, usually accompanied by further analyses
like quantification of individual proteins in the sample. The mass of an individ-
ual peptide or a set of peptides is usually not sufficient for a unique identification,

31

therefore, the peptide identification usually employs a method called tandem mass
spectrometry or MS/MS [Aebersold and Mann, 2003]. Tandem mass spectrom-
etry couples multiple steps of mass selection and fragmentation, as depicted in
Figure 3.1. In the first step (MS1) peptides with a certain m/z, called precursor

Precursor
 ion

Product
 ion

ESI
MALDI
...

CID
HCD
ETD
ECD
...

Figure 3.1: Schematic workflow of tandem mass spectrometry (Based on K.
Murray, 2006).

ions or parent ions, are isolated and subsequently fragmented by methods like
collision induced dissociation (CID) [Wells and McLuckey, 2005], higher-energy
collisional dissociation (HCD) [Olsen et al., 2007], electron transfer dissociation
(ETD) [Syka et al., 2004], or electron capture dissociation (ECD) [Zubarev et al.,
1998]. Finally, the tandem mass spectrum of the generated fragment ions, also
called product ions, is produced in the second mass spectrometry step (MS2).

The idea of tandem mass spectrometry is to identify the individual peptides
based on their product ion masses. It takes advantage of the observation that,
depending on the applied method, peptide fragmentation follows specific patterns.
Most of the time, the precursor ions are fragmented along the backbone close to
the peptide bond between two amino acids, producing a complementary pair of
N-terminal and C-terminal fragments. Depending on the exact split position,
the most prominent N-terminal product ions are referred to as a-, b-, and c-ions
with their complementary x-, y-, and z-ions [Roepstorff and Fohlman, 1984] (see
Figure 3.2). Among them, the most common fragments produced by CID are b-
and y-ions, resulting from breakage directly at the peptide bond [Steen and Mann,
2004]. In addition to these major ion types, neutral loss variants, such as loss of
water (e.g., b-H2O) or ammonia (e.g., y-NH3), can be produced [Steen and Mann,
2004]. Every ion type and neutral loss variant has a specific mass offset from the
summed mass of the corresponding N-terminal or C-terminal residues, referred
to as prefix residue mass for N-terminal fragments and suffix residue mass for C-

32

N C

H

R

C

O

H O H

N C

H

R

C

O

H

H

a

y

b

x

c

z

Figure 3.2: The three main fragmentation sites along the peptide backbone in
tandem mass spectrometry and the corresponding ion types. Green
boxes represent amino acid specific side chains linked to the α-
C-atom of the corresponding residue. The repeating sequence of
N H, α-C-atom, and C O of each residue forms the peptide back-
bone. Adjacent residues are linked by peptide bonds.

terminal fragments. The mass offsets for the most important ion types are listed
in Table 3.2. Further, depending on the type of mass spectrometer and the charge
of the precursor ion, also multiply charged fragment ions are frequently observed
in tandem mass spectra. These charge variants are usually denoted by superscript
notation, e.g., y2 and b2 for doubly charged y-ion and b-ion respectively.

According to the position in the peptide of length n, the product ions are
numbered from one to n− 1, such that ion bi defines the b-ion consisting of the
first i amino acids, and yj defines the y-ion consisting of the last j amino acids.

For the identification of peptides from tandem mass spectra, there exist two
different approaches, database assisted identification and the de novo peptide se-
quencing. When a database of known proteins for the analyzed sample is at hand,
the method of choice is usually the database assisted identification where the ex-
perimental tandem mass spectra are matched against candidate peptides in the
database. Given an experimental spectrum and a candidate peptide, database
search algorithms like INSPECT [Tanner et al., 2005], SEQUEST [Eng et al.,
1994], Mascot [Perkins et al., 1999], and OMSSA [Geer et al., 2004] compute a
matching score that reflects the likelihood that the spectrum has been generated
by the candidate peptide. Finally, they return a ranked list of highest scoring can-
didate peptides. Since computing such a score for every peptide in the database
is very time consuming, a crucial step in database search algorithms is to filter
the database from unlikely candidates. One filtering approach, implemented by
INSPECT, is to generate short peptide sequence tags, i.e., short amino acid se-
quences that are supported by the peaks in the experimental spectrum, and to

33

Table 3.2: Ion types
List of most important N- and C-terminal ion types created in MS/MS peptide

fragmentation and their offsets (rounded to integer values) from the prefix residue

mass (mN) for N-terminal fragment ions or suffix residue mass (mC) for C-

terminal fragment ions.

N-terminal C-terminal
ion type offset (Da) ion type offset (Da)

b mN + 1 y mC + 19

b-H2O mN − 17 y-H2O mC + 1

b-NH3 mN − 16 y-NH3 mC + 2

b-H2O-H2O mN − 35 y-H2O-H2O mC − 17

b-H2O-NH3 mN − 34 y-H2O-NH3 mC − 16

b2 (mN + 2)/2 y2 (mC + 20)/2

a mN − 27 x mC + 45

a-H2O mN − 45 z mC + 3

a-NH3 mN − 44

c mN + 18

perform sequence based filtering of the database, keeping only those candidates
that are compatible with at least one tag. Another filtering approach, as im-
plemented by SEQUEST, is to consider only candidate peptides whose mass is
within a certain tolerance to the measured precursor ion mass of the experimental
spectrum, called parent mass or precursor mass.

Obviously, the performance of every database search algorithm depends on the
completeness and correctness of the underlying database. Therefore, these meth-
ods may fail to identify peptides when no complete protein database is available
for the organism being studied. Even for well studied organisms, these methods
can suffer from previously unknown alternative splice variants or mutations that
may prevent successful identification.

de novo peptide sequencing

In contrast to database assisted identification methods, de novo peptide sequenc-
ing algorithms like PEAKS [Ma et al., 2003], PepNovo [Frank and Pevzner, 2005],
NovoHMM [Fischer et al., 2005], Lutefisk [Taylor and Johnson, 1997], Sherenga
[Dančík et al., 1999], PNovo+ [Chi et al., 2013], EigenMS [Bern and Goldberg,
2006], and PILOT [DiMaggio and Floudas, 2007] aim to infer the peptide sequence
solely from the spectrum, without any additional information stored in protein
databases. The key to de novo sequencing are the so-called ion ladders, which cor-

34

respond to a sequence of consecutive ions of the same type, e.g., bi, bi+1, . . . , bk.
An important observation is that whenever all peaks corresponding a complete
ion ladder can be identified, then these peaks provide all information required to
reconstruct the peptide sequence. Assuming that all peaks corresponding to the
complete ladder of singly charged b-ions b1, b2, . . . , bn−1 are known, then the m/z
difference between the peaks of two consecutive b-ions, bi and bi+1, is exactly the
residue mass of the amino acid located at position i+ 1 in the peptide. The first
and last amino acid can be inferred from the m/z of the b1-ion and the m/z
difference between the bn−1-ion and the measured parent mass. Therefore, the
central problem in de novo peptide sequencing is the identification of a hopefully
complete ion ladder of a certain ion type. This problem is complicated by factors
like noise peaks in the spectrum that do not correspond to fragments of the ana-
lyzed peptide or incomplete fragmentation, resulting in incomplete ladders. One
approach to reduce the problem of incomplete fragmentation is the combination
of tandem mass spectra of the same peptide generated by different, so-called com-
plementary, fragmentation methods, as implemented by Datta and Bern [2009],
Bertsch et al. [2009], and Chi et al. [2013]. However, these complicating factors
still render de novo peptide sequencing a challenging task in mass spectrometry
based proteomics, demanding efficient algorithmic solutions.

New algorithm

Our novel algorithmic approach to de novo peptide sequencing is based on an
efficient Lagrangian relaxation algorithm to solve the underlying longest anti-
symmetric path problem, without any restrictions on the set of considered ion
types that are imposed by existing methods. At the same time, even for this
restricted case, our algorithm is at least competitive to existing algorithms based
on dynamic programming [Lu and Chen, 2003] or hidden Markov models [Fis-
cher et al., 2005], and it is orders of magnitude faster compared to solving the
underlying ILP formulation by means of state-of-the-art solvers. Further, the
flexibility of our formulation offers several opportunities for future adaptions to
integrate additional information into the sequencing process and to account for
mass spectrometer type-specific properties of the generated spectra. This is fur-
ther supported by our generic probabilistic scoring model, based on a Bayesian
network, that captures mass spectrometer type-specific dependencies between the
signals generated for particular ion types.

35

3.2 A Lagrangian relaxation algorithm

In the following, we provide a detailed description of our Lagrangian relaxation
approach to the de novo peptide sequencing problem. We first introduce the
graph-theoretical formulation before we derive an equivalent ILP formulation that
underlies our algorithm.

3.2.1 Graph-theoretical formulation

A common approach to the de novo peptide sequencing problem is to formulate
it as a graph-theoretical problem by transforming the spectrum into the so-called
spectrum graph, first introduced by Bartels [1990]. After this transformation, the
identification of candidate peptide sequences that are supported by the peaks in
the spectrum amounts to the identification of paths through the spectrum graph,
with some additional restrictions.

Before we define the spectrum graph and the associated graph-theoretical
formulation of the de novo peptide sequencing problem, we begin with some
basic definitions. Given a peptide P = 〈p1, p2, . . . , pn〉, we define the resid-
ual mass mr(P) as the sum of the monoisotopic residual masses (see Ta-
ble 3.1) of all amino acid residues in P (i.e., mr(P) :=

∑n
i=1mr(pi)). Anal-

ogously, for every prefix (resp. suffix) of P containing k residues, the prefix
residue mass (resp. suffix residue mass) is defined as mr(〈p1, p2, . . . , pk〉) (resp.
mr(〈pn−k+1, pn−k+2, . . . , pn〉)). By the parent mass mp(P) we denote the total
mass of P , which is the residual mass mr(P) plus ∼18 Da for an additional water
molecule.

Spectrum graph

The spectrum graph G = (V,ED, EU) consists of a set of vertices V, a set of
directed edges ED and a set of undirected edges EU . Note that this definition
corresponds to the so-called extended spectrum graph, proposed by Liu et al.
[2006], while the original definition of the spectrum graph does not include the
set of undirected edges. Every vertex vi represents a candidate prefix residue
mass m(vi) of the unknown peptide sequence, and every directed edge represents
a single amino acid or a combination of amino acids. Undirected edges connect
pairs of vertices that correspond to contradicting interpretations of the same mass
peak. In the remainder, we will refer to these pairs of contradicting vertices as
incompatible vertices.

For a given tandem mass spectrum S with measured parent mass Mp, the
associated spectrum graph is constructed as follows: Given is a set T of k
ion types consisting of kN N-terminal ion types τN1 , . . . , τNkN with mass offsets

36

δN1 , . . . , δ
N
kN

from the prefix residue mass and kC C-terminal ion types τC1 , . . . , τCkC
with mass offsets δC1 , . . . , δCkC from the suffix residue mass. In the following and
without loss of generality, we assume all considered ion types in T to have unit
charge. For every peak π in the spectrum with m/z value mπ, we generate
a set of k vertices Iπ, where each vertex represents a prefix residue mass un-
der the assumption that π was produced by an ion of one of the k considered
types. These vertices have masses mπ − δN1 , . . . ,mπ − δNkN for N-terminal types
and Mp − 18 − (mπ − δC1), . . . ,Mp − 18 − (mπ − δCkC) for C-terminal ion types
respectively. Once the vertices have been generated for all peaks in S, pairs of
vertices having a mass difference below a certain mass tolerance are merged into
a single vertex.

Since we assume that peak π was produced by a single ion that corresponds to
exactly one type in T or some unknown ion, at most one of the generated vertices
in Iπ can present a true prefix residue mass of the unknown peptide. Therefore,
all vertices in Iπ are contradicting each other, and each pair is connected by an
undirected edge.

Whenever the mass difference of two vertices vi and vj (m(vj) − m(vi)) is
within a certain tolerance to the mass of some amino acid α, we connect vi and
vj by a directed edge (vi, vj), labeled with α. Equivalent to vertices, we say that
every directed edge e = (vi, vj) has a certain edge mass m(e) and define it as the
mass difference of the head and tail vertex, i.e., m(e) := m(vj)−m(vi). Finally,
we add two so-called goalpost vertices s and t with masses 0 Da and Mp − 18 Da

respectively.
According to the construction of the spectrum graph, there exists a vertex

with the correct prefix residue mass for every prefix of the unknown peptide P ,
if for every pair of complementary prefix and suffix fragments, at least one ion
of the considered k types produced a peak in the spectrum. In this case, we can
reconstruct the correct sequence of P by finding the directed s-t-path of vertices
corresponding to the true prefix residue masses of P and concatenating the edge
labels along this path (see Figure 3.3). In the remainder, a path in the spectrum
graph always refers to a directed path using directed edges in ED exclusively.

Each vertex v in the spectrum graph is assigned a score score(v) that repre-
sents the likelihood of this vertex to correspond to a true prefix residue mass of
the unknown peptide. In addition, also directed edges can have individual scores
that reflect the likelihood that some edge corresponds to a true subsequence of
the unknown peptide. These edge scores can be used to penalize deviation of
the edge mass from the exact mass of the amino acid label or introduce prior
knowledge about the likelihood of observing certain amino acids in the unknown
peptide.

Finally, we transform the vertex and edge scores into edge weights for directed

37

edges. Since the artificial vertices s and t have no associated scores, we assign
them a dummy score of zero. Now, for every vertex v ∈ V , we add its score to
the weight of all outgoing edges. Hence, the edge weights w : ED → R are given
by

w(e) = score(vi) + score(e) ∀e = (vi, vj) : e ∈ ED .

Therefore, the de novo peptide sequencing problem can be reduced to com-
puting longest s-t-paths in the spectrum graph.

However, searching a longest s-t-path in the spectrum graph can lead to in-
feasible solutions if pairs of incompatible vertices are included in the path, since,

175.1

229.1

300.2
488.3

m/z

in
te
n
si
ty

(a)

0 99 174 228 287 299 358 412 487 568

V E A L R

EAL

(b)

Figure 3.3: (a) Simplified tandem mass spectrum of the peptide VEALR with
peaks for ions b2, b3, y1, and y4. Corresponding m/z values in Th

are given on top of each peak. (b) The corresponding spectrum
graph with undirected edges drawn as dashed lines and two gener-
ated vertices for each peak with associated rounded mass. The two
vertices generated for each peak correspond to the interpretations
as b-ion and y-ion. The (only) path starting at vertex s with mass
0 and ending at vertex t with mass 568 encodes the correct peptide
sequence.

38

as we pointed out above, in general at most one of them will correspond to a
true prefix residue mass of the unknown peptide. Exceptions are peptides with
fragment ions of different ion types in the set T having the same m/z value, as
in this case more than one interpretation of the corresponding peak is correct.
The associated s-t-path in the spectrum graph is therefore infeasible, and the
correct peptide cannot be generated. As this situation occurs rarely in practice
it is excluded by most algorithms that employ the spectrum graph.

The problem of incompatible vertices is aggravated when the scoring function
generates several high scoring, incompatible vertices for the same peak, as a
simple longest path is then likely to contain pairs of incompatible vertices.

Antisymmetric paths

In the context of de novo peptide sequencing, a path without any pair of incom-
patible vertices is usually called an antisymmetric path, as introduced by Dančík
et al. [1999]. However, this term is mostly used for the case when only one pair
of N-terminal and C-terminal ion types is considered, usually only b- and y-ions
for CID spectra, since in this case incompatible pairs have a non-interleaving and
hierarchical structure, as shown in Figure 3.3(b). Dančík et al. refer to graphs
with this structure as proper graphs. For unrestricted structures of incompatible
vertex pairs, this problem is also known as the paths avoiding forbidden pairs
problem and has been shown to be NP-complete [Gabow et al., 1976; Kolman
and Pangrác, 2009]. However, for proper graphs the problem of computing a
longest antisymmetric path can be solved with a polynomial time dynamic pro-
gramming algorithm proposed by Chen et al. [2001]. Later, Lu and Chen [2003]
extended this approach to compute suboptimal solutions by constructing a so-
called matrix spectrum graph and applying depth-first search and a backtracking
algorithm. While PepNovo and SHERENGA both use dynamic programming
algorithms similar to the one proposed by Chen et al., NovoHMM implements a
factorial hidden Markov model (HMM) to overcome the problem of contradict-
ing interpretations of peaks, and the approach by Liu et al. is based on tree
decomposition. Bafna and Edwards [2003] proposed a variant of the dynamic
programming approach that also allows to consider more than only a single pair
of N- and C-terminal ion types. This algorithm is limited to so-called simple
ion types, excluding doubly and higher charged ions, which could also support
the sequencing process. In Section 3.2.5, we will show that the matrix spectrum
graph approach by Lu and Chen also works for more than a single pair of N- and
C-terminal ion types if these types fulfill some properties, similar to simple ion
types.

In contrast to all approaches discussed above, the ILP formulation presented

39

in the next section does not restrict the sets of considered ion types, as it does not
depend on any particular structure of incompatible vertex pairs. Therefore, unlike
any previous de novo sequencing algorithm, this formulation is also capable of
solving the longest antisymmetric path problem even when incompatible vertices
correspond to ion type interpretations with different charge states.

3.2.2 Integer linear programming formulation

We model the longest antisymmetric path problem for de novo peptide sequencing
by the following ILP formulation, which resembles the formulation by DiMaggio
and Floudas [2007], implemented in their de novo peptide sequencing tool PILOT.
For every directed edge (vi, vj) ∈ ED, we introduce a binary variable xi,j, which
has value one if edge (vi, vj) is part of the path (active) and zero otherwise
(inactive). As the solution of the ILP is supposed to correspond to a longest
antisymmetric path, the objective function (3.1) is to maximize the summed
score of all active directed edges, i.e.,

max
∑

(vi,vj)∈ED

wi,jxi,j , (3.1)

where wi,j := w(e) for e = (vi, vj). For the two goalposts s and t, we ensure that
exactly one outgoing edge of s and one incoming edge of t are active by adding
the two constraints ∑

(vs,vi)∈ED

xs,i = 1 , (3.2)

and ∑
(vi,vt)∈ED

xi,t = 1 . (3.3)

Every other vertex v is either contained in the path, having exactly one active
incoming and one active outgoing edge, or it is not contained in the path and
hence, none of its incoming or outgoing edges are active. This property is captured
by the following flow conservation constraint, which ensures an equal number of
active incoming and outgoing edges:∑

(vi,vk)∈ED

xi,k −
∑

(vk,vj)∈ED

xk,j = 0 ∀vk ∈ V \ {vs, vt} . (3.4)

Finally, we must ensure that no pair of incompatible vertices is contained in the
solution path, which we achieve by adding the following constraint:∑

vi∈e

∑
(vi,vk)∈ED

xi,k ≤ 1 ∀e ∈ EU . (3.5)

40

The objective function (3.1) and constraints (3.2)-(3.5) correspond to the
ILP formulation we proposed in [Andreotti et al., 2012]. In the remainder, we
will use a slight modification of this model by generalizing constraint (3.5) from
single pairs of incompatible vertices to maximal sets of pairwise incompatible
vertices. As described for the construction of the spectrum graph, for every peak
π in the input spectrum, we generate a set of pairwise incompatible vertices Iπ.
By defining IS to be the set of all sets Iπ for all peaks π in spectrum S, i.e.,
IS = {Iπ | π ∈ S}, we can replace constraint (3.5) by∑

vi∈Iπ

∑
(vi,vk)∈ED

xi,k ≤ 1 ∀ Iπ ∈ IS , (3.6)

which yields a stronger formulation and reduces the number of constraints if more
than two vertices are generated for the same peak. This leads to the complete
ILP formulation for the longest antisymmetric path problem expressed in (3.7).

max
∑

(vi,vk)∈ED

wi,kxi,k

subject to
∑

(vs,vk)∈ED

xs,k = 1

∑
(vk,vt)∈ED

xk,t = 1 (3.7)

∑
(vi,vk)∈ED

xi,k −
∑

(vk,vj)∈ED

xk,j = 0 ∀vk ∈ V \ {vs, vt}∑
vi∈Iπ

∑
(vi,vk)∈ED

xi,k ≤ 1 ∀ Iπ ∈ IS

xi,k ∈ {0, 1} ∀(vi, vk) ∈ ED

This ILP formulation differs from the formulation proposed by DiMaggio and
Floudas [2007] in two aspects. First, our formulation employs only variables
for directed edges, while DiMaggio and Floudas use additional variables for the
vertices of the spectrum graph. This is only a minor technical detail that does not
change the general structure or efficiency of the formulation. Second, DiMaggio
and Floudas add an additional constraint that bounds the deviation of the exact
mass of the predicted peptide from the measured parent mass by a certain value
(usually 2 Da). This deviation is calculated as the difference between m(e) and
the exact mass of the amino acid label of e, summed over all active edges e ∈ ED.
Hence, this constraint filters out candidate peptide sequences with high mass
deviation from the measured parent mass. We do not include this constraint into

41

our model, as we believe it is more promising to defer this filtering to a later stage
of the complete sequencing algorithm. Like other de novo sequencing algorithms,
we do not only add edges to the spectrum graph that correspond to single amino
acids but also edges corresponding to pairs and triples of amino acids, to account
for incomplete fragmentation. These edges often do not have a unique label,
but instead they represent multiple possible combinations of amino acids with
slight mass differences within the allowed mass tolerance. As a consequence,
no exact mass is known a priori for these edges that could be used in such a
constraint. Hence, we prefer to perform the filtering at a later stage of the
algorithm after every predicted path has been transformed into a candidate set
of peptide sequences containing all possible combinations and permutations of
ambiguous edge labels.

3.2.3 Applying Lagrangian relaxation

In our approach to the longest antisymmetric path problem, we do not solve
the ILP formulation (3.7) directly by a generic ILP solver, but instead we ap-
ply Lagrangian relaxation. Obviously, the longest antisymmetric path problem
corresponds to a longest path problem in a directed acyclic graph subject to the
additional constraint (3.6) that prevents the simultaneous selection of incompat-
ible vertices. A longest path in a directed acyclic graph with n vertices and m

edges can be computed in time O(n+m) by the simple Dag-Longest-Path al-
gorithm (adaption of Dag-Shortest-Paths presented in [Cormen et al., 2001]),
outlined in Algorithm 1 (see page 64).

As a consequence, an obvious choice for Lagrangian relaxation is to dualize
constraints (3.6) and add their violation as penalty term to the objective function,
as explained in Section 2.2.2. This leads to the following Lagrangian relaxation
formulation of ILP (3.7) with Lagrange multipliers λ ∈ R|IS |+ .

Zpath(λ) = max
∑

(vi,vk)∈ED

wi,kxi,k+
∑
Iπ∈IS

λπ(1−
∑

(vi,vk)∈ED:
vi∈Iπ

xi,k)

subject to
∑

(vs,vk)∈ED

xs,k = 1

∑
(vk,vt)∈ED

xk,t = 1 (3.8)

∑
(vi,vk)∈ED

xi,k −
∑

(vk,vj)∈ED

xk,j = 0 ∀vk ∈ V \ {vs, vt}

xi,k ∈ {0, 1} ∀(vi, vk) ∈ ED

42

When we rewrite the objective function as

Zpath(λ) = max
∑

(vi,vk)∈ED

xi,k(wi,k −
∑
Iπ∈IS :
vi∈Iπ

λπ) +
∑
Iπ∈IS

λπ , (3.9)

it becomes obvious that, for every fixed Lagrange multiplier λ, we can solve
the relaxed problem by computing the longest path in the spectrum graph with
adjusted edge weights wλ, defined as

wλ(i, j) := w(i, j)−
∑
Iπ∈IS :
vi∈Iπ

λπ ∀(vi, vj) ∈ E . (3.10)

Thus, it follows that we can solve the relaxed problem (3.8) in linear time and
space, as stated in the following theorem.

Theorem 3.1. The Lagrangian relaxed problem (3.8) can be solved in linear
time and space.

Proof. Solving the Lagrangian relaxed problem for a fixed Lagrange multiplier λ
consists of the following steps:

1. Compute modified edge weights wλ.

2. Apply Dag-Longest-Path algorithm to compute the longest s-t-path in
the spectrum graph with modified edge weights wλ.

3. Add value
∑
Iπ∈IS λπ to the length of the longest s-t-path.

Each of the steps requires only O(|ED|+ |V |) time and space.

3.2.4 Solving the longest antisymmetric path problem by
Lagrangian relaxation and branch and bound

To solve the longest antisymmetric path problem optimally, we embed our La-
grangian relaxation formulation into a branch and bound algorithm, as intro-
duced in Section 2.2.1. In the remainder, we will refer to this algorithm as
Lag-Antisymmetric-Path. For every subproblem in the branch and bound
tree, beginning with the original problem, we solve the Lagrangian dual of our
Lagrangian relaxation using the subgradient optimization method outlined in
Section 2.2.2. In every iteration of the subgradient optimization, we compute a
longest s-t path in the spectrum graph using the adapted edge weights wλ. If
this path is primal feasible, i.e., it does not contain any pair of incompatible ver-
tices, we can compute its primal score as the length of the path for the original

43

edge weights w. This value serves as a lower bound for the length of the longest
antisymmetric path, while the value Zpath(λ) provides an upper bound. Thus,
a primal feasible path with a length equal to the lowest value of Zpath(λ) found
thus far is a primal optimal solution and therefore a longest antisymmetric path.
When no primal optimal solution is found after a predefined number of subgradi-
ent iterations, we branch by creating two subproblems as follows: Let p∗ be the
lowest scoring primal infeasible solution found during subgradient optimization
and let Cp∗ be a set of pairwise incompatible vertices in p∗. We randomly select
one vertex vb ∈ Cp∗ and solve the Lagrangian relaxations of the two subproblems
sub1 and sub2, which we obtain by:

• sub1: adding constraint ∑
(vb,vk)∈ED

xb,k = 0 ,

• sub2: adding constraints∑
(vb,vk)∈ED

xb,k = 1 and xi,j = 0 ∀(vi, vj) ∈ ED : {vb, vi} ∈ EU .

Hence, every solution to sub1 will not include vertex vb, whereas every solution
to sub2 includes vertex vb but no vertex that is incompatible to vb. To imple-
ment these additional constraints into our algorithm for solving the Lagrangian
relaxation, we modify the spectrum graph by:

• sub1: removing all edges (vb, vk) ∈ ED,

• sub2: removing all edges (vi, vk) ∈ ED with vi < vb < vk in topological
order and removing all edges (vi, vj) ∈ ED : {vb, vi} ∈ EU .

3.2.5 Polynomial algorithm for longest antisymmetric
paths with restricted sets of ion types

In this section, we introduce the data structure underlying the polynomial time al-
gorithm for enumerating optimal and suboptimal antisymmetric paths on proper
spectrum graphs, proposed by Lu and Chen [2003]. Further, we will show that
this algorithm also solves the longest antisymmetric path problem optimally for
non-proper graphs if the set of considered ion types fulfills certain properties. In
the remainder, we will call every set of ion types with these properties a set of
basic ion types. Note that our definition of basic ion types is a slight modification
of the simple ion types introduced by Bafna and Edwards [2003].

44

Definition 3.1. Basic Ion types
Let mα denote the minimal mass of all considered amino acids and Mp the mea-
sured parent mass of a given mass spectrum. We call a set of ion types T basic
if:

1. For all peaks π ∈ S and all vi, vj ∈ Iπ with m(vi),m(vj) ≤ (Mp − 18)/2:

| m(vi)−m(vj) |< mα .

2. For all peaks π ∈ S and all vi, vj ∈ Iπ with m(vi),m(vj) > (Mp − 18)/2:

| m(vi)−m(vj) |< mα .

3. For all peaks π ∈ S and all vi, vj ∈ Iπ with m(vi) ≤ (Mp − 18)/2 and
m(vj) > (Mp − 18)/2:

| m(vi) +m(vj)− (Mp − 18) |< mα .

Intuitively, these restrictions ensure that for every pair of incompatible vertices
either their mass difference is less than the minimal amino acid mass or the
difference between the sum of their masses and the peptide residue mass is less
than the minimal amino acid mass. Next, we will show how these restrictions
allow for a polynomial time algorithm to compute longest antisymmetric paths
by means of the matrix spectrum graph. In Section 3.5.1, we will compare the
practical performance of our Lagrangian relaxation approach to the polynomial
algorithm on sets of basic ion types.

Matrix spectrum graph

The algorithm proposed by Lu and Chen is based on the transformation of the
spectrum graph G = (V,ED, EU) into the associated matrix spectrum graph
G ′ = (V ′, E ′) as follows: For a given spectrum graph, split the set of ver-
tices V = {s, v1, . . . , vn, t} into two disjoint subsets V x = {s, v1, . . . , vm} and
V y = {vm+1, . . . , vn, t}. All vertices in subset V x have mass at most (Mp− 18)/2,
while the mass of all vertices in V y is strictly greater than (Mp − 18)/2. For
every pair of vertices vi ∈ V x and vj ∈ V y that are not incompatible (i.e.,
{vi, vj} /∈ EU), the matrix spectrum graph contains a vertex v′i,j. Further, the
matrix spectrum graph contains a horizontal edge (v′i,j, v

′
i,k) if (vk, vj) ∈ ED and

m(vk) + m(vi) ≤ (Mp − 18) and a vertical edge (v′i,j, v
′
k,j) if (vi, vk) ∈ ED and

m(vk) +m(vj) > (Mp − 18). Finally, the matrix spectrum graph defines a single
source vertex v′s,t (corresponding to v1,n) and a set of terminal vertices V ′term,

45

s v1 v2 v3 v4 v5 v6 v7 v8 t

(a)

v′s,t v′s,8 v′s,7 v′s,6 v′s,5

v′1,t v′1,8 v′1,7 v′1,6 v′1,5

v′2,t v′2,8 v′2,7 v′2,6 v′2,5

v′3,t v′3,8 v′3,7 v′3,6 v′3,5

v′4,t v′4,8 v′4,7 v′4,6 v′4,5

(b)

Figure 3.4: Spectrum graph (a) and associated matrix spectrum graph (b).
Grey shaded vertices in matrix spectrum graph are only drawn for
reasons of readability. As these vertices represent pairs of incom-
patible vertices in the spectrum graph, they are not part of the
matrix spectrum graph. The two green vertices in the matrix spec-
trum graph are terminal vertices. Corresponding paths in spectrum
graph and matrix spectrum graph are highlighted in blue and red.

consisting of all vertices v′i,j with (vi, vj) ∈ ED. An example of a spectrum graph
with associated matrix spectrum graph is depicted in Figure 3.4.

Intuitively, using the matrix spectrum graph G ′, we compute s-t paths in G not
in s-t direction, but instead we start at the two goalposts and construct the path

46

from these endpoints towards the center of the spectrum graph. At the center,
the two subpaths in the left and right half of G, referred to as left subpath and
right subpath, are joined by a terminal vertex that connects the last vertex in the
left subpath with the first vertex in the right subpath. More formally, every path
〈v′s,t, v′p1,q1

, . . . , v′pk,ql〉 in G ′ corresponds to a left subpath px = 〈s, vp1 , . . . , vpk〉 and
a right subpath py = 〈vql , . . . , vq1 , t〉 in G. Since G ′ does not contain a vertex v′i,j
for any pair of incompatible vertices in G and the set of ion types is basic, we
can show that the union of both paths px and py does not contain any pair of
incompatible vertices1. Thus, every path in G ′ beginning at v′s,t and ending at a
terminal vertex corresponds to an antisymmetric s-t path in G.

Theorem 3.2. For a set of basic ion types, every path p = 〈v′s,t, v′p1,q1
, . . . , v′pk,ql〉

in G ′ with v′pk,ql ∈ V ′term corresponds to an antisymmetric s-t path in G.

Proof. First, we show that p corresponds to some s-t path in G. According to
the construction of G ′, the following holds: For every pair of successive vertices
vpi , vpi+1

in the sequence 〈vs, vp1 , . . . , vpk〉, either vpi = vpi+1
or (vpi , vpi+1

) ∈ ED.
Hence, after removing successive identical vertices, the resulting sequence cor-
responds to a path in G from vertex s to vertex vpk . By the same argument,
the sequence vql , . . . , vq1 , t corresponds to a path in G from vertex vql to vertex
t. Since v′pk,ql ∈ V ′term, there exists an edge (vpk , vql) ∈ ED, which joins these two
paths into a single s-t path in G.

Second, we show that the corresponding s-t path in G is antisymmetric. Every
edge in E ′ represents an edge in ED connecting either two vertices in V x or two
vertices in V y. Since every edge corresponds to an amino acid with mass at least
mα and every pair of incompatible vertices both in V x (resp. V y) has a mass
difference strictly less than mα, no pair of incompatible vertices both in V x (resp.
V y) can be selected for the path using edges in E ′. Finally, we have to show
that also no pair of incompatible vertices va ∈ V x and vb ∈ V y can be selected.
Since V ′ does not contain any vertex v′a,b for any pair of incompatible vertices
va, vb ∈ V , a path including such a pair must contain two vertices v′a,k and v′l,b
with a 6= l and b 6= k. Assume k > b and a < l, that is, v′a,k appears before v′l,b in
the path, and consider two cases. Note that the symmetric case with k < b and
a > l can be shown in the same way.

Case 1: Assume the first edge in the subpath from v′a,k to v′l,b is a ver-
tical edge connecting v′a,k to some vertex v′r,k. Since k > b, the subpath
must also contain at least one horizontal edge ending at some vertex v′c,d with
m(vc) ≥ m(vr) ≥ m(va) +mα. From the construction rule of horizontal edges we

1 While Lu and Chen [2003] briefly perform a case study with an additional ion type (b-H2O),
a formal statement about the extension to multiple ion types is not given.

47

know that
m(vd) ≤Mp − 18−m(vc) ,

which implies
m(vd) ≤Mp − 18−m(va)−mα .

As we consider only basic ion types, the following inequality holds:

m(va) +m(vb) > Mp − 18−mα ,

which ultimately leads to
m(vd) < m(vb) .

Since the masses of vertices in V y are monotonically decreasing along the path,
there cannot exist a path from v′c,d to v′l,b in G ′.

Case 2: Now assume the first edge in the subpath from v′a,k to v′l,b is a hori-
zontal edge connecting v′a,k to some vertex v′a,r. If m(vr) < m(vb), we can apply
the same argument as above to show that no path from v′a,r to v′a,b exists. Hence,
we assume m(vr) ≥ m(vb). Again, from the construction rule of horizontal edges
it follows that:

m(va) +m(vr) ≤Mp − 18 .

Using again the basic ion type property, this can be transformed to

m(vr)−m(vb) < mα ,

which implies that no path from v′a,r to v′a,b can exist, since every edge corresponds
to a mass of at least mα.

Since |V ′| = O(|V |2) and |E ′| = O(|V ||ED|), for any set of basic ion types,
the longest antisymmetric path problem can be solved in time O(|V |2 + |V ||ED|)
using algorithm Dag-Longest-Path on the matrix spectrum graph.

3.3 Enumeration of suboptimal antisymmetric
paths

Most de novo peptide sequencing algorithms compute not only a single candidate
peptide but a set of high scoring candidates. Similar to other algorithms such as
PILOT, we follow a two step approach where we first generate a certain number
of candidate peptide sequences by enumerating longest antisymmetric paths in
the spectrum graph. All candidates generated in this first step are then again
compared to the query spectrum in a second, re-scoring step.

48

This demands an algorithm to enumerate the k longest antisymmetric paths
in the spectrum graph for a given number k. A straightforward strategy to enu-
merate suboptimal solutions for the ILP formulation, as implemented in PILOT,
is to cut off every previous path 〈vp1 , . . . , vpn〉 by an additional constraint, e.g.,∑n−1

i=1 x(vpi , vpi+1
) ≤ n− 2, and re-solve the problem.

In our Lagrangian relaxation approach we follow a different algorithmic ap-
proach based on an algorithm proposed by Yen [1971] for the enumeration of
the k shortest simple paths (no repeated vertex) in a directed graph. Yen’s al-
gorithm is a deviation algorithm based on the fact that the i-th shortest path
pi = 〈pi1, . . . , pini〉 shares with every shorter path pl ∈ {p1, . . . , pi−1} its first
lcp(pi, pl) vertices, until the paths deviate (see Figure 3.5). We call the farthest
of these common vertices of pi, beginning at the source, the deviation vertex d(pi)

of path pi:

d(pi) := pim with m = max
l∈[1..i−1]

lcp(pi, pl) .

Let D(pi) denote the set of previously determined paths that coincide with pi

until vertex d(pi), i.e., D(pi) = {pl | pi
lcp(pi,pl)

= d(pi) ∧ 1 ≤ l < i}. Further, let
the deviation vertex be the d-th vertex of path pi, i.e., pid = d(pi).

The idea of Yen’s algorithm to determine the (i+ 1)-st shortest s-t path pi+1

is to compute the shortest path to t that deviates from pi at vertex pij, for every
vertex pij, d ≤ j ≤ ni. To avoid repeated computation of the same path for vertex
pid, the new path must also deviate from all paths in D(pi). A path deviating from
pi at vertex pij is generated by computing a shortest pij-t path that does not include
edge (pij, p

i
j+1). This so-called spur path pspur from pij to t is then concatenated

with the so-called root path proot = 〈pi1, . . . , pij〉, and the resulting s-t deviation
path proot · pspur is added to a candidate set X. Note that with a slight abuse
of notation, we let the concatenation of the root path and the spur path contain
only the prefix 〈pi1, . . . , pij−1〉 of proot, as otherwise the deviation vertex pij would
appear twice in the deviation path. Once all deviation paths for parent path pi

have been computed, the shortest path in the candidate set X corresponds to
the (i + 1)-st shortest s-t path pi+1 and is subsequently removed from X. Since
the original algorithm is supposed to compute only simple paths, it performs an
additional trick. During every shortest path computation this algorithm applies
Dijkstra’s algorithm, which is guaranteed to compute a simple path. However,
additional care has to be taken to ensure that proot · pspur still defines a simple
path. Yen’s algorithm achieves this by removing all vertices pi1, . . . , pij−1 from the
graph before computing the spur path. Hence, since both subpaths are simple
and do not share any vertices, also their concatenation defines a simple s-t path.

The longest antisymmetric path problem differs from the problem solved by
Yen’s original algorithm in a few points, so we need to adapt the algorithm as

49

t

s

(a)

t

t

t

t
t

t

s

(b)

t

t

t

t
t

t

s

(c)

t

t

t

t
t

t

s

t

tt

(d)

Figure 3.5: Example workflow of a suboptimal path enumeration algorithm
based on deviation paths. Beginning with the optimal s-t path
p1 (a), for each vertex v ∈ p1, the spur path to t is computed. All
spur paths, shown in orange (b), are concatenated with their asso-
ciated root path and added to the set of candidates. The longest
candidate path is marked red (c). Beginning at the deviation vertex
marked in blue (d), the new spur paths to t are computed, and the
resulting deviation paths are added to the candidate set.

follows: While the original algorithm is designed for general directed graphs that
may contain cycles, the spectrum graph is a directed acyclic graph. Thus, we
can safely replace every application of Dijkstra’s algorithm by algorithm Dag-
Longest-Path to enumerate longest s-t paths. Further, while the original algo-
rithm must ensure that the concatenated paths are still simple, for the antisym-
metric path problem we must ensure that concatenated paths do not contain any
pair of incompatible vertices. By means of algorithm Lag-Antisymmetric-
Path, we can compute pij-t spur paths without pairs of incompatible vertices.
To ensure that the concatenation of the root path 〈pi1, . . . , pij〉 and the spur path

50

also satisfies this condition, we adopt Yen’s idea and remove all vertices that
are incompatible to any vertex in 〈pi1, . . . , pij〉 from the spectrum graph before
computing the spur path.

The properties of our algorithmic approach for the enumeration of suboptimal
antisymmetric paths, referred to as k-Longest-Antisymmetric-Paths (see
Algorithm 2, page 65), are captured in the following theorem:

Theorem 3.3. The combination of algorithm Lag-Antisymmetric-Path and
the modified version of Yen’s algorithm, as described above, solves the prob-
lem of enumerating the k longest antisymmetric paths in a spectrum graph
G = (V,ED, EU) in time O(k`β(|ED|+ |V |)), where ` is the maximum number of
vertices in any generated candidate path and β is the maximum number of sub-
gradient optimization iterations required to solve a single longest antisymmetric
path instance over all instances during the algorithm.

Proof. In iteration i+1 of algorithm k-Longest-Antisymmetric-Paths, every
computed path deviating from pi at vertex pij must satisfy two conditions in order
to form an antisymmetric path in G:

1. The spur path from pij to t contains no pair of incompatible vertices.

2. No vertex in the spur path from pij to t is incompatible to any vertex of the
root path from s to pij.

The first condition is satisfied by application of algorithm Lag-Antisymmetric-
Path, because if we set the source vertex s = pij, every optimal solution corre-
sponds to a longest antisymmetric pij-t path. To meet the second condition, it is
sufficient to remove all vertices from the spectrum graph that are incompatible
to some vertex of root path 〈pi1, . . . , pij〉 before computing the longest antisym-
metric pij-t path. For each of the k iterations, at most ` antisymmetric deviation
paths must be computed, each requiring O(β) calls to algorithm Dag-Longest-
Path, which has complexity O(|ED| + |V |). The optimality of the computed k
antisymmetric paths follows from the correctness of Yen’s algorithm.

Note that the value of β is possibly exponential if large parts of the branch
and bound tree have to be enumerated. However, in Section 3.5.1 we will show
that for realistic spectrum graph instances our formulation requires only very few
iterations on average and achieves a good practical performance.

3.3.1 Enumerating longest unconstrained paths

When paths are not required to be simple, there exist faster algorithms to enumer-
ate k shortest s-t paths in a directed graph with n vertices and m edges with non-
negative weights than the one proposed by Yen, which runs in O(kn(m+n log n)).

51

The theoretically most efficient algorithm known to date is by Eppstein [1998]
with a worst case time complexity of O(m+ n log n+ k).

If the considered set of ion types is basic, the problem of enumerating the k
longest antisymmetric paths reduces to the enumeration of the k longest paths in
the acyclic matrix spectrum graph. Hence, after negating all edge weights, we can
solve this problem using algorithms that solve the unconstrained shortest path
problem like the one by Eppstein. For our benchmark study we implemented a
simpler algorithm that has a higher worst case complexity but shows sufficient
practical performance, as demonstrated in the benchmarks in Section 3.5.1. This
algorithm, which is a modification of Yen’s algorithm proposed by de Queirós
Vieira Martins et al. [1999], improves Yen’s worst case time complexity on acyclic
graphs from O(kn(m+n)) to O(kn2). The idea of this algorithm is as follows: A
straight forward adaption of Yen’s algorithm to longest paths in directed acyclic
graphs computes in iteration i+1 for every vertex v = pid, . . . , p

i
ni

with pid = d(pi),
the longest v-t spur path by calling algorithm Dag-Longest-Path. These path
computations can be avoided by using a longest path tree T that contains for
every vertex v the longest path to vertex t and the associated weight of this path,
denoted by ŵ(v). This tree can be computed by reversing all edges and calling
algorithm Dag-Longest-Path, using vertex t as the source. Note that T must
be computed only once before the enumeration of longest paths. Now, using the
information stored T , the length of the longest pij-t spur path can be determined
by inspecting all vertices v′ 6= pij+1 with (pij, v

′) ∈ E and selecting the vertex v∗

that maximizes the sum ŵ(v∗) + w(pij, v
∗). Again, for pij = d(pi) only vertices

v′ 6= plj+1 ∀pl ∈ D(pi) are considered to avoid repeated computation of previous
paths. The longest pij-t spur path is then finally obtained by backtracking in T .

The generation of T requires time O(n + m), and in each of the k iterations
in Yen’s algorithm at most n deviation paths must be computed, where the
identification of vertex v∗ and the backtracking are both performed in time O(n).
Hence, the complete algorithm runs in timeO(kn2), which could even be improved
to O(km+n) by backtracking only the spur path for the longest path in X at the
end of each of iteration. This could be further improved to O(m log n + kn) by
computing reduced edge costs and sorting edges (details omitted, see [de Queirós
Vieira Martins et al., 1999]). However, our running time benchmarks suggest
that for relatively small values of k, which are typically used for de novo peptide
sequencing, the total running time is dominated by the matrix spectrum graph
construction and the computation of T , even without these further improvements.

52

3.3.2 Backward heuristic

To avoid unnecessary calls to algorithm Lag-Antisymmetric-Path, we can
incorporate the longest path tree approach for unconstrained paths into algorithm
k-Longest-Antisymmetric-Paths as a heuristic. In the remainder, we will
refer to the following heuristic as backward heuristic. In iteration i of k-Longest-
Antisymmetric-Paths, before computing a longest antisymmetric pij-t spur
path, we use the longest path tree to generate a candidate pij-t spur path. If the
concatenation of the root path and the candidate spur path does not contain any
pair of incompatible vertices, we have found the longest antisymmetric deviation
s-t path deviating at vertex pij. Hence, (only) in this case we can skip the call to
algorithm Lag-Antisymmetric-Path. Note that this heuristic does not affect
the optimality of our algorithm, it may only sometimes reduce the running time
required to generate the k longest antisymmetric paths.

In Section 3.5.1, we will analyze the effect of the backward heuristic on the
practical performance of the k-Longest-Antisymmetric-Paths algorithm.

3.4 Scoring model

3.4.1 Scoring vertices in the spectrum graph

For our de novo peptide sequencing tool antilope, we implemented a proba-
bilistic scoring model to compute vertex scores in the spectrum graph based on
Bayesian networks, similar to PepNovo. A Bayesian network is defined as a di-
rected acyclic graph, where vertices correspond to random variables and directed
edges model conditional dependencies between them. Therefore, pairs of random
variables with respective vertices not connected by directed edges are considered
as conditionally independent.

In our scoring model, we create a random variable for every considered scored
ion type τ ′ ∈ T ′ to represent the observed intensity of the associated peak (pos-
sibly missing) in the mass spectrum. Note that the set of scored ion types is
not necessarily equal to the set of ion types T used for the construction of the
spectrum graph. Instead, usually more ion types are considered for scoring such
that T ⊆ T ′. The Bayesian network approach is used to capture dependencies
between observed peak intensities of different ion types that arise since they are
products of fragmentation events that cannot be considered as independent. For
example, we expect a relationship between the intensities of complementary b-
and y-ion peaks, as both ions result from the same fragmentation event. For the
same reason, we expect a relationship between the intensities of a b- or y-ion and
its associated neutral loss variants, e.g., b-H2O and y-H2O.

53

We normalize observed peak intensities using the approach proposed by
Dančík et al. [1999] and apply binning according to peak intensity ranks. Thus,
for a given spectrum and a given number of intensity levels NB, we calculate the
normalized intensity norm(π) of some peak with intensity rank r as

norm(π) = max(0, NB −
⌊ r
B

⌋
) ,

with bin size B calculated as B = dMp/100e for parent mass Mp. As depicted in
Figure 3.6, the Bayesian network contains an additional class vertex representing
the two classes: true prefix residue mass (True) and false prefix residue mass
(False). This class vertex has an outgoing edge to every other vertex in the
network.

b-NH3

class

a

b

b-H2O

b-H2O-NH3

y

y-H2O

Figure 3.6: Sample Bayesian network for spectrum graph vertex scoring with a
set of seven scored ion types.

In practice, different mass spectrometer types and experimental setups can
produce tandem mass spectra with considerable differences in the peak intensity
distribution for certain ion types. Hence, the ability to train the scoring model
individually for the specific experimental equipment, based on a set of reliably
identified spectra, is to the best advantage for successful peptide sequencing. For
this reason, we implemented a flexible interface that allows for parameter training
on a customized Bayesian network structure or automatic inference of a suitable
network structure, based on a training dataset. We achieve this flexibility of
the training process by resorting to the machine learning suite Weka [Hall et al.,
2009], which offers a convenient interface to either define the network structure
manually or learn a structure based on different algorithms (e.g., K2-HillClimber)
and metrics (e.g., Bayesian metric for local scoring [Bouckaert, 2004]).

Given a set of identified tandem mass spectra, in our training procedure we
compute all prefix residue masses according to the known peptide sequence. Then,
for each prefix residue mass, we construct a vector of observations containing for

54

each scored ion type the normalized intensity of the peak that is nearest to the
expected m/z position, known from the mass offsets defined in Table 3.2. If
no peak is found within a certain window (default: 0.5 Th), the corresponding
observed intensity is set to zero. In addition to these positive training vectors, we
generate an equal number of negative training samples containing the observed
intensities for false prefix residue masses. In contrast to Datta and Bern [2009],
we create negative training vectors only for those false prefix residue masses that
would have a vertex being created during the spectrum graph construction, since
otherwise, the negative training set could contain a significant amount of vectors
without any observed peaks. These vectors do not represent realistic negative
samples, as, in our de novo sequencing algorithm, we only compute scores for
prefix residue mass candidates that are represented by a vertex, and hence at
least one peak must have been observed. As intensity distributions can vary
with the relative position of the fragmentation site within the intact peptide,
we follow the approach implemented in PepNovo and group the candidate prefix
residue masses into a certain number (default: 3) of equally sized m/z regions
and train an individual Bayesian network for each region.

Once the network structure for each region has been determined (inferred or
custom), and the conditional probability tables have been computed, we use the
network to generate spectrum graph vertex scores as follows: For the mass of a
given vertex v, we construct the vector of observed normalized intensities Iv in
the same way as for the training samples. Using the trained Bayesian network
BN for the corresponding m/z region of vertex v, we compute the log likelihood
ratio (LLR(v)) as follows:

LLR(v) = log
Pr(Iv | BN , class = True)
Pr(Iv | BN , class = False)

, (3.11)

where Pr(Iv | BN , class = c) for c ∈ {True,False}) denotes the probability of the
observed intensity vector Iv under model BN when the class variable is set to c.
This value is defined as

Pr(Iv | BN , class = c) :=
∏
τ ′∈T ′

Pr(Iv[τ
′] | Iv[τ ′in1], . . . , Iv[τ

′in
r], class = c) ,

where {τ ′in1 , . . . , τ ′inr } is the set of all scored ion types that are parents of τ ′ in
BN and Iv[τ] denotes the observed normalized intensity for ion type τ .

We combine the score obtained from the Bayesian network with an intensity
rank score SR(v) as implemented in the INSPECT algorithm [Tanner et al., 2005].
Assume vertex v was constructed for some peak π with rank r (not binned) to
interpret π as an ion of type τ ∈ T . Then, we compute SR(v) as the log ratio of
the odds that a peak with rank r is produced by an ion of type τ and the odds of

55

a randomly chosen peak being produced by an ion of type τ . Again, we split the
mass spectrum into equally sized m/z regions and learn these scores individually
for each region.

The final score for each vertex v of the spectrum graph is then given by

score(v) = LLR(v) + SR(v) . (3.12)

Before generating the vertex set, we apply a window filter, keeping only a
given number (default 3) of highest intensity peaks for every window of a given
mass width (default 56 Da). To speed up the algorithm, we reduce the size of
the spectrum graph by removing low scoring vertices with negative scores before
we compute antisymmetric paths, since these vertices are unlikely to represent
true prefix residue masses. For the filtered spectrum graph, we generate directed
edges corresponding to combinations of up to three amino acids, where edges that
correspond to combinations of amino acids are charged a penalty such that single
amino acid edges are preferred in longest path computations.

3.4.2 Re-scoring of candidate peptides

For every computed antisymmetric s-t path, in a second step we resolve edges
labeled with multiple combinations of amino acids and generate a candidate se-
quence for every combination of possible edge labels along the path. We re-score
these candidates by a weighted version of shared peaks count to reward abundant
and penalize missing peaks.

Given a candidate peptide sequence P ′, for every prefix residue mass, we
search for peaks in the query spectrum at the expected positions for all considered
scored ion types. If we find a peak π for ion type τ , we add some ion type specific
score γτ . In addition, we determine whether the peak is a primary isotopic peak,
a secondary isotopic peak, or a lone peak. According to the definition by Tanner
et al. [2005], a peak is called primary isotopic if the spectrum contains a so-
called child peak at an m/z offset of 1 Th for singly charged ions or 0.5 Th for
double charged ions. Conversely, for a secondary isotopic peak, the mass spectrum
contains a so-called parent peak at m/z offset −1 Th for singly charged and
−0.5 Th for doubly charged ions. If a peak is neither a primary nor a secondary
isotopic peak, it is called a lone peak. A secondary peak has a lower probability
to correspond to one of the scored ion types [Tanner et al., 2005], as it is more
likely to correspond to a heavier isotope of some other ion. Therefore, we charge
a penalty determined by parameter ηs for a peak classified as secondary isotopic.
On the other hand, a peak classified as primary isotopic is rewarded an additional
bonus, defined by parameter ηp, to account for the presence of additional isotopic
peaks. Finally, if a peak is missing, we charge an ion type specific penalty στ < 0.

56

Hence, the score PSM(π, τ) of a (possibly missing) peak π, interpreted as ion type
τ , is defined as follows:

PSM(π, τ) :=

γτ if π lone,

γτ (1− ηs) if π secondary isotopic,

γτ (1 + ηp) if π primary isotopic,

στ if π missing.

(3.13)

The final score of candidate peptide sequence P ′ is then defined as the sum over
all peak scores of the scored ion types for every prefix residue mass of P ′. In the
final step of the algorithm, we rank the candidates according to this score and
return a predefined number of highest scoring peptide candidates.

3.5 Results

In this section, we evaluate the practical performance of our Lagrangian relaxation
algorithm compared to directly solving the ILP formulation and the matrix spec-
trum graph based polynomial time algorithm. Further, we compare the peptide
sequencing performance of our tool antilope to the performance of established
de novo peptide sequencing software. We implemented the described algorithms
in C++, using data structures of the OpenMS library for handling spectral data
[Sturm et al., 2008] and the graph data structures and algorithms from the Se-
qAn library [Döring et al., 2008]. All computations were performed on a machine
equipped with 2 Intel Xeon CPU X5550 @2.67GHz Quad Core and 72 GB mem-
ory, but all algorithms were limited to a single thread.

3.5.1 Running time

To assess the performance of our Lagrangian relaxation algorithm k-Longest-
Antisymmetric-Paths, we analyzed the running time required to generate
the longest 20, 50, and 100 antisymmetric paths for a set of 1656 real tandem
mass spectra from the ISB dataset [Keller et al., 2002], further described in Sec-
tion 3.5.2. We compared this running time to the time required for solving the
ILP formulation directly, using the well recognized commercial solver software
CPLEX (version 12.4) [IBM, 2011], and the running time of the matrix spectrum
graph approach, as described in Section 3.3.1. As the latter is limited to basic ion
types, we created spectrum graphs for two sets of basic ion types and different
vertex scoring functions. For the ILP formulation solved with CPLEX, we gener-
ated suboptimal solutions by cutting off previous solutions, as described in Sec-
tion 3.3. Further, we studied the effect of applying the backward heuristic to the
k-Longest-Antisymmetric-Paths algorithm, as introduced in Section 3.3.2.

57

Benchmark 1

For the first benchmark, we generated spectrum graphs using the set of basic ion
types containing b-, y-, a-, b-NH3-, and y-H2O-ions and a simple scoring function
that uses normalized peak intensities as score for all generated vertices. As this
scoring function does not discriminate between vertices produced by the same
peak, it becomes more likely that simple longest s-t paths would contain pairs
of incompatible vertices. Further, we did not filter low scoring vertices. Hence,
this set represents relatively difficult spectrum graph instances with an average
number of 303 vertices. In Figure 3.7 we present the average running time per
spectrum for each of the four compared algorithms. Solving the ILP formulation
with CPLEX was more than one order of magnitude slower than all other algo-
rithms for the generation of 100 longest paths, where it required on average 24
seconds per spectrum. Among the remaining three methods, the polynomial al-
gorithm using the matrix spectrum graph (MAT) achieved the best performance.
The running time advantage compared to the Lagrangian relaxation approach
(LAG) increased with the number of suboptimal solutions, up to a factor of ∼5

for the 100 longest paths. Further, we observed only a slight performance gain of
up to 10% for the longest 100 paths when using the backward heuristic for the
Lagrangian relaxation approach (LAG-B). This suggests that in many cases the
candidate path obtained by the backward heuristic contains incompatible ver-
tices, and thus algorithm Lag-Antisymmetric-Path must be applied. Even
for the slower variant without the heuristic, the 20 longest paths were computed
on average in less than 0.3 seconds per spectrum, which is comparable to the run-
ning time of other de novo sequencing algorithms like PepNovo and NovoHMM.

 0.01

 0.1

 1

 10

 100

CPLEX LAG LAG-B MAT

s
e

c
o

n
d

s

20

50

100

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

LAG LAG-B MAT

s
e

c
o

n
d

s

20

50

100

(b)

Figure 3.7: Average running times per spectrum for generating the 20, 50 and
100 longest antisymmetric paths in Benchmark 1. Note the loga-
rithmic scale of plot (a). Plot (b) shows the running times of (a) in
non-logarithmic scale, excluding the running times for CPLEX.

58

However, in the second benchmark we will show that for more realistic spectrum
graph instances the average running time per spectrum decreases significantly.

Benchmark 2

In the second benchmark, we applied the default settings of antilope for spec-
trum graph generation, using the basic set containing b- and y-ions with ver-
tex scores computed according to the scoring function outlined in Section 3.4.1
(see Section 3.5.2 for training details). Hence, this set represents more realistic
spectrum graph instances with an average number of 80 vertices after filtering
low scoring vertices. As depicted in Figure 3.8, solving the ILP formulation
with CPLEX was this time even more than two orders of magnitude slower than
the other three approaches for the 100 longest paths. For this set of spectrum
graph instances, the gain in performance due to the backward heuristic was more
prominent, yielding a factor of three for the 100 longest paths. The Lagrangian
relaxation together with the backward heuristic was even slightly faster than the
matrix spectrum graph algorithm for the 20 and 50 longest paths. This advantage
decreases with increasing number of paths as the efficient path enumeration for
the matrix spectrum graph amortizes the construction overhead. For the com-
putation of the 100 longest paths, we measured an average time per spectrum of
∼0.024 seconds without the backwards heuristic and less than 0.01 seconds for
the matrix spectrum graph and the Lagrangian relaxation with backward heuris-
tic. Hence, the time required for candidate path generation using algorithm
k-Longest-Antisymmetric-Paths is negligible for the complete sequencing
algorithm, especially when using the backward heuristic, as the running time is

 0.0001

 0.001

 0.01

 0.1

 1

 10

CPLEX LAG LAG-B MAT

s
e

c
o

n
d

s

20

50

100

(a)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

LAG LAG-B MAT

s
e

c
o

n
d

s

20

50

100

(b)

Figure 3.8: Average running times per spectrum for generating the 20, 50 and
100 longest antisymmetric paths in Benchmark 2. Note the loga-
rithmic scale of plot (a). Plot (b) shows the running times of (a) in
non-logarithmic scale, excluding the running times for CPLEX.

59

mostly dominated by the re-scoring step.

3.5.2 Sequencing performance

To assess the quality of de novo peptide predictions of our tool antilope, we
conducted a comparative benchmark study with the four non-commercial tools
LutefiskXP2, NovoHMM, PILOT3, and PepNovo4 and the commercial software
PEAKS5. We evaluated peptide predictions in terms of recall and accuracy, which
we define as follows:

recall :=
#correctly predicted amino acids

#amino acids in unknown peptides
,

accuracy :=
#correctly predicted amino acids

#predicted amino acids
.

For each tool, except NovoHMM, which generates only a single prediction per
spectrum, we computed the performance considering the top scoring 1, 3, 5, and
10 candidates, where we always selected the prediction with the highest recall.
In case of multiple predictions with the same recall, we selected the one with
maximal accuracy.

For this benchmark, we selected a set of reliably annotated tandem mass spec-
tra from tryptic peptides, which had already been used for training and evaluating
PepNovo and NovoHMM. These spectra originate from the ISB dataset of Keller
et al. [2002], produced by a Thermo Finnigan ESI-ion trap mass spectrometer,
and from the open proteomics database. From this set, we selected 1214 spectra
generated by doubly charged precursor ions as training set for the Bayesian net-
work scoring model. For each of the three m/z regions, only ion types observed
for at least 20% of all true prefix residue masses in the training samples were
included into the final Bayesian network model (see Figure 3.9).

We generated vertices for the basic set of b-ions and y-ions, and we used
the following parameters to score peptide-spectrum matches in the candidate re-
scoring step: For singly charged b- and y-ions, we used the scores γb = γy = 1,
and for their doubly charged variants we used γb2 = γy2 = 0.5. In addition, we
scored a-ions with γa = 0.3 and all neutral losses with 0.2. For the parameters
to reward primary isotopic peaks and penalize secondary isotopic peaks, we set
ηp = ηs = 0.2, and for every missing peak of type τ we added value στ = −γτ/2.

2 LutefiskXP version 1.0.5
3 As PILOT was not available, the identifications for the test data were generated by the

authors of PILOT.
4 PepNovo+ version 3.1
5 PEAKS 7 (30 days trial version)

60

class

b

b-H2O

y

y2

(a)

b-NH3

class

b

b-H2O

y

(b)

b-NH3

class

a

b

b-H2O

b-H2O-NH3

y

y-H2O

(c)

Figure 3.9: The Bayesian network structures used in benchmark study for (a)
low m/z region, (b) high m/z region, and (c) center m/z region.

We tested on a set of 200 tandem mass spectra, not included in the
training set, that were produced by doubly charged precursor ions from pep-
tides with a molecular mass below 1600 Da and an average length of ∼10

amino acids. For an unknown peptide P = 〈p1, p2, . . . , pk〉 and a candi-
date peptide sequence P ′ = 〈p′1, p′2, . . . , p′k′〉, we considered amino acid pi
as correctly predicted if pi and p′j were equal for some 1 ≤ j ≤ k′ and
|mr(〈p1, . . . , pi−1〉) −mr(〈p′1, . . . , p′j−1〉)| ≤ 2.5 Da. For the calculation of recall
and accuracy, we did not discriminate between the isobaric amino acids Isoleucine
and Leucine and the near isobaric amino acids Lysine and Glutamine.

The results for all tools are summarized in Figure 3.10. Considering only
the first top scoring prediction, we observed that the recall values of antilope
(∼73.4%) and PEAKS (∼74.1%) were almost equal and slightly higher than for
PILOT (∼71.5%), NovoHMM (∼70.2%), and PepNovo (∼69.4%). antilope
and NovoHMM both compute only peptide sequences without gaps, which re-
sults in only small differences between recall and accuracy values. LutefiskXP,
PILOT and PepNovo predict also gapped candidates, containing unexplained
mass differences, e.g., YGLAVA[198.1]K with an internal mass gap of 198.1 Da or
[220.1]LAVAVVK with an N-terminal mass gap of 220.2 Da. For PepNovo and
LutefiskXP, this led to an improvement in terms of accuracy, which exceeds the

61

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Antilope PepNovo LutefiskXP PILOT PEAKS NovoHMM

re
c
a
ll

Top 1
Top 3
Top 5
Top 10

(a)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Antilope PepNovo LutefiskXP PILOT PEAKS NovoHMM

a
c
c
u
ra

c
y

Top 1
Top 3
Top 5
Top 10

(b)

Figure 3.10: Comparison of peptide sequencing performance in terms of (a)
recall and (b) accuracy between antilope, NovoHMM, PepNovo,
PILOT, PEAKS, and LutefiskXP. We compared the accuracy
and recall of the best prediction among the top 1, 3, 5 and 10
ranked candidates returned by each tool. As the best prediction
we selected the one with the highest recall among all candidates.
Note that NovoHMM generates only one candidate per spectrum.

recall for both tools.
Considering also suboptimal solutions, we observed that antilope was always

very close to PepNovo and PEAKS in terms of recall (almost equal for the top
3, ∼2.5 percentage points advantage of PepNovo for the top 10) and at least 4

percentage points better than PILOT. In terms of accuracy, PepNovo achieved
the best results (∼92.6% for top 10) due to gapped peptide predictions. Also
LutefiskXP showed a slightly better performance than antilope and PILOT

62

in terms of accuracy, but this was attained at a much lower recall, which was
between 12 and 14 percentage points lower than for antilope in all four cases.

Looking at the average running time per spectrum, antilope (∼0.2 seconds)
was slightly faster than PepNovo (∼0.4 seconds) and eight times faster than
LutefiskXP (∼1.6 seconds). For PEAKS and NovoHMM we observed average
running times of ∼0.1 seconds and ∼0.5 seconds respectively, both run on a
comparable hardware configuration with Microsoft Windows operating system.

3.6 Conclusion

In this chapter, we introduced an efficient and flexible algorithmic approach to the
de novo peptide sequencing problem using Lagrangian relaxation combined with
a k longest path enumeration algorithm. Even though our formulation does not
restrict the structure of forbidden pairs in the spectrum graph, we were able to
show that the performance of our algorithm is comparable to the polynomial time
algorithm based on the matrix spectrum graph for restricted sets of ion types.
Compared to solving the equivalent ILP formulation with the commercial CPLEX
ILP solver software, our algorithm was more than two orders of magnitude faster
and required on average less than a hundredth of a second to generate the 100
longest antisymmetric paths for realistic spectrum graph instances.

For the sequencing benchmark, we restricted the vertex generation to the set
of basic ion types b, and y, as we experienced a decline in sequencing performance
for the benchmark spectra when generating also vertices for doubly charged ion
types. Nevertheless, we emphasize that the capability of our approach to handle
such sets of non-basic ion types, in combination with an enhanced scoring func-
tion, can lead to an improved sequencing performance for certain kinds of spectra,
as it allows to incorporate more knowledge into the spectrum graph. In addition,
the flexibility of the ILP formulation paves the way for individual adaptions to
special properties of certain kinds of tandem mass spectra. One example is the
possibility to introduce internal fragments into the model, which are frequently
observed in HCD spectra [Michalski et al., 2012]. This can be achieved by intro-
ducing constraints into the model to ensure that at most two vertices of a given
triple may be selected simultaneously, to avoid a conflicting interpretation of a
peak as terminal fragment ion and internal fragment ion. While our algorithm is
primarily designed to compute antisymmetric paths, the formulation can be fur-
ther generalized to allow for the simultaneous selection of incompatible vertices,
charged with an individual penalty. This could be generalized even further to in-
corporate pairwise vertex scores (resp. edge scores) for pairs of non-adjacent and
non-incompatible vertices (resp. edges), to capture global information about frag-
mentation patterns or amino acid composition. For the ILP formulation and our

63

associated Lagrangian relaxation algorithm, we can easily implement such new
constraints into the model without inducing elementary changes to the general
algorithm.

Further, we implemented a generic scoring function to generate discriminative
vertex scores and we were able to show that the performance of our de novo
peptide sequencing tool antilope is on a par with established tools. A central
step in the algorithm, which affects the prediction quality, is the re-scoring of
candidate peptides. Thus, it is worthwhile to devote further effort to develop a
more sophisticated method like, e.g., the rank boosting approach [Frank, 2009],
implemented in PepNovo. Ideally, this method should also allow for automated
individual tuning based on annotated training datasets. Another point to be
addressed is the introduction of post translational modifications into the model.
The straightforward approach is to augment the set of normal amino acids with
modified amino acids for a given set of modifications to be considered during
sequencing. While this approach does not imply any changes to the algorithm, it
results in denser spectrum graphs as the number of edges is expected to increase
with the number of considered modifications.

64

Algorithm 1 Dag-Longest-Path

INPUT: Acyclic Graph G = (V,E) with edge weights w. Vertices s and t
OUTPUT: Longest s-t path in G

1: for each vertex v ∈ V do // Initialization
2: dist [v]← −∞
3: pred [v]← NIL
4: end for

5: dist [s]← 0

6: for each vertex u in topologically sorted order do
7: if dist [u] 6= −∞ then
8: for each edge (u, v) ∈ E do
9: if dist [v] < dist [u] + w(u, v) then
10: dist [v]← dist [u] + w(u, v)

11: pred [v]← u

12: end if
13: end for
14: end if
15: end for

16: if dist [t] 6= −∞ then // Traceback path
17: add t to path

18: v ← t

19: while v 6= s do
20: v ← pred [v]

21: add v to front of path
22: end while

23: return path

24: else
25: return “no path”
26: end if

65

Algorithm 2 k-Longest-Antisymmetric-Paths

INPUT: Acyclic Graph G = (V,E) with edge weights w. Vertices s and t. k
OUTPUT: k longest antisymmetric s-t paths 〈p1, . . . , pk〉 in G.
REMARKS: Lines 2 and 19 call algorithm Lag-Antisymmetric-Path

1: X ← empty candidate set
2: p1 ← longest antisymmetric s-t path in G
3: d(p1)← s // set deviation vertex of p1 to s

4: for i← 2 to k do
5: d← deviation index of pi−1 // d(pi−1) = pi−1

d

6: if i > 2 then // force deviation from all paths in D(pi−1)

7: ppar ← pi−1

8: while ppar 6= p1 & d(ppar) = d(pi−1) do
9: ppar ← parent(ppar) // parent(ppar) returns parent of ppar

10: remove edge (ppard , ppard+1) from E

11: end while
12: end if

13: for j ← 1 to d− 1 do
14: remove all edges (vu, vw) from E for all vu incompatible to pi−1

j

15: end for

16: for m← d to ni−1 − 1 do // compute spur paths
17: remove edge (pi−1

m , pi−1
m+1) from E // deviation from pi−1

18: remove all edges (vu, vw) from E for all vu incompatible to pi−1
m

19: pspur ← longest antisymmetric pi−1
m -t path in G

20: if pspur is non empty then
21: pcand ← 〈pi−1

1 , . . . , pi−1
m−1〉 · pspur

22: d(pcand)← pi−1
m

23: parent(pcand)← pi−1

24: insert pcand into X
25: end if
26: end for

27: if X empty then // only i− 1 antisymmetric s-t paths in G
28: return p1, . . . , pi−1

29: end if
30: pi ← longest path in X
31: remove pi from X

32: restore all edges
33: end for

34: return p1, . . . , pk

Chapter

4 Isoform Inference And
Abundance Estimation
With Delayed Column
Generation

In this chapter, we present our approach to the isoform inference and abundance
estimation problem based on RNA-Seq data. The presented algorithm has been
developed in a joint project with Dr. Stefan Canzar and Dr. David Weese.

4.1 Background

For many years the “one gene-one enzyme hypothesis” [Beadle, 1945], later re-
formulated to the “one gene-one polypeptide hypothesis” suggested that every
gene has a unique RNA product. This simplistic assumption was confuted by
the discovery of diverse post transcriptional modification mechanisms that can
generate many different mRNA products for a single gene, referred to as isoforms.
Three important post-transcriptional mechanisms that enhance the diversity of
the transcriptome, i.e., the set of all expressed RNA molecules (mRNA, tRNA,
rRNA and other non-coding RNA) in a single cell or a population of cells [Vel-
culescu et al., 1997], are alternative splicing , alternative promoter usage and
alternative polyadenylation (see Figure 4.1). Alternative splicing, first discovered
by Berget et al. [1977] in adenovirus, produces different isoforms by including
or excluding particular exons into the final mRNA. Alternative promoter usage,
analyzed in [Davuluri et al., 2008], and alternative polyadenylation, reviewed in
[Di Giammartino et al., 2011], generate isoforms with differing 5′- and 3′-ends
respectively.

First large scale studies based on expressed sequence tag (EST) [Adams et al.,
1991] analysis, reported in [Mironov, 1999; Brett et al., 2000; Croft et al., 2000;
Kan et al., 2001], identified alternative splice variants for a fraction of 40% to
60% of all human genes [Lee and Roy, 2004]. More recent studies estimate that
alternative splice variants are produced for ∼95% of all human multi-exon genes

68

[Pan et al., 2008], while alternative polyadenylation was detected in ∼70% of
all human genes [Derti et al., 2012]. Alternative splicing has been shown to
play decisive roles in cellular processes like cell growth, differentiation, and death
[Chen and Manley, 2009], and misregulation of alternative splicing is known to
be related to several human diseases [Garcia-Blanco et al., 2004; Douglas and
Wood, 2011].

These findings demonstrate the need for and the potential of large scale studies
to gain more insights into the particular roles and functions of different gene
products and into the mechanisms regulating alternative splicing.

One approach to large scale analysis of RNA expression and detection of
alternative splicing is by using DNA-microarrays. There exist three groups of mi-
croarrays for transcriptome analysis: exon arrays, exon junction arrays, and high
density genome tiling arrays. All three kinds of microarrays can be used to detect
alternative splicing events for known genes, as reported for exon arrays in [Clark
et al., 2007; Laajala et al., 2009; Moller-Levet et al., 2009; Chen et al., 2011] and
for exon junction arrays in [Johnson et al., 2003; Pan et al., 2004; Fagnani et al.,
2007; Shen et al., 2010]. In addition, high density genome tiling arrays can be
used to identify new transcripts from previously un-annotated genes [Kapranov
et al., 2002; Kampa et al., 2004; Cawley et al., 2004; Stolc et al., 2005], as well as
alternative splicing events [Ner-Gaon and Fluhr, 2006; Eichner et al., 2011]. How-
ever, compared to sequencing-based approaches, discussed below, hybridization
methods like microarrays have several limitations like, e.g., their dependence on a
known genome sequence, a high background signal induced by cross-hybridization
[Okoniewski and Miller, 2006; Royce et al., 2007], and a limited dynamic range
of detection due to signal saturation [Wang et al., 2009]. In addition, expression
ratios measured for different probes are not directly comparable due to different
signal-to-noise ratios [Forrest and Carninci, 2009].

As an alternative to microarrays, sequencing based methods can be used to de-
tect and quantify individual RNAs in a sample without knowledge of the genome
sequence. ESTs, obtained by Sanger sequencing, have been the major source
for the majority of annotated regions in mammalian genomes [Forrest and Carn-
inci, 2009]. However, for transcriptome scale analyses, Sanger EST sequencing
has several drawbacks as it is relatively low throughput, in general not quanti-
tative, and expensive [Wang et al., 2009]. While other, tag based methods like
cap analysis of gene expression (CAGE) [Kodzius et al., 2006], serial analysis of
gene expression (SAGE) [Velculescu et al., 1995], and massively parallel signature
sequencing (MPSS) [Brenner et al., 2000] allow for large scale analysis of gene
expressions, they often cannot distinguish between isoforms, as they measure only
few positions along the transcript [Forrest and Carninci, 2009].

The RNA-Seq method (the term RNA-Seq was coined by Mortazavi et al.

69

constitutive
splicing

mutually
exclusive exons

intron
retention

alternative 3’
splice site

alternative 5’
splice site

exon
skipping

alternative
promoter

P1 P2

alternative
poly(A) site

A A

Figure 4.1: Types of alternative splicing events, alternative promoter usage and
alternative polyadenylation. Splice patterns on the left side and cor-
responding alternative splicing products on the right in. Every box
represents an exon in 5′ → 3′ direction, lines denote introns and
arcs denote splice junctions. Constitutive exons in yellow, alterna-
tive exons in green and grey.

[2008]) overcomes these shortcomings by using second generation high-throughput
sequencing technologies like Illumina/Solexa, Roche 454, and ABI SOLiD to con-
duct whole transcriptome scale sequencing. Unlike tag-based methods, RNA-Seq
provides sequence information along complete transcripts, which enables the iden-
tification and quantification of particular isoforms for the same gene and allows
for detection of sequence variations, e.g., single nucleotide polymorphisms (SNPs)
[Chepelev et al., 2009].

Moreover, RNA-Seq offers a higher sensitivity and superior quantification ca-

70

pabilities across a much higher dynamic range, which improves the detection of
differentially expressed genes and transcripts [Zhao et al., 2014]. Due to these
advantages, combined with a steadily improved quality of sequencing machines
and decreasing costs, RNA-Seq is currently replacing microarrays as the method
of choice for transcriptome scale analysis of gene expression [Saliba et al., 2014].

The RNA-Seq method

Depending on the exact experimental setup and sequencing architecture, the
exact workflow of an RNA-Seq experiment can differ in several aspects. In gen-
eral, the first step of the cDNA library preparation is the isolation of RNA-
molecules using methods like poly(A)-enrichment of mRNA or rRNA-depletion,
where the latter allows to remove the highly abundant rRNA molecules while
keeping small and other non-coding RNA molecules in the sample. The library
preparation involves the fragmentation of long RNA molecules into smaller pieces
using either RNA-fragmentation by RNA-hydrolysis or nebulization, or cDNA-
fragmentation by treatment with DNase or sonication [Wang et al., 2009]. After
further, architecture- and protocol-specific preparation steps, usually involving
amplification by polymerase chain reaction (PCR), a short sequence, called read,
is obtained from each fragment in the library. The number and length of reads
generated in a single experiment vary between different sequencing architectures,
e.g., the Illumina HiSeq 2500 system1 produces up to 300 million reads of length
up to 150 bp on a single flow cell (rapid run mode).

Depending on the experimental protocol, the produced reads are either single-
end reads, where fragments are sequenced in one direction only, or paired-end
reads, with fragments being sequenced from both ends to generate a pair of reads.

Bioinformatics for RNA-Seq data analysis

Once the RNA-Seq reads have been produced, bioinformatics comes into play
to analyze and interpret the large amount of sequencing data. The subsequent
bioinformatics analysis pipeline depends on the exact experimental goals and the
availability of a reference genome for the studied organism. Throughout this
chapter, we focus on the analysis of RNA-Seq data for organisms with known
reference genome. However, in the absence of a reference genome, de novo tran-
scriptome construction methods like Velvet [Zerbino and Birney, 2008], OASES
[Schulz et al., 2012] and Trinity [Haas et al., 2013] can be applied.

In the presence of a reference genome, the first step in the analysis pipeline
is to map the RNA-Seq reads back to the reference genome. While there exist a
multitude of efficient short read mapping tools to map genomic DNA reads back

1 http://www.illumina.com

71

to the genome, e.g., [Langmead et al., 2009; Li and Durbin, 2009; Weese et al.,
2012; Siragusa et al., 2013], mapping of RNA-Seq reads is further complicated,
since reads spanning a splice junction (i.e., exon-exon junction) cannot be mapped
as a contiguous block. One approach to tackle this problem is by mapping the
reads to a “reference transcriptome” consisting of all known transcripts and by
calculating the corresponding genomic positions for each mapped read afterwards.
As this approach relies on the availability of a comprehensive genome annotation,
it does not allow for the identification of new, previously un-annotated genes or
previously unknown alternative splice variants that involve new splice junctions.
To overcome this limitation, special purpose spliced alignment tools have been
developed that allow for de novo detection of splice junctions [Jean et al., 2010;
Wang et al., 2010; Huang et al., 2011], with TopHat [Trapnell et al., 2009] being
the most popular and most intensively used tool.

After the RNA-Seq reads have been mapped to the genome, they can be used
for diverse analyses like, e,g., expression analysis of known genes or individual
known isoforms, detection of novel genes and isoforms, identification of differ-
entially expressed genes or isoforms between different samples [Robinson et al.,
2010; Hardcastle and Kelly, 2010; Trapnell et al., 2013], or identification of fusion
genes [Kim and Salzberg, 2011; Jia et al., 2013; McPherson et al., 2011].

Isoform inference and abundance estimation

Recently, several algorithmic approaches have been published that use mapped
RNA-Seq reads to estimate the individual abundances for a set of known isoforms
(abundance estimation), or to infer expressed isoforms (isoform inference), to-
gether with their respective abundances. Examples of approaches towards abun-
dance estimation of known isoforms are the two expectation maximization meth-
ods IsoEM [Nicolae et al., 2011] and RSEM [Li and Dewey, 2011], the Bayesian
inference method MISO [Katz et al., 2010], and the weighted non-negative least
squares method IsoformEx [Kim et al., 2011].

In the remainder of this chapter, we will focus on the problem of simulta-
neous isoform inference and abundance estimation. The most important pub-
lished tools to solve this problem are Cufflinks [Trapnell et al., 2010], Scripture
[Guttman et al., 2010], IsoInfer [Feng et al., 2010], IsoLasso [Li et al., 2011b],
SLIDE [Li et al., 2011a], iReckon [Mezlini et al., 2013], CLASS [Song and Florea,
2013], Traph [Tomescu et al., 2013] and MiTie [Behr et al., 2013]. These tools
differ not only in their underlying algorithmic approaches but also in the kind of
information they include into the inference process. While Cufflinks, IsoLasso,
CLASS, MiTie, and Traph are primarily designed to work without a reference
annotation, IsoInfer, SLIDE and iReckon introduce previous knowledge about

72

gene structure, i.e., exon boundaries, transcription start sites (TSSs), polyadeny-
lation sites (PASs), or known splice junctions from annotated transcripts. Also
from an algorithmic perspective, these tools follow different approaches. Cuf-
flinks performs the inference of isoforms and the estimation of their abundances
in two separate steps, where the inference is based on a minimum path cover
formulation for the so-called fragment graph and the subsequent abundance es-
timation step employs maximum likelihood estimation. Traph uses a min-cost
flow formulation and generates the set of isoforms by flow decomposition after
a min-cost flow has been computed in the first step of the algorithm. The re-
maining approaches, except CLASS, which does not estimate abundance levels2,
solve the inference and abundance estimation problem simultaneously. iReckon
implements a regularized expectation maximization approach to assign individ-
ual reads to candidate isoforms. The four approaches IsoInfer, IsoLasso, SLIDE,
and MiTie are count based methods that determine for certain genomic regions,
e.g., single exons, splice-junctions, or tuples of exons, the number of (paired-end)
reads mapped to that region. Afterwards, they aim to infer isoforms with associ-
ated abundance estimates that explain these read counts as accurately as possible
by minimizing some loss function to quantify the distance between observed and
predicted counts, e.g., the residual sum of squares. While simply minimizing the
loss function favors solutions with many predicted isoforms, IsoLasso, SLIDE,
and MiTie perform a regularized estimation to balance between the accuracy of
the predicted read counts and the number of predicted isoforms.

New algorithm

In this chapter, we will present our new algorithm CIDNE (Comprehensive Iso-
form Discovery and Abundance Estimation), which is based on a model similar
to SLIDE and IsoLasso. The major advantage of CIDNE compared to these ap-
proaches is the ability to consider an enhanced set of candidate isoforms. SLIDE
and IsoLasso both enumerate a set of candidate isoforms and use a regularized
version of least squares, known as LASSO (least absolute shrinkage and selection
operator) [Tibshirani, 1996], to infer a subset of expressed isoforms. For complex
genes containing many exons, the number of candidate transcripts can become
prohibitively large as it can theoretically grow to 2n − 1 for a gene with n exons.
Therefore, IsoLasso, SLIDE and iReckon restrict the set of candidates to those
isoforms that have all splice junctions covered by a certain number of mapped
reads. In contrast, our approach incorporates an additional step into the infer-

2 In the original publication introducing CLASS it is stated that CLASS itself does not
perform abundance estimation. However, the current implementation provides abundance es-
timates but does not document how they are derived.

73

ence process, employing a delayed column generation algorithm (see Figure 4.2).
In the first step (Phase I) we also apply the LASSO method to infer a subset
of expressed isoforms considering only candidates with all splice junctions cov-
ered by mapped reads. Starting from this solution, in the second step (Phase
II) we extend the search space to include also candidate isoforms that contain
uncovered splice junctions due to their low abundance or read mapping coverage
fluctuations. Using our new delayed column generation algorithm, we can gener-
ate new candidate isoforms that improve the solution of the first step without an
exhaustive enumeration of this potentially huge set. Hence, CIDNE can recover
expressed isoforms that are not detectable by the other tools. Since the delayed
column generation approach can only be applied to linear programs, we formulate
a piecewise-linear approximation of the quadratic least squares objective function.

4.2 Basic definitions and data structures

4.2.1 Definitions

We define a paired-end read r = (r1, r2) as a pair of two reads r1 and r2, each
having read length `r, that are separated by some insert size `s and originate
from a single RNA fragment of fragment length `f = 2`r + `s (see Figure 4.3).
In the remainder of this section, we present our model for the case of paired-end
reads, which can easily be adapted for single-end read data.

`r

`s

`f

`r

Figure 4.3: Illustration of the definitions read length (`r), fragment length (`f)

and insert size (`s) for a single fragment containing two sequenced
reads (solid lines) and the insert region between them (dotted line).

Segment

For a given set S ′ of exons, where every exon e ∈ S ′ is defined as an interval of
genomic positions, we generate the minimum cardinality set S of non-overlapping
intervals containing all genomic positions in S ′, i.e.:

∀e ∈ S ′ ∃Se ⊆ S : e =
⋃
s∈Se

s .

We refer to the elements of S as segments (see Figure 4.4).

74

Gene

We define a gene as a set S of segments, ordered according to their genomic
position such that for all 1 ≤ i < j ≤ |S|, segment si precedes segment sj in
5′ → 3′ direction (coding strand), also denoted as si < sj.

Transcript and transcript sequence

For a given gene containing n segments s1, . . . , sn, we define a transcript
t = 〈st1 , . . . , stm〉 as a sequence of segments with 1 ≤ t1 < · · · < tm ≤ n.
Please note that we will assume this property for every sequence of segments
defined throughout this chapter. The associated transcript sequence denotes the

Preprocessing

mapped reads

exon bounds

TSS/PAS

known isoforms

segment cover

splicing graph

Phase I

LASSO

expressed isoforms
+

abundance estimates

Phase II

increase search space
with delayed

column generation

new isoforms
improving

solution of Phase I

Postprocessing

isoform FPKM

pred 1 12.6

pred 2 15.3

... ...

... ...

... ...

Output

Figure 4.2: General workflow of CIDNE. Mandatory inputs (mapped RNA-
Seq reads, exon boundaries) and optional inputs (known transcripts,
TSSs and PASs) are used to generate segment covers and a splicing
graph. A restricted set of candidate isoforms is generated from the
splicing graph and a subset of expressed isoforms with estimated
abundances is computed by the LASSO method (Phase I). This
set is the input of the optional second step (Phase II), where an ex-
tended candidate set is considered using delayed column generation.
New candidates inferred in Phase II are then added to the initial
candidate set and LASSO is again applied to compute the final so-
lution. After postprocessing, including re-estimation of abundances
and filtering, a list of isoforms with abundance estimates is returned.

75

exons

segments

(a) (b) (c) (d)

Figure 4.4: Examples of exons and generated segments. Exons and segments
are aligned according to their genomic position. (a) Only a single
segment is generated. (b) Top exon has two variants with alterna-
tive 3’ boundaries, resulting in three segments. (c) Top exon has
one variant with alternative 3’ boundary and one variant with al-
ternative 5’ boundary, also resulting in three segments. (d) Three
segments are generated due to an intron retention.

nucleotide sequence obtained by concatenation of the genomic sequence intervals
st1 , . . . , stm .

Segment cover

Given the set of segments S and reads mapped to the genome, we define a segment
cover c = (c′, c′′, b) as a triple, where c′ and c′′ are sequences of segments and
segment cover count b is the number of mapped paired-end readsmatching (c′, c′′).
Given a mapped read r′ aligned to genomic positions A(r′) = a1 < · · · < ak,
we say r′ matches a sequence of segments u = 〈su1 , . . . , sum〉 if and only if the
segments in u contain all aligned positions, each segment at least one, and if all
gaps in the alignment are consistent with all segment boundaries in u, i.e.,

A(r) ∩ sui 6= ∅, 1 ≤ i ≤ m and A(r′) = [a1 . . ak] ∩
⋃

1≤i≤m
sui .

Analogously, we say a mapped paired-end read r = (r1, r2) matches (c′, c′′) if r1

matches c′ and r2 matches c′′ (see Figure 4.5). With a slight abuse of notation, in
this case we will also say that r matches segment cover c. To avoid overcounting
of multiple mapped reads, every paired-end read matching k different segment
covers contributes a value of 1/k to each of the corresponding segment cover
counts.

76

s1 s2 s3 s4 s5

Figure 4.5: Example of paired-end reads mapped onto segments.
Solid lines denote splice junction spanning reads and dot-
ted lines connect paired reads originating from the same
fragment. The associated segment covers are given by:
(〈s1〉, 〈s1〉, 2), (〈s1, s2〉, 〈s2〉, 1), (〈s1, s3〉, 〈s3, s5〉, 1), (〈s2〉, 〈s2〉, 1),
(〈s2〉, 〈s2, s3〉, 1), (〈s2, s3〉, 〈s3, s4〉, 1), (〈s3, s4〉, 〈s4〉), 1),
(〈s3〉, 〈s5〉, 1), and (〈s5〉, 〈s5〉, 1). The segment covers imply
an alternative splicing event with skipping of segment s2.

Segment cover length

Given a transcript t, segment cover c = (c′, c′′, b) and fragment length `f , we define
the segment cover length `t,c(`f) as the number of possible starting positions for a
fragment originating from transcript t, such that the associated mapped paired-
end read matches (c′, c′′). Hence, `t,c(`f) denotes the number of possible starting
positions for a fragment in t in order to contribute to count b. If t does not
contain c′ or c′′ as substrings, `t,c(`f) has obviously value zero. Otherwise, we
compute `t,c(`f) in two steps: First, for a single read r of length `r, we calculate
the leftmost and rightmost starting positions, lpos and rpos , of r in the transcript
sequence of t such that r matches c′ (analog for c′′). Let sl be the first segment in
c′, referred to as first(c′), and sk be the last segment in c′, referred to as last(c′).
Further, let sl and sk span positions [l1 . . l2] and [k1 . . k2] in the transcript
sequence of t respectively. Now, we can compute lpos and rpos as follows (see
also Figure 4.6):

lpos = max{l1, k1 − `r + 1} ,
rpos = min{l2, k2 − `r + 1} .

Given the leftmost and rightmost starting positions (lpos1, rpos1) for c′ and
(lpos2, rpos2) for c′′, we can now compute `t,c(`f). We define ∆in and ∆out as
follows (see Figure 4.7):

∆in := lpos2 − rpos1 ,

∆out := rpos2 − lpos1 .

77

l1 l2 k1 k2

.

l1 l2 k1 k2

.

l1 l2 k1 k2

.

lpos rpos

. . .

. . .

. . .

lpos rpos

lpos rpos

sl sk

sl sk

sl sk

Figure 4.6: Example scenarios for computation of values lpos and rpos for a
given transcript containing a sequence of segments 〈sl, . . . , sk〉 with
segments sl and sk spanning positions [l1 . . l2] and [k1 . . k2] of the
transcript sequence.

lpos1 rpos1 lpos2 rpos2

∆out

∆in

.

Figure 4.7: Illustration of values ∆in and ∆out for a segment cover c = (c′, c′′, b)

with first and last starting positions (lpos1, rpos1) and (lpos2, rpos2)

for a read to match c′ and c′′ respectively.

Using the identity `s = `f − 2`r, we finally obtain

`t,c(`
f) = max{0,min{rpos1−lpos1, rpos2−lpos2, `

f−`r−∆in, ∆out+`r−`f}+1} .

Adjusted segment cover length

For experimental sequencing data, the fragment length is not constant but is
assumed to follow a certain fragment length distribution. Therefore, for a given
segment cover c, transcript t and fragment length distribution with probability

78

mass function D, we compute the adjusted segment cover length ¯̀
t,c, as follows:

¯̀
t,c :=

`fub∑
f=`flb

D(f)`t,c(f) , (4.1)

where `flb and `fub are the minimum and maximum considered fragment lengths
respectively. Hence, ¯̀

t,c can be interpreted as the expected segment cover length
for the given fragment length distribution.

Splicing graph

For the task of isoform inference we require a compact data structure to represent
all candidate isoforms for a single gene. The splicing graph, as introduced by
Heber et al. [2002], offers such a representation by means of a graph in which
every candidate isoform corresponds to a unique path. Given the set of segments
S for a single gene, we construct the splicing graph GS = (V,E) by generating
a vertex vi ∈ V for every segment si ∈ S (see Figure 4.5). Further, we add two
additional vertices va and vb to represent artificial start and end segments. For
our algorithm, we construct the set of directed edges according to the following
rules: Given the set C of segment covers, we add a directed edge (vi, vj) to E if
i < j and at least one of the following conditions is fulfilled:

(a) si = [pi . . qi], sj = [pj . . qj] and pj − qi = 1.

(b) ∃(c′, c′′, b) ∈ C : dbe ≥ γ ∧ (〈si, sj〉 � c′ ∨ 〈si, sj〉 � c′′).

(c) j = i+ 1 ∧ ∃(c′, c′′, b) ∈ C : dbe ≥ γ ∧ si = last(c′) ∧ sj = first(c′′).

where threshold parameter γ (default: γ = 1) denotes a lower bound for the
number of mapped reads required to infer a splice junction edge in the splicing
graph. Case (a) implies an edge between vertices corresponding to segments that
are not separated by an intron and hence do not imply a splice junction. Case (b)
implies an edge if a sufficient number of reads was mapped across the associated
splice junction. Finally, case (c) implies an edge between vertices corresponding
to consecutive segments si and si+1, if the associated splice junction is induced by
enclosing paired-end reads. In the remainder, we will refer to all splice junctions
(si, sj) that fulfill either case (b) or (c) as covered splice junctions.

Every valid candidate isoform cannot start or end at arbitrary segments, but
instead, it must start at a potential TSS and end at a potential PAS. Therefore,
we define two sets T SS,PAS ⊆ S, containing all segments corresponding to
a potential TSS and PAS respectively. We create these sets either based on
annotated TSSs and PASs, additional data obtained from experiments like CAGE

79

va v1 v2 v3 v4 v5 vb

Figure 4.8: Splicing graph generated for the segment covers shown in Fig-
ure 4.5. The graph encodes four transcripts: t1 = 〈s1, s2, s3, s4〉,
t2 = 〈s1, s2, s3, s5〉, t3 = 〈s1, s3, s4〉 and t4 = 〈s1, s3, s5〉. However,
the paired end information in the segment counts implies the exis-
tence of t4.

and polyadenylation site sequencing, or ab initio, based on the mapped reads.
When solely based on mapped reads, we follow the same conservative strategy
like CLASS and IsoLasso and consider only maximal candidate isoforms that are
not a substring of any other candidate. Hence, we insert a segment si into set
T SS (resp. PAS) if vertex vi has no incoming (resp. outgoing) edge. According
to this strategy, isoforms starting or ending within existing exons of expressed
isoforms can actually not be detected. However, to overcome this limitation,
external methods to identify potential TSSs and PASs based on read mapping
coverage [Behr et al., 2013] can be applied prior to our algorithm.

According to the definition of sets T SS and PAS, for every candidate isoform
t = 〈si, . . . , sj〉 we require si ∈ T SS and sj ∈ PAS. Hence, we add the following
directed edges to the splicing graph:

(va, vi),∀si ∈ T SS and (vi, v
b),∀si ∈ PAS.

Assuming that for the set of expressed isoforms every splice junction is covered
by at least γ mapped reads and all true TSSs and PASs are contained in the
sets T SS and PAS respectively, then every expressed isoform corresponds to a
unique va-vb path in GS. On the other hand, if some expressed transcript contains
an uncovered splice junction, then this transcript cannot be constructed as a va-
vb path in GS. From this it follows that we can generate the set of all maximal
candidate isoforms that contain only covered splice junctions by enumerating all
va-vb paths in GS.

Faux segment cover

In addition to segment covers generated from observed read mappings, we also
add faux segment covers to the model, which correspond to segment combinations
not matched by any mapped paired-end read. These additional segment covers

80

provide valuable information that can help to discriminate between candidates
corresponding to true expressed isoforms and potential false positives. In our cur-
rent implementation, we generate a faux segment cover (c′, c′′, 0) if the following
three conditions are fulfilled:

1. ∀(c′i, c′′i , bi) ∈ C : c′i 6= c′ ∨ c′′i 6= c′′.

2. |c′| ≤ 2 ∧ |c′′| ≤ 2.

3. GS contains a path 〈vi, . . . , vj〉 with si = first(c′) and sj = last(c′′).

Using above definitions, in the following two sections we present our algorith-
mic approach to the isoform inference and abundance estimation problem.

4.3 Core mathematical model

Given a set of candidate isoforms T and segment covers C, the central idea of
our isoform inference algorithm is to compute an assignment of non-negative
abundance estimates to all candidate isoforms in the set T that yields the best
explanation of the segment cover counts.

For a given RNA molecule of length n, we refer to the nucleotides at positions
[1 . . n− `+ 1] as potential starting points for a sequenced fragment of length `.
Considering the complete set of RNA molecules in the analyzed sample, we as-
sume that every potential starting point in this set has the same probability to
be selected as starting point of a sequenced fragment. Based on this sampling
uniformity assumption, the expected number of sequenced fragments originating
from a particular isoform t and matching a given segment cover c is proportional
to ¯̀

t,c and the abundance of t.
Our model quantifies isoform abundance in expected fragments per base

(FPB), which is defined as the expected number of mapped fragments per base
of transcript sequence. Hence, given the estimated abundance ft of isoform t, the
expected number of mapped fragments originating from t that match segment
cover c is given by ft ¯̀t,c. We denote by supp(T, c) the subset of candidates in T
that support segment cover c, i.e., supp(T, c) := {t ∈ T | ¯̀

t,c > 0}. Finally, the
expected number of fragments matching segment cover c is given by∑

t∈supp(T,c)

ft ¯̀t,c .

4.3.1 Linear least squares formulation

The core of our algorithmic approach to infer expressed isoforms and estimate
their abundance is a linear least squares formulation, with segment cover counts

81

as observations and isoform abundances as unknown parameters to be estimated.
Accordingly, the problem has the following form:

min
ft:t∈T

∑
ci=(c′i,c

′′
i ,bi):

ci∈C

(
bi −

∑
t∈supp(T,ci)

ft ¯̀t,ci

)2

, ft ≥ 0 ∀t ∈ T .

To account for significant differences in segment cover lengths and associated
possible differences in the reliability of observed segment cover counts, we use
a weighted least squares formulation, similar to IsoInfer [Feng et al., 2010]. For
linear regression with unequal variances, the best linear unbiased estimator is ob-
tained if the weight for each observation is reciprocal to its variance. As proposed
by Feng et al., we use the observed segment cover count (bi) as estimator for the
variance of observation bi. Since the term (1/bi) is undefined for faux covers, we
use a lower bound of ε (default: ε = 1) for the variance estimate. Hence, in our
formulation we aim at minimizing the following term:

∑
ci=(c′i,c

′′
i ,bi):

ci∈C

(
bi −

∑
t∈supp(T,ci)

ft ¯̀t,ci√
max{ε, bi}

)2

, ft ≥ 0 ∀t ∈ T . (4.2)

4.3.2 Regularized linear least squares formulation

Depending on the structure of the splicing graph, the number of candidate iso-
forms can be very large compared to the number of segment covers. This can
lead to unidentifiable instances without unique optimal solution or to overfitting
by prediction of many isoforms with non-zero estimated abundances. Therefore,
similar to IsoLasso, SLIDE, iReckon, and MiTie, we apply regularization to bal-
ance between the accuracy of predicted segment cover counts and the number
of isoforms with non-zero estimated abundance. While the most desirable ap-
proach would be the application of a L0-regularization, which directly penalizes
the number of isoforms with non-zero estimated abundance, its non-convexity
renders the associated optimization problem intractable for complex genes with
many of candidate isoforms. Therefore, we adopt the approach used by IsoLasso
and SLIDE and apply the LASSO method [Tibshirani, 1996], which performs
L1-regularization by adding the sum of estimated abundances to the objective
function as a penalty. Finally, our core optimization problem is given by

min
ft:t∈T

∑
ci=(c′i,c

′′
i ,bi):

ci∈C

(
bi −

∑
t∈supp(T,ci)

ft ¯̀t,ci√
max{ε, bi}

)2

+ λ
∑
t∈T

ft , ft ≥ 0 ∀t ∈ T , (4.3)

with regularization parameter λ to control the sparseness of the solution. Ob-
viously, the isoform inference accuracy depends crucially on a good choice of

82

the regularization parameter λ, as too small choices of λ will likely cause many
false positive predicted isoforms. On the other hand, a too large choice of λ will
drive many abundance estimates towards zero and generate very sparse solutions,
possibly excluding correct isoforms. In Section 4.5 we briefly discuss the model
selection strategy used in our implementation.

4.4 A delayed column generation approach

To enhance the sensitivity of our algorithm, we add an additional step to recover
isoforms with uncovered splice junctions that cannot be included into the can-
didate set of the regularized least squares formulation due to their potentially
very large number. Therefore, we apply delayed column generation to identify
new candidate isoforms that improve the optimal solution of the regularized least
squares problem without exhaustive enumeration of all possible candidates. As
the delayed column generation method is limited to linear programming, we first
formulate a piecewise linear approximation of the quadratic least squares objec-
tive function, as outlined in Section 4.4.1. The generation of new isoforms is then
accomplished by means of an ILP formulation presented in Section 4.4.2.

4.4.1 Piecewise linear approximation of regularized linear
least squares formulation

Before we can apply the delayed column generation method, we must formulate
a linear program that is almost equivalent to the quadratic optimization prob-
lem (4.3). First, we rewrite (4.3) by introducing a slack error variable ei for every
segment cover ci ∈ C, leading to the following quadratic problem:

min
∑

(c′i,c
′′
i ,bi)∈C

(
ei√

max{ε, bi}

)2

+ λ
∑
t∈T

ft

subject to
∑

t∈supp(T,ci)

ft ¯̀t,ci + ei = bi ∀ci = (c′i, c
′′
i , bi) : ci ∈ C

(4.4)
ft ∈ R+ ∀t ∈ T
ei ∈ R ∀ci ∈ C

Next, we approximate the quadratic objective function as follows: For every
segment cover ci, we introduce a variable ẽi to act as a proxy for the quadratic
error e2

i . Further, we define a set of supporting points pi1, . . . , pik ∈ R. For every

83

supporting point p, we compute the gradient of the approximated function, i.e.,
g(x) = x2, and approximate g(x) by the tangent line of g at point p, defined as

gp(x) = g(p) + g′(p)(x− p) = p2 + 2p(x− p) .

Due to the convexity of the approximated quadratic function, each of the linear
approximations gpi1(x), . . . , gp

i
k(x) constitutes a lower bound to g(x). Hence, we

select the tightest bound for proxy variable ẽi by enforcing ẽi ≥ max1≤j≤k g
pij(ei).

This leads to the following linear programming approximation of (4.3):

min
∑

(c′i,c
′′
i ,bi)∈C

(
ẽi

max{ε, bi}

)
+λ
∑
t∈T

ft

subject to
∑

t∈supp(T,ci)

ft ¯̀t,ci + ei = bi ∀ci = (c′i, c
′′
i , bi) : ci ∈ C

2pijei − ẽi ≤ (pij)
2 1 ≤ i ≤ |C|, 1 ≤ j ≤ k

(4.5)
ft ∈ R+ ∀t ∈ T
ei ∈ R ∀ci ∈ C
ẽi ∈ R+ ∀ci ∈ C

The approximation error of gp(x) is given by (x − p)2. From this it fol-
lows that, for a predefined interval [al, ar] of values for (ei/

√
max{ε, bi}), we

can approximate the term (ei/
√

max{ε, bi})2 with a maximum error of µ > 0

by defining k = d(ar − al)/(2
√
µmax{ε, bi})e supporting points p1, . . . , pk, with

pj = al + (2j − 1)
√
µmax{ε, bi}

4.4.2 Pricing ILP for piecewise linear approximation

Given a solution of the piecewise linear approximation (4.5) with associated vector
of Simplex multipliers ρ, the pricing problem consists in the identification of a
candidate isoform t with negative reduced cost c̄t = λ − ρ>At, where At is
the column vector containing the coefficients of variable ft for all constraints of
formulation (4.5). Let the constraint matrix of (4.5) be ordered in a way that
the first |C| rows correspond to the equality constraints for all segment covers
c1, . . . , c|C|. It follows that the i-th element of At, with i ≤ |C|, has value ¯̀

t,ci , if
t ∈ supp(T, ci) and zero otherwise. All remaining elements of At are zero. Hence,
to solve the pricing problem given the simplex multipliers ρ1, . . . , ρ|C| for the first
|C| constraints, we must either identify a candidate isoform t with the following
property: ∑

ci∈C:
t∈supp(T,ci)

ρi ¯̀t,ci > λ ,

84

or prove that no such candidate exists. We will solve this problem by means of
an ILP formulation to compute

max
t∈T

∑
ci∈C:

t∈supp(T,ci)

ρi ¯̀t,ci ,

without exhaustively enumerating the complete set T . If the optimal cost of this
pricing ILP is at most equal to λ, then it follows that the current solution of
LP (4.5) is optimal and we can terminate.

Graph-theoretical formulation

Before we present our ILP formulation for the pricing problem, we reformulate
it as a graph-theoretical problem based on a hypergraph HS = (V H , EH). Like
the splicing graph, HS contains a vertex vi ∈ V H for every segment si ∈ S.
Further, HS contains a hyperedge ei ∈ EH for every segment cover (c′i, c

′′
i , bi) ∈ C.

Every hyperedge ei ∈ EH contains the vertices for all segments in c′i and c′′i , i.e.,
ei = {vj ∈ V H | sj ∈ c′i ∨ sj ∈ c′′i }.

In order to introduce edge weights for HS, we first define V̄ (ei) as the set of
vertices whose corresponding segments are located between the last segment in
c′i and the first segment in c′′i , i.e.:

V̄ (ei) := {vk ∈ V H | last(c′i) < sk < first(c′′i)} .
Using this definition, we assign a weight function ωei : P(V̄ (ei)) 7→ R to each
edge ei ∈ EH . For a set of vertices V̄ ′ ⊆ V̄ (ei), the associated weight ωei(V̄ ′)
is given by ρi ¯̀p,ci with p = c′ · α · c′′, where α defines the sequence of segments
corresponding to the vertices in V̄ ′. Further, we define ξ(ei) as the set of vertices
with associated segments being spanned by either c′i or c′′i , i.e.:

ξ(ei) := {vk ∈ V H | first(c′i) ≤ sk ≤ last(c′i) ∨ first(c′′i) ≤ sk ≤ last(c′′i)} .
According to the construction of EH , we can now formulate the pricing prob-

lem as a variant of the maximum weight induced subgraph problem, which con-
sists in identifying a subset V ′ ⊆ V H that maximizes the total weight of all edges
strictly induced by V ′. We define the set Eind(V ′, EH) of strictly induced edges
by some subset V ′ as follows:

Eind(V ′, EH) := {e ∈ EH | ∀v ∈ e : v ∈ V ′ ∧ ∀v ∈ ξ(e) \ e : v /∈ V ′} .
Hence, edge ei ∈ EH is strictly induced by V ′ if the sequence of segments corre-
sponding to all vertices in V ′ contains c′i and c′′i as substrings. Finally, the weight
of selected subset V ′ is given by∑

e∈Eind(V ′,EH)

ωe(V
′ ∩ V̄ (e)) .

85

We capture this problem by the following ILP formulation: For every vertex
vi ∈ V H , we introduce a binary variable xi, which has value one if and only if
vertex vi is contained in the selected subset V ′. In addition, for every pair of edge
e ∈ EH and subset of vertices V̄ ′j ⊆ V̄ (e), we introduce a binary variable ye,j,
which has value one if and only if the set of selected vertices contains every vertex
in V̄ ′j (constraint (4.9)) and strictly induces edge e (constraints (4.8) and (4.10)).
The associated weight ωe,j is given by ωe(V̄ ′j).

max
∑

e∈EH ,V̄ ′j⊆V̄ (e)

ωe,jye,j (4.6)

subject to
∑

V̄ ′j⊆V̄ (e)

ye,j ≤ 1 ∀e ∈ EH (4.7)

ye,j ≥
∑

vi∈e∪V̄ ′j

xi +
∑

vi∈V̄ (e)\V̄ ′j

(1− xi) +
∑

vi∈ξ(e)\e
(1− xi)+

− |V̄ (e)| − |ξ(e)|+ 1 ∀e ∈ EH , V̄ ′j ⊆ V̄ (e) (4.8)

ye,j ≤ xi ∀e ∈ EH , V̄ ′j ⊆ V̄ (e), vi ∈ e ∪ V̄ ′j (4.9)

ye,j ≤ 1− xi ∀e ∈ EH , V̄ ′j ⊆ V̄ (e), (4.10)

vi ∈ {(ξ(e) \ e) ∪ (V̄ (e) \ V̄ ′j)}

xi ∈ {0, 1} ∀vi ∈ V H (4.11)

ye,j ∈ {0, 1} ∀e ∈ EH , V̄ ′j ⊆ V̄ (e) (4.12)

Exon compatibility

To ensure that the set of selected segments induces only exons that are also
present in the input set S ′, we add a binary variable zj for every exon s′j ∈ S ′

to indicate whether exon s′j is induced by the x-variables. We connect segment
variables to exon variables by means of constraint (4.13).

xi =
∑
s′j⊇si

zj 1 ≤ i ≤ |S| (4.13)

According to this constraint, every solution fulfills the following three properties:
First, whenever some segment si is selected, exactly one exon s′j containing seg-
ment si (i.e., si ⊆ s′j) is also selected. Second, whenever some exon s′j is selected,
all contained segments are also selected. Finally, from every pair of overlapping,
hence incompatible exons, at most one is selected, which avoids the creation of
novel, expanded exons. Taken together, these three properties ensure that every
solution corresponds to an isoform containing only exons from the input set S ′.

86

TSS and PAS compatibility

As the selected set of segments is supposed to form a valid isoform, we must
ensure that it starts at some segment si ∈ T SS and ends at some segment
sj ∈ PAS. Therefore, we introduce binary variables ss i and es i to indicate
whether segment si is selected as start or end segment of the generated isoform.
Using these variables, we formulate constraints (4.14)-(4.19) to ensure that every
solution selects exactly one segment from set T SS as start segment and exactly
one segment from set PAS as end segment. Finally, we use constraints (4.20)
and (4.21) to ensure that no selected segment precedes the selected start segment
or follows the selected end segment.

∑
vi∈V H

ss i = 1 (4.14)

∑
vi∈V H

es i = 1 (4.15)

ss i = 0 ∀si /∈ T SS (4.16)

es i = 0 ∀si /∈ PAS (4.17)

xi ≥ ss i ∀vi ∈ V H (4.18)

xi ≥ es i ∀vi ∈ V H (4.19)

xi ≤ 1−
|V |∑

j=i+1

ssj ∀vi ∈ V H (4.20)

xi ≤ 1−
i−1∑
j=1

esj ∀vi ∈ V H (4.21)

Enforcing novel explanations

In order to prevent the inference of new isoforms that are only used to balance
coverage fluctuations, we require that new isoforms can explain segment covers
that are not explained by any transcript in the restricted set T ′ considered in the
first step (Phase I). We denote this set of initially unexplained segment covers by
C̃ := {c ∈ C | supp(T ′, c) = ∅}. To reduce the impact of spurious read mappings,
we also enforce a lower bound kc on the total count of newly explained segment
covers. Hence, we add the following constraint to the pricing ILP:∑

(c′i,c
′′
i ,bi)∈C̃

bi
∑

V̄ ′j⊆V̄ (ei)

yei,j ≥ kc (4.22)

87

Splicing graph compatibility

Finally, we add constraints to restrict the number of uncovered splice junctions
contained in the predicted isoform to a given number ke. For every pair of vertices
vi, vj ∈ V H with i < j, we add a binary variable ui,j, which has value one if
the selected vertices induce an edge (vi, vj) in the splicing graph GS = (V,E).
Let Enew be a set of potential new edges, that are not contained in GS, i.e.,
Enew ⊆ V × V and Enew ∩ E = ∅. We add constraints (4.23) and (4.24) to the
pricing ILP to allow for the simultaneous selection of up to ke edges in Enew.
In addition, we add constraint (4.25) to ensure that every edge implied by the
selected vertices is either contained in the splicing graph or belongs to the set
Enew.

xi + xj −
∑
i<k<j

xk − ui,j ≤ 1 1 ≤ i < j ≤ |S|, (vi, vj) /∈ E (4.23)

∑
(i,j)∈Enew

ui,j ≤ ke (4.24)

ui,j = 0 1 ≤ i < j ≤ |S|, (vi, vj) /∈ E ∪ Enew (4.25)

ui,j ∈ {0, 1} 1 ≤ i < j ≤ |S|, (vi, vj) /∈ E (4.26)

The idea behind constraint (4.23) is that whenever two vertices vi and vj with
i < j are selected and not connected by an edge in GS, then either a vertex vk
with i < k < j is also selected or a new edge (vi, vj) ∈ Enew is induced.

Space of y-variables

For every segment cover c = (c′, c′′, b) ∈ C, the pricing ILP contains a set of
y-variables, each corresponding to a sequence of segments p = c′ · α · c′′, with
possibly empty substring α. Obviously, the worst case scenario for a gene with n
segments occurs if c spans the complete gene, i.e., last(c′) = s1 and first(c′′) = sn.
This scenario could give rise to the generation of up to 2n−2 y-variables, rendering
the delayed column generation approach impractical for genes containing many
segments. We avoid the generation of the complete set by adding a y-variable only
if the adjusted segment cover length ¯̀

p,c for the associated sequence of segments
p exceeds some predefined threshold. This strategy is equivalent to setting all
coefficients for isoform variables in the complete constraint matrix of (4.5) that
are below this threshold to zero. However, we need to apply some filtering strategy
so that we can avoid the computation of ¯̀

p,c for each of the up to 2|n|−2 candidate
substrings α to decide whether the corresponding y-variable must be added to
the ILP.

According to the definition of the adjusted segment cover length (4.1), we only

88

have to consider y-variables with

max
`flb≤f≤`

f
ub

{`p,c(f)} > 0 .

Therefore, we require

max
`flb≤`≤`

f
ub

{∆out + `r − `+ 1} = ∆out + `r − `flb + 1 > 0 ,

and
max

`flb≤`≤`
f
ub

{`− `r −∆in + 1} = `fub − `r −∆in + 1 > 0 .

Considering sequence p, assume that c′ spans positions [l1 . . l2] of the associ-
ated transcript sequence with left- and rightmost starting positions (lpos1, rpos1)

and c′′ spans positions [k1 . . k2] with left- and rightmost starting positions
(lpos2, rpos2). We define the terms ∆l

1,∆
l
2,∆

k
1 and ∆k

2 as follows:

∆l
1 := l2 − lpos1, ∆l

2 := l2 − rpos1, ∆k
1 := lpos2 − k1 and ∆k

2 := rpos2 − k1.

Note that these values are independent of substring α and can be computed solely
from c′ and c′′. Let `α denote the transcript sequence length of α. Since

∆out = ∆l
1 + `α + ∆k

2 ,

and
∆in = ∆l

2 + `α + ∆k
1 ,

we only consider substrings α with

`α > `flb − `r − 1−∆l
1 −∆k

2 ,

and
`α < `fub − `r −∆l

2 −∆k
1 + 1 ,

which we generate by means of a recursive traversal in GS combined with pruning.
We further restrict the generation of y-variables to sequences of segments that
induce at most ky new edges, which must originate from the set Enew.

4.5 Model selection

We solve the regularized least squares problem by means of an efficient path-
wise coordinate descent algorithm proposed by Friedman et al. [2007]. This

89

algorithm solves the least squares problem for a sequence of decreasing values of
the regularization parameter λ (regularization path), where it exploits solutions
for previous λ as warm-starts. For more details please refer to Friedman et al.
[2007].

After the solutions for the complete path of values for λ have been computed,
we select one with maximum adjusted coefficient of determination R̄2, defined as

R̄2 = R2 − (1−R2)
|T ∗|

|C| − |T ∗| − 1
,

where T ∗ is the set of candidate isoforms with non-zero estimated abundance and
R2 is the coefficient of determination, calculated as follows:

R2 = 1−
∑

(c′i,c
′′
i ,bi)∈C (bi − b̂i)2∑

(c′i,c
′′
i ,bi)∈C (bi − b̄)2

, b̄ =
1

|C|
∑

(c′i,c
′′
i ,bi)∈C

bi ,

with b̂i denoting the predicted count for segment cover ci according to the esti-
mated isoform abundances.

4.6 Post-processing

Given the final set of inferred isoforms T ∗ = t∗1, . . . , t
∗
m with non-zero predicted

abundances ft∗1 , . . . , ft∗m , we perform the following post processing steps: First, we
re-estimate abundances by solving the un-regularized least squares problem for
the set T ∗ in order to remove side effects caused by the L1 penalty. Afterwards,
we use the re-estimated abundances f ′t∗1 , . . . , f

′
t∗m

as weights to compute a final
assignment of mapped reads to isoforms using the following formula:

r(t∗j) =
∑

ci=(c′i,c
′′
i ,bi):

t∗j∈supp(T ∗,ci)

bi ·
¯̀
t∗j ,cif

′
t∗j∑

t∗k∈supp(T ∗,ci)

¯̀
t∗k,cif

′
t∗k

,

where r(t∗j) is the number of reads assigned to isoform t∗j . This assignment of
reads to isoforms corrects overestimation or underestimation of the total number
of mapped reads for the whole gene due to non-uniform read mapping coverage.
For all isoforms t∗j ∈ T ∗ with r(t∗j) ≥ kr (default: kr = 10), we convert r(t∗j) into
unit FPKM (Fragments Per Kilobase of transcript per Million mapped fragments)
and finally return all isoforms whose estimated abundance in FPKM is at least
kp-percent (default: kp = 10) of the maximal estimated abundance for the same
gene.

90

4.7 Experimental results

We implemented CIDNE in C++ using CPLEX (version 12.4) [IBM, 2011] as
solver for the pricing ILP and the piecewise linear approximation LP. In addition,
we used the glmnet software by Friedman et al. [2010] for efficient model selection
as outlined in Section 4.5 and the SeqAn library [Döring et al., 2008] for efficient
handling of read mapping and genome annotation data.

We compared the performance of our implementation to state-of-the-art tools
in terms of recall, precision, and abundance estimation on transcript level with re-
spect to a reference set, referred to as ground truth, containing the set of expressed
(true) transcripts. In the absence of gold standard sets for RNA-Seq libraries and
annotated expressed transcripts, we performed the analysis on realistic simulated
RNA-Seq datasets, which we generated by means of the FluxSimulator software
[Griebel et al., 2012], which has already been used for benchmarking in numerous
studies. We scored a true transcript as recovered if the set of induced exon-intron
boundaries exactly matches those of a predicted transcript. A true single-exon
transcript was scored as recovered if it overlapped with a predicted single-exon
transcript. Every predicted transcript was matched to at most one true transcript
and vice versa. We used the following standard definitions for recall, precision
and F-score:

recall :=
#recovered transcripts

#true transcripts
, precision :=

#recovered transcripts
#predicted transcripts

,

F-score =
2 · precision · recall
precision + recall

.

Whole genome study

For our first benchmark, we simulated a whole genome scale RNA-Seq experiment,
using the FluxSimulator software and the human UCSC-known-gene annotation,
containing ∼78.000 known transcripts (Feb. (GRCh37/hg19)). After randomly
assigning expression levels to all transcripts in the annotation, following a realis-
tic distribution, the tool simulates individual stages of an RNA-Seq experiment
to produce a certain number of single-end or paired-end reads. We simulated
experiments with 40 million paired-end reads of length 75 bp and 100 bp without
sequencing errors, GC-bias, and poly(A)-tails. Fragment lengths were simulated
according to a normal distribution N(250, 25) for the 75 bp reads and N(300, 30)

for the 100 bp reads respectively. For each set of paired-end reads, we used
TopHat [Trapnell et al., 2009] to map the reads to the set of known transcripts,
allowing no errors in the alignment. The ground truth contained the set of all
known transcripts for which at least one paired-end read has been produced.

91

Similar to SLIDE, the current implementation of CIDNE is designed to work
with provided exon boundary information and does not infer exon boundaries
from the read mapping data. As current versions of Cufflinks3 and CLASS4

cannot be supplied with known exon boundary data (unless providing transcript
annotations), we ran both tools without any input but the mapped reads, while
we provided IsoLasso5, SLIDE6 and CIDNE with the set of exon boundaries for
all known transcripts. Since the current implementations of CIDNE and IsoLasso
do not estimate the fragment length distribution parameters and SLIDE did not
compute reasonable estimates, we used the parameters estimated by Cufflinks for
all three tools. We did not include iReckon into this first benchmark as it requires
all known TSSs and PASs, which, as we believe, would be an unfair advantage.

Figure 4.9 displays the recall, precision and F-score for each tool. For the
75 bp dataset, CIDNE achieved the highest recall value (∼55.3%), which was∼10

percentage points higher than for Cufflinks (∼45.9%) and CLASS (∼45.5%), and
more than 12 percentage points higher than for IsoLasso (∼41.7%) and SLIDE
(∼43.1%). We obtained similar results for the 100 bp dataset, except that the
recall achieved by CLASS was ∼3 percentage points higher than for Cufflinks. In
terms of precision, the values obtained for CIDNE (∼72.4%), Cufflinks (∼71.4%)
and CLASS (∼69.0%) were very similar for the 75 bp dataset, and higher than for
IsoLasso (∼65.3%) and especially SLIDE (∼36.9%). Interestingly, for the 100 bp
dataset the precision of SLIDE, Cufflinks and CLASS was decreased by ∼9 to ∼5

percentage points compared to the 75 bp dataset, while we observed no notable
changes for IsoLasso and CIDNE.

Further, we analyzed the effect of the transcript abundance on the inference
performance for each tool. We removed all transcripts with very low simulated
abundance (<0.1 FPKM) from the set and split the remaining transcripts into
three groups: Low, Med and High, where Low is the 20% fraction with lowest sim-
ulated abundance (in FPKM), High is the 5% fraction with the highest simulated
abundance, and Med contains the remaining 75%. For each of the three sets we
evaluated the recall separately as depicted in Figure 4.9. On the 75 bp dataset,
CIDNE and SLIDE recovered almost twice as many lowly expressed isoforms
(both ∼30%) as Cufflinks (∼16.1%), whereas CLASS and IsoLasso recovered only
∼5.5% and ∼3.1% respectively. On each of the three subsets CIDNE achieved
the highest recall among all four tools. For the 100 bp dataset we obtained similar
overall results.

3 Cufflinks version 2.2.1
4 CLASS version 1.0.6
5 IsoLasso version 2.6.1
6 Adapted python script upon consultation with author.

92

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

Cufflinks IsoLasso CLASS SLIDE CIDNE

recall
precision

F-score

(a) 75 bp

 0

 0.2

 0.4

 0.6

 0.8

 1

Cufflinks IsoLasso CLASS SLIDE CIDNE

re
c
a
ll

Total
High
Med
Low

(b) 75 bp by abundance

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

Cufflinks IsoLasso CLASS SLIDE CIDNE

recall
precision

F-score

(c) 100 bp

 0

 0.2

 0.4

 0.6

 0.8

 1

Cufflinks IsoLasso CLASS SLIDE CIDNE

re
c
a
ll

Total

High

Med

Low

(d) 100 bp by abundance

Figure 4.9: Recall and precision on two simulated RNA-Seq experiments with:
(a),(b) 75 bp paired-end reads and (c),(d) 100 bp paired-end reads.
Plots (a) and (c) display recall, precision and F-score for the com-
plete set of expressed transcripts. Plots (b) and (d) visualize the
recall for all transcripts with simulated FPKM above 0.1 (Total),
which are separated into three groups (Low, Med, High) according
to their simulated FPKM.

Benchmark with partial annotation

As the average number of expressed isoforms per gene in the previous benchmark
was relatively low (∼1.6), we performed a second simulation study on a selected
set of genes containing between 2 and 8 annotated isoforms. In this study we
analyzed the ability of CIDNE, Cufflinks and iReckon7 to infer new isoforms
when provided with an annotation of known transcripts, a use case supported by
all three tools. This scenario is particularly interesting for practical application
of these tools, as for many studied organisms at least a partial annotation of
their transcriptome already exists, which can aid the identification process. For
every gene considered in this benchmark, we removed at least one and at most

7 iReckon version 1.0.8

93

50% of the known isoforms from the annotation, while ensuring that the reduced
annotation still contained all exons present in the complete set of known isoforms.
Our final benchmark set contained 1440 genes from chromosomes 1 and 2, with a
total of ∼6300 transcripts of which we included ∼65% in the annotation provided
to each tool (Annot). With the remaining ∼35% of transcripts (Hidden), we
evaluated the ability of each tool to infer new isoforms in the presence of an
incomplete annotation. Again, we used the FluxSimulator and generated 4 million
paired-end 75 bp reads, which we mapped to the ∼6300 transcripts using TopHat
with the same settings as in the previous benchmark.

We integrated the incomplete annotation data into the model of CIDNE
as follows: First, we integrated the information about known TSSs and PASs.
Second, we assigned different regularization weights to annotated isoforms (λ = 1)
and novel isoforms (λ = 2) in the candidate set. Finally, we only reported novel
isoforms having an estimated abundance of at least 20% compared to the highest
estimated abundance for the same gene, whereas for annotated isoforms we used
the default threshold of 10%.

Cufflinks uses known transcripts to generate so-called faux-reads that are
combined with the sequencing reads to aid the assembly of novel transcripts.
iReckon uses the annotated TSSs and PASs exclusively and further incorporates
information about annotated splice junctions.

The recall and precision values for each tool, together with the individual
recall values for the two sets Annot and Hidden, are shown in Figure 4.10. Con-
sidering the complete set, CIDNE (∼71.4%) achieved the highest recall value,
which was ∼4 percentage points higher than for iReckon (∼67.3%) and ∼16 per-
centage points higher than for Cufflinks (∼55.3%). In terms of precision, the
values for CIDNE (∼88.1%) and Cufflinks (∼87.0%) were 19 (resp. 18) percent-
age points higher than for iReckon (∼69.0%). Note that since all isoforms in the
set Annot had non-zero simulated abundance, the overall precision is determined
by the precision of the predicted novel isoforms and the recall for set Annot. Fo-
cusing on the ability to correctly predict novel isoforms, CIDNE recovered only
slightly less isoforms (∼51.8%) than iReckon (∼55.9%) and considerably more
than Cufflinks (∼34.1%). Regarding the precision for novel isoforms, i.e., the
fraction of predicted novel isoforms matching an isoform in set Hidden, CIDNE
(∼65.7%) achieved a higher value than Cufflinks (∼59.5%) and clearly outper-
formed iReckon (∼39.6%). Note that we did not observe any significant changes
in the performance for each tool for different numbers of simulated paired-end
reads (2 million and 8 million).

94

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Cufflinks iReckon CIDNE

recall
precision

F-score

(a)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Cufflinks iReckon CIDNE

recall Total
recall Annot
recall Hidden
precision Novel

(b)

Figure 4.10: Recall and precision on simulated RNA-Seq experiment with in-
complete annotation. (a) Recall, precision, and F-score for the
complete set of simulated transcripts. (b) Individual recall for sets
Annot and Hidden and precision of inferred novel transcripts (pre-
cision Novel), i.e., fraction of predicted novel transcripts matching
a transcript in set Hidden.

Abundance estimation accuracy

In addition to the qualitative analysis in terms of recall and precision, we also
analyzed the abundance estimation accuracy of CIDNE. To reduce the effect of
the inference performance on the abundance estimation accuracy, we restricted
the evaluation to the set Annot. For every transcript in this set, we compared the
FPKM value predicted by each tool to the true FPKM value calculated from the
number of simulated paired-end reads. For each tool, we treated transcripts not
contained in the prediction as being predicted with FPKM value zero. Further,
as very short transcripts often cause abundance estimation problems, we limited
the analysis to transcripts with a minimal length of at least 500 bp.

We evaluated the correlation between predicted and true abundances in
FPKM as shown in Figure 4.12. The calculated Pearson correlation coefficients
were very similar for all three tools with values of 0.97 for CIDNE, 0.96 for
Cufflinks and 0.98 for iReckon. In addition to the correlation analysis, we evalu-
ated the abundance estimation accuracy in terms of the relative error defined as
|ft − f ′t |/ft, where ft and f ′t denote the true and predicted abundance in FPKM
respectively. Note that this term was defined for all transcripts t in Annot as
they all had a non-zero true abundance ft. Considering for each tool the set of
transcripts in Annot with non-zero predicted abundance, we calculated the frac-
tion of transcripts having a relative error below a certain threshold, as presented
in Figure 4.11(a). While this fraction was very similar for iReckon and CIDNE

95

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

relative error threshold

co
rr

ec
t f

ra
ct

io
n

by
 th

re
sh

ol
d

●

● ● ● ● ●

●

Cufflinks
iReckon
CIDNE

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

relative error threshold

re
ca

ll
by

 th
re

sh
ol

d

●

● ● ● ● ●

●

Cufflinks
iReckon
CIDNE

(b)

Figure 4.11: Relative error of predicted transcript abundance in FPKM for
CIDNE, iReckon, and Cufflinks. (a) Fraction of transcripts
with non-zero estimated abundance having a relative error below
threshold, for relative error thresholds in range [0, 3]. (b) Recall
achieved when scoring a transcript as recovered only if the relative
error of estimated abundance is below threshold, for relative error
thresholds in range [0, 3].

for all considered thresholds, both tools performed considerably better than Cuf-
flinks. Further, we evaluated the recall for the set Annot, when a transcript is
scored as recovered only if the relative error is below a certain threshold. As
shown in Figure 4.11(b), for all error thresholds iReckon and CIDNE recovered
considerably more transcripts than Cufflinks. For small error thresholds (≤ 0.1),
iReckon and CIDNE achieved very similar recall values, whereas for increasing
thresholds CIDNE recovered more transcripts than iReckon.

96

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●
●●●●
●

●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●
●

●●●●●●●●●●
●

●●●●
●

●●●●●●●●●●●●

●

●●●

●

●●
●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●
●

●●●●●●●●●●
●●●●●

●●●●●●
●

●●●●●

●

●●●●●●
●

●●
●

●

●●●
●●●●●●

●
●●

●
●●●●●●●●
●●●●●●●●●●●●●●●●●●
●

●

●

●●●●●●●●
●

●●●●●●●●●●●●●
●

●●●
●●●●●

●

●●●●●●●●●●
●
●

●●
●●●●●●

●

● ●●●●●●●●●●●●●●●

●

●●●●●●●

●

●
●

●●●●●
●

●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●●●●
●●●●●●●●●
●

●●●●●●●
●

●
●

●●●●●●●●●●
●
●●●●●●●●●●●

●
●●●●●●●●

●

●●●●●●●
●●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●
●

●●
●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●
●

●●●●●●●●●●●●●●●●●
●●
●

●●●●●●●●●●●●●●●●●
●●●●

●

●●●
●

●
●

●●●●
●●

●

●●●●●●●●●●●●●●●●●

●

●
●

●●
●

●●
●●

●

●●●

●

●●●●●
●

●●
●

●●●●●
●●●●●●●●
●●●●●●●

●
●

●●●●●●●
●

●●●●●
●

●
●

●●●●●●●●●●●●●●●●●
●

●

●

●●●
●●●●●●●●
●

●●●●●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●●●
●

●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●
●

●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●

●

●●●

●

●
●●

●

●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●
●●
●●●●●●●

●●●●●●●●

●

●
●

●●●●●●●
●

●●●●

●

●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●

●

●●●●●●●●●●

●

●

●

●●●●●●●●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●
●●

●●
●

●
●

●●●●●
●

●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●
●●●●

●

●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●

●

●●●●

●
●●●●●
●●●●●●●●●●

●

●●
●

●
●

●
●

●●●●●●●●●●●
●

●●●●●●●●●●●●●●
●

●

●●●●●●●●●●
●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●

●

●
●●
●●●●●
●

●●●
●

●●●●●●●●●●●
●

●●●●●●●
●

●●●●●●
●

●●●●●●●●●●●●●●
●

●●

●

●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●
●
●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●
●

●●●●●●●
●●

●●●●●●●●●

●

●●●●●●●
●●
●

●●●●●
●

●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●
●

●●●
●
●●●●●●

●
●●●●●
●●●
●

●●●●●
●●

●
●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●
●

●●●●●●●●●

●

●●●●
●●
●

●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●
●

●●●●
●

●●●●●●●●●●●●

●
●

●●●
●

●●●
●

●●●●●

●
●●●
●●

●

●●●●●
●●●●●
●●●●●

●
●●●●●●●●●●●●●●●●●●

●
●

●●●●●●●●●●●●●●●●●●●
●

●
●

●
●●●●●●
●

●●

●

●
●●●●●●

●●●●●●●●●●●●●●
●●●

●

●●●

●

●
●

●●●●●
●

●●●

●

●●●●●
●

●●●●

●
●●●●●●●●●

●

●●
●

●●●●●●●●
●

●●
●

●●
●
●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●

●

●●●●●●
●

●

●●●●●●●●●
●

●●●●●●●●●●
●●

●●●●●
●

●●●●●

●

●●●●●●●● ●●●

●

●●●
●
●●●●●●●●●

●
●●●
●●
●

●●●●●●
●●●●

●
●●●
●

●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●

●●
●

●●
●

●

●●●●●●●●●●
●

●●●
●

●●●●●
●

●●

●

●●●●●●●●●
●

●●●●●●

●
●●●●●●●●●●●●●
●

●●●
●●●●●●●●●●●●●●●
●

●●●●
●

●●
●

●●●●●●●
●●●●●
●

●●●●●●●●●●
●

●
●

●●●
●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●

●

●●●●●
●●

●●●●●●
●
●

●●●●●●●●●●●●●
●

●●●
●

●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●

●●●

●

●●●
●●

●●●●●●●●●●
●

●●●

●

●●●●

●

●●●●●
●

●●●●
●

●●●●●
●

●●●●●
●

●●●●●●
●

●●

●

●●●●●●●●●●●

●
●

●●●●●●●●●●●●●●●
●

●●●●●●●●●●●
●

●●

●

●●●●●●●

●
●●●●●●●●●●●●

●

●
●

●●●●●●●
●

●●●
●

●●●●●●●

●

●●●
●

●
●●●●●
●

●●●●●
●●●

●
●●●●

●●
●●●●●●●
●

●●

●

●●●●

●

●●
●

●●●●●●●●●●●●
●

●●●●●●●
●

●

●●●●●●●
●

●

●

●●
●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●
●●●●●
●●●●●●●

●
●●●●
●

●●●●●

●

●
●●

●●●●

●

●●●●●●●●●●●●●
●

●●●●●●●

●

●●●●●●●●●●
●●

●●
●

●
●●●

●
●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●

●
●●

●

●●●●●●●
●

●●●
●

●●●●●●●●●
●

●●●●●
●

●●●●

●

●●●●
●
●●●

●
●●

●
●●●●●●

●
●●●

●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●

●●●●●●●●●
●

●●●●●
●

●●●●●
●●●●●●
●●●

●
●●●●
●●●●●●●●●

●
●●

●
●●●●

●

●●●●●●●●●●●●●●●

●

●●●●
●●●●●●●●●●●
●

●●●●
●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●
●●

●●●●●●●●●●●●●●
●●●●●●●●
●●●●●
●

●●●●●●
●

●●●

●

●●●●●●●●●●●●●●●
●

●●●●●●
●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●● ●●●●
●

●
●

●●●●●●●●●●●●
●

●●●●●
●

●●●●●●●●
●

●

●●●●●●●●●
●

●●

●

●●●●●●

●

●●●●●●●●●●●
●

●

●●●●●●●●●
●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●
●

●●●●●
●

●●●

●

●●●●●●●

●

●●●

●

●●●

●

●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●
●

●●●●

●

●●●●●●●●
●

●●
●●●●●●●

●

●●●●●

●

●●●●●●●●●●●
●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●
●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●

●●
●●●
●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●●●●●●

●

●●●●●
●

●●●
●

●●
●●●●●●●●●●●●●●●●●●

●

●●
●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●
●

●●

●

●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●

●

●●●

●

●●●●
●

●

●●●●●●●●●●●●●●●

0 1000 2000 3000 4000 5000

0
10

00
20

00
30

00
40

00
50

00

predicted FPKM

tr
ue

 F
P

K
M

R = 0.97

●

●

●●

●

●

●

●
●

●
●●

●
● ●

●●●

●●
●

●
●

●●
●

●●

●

●

●

●

●

●

●

●●●
●
●
●

●●
●●●● ●●
●

●

●

●

●

●

●●●●

●

●
●

●

●

●●●

●

●●
●●

● ●

●

●●

●

●

●
●

●
●●

●●

●●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●
●

●

●

●●
●

●
●

●

●

●
●
●

●
●

●
●

●

●●

●

●

●●
●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

● ●●

●
●

●

●●

●

●

●

● ●●●

●
●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●
●

●●●

●●

● ●
●

●●●●

●
●

●●

●●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●●

● ●

●

●

●

●
●

●

●

●

●
●●

●
●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●●

●

●●
●

●

●

●

●●

●

●
●●

●

●
●●●

●●

●●
●●

●

●

●

●

●

●

●
●●●●

●

●● ●
●

●

●
●
●
●

●
●●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●●

●
●

●

●
● ●
●●●●●
● ●
●●

●

●

●

●
●

●

●

●
●

●●
●●

●

●

●

●●
● ●

●

●

●●●● ●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●
●

●
●

●●●

●

●●

●

●
●●●

●

●

●

●
●

●●
●

●
●

●

●

●

●
●●
●

●

●

●●● ●●●●

●

●

●

●●
●

●

●

●

●

●

●●

●

●●
●●

● ●
●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●●
●
●

●

●●●●

●

●
●

● ●

●

●

●

●
●

●

●
●

●

● ●
●

●
●

●●●●●●●●
●●●

●

●

● ●

●

●

●●
●● ●●

●●

●

●

●
●●

●●●
●

●

●●●

●

●

● ●

●●●

●

●●●
●●●●●

●

●

●

●

●●

●

●

●

●●●
●

●

●

●

●
●

●●
●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●●●

●●●
●
●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●●

●

●●
●●

●
●●

●

●
●
●●

●
●●

●

●

●
●

●

●
●

●

●

●

●

●
●●

●
●

●●

●

●
●

●

●
●

●●
●

●

●

●●●●●

●

●

●

●
●

●●
●

●

●

●
●●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
● ●●

●●
●

●

●

●

●

●

●
●●

●●

●

●

●

●●●

●

●

●

●

●
●

●●

●

●

●

●
●●

●

●

●

●

●●

●

●● ●●● ●

●
●

●
●●

●

●

●

●

●●

●
●

●●●

●
●

●

●

●

●

●

●

●●

●

● ●
●

●

●●

●

●
●

●●

●

●
●

●

●

●

●●

●
●

●●

●●

●●
●

●

●

●
●

●

●

●
●

●

●

●
●

●●
●

●
●

●
●

●● ●
●

●

●●
●

●●●●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●●

●

●

● ●

●

●

●
●

●

●

●●●●

●

● ●

●

●

●

●

●●
●

●

●

●

●

●
●
●●

●

●
● ●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●●
●

●

●

●

●
●

●

● ●

●
●●●●

●

●

●
●

●
●●

●

●

●
●●

●

●

●
●●●

●●
●●

●

●
●●

●

●

●●●
●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●●●●

●

●● ●

●
●

●
●●

●●
●

●

●

●

●
●●●

●

●
●

●

●

●
●

●
●

●
●●

●●

●

●● ●●
●

●
●●

●●●

●

●●

●

●

●

●

● ●

●

●
●

●

●

●

●●
●
●

●

●

●

●

●●

●

● ●

●

●
●

●●
●●

●

●

●

●

●
●
●

●

●

●●

●

●

● ●●

● ●

●

●

●
●

●

●

●

●●●
●

●

●

●

●●
●

●

●

●
●●

●
●

●

●
●

●

●

●

●
●

●●●

●

●● ●

●

● ●

●

●

●

●

●

●
●

●●
●●
●
●

●

●

●

●
● ●●

●●

●

●

●

●

●

● ●
●

●

●●●●
●●

●

●●

●

●
●

●

●
●●

●
●

●

●●
●

●●

●

●
●●● ●

●

●

●●

●

●

●

●
● ●
●

●

●

●
●

●

●
●

●

●
●●

●

●●

●

●

●
●

●
● ●

●

●

●

●●

●●

●
●● ●●
●

●
●

●

●

●

● ●

●

●

●●

●

●
●

●

●
●

●
●

●●

●

●
●●

●●

●
●

●●
●
●

●
●

●
●●

●
●●

● ●

●

●
●

●

●●
●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●●●●●
●

●
●

●
●

●

●

●

●

●

●
●●●

●

●●

●

●

●

●

●

●
●

●●
●
●●
●

●
●

●
●

●
●

●

●

●
● ●●

●

●

●
●

●

●

●

●●

●

●

●

●● ●

●●

●●

●
●

●●●●●

●
●

●

●
●

●
●●
●

●
●

●●
●

●

●
●● ●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●●●●●●
●●●

●

●●

●

●
●●

●

●●
●

●
●

●
●

●

●●
●

●

●

●
●
●

●
●

●
●●

●

●●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●
●●●

●

●

●

●

●●
●

●
●

●
●●●

●

●●
●●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●

● ●
●

●
●

●●

●

●●●●●

●

●

●

●●●
●

●

●

●●
●●

●●

●

●

●
●

●

●●

●●

●

●
●●

●

●

●
●

●

●

●

●

●

●●●●
●●●

●

●

● ●

●

●
●●

● ●

●

●
●●

●

●
●

●

●
●
●●

●
●
●

●

●●
●

●

●●
●●●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
● ●
● ●●

●●

●
●

●●
●

●

●

●
●

●
●

●●
●

●

●
●● ●

●●
●
● ●

●

●

●
●

●

●●

●

●

●

●

●

●
●●

●
●

●
●●

●

●

●

●

●

●
●
●●

●

●●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●
●

● ●
●

●
●

●●
●

●

●●

●

●●●

●
●

●
●

●
●

●
●

●
●

●

●●

●

●
●
●
●

●

●●●

●

●

●

●●

●

●

●

●

●

●

● ●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●
●●●

●
●

●
●

●

●
●●

●
●

●

●

●
●
●

●

●

●
●

●

●
●●●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●●

●●

●

●
●

●

●●
●

●●●●
●

●

●

●
●

●
●●●

●

●

●
●

●●

●●●● ●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●● ●● ●

●

● ●

●

●

●

●
●

●●
●

● ●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●●●

●

●●●
●

●

●

●

●●

●

●

●●

●
●

●
●●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●
●

●

●

●

●

●
●

●

●
● ●

●

●
●

●● ●●
●

●

●

●

●● ●
●●

●

●

●●

●
● ●●
●

●

●●
●
●

●
●

●

●

●●

●
●
● ●●
●

●
●

● ●●
●

●

●

●●●●
●

● ●

●

●

●
●

●

●

●●

●●

●●●
●

●

●

●

●●

●

● ●

●

●

●●

●

●
● ●

●

●●●●
●●●

●
●●

●

●

●●

●●●
●●

●

●

●

●

●
●●

●

●

●

●

●

●● ●

●

●

●●
●●●
●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●●

●

●●

●●
●

●

●●
●

●●
●

●
● ●
●

●

●

●

●●

●

●
●
●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●
●●

●

●●

●
●

●
●

●

●●● ●

●

●
●●●

●●
●
● ●

●

● ●●

●●

●

● ●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●●

●

●

●

●

●

●
●
●

●

●

●

●
●

●●●●●

●
●

●
●

●

●

●●

●

●

●

●
●●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●●●

●
●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

● ●

●●

●
●

●

●
●

●●
●

●
●
●

●

●
●●

●
●●●

●
●●

●●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●● ● ●●
●

●
●

●
●

●

●

●

●

●

●

●

●
●
●

●●

●

●
●●

●
● ●

●

●
●

●●●●●
●

●

●
●

●

●
●

●

●

●

●

●

●
●●

●
●

●●

●

●

●

●
●

●●●
●●

●

●

●● ●●●

●
●●

●
●

●

●

●

●●

●

●

●

●
●

●

●●
●

●
●

●
●
●

●

●●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●●
●

●

●

●

●●
●●

●

●●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●●●
●

●

●

●

●

●
●

● ●

●

●●
●●●

●
●

●●
●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●●●

●

●
●●

●

●
●

●

●

●●

●

●

●●●

●
●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

● ●
●

●●

●

●●

●

●
●

●●

● ●

●

●●
●●

●
●

●

●●

●

●

●
●

●

●

●

●

●
●
●●

●

●●●
●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●●
●

●
●

●●
● ●

●

●

●●

●●

● ●

●

●
●

●

●

●●

●

●
●●

●
●

●
●

●

●

●

●
●●

●

●
●●

●

●●●
●

●●●●
●
●

●
●

●
●

●●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●●
●

●

●

●

●
●

●

●●●

●

●●●●●

●

●
●

●

●
●● ●

●

●
●

●

● ●

●

●

●

●

●

●●●●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●●●

●

●●

●

●

●

●

●
●

●
● ●

●

●●

●
●

●
●●

●●

●

●●

●

●●●●
●
●●

●

●

●
●

●

●
●

●
●●●

●

●●

●

●

●

●●●

●

●
●●

●●

●
●

●

●

●

●●

●

●

●

●

●

●
●

● ●●

●

●
●

●

●

●●

●
●

●

●●

●

●●
●

●
●

●

●

●●
●●●

●

●
●●
●

●●●●
●

●
●

●●

●
● ●

●●
●

●

● ●

●

●

●●
●●

●

●

●

●

●●

●

●

●
●

●
●

●● ●

●

●●

●

●
●

●●

●
●

●

●
●

●

●

●

●●●●

●

●

●

●

●

●●
●●●

●

●

●

●
● ●

●

●
●●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●●

●

●●

●

● ●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●●

●

●
●
●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●
●

●

●
●

●

●

●●●

●
●

●●

●

●

●

●

●

●
●

● ●●●●
●

●

●

●

●

●

●●
●●

●
●

●●●●●●●●
●●

●

●

●
●

●

● ●
●

●●
●

●

●

●
●

●
●

●

●●●●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●
●
●

●
●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●● ●
●
●

●

●●
●
●
●

●●
●

●
●

●

●

●

●●
●

●
●
● ●

●●
●

●

●

●

●●
●

●
●

●

●
●
●●●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●●●●
●

●

●●

●

●

●

●

●
●●

●●●

●

●

●

●

●

●●

●
●●

●

●

●

●

● ●●●
●
●

●●
●

●

●

●
●

●●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●● ●●

●●

●

●

●

●●

●●
●● ●

●

●●●

●

●

●

●●●

●

● ●
●

●
●

●

●

● ●
●●

●

●

●
●●

●●

●

●

●

●
●
●

●●
●●●●

●●

●

●
●

●
●

●
●
●

●

●

● ●
●

● ●

●
● ●

●

●

●

●

●●

●●
●
●● ●●●

●

●

●●

●

●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●●●●

●
●

● ●
●

●
●

●●●
●●
●

●

●

●●

●

●●●●
●●

●

●

●● ●
●

●

●
●

●

●
●●
● ●

●

●●

●

●●

●

●
●

●

●

● ●

●
●

●

●

●●●
● ●

● ●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●
●● ●

●
● ●
●

●

●
●

●

●
● ●

●

●

●

●

●●●●

●

●

● ●●

●

●●

●

●●

●

●●
●

●

●●●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
● ●●●●

●

●

●

●

●

●

●●
●

●●●●●●●●●
●

●
●

● ●
●

●●

●

●
●

●

●

● ●●●
● ●

●

●

●

●

●
●

●

●●●●
●●●●●

●

● ●
●

●

●
●

● ●

●

●

●

●

●●
●

●

●

●

●

●

●
● ●

●

●
●

●

●

●●

●

●

●●
●

●●

●

●
●

●●
●

●
●●

●
●

●

●

●

●●●

●

●
●

●
●

●●●
●

●
●
●

●
●

●

●
●●●

●

●
●

●

●
●●●

●
●●

●

●

●●●
●●●●●

●
●●

●

●

●

●
●
●●

●

●
●● ●●●

●

●
●

●●
●
●

●

●

●●
●●

●●
●●

●
●
●

●
●

●●
●

●

●

●●● ●● ●
●

●
●● ●

●

●

●●●

●

●●

●

●
●●

●

●●

●

●
●

●
●

●

●

●

●

●

●
●●

●
●● ●

●

●
●

●
●

●●
●

●●

●
●

●●

●
●

●● ●

●●

●
●●●

●

●●
●●

●

●

●

●

●

●●●
● ●

●●
●

● ●●
●

●

●

●

●●

●

●

●
● ●

●

●●● ●
●●

●
●

●●●

●

●

●

●●

●
●

●

●

●

●● ●
●

●

●

●●

●
●

●●

●

●●
●

●

●

●

●

●

●

●●

●
●●● ●●

●●
●●

●

●●

0 100 200 300 400 500
0

10
0

20
0

30
0

40
0

50
0

predicted FPKM

tr
ue

 F
P

K
M

●

●

●

●

●

●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●●

●

● ●

●

●●

●
●

●

●●

●

●

●
●

●

●

●●
●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

● ●●

●

●

●

●
●●

●

●
●

●

●

● ●

●

●

●
●

●●
●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●
●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

● ●
●

●●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●
● ●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

● ●● ●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

● ●

●
●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

● ●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●●●
●

●

●
●

●
●

●

●

● ●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●●

●

●

●
●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●
●

● ●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●

●

● ●

●
● ●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●●●●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●●●

●

●

● ●

●

●
●

●

●

●

●
●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●
●

5 10 50 200 1000 5000

5
10

50
20

0
10

00
50

00

predicted FPKM

tr
ue

 F
P

K
M

(a) CIDNE

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●
●●●●
●

●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●
●

●●●●●●●●●●
●

●●●●●●●●●●
●

●●●●
●

●●●●●●●●●●●●

●

●●●

●

●●
●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●
●

●●●●●●●●●●●●●●●
●●●●●●
●

●●●●●

●

●●●●●●
●

●●
●

●

●●●
●●●●●●

●
●●
●

●●●●●●●●
●●●●

●●●●●●●●●●●●●●
●

●

●

●●●●●●●●
●

●●●●●●●●●●●●●
●

●●●
●●●●●

●

● ●●●● ●●●●●
●
●

●●
●●●●●●

●

● ●●●●●●●●●●●●●●●

●

●●●●●●●

●

●
●

●● ●●●
●

●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●●●●
●●●●●●●●●
●

●●●●●●●
●

●
●

●●●●●●●●●●
●

●●●●●●●●●●●
●

●●●●●●●●

●

●●●●●●●
●●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●
●

●●
●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●
●

●●●●●●●●●●●●●●●●●
●●
●

●●●●●●●●●●●●●●●●●
●●●●

●

●●●
●

●
●

●●●●
●●

●

●●●●●●●●●●●●●●●●●

●

●
●

●●
●

●●
●●

●

●●●

●

●●●●●
●

●●
●

●●●●●
●●●●●●●●●●●●●●●

●
●

●●●●●●●●●●●●●
●

●
●

●●●●●●●●●●●●●●●●●
●

●

●

●●●
●●●●●●●●

●
●●●●●

●
●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●●●
●

●●●●●●●
●●●●●●●●●●●●●●●●●●

●
●●●

●
●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●
●●

●●●

●

●●●

●

●
●●

●

●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●
●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●

●● ●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●
●●
●●●●●●●
●●●●●●●●

●

●
●

●●●●●●●
●

●●●●

●

● ●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●

●

●●●●●●●●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●
●●

●●
●

●
●

●●●●●
●

●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●

●●● ●

●

●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●

●

●●●●

●
●●●●●

●●●●●●●●●●

●

●●
●

●
●

●
●

●●●●●●●●●●●
●

●● ●●●●● ●●●●●●●
●

●

●●●●●●●●●●
●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●

●

●
●●

●●●●●
●

●●●
●

●●●●●●●●●●●
●

●●●●●●●
●

●●●●●●
●

●●●●●●●●●●●●●●
●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●
●

●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●
●

●●●●●●●
●●

●●●●●●●●●

●

●●●●●●●
●●
●

●●●●●
●

●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●● ●●●●●●●●
●

●●●
●

●●●●●●
●

●●●●●
●●●

●
●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●

●
●●●●●●●●●

●

●● ●●
●●
●

●●●●●●●●
●

●●●●● ●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●

●
●

●●●
●

●●●
●

●●●●●

●
●●●● ●●●

●

●●●●●
●●●●●
●●●●●
●

●●●●●●●●●●●●●●●●●●
●

●
●●●●●●●●●●●●●●●●●●●

●
●

●
●

●●●●●●
●

●●

●

●
●●●●●●
●●●●●●●●●●●●●●
●●●

●

●●●

●

●
●

●●●●●
●

●●●

●

●●●●●
●

●●●●

●
●●●●●●●●●

●

●●
●

●●●●●●●●
●

●●
●

●●
●

●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●

●

●●●●●●
●

●

●●●●●●●●●
●

●●●●●●●●●●
●●

●●●●●
●

●●●●●

●

●●●●●●●● ●●●

●

●●●
●
●●●●●●●●●

●
●●●

●●
●

●●●●●●
●●●●
●
●●●
●

●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●

●●
●

●●
●

●

●●●●●●●●●●
●

●●●
●

●●●●●
●

●●

●

●●●●●●●●●
●

●●●●●●

●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●

●●●●
●

●●
●

●●●●●●●
●●●●●
●

●●●●●●●●●●
●

●
●

●●●
●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●
●●

●●●●●●
●
●

●●●●●●●●●●●●●
●

●●●
●
●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●
●●●

●

●●●
●●

●●●●●●●●●●
●

●●●

●

●●●●

●

●●●●●
●

●●●●
●

●●●●●
●
●●●●●

●
●●●●●●

●
●●

●

●●●●●●●●●●●

●
●

●● ●●●●●●●●●●●●●
●

●●●●●●●●●●●
●

●●

●

●●●●●●●

●
●●●●●●●●●●●●

●

●
●

●●●●●●●
●

●●●●
●●●●●●●

●

●●●
●

●
●●●●●
●

●●●●●
●●●

●
●●●●

●●
●●●●●●●
●

●●

●

●●●●

●

●●
●

●●●●●●●●●●●●
●

●●●●●●●
●

●

●●●●●●●
●

●

●

●●
●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●
●●●●●
●●●●●●●●●●●●
●

●●●●●

●

●
●●

●●●●

●

●●●●●●●● ●
●●●●

●
●●●●●● ●

●

●●●●●●●●●●
●●

●●●
●

●●●
●

●● ●●●●●●●●●●
●

●●●●●●●●●●●●●●●●
●
●●

●

●●●●●●●
●

●●●
●

●●● ●●●●●●
●

●●●●●
●

●●●●

●

●●●●
●

●●●
●

●●
●

●●●●●●
●

●●●

●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●

●●●●●●●●●
●

●●●●●
●

●●●●●
●●●●●●

●●●
●

●●●●
●●●●●●●●●

●
●●

●
●●●●

●

●●●●●●●●●●●●●●●

●

●●● ●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●

●●●●●●
●

●●●

●

●●●●●●●●●●●●●●●
●

●●●●●●●●●

●

●●
●●● ●●●●●●●●●●●●●

●

●●●●●●● ● ●●●●
●

●
●

●●●●●●●●●●●●
●

●●●●●
●

●●●●●●●●
●

●

●●●●●● ●●●
●

●●

●

●●●●●●

●

●●●●●●●●●●●
●

●

●●●●●●●●●
●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●
●

●●●●●●●●●●
●

●●●●●
●

●●●

●

●●●●●●●

●

●●●

●

●●●

●

●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●
●

●●●●

●

●●●●●●●●
●

●●
●●●● ●●●

●

●●●●●

●

●●●●●●●●●●●
●●●●●●●

●

●●●●●●●●●●●●●● ●●●●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●●●●●●

●

●●●●●
●

●●●
●

●●
●●●●●●●●●●●●●●●●●●

●

●● ●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●

●●

●

●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●

●

●●●

●

●●●●
●

●

●●●●●●●●●●●●●●●

0 1000 2000 3000 4000 5000

0
10

00
20

00
30

00
40

00
50

00

predicted FPKM

tr
ue

 F
P

K
M

R = 0.96

●

●

● ●

●

●

●

●
●

●
●●●
● ●

●●●

●●
●

●
●

●●
●
●●

●

●

●

●

●

●

●

●●●
●
●
●

●●
●● ●● ●●

●

●

●

●

●

●

●●●●

●

●
●

●

●

● ●●

●

●●
● ●

●●

●

●●

●

●

●
●

●
●●

●●

●●
●●

●

●

●

●

●
●
●

●

●

●

●
●

●
●

●●
●

●

●

●●
●

●
●

●

●

●
●

●

●
●

●
●

●

●●

●

●

● ●
●

●

●

●

●

●

●

●●

●

● ●

●

●●

●

●

●

●

●

●

● ●●

●
●

●

● ●

●

●

●

●●●●

●
●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●
●

●●●

●●

●●
●

●●●●

●
●

● ●

● ●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●●

●●

●

●

●

●
●

●

●

●

●
●●

●
●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

● ●

●

● ●
●

●

●

●

●●

●

●
●●

●

●
●●●

●●

●●
●●

●

●

●

●

●

●

●
●●●●

●

●●●
●

●

●
●

●
●

●
●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●●

●
●

●

●
● ●
● ●●●●
● ●
● ●

●

●

●

●
●

●

●

●
●

●●
●●

●

●

●

●●
●●

●

●

●●●●●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●
●

●
●

●● ●

●

● ●

●

●
●●●

●

●

●

●
●

●●
●

●
●

●

●

●

●
● ●

●

●

●

●● ●●●●●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●●
●●

● ●
●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●●
●

●

●

●●●●

●

●
●

● ●

●

●

●

●
●

●

●
●

●

● ●
●

●
●

●● ●●●●
●●

●●●
●

●

● ●

●

●

●●
● ● ●●

●●

●

●

●
●●

●●●
●

●

●●●

●

●

● ●

●● ●

●

●●●
●● ●● ●

●

●

●

●

●●

●

●

●

●● ●
●

●

●

●

●
●

●●
●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●●●

●●
●

●
●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●●

●

●●
● ●

●
●●

●

●
●

●●
●
●●

●

●

●
●

●

●
●

●

●

●

●

●
●●

●
●

● ●

●

●
●

●

●
●

●●
●

●

●

●●●●●

●

●

●

●
●

●●
●

●

●

●
● ●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●●●

●●
●

●

●

●

●

●

●
●●

●●

●

●
●●●

●

●

●

●

●
●

●●

●

●

●

●
●●

●

●

●

●

●●

●

●● ●●● ●

●
●

●
●●

●

●

●

●

●●

●
●

●●●

●
●

●

●

●

●

●

●

●●

●

● ●
●

●

●●

●

●
●

●●

●

●
●

●

●

●

●●

●
●

●●

●●

●●
●

●

●

●
●

●

●

●
●

●

●

●
●

●●
●

●
●

●
●

●●●
●

●

●●
●

●●●●
●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●●

●

●

●●

●

●

●
●

●

●

● ●●●

●

● ●

●

●

●

●

●●
●
●

●

●

●

●
●
● ●

●

●
●●
●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●●
●

●

●

●

●
●

●

● ●

●
●● ●

●
●

●

●
●

●
●●

●

●

●
● ●

●

●

●
●●●

●●
● ●
●

●
●●

●

●

● ●●
●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●●●●

●

●●●

●
●

●
●●

● ●
●

●

●

●

●
●● ●

●

●
●

●

●

●
●

●
●

●
●●

●●

●

● ●●●
●
●

●●
●● ●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●●

●

●●

●

●
●

●●
●●

●

●

●

●

●
●

●
●

●

●●

●

●

● ●●

● ●

●

●

●
●

●

●

●

● ●●
●

●

●

●

● ●
●

●

●

●
●●

●
●

●

●
●

●

●

●

●
●

●●
●

●

● ●●

●

●●

●

●

●

●

●

●
●

●●
●●

●
●

●

●●
●●●

●●

●

●

●

●

●

● ●
●

●

●●●●
●●

●

● ●

●

●
●
●

●
● ●

●
●

●

●●
●

●●

●

●
●● ●●

●

●

● ●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●
●●

●

●●

●

●

●
●

●
●●

●

●

●

●●

● ●

●
●● ●●

●

●
●

●

●

●

● ●

●

● ●

●

●
●

●

●
●
●

●
●●

●

●
● ●

● ●

●
●

●●
●

●
●

●

●
●●

●
●●

●●

●

●
●

●

● ●
●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

● ●●● ●
●

●
●

●
●

●

●

●

●

●

●
● ●●

●

●●

●

●

●

●

●

●
●

●●
●
●●

●

●
●

●
●

●
●

●

●
● ●●

●

●

●
●

●

●

●

●●

●

●

●

●● ●

●●

●●

●
●

●●●●●

●
●

●

●
●

●
●●
●

●
●

● ●
●

●

●
●● ●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●●

●

●
●
●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●●●
● ●●

●● ●

●

●●

●

●
●●

●

●●
●

●
●

●
●

●

● ●
●

●

●

●
●

●

●
●

●
●●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●●●

●

●

●

●

●●
●

●
●

●
●●●

●

●●
●●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●
●

●

● ●
●

●
●

● ●

●

●●●●●

●

●

●

●● ● ●
●

●

●●
● ●

●●

●

●

●
●
●

● ●

●●

●

●
● ●

●

●

●
●

●

●

●

●

●

●●●●
●● ●

●

●

● ●

●

●
●●

● ●

●

●
●●

●

●
●

●

●
●
●●

●
●

●

●

●●
●

●

●●
●●●

●

●

●●
●
●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●●

● ●●
● ●

●
●

●●
●

●

●

●
●

●
●

●●
●

●

●
● ● ●

● ●
●

● ●
●

●

●
●

●

●●

●

●

●

●

●

●
●●

●
●

●
●●

●

●

●

●

●

●
●
●●

●

●●

●

●

●●

●

●

●

●●●
●

●

●

●

●

●

●
●

●●
●

●
●

●●
●

●

●●

●

●●●

●
●

●
●

●
●

●
●

●
●

●

●●

●

●
●

●
●

●

● ●●

●

●

●

● ●

●

●

●

●

●

●

●●●●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●
● ●●

●
●

●
●

●

●
●●

●
●

●

●

●
●

●
●

●

●
●

●

●
●●●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●●

●●

●

●
●

●

●●
●

●●● ●
●

●

●

●
●

●
●●●

●

●

●
●

●●

●●●● ●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●●● ●● ●

●

●●

●

●

●

●
●

● ●
●

● ●●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●●●

●

●●●
●

●

●

●

● ●

●

●

●●

●
●

●
●●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●
●

●

●

●

●

●
●

●

●
●●

●

●
●

●● ●● ●

●

●

●

● ●●
●●

●

●

●●

●
● ●●
●

●

● ●
●

●
●

●
●

●

● ●

●
●

● ●●
●

●
●

● ●●
●

●

●

● ●●●
●

● ●

●

●

●
●
●

●

●●

●●

● ●●
●

●

●

●

● ●

●

● ●

●

●

●●

●

●
● ●

●

● ●●●
●●●

●
●●

●

●

●●

●●●
●●

●

●

●

●

●
●●

●

●

●

●

●

●● ●

●

●●
● ● ●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●●

●

●●

●●
●

●

●●
●

●●
●
●
● ●
●

●

●

●

●●

●

●
●
●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●
●

●

●

●●
●
●

●

●
●●

●

●●

●
●

●
●

●

● ●● ●

●

●
●●●

●●
●

●●
●

● ●●

●●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●● ●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●●

●

●

●

●

●

●
●

●
●

●

●

●
●

●● ●●●

●
●

●
●

●

●

●●

●

●

●

●
●●
●

●

●

●

●
●
●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●
●
●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●●

●●

●
●

●

●
●

●●
●
●
●

●

●

●
●●

●
●●●

●
●●

● ●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●● ●●●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
● ●

●

●
●●

●
● ●
●

●
●

●●●●●
●

●

●
●

●

●
●

●

●

●

●

●

●
● ●

●
●

●●

●

●

●

●
●

●●●
●●

●

●

● ●●●●

●
●●

●
●

●

●

●

● ●

●

●

●

●
●

●

● ●
●

●
●

●
●
●

●

●●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●●
●

●

●

●

●●
●●

●

●●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●●
●

●

●

●

●

●
●

●

●

● ●
● ●●

●
●

●●
●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●
●●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

● ●●

●

●
● ●

●

●
●
●

●

● ●

●

●

● ●●

●
●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●●
●

●●

●

● ●

●

●
●

●●

● ●

●

● ●
● ●
●

●

●

●●

●

●

●
●

●

●

●

●

●
●

● ●
●

● ●●
●

●
● ●

●

●
●

●

●

●

●
●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●
● ●

●

●
●

●●
●●

●

●

●●

●●

●●

●

●
●
●

●

●●

●

●
●●

●
●

●
●

●

●

●

●
●●

●

●
●●

●

●●●
●

●●●●
●

●

●
●

●
●

●●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●● ●
●

●●

●
●

●

●●●

●

●● ●●●

●

●
●

●

●
●●●

●

●
●
●

●●

●

●

●

●

●

● ●●●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●● ●

●

●●

●

●

●

●

●
●

●
● ●

●

●●

●
●

●
● ●

●●

●

● ●

●

●●● ●
●

● ●

●

●

●
●

●

●
●

●●●

●

●●

●

●

●

●● ●

●

●
●●

● ●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●●●

●

●
●
●

●

●●

●
●
●

●●

●

●●
●

●
●

●

●

● ●
●● ●

●

●
●●

●
● ●●●

●

●
●

● ●

●
● ●

●●
●

●

●●

●

●

●●
●●

●

●

●

●

●●

●

●

●
●

●
●

●●●

●

●●

●

●
●

● ●

●
●

●

●
●

●

●

●

●●●●

●

●

●

●

●

●●
● ●●

●

●

●

●
●●

●

●
●●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●●

●

●●

●

● ●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●
●

●

●

●●●

●
●

●●

●

●

●

●

●

●
●

●● ●●●
●

●

●

●

●

●

●●
●●

●
●

● ●● ● ●● ●●
●●

●

●

●
●

●

● ●
●
●●

●

●

●

●
●

●
●

●

●● ●
●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●
●

●
●

● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●

● ●●
●

●

●

●●
●

●
●

●●
●

●
●

●

●

●

●●
●

●
●

● ●
●●

●

●

●

●

●●
●

●
●
●

●
●

●● ●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●● ●● ●●

●

● ●

●

●

●

●

●
●●

● ●●

●

●

●

●

●

●●

●
●●

●

●

●

●

● ●●●
●
●

●●
●

●

●

●
●

●●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●● ●●●

●●

●

●

●

●●

●●
●●●

●

●●●

●

●

●

●● ●

●

● ●
●
●

●

●

●

● ●
●●

●

●

●
●●

●●

●

●

●

●
●

●
● ●

●● ●●
●●

●

●
●

●
●

●
●

●

●

●

● ●
●

●●

●
● ●

●

●

●

●

●●

●●
●

●● ●●
●

●

●

● ●

●

●●
●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●●●●

●
●

● ●
●

●
●

●● ●
●●
●

●

●

●●

●

●●●●
● ●

●

●

● ●●
●

●

●
●

●

●
●●
● ●

●

●●

●

●●

●

●
●
●

●

● ●

●
●

●

●

●● ●
●●

●●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●
● ●●

●
●●
●

●

●
●

●

●
● ●

●

●

●

●

● ● ●●

●

●

●●●

●

●●

●

●●

●

● ●
●

●

●●● ●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
● ●●● ●

●

●

●

●

●

●

●●
●

●●●●●●●●●
●

●
●

● ●
●
● ●

●

●
●

●

●

●●●●
● ●

●

●

●

●

●
●

●

● ●●●●● ●●●

●

●●
●

●

●
●

● ●

●

●

●

●

●● ●

●

●

●

●

●

●
● ●

●

●
●

●

●

●●

●

●

● ●
●

● ●

●

●
●

●●
●

●
●●

●
●

●

●

●

●●●

●

●
●

●
●

●●
●

●
●

●
●

●
●

●

●
●● ●

●

●
●

●

●
●● ●

●
●●

●

●

●● ●
●●●●●
●

●●

●

●

●

●
●
●●

●

●
●● ● ●●

●

●
●

●●
●
●

●

●

●●
●●
● ●

●●
●
●

●

●
●

●●
●

●

●

●● ●●● ●
●

●
●●●

●

●

●

●●●

●

●●

●

●
● ●

●

●●

●

●
●

●
●

●

●

●

●

●

●
●●

●
●●●

●

●
●

●
●
●●

●
●●

●
●

●●

●
●
●●●

●●

●
●●●

●

●●
● ●
●

●

●

●

●

●●●
● ●

● ●
●

● ●●
●

●

●

●

●●

●

●

●
● ●

●

●●●●
●●

●
●

●●●

●

●

●

● ●

●
●

●

●

●

●●●●

●

●

●●

●
●

●●

●

●●
●

●

●

●

●

●

●

●●

●
●●●●

●
●●

●●

●

●●

0 100 200 300 400 500

0
10

0
20

0
30

0
40

0
50

0

predicted FPKM

tr
ue

 F
P

K
M

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●●

●

● ●

●

●

●
●

●

●

●●

●

●
●

●

● ●
●

●
●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●
●

●●

●
●

●●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

● ●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●●

●

●

●

●

●

●

●

●
●

●

● ●

●●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

● ●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●●

●

●
●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●
●

●●

●

●
●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●
●

●

●

●●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

● ●

●

●

●
●

●

●
●

●●

●

●

●

●

● ●

●

●●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●●●

● ●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

● ●

●

●

●

●
●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●●
●

●
● ●

●

●

●

●

●

●

●

● ●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●
●●●●

●

●

●
●

●

●●

●

●

●

●

●

●

● ●

●
● ●

●

● ●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

5 10 50 200 1000 5000

5
10

50
20

0
10

00
50

00

predicted FPKM

tr
ue

 F
P

K
M

(b) Cufflinks

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●
●●●●
●

●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●
●

●●●●●●●●●●
●

●●●●
●

●●●●●●●●●●●●

●

●●●

●

●●
●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●
●

●●●●●●●●●●
●●●●●
●●●●●●
●

●●●●●

●

●●●●●●
●

●●
●

●

●●●
●●●●●●

●
●●
●

●●●●●●●●
●●●●●●●●●●●●●●●●●●
●

●

●

●●●●●●●●
●

●●●●●●●●●●●●●
●

●●●
●●●●●

●

● ●●●●●●●●●
●
●

●●
●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●
●

●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●●●●
●●●●●●●●●
●

●●●●●●●
●

●
●

●●●●●●●●●●
●

●●●●●●●●●●●
●

●●●●●●●●

●

●●●●●●●
●●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●
●

●●
●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●
●

●●●●●●●●●●●●●●●●●
●●
●
●●●●●●●●●●●●●●●●●

●●●●

●

●●●
●

●
●

●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●
●

●●
●

●●
●●

●

●●●

●

●●●●●
●

●●
●

●●●●●
●●●●●●●●
●●●●●●●

●
●

●●●●●●●●●●●●●
●

●
●

●●●●●●●●●●●●●●●●●
●

●

●

●●●
●●●●●●●●
●

●●●●●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●●●
●

●●●●●●●
●●●●●●●●●●●●●●●●●●
●

●●●
●

●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●

●

●●●

●

●
●●

●

●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●

●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●
●●

●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●
●●
●●●●●●●

●●●●●●●●

●

●
●

●●●●●●●
●

●●●●

●

●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●

●

●●●●●●●●●●

●

●

●

●●●●●●●●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●
●●

●●
●

●
●

●●●●●
●

●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●
●●●●

●

●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●

●

●●●●

●
●●●●●

●●●●●●●●●●

●

●●
●

●
●

●
●
●●●●●●●●●●●
●

●●●●●●●●●●●●●●
●

●

●●●●●●●●●●
●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●● ●●●●

●

●●●●●●●●●

●

●●●

●

●
●●

●●●●●
●

●●●
●

●●●●●●●●●●●
●

●●●●●●●
●

●●●●●●
●

●●●●●●●●●●●●●●
●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●
●●●●●●●●●
●

●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●
●

●●●●●●●
●●

●●●●●●●●●

●

●●●●●●●
●

●
●

●●●●●
●
●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●
●

●●●
●

●●●●●●
●

●●●●●
●●●
●

●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●
●

●●●●●●●●●

●

●●●●
●●

●
●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●

●
●

●●●
●

●●●
●

●●●●●

●

●●●

●

●●●●●
●●●●●
●●●●●
●

●●●●●●●●●●●●●●●●●●
●

●
●●●●●●●●●●●●●●●●●●●

●
●

●
●
●●●●●●
●

●●

●

●
●●●●●●
●●●●●●●●●●●●●●

●●●

●

●●●

●

●
●
●●●●●
●

●●●

●

●●●●●
●

●●●●

●
●●●●●●●●●

●

●●
●
●●●●●●●●
●
●●
●
●●

●
●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●

●●●●●●●●●●●
●●●●●●●●●●●●●●●
●

●

●●
●

●●●
●

●

●●●●●●●●●
●

●●●●●●●●●●
●●

●●●●●
●

●●●●●

●

●●●●●●●● ●●●

●

●●●
●

●●●●●●●●●
●

●●●
●●

●
●●●●●●
●●●●

●
●●●

●

●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●

●●
●

●●
●

●

●●●●●●●●●●
●

●●●
●
●●●●●

●
●●

●

●●●●●●●●●●
●

●●●●●●

●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●

●●●●
●

●●
●

●●●●●●●
●●●●●

●
●●●●●●●●●●

●
●

●
●●●

●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●

●

●●●●●
●●

●●●●●●
●
●

●●●●●●●●●●●●●
●
●●●

●
●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

● ●
●●●

●

●●●
●●

●●●●●●●●●●
●

●●●

●

●●●●

●

●●●●●
●

●●●●
●

●●●●●
●

●●●●●
●

●●●●●●
●

●●

●

●●●●●●●●●●●

●
●

●●●●●●●●●●●●●●●
●

●●●●●●●●●●●
●

●●

●

●●●●●●●

●
●●●●●●●●●●●●

●

●
●

●●●●●●●

●

●●●
●
●●●●●●●

●

●●●
●

●
●●●●●
●

●●●●●
●●●

●
●●●●

●●
●●●●●●●
●

●●

●

●●●●

●

●●
●
●●●●●●●●●●●●

●
●●●●●●●

●
●

●●●●●●●
●

●

●

●●
●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●
●●●●●
●●●●●●●

●
●●●●

●
●●●●●

●

●
●●

●●●●

●

●●●●●●●●●●●●●
●

●●●●●●●

●

●●●●●●●●●●
●●

●●
●
●

●●●
●

●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●
●
●●

●

●●●●●●●
●

●●●
●

●●●●●●●●●
●

●●●●●
●

●●●●

●

●●●●
●

●●●
●

●●
●

●●●●●●
●

●●●

●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●
●●●●●●●●●

●
●●●●●

●
●●●●●
●●●●●●

●●●
●

●●●●
●●●●●●●●●

●
●●

●
●●●●

●

●●●●●●●●●●●●●●●

●

●●●●
●●●●●●●●●●●

●
●●●

●
●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●

●●
●●●●●●●●●●●●●●

●●●●●●●●
●●●●●
●

●●●●● ●
●

●●●

●

●●●●●●●●●●●●●●●
●

●●●●●●
●●●

●

●●●●●●●●●●●●●●●●●●

●

●●
●●●●●●●●●●

●
●
●

●●●●●●●●●●●●
●

●●●●●
●

●●●●●●●●
●

●

●●●●●●
●●●
●

●●

●

●●●●●●

●

●●●
●

●●●●●●●
●

●

●●●●●●●●●
●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●
●

●●●●●
●

●●●

●

●●●●●●●

●

●●●

●

●●●

●

●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●
●

●●●●

●

●●●●●●●●
●

●●
●●●●●●●

●

●●●●●

●

●●●●●●●●●●●
●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●
●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●
●●
●●●
●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●●●●●●

●

●●●●●
●

●●●
●

●●
●●●●●●●●●●●●●●●●●●

●

●●
●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●
●●

●

●●●●●●●●●●●●●●● ●●●
●

●●●●●●●●●●●●●●●●●●
● ●●●●●●●●●●●●●
●●

●●●●

●

●●●

●

●●●●
●

●

●●●●●●●●●●●●●●●

0 1000 2000 3000 4000 5000

0
10

00
20

00
30

00
40

00
50

00

predicted FPKM

tr
ue

 F
P

K
M

R = 0.98

●

●

●●

●

●

●

●
●

●
●●

●
●● ●●●

●●
●

●
●

●●
●
●●

●

●

●

●

●

●

●

●●●
●

●
●

●●
●●

●●●●
●

●

●

●

●

●

●●●●

●

●
●

●

●

●●●

●

●●
● ●
●●

●

●●

●

●

●
●

●
●●

●●

●●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

● ●
●

●

●

●●
●

●
●

●

●

●
●
●

●
●

●
●

●

●●

●

●

●●
●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

● ●●

●
●

●

●●

●

●

●

●●●●

●
●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●
●

●●●

●
●

●●
●

●●●●

●
●

●●

●●

●
● ●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●●

● ●

●

●

●

●
●

●

●

●

●
●●

●
●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

● ●

●

●●
●

●

●

●

●●

●

●
● ●

●

●
● ●●

●●

●●
●

●

●

●

●

●

●

●

●
● ●●●

●

●●●
●

●

●
●

●
●

●
●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●●

●
●

●

●
● ●

●●●●●
● ●
● ●

●

●

●

●
●

●

●

●
●

●●
●●

●

●

●

●●
●●

●

●

●●●●●

●

●
●

●

●
●

●

●

●

●

●

●●
●

● ●

●
●

●
●

●●●

●

●●

●

●
● ●●

●

●

●

●
●

● ●
●

●
●

●

●

●

●
● ●

●

●

●

●●●●●●●

●

●

●

●●
●

●

●

●

●

●

●●

●

● ●
●●

●●
●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●●
●

●

●

●●●●

●

●
●

● ●

●

●

●

●
●

●

●
●

●

● ●
●

●
●

●● ●●
●●

●●
●●●

●

●

●●

●

●

●●
●●●●

●●

●

●

●
●●

●●●
●

●

●●●

●

●

● ●

●●●

●

●●● ●●●●●

●

●

●

●

●●

●

●

●

●●●
●

●

●

●

●
●

●●
●
●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●●
●

●●●
●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

● ●

●

●●
● ●

●
● ●

●

●
●

●●
●

●●
●

●

●
●

●

●
●

●

●

●

●

●
●●

●
●

●●

●

●
●

●

●
●

●●
●

●

●

●●●●●

●

●

●

●
●

●●
●

●

●

●
●●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●●●
●●

●

●

●

●

●

●

●
●●

●●

●

●
●●●

●

●

●

●

●
●

●●

●

●

●

●
● ●

●

●

●

●

●●

●

●●● ●● ●

●
●

●
●●

●

●

●

●

●●

●
●

●● ●

●
●

●

●

●

●

●

●

●●

●

●●
●

●

●●

●

●
●
●●

●

●
●

●

●

●

●●

●
●

●●

●●

●●
●

●

●

●
●

●

●

●
●

●

●

●
●

●●
●

●
●

●
●

●● ●
●

●

●●
●

●●●●
●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●●

●

●

● ●

●

●

●
●

●

●

●●●●

●

● ●

●

●

●

●

●●
●

●

●

●

●

●
●

●●

●

●
●●
●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●●
●

●

●

●

●
●

●

● ●

●
●●●

●
●

●

●
●

●
●●

●

●

●
● ●

●

●

●
●●●

●●
●●

●

●
● ●

●

●

●●●
●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●● ●●

●

●●
●

●
●

●
●●
●●

●
●

●

●

●
●●

●

●

●
●

●

●

●
●

●
●

●
●●

●●

●

●● ●●
●

●
● ●
● ●●

●

● ●

●

●

●

●

●●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●●

●

●●

●

●
●

●●
●●

●

●

●

●

●
●

●
●

●

● ●

●

●

●●
●

● ●

●

●

●

●

●

●

●

●●●
●
●

●

●

● ●
●

●

●

●
● ●

●
●

●

●
●

●

●

●

●
●

●●●

●

●●●

●

●●

●

●

●

●

●

●
●

●●
●●

●
●

●

●●
● ●●

●●

●

●

●

●

●

● ●
●

●

●●
●●

●●
●

●●

●

●
●
●

●
●●

●
●

●

●●
●
●●

●

●
●●●●

●

●

●●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●
● ●

●

●●

●

●

●
●

●
●●

●

●

●

●●

● ●

●
●●●●

●

●
●

●

●

●

●●

●

●

● ●

●

●
●

●

●
●
●

●
● ●

●

●
●●

●●

●
●

●●
●
●
●

●

●
●●

●
●●

●●

●

●
●

●

● ●
●●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●●●● ●
●

●
●

●
●

●

●

●

●

●

●
●●●

●

●●

●

●

●

●

●

●
●

●●
●

●●
●

●
●

●
●

●
●

●

●
●●●

●

●

●
●

●

●

●

●●

●

●

●

●●●

● ●

●●

●
●

●●●● ●

●
●

●

●
●

●
● ●

●

●
●

●●
●

●

●
●●●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●●●●●●
●● ●

●

●●

●

●
●●

●

●●
●

●
●

●
●

●

●●
●

●

●

●
●

●

●

●
●

●●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●● ●

●

●

●

●

● ●
●

●
●

●
●●●

●

●●
●●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●
●

●

● ●
●

●
●

● ●

●

●●●●●

●

●

●

●●●●
●

●

●●
● ●

●●

●

●

●
●

●

●●

●●

●

●
●●

●

●

●
●

●

●

●

●

●

●●●●
● ●●
●

●

●●

●

●
●●

●●

●

●
●●

●

●
●

●

●
●
●●

●
●

●

●

●●
●

●

●●
●●●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
● ●

●● ●
●●

●
●
●●●
●

●

●
●

●
●

●●
●

●

●
●● ●

●●
●

●●
●

●

●
●
●

●●

●

●

●

●

●

●
●●

●
●

●
●●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●
●

● ●
●

●
●

●●
●

●

●●

●

●●●

●
●

●
●

●
●

●
●

●
●

●

●●

●

●
●

●
●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●●●● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●
●●●

●
●

●
●

●

●
●●

●
●

●

●

●
●
●
●

●

●
●

●

●
●●●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●● ●

● ●

●

●
●

●

●●
●

● ●●●
●

●

●

●
●

●
●● ●

●

●

●
●

● ●

● ●● ●●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●● ●●●

●

●●

●

●

●

●
●

● ●
●

●● ●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●●●

●

●● ●
●

●

●

●

●●

●

●

● ●

●
●

●
●●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●
●

●

●

●

●

●
●

●

●
●●

●

●
●

●●●●
●

●

●

●

●● ●
●●

●

●

●●

●
●●●

●

●

●●
●

●
●
●
●

●

●●

●
●

● ●●
●

●
●

● ●●
●

●

●

●● ●●●
●●

●

●

●
●

●

●

●●

●●

●●●
●

●

●

●

● ●

●

●●

●

●

●●

●

●
● ●

●

●●●●
●●●

●
●●

●

●

●●

●●●
●●
●

●

●

●

●
● ●

●

●

●

●

●

●●●

●

●●
●●●
●

●

●
●

●

●

●
●
●
●

●

●

●
●

●

●

●

●

●
●

●●

●

● ●

●●
●

●

●●
●

●●
●

●
● ●

●

●

●

●

●●

●

●
●
●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●
●●

●

●●

●
●

●
●

●

●●●●

●

●
●●●

●●
●

●●
●

● ●●

●●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●●

●

●●

●

●

●

●
●

●
●

●

●

●
●
●●● ●●

●
●

●
●

●

●

● ●

●

●

●

●
●●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

● ●●

●
●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

● ●

●
●

● ●

●
●

●●

● ●

●
●

●

●
●

●●
●

●

●
●

●

●
● ●

●
●●●

●
●●

● ●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●●●
●●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●●

●

●
●●

●
● ●

●

●
●

●●●●●
●

●

●
●

●

●
●
●

●

●

●

●

●
● ●

●
●

●●

●

●

●

●
●
●●●
●●

●

●

●●● ●●

●
●●

●
●

●

●

●

● ●

●

●

●

●
●

●

●●
●

●
●

●
●

●

●

●●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●●
●

●

●

●

●●
●●

●

●●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●●
●

●

●

●

●

●
●

●●

●

● ●
●●●

●
●

●●
●

●

●

●

●

●

●
●

●

●
●●
●

●

●

●

●

●
●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●●

● ●●

●

●
●●

●

●
●

●

●

●●

●

●

●●●

●
●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●●
●

●●

●

● ●

●

●
●

●●

●●

●

●●
● ●

●
●

●

●●

●

●

●
●

●

●

●

●

●
●

●●
●

●●●
●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●●
●

●
●

●●
●●

●

●

●●

●●

●●

●

●
●
●

●

●
●

●

●
●●

●
●

●
●

●

●

●

●
●●

●

●
●●

●

●●●
●

●●●●●
●

●
●

●
●

●●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●● ●
●

●

●

●

●
●

●

● ●●

●

●●●●●

●

●
●

●

●
●●

●

●

●
●

●

● ●

●

●

●

●

●

●●●●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●●●

●

●●

●

●

●

●

●
●

●
●●

●

●●

●
●

●
●●

●●

●

●●

●

●●●●
●

●●

●

●

●
●

●

●
●

●
●●●

●

●●

●

●

●

● ●●

●

●
●●

● ●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●●●

●

●
●

●

●

●●

●
●

●

●●

●

●●
●

●
●

●

●

●●
●●●

●

●
●●

●
●●● ●●

●
●

● ●

●
●●

●●
●

●

●●

●

●

●●
●●

●

●

●

●

●●

●

●

●
●

●
●

● ●●

●

●●

●

●
●

●●

●
●

●

●
●

●

●

●

●●●●

●

●

●

●

●

●●
●● ●

●

●

●

●
● ●

●

●
●●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●●

●

●●

●

● ●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●
●

●

●
●

●

●

●●●

●
●

●●

●

●

●

●

●

●
●

●●●●●
●

●

●

●

●

●

●●
●●

●
●

● ●● ●● ●●●
●●

●

●

●
●

●

● ●
●

●●
●

●

●

●
●

●
●

●

●●●
●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●
●
●

●
● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●

● ●●
●

●

●

●●
●

●
●

●●
●

●
●

●

●

●

●●
●
●
●

● ●
●●

●

●

●

●

●●
●

●
●

●

●
●
● ● ●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●
●●●
●

●

●●

●

●

●

●

●
●●
●●●

●

●

●

●

●

●●

●
●●

●

●

●

●

● ●●●
●

●

●●
●

●

●

●
●

● ●●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●● ●●

●●

●

●

●

●●

●●
● ●●
●

● ●●

●

●

●

●●●

●

●●
●

●
●

●

●

●●
●●

●

●

●
●●

●●

●

●

●

●
●

●
●●

●● ● ●
●●

●

●
●

●
●

●
●

●

●

●

●●
●

●●

●
●●

●

●

●

●

●●

●●
●

●●● ●
●

●

●

●●

●

●●
●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●
●
●●●●

●
●
● ●

●
●
●

●●●
● ●
●
●

●

●●

●

●●●●
●●

●

●

●●●
●

●

●
●

●

●
●●
● ●

●

●●

●

●●

●

●
●

●

●

●●

●
●

●

●

●●●
● ●

●●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●
●●●

●
●●

●

●

●
●

●

●
● ●

●

●

●

●

●●● ●

●

●

● ●●

●

●●

●

●●

●

●●
●

●

● ●●●
●●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●●●●●

●

●

●

●

●

●

●●
●
●●●●●●●●●
●

●
●

●●
●

●●

●

●
●

●

●

●●●●
●●

●

●

●

●

●
●

●

●●●●●●●
●●

●

●●
●

●

●
●

●●

●

●

●

●

●● ●

●

●

●

●

●

●
● ●

●

●
●

●

●

●●

●

●

●●
●

● ●

●

●
●

●●
●

●
●●
●

●
●

●

●

●● ●

●

●
●

●
●

●●
●

●
●
●

●

●
●

●

●
●●●

●

●
●

●

●
●●●●

●●

●

●

●●●
●●●●●

●
●●

●

●

●

●
●

●●

●

●
●●● ●●

●

●
●

●●
●
●

●

●

●●
●●
●●
● ●

●
●

●

●
●

●●
●

●

●

●● ●●●●
●

●
●●●
●

●

●

●●●

●

●●

●

●
●●

●

● ●●

●

●
●

●
●

●

●

●

●

●

●
● ●

●
●●●

●

●
●

●
●

●●
●

● ●

●
●

●●

●
●

●●●

●●

●
●●●

●

●●
●●

●

●

●

●

●

●●●
●●

●●
●

●●●
●

●

●

●

●●

●

●

●
●●

●

●●●●
●●

●
●

●●●

●

●

●

●●

●
●

●

●

●

●●●
●

●

●

●●

●
●

●●●●
●

●

●

●

●

●

●

●●

●
●●● ●●

●●
●●

●

● ●

0 100 200 300 400 500

0
10

0
20

0
30

0
40

0
50

0

predicted FPKM

tr
ue

 F
P

K
M

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●●

●

●

●

●

●

●

●
●

●

● ●●●

●

●

●

●●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●
●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

● ●
●

●●

●●
●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

● ●
●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●
●

● ●

●

●
●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●
●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●
●

● ●

●●
●

●
●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●

●

●

●

●

●●
●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●●
●

●

●

●

●

● ●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

● ●
●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●●

●

●

● ●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

● ●

●●

●

●

●

● ●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

5 10 50 200 1000 5000

5
10

50
20

0
10

00
50

00

predicted FPKM

tr
ue

 F
P

K
M

(c) iReckon

Figure 4.12: Correlation between true and predicted transcript abundance in
FPKM for the set Annot. Left figures show plot of true FPKM
against predicted FPKM (including predicted FPKM values of
zero). Center figures show lower left rectangle of associated left
figure with true and predicted FPKM value below 500. Right
figures show plot of true FPKM against predicted FPKM in log-
scale (excluding transcripts with predicted FPKM value of zero).

97

Recovering transcripts with delayed column generation

In the previous two benchmarks, we evaluated the performance of our regularized
least squares model on a restricted set of candidate isoforms, without additional
delayed column generation step. In this benchmark, we demonstrate the poten-
tial of our delayed column generation algorithm to recover isoforms containing
uncovered splice junctions. We used the same simulated expression data as in
the second benchmark, but this time we simulated only 2 million 75 bp paired-
end reads to obtain more expressed transcripts with at least one uncovered splice
junction. In the complete set of ∼6300 expressed transcripts, 118 transcripts had
at least one uncovered splice junction and could therefore not be constructed from
the associated splicing graph GS = (V,E). Like in the first benchmark, we only
used known exon boundaries and the mapped reads as input for CIDNE.

Given the solution of the first step (Phase I) with set T ∗ of isoforms with
non-zero estimated abundance and selected regularization parameter λ∗, we used
the following protocol for the delayed column generation step:

• An edge (vi, vj) was added to the set Enew if its inclusion allowed for ex-
planation of a segment cover ci = (c′i, c

′′
i , bi) from the set C̃ ⊆ C of segment

covers (excluding faux covers) not supported by any candidate isoform en-
coded in GS . In detail, (vi, vj) was added to Enew if the augmented splicing
graph G′ = (V,E∪(vi, vj)) contained a path p = 〈vk, . . . , vi, vj , . . . , vl〉 with
associated sequence of segments p′, such that ¯̀

p′,ci > 0, for some segment
cover ci ∈ C̃ with first(c′i) = sk and last(c′′i) = sl. With this set of potential
new edges, we started the delayed column generation algorithm with initial
basis T ∗.

• To facilitate the generation of new candidate isoforms, we used a slightly
reduced regularization parameter λ = 0.9 · λ∗.

• Every new candidate isoform had to explain at least one segment cover in
C̃ (kc = 1) and was allowed to use at most two edges from the set Enew

(ke = 2).

• Once the optimal solution was found, we constructed a candidate superset
by combining the set of candidates encoded in GS and all new isoforms
generated during the course of the delayed column generation algorithm
(not only the final solution). With this enhanced candidate set we repeated
the model selection to compute the final set of expressed isoforms. To
enhance the selectivity of our method, new candidates were assigned a
higher weight of λnew = 1.3 · λ in the regularized least squares model.

98

For performance reasons, the delayed column generation algorithm was applied
only for genes containing at most 50 segments.

Using this procedure, CIDNE successfully recovered ∼24.6% of the expressed
transcripts with at least one uncovered splice junction. Cufflinks, without anno-
tation, and IsoLasso, provided with exon boundaries, both did not recover a single
isoform, while SLIDE recovered ∼5%, also using annotated exon boundaries.

When provided with the same incomplete annotation as in the previous bench-
mark, Cufflinks recovered ∼22% and iReckon recovered ∼28% of the transcripts.
However, considering the subset of 42 transcripts not included in the annotation
provided to both tools, iReckon and Cufflinks recovered only one and two tran-
scripts respectively, whereas CIDNE recovered 17 (∼40%). We remark that for
each of the three isoforms recovered by iReckon and Cufflinks, another isoform
also containing the uncovered splice junction was found in the annotation pro-
vided to both tools. Thus, both tools did not recover any novel uncovered splice
junction.

Looking at the complete set of ∼6300 transcripts, the recall was increased
from ∼62.8% to ∼63.1% with an acceptable decrease in precision from ∼56.9%

to ∼56.5%, compared to the solution of Phase I.

Running time

All benchmarks were performed on a machine equipped with 2 Intel Xeon CPU
X5550 @2.67GHz Quad Core and 72 GB memory, and all tools with multithread-
ing support (Cufflinks, iReckon, SLIDE) were allowed to use up to 16 threads.

For the 75 bp dataset with 40 million paired-end reads in the first benchmark,
the running times of CIDNE (∼12 minutes), CuffLinks (∼21 minutes), IsoLasso
(∼22 minutes) and CLASS (∼73 minutes) were all within minutes to less than
two hours, while SLIDE required more than one week to complete. For the
second benchmark with incomplete annotation, we observed running times of ∼2

minutes for CIDNE, ∼3 minutes for Cufflinks and ∼175 minutes for iReckon. In
the last benchmark, the application of the delayed column generation algorithm
increased the running time from ∼2 minutes to ∼15 minutes. Note that the
current implementation of CIDNE uses only one thread, except for the pricing
ILP solver, which could also use up to 16 threads.

4.8 Conclusion

In this chapter, we presented our approach to the isoform inference and abundance
estimation problem using RNA-Seq data. We demonstrated that our delayed
column generation algorithm can be used to recover isoforms containing splice

99

junctions not covered by any mapped reads, without exhaustive enumeration of
candidate isoforms. Using this approach, CIDNE was able to effectively recover
unknown isoforms with uncovered splice junctions, clearly outperforming all other
tools on this task. For datasets containing a greater fraction of transcripts with
uncovered splice junctions, the impact of our delayed column generation step on
the overall performance will very likely be increased.

Our algorithm directly exploits paired-end read information and it can in-
corporate additional sources of information into the inference process such as
known or predicted TSSs and PASs and known transcript annotations, which can
improve the identification and quantification performance. We remark that al-
though the known exon boundary information provided to CIDNE constitutes an
advantage over Cufflinks and CLASS in the first benchmark, CIDNE also clearly
outperformed IsoLasso and SLIDE that were both provided with the same infor-
mation. Further, in the second benchmark CIDNE also outperformed Cufflinks
when both tools were provided with an incomplete annotation.

The presented ILP formulation for the pricing problem allowed us to imple-
ment several restrictions for the generation of new isoforms and it can be easily
adapted to modify the column generation strategy. For instance, we could extend
the search space to include also isoforms containing TSSs or TASs not included
in the sets T SS or PAS. In such a scenario, we could easily adapt the pricing
ILP formulation to charge an extra penalty when using such a new TSS or PAS.
Another possibility is to enforce certain properties of the new transcripts like,
e.g., the presence of a certain set of segments, a certain upper bound or lower
bound for the total number of exons or the transcript sequence length. These
kinds of restrictions allow for a controlled extension of the search space and the
integration of prior knowledge into the inference process.

Our current implementation employs a normal distribution of fragment
lengths, however, the model can also use any other distribution. Thus far, CIDNE
does not implement any correction of sequence-specific fragment biases due to
random hexamer priming [Hansen et al., 2010] and GC content [Benjamini and
Speed, 2012], or positional fragment biases [Bohnert and Rätsch, 2010], that pro-
duce non-uniform read mapping coverage along the transcript sequence. When
solving the regularized least squares problem on a given set of isoform candidates,
we can account for both types of biases by incorporating correction factors into
the computation of the adjusted segment cover lengths. In the same way, we
can also introduce correction factors for sequence-specific biases into the column
generation step. However, the pricing ILP requires further adaptions to integrate
positional bias correction also into the column generation algorithm.

In addition, there are further opportunities for improvement in the post-
processing stage by using more sophisticated methods to compute the final abun-

100

dance estimates for the set of predicted isoforms. A promising approach is the
application of some expectation maximization method, like IsoEM [Nicolae et al.,
2011], that operates on the level of individual mapped reads instead of segment
cover counts. Further, we plan to extend our implementation by some statistical
method to estimate confidence values to quantify the reliability of predicted iso-
forms and to obtain confidence intervals for the estimated abundances. Finally,
we will further analyze how the efficiency of the pricing step can be enhanced
by either improving the ILP formulation or by means of a different algorithm or
efficient heuristics.

4.9 Contributions

The algorithmic approach presented in this chapter has been developed by the
author and Dr. Stefan Canzar. Most of the implementation was performed by the
author, Dr. Stefan Canzar implemented parts of the pricing ILP and the piecewise
linear approximation model. Dr. David Weese provided some implementations
for the preprocessing of gene annotation data and read alignment data. All
benchmarks were conducted by the author.

Chapter

5 Solving The
Duplication-Loss
Alignment Problem With
Branch And Cut

In this chapter, which is based on and in parts recites our recent journal pub-
lication [Andreotti et al., 2013], we present our branch and cut approach to a
phylogenetic inference problem. The mathematical approach has been developed
in a joint project with Dr. Stefan Canzar, where most of the implementation was
performed by the author and a complexity proof was conducted by Dr. Stefan
Canzar exclusively.

5.1 Background

In the course of evolution, genomes are continually modified by mutations ranging
from single nucleotide mutations to genome-scale changes that can include the
duplication of a complete genome. These genome-scale events can be divided into
rearrangement operations that change the order of genes like inversions, trans-
positions and translocations and content modifying operations like insertions,
deletions or duplications of single or multiple genes. Since gene duplications are
a source of raw genetic material for the development of novel gene functions, they
are assumed to be particularly important for the evolution of eukaryotic species
[Hahn et al., 2007; Blomme et al., 2006; Cotton and Page, 2005; Ohno, 1970]
and the generation of biodiversity [Lynch and Conery, 2000]. In contrast, gene
loss through deletion or pseudogenization is a common fate of duplicated genes,
where one of the two identical gene copies subsequently accumulates deleterious
mutations [Hahn et al., 2007; Blomme et al., 2006; Cotton and Page, 2005; Ohno,
1970; Lynch and Conery, 2000]. In addition, gene loss is also considered an ad-
vantageous response to changing selective pressures according to the “less is more”
hypothesis by Olson [1999], supported by results reported in [Greenberg et al.,
2006; Wang et al., 2006; Koskiniemi et al., 2012]. The evolutionary importance of

102

duplication and loss events is further underlined by the very high estimated aver-
age rate of 0.01 per gene per million years for eukaryotes such as Homo sapiens,
Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, and Arabidop-
sis thaliana [Lynch and Conery, 2000]. Recent availability of fully sequenced
genomes of related species facilitates the study of large-scale differences in gene
complements originating from gene duplication and loss at an unprecedented res-
olution. A prominent example of a gene family that is continuously duplicated
and lost is transfer RNA (tRNA). In Escherichia coli, for example, the rate at
which tRNA genes evolve by duplication and loss events has been estimated to
be of the order of one per million years per genome per lineage [Withers et al.,
2006], and for Drosophila it was estimated to be 3-4 times higher than for pro-
tein coding genes [Rogers et al., 2010]. At the same time, studying the evolution
of tRNA is particularly challenging, as functionally equivalent tRNAs exhibit a
very high sequence similarity that impedes the distinction between orthologs, i.e.,
genes descending from a common ancestral gene through a speciation event, and
paralogs, i.e., genes created by a duplication event within the genome [Rogers
et al., 2010; Withers et al., 2006].

Still, the evolutionary principles and implications of the high duplication and
loss rate for tRNA genes and their considerable copy number variation, even
between closely related species, are not well understood and will be subject to
many future comparative genomics studies.

One key step towards this understanding is the inference of evolutionary his-
tories from available genomes of related extant species. This requires methods
to compare complete genomes and to infer an ancestral genome which, in the
case of a parsimony approach, implies a minimum number of evolutionary op-
erations. Given the genomes for a set of extant species and their phylogenetic
tree (species tree), the problem of inferring ancestral genomes that minimize the
overall number of evolutionary operations for the complete tree is known as the
small phylogeny problem.

Genome comparison is frequently addressed by the genome rearrangement ap-
proach where a genome is represented by linear or circular sequences of genes.
Often this sequence is signed such that every gene in the sequence is tagged by
a “+′′ or a “−′′, which represents its orientation in the genome. The genomic
distance between two genomes is then defined as the minimum number of rear-
rangement operations that are required to transform one genome into the other.
Another assumption usually made is that every gene occurs exactly once in each
genome, which can then be represented as a signed permutation. Although this
is often not realistic in a whole genome context, this restriction allows for the ap-
plication of polynomial time algorithms to compute the rearrangement distance
between two signed permutations [Hannenhalli and Pevzner, 1995; 1999], subject

103

to different rearrangement operations like inversions or the double-cut-and-join
operation [Yancopoulos et al., 2005]. In contrast, the problem of computing the
rearrangement distance between two genomes with duplicated genes is NP-hard
for almost all studied distance measures [Fertin et al., 2009].

In their recent work, Holloway et al. [2012] proposed a model that, in con-
trast to previous models, considers only the two content modifying operations:
duplication and loss. This restriction is particularly useful for the study of gene
families that evolve predominantly by these operations and where a model in-
cluding rearrangement operations may be inappropriate.

Due to this restriction to content modifying and gene order preserving oper-
ations, Holloway et al. proposed to formulate the problem of inferring the most
parsimonious ancestor, i.e., the median of two genomes, in the duplication-loss
model as an alignment problem. This so-called duplication-loss alignment prob-
lem is the problem of finding an optimal labeled alignment of two genomes. In
a labeled alignment, every unaligned gene is labeled either as a loss or as the
product of some duplication event in the evolutionary history from the common
ancestor. An optimal labeled alignment is a labeled alignment with minimal
summed cost of the implied evolutionary events.

As opposed to symmetrical distance measures like inversion distance or Ham-
ming distance, the asymmetrical operations duplication and loss are unambigu-
ously applied to one of the two sequences, which allows to infer an (almost1)
unique ancestral genome from a labeled alignment. The duplication-loss align-
ment problem is naturally related to the classical sequence alignment problem,
where only the symmetric operations substitution and insertion/deletion are al-
lowed. While the pairwise sequence alignment problem without duplication events
can be solved efficiently with the Needleman-Wunsch dynamic programming al-
gorithm [Needleman and Wunsch, 1970], Holloway et al. pointed out that no
algorithm is known to optimally solve the duplication-loss alignment problem,
though the complexity of the problem was not shown. Therefore, Holloway et al.
proposed an integer linear programming formulation.

We were able to prove that the duplication-loss alignment problem is NP-hard
[Andreotti et al., 2013]2. In another publication Benzaid et al. [2013] showed
that also the related problem of optimally labeling a given fixed alignment of two
genomes by duplications and losses is APX-hard and proposed a heuristic for the
duplication-loss alignment problem.

1 The only exception is discussed in Section 5.2.
2 The NP-hardness proof was conducted by Dr. Stefan Canzar.

104

New algorithm

Building on the work of Reinert et al. [1997] and Althaus et al. [2005] for the
multiple sequence alignment (MSA) problem, we present an exact branch and
cut algorithm that outperforms the algorithm of Holloway et al. by several orders
of magnitude. Our branch and cut algorithm is based on three classes of valid cuts
that can be separated efficiently. One class, the maximal clique inequalities with
duplication events, is closely related to the maximal clique inequalities for MSA
as defined in [Reinert, 1999] and can be separated in a similar way. The other two
classes of valid cuts, called lifted duplication cycle inequalities and duplication
island inequalities, are based on our new insights into the combinatorial structure
of duplication events.

Due to the immense performance gain, our algorithm can compute optimal
labeled alignments for pairs of longer and more distantly related genomes than
the algorithm by Holloway et al. Moreover, the performance of our algorithm en-
ables us to extend the model in order to solve a slightly restricted variant of the
median-of-three problem, asking for a genome that implies a minimal number of
operations in the evolution from its immediate ancestor to its two immediate de-
scendant genomes in a phylogenetic tree. This problem is of particular interest as
it presents the key component of the widely used Steinerization method [Sankoff
and Blanchette, 1997; Blanchette et al., 1997] to solve the small phylogeny prob-
lem towards a local optimum. After some initialization of the ancestral genomes
in a phylogenetic tree, the Steinerization method proceeds by repeatedly replac-
ing ancestral genomes with the median of the neighboring genomes in the tree,
until it reaches a local optimum. In a proof of concept study, we will demonstrate
that our median formulation, embedded in the Steinerization method, can reduce
the number of implied duplication and loss events in a complete phylogenetic
tree compared to the bottom-up heuristic proposed by [Holloway et al., 2012],
which uses only the pairwise labeled alignment method. Further, on simulated
instances, we can show that this reduced number of implied evolutionary opera-
tions is accompanied by an increased accuracy of predicted ancestral genomes.

5.2 The duplication-loss model for two species

5.2.1 Basic definitions

Throughout this chapter, we use the following basic definitions adopted from
Holloway et al. [2012].

We define a genome as a string over an alphabet Σ, whose characters represent
specific gene families. For two genomes G1 and G2, and a set O of evolutionary

105

operations, an evolutionary history , OG1→G2 is defined as a sequence of n oper-
ations from O transforming G1 into G2. Every operation oi, denoting the i-th
operation in OG1→G2 , is assigned a cost c(oi). Consequently, the cost of the com-
plete evolutionary history is defined as

∑n
i=1 c(oi). The genome G1 is called a

potential ancestor of G2 if there exists at least one evolutionary history OG1→G2 .
In this case, the cost c(G1 → G2) for transforming G1 to G2 is defined as the
minimal cost over all possible histories OG1→G2 . In the following section, we will
present our approach to the small phylogeny problem restricted to two species,
defined as follows:

Definition 5.1. Two Species Small Phylogeny Problem (2-SPP)
Given two genomes, G1 andG2, and a set of evolutionary operations O, determine
the potential common ancestor G∗ minimizing the cost c(G∗ → G1)+c(G∗ → G2)

Further, Holloway et al. restrict their evolutionary model to the following two
content modifying operations:

• A duplication of size k+1 on genome G copies a substring G[i . . i+k], called
the origin, to a location G[j . . j + k], called the target of the duplication.
Origin and target intervals must be disjoint.

• A loss of size k + 1 removes a substring G[i . . i+ k] from genome G.

As an additional restriction of the model, origin and target of a duplication must
be present as contiguous blocks in the genomes. This leads to the following
definitions of a visible history and a visible ancestor:

Definition 5.2. Visible history
An evolutionary history OG1→G2 is called a visible history and G1 a visible ances-
tor of G2 if no duplication in OG1→G2 is modified subsequently by inserting (by
duplication) or deleting (by loss) genes from its origin or target.

With a slight abuse of notation, we will use the term visible history also
for pairs of evolutionary histories (OG∗→G1 , OG∗→G2), from a potential common
ancestor G∗ to two genomes G1 and G2, if both histories OG∗→G1 and OG∗→G2

are visible. In this case, we call the common ancestor G∗ a visible ancestor of G1

and G2.
The restriction of the evolutionary model to order-preserving duplication and

loss operations and visible histories allows to formulate the Two Species Small
Phylogeny Problem of visible ancestors as an alignment problem, as shown
in [Holloway et al., 2012].

To obtain an alignment of two genomes G1 and G2, gaps (“−” /∈ Σ) can be
introduced into both genomes such that the resulting strings have the same length.

106

Each of the strings then corresponds to a row of the two-dimensional alignment
matrix A. Every column of A either matches two (ortholog) genes from Σ, or
aligns a gene G1[i] (resp. G2[i]) with a gap. A gene G1[i] (resp. G2[i]) that is
aligned to a gap must be either the product of a duplication in the evolutionary
history from a potential common ancestor G∗ to G1 (resp. G2) or part of a loss
in the evolutionary history from G∗ to G2 (resp. G1).

For a given alignment A, an interpretation of unmatched genes as products
of a sequence of duplication and loss operations is called a labeling of A. The
alignment together with this labeling is then called a labeled alignment. As
described by Holloway et al. and presented in Figure 5.1, there exists a one-
to-one correspondence between a labeled alignment of G1 and G2 and visible
ancestors of G1 and G2, with a single exception also depicted in Figure 5.1.

We are now ready to define the duplication-loss alignment problem as follows:

Definition 5.3. Duplication-Loss Alignment Problem
Let the cost of a labeled alignment be the sum of the costs of the operations
implied by the labeling. Given two genomes, G1 and G2, compute a labeled
alignment of G1 and G2 with minimum cost.

5.3 Problem formulation and valid inequalities

We begin with a graph-theoretical representation of the duplication-loss align-
ment problem, which is then formulated as an ILP, similar to the one proposed
by Holloway et al. Afterwards, we present three classes of valid inequalities that
lead to an efficient branch and cut algorithm.

5.3.1 Graph-theoretical formulation

Given two genomes, G1 and G2, the associated complete alignment graph
G ′ = (V 1 ∪ V 2, E,H) is a complete bipartite graph with vertices
V ` = {v`j | 1 ≤ j ≤ |G`|}, ` ∈ {1, 2} (see Figure 5.2). A vertex v`j ∈ V rep-
resents gene G`[j] and undirected edges {v1

i , v
2
j} ∈ E represent the alignment of

genes G1[i] and G2[j]. For some alignment A of genomes G1 and G2, an alignment
edge {v1

i , v
2
j} is said to be realized if A aligns gene G1[i] with G2[j]. Every edge

{v1
i , v

2
j} is assigned a cost ci,j, representing the cost to align the corresponding

genes. For the evolutionary model in the duplication-loss alignment problem, the
cost of alignment edges between genes from the same gene family is zero and
alignment edges between genes of different gene families have infinite cost. The

107

A B C D

E

F

A B D F A B

L
L

G1 :

G2 :
G∗ : ABCDEF

A B C E

E

F

A B D F A B

L
L

G1 :

G2 :

G∗ : ABCDEF

G∗ : ABDCEF

or

Figure 5.1: Correspondence between a labeled alignment of genomes G1 and
G2 and visible ancestor G∗. In the top labeled alignment, gene C
in G1 and gene E in G2 are labeled as losses. This implies that a
visible ancestor G∗ of G1 and G2 contained both genes and that
gene C was lost in the evolution from G∗ to G2, whereas gene E was
lost in the evolution from G∗ to G1. Additionally, the rightmost
occurrence of genes A and B in G2 is labeled as the product of
a duplication of the leftmost occurrence of genes A and B during
evolution G∗ to G1. Hence, the rightmost genes A and B in G2

are not contained in the ancestral genome, which can therefore be
uniquely determined as ABCDEF. The bottom labeled alignment
presents the only situation where no unique ancestral genome can
be inferred. If two genes G1[i] and G2[j] are labeled as gene losses,
their order in G∗ can be uniquely determined only if the alignment
contains a pair of matched genes G1[k] and G2[l], with either k > i

and l < j or k < i and l > j.

set H of directed edges contains an edge (v`i , v
`
i+1) to connect every pair of con-

secutive genes G`[i] and G`[i + 1] within the same genome G`. The subgraph
G ⊆ G ′, obtained by removing all alignment edges with infinite cost from G ′ is
called the alignment graph for G1 and G2.

Further, we define D` as the set of all possible duplications, and L` as the
set of all possible loss events for genome G`. The set of all possible duplications
is generated by identification of all pairs of non-overlapping identical substrings
in G`, each contributing two possible duplications with interchanged origin and
target. For a duplication d ∈ D` with origin G`[i . . i+k] and target G`[j . . j+k],
the functions origin(d) and target(d) are defined as origin(d) := [i . . i + k] and
target(d) := [j . . j + k]. Similarly, for a loss event l ∈ Li, removing substring
Gi[j . . j + k] from Gi, the function span(l) is defined as span(l) := [j . . j + k].

108

v21 v22 v23 v24 v25 v26 v27

v11 v12 v13 v14 v15

(a) complete alignment graph

v21 v22 v23 v24 v25 v26 v27

v11 v12 v13 v14 v15

(b) alignment graph

Figure 5.2: Complete alignment graph and alignment graph for genomes
G1 = ABCDF and G2 = ABDEFAB. Blue (directed) edges con-
nect vertices corresponding to consecutive genes in each genome,
and (undirected) alignment edges connect vertices for genes in G1

to vertices for genes in G2. The complete alignment graph contains
an alignment edge {v1

i , v
2
j} for all 1 ≤ i ≤ |G1| and 1 ≤ j ≤ |G2|.

For the duplication-loss model without substitutions, the alignment
graph (b) contains an alignment edge {v1

i , v
2
j} only if G1[i] = G2[j].

The cost of every evolutionary operation is denoted by cd for every duplication
d ∈ D1 ∪D2 and cl for every loss l ∈ L1 ∪ L2.

Valid labeled alignments

In order to be valid, every labeled alignment must satisfy the following three
conditions:

First, only certain pairs of alignment edges can be realized simultaneously. In
a graphical representation of the alignment graph, as shown in Figure 5.2, a pair
of alignment edges is incompatible if they share a common endpoint or if they
are crossing. The first case implies a gene being aligned to two genes whereas the
second case violates the co-linearity (order preserving) property of an alignment.
Thus, two alignment edges e1 = {v1

i , v
2
j} and e2 = {v1

k, v
2
l } are incompatible if

and only if either i ≤ k and l ≤ j, or i ≥ k and l ≥ j. The set of all pairs of
incompatible alignment edges is denoted by I.

Second, a reasonable biological interpretation of duplications in an evolution-
ary history imposes a (chronological) partial order “≤” on the set of duplications.
If the target of some duplication d1 overlaps the origin of a duplication d2 it
must hold that d1 occurred before d2, and thus d1 ≤ d2. Therefore, the antisym-
metry of partial orders implies that every sequence of duplications d1, d2, . . . , dk
with overlapping targets and origins must not form a duplication cycle defined
as follows:

109

Definition 5.4. Duplication Cycle
A set of duplication events D ⊆ D` forms a duplication cycle if and only if there
exists a permutation d1, d2, . . . , dk of the elements in D such that

origin(di) ∩ target(di−1) 6= ∅, ∀ 2 ≤ i ≤ k and origin(d1) ∩ target(dk) 6= ∅ .
The third and last condition for a valid labeled alignment requires that every

gene in genome G` is either aligned to a gene in the other genome, lies in the
span of a loss l ∈ L`, or lies in the target of a duplication d ∈ D`. In the
ILP formulation presented in the next section, each of these three conditions is
captured by a class of constraints.

5.3.2 Initial ILP formulation

In the remainder of this chapter, we restrict the model such that loss events are
limited to single genes like in the model proposed by Holloway et al. Thus, we can
use a simplified notation, where for every vertex v`i ∈ V `, the loss event lvi ∈ L`
denotes the loss of the single gene G`[i].

The three conditions for a valid duplication-loss alignment of two genomes
can be formulated in an ILP as follows. We introduce a binary variable:

• xi,j for every alignment edge {v1
i , v

2
j} ∈ E,

• yd for every possible duplication d ∈ D1 ∪D2,

• zv for every possible loss lv ∈ L1 ∪ L2.

Further, we denote by D∗ the set of all duplication cycles in D1 and D2. Using
these definitions, an optimal solution to the duplication-loss alignment problem
can be obtained by solving the ILP formulation (5.1)-(5.7).

min
∑

{v1
i ,v

2
j }∈E
ci,jxi,j +

∑
v∈V

cvzv +
∑

d∈D1∪D2

cdyd (5.1)

subject to xi,j + xkl ≤ 1 ∀{{v1
i , v

2
j }, {v1

k, v
2
l }} ∈ I (5.2)∑

d∈D
yd ≤ |D| − 1 ∀D ∈ D∗ (5.3)

zv`i
+

∑
{v`i ,v

¯̀
j}∈E

xi,j +
∑
d∈D`

i∈target(d)

yd = 1 ∀1 ≤ i ≤ |G`|, ` ∈ {1, 2}, ¯̀ := 3− ` (5.4)

xi,j ∈ {0, 1} ∀{v1
i , v

2
j } ∈ E (5.5)

yd ∈ {0, 1} ∀d ∈ D1 ∪D2 (5.6)

zv ∈ {0, 1} ∀v ∈ V (5.7)

110

Constraints (5.2), (5.3) and (5.4) capture the three conditions for a valid
duplication-loss alignment in the same order.

A generalization of this ILP formulation to multi-gene loss events would con-
tain a variable for each of the O(|G1|2 + |G2|2) potential loss events. Further, in
the cover constraint (5.4), variable zv`i would be replaced with the sum of variables
z∗ for all loss events l∗ ∈ L` with i ∈ span(l∗).

The ILP (5.1)-(5.7) cannot be solved directly by a standard ILP solver on
realistic instance sizes, as it contains one constraint (5.3) for every duplication
cycle and the number of possible duplication cycles grows exponentially with the
genome length in the worst case. Therefore, initially the ILP is relaxed by remov-
ing all duplication cycle constraints and subsequently adding violated duplication
cycle inequalities as cutting planes during the ILP solving process. While this
approach seems to be very similar to the strategy of Holloway et al., the difference
is significant. Holloway et al. also drop the duplication cycle inequalities from the
initial ILP before they iteratively solve the ILP, add violated duplication cycle
inequalities, and re-solve it, until no more duplication cycle constraint is violated.
The important difference between the two approaches is that in every iteration,
Holloway et al. solve an ILP, which is computationally expensive. Further, in our
approach we do not add ordinary violated duplication cycle inequalities, as de-
fined by (5.3), but instead, we use a dominating class of cutting planes to obtain
a stronger LP-relaxation. In combination with two other classes of valid cutting
planes, which we introduce in the next section, we obtain a stronger LP relax-
ation that allows for pruning large parts of the branch and cut tree, resulting in a
much better practical performance compared to the approach by Holloway et al.

5.4 Valid cuts and separation

In the following sections, we introduce three classes of inequalities that are valid
for the duplication-loss alignment problem, and we describe how to efficiently
solve the separation problem for each of them. In the remainder, we let P denote
the convex hull of the feasible solutions to the ILP (5.1)-(5.7). Further, we define
the incompatibility graph H as an undirected graph that contains a vertex for
every binary variable and an edge for every pair of (incompatible) variables that
cannot both have value 1 in a feasible solution.

In the following lemma we state that P has dimension |E|+ |D1|+ |D2|. This
result will be used in Theorem 5.1.

Lemma 5.1. The dimension dim(P) of P is |E|+ |D1|+ |D2|.

Proof. As shown in [Nemhauser and Wolsey, 1988], the dimension of a polyhedron
defined by a linear system Ax ≤ b, A ∈ Rm×n,x ∈ Rn with equalities (explicit

111

and implicit) A=x ≤ b= and remaining inequalities A′x ≤ b′ has dimension
n− rank(A=). An inequality a>i x ≤ bi is called an implicit equality if a>i x∗ = bi
holds for every feasible solution x∗.

Our ILP formulation for the duplication-loss alignment contains exactly
one equality constraint (5.4) for every gene in G1 and G2, which belongs to
the system A=x ≤ b=. Obviously, the corresponding rows in A= are lin-
early independent as every row has a unique single non-zero entry for a loss
variable. Hence, it holds that rank(A=) ≥ |L1| + |L2|. It follows that
(|E| + |D1| + |D2| + |L1| + |L2|) − (|L1| + |L2|) = |E| + |D1| + |D2| is an upper
bound for dim(P). We can easily show that this bound is tight by constructing a
set of |E|+ |D1|+ |D2|+ 1 affinely independent points that are feasible solutions
to ILP (5.1)-(5.7). By setting exactly one duplication variable yd, d ∈ D1 ∪ D2

or exactly one alignment edge variable xe, e ∈ E to one and covering all remain-
ing uncovered genes by the associated loss variable we obtain |E| + |D1| + |D2|
affinely independent feasible solutions. Together with the feasible solution where
every gene is covered by its associated loss variable (no active alignment edge or
duplication) we have |E| + |D1| + |D2| + 1 affinely independent points that are
feasible for ILP (5.1)-(5.7), which proves the claim.

5.4.1 Lifted duplication cycle inequalities

The lifted duplication cycle inequalities are a class of constraints that dominate
the ordinary duplication cycle inequalities (5.3). Since the definition considers
duplications in only one of the two genomes, let D := D`, ` ∈ {1, 2}. This class
of constraints is based on a idea similar to the lifted mixed cycle inequalities for
multiple sequence alignment, introduced in [Althaus et al., 2005].

Given a set of duplications C ⊆ D, which is partitioned into sets C1, . . . , Ct,
the inequality ∑

d∈C
yd ≤ t− 1 , (5.8)

is valid for P if C satisfies the following two conditions:

(C1) For r = 1, . . . , t, all duplications in Cr are pairwise incompatible.

(C2) Every set {d1, . . . , dt}, where dr is chosen arbitrarily from Cr for r = 1, . . . , t,
forms a duplication cycle according to Definition 5.4.

Note that the original duplication cycle inequalities (5.3) define a special case
of (5.8) with every set Cr being a singleton. A constraint of type (5.8) is called
a lifted duplication cycle inequality if the set C also satisfies a third condition:

(C3) C is maximal with respect to properties (C1) and (C2), i.e., C cannot be
extended without violating (C1) or (C2).

112

Figure 5.3 shows an example of a fractional solution to the LP relaxation
of the naïve ILP (5.1)-(5.7) that can be cut off by a lifted duplication cycle
inequality (5.8).

A B C D A B C D A B C D

d1: 1/2 d2: 1/2

d3: 1/2 d4: 1/2 d5: 1/2 d6: 1/2

d7: 1

Figure 5.3: A feasible fractional solution to the LP relaxation of (5.1)-(5.7) that
is cut off by lifted duplication cycle inequalities. Numbers denote
for every duplication the value of the associated variable. The set of
duplications {d1, d2, d3, d5, d7} forms a lifted duplication cycle with
violated inequality yd1 + yd2 + yd3 + yd5 + yd7 ≤ 2 for the partition
C1 = {d1, d3}, C2 = {d2, d5}, and C3 = {d7}. The same holds for
the set {d1, d2, d4, d6, d7}. However, no ordinary duplication cycle
inequality is violated.

Even though the lifted duplication cycle inequalities lead to a tighter LP relax-
ation and a more efficient algorithm than ordinary duplication cycle inequalities,
they are in general not facet defining for P . To show this, consider a lifted du-
plication cycle where C is partitioned into at least three components C1, . . . , Ck.
Further assume there exists some duplication d′ that bypasses C1, meaning that d′

is incompatible to every duplication d1 ∈ C1, and every set {d2, . . . , dk−1}, where
dr is chosen arbitrarily from Cr, together with d′ forms a duplication cycle. Every
such duplication could be added to the lifted duplication cycle inequality associ-
ated to C, resulting in an inequality that is still valid for P and dominates the
lifted duplication cycle inequality. However, the efficient separation for a slight
relaxation of lifted duplication cycle inequalities, as presented below, makes this
class of inequalities particularly useful for our branch and cut algorithm.

Separation of lifted duplication cycle inequalities

Our algorithm for efficient separation of a slight relaxation of the lifted duplication
cycle inequalities is based on the following proposition:

113

Proposition 5.1. An inequality of the form (5.8) with C =
⋃t
i=1C

i, C ⊆ D

is a lifted duplication cycle inequality if and only if there exists a sequence of
non-empty intervals [a1 . . b1], [a2 . . b2], . . . , [at . . bt] such that for i = 1, . . . , t, the
following three properties hold:

(P1)
⋂
d∈Ci target(d) = [ai+1 . . bi+1] ,

(P2) ∀d ∈ Ci : origin(d) ∩ [ai . . bi] 6= ∅ ,

(P3) ∀d ∈ D \ C : target(d) ∩ [ai+1 . . bi+1] 6= ∅ →

origin(d) ∩ [ai . . bi] = ∅ ∨ ∃d′ ∈ Ci+1 : target(d) ∩ origin(d′) = ∅ ,

where [at+1 . . bt+1] := [a1 . . b1] and Ct+1 := C1.

We omit the proof of this proposition, which can be found in [Andreotti et al.,
2013].

Based on this characterization of lifted duplication cycles, we propose an al-
gorithm to separate a relaxation of the lifted duplication cycle inequalities where
all intervals [ai . . bi] in Proposition 5.1 are restricted to length 1. Let C denote
the set of all lifted duplication cycles fulfilling this property. The central com-
ponent of our algorithm is the construction of a directed, edge weighted graph
GC = (V,A,w) that allows us to reduce the separation of all lifted duplication
cycle inequalities in C to a series of shortest path computations.

Graph GC contains vertices v1, . . . , vn, one for every gene in the genome
of length n. For every pair of vertices vi and vj, we compute the set
D(i, j) := {d ∈ D | i ∈ origin(d) ∧ j ∈ target(d)} of duplications whose ori-
gins contain the i-th gene and whose targets contain the j-th gene. If this set is
non-empty, GC contains an edge (vi, vj) with weight w((vi, vj)), defined as follows:

w((vi, vj)) := 1−
∑

d∈D(i,j)

y∗d .

Thus, for every lifted duplication cycle c ∈ C with associated singleton target
intervals c1, . . . , ct, the violation of the corresponding lifted duplication cycle in-
equality equals

t∑
j=1

∑
d∈Cj

y∗d − t+ 1 = 1−
t∑

j=1

(1−
∑
d∈Cj

y∗d) = 1−
t∑

j=1

w((vcj , vcj+1
)) ,

with vct+1 := vc1 . This implies that every lifted duplication cycle in C with violated
lifted duplication cycle inequality corresponds to some simple cycle in GC with a
total edge weight strictly less than 1. Therefore, we identify a lifted duplication

114

cycle in C with maximal violated lifted duplication cycle inequality by computing
for every vertex v ∈ GC, the shortest edge-weighted non-empty path to itself.

Obviously, the construction of GC and the computation of edge weights can
be done in time O(|D|n2) and space O(n2). Since constraint (5.4) implies non-
negativity of all edge weights, we can use Dijkstra’s algorithm to compute the
shortest paths. As graph GC has O(n) vertices, every call of Dijkstra’s algorithm
runs in time O(n2). Therefore, by calling Dijkstra’s algorithm once for each of
the n vertices, the shortest cycle in GC can be computed in time O(n3) and space
O(n2).

5.4.2 Maximal clique inequalities

The second class of valid inequalities, called maximal clique inequalities, is a
generalization of constraints (5.2) from pairs of incompatible alignment edges
to maximal cliques in the incompatibility graph H. The definition and efficient
separation is similar to the maximal clique inequalities defined by Althaus et al.
[2005] for the multiple sequence alignment problem.

For the duplication-loss alignment problem, constraint (5.2) implies incom-
patibility between pairs of alignment edges while constraint (5.4) implies in-
compatibility between alignment edges, duplications and losses. Further, the
duplication cycle constraints (5.3) can imply incompatibility between pairs of
duplications if they constitute a duplication cycle of length 2. In the following,
only maximal cliques in the incompatibility graph are considered that contain at
least one alignment edge variable. Every such clique then corresponds to a set
K = KE ∪ KD ∪ KL, where KE ⊆ E, KD ⊆ D1 ∪ D2 and KL ⊆ L1 ∪ L2, such
that every two elements of this set are pairwise incompatible and KE 6= ∅ (see
Figure 5.4). If there exist no further alignment edges, duplications, or losses that
are in conflict with every element of K, the clique is maximal.

Obviously, two duplications d1 ∈ D1 and d2 ∈ D2 cannot be pairwise incom-
patible, as they do not overlap or induce a duplication cycle. Hence, for every
maximal clique K, either K ∩D1 = ∅ or K ∩D2 = ∅ holds.

Using this notation, the following maximal clique inequality is valid for P :∑
e∈KE

xe +
∑
d∈KD

yd +
∑
l∈KL

zl ≤ 1 . (5.9)

For every K with KL 6= ∅, this constraint is trivially fulfilled with equality
due to cover constraints (5.4). Therefore, we will restrict the following discussion
about strength and separation to maximal clique inequalities that do not contain a
loss variable, i.e., we assume KL = ∅. The following theorem states that for every
maximal clique with this property, the associated maximal clique inequality (5.9)
is facet defining for P .

115

G1

G2

1 1

1/2
1/2

1/21/21/2

1/2

Figure 5.4: Example of two violated maximal clique inequalities. Numbers de-
note values of the associated variables for the fractional solution.
One maximal clique with associated violated inequality is given by
the red alignment edges and the duplication event. A second max-
imal clique with violated associated inequality comprised of only
alignment edges is given by the three green alignment edges. All
cover constraints are fulfilled by loss variables wherever needed (not
shown).

Theorem 5.1. For every maximal clique K = KE ∪KD ∪KL with KE 6= ∅ and
KL = ∅, the maximal clique inequality (5.9) is facet defining for P .

Proof. We use the direct method and show that every maximal clique inequality
πT (x, y, z) ≤ 1 with F := {(x, y, z) ∈ P | πT (x, y, z) = 1} defines a facet of
P by constructing a set of dim(P) = |E| + |D1| + |D2| (Lemma 5.1) affinely
independent points (x∗,y∗, z∗) ∈ F as follows:

For every variable k ∈ KE ∪ KD, we create a point where k is active, all
remaining variables in K are inactive, and for all genes in G1 and G2 that are
not covered by k, the corresponding loss variable is also active. These points are
obviously in P , since no duplication cycle or alignment edge conflict can occur
and all cover constraints are fulfilled.

Since K is a maximal clique in H, for every alignment edge e ∈ E \K, there
must exist some variable inK that is not incompatible to xe. Otherwise, xe would
be incompatible to all variables in K, which would contradict the maximality of
K. By the same argument, for every duplication variable d ∈ D \ K, there
must exist some variable in K, such that the simultaneous activation of both
variables does not induce a duplication cycle or violate any cover constraint.
Therefore, for every alignment edge e ∈ E \K or duplication d ∈ D \K, we can
construct a feasible point by activating the corresponding variable together with
exactly one non-incompatible variable in K. Again we activate the associated
loss variables for all genes not covered by these two variables. Taken together,
we obtain a set of |D1| + |D2| + |E| = dim(P) points that lie in F and are
obviously affinely independent. As the activation of all loss variables (no active

116

duplication or alignment edge variables) constitutes a feasible solution (x′,y′, z′)

with πT (x, y, z) = 0 < 1, it follows that the maximal clique inequality defines a
proper face of P , which finally proves the claim.

Separation of maximal clique inequalities

The separation problem of maximal clique inequalities can be solved in a similar
fashion like for the multiple sequence alignment problem [Althaus et al., 2005].
As discussed above, the following separation procedure considers only maximal
cliques containing no loss variable and at least one alignment edge variable.

1 2

3 4
5

6 7

8 9

v21 v22 v23

v11 v12 v13

(a) alignment graph
1 2 3

7 8 9

4 5 6

(b) pairgraph

Figure 5.5: Example of a complete alignment graph for two genomes G1 and
G2 of length three (a) and associated pairgraph (b). The pairgraph
contains one vertex for every alignment edge in the complete align-
ment graph (vertex labels in (b) correspond to alignment edge labels
in (a)). Every path in the pairgraph from the source (vertex 3) to
the sink (vertex 7), e.g., 〈3, 2, 5, 4, 7〉, represents a maximal clique
of alignment edges in the incompatibility graph.

Adopting notation from Althaus et al., let

E(lb ↔ le,mb ↔ me)

denote the collection of all sets S ⊆ E such that

(a) all edges in S are pairwise incompatible,

(b) for each edge {v1
l , v

2
m} ∈ S, lb ≤ l ≤ le and mb ≤ m ≤ me ,

(c) S is maximal with respect to properties (a) and (b).

Similarly, for duplications we define

D`(l↔ m) := {d ∈ D` | [l . . m] ⊆ target(d) ∧ ` ∈ {1, 2}} .

117

Applying the same arguments as for the multiple sequence alignment problem,
maximal cliques in H can be characterized by the following proposition:

Proposition 5.2. A clique K = KE ∪KD in H with sets KE ⊆ E (considering
the complete alignment graph) and KD ⊆ D1 ∪D2 is maximal if and only if

KE ∈ E(lb ↔ le, 1↔ |G¯̀|), KD = D`(lb ↔ le) ,

for some 1 ≤ lb ≤ le ≤ |G`|, ` ∈ {1, 2}, ¯̀ := 3− `.

Using above characterization of maximal cliques, we are now able to present
a polynomial time algorithm to identify violated maximal clique inequalities.
This algorithm separates maximal clique inequalities that involve duplications in
D := D1. A symmetric argument applies for cliques containing duplications in
D2. Let n := |G1| andm := |G2| and without loss of generality assumem ≤ n. As
described in [Althaus et al., 2005], the algorithm performs two steps to compute
for all 1 ≤ lb < le ≤ n:

(a) KE ∈ E(lb ↔ le, 1↔ m) that maximizes
∑

e∈KE x
∗
e and

(b)
∑

d∈D(lb↔le) y
∗
d.

The corresponding maximal clique inequality is violated if∑
e∈KE

x∗e +
∑

d∈D(lb↔le)
y∗d > 1 .

Concerning (a), Reinert et al. [1997] introduced the pairgraph data structure.
Given the alignment graph G = (V,E,H) for genomes G1 and G2, the corre-
sponding pairgraph GP = (V̄ , Ē) is a n × m directed grid graph. A vertex v̄p,q
in row p and column q of GP corresponds to the (possibly missing) alignment
edge connecting vertices v1

p and v2
q in G. Every vertex v̄p,q in GP has up to two

outgoing edges, one vertical edge to vertex v̄p+1,q if p < n and one horizontal
edge to vertex v̄p,q−1 if q > 1. An example of a complete alignment graph with
associated pairgraph is depicted in Figure 5.5.

In case of a non-complete alignment graph, only a subset of all vertices
in GP , called essential vertices, corresponds to existing alignment edges in E.
For every path p = 〈v̄lb,me , . . . , v̄le,mb〉 in GP , the set of alignment edges asso-
ciated to essential vertices in p corresponds to exactly one element of the set
E(lb ↔ le,mb ↔ me). To identify the set KE ∈ E(lb ↔ le, 1↔ m) that maximizes∑

e∈KE x
∗
e, we assign to every essential vertex v̄p,q the weight x∗{v1

p,v
2
q}. Then, for

each of the n−1 possible values of lb, the longest path tree for source vertex v̄lb,m
is computed using algorithm Dag-Longest-Path (Algorithm 1, see page 64),
introduced in Section 3.2.3. Note that vertex weights can be easily transformed

118

into edge weights such that algorithm Dag-Longest-Path can be applied. Fi-
nally, the set KE ∈ E(lb ↔ le, 1↔ m) maximizing

∑
e∈KE x

∗
e can be obtained by

backtracking the longest path tree for source v̄lb,m, starting at vertex v̄le,1. The
weight of this path is exactly the value

∑
e∈KE x

∗
e. Since every longest path tree

can be computed in time O(nm), the total time complexity of step (a) amounts
to O(n2m).

The values (b) for all pairs i := lb, j := le can be computed in time O(n2) by
the following dynamic program: We define

D(i, j) := {d ∈ D | target(d) = [i, . . j]}, σi,j :=
∑

d∈D(i↔j)
y∗d, πi,j :=

n∑
k=j

∑
d∈D(i,k)

y∗d ,

and observe that σi,j = σi−1,j + πi,j. After computing the values πp,q for all
p = 1, . . . , n, q = p, . . . , n with the dynamic program outlined in Algorithm 3, we
can use this recurrence to compute the matrix σ with another simple dynamic
program depicted in Algorithm 4.

Algorithm 3 Calculate π

for p = 1→ n do
πp,n =

∑
d∈D(p,n) y

∗
d

for q = n− 1→ p do
πp,q = πp,q+1 +

∑
d∈D(p,q) y

∗
d

end for
end for

Algorithm 4 Calculate σ

for q = 1→ n do
σ1,q = π1,q

end for
for p = 2→ n do

for q = p→ n do
σp,q = σp−1,q + πp,q

end for
end for

Both dynamic programs have a time complexity of O(n2), hence the time com-
plexity to identify violated maximal clique inequalities is dominated by step (a)
which is O(n2m). Since m ≤ n, the separation problem of maximal clique in-
equalities can be solved in time O(n3).

5.4.3 Duplication island inequalities

With the last class of constraints, referred to as duplication island inequalities,
we can cut off fractional solutions, where every gene in a subset of one genome is
exclusively covered by duplications originating from within this set, as displayed
in Figure 5.6. As we show in Theorem 5.2, such a scenario implies a duplication
cycle according to Definition 5.4 and hence cannot correspond to a valid solution.
Therefore, in a valid labeled alignment, every set of genes must contain at least

119

one gene that is either aligned, labeled as a loss, or labeled as a duplicate of some
gene from outside the set. In the following, we consider only duplications in one
of the genomes G`, ` ∈ {1, 2} and define ¯̀ := 3 − `, n = |G`|, and m = |G¯̀|.
We present a formal definition and a separation algorithm for duplication island
inequalities. Our separation algorithm is based on a graph Ĝ = (V 1∪V 2, E,H,A),
which we obtain by introducing a set of additional edges A into the alignment
graph G = (V 1 ∪ V 2, E,H) as follows:

For every duplication d ∈ D`, we add an edge (u, v), where u is the vertex
representing the i-th gene in origin(d) and v is the vertex representing the i-th
gene in target(d), for all i = 1, . . . , | origin(d)|. In addition, we define D(u, v) as
the set of duplications d in D` that induce an edge (u, v) ∈ A. Now, for every
set S ⊆ V `, we denote by D(V ` \ S, S) the set of duplications that induce edges
spanning the cut (V ` \ S, S) in Ĝ, i.e.,:

D(V ` \ S, S) :=
⋃

(u,v)∈A:

u∈V `\S,v∈S

D(u, v) .

For every set S ⊆ V `, we define the associated duplication island inequality as:

∑
v∈S

zv +
∑
v∈S

m∑
k=1

x{v,v ¯̀
k}

+
∑

d∈D(V `\S,S)

yd ≥ 1 . (5.10)

The following theorem states that duplication island inequalities (5.10) are valid
for P .

Theorem 5.2. For every set S ⊆ V `, the associated duplication island inequal-
ity (5.10) is valid for P .

Proof. Assume, to the contrary, that the sum on the left hand side of inequal-
ity (5.10) is zero. We create graph Ĝ ′ by removing from Ĝ all alignment edges
with associated x-variable having value zero and all edges (u, v) ∈ A with yd = 0,
for all d ∈ D(u, v). Constraint (5.4) implies that every position in the genome
must be covered. Since, by assumption

∑
v∈S zv +

∑
v∈S
∑m

k=1 x{v,v ¯̀
k}

= 0, every
vertex v ∈ S must be incident to exactly one incoming edge in A. Due to the
additional assumption

∑
d∈D(V `\S,S) yd = 0, each of these incoming edges must

also originate at some vertex in S. Thus, after reverting all edges in Ĝ ′, we can
generate a walk of length greater than |S| that starts at an arbitrary vertex in S
and never leaves S. This implies a duplication cycle, and due to constraint (5.3)
the corresponding solution must be infeasible.

120

Separation of duplication island inequalities

We propose an algorithm to efficiently separate a slightly relaxed variant of con-
straint (5.10). Let α(d, S) denote the multiplicity of a duplication d in the cut-set
of a cut (V ` \ S, S), defined as:

α(d, S) := |{(u, v) ∈ A | u ∈ V ` \ S ∧ v ∈ S ∧ D(u, v) 3 d}| . (5.11)

Now, we can define the relaxed variant of a duplication island inequality as follows:

∑
v∈S

z∗v +
∑
v∈S

m∑
k=1

x∗{v,v ¯̀
k}

+
∑

d∈D(V \S,S)

α(d, S) · y∗d ≥ 1 . (5.12)

Our algorithm to determine whether a given (fractional) solution
(x∗,y∗, z∗) ∈ R|E|+|D

1|+|D2|+|V |
+ violates any relaxed duplication island in-

equality starts by selecting an arbitrary vertex s ∈ V `. The next step is the
construction of a graph Gs = (V `, Ã, w) that contains the vertices for all genes
in genome G`. Further, Gs has two subsets of directed edges Ã1 and Ã2 (i.e.,
Ã = Ã1∪ Ã2), where Ã1 contains an edge (u, v) of weight w(u, v) :=

∑
d∈D(u,v) y

∗
d,

for every pair of vertices (u, v) ∈ V ` × V ` with D(u, v) 6= ∅. The subset Ã2

contains an edge (s, v) of weight w(s, v) := z∗v +
∑m

k=1 x
∗
{v,v ¯̀

k}
, for every v ∈ V `

with v 6= s. According to the construction of graph Gs, for every subset S ⊂ V `

with s ∈ V ` \S, the weight of the cut (V ` \S, S) in Gs equals the sum on the left

A B C D A B C D A B C D

d1 : 1/2

d2 : 1/2 d3 : 1/2

d4 : 1/2d5 : 1/2

d6 : 1/2

Figure 5.6: A duplication island: The presented fractional values of the vari-
ables associated to duplications d1, . . . , d6 define a feasible solution
to the LP relaxation. In particular, no (lifted) duplication cycle
inequality is violated. This solution is cut off by duplication island
constraints.

121

hand side of the relaxed duplication island inequality (5.12), as shown below:∑
(u,v)∈Ã1∪Ã2:

u∈V `\S, v∈S

w(u, v) =
∑

(u,v)∈Ã1:

u∈V `\S, v∈S

w(u, v) +
∑

(s,v)∈Ã2:v∈S

w(s, v)

=
∑

(u,v)∈Ã1:

u∈V `\S, v∈S

∑
d∈D(u,v)

y∗d +
∑
v∈S

(
z∗v +

m∑
k=1

x∗{v,v ¯̀
k}

)

(5.11)
=

∑
d∈D(V `\S,S)

α(d, S) · y∗d +
∑
v∈S

z∗v +
∑
v∈S

m∑
k=1

x∗{v,v ¯̀
k}
.

Therefore, we can identify the set S∗ that minimizes the left hand side of
inequality (5.12) by computing a minimum s-t cut in Gs, for all s ∈ V `. We
compute this minimum cut by selecting an arbitrary vertex s ∈ V ` and solving
n− 1 maximum flow problems in Gs from source s ∈ V ` to every other vertex in
V ` \ s and another n−1 maximum flow problems from every vertex s′ ∈ V ` \ s to
vertex s in Gs′ . Each of the 2n− 2 maximum flow problems can be solved in time

O(n2

√
|Ã|), using Goldberg-Tarjan’s preflow push-relabel algorithm [Goldberg

and Tarjan, 1988]. Since |Ã| ≤ |D|n, the complete separation algorithm runs in
time O(n3.5

√
|D|) and space O(n2).

5.5 The duplication-loss model for three species

In this section we propose an extension of our branch and cut algorithm to solve
a slightly restricted version of the median-of-three problem. This problem is par-
ticularly interesting for the reconstruction of ancestral genomes in a phylogenetic
tree based on the Steinerization method [Blanchette et al., 1997]. Starting from
an initial assignment of ancestral genomes, this method iteratively improves the
evolutionary history by traversing the phylogenetic tree and re-inferring ancestral
genomes as the median of its immediate ancestor and its two descendants, until
it reaches a local optimum.

We begin with a formal definition of the median-of-three problem considered
throughout this section.

Definition 5.5. Median-of-Three Problem
Let x be a vertex in the phylogenetic tree whose parent (immediate ancestor) is
u and whose two children (immediate descendants) are v and w. Let G(u), G(v)

and G(w) be the inferred or known genomes of u, v, and w. Then, the median
problem is to infer the genome G(x) minimizing

c(G(u)→ G(x)) + c(G(x)→ G(v)) + c(G(x)→ G(w)) .

122

In the remainder, we will refer to the genomes G(u), G(v), G(w), and G(x)

as G1, G2, G3, and Gm, respectively. A graphical representation of the median
problem discussed throughout this section is depicted in Figure 5.7.

In contrast to the 2-SPP, every labeled alignment of G1, G2, and G3 must
correspond to an evolutionary history transforming G1 into G2 and G3 along two
generations.

Therefore, our duplication-loss model for the median-of-three problem em-
ploys additional constraints and variables to ensure that every solution corre-
sponds to an evolutionary history and all induced duplications are consistent.

Since the inference of the evolutionary history from Gm to G2 and G3 repre-
sents an instance of the 2-SPP, we model it the same way using alignment variables
x{v2

i ,v
3
j }, loss variables zvij , i ∈ {2, 3}, and duplication variables yd, d ∈ D2 ∪D3.

To express the evolutionary history transforming G1 into Gm, the model also
contains variables:

• x{v1
i ,v

2
j } for alignment of genes G1[i] and G2[j],

• x{v1
i ,v

3
j } for alignment of genes G1[i] and G3[j],

• ŷd, d ∈ Dm for duplication events in OG1→Gm ,

• ẑv1
j
, j = 1, . . . , |G1| for a loss of gene G1[j] in OG1→Gm .

Since we cannot directly determine a target region for a duplication d ∈ Dm in
the unknown genome Gm, we model d with origin in the ancestral genome G1

and target in G2 or G3 (see duplication d in Figure 5.7).
This implies a limitation of our model, as it can only capture duplication

events in the evolutionary history from G1 to Gm if the source is present in G1

and the target is conserved (visible) in either G2 or G3. Therefore, our model
can only infer visible histories where all duplications fulfill this limitation, and
hence, it solves only this restricted variant of the median-of-three problem opti-
mally. However, this limitation does not render our ILP formulation infeasible
on instances where the true evolutionary history contains such non-conserved
duplications. Instead, the predicted median might just not be an optimal solu-
tion to the median-of-three problem. On the other hand, the model allows for
a relaxation of the visible history restriction (see Definition 5.2) in a way that
a duplication d ∈ Dm can be inferred together with a subsequent modification
of the origin of d during evolution from G1 to Gm. This relaxation is possible,
as the origin of such a duplication is fully preserved (and hence visible) in G1,
regardless of subsequent modifications.

123

A B A C D

A B A C A B

A C A B A C B A B A C A B

ŷd = 1

x{v1
1
,v2

3
} = 1

yd′ = 1

G1

G2 G3

Gm

ẑv1
5
= 1

Figure 5.7: Illustration of four different types of variables used to express the
evolutionary history along two generations. Leftmost gene A in
G1 is retained in Gm, G2, and G3 (scenario (i)). Genes AB are
duplicated from G1 to Gm, modeled by duplication d with origin in
G1 and target in G3 (scenario (ii)). The rightmost gene A in Gm is
subsequently lost in G2. Genes AC are duplicated from Gm to G2

by duplication d (scenario (iii)). Gene D is lost from G1 to Gm.

5.5.1 Additional constraints

The pairwise alignment of genomes G2 and G3 is still correctly captured by con-
straints (5.2)-(5.7). Additionally, the initial occurrence of each gene in G2 and
G3 must be modeled such that a gene G`[i], ` ∈ {2, 3} either

(i) has already been present in G1 as G1[j],

(ii) arose from a duplication event d ∈ Dm from G1 to Gm, or

(iii) arose from a duplication event d′ ∈ D2 from Gm to G`.

Scenario (i) is expressed by an alignment of gene G`[i] to gene G1[j] and hence,
x{v1

j ,v
2
i } = 1. Scenario (iii) corresponds to a duplication event from the two

genome model, and therefore this scenario is captured by setting yd′ = 1. Scenario
(ii) can be captured in two ways, directly or indirectly. Assume a gene G`[i]

that originates from gene G1[j], which was duplicated in the evolutionary history
from G1 to Gm. The direct way to capture this situation is to cover gene G`[i]

by a duplication d1 ∈ Dm such that gene G1[j] lies in the origin of d1 and is
mapped to gene G`[i] in the target. Thus, the direct way is captured by setting
ŷd1 = 1. The indirect way is to align gene G`[i] to some gene G¯̀

[k], ¯̀ := 4 − `,
which itself originates from G1[j] by a duplication d2 ∈ Dm, directly captured
by ŷd2 = 1. Therefore, the indirect way corresponds to setting x{v`i ,v ¯̀

k}
= 1 and

124

ŷd2 = 1 simultaneously. To indicate this indirect relationship between gene G`[i]

and gene G1[j], we introduce a new variable ξ(v`i ,v
¯̀
k) which corresponds to the

product
x{v`i ,v

¯̀
k}

·
∑
d∈Dm,

v
¯̀
k∈target(d)

ŷd .

We express this product using the following three linear constraints:

ξ(v`i ,v
¯̀
k)+1 ≥ x{v`i ,v

¯̀
k}

+
∑
d∈Dm,

v
¯̀
k∈target(d)

ŷd , ξ(v`i ,v
¯̀
k) ≤ x{v`i ,v

¯̀
k}

and ξ(v`i ,v
¯̀
k) ≤

∑
d∈Dm,

v
¯̀
k∈target(d)

ŷd .

According to our model, for each gene G`[i] exactly one of the three cases (i),
(ii), or (iii) must apply. Therefore, for every gene G`[i], our model contains the
following constraint:

|G1|∑
j=1

x{v1
j ,v

`
i} +

∑
d∈Dm

v`i∈target(d)

ŷd +
∑
d∈D`

v`i∈target(d)

yd +

|G¯̀|∑
j=1

ξ(v`i ,v
¯̀
j)

= 1 . (5.13)

For each gene in G1 there exist only two possible cases. Either the gene was
lost in the evolutionary history from G1 to Gm or it is retained in Gm. The latter
is only assumed if the gene also appears in at least one of G2 or G3, captured by a
realized alignment edge. Therefore, for every gene G1[i], we introduce constraints

ẑv1
i

+

|G2|∑
j=1

x{v1
i ,v

2
j } +

|G3|∑
j=1

x{v1
i ,v

3
j } ≥ 1 , (5.14)

ẑv1
i

+

|G2|∑
j=1

x{v1
i ,v

2
j } ≤ 1 , (5.15)

ẑv1
i

+

|G3|∑
j=1

x{v1
i ,v

3
j } ≤ 1 , (5.16)

to ensure that exactly one of the two cases is realized. As a consequence, our
model does not capture the scenario of a gene in G1 that appears in Gm and is
subsequently lost in both evolutionary histories from Gm to G2 and G3. However,
since this scenario implies two loss operations, compared to a single loss operation
in the evolutionary history from G1 to Gm, it is always preferable for a median
not to contain such a gene.

Further, we have to ensure consistency of the alignments between different
pairs of genomes in the multiple alignment. In his polyhedral approach to the
multiple sequence alignment problem, Reinert [1999] showed that a selection of

125

alignment edges in the multiple sequence alignment is a trace (i.e., realizes a
valid alignment) if and only if it does not induce a mixed cycle in the associated
alignment graph G = (V,E,H). A mixed cycle in the alignment graph is defined
as a cycle that contains at least one directed edge of set H. Building upon these
results, Althaus et al. [2005] introduced the class of lifted mixed cycle inequalities,
which dominate the mixed cycles inequalities and can be separated in time O(n3

t),
where nt denotes the total length of all genomes.

Therefore, we add the violated lifted mixed cycle inequalities (5.17) to the
model, which we separate as proposed by Althaus et al. [2005] (details omitted).∑

{vji ,vkl }∈M

x{vji ,vkl }
≤ |M∩ E| − 1 ∀ lifted mixed cyclesM∈ G (5.17)

In addition to mixed cycle inequalities, Althaus et al. [2005] also define a
class of inequalities to enforce transitivity of alignment edges, meaning that for
every pair of realized alignment edges {vpi , vqj} and {vqj , vrk}, edge {vpi , vrk} must
be realized as well. Note, however, that for the considered case of alignment
edges with zero cost and strictly positive cost for duplication and loss events,
transitivity of the optimal solution is already implied after adding mixed cycle
inequalities to the model.

Finally, we have to eliminate inconsistent selections of alignment edges and
duplications d ∈ Dm that imply non-consecutive target regions as depicted in
Figure 5.8. This inconsistency is implied by simultaneous selection of a duplica-
tion d ∈ Dm with target region G`[k . . l] and an alignment edge {v1

i , v
¯̀
j}, such

that gene G¯̀
[j] lies between two genes G¯̀

[j′] and G¯̀
[j′′] that are both aligned to

the interval G`[k . . l]. Thus, G¯̀
[j′] and G¯̀

[j′′] are indirectly covered as products
of the same duplication event in the evolution from G1 to Gm. At the same time,
the alignment edge {v1

i , v
¯̀
j} implies the conservation of gene G1[i] in the evolu-

tionary history from G1 to Gm where it would be located inside the target region
of duplication d. This in turn implies the target region to be non-consecutive in
Gm. Therefore, for every such pair of duplication d ∈ Dm and alignment edge
{v1

i , v
¯̀
j}, we use the following inequality to cut off inconsistent solutions:

j−1∑
r=1

x{v`s,v ¯̀
r} +

|G¯̀|∑
r=j+1

x{v`t ,v
¯̀
r} + ŷd + x{v1

i ,v
¯̀
j}
≤ 3 k ≤ s < t ≤ l . (5.18)

5.6 Results

In the following two sections, we will evaluate the performance of our branch and
cut approach for the Two Species Small Phylogeny problem as well as its

126

A D

A B D

A

G1 :

G2 :

A B D

A B

G3 :

d
B

B

C

C

B

Figure 5.8: Pair of inconsistent duplication d ∈ Dm and alignment edge
{v1

4, v
3
5}. The presented solution corresponds to the median genome

Gm = ABDACB, which implies a non consecutive duplication of AB
enclosing the conserved gene C. Transitive alignment edges between
G1 and G3 are not shown.

extension to the Median-of-Three problem. All computations were performed
on a machine equipped with 2 Intel Xeon CPU X5550 @2.67GHz Quad Core and
72 GB memory.

5.6.1 Two species duplication-loss alignment

First, we compare the practical performance of our branch and cut algorithm,
referred to as DupLoCut, to the iterative ILP method by Holloway et al. [2012]
We implemented DupLoCut in C++ using CPLEX (version 12.4) [IBM, 2011] as
ILP solver, employing our problem specific cutting planes, and some graph data
structures and graph algorithms provided by the SeqAn library [Döring et al.,
2008], and the LEMON graph library [Dezs et al., 2011].

We compared our implementation to the implementation provided by the
authors of Holloway et al. for two sets of real-world genome instances also provided
by Holloway et al. The two sets contained the stable tRNA and rRNA contents
of 10 Bacillus and 6 Vibrionaceae lineages that were preprocessed as described
in [Holloway et al., 2012]. We applied both implementations to the set of all
45 Bacillus and 15 Vibrionaceae genome pairs. The average number of stable
tRNA and rRNA genes was ∼120 for the Bacillus and ∼140 for the Vibrionaceae
genomes. The average running time of the implementation by Holloway et al.
on the Bacillus instances was around 69 seconds, while DupLoCut required less
than 1.5 seconds; both implementations run with a single thread. For the set
of Vibrionaceae pairs, DupLoCut was able to find the optimal solution within
seconds on most instances using a single thread, whereas the implementation by
Holloway et al. required a couple of hours when using up to 10 threads. For two
pairs, it did not finish within two weeks of computation, whereas DupLoCut
solved all instances in less than one hour.

127

Simulation study

We performed a more detailed analysis on simulated data to evaluate the per-
formance of the iterative ILP approach and DupLoCut for varying factors like
genome length, evolutionary distance, and alphabet size. To eliminate side ef-
fects due to different programming language3 and implementations of the ILP
construction and the identification of violated duplication cycles, we compared
DupLoCut against our own implementation of the iterative ILP approach. In
addition, to reduce the immense running time of the iterative ILP approach, we
used a slightly stronger formulation containing all lifted duplication cycle con-
straints for cycles of length two, and one duplication island constraint for every
gene family g, containing all occurrences of g in the genome4.

For the simulation of genome pairs, we followed the strategy of Holloway et al.
and performed the following steps: First, we sampled a random sequence R of
length n from an alphabet of size α, where the symbols at each position were
independent and identically distributed. Second, we applied l random moves
(single gene loss or duplication event) to R, where the length of every duplication
was drawn from a Gaussian distribution with mean 5 and standard deviation 2.
The starting positions of source and target regions of duplication events and the
positions of loss events were uniformly distributed. The resulting sequence X
was then used as ancestor genome, and two extant genomes were generated by
applying l moves to X for each of them. Figure 5.9 shows average running times
for different settings of parameters n, l, and α, with 200 simulated instances for
each setting. For fixed ratios 2l/n = 0.2 and α/n = 0.5 (similar to the values
observed in Bacillus data [Holloway et al., 2012]) and different genome lengths
n, the running time of the iterative ILP increased drastically from less than one
second for n = 50 to more than 2700 second for n = 400. While our branch and
cut algorithm was roughly 10 times faster for length n = 50, the running time
advantage increased to a factor of more than 100 for n = 400. For fixed values
n = 100 and α = 50, the running time of the iterative ILP increased from 1.6
seconds for l = 5 moves to 547 seconds for l = 20 moves. The running time
advantage of the branch and cut algorithm increased from a factor of ∼18 for
l = 5 to a factor of ∼188 for l = 20. The effect of decreasing the alphabet size,
while keeping n = 100 and l = 10, was less pronounced for both algorithms.
However, while halving the alphabet size from 60 to 30 caused the running time
of the iterative ILP to increase by a factor of ∼16, the running time of the branch
and cut algorithm exhibited only a modest increase by a factor of ∼3.6, yielding
a running time advantage of factor ∼78 for α = 30.

3 Code provided by Holloway et al. written in Python
4 We found similar constraints in the source code provided by Holloway et al.

128

 0.01

 0.1

 1

 10

 100

 1000

 10000

50 100 200 400

s
e
c
o
n
d
s

n

BC

0.09

0.43

2.30

24.0

ILP

0.84

10.4

143

2731

(a) Effect of genome length

 0.01

 0.1

 1

 10

 100

 1000

 10000

5 10 15 20

s
e
c
o
n
d
s

l

BC

0.09

0.43

1.43

2.91

ILP

1.60

10.4

102

547

(b) Effect of genome distance

 0.01

 0.1

 1

 10

 100

 1000

 10000

30 40 50 60

s
e
c
o
n
d
s

α

BC

1.08
0.59

0.43
0.30

ILP

84.7

24.6

10.4
5.26

(c) Effect of alphabet size

Figure 5.9: Running time comparison between the iterative ILP method (ILP)
and our branch and cut algorithm (BC) on simulated data. (a)
Comparison for different genome lengths n = 50, 100, 200, 400

with ratios 2l/n and α/n fixed at 0.2 and 0.5. (b) Compari-
son for different number of moves l = 5, 10, 15, 20 using fixed
n = 100 and α = 50. (c) Comparison for different alphabet sizes
α = 30, 40, 50, 60 using fixed n = 100 and l = 10.

5.6.2 Median-of-three

In addition to the running time analysis, we conducted another experiment to
demonstrate how our median-of-three model can improve the quality of predicted
ancestral genomes in a phylogenetic tree.

We generated 5 balanced phylogenetic trees, each with 128 extant species. For
each internal node, the two descendant genomes were generated as in the pairwise
alignment benchmark. First, we generated a random genome of length n = 100

and alphabet size α = 50 at the root node. All other genomes along the tree were
generated by applying 5 random moves (single gene loss or duplication event) to
their immediate ancestor using the same model as in the previous section.

Following the Steinerization method, we first initialized the genomes of all

129

internal nodes bottom up by computing the optimal labeled alignments of their
two immediate descendants. Note that the so-called SPP-heuristic for the small
phylogeny problem on a species tree, as proposed by Holloway et al., stops after
this initialization step. Based on the initialized genomes, we applied 4 iterations
of re-optimization where we replaced the genome of every internal node by the
median of its three immediate neighbors. The root genome was re-estimated
by computing the optimal labeled alignment of its two immediate descendants.
Each round of re-optimization was also performed as a bottom-up traversal and
up to 16 independent vertices at the same depth were processed in parallel. The
running times for each tree were between 60 and 180 minutes.

Due to the limitation of our model, as discussed in Section 5.5, a newly derived
median can have a higher cost than the solution from the previous iteration if,
in the current iteration, the target of some duplication from G1 to Gm has been
disrupted in the descendent genomes. Deviating from the standard procedure, we
replaced a genome by the newly computed median even if it implied a higher cost.
Using this strategy, in our experiments we obtained more parsimonious solutions
and a higher prediction accuracy. A possible explanation for this observation is
that by our strategy we reduced the risk of getting stuck in a local minimum.
The total cost of the complete tree after each iteration, with respect to the cost
after initialization, is shown in Figure 5.10(a). For all 5 trees the total cost was
reduced by ∼25% after 4 iterations of re-optimization.

To analyze whether the cost reduction also implies a more accurate recon-
struction of ancestral genomes, we compared all predicted genomes to the true
genomes after each iteration. For this comparison, we used the cost of an optimal
duplication-loss alignment as a measure of distance. The average distance of all
ancestral genomes after each iteration is depicted in Figure 5.10(b). Note that the
total distance after initialization (init) corresponds to the (final) solution of the
SPP-heuristic, as proposed by Holloway et al. For all trees, the average distance
of the predicted genomes to the true genomes could be reduced by more than
60%.

5.7 Conclusion

In this chapter, we presented our approach to the duplication-loss alignment
problem based on an efficient branch and cut algorithm, involving problem specific
cutting planes and separation algorithms. In a running time benchmark on real
and simulated data, we could demonstrate that our branch and cut algorithm
outperforms the existing ILP-based approach by several orders of magnitude and
that this running time advantage increases with the length and the evolutionary
distance of the input genomes. Even for instances that are much harder than

130

Init 1 2 3 4
0.70

0.75

0.80

0.85

0.90

0.95

1.00

iteraton

re
la

tv
e

 c
os

t

(a) Total cost

Init 1 2 3 4
0

1

2

3

4

5

6

iteraton

av
er

ag
e

 d
is

ta
nc

e

(b) Average distance

Figure 5.10: Results of Steinerization method with median-of-three model on
five simulated phylogenetic trees with 128 extant species (a) Total
cost (number of implied duplication and loss operations for com-
plete tree) after each iteration of re-optimization, normalized by
the total cost after initialization. (b) Average distance (cost of op-
timal duplication-loss alignment) of all predicted genomes to the
true genomes after each iteration.

the Bacillus stable tRNA and rRNA content studied in [Holloway et al., 2012],
our algorithm can compute optimal labeled alignments within a few seconds on
a desktop PC. Hence, our algorithm offers the possibility of study more complex
genomes under the duplication-loss model of evolution without need for a compute
cluster.

In addition, the substantial performance improvement allowed us to formu-
late an extension of the model to three species. In a proof of concept study, we
used this formulation with the Steinerization heuristic for the small phylogeny
problem on simulated trees with 128 extant species. After only a few iterations,
we observed a considerable cost reduction for the complete trees and more accu-
rate predictions of ancestral genomes, compared to the SPP-heuristic proposed
by Holloway et al. These results suggest that considering more than only two
genomes at a time allows for much more accurate reconstructions of evolutionary
histories. Hence, this approach can further improve our understanding of the
evolutionary consequences and mechanisms of gene duplications and losses.

There are some open questions to be addressed in the future like, e.g., whether
and under which conditions the duplication island inequalities are facet defining
for our duplication-loss alignment ILP formulation. Another issue to be addressed
is the computational complexity of our median-of-three formulation as it does
not trivially follow from the hardness of the pairwise duplication-loss alignment
problem.

131

Further, our formulation allows for several extensions to capture operations
like inverted duplications and non-overlapping inversions. This requires a closer
analysis on how much these extensions change the structure of the ILP formula-
tion, how we must adapt our separation procedures, and whether we can identify
new valid inequalities for the modified formulation. In addition, the possibility to
assign individual costs to alignment edges, duplications, and losses, facilitates the
introduction of prior knowledge about probabilities of particular evolutionary op-
erations into the model. Moreover, due to the performance gain of our algorithm,
it might be also possible to relax the visual history condition by considering also
duplication events with a limited number of subsequent loss events within their
origin or target. As in this case the origin and target are still present as contigu-
ous regions the the genome, this involves only an increased number of duplication
variables, each weighted by a score reflecting the number of implied loss events.
This relaxation of the visible history restriction might be particularly useful to
capture the frequently observed scenario of one gene copy being lost shortly after
a duplication event.

132

Chapter

6 Closing Remarks

In this thesis, we demonstrated how linear programming and integer linear pro-
gramming can be applied to solve important problems related to bioinformatics
and computational biology, for which no efficient polynomial time algorithms are
known. We could show that our approaches are capable of solving biologically
relevant instances sufficiently fast for practical use and that they are at least
competitive to existing state-of-the-art approaches.

While the algorithms presented in the previous chapters already tackle the
most important use cases, another advantageous feature of our approaches is
their flexibility and adaptivity to solve modified variants of the problem. Such
adaptions can be used, for example, to introduce additional biological knowledge
into the algorithm or to capture specific properties of the analyzed data. For
each of our approaches, we already pointed out several interesting directions for
future extensions and adaptions that can be realized with relatively low effort.
Therefore, for each of the three problems, our approach is not merely just a final
solution to the defined problem, but rather a good starting point also for other
researchers to build upon in order to tackle related problems or even problems
from different scientific domains.

While the success of our approaches is predominantly based on the algorithmic
formulations, we also attached great importance to the implementation side by
writing efficient, stable, and portable C++ code and always using appropriate data
structures and algorithms for all data handling and manipulation tasks.

Finally, we remark that although the three studied problems originate from
different research fields, recently emerging multi-omics experiments, integrating
genome, transcriptome, and proteome data, will probably demand for combined
algorithmic solutions to bridge the gap between peptide identification and isoform
inference and abundance estimation in the near future. Again, for this task, the
flexibility and extensibility of our algorithms may provide a major advantage over
other existing methods.

134

Part III

APPENDIX

Appendix

A Declaration

I declare that this thesis is my own work and has not been submitted in any
form for another degree or diploma at any university or other institute of tertiary
education. Information derived from the published and unpublished work of
others has been acknowledged in the text and a list of references is given.

Sandro Andreotti
February 4, 2015

Appendix

B Curriculum Vitae

For privacy reasons, the curriculum vitae is not contained in the online version.

140

For privacy reasons, the curriculum vitae is not contained in the online version.

BIBLIOGRAPHY

Adams, M. D., Kelley, J. M., Gocayne, J. D., Dubnick, M., Polymeropoulos,
M. H., Xiao, H., Merril, C. R., Wu, A., Olde, B., Moreno, R. F., et al.
(1991). Complementary DNA sequencing: expressed sequence tags and hu-
man genome project. Science, 252(5013):1651–1656.

Aebersold, R. and Mann, M. (2003). Mass spectrometry-based proteomics. Na-
ture, 422(6928):198–207.

Alberts, B. (2007). Molecular Biology of the Cell. Garland Science, New York,
5th edition.

Althaus, E., Caprara, A., Lenhof, H.-P., and Reinert, K. (2005). A branch-and-
cut algorithm for multiple sequence alignment. Mathematical Programming,
105(2-3):387–425.

Althaus, E., Kohlbacher, O., Lenhof, H.-P., and Müller, P. (2002). A combi-
natorial approach to protein docking with flexible side chains. Journal of
Computational Biology, 9(4):597–612.

Andonov, R., Malod-Dognin, N., and Yanev, N. (2011). Maximum contact map
overlap revisited. Journal of Computational Biology, 18(1):27–41.

Andonov, R., Yanev, N., and Malod-Dognin, N. (2008). An efficient Lagrangian
relaxation for the contact map overlap problem. In Proceedings of the 8th
International Workshop on Algorithms in Bioinformatics (WABI), pages 162–
173. Springer-Verlag.

Andreotti, S. (2008). Fast de novo sequencing with mathematical programming.
Master’s thesis, Freie Universität Berlin, Germany.

Andreotti, S., Klau, G. W., and Reinert, K. (2012). Antilope - A Lagrangian
relaxation approach to the de novo peptide sequencing problem. IEEE Trans-
actions on Computational Biology and Bioinformatics, 9(2):385–394.

Andreotti, S., Reinert, K., and Canzar, S. (2013). The duplication-loss small
phylogeny problem: from cherries to trees. Journal of Computational Biology,
20(9):643–59.

142

Backes, C., Rurainski, A., Klau, G. W., Müller, O., Stöckel, D., Gerasch, A.,
Küntzer, J., Maisel, D., Ludwig, N., Hein, M., Keller, A., Burtscher, H.,
Kaufmann, M., Meese, E., and Lenhof, H.-P. (2012). An integer linear pro-
gramming approach for finding deregulated subgraphs in regulatory networks.
Nucleic Acids Research, 40(6):e43.

Bafna, V. and Edwards, N. (2003). On de novo interpretation of tandem mass
spectra for peptide identification. In Proceedings of the Seventh Annual Inter-
national Conference on Computational Molecular Biology, RECOMB, pages
9–18. ACM Press.

Balev, S. (2004). Solving the protein threading problem by lagrangian relaxation.
Lecture Notes in Computer Science, 2003:182–193.

Bartels, C. (1990). Fast algorithm for peptide sequencing by mass spectroscopy.
Biological Mass Spectrometry, 19(6):363–368.

Bauer, M., Klau, G. W., and Reinert, K. (2005). Multiple structural RNA align-
ment with Lagrangian relaxation. In Proceedings of the 5th Workshop on
Algorithms in Bioinformatics (WABI), pages 303–314.

Bauer, M., Klau, G. W., and Reinert, K. (2007). Accurate multiple sequence-
structure alignment of RNA sequences using combinatorial optimization.
BMC Bioinformatics, 8(1):271.

Beadle, G. W. (1945). Biochemical Genetics. Chemical Reviews, 37(1):15–96.

Behr, J., Kahles, A., Zhong, Y., Sreedharan, V. T., Drewe, P., and Rätsch,
G. (2013). MITIE: simultaneous RNA-Seq-based transcript identification
and quantification in multiple samples. Bioinformatics (Oxford, England),
29(20):2529–38.

Benjamini, Y. and Speed, T. P. (2012). Summarizing and correcting the GC
content bias in high-throughput sequencing. Nucleic Acids Research.

Benzaid, B., Dondi, R., and El-Mabrouk, N. (2013). Duplication-loss genome
alignment: complexity and algorithm. In LATA, volume 7810 of Lecture
Notes in Computer Science, pages 116–127. Springer Berlin Heidelberg.

Berget, S. M., Moore, C., and Sharp, P. A. (1977). Spliced segments at the 5’
terminus of adenovirus 2 late mRNA. Proceedings of the National Academy
of Sciences of the United States of America, 74(8):3171–3175.

143

Bern, M. and Goldberg, D. (2006). De novo analysis of peptide tandem mass
spectra by spectral graph partitioning. Journal of Computational Biology,
13(2):364–378.

Bertsch, A., Jung, S., Zerck, A., Pfeifer, N., Nahnsen, S., Henneges, C., Nordheim,
A., and Kohlbacher, O. (2010). Optimal de novo design of MRM experiments
for rapid assay development in targeted proteomics. Journal of Proteome
Research, 9(5):2696–704.

Bertsch, A., Leinenbach, A., Pervukhin, A., Lubeck, M., Hartmer, R., Baess-
mann, C., Elnakady, Y. A., Müller, R., Böcker, S., Huber, C. G., and
Kohlbacher, O. (2009). De novo peptide sequencing by tandem MS us-
ing complementary CID and electron transfer dissociation. Electrophoresis,
30(21):3736–3747.

Bertsimas, D. and Tsitsiklis, J. (1997). Introduction to Linear Optimization.
Athena Scientific, 1st edition.

Blanchette, M., Bourque, G., and Sankoff, D. (1997). Breakpoint phylogenies. In
Genome Informatics, pages 25–34. Univ. Academy Press.

Bland, R. G. (1977). New finite pivoting rules for the simplex method. Mathe-
matics of Operations Research, 2(2):103–107.

Blomme, T., Vandepoele, K., De Bodt, S., Simillion, C., Maere, S., and Van de
Peer, Y. (2006). The gain and loss of genes during 600 million years of
vertebrate evolution. Genome Biology, 7(5):R43.

Böck, A., Forchhammer, K., Heider, J., and Baron, C. (1991). Selenoprotein
synthesis: an expansion of the genetic code. Trends in Biochemical Sciences,
16:463–467.

Bohnert, R. and Rätsch, G. (2010). rquant.web: a tool for RNA-Seq-based tran-
script quantitation. Nucleic Acids Research, 38(suppl 2):W348–W351.

Bouckaert, R. R. (2004). Bayesian network classifiers in weka. Technical report,
University of Waikato, Department of Computer Science, Hamilton, New
Zealand.

Brenner, S., Johnson, M., Bridgham, J., Golda, G., Lloyd, D. H., Johnson, D.,
Luo, S., McCurdy, S., Foy, M., Ewan, M., Roth, R., George, D., Eletr, S.,
Albrecht, G., Vermaas, E., Williams, S. R., Moon, K., Burcham, T., Pallas,
M., DuBridge, R. B., Kirchner, J., Fearon, K., Mao, J., and Corcoran, K.
(2000). Gene expression analysis by massively parallel signature sequencing
(MPSS) on microbead arrays. Nature Biotechnology, 18(6):630–4.

144

Brett, D., Hanke, J., Lehmann, G., Haase, S., Delbrück, S., Krueger, S., Reich,
J., and Bork, P. (2000). EST comparison indicates 38% of human mRNAs
contain possible alternative splice forms. FEBS Letters, 474(1):83–86.

Canzar, S., Toussaint, N. C., and Klau, G. W. (2011). An exact algorithm for
side-chain placement in protein design. Optimization Letters, 5(3):393–406.

Caprara, A. and Lancia, G. (2002). Structural alignment of large-size proteins
via Lagrangian relaxation. In Proceedings of the Sixth Annual International
Conference on Computational Biology, RECOMB, pages 100–108, New York,
NY, USA. ACM.

Cawley, S., Bekiranov, S., Ng, H. H., Kapranov, P., Sekinger, E. A., Kampa, D.,
Piccolboni, A., Sementchenko, V., Cheng, J., Williams, A. J., Wheeler, R.,
Wong, B., Drenkow, J., Yamanaka, M., Patel, S., Brubaker, S., Tammana,
H., Helt, G., Struhl, K., and Gingeras, T. R. (2004). Unbiased mapping of
transcription factor binding sites along human chromosomes 21 and 22 points
to widespread regulation of noncoding RNAs. Cell, 116(4):499–509.

Chen, M. and Manley, J. L. (2009). Mechanisms of alternative splicing regulation:
insights from molecular and genomics approaches. Nature Reviews. Molecular
Cell Biology, 10(11):741–754.

Chen, P., Lepikhova, T., Hu, Y., Monni, O., and Hautaniemi, S. (2011). Com-
prehensive exon array data processing method for quantitative analysis of
alternative spliced variants. Nucleic Acids Research, 39(18):e123.

Chen, T., Kao, M. Y., Tepel, M., Rush, J., and Church, G. M. (2001). A dy-
namic programming approach to de novo peptide sequencing via tandem mass
spectrometry. Journal of Computational Biology, 8(3):325–337.

Chepelev, I., Wei, G., Tang, Q., and Zhao, K. (2009). Detection of single nu-
cleotide variations in expressed exons of the human genome using RNA-Seq.
Nucleic Acids Research, 37(16):e106.

Chi, H., Chen, H., He, K., Wu, L., Yang, B., Sun, R.-X., Liu, J., Zeng, W.-F.,
Song, C.-Q., He, S.-M., and Dong, M.-Q. (2013). pNovo+: de novo pep-
tide sequencing using complementary HCD and ETD tandem mass spectra.
Journal of Proteome Research, 12(2):615–25.

Chvátal, V. (1983). Linear Programming. W. H. Freeman and Company, New
York.

145

Clark, T. A., Schweitzer, A. C., Chen, T. X., Staples, M. K., Lu, G., Wang,
H., Williams, A., and Blume, J. E. (2007). Discovery of tissue-specific exons
using comprehensive human exon microarrays. Genome Biology, 8(4):R64.

Collet, G., Andonov, R., Yanev, N., and Gibrat, J.-F. (2011). Local protein
threading by mixed integer programming. Discrete Applied Mathematics,
159(16):1707–1716.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2001). Introduction
to Algorithms. The MIT Press, 2nd edition.

Cotton, J. A. and Page, R. D. M. (2005). Rates and patterns of gene duplication
and loss in the human genome. Proceedings of the Royal Society B: Biological
Sciences, 272(1560):277–283.

Croft, L., Schandorff, S., Clark, F., Burrage, K., Arctander, P., and Mattick,
J. S. (2000). ISIS, the intron information system, reveals the high frequency
of alternative splicing in the human genome. Nature Genetics, 24(4):340–1.

Dančík, V., Addona, T. A., Clauser, K. R., Vath, J. E., and Pevzner, P. (1999).
De novo protein sequencing via tandem mass-spectrometry. Journal of Com-
putational Biology, 6:327–341.

Datta, R. and Bern, M. (2009). Spectrum fusion: using multiple mass spectra for
de novo peptide sequencing. Journal of Computational Biology, 16(8):1169–
1182.

Davuluri, R., Suzuki, Y., Sugano, S., Plass, C., and Huang, T. (2008). The
functional consequences of alternative promoter use in mammalian genomes.
Trends in Genetics, 24(4):167–177.

de Queirós Vieira Martins, E., Pascoal, M. M. B., and Santos, J. L. E. D. (1999).
Deviation algorithms for ranking shortest paths. International Journal of
Foundations of Computer Science, 10(3):247–262.

Derti, A., Garrett-Engele, P., Macisaac, K. D., Stevens, R. C., Sriram, S., Chen,
R., Rohl, C. A., Johnson, J. M., and Babak, T. (2012). A quantitative atlas
of polyadenylation in five mammals. Genome Research, 22(6):1173–1183.

Dezs, B., Jüttner, A., and Kovács, P. (2011). Lemon - an open source C++
graph template library. Electronic Notes in Theoretical Computer Science,
264(5):23–45.

Di Giammartino, D. C., Nishida, K., and Manley, J. L. (2011). Mechanisms and
consequences of alternative polyadenylation. Molecular Cell, 43(6):853–866.

146

DiMaggio, P. A. and Floudas, C. A. (2007). De novo peptide identification via
tandem mass spectrometry and integer linear optimization. Analytical Chem-
istry, 79(4):1433–1446.

Dittrich, M. T., Klau, G. W., Rosenwald, A., Dandekar, T., and Müller, T. (2008).
Identifying functional modules in protein-protein interaction networks: an
integrated exact approach. Bioinformatics (Oxford, England), 24(13):i223–
31.

Döring, A., Weese, D., Rausch, T., and Reinert, K. (2008). SeqAn An efficient,
generic C++ library for sequence analysis. BMC Bioinformatics, 9(1):11.

Douglas, A. G. L. and Wood, M. J. A. (2011). RNA splicing: disease and therapy.
Briefings in Functional Genomics, 10(3):151–64.

Eichner, J., Zeller, G., Laubinger, S., and Rätsch, G. (2011). Support vector
machines-based identification of alternative splicing in Arabidopsis thaliana
from whole-genome tiling arrays. BMC Bioinformatics, 12:55.

Eng, J. K., McCormack, A. L., and Yates, J. R. (1994). An approach to correlate
tandem mass spectral data of peptides with amino acid sequences in a protein
database. Journal of the American Society for Mass Spectrometry, 5(11):976–
989.

Eppstein, D. (1998). Finding the k shortest paths. SIAM Journal on Computing,
28(2):652–673.

Eriksson, O., Zhou, Y., and Elofsson, A. (2001). Side chain-positioning as an in-
teger programming problem. In Proceedings of the First International Work-
shop on Algorithms in Bioinformatics, pages 128–141. Springer.

Fagnani, M., Barash, Y., Ip, J. Y., Misquitta, C., Pan, Q., Saltzman, A. L., Shai,
O., Lee, L., Rozenhek, A., Mohammad, N., Willaime-Morawek, S., Babak,
T., Zhang, W., Hughes, T. R., van der Kooy, D., Frey, B. J., and Blencowe,
B. J. (2007). Functional coordination of alternative splicing in the mammalian
central nervous system. Genome Biology, 8(6):R108.

Feng, J., Li, W., and Jiang, T. (2010). Inference of isoforms from short sequence
reads. In Research in Computational Molecular Biology, volume 6044 of Lec-
ture Notes in Computer Science, pages 138–157. Springer Berlin Heidelberg.

Fenn, J., Mann, M., Meng, C., Wong, S., andWhitehouse, C. (1989). Electrospray
ionization for mass spectrometry of large biomolecules. Science, 246(4926):64–
71.

147

Fertin, G., Labarre, A., Rusu, I., Tannier, E., and Vialette, S. (2009). Combina-
torics of Genome Rearrangements. Computational Molecular Biology. MIT
Press.

Fischer, B., Roth, V., Roos, F., Grossmann, J., Baginsky, S., Widmayer, P.,
Gruissem, W., and Buhmann, J. M. (2005). NovoHMM: a hidden markov
model for de novo peptide sequencing. Analytical Chemistry, 77(22):7265–
7273.

Fisher, M. L. (1985). An applications oriented guide to Lagrangian relaxation.
Interfaces, 15(2):10–21.

Forrest, A. R. and Carninci, P. (2009). Whole genome transcriptome analysis.
RNA Biology, 6(2):107–112.

Frank, A. and Pevzner, P. (2005). PepNovo: de novo peptide sequencing via
probabilistic network modeling. Analytical Chemistry, 77(4):964–973.

Frank, A. M. (2009). A ranking-based scoring function for peptide-spectrum
matches. Journal of Proteome Research, 8(5):2241–52.

Friedman, J., Hastie, T., Höfling, H., and Tibshirani, R. (2007). Pathwise coor-
dinate optimization. The Annals of Applied Statistics, 1(2):302–332.

Friedman, J. H., Hastie, T., and Tibshirani, R. (2010). Regularization paths
for generalized linear models via coordinate descent. Journal of Statistical
Software, 33(1):1–22.

Gabow, H. N., Maheshwari, S. N., and Osterweil, L. J. (1976). On two problems
in the generation of program test paths. IEEE Transactions on Software
Engineering, 2(3):227–231.

Garcia-Blanco, M. A., Baraniak, A. P., and Lasda, E. L. (2004). Alternative
splicing in disease and therapy. Nature Biotechnology, 22(5):535–546.

Geer, L. Y., Markey, S. P., Kowalak, J. A., Wagner, L., Xu, M., Maynard, D. M.,
Yang, X., Shi, W., and Bryant, S. H. (2004). Open mass spectrometry search
algorithm. Journal of Proteome Research, 3(5):958–964.

Goldberg, A. V. and Tarjan, R. E. (1988). A new approach to the maximum-flow
problem. Journal of the ACM, 35(4):921–940.

Gomory, R. E. (1958). Outline of an algorithm for integer solutions to linear
programs. Bulletin of the American Society, 64:275–278.

148

Greenberg, A. J., Moran, J. R., Fang, S., and Wu, C.-I. (2006). Adaptive loss
of an old duplicated gene during incipient speciation. Molecular Biology and
Evolution, 23(2):401–410.

Griebel, T., Zacher, B., Ribeca, P., Raineri, E., Lacroix, V., Guigó, R., and
Sammeth, M. (2012). Modelling and simulating generic RNA-Seq experiments
with the flux simulator. Nucleic Acids Research, 40(20):10073–83.

Grötschel, M., Lovász, L., and Schrijver, A. (1981). The ellipsoid method and its
consequences in combinatorial optimization. Combinatorica, 1(2):169–197.

Guttman, M., Garber, M., Levin, J. Z., Donaghey, J., Robinson, J., Adiconis, X.,
Fan, L., Koziol, M. J., Gnirke, A., Nusbaum, C., Rinn, J. L., Lander, E. S.,
and Regev, A. (2010). Ab initio reconstruction of cell type-specific transcrip-
tomes in mouse reveals the conserved multi-exonic structure of lincRNAs.
Nature Biotechnology, 28(5):503–10.

Haas, B. J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P. D., Bowden,
J., Couger, M. B., Eccles, D., Li, B., Lieber, M., Macmanes, M. D., Ott,
M., Orvis, J., Pochet, N., Strozzi, F., Weeks, N., Westerman, R., William,
T., Dewey, C. N., Henschel, R., Leduc, R. D., Friedman, N., and Regev,
A. (2013). De novo transcript sequence reconstruction from RNA-Seq using
the Trinity platform for reference generation and analysis. Nature protocols,
8(8):1494–512.

Hahn, M. W., Han, M. V., and Han, S. G. (2007). Gene family evolution across
12 Drosophila genomes. PLoS Genetics, 3(11).

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten,
I. H. (2009). The WEKA data mining software: an update. ACM SIGKDD
Explorations Newsletter, 11:10–18.

Hannenhalli, S. and Pevzner, P. A. (1995). Transforming men into mice (polyno-
mial algorithm for genomic distance problem). In 36th Annual IEEE Sym-
posium on Foundations of Computer Science, pages 581–592.

Hannenhalli, S. and Pevzner, P. A. (1999). Transforming cabbage into turnip:
polynomial algorithm for sorting signed permutations by reversals. Journal
of the ACM, 46(1):1–27.

Hansen, K. D., Brenner, S. E., and Dudoit, S. (2010). Biases in Illumina tran-
scriptome sequencing caused by random hexamer priming. Nucleic Acids
Research, 38(12):e131.

149

Hardcastle, T. J. and Kelly, K. A. (2010). baySeq: empirical Bayesian methods
for identifying differential expression in sequence count data. BMC Bioinfor-
matics, 11:422.

Heber, S., Alekseyev, M., Sze, S. H., Tang, H., and Pevzner, P. A. (2002). Splicing
graphs and EST assembly problem. Bioinformatics (Oxford, England), 18
Suppl 1:S181–S188.

Hillenkamp, F., Karas, M., Beavis, R. C., and Chait, B. T. (1991). Matrix-assisted
laser desorption/ionization mass spectrometry of biopolymers. Analytical
Chemistry, 63(24):1193A–1203A.

Holloway, P., Swenson, K., Ardell, D., and El-Mabrouk, N. (2012). Evolution
of genome organization by duplication and loss: an alignment approach. In
Research in Computational Molecular Biology, volume 7262 of Lecture Notes
in Computer Science, pages 94–112. Springer Berlin Heidelberg.

Huang, S., Zhang, J., Li, R., Zhang, W., He, Z., Lam, T.-W., Peng, Z., and Yiu,
S.-M. (2011). SOAPsplice: genome-wide ab initio detection of splice junctions
from RNA-Seq data. Frontiers in genetics, 2:46.

Huerta, M., Haseltine, F., Liu, Y., Downing, G., and Seto, B. (2000). NIH
Working Definition of Bioinformatics and Computational Biology.

IBM (2011). IBM ILOG CPLEX Optimization Studio V12.4.

Jean, G., Kahles, A., Sreedharan, V. T., De Bona, F., and Rätsch, G. (2010).
RNA-Seq read alignments with PALMapper. Current Protocols in Bioinfor-
matics, Chapter 11.

Jia, W., Qiu, K., He, M., Song, P., Zhou, Q., Zhou, F., Yu, Y., Zhu, D., Nickerson,
M. L., Wan, S., Liao, X., Zhu, X., Peng, S., Li, Y., Wang, J., and Guo,
G. (2013). SOAPfuse: an algorithm for identifying fusion transcripts from
paired-end RNA-Seq data. Genome Biology, 14(2):R12.

Johnson, J. M., Castle, J., Garrett-Engele, P., Kan, Z., Loerch, P. M., Armour,
C. D., Santos, R., Schadt, E. E., Stoughton, R., and Shoemaker, D. D. (2003).
Genome-wide survey of human alternative pre-mRNA splicing with exon junc-
tion microarrays. Science, 302(5653):2141–4.

Kampa, D., Cheng, J., Kapranov, P., Yamanaka, M., Brubaker, S., Cawley, S.,
Drenkow, J., Piccolboni, A., Bekiranov, S., Helt, G., Tammana, H., and
Gingeras, T. R. (2004). Novel RNAs identified from an in-depth analysis
of the transcriptome of human chromosomes 21 and 22. Genome Research,
14(3):331–42.

150

Kan, Z., Rouchka, E. C., Gish, W. R., and States, D. J. (2001). Gene structure
prediction and alternative splicing analysis using genomically aligned ESTs.
Genome Research, 11(5):889–900.

Kapranov, P., Cawley, S. E., Drenkow, J., Bekiranov, S., Strausberg, R. L., Fodor,
S. P. A., and Gingeras, T. R. (2002). Large-scale transcriptional activity in
chromosomes 21 and 22. Science, 296(5569):916–9.

Kato, Y., Sato, K., Hamada, M., Watanabe, Y., Asai, K., and Akutsu, T. (2010).
RactIP: fast and accurate prediction of RNA-RNA interaction using integer
programming. Bioinformatics (Oxford, England), 26(18):i460–6.

Katz, Y., Wang, E. T., Airoldi, E. M., and Burge, C. B. (2010). Analysis and
design of RNA sequencing experiments for identifying isoform regulation.
Nature Methods, 7(12):1009–15.

Kececioglu, J. and Kim, E. (2006). Simple and fast inverse alignment. In Re-
search in Computational Molecular Biology, volume 3909 of Lecture Notes in
Computer Science, pages 441–455. Springer Berlin Heidelberg.

Kececioglu, J. D., Lenhof, H.-P., Mehlhorn, K., Mutzel, P., Reinert, K., and
Vingron, M. (2000). A polyhedral approach to sequence alignment problems.
Discrete Applied Mathematics, 104(1-3):143–186.

Keller, A., Purvine, S., Nesvizhskii, A. I., Stolyar, S., Goodlett, D. R., and Kolker,
E. (2002). Experimental protein mixture for validating tandem mass spectral
analysis. OMICS: A Journal of Integrative Biology, 6:207–212.

Kim, D. and Salzberg, S. L. (2011). TopHat-Fusion: an algorithm for discovery
of novel fusion transcripts. Genome Biology, 12(8):R72.

Kim, H., Bi, Y., Pal, S., Gupta, R., and Davuluri, R. V. (2011). IsoformEx:
isoform level gene expression estimation using weighted non-negative least
squares from mRNA-Seq data. BMC Bioinformatics, 12(1):305.

Kingsford, C. L., Chazelle, B., and Singh, M. (2005). Solving and analyzing side-
chain positioning problems using linear and integer programming. Bioinfor-
matics (Oxford, England), 21(7):1028–36.

Kodzius, R., Kojima, M., Nishiyori, H., Nakamura, M., Fukuda, S., Tagami, M.,
Sasaki, D., Imamura, K., Kai, C., Harbers, M., Hayashizaki, Y., and Carninci,
P. (2006). CAGE: cap analysis of gene expression. Nature Methods, 3(3):211–
22.

151

Kolman, P. and Pangrác, O. (2009). On the complexity of paths avoiding forbid-
den pairs. Discrete Applied Mathematics, 157(13):2871 – 2876.

Koskiniemi, S., Sun, S., Berg, O. G., and Andersson, D. I. (2012). Selection-driven
gene loss in bacteria. PLoS Genetics, 8(6).

Laajala, E., Aittokallio, T., Lahesmaa, R., and Elo, L. L. (2009). Probe-level
estimation improves the detection of differential splicing in Affymetrix exon
array studies. Genome Biology, 10(7):R77.

Lancia, G. (2008). Mathematical programming in computational biology: an
annotated bibliography. Algorithms, 1(2):100–129.

Lancia, G., Carr, R., Walenz, B., and Istrail, S. (2001). 101 optimal pdb struc-
ture alignments: A branch-and-cut algorithm for the maximum contact map
overlap problem. In Proceedings of the Fifth Annual International Conference
on Computational Biology, RECOMB, pages 193–202, New York, NY, USA.
ACM.

Langmead, B., Trapnell, C., Pop, M., and Salzberg, S. L. (2009). Ultrafast and
memory-efficient alignment of short DNA sequences to the human genome.
Genome Biology, 10(3):R25.

Lee, C. and Roy, M. (2004). Analysis of alternative splicing with microarrays:
successes and challenges. Genome Biology, 5(7):231.

Lehninger, A., Nelson, D. L., and Cox, M. M. (2008). Lehninger Principles of
Biochemistry. W. H. Freeman, 5th edition.

Li, B. and Dewey, C. N. (2011). RSEM: accurate transcript quantification from
RNA-Seq data with or without a reference genome. BMC Bioinformatics,
12(1):323.

Li, H. and Durbin, R. (2009). Fast and accurate short read alignment with
Burrows-Wheeler transform. Bioinformatics (Oxford, England), 25(14):1754–
60.

Li, J. J., Jiang, C.-R., Brown, J. B., Huang, H., and Bickel, P. J. (2011a).
Sparse linear modeling of next-generation mrna sequencing (RNA-Seq) data
for isoform discovery and abundance estimation. Proceedings of the National
Academy of Sciences, 108(50):19867–19872.

Li, W., Feng, J., and Jiang, T. (2011b). IsoLasso: a LASSO regression approach to
RNA-Seq based transcriptome assembly. Journal of Computational Biology,
18(11):1693–707.

152

Liu, C., Song, Y., Yan, B., Xu, Y., and Cai, L. (2006). Fast de novo peptide
sequencing and spectral alignment via tree decomposition. In Proceedings of
the 11th Pacific Symposium on Biocomputing, pages 255–266. World Scien-
tific.

Lu, B. and Chen, T. (2003). A suboptimal algorithm for de novo peptide se-
quencing via tandem mass spectrometry. Journal of Computational Biology,
10(1):1–12.

Lu, W., Tamura, T., Song, J., and Akutsu, T. (2014). Integer programming-based
method for designing synthetic metabolic networks by minimum reaction in-
sertion in a boolean model. PloS ONE, 9(3).

Lynch, M. and Conery, J. S. (2000). The evolutionary fate and consequences of
duplicate genes. Science, 290(5494):1151–1155.

Ma, B., Zhang, K., Hendrie, C., Liang, C., Li, M., Doherty-Kirby, A., and La-
joie, G. (2003). Peaks: Powerful software for peptide de novo sequencing by
MS/MS. Rapid Communications in Mass Spectrometry, 17:2337–2342.

McPherson, A., Hormozdiari, F., Zayed, A., Giuliany, R., Ha, G., Sun, M. G. F.,
Griffith, M., Heravi Moussavi, A., Senz, J., Melnyk, N., Pacheco, M., Marra,
M. A., Hirst, M., Nielsen, T. O., Sahinalp, S. C., Huntsman, D., and Shah,
S. P. (2011). deFuse: an algorithm for gene fusion discovery in tumor RNA-
Seq data. PLoS Computational Biology, 7(5).

Meneses, C. N., Lu, Z., Oliveira, C. A. S., and Pardalos, P. M. (2004). Optimal
solutions for the closest-string problem via integer programming. INFORMS
Journal on Computing, 16(4):419–429.

Mezlini, A. M., Smith, E. J., Fiume, M., Buske, O., Savich, G. L., Shah, S., Apari-
cio, S., Chiang, D. Y., Goldenberg, A., and Brudno, M. (2013). iReckon: si-
multaneous isoform discovery and abundance estimation from RNA-Seq data.
Genome research, 23(3):519–529.

Michalski, A., Neuhauser, N., Cox, J., and Mann, M. (2012). A systematic
investigation into the nature of tryptic HCD spectra. Journal of Proteome
Research, 11(11):5479–91.

Mironov, A. A. (1999). Frequent alternative splicing of human genes. Genome
Research, 9(12):1288–1293.

153

Moller-Levet, C. S., Betts, G. N. J., Harris, A. L., Homer, J. J., West, C. M. L.,
and Miller, C. J. (2009). Exon array analysis of head and neck cancers iden-
tifies a hypoxia related splice variant of LAMA3 associated with a poor prog-
nosis. PLoS Computational Biology, 5(11).

Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., and Wold, B. (2008).
Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature
Methods, 5(7):621–628.

Needleman, S. B. and Wunsch, C. D. (1970). A general method applicable to the
search for similarities in the amino acid sequence of two proteins. Journal of
Molecular Biology, 48(3):443–453.

Nemhauser, G. L. and Wolsey, L. A. (1988). Integer and combinatorial optimiza-
tion. Wiley-Interscience, New York, NY, USA.

Ner-Gaon, H. and Fluhr, R. (2006). Whole-genome microarray in Arabidopsis
facilitates global analysis of retained introns. DNA Research, 13(3):111–21.

Nicolae, M., Mangul, S., Măndoiu, I. I., and Zelikovsky, A. (2011). Estimation of
alternative splicing isoform frequencies from RNA-Seq data. Algorithms for
Molecular Biology: AMB, 6(1):9.

Ohno, S. (1970). Evolution by gene duplication. Springer, Berlin, New York.

Okoniewski, M. J. and Miller, C. J. (2006). Hybridization interactions between
probesets in short oligo microarrays lead to spurious correlations. BMC Bioin-
formatics, 7:276.

Olsen, J. V., Macek, B., Lange, O., Makarov, A., Horning, S., and Mann, M.
(2007). Higher-energy C-trap dissociation for peptide modification analysis.
Nature Methods, 4(9):709–12.

Olson, M. V. (1999). When less is more: gene loss as an engine of evolutionary
change. American Journal of Human Genetics, 64(1):18–23.

Pan, Q., Shai, O., Lee, L. J., Frey, B. J., and Blencowe, B. J. (2008). Deep
surveying of alternative splicing complexity in the human transcriptome by
high-throughput sequencing. Nature Genetics, 40:1413–1415.

Pan, Q., Shai, O., Misquitta, C., Zhang, W., Saltzman, A. L., Mohammad, N.,
Babak, T., Siu, H., Hughes, T. R., Morris, Q. D., Frey, B. J., and Blencowe,
B. J. (2004). Revealing global regulatory features of mammalian alternative
splicing using a quantitative microarray platform. Molecular Cell, 16(6):929–
41.

154

Perkins, D. N., Pappin, D. J., Creasy, D. M., and Cottrell, J. S. (1999).
Probability-based protein identification by searching sequence databases us-
ing mass spectrometry data. Electrophoresis, 20(18):3551–3567.

Reinert, K. (1999). A polyhedral approach to sequence alignment problems. PhD
thesis, Saarländische Universitäts- und Landesbibliothek, Postfach 151141,
66041 Saarbrücken.

Reinert, K., Lenhof, H.-P., Mutzel, P., Mehlhorn, K., and Kececioglu, J. D.
(1997). A branch-and-cut algorithm for multiple sequence alignment. In
Proceedings of the First Annual International Conference on Computational
Molecular Biology, RECOMB, pages 241–250, New York, NY, USA. ACM.

Ritz, A., Bashir, A., and Raphael, B. J. (2010). Structural variation analysis with
strobe reads. Bioinformatics (Oxford, England), 26(10):1291–8.

Robinson, M. D., McCarthy, D. J., and Smyth, G. K. (2010). edgeR: a Biocon-
ductor package for differential expression analysis of digital gene expression
data. Bioinformatics (Oxford, England), 26(1):139–40.

Roepstorff, P. and Fohlman, J. (1984). Proposal for a common nomenclature for
sequence ions in mass spectra of peptides. Biomedical Mass Spectrometry,
11(11):601.

Rogers, H. H., Bergman, C. M., and Griffiths-Jones, S. (2010). The evolution of
tRNA genes in Drosophila. Genome Biology and Evolution, 2:467–77.

Royce, T. E., Rozowsky, J. S., and Gerstein, M. B. (2007). Toward a universal
microarray: prediction of gene expression through nearest-neighbor probe
sequence identification. Nucleic Acids Research, 35(15):e99.

Saliba, A.-E., Westermann, A. J., Gorski, S. A., and Vogel, J. (2014). Single-
cell RNA-Seq: advances and future challenges. Nucleic Acids Research,
42(14):8845–8860.

Sankoff, D. and Blanchette, M. (1997). The median problem for breakpoints in
comparative genomics. In COCOON, Lecture Notes in Computer Science,
pages 251–264.

Schulz, M. H., Zerbino, D. R., Vingron, M., and Birney, E. (2012). Oases: robust
de novo RNA-Seq assembly across the dynamic range of expression levels.
Bioinformatics (Oxford, England), 28(8):1086–92.

155

Shen, S., Warzecha, C. C., Carstens, R. P., and Xing, Y. (2010). MADS+:
discovery of differential splicing events from Affymetrix exon junction array
data. Bioinformatics (Oxford, England), 26(2):268–9.

Siragusa, E., Weese, D., and Reinert, K. (2013). Fast and accurate read mapping
with approximate seeds and multiple backtracking. Nucleic Acids Research,
41(7):e78.

Song, L. and Florea, L. (2013). CLASS: constrained transcript assembly of RNA-
Seq reads. BMC Bioinformatics, 14 (suppl 5):S14.

Srinivasan, G., James, C. M., and Krzycki, J. A. (2002). Pyrrolysine encoded by
UAG in Archaea: charging of a UAG-decoding specialized tRNA. Science,
296(5572):1459–62.

Steen, H. and Mann, M. (2004). The ABC’s (and XYZ’s) of peptide sequencing.
Nature Reviews. Molecular Cell Biology, 5(9):699–711.

Stolc, V., Samanta, M. P., Tongprasit, W., Sethi, H., Liang, S., Nelson, D. C.,
Hegeman, A., Nelson, C., Rancour, D., Bednarek, S., Ulrich, E. L., Zhao, Q.,
Wrobel, R. L., Newman, C. S., Fox, B. G., Phillips, G. N., Markley, J. L., and
Sussman, M. R. (2005). Identification of transcribed sequences in Arabidopsis
thaliana by using high-resolution genome tiling arrays. Proceedings of the
National Academy of Sciences of the United States of America, 102(12):4453–
8.

Sturm, M., Bertsch, A., Gröpl, C., Hildebrandt, A., Hussong, R., Lange, E.,
Pfeifer, N., Schulz-Trieglaff, O., Zerck, A., Reinert, K., and Kohlbacher, O.
(2008). OpenMS - an open-source software framework for mass spectrometry.
BMC Bioinformatics, 9:163.

Syka, J. E. P., Coon, J. J., Schroeder, M. J., Shabanowitz, J., and Hunt, D. F.
(2004). Peptide and protein sequence analysis by electron transfer dissociation
mass spectrometry. Proceedings of the National Academy of Sciences of the
United States of America, 101(26):9528–33.

Tanner, S., Shu, H., Frank, A., Wang, L. C., Zandi, E., Mumby, M., Pevzner,
P. A., and Bafna, V. (2005). Inspect: identification of post translation-
ally modified peptides from tandem mass spectra. Analytical Chemistry,
77(14):4626–4639.

Taylor, J. A. and Johnson, R. S. (1997). Sequence database searches via de novo
peptide sequencing by tandem mass spectrometry. Rapid Communications in
Mass Spectrometry, 11(9):1067–1075.

156

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society B: Methodological, pages 267–288.

Tomescu, A. I., Kuosmanen, A., Rizzi, R., and Mäkinen, V. (2013). A novel min-
cost flow method for estimating transcript expression with RNA-Seq. BMC
Bioinformatics, 14 (suppl 5):S15.

Trapnell, C., Hendrickson, D. G., Sauvageau, M., Goff, L., Rinn, J. L., and
Pachter, L. (2013). Differential analysis of gene regulation at transcript res-
olution with RNA-Seq. Nature Biotechnology, 31(1):46–53.

Trapnell, C., Pachter, L., and Salzberg, S. L. (2009). TopHat: discovering splice
junctions with RNA-Seq. Bioinformatics (Oxford, England), 25(9):1105–11.

Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., van Baren,
M. J., Salzberg, S. L., Wold, B. J., and Pachter, L. (2010). Transcript assem-
bly and quantification by RNA-Seq reveals unannotated transcripts and iso-
form switching during cell differentiation. Nature Biotechnology, 28(5):516–
520.

Tyers, M. and Mann, M. (2003). From genomics to proteomics. Nature,
422(6928):193–197.

Velculescu, V. E., Zhang, L., Vogelstein, B., and Kinzler, K. W. (1995). Serial
analysis of gene expression. Science, 270(5235):484–487.

Velculescu, V. E., Zhang, L., Zhou, W., Vogelstein, J., Basrai, M. A., Bassett,
D. E., Hieter, P., Vogelstein, B., and Kinzler, K. W. (1997). Characterization
of the yeast transcriptome. Cell, 88(2):243–251.

Wang, K., Singh, D., Zeng, Z., Coleman, S. J., Huang, Y., Savich, G. L., He, X.,
Mieczkowski, P., Grimm, S. A., Perou, C. M., MacLeod, J. N., Chiang, D. Y.,
Prins, J. F., and Liu, J. (2010). MapSplice: accurate mapping of RNA-Seq
reads for splice junction discovery. Nucleic Acids Research, 38(18):e178.

Wang, X., Grus, W. E., and Zhang, J. (2006). Gene losses during human origins.
PLoS Biology, 4(3).

Wang, Z., Gerstein, M., and Snyder, M. (2009). RNA-Seq: a revolutionary tool
for transcriptomics. Nature Reviews. Genetics, 10(1):57–63.

Weese, D., Holtgrewe, M., and Reinert, K. (2012). RazerS 3: faster, fully sensitive
read mapping. Bioinformatics (Oxford, England), 28(20):2592–9.

157

Wells, J. M. and McLuckey, S. A. (2005). Collision-induced dissociation (CID) of
peptides and proteins. Methods in Enzymology, 402:148–85.

Wilkins, M. R., Pasquali, C., Appel, R. D., Ou, K., Golaz, O., Sanchez, J. C., Yan,
J. X., Gooley, A. A., Hughes, G., Humphery-Smith, I., Williams, K. L., and
Hochstrasser, D. F. (1996). From proteins to proteomes: large scale protein
identification by two-dimensional electrophoresis and amino acid analysis.
Biotechnology, 14(1):61–65.

Withers, M., Wernisch, L., and dos Reis, M. (2006). Archaeology and evolution
of transfer RNA genes in the Escherichia coli genome. RNA, 12(6):933–942.

Wohlers, I., Domingues, F. S., and Klau, G. W. (2010). Towards optimal align-
ment of protein structure distance matrices. Bioinformatics (Oxford, Eng-
land), 26(18):2273–80.

Wolsey, L. A. (1998). Integer programming. Wiley-Interscience, New York, NY,
USA.

Xu, J., Li, M., Kim, D., and Xu, Y. (2003). RAPTOR: optimal protein thread-
ing by linear programming. Journal of Bioinformatics and Computational
Biology, 01(01):95–117.

Xu, J., Li, M., and Xu, Y. (2004). Protein threading by linear programming:
theoretical analysis and computational results. Journal of Combinatorial Op-
timization, 8(4):403–418.

Yancopoulos, S., Attie, O., and Friedberg, R. (2005). Efficient sorting of genomic
permutations by translocation, inversion and block interchange. Bioinformat-
ics (Oxford, England), 21(16):3340–3346.

Yen, J. Y. (1971). Finding the k shortest loopless paths in a network. Management
Science, 17:712–716.

Zerbino, D. R. and Birney, E. (2008). Velvet: algorithms for de novo short read
assembly using de Bruijn graphs. Genome Research, 18(5):821–829.

Zerck, A., Nordhoff, E., Lehrach, H., and Reinert, K. (2013). Optimal precursor
ion selection for LC-MALDI MS/MS. BMC Bioinformatics, 14:56.

Zhao, S., Fung-Leung, W.-P., Bittner, A., Ngo, K., and Liu, X. (2014). Com-
parison of RNA-Seq and microarray in transcriptome profiling of activated T
cells. PloS ONE, 9(1).

158

Zubarev, R. A., Kelleher, N. L., and McLafferty, F. W. (1998). Electron cap-
ture dissociation of multiply charged protein cations. A nonergodic process.
Journal of the American Chemical Society, 120(13):3265–3266.

LIST OF FIGURES

1.1 Schematic workflow of de novo peptide sequencing 5
1.2 Schematic workflow of isoform inference from RNA-Seq data . . . 6
1.3 Schematic description of the duplication-loss alignment problem . 7

2.1 Graphical geometric representation of an LP in R2 13
2.2 Cutting planes example . 20
2.3 Branch and bound / branch and cut example 23

3.1 Schematic workflow of tandem mass spectrometry 31
3.2 Peptide fragmentation sites . 32
3.3 Tandem mass spectrum and spectrum graph 37
3.4 Matrix spectrum graph . 45
3.5 Enumeration of suboptimal paths 49
3.6 Bayesian network example . 53
3.7 Antisymmetric path enumeration running times for benchmark 1 . 57
3.8 Antisymmetric path enumeration running times for benchmark 2 . 58
3.9 Bayesian network structures for peptide sequencing benchmark . . 60
3.10 Results for peptide sequencing benchmark 61

4.1 Types of alternative splicing events, alternative promoter usage
and alternative polyadenylation 69

4.3 Illustration of paired-end read definitions 73
4.2 General workflow of CIDNE . 74
4.4 Segment generation from exons 75
4.5 Relation between mapped paired-end reads and segment covers . . 76
4.6 Example scenarios for computation of values lpos and rpos 77
4.7 Illustration of values ∆in and ∆out for segment cover length com-

putation . 77
4.8 Splicing graph constructed from set of segment covers 79
4.9 Recall and precision on two simulated RNA-Seq experiments . . . 92
4.10 Recall and precision on simulated RNA-Seq experiment with in-

complete annotation . 94
4.11 Relative error of estimated transcript abundance in FPKM 95

160

4.12 Correlation between true and predicted transcript abundance in
FPKM . 96

5.1 Correspondence between labeled alignment and visible ancestor . 107
5.2 Alignment graph and associated pairgraph 108
5.3 Lifted duplication cycle example 112
5.4 Example of violated maximal clique inequalities 115
5.5 Alignment graph and associated pairgraph 116
5.6 Duplication island . 120
5.7 Possible duplication-loss scenarios in median-of-three model . . . 123
5.8 Inconsistent duplications in median-of-three model 126
5.9 Running time comparison between iterative ILP method and branch

and cut algorithm for optimal labeled alignments on simulated data 128
5.10 Results of Steinerization method with median-of-three model on

simulated phylogenetic trees with 128 extant species 130

LIST OF TABLES

3.1 Amino acid masses . 30
3.2 List of most important ion types 33

162

LIST OF ALGORITHMS

1 Dag-Longest-Path . 64
2 k-Longest-Antisymmetric-Paths 65
3 Calculate π . 118
4 Calculate σ . 118

164

LIST OF NOTATIONS

〈a1, a2, . . . , an〉 sequence of symbols a1, . . . , an from a given alphabet Σ

|X|, |s| cardinality of a set X or length of a sequence s

�,� substring relation for a pair of sequences

α · β concatenation of sequences α and β

[a . . b] set of integers a, a+ 1, . . . , b− 1, b

c>,A> transpose of a vector c or a matrix A

(a1, a2, . . . , an) n-dimensional column vector

[A1,A2, . . . ,An] m× n matrix with m-dimensional column vectors A1, . . . ,An

P(S) power set of set S

O Landau symbol “Big O”

166

INDEX

alignment graph, 104
alternative polyadenylation, 65
alternative promoter usage, 65
alternative splicing, 65
antisymmetric path, 38

basic ion type, 44
basis, 13

basic feasible solution, 13
basic variable, 13
basis matrix, 13

branch and cut, 18, 108
branch and bound, 21
cutting planes, 18

Dalton (unit), 30
delayed column generation, 17, 80
deviation algorithm

deviation path, 48
deviation vertex, 48
parent path, 48

duality, 16
strong duality theorem, 16
weak duality theorem, 16

duplication cycle, 106
duplication island inequality, 115

separation, 117
duplication-loss alignment problem, 104

evolutionary history, 103

FPKM (unit), 87
fragment ion, see product ion

integer linear program, 18

labeled alignment, 101

Lagrangian relaxation, 22, 34
Lagrangian dual, 23
subgradient algorithm, 24

lifted duplication cycle inequality, 109
separation, 110

lifted mixed cycle inequality, 121
linear program, 9

dual, 16
primal, 16
standard form, 10

maximal clique inequality, 112
separation, 113

median-of-three problem, 118
mixed cycle, 121

ortholog, 100, 104

pairgraph, 114
paralog, 100
parent ion, see precursor ion
parent mass, 35
polyhedron, 11

convex hull, 12
face, 12
facet, 12
polytope, 11

precursor ion, 31
pricing problem, 18
product ion, 31

reduced cost, 14
regularization, 79

LASSO, 79
residual mass, 35

prefix residue mass, 35

168

suffix residue mass, 35
RNA isoform, 65
RNA-Seq, 68
root path, see deviation algorithm

segment cover, 73
adjusted length, 74
length, 73

simplex method, 14
spectrum graph, 35

extended spectrum graph, 35
matrix spectrum graph, 45
proper graph, 38

splicing graph, 76
spur path, see deviation algorithm
Steinerization method, 102, 118

tandem mass spectrometry, 30
tandem mass spectrum, 31

Thomson (unit), 30

visible ancestor, 103
visible history, 103

	Part I INTRODUCTION
	Introduction
	About bioinformatics
	About this thesis
	Mathematical optimization in bioinformatics

	Mathematical Preliminaries
	Linear programming
	The simplex method

	Integer linear programming
	Branch and cut
	Lagrangian relaxation

	Part II THREE APPLICATIONS
	de novo Peptide Sequencing With Lagrangian Relaxation
	Background
	A Lagrangian relaxation algorithm
	Graph-theoretical formulation
	Integer linear programming formulation
	Applying Lagrangian relaxation
	Solving the longest antisymmetric path problem by Lagrangian relaxation and branch and bound
	Polynomial algorithm for longest antisymmetric paths with restricted sets of ion types

	Enumeration of suboptimal antisymmetric paths
	Enumerating longest unconstrained paths
	Backward heuristic

	Scoring model
	Scoring vertices in the spectrum graph
	Re-scoring of candidate peptides

	Results
	Running time
	Sequencing performance

	Conclusion

	Isoform Inference And Abundance Estimation With Delayed Column Generation
	Background
	Basic definitions and data structures
	Definitions

	Core mathematical model
	Linear least squares formulation
	Regularized linear least squares formulation

	A delayed column generation approach
	Piecewise linear approximation of regularized linear least squares formulation
	Pricing ILP for piecewise linear approximation

	Model selection
	Post-processing
	Experimental results
	Conclusion
	Contributions

	Solving The Duplication-Loss Alignment Problem With Branch And Cut
	Background
	The duplication-loss model for two species
	Basic definitions

	Problem formulation and valid inequalities
	Graph-theoretical formulation
	Initial ILP formulation

	Valid cuts and separation
	Lifted duplication cycle inequalities
	Maximal clique inequalities
	Duplication island inequalities

	The duplication-loss model for three species
	Additional constraints

	Results
	Two species duplication-loss alignment
	Median-of-three

	Conclusion

	Closing Remarks

	Part III APPENDIX
	Declaration
	Curriculum Vitae
	Bibliography
	Index

