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Introduction

Moduli spaces appear in algebraic geometry when trying to provide an algebraic variety
structure to the set of equivalence classes of certain objects. Once equipped with such
structure, the dimension at a point of this variety indicates how many parameters are
needed to determine the equivalence class corresponding to that point, and, therefore,
we partially solve the classification problem we started with. In order to make easier the
study of the geometry of these spaces, we have to address the problem of compactifying
them, that is, we have to find the limiting objects.

The aim of this work is the classification of principal G-bundles on nodal curves via
the construction of a compact moduli space for such objects. Moreover, we construct
this moduli space in such a way that it behaves well under degeneration of smooth
curves into stable curves.

Although the classification of principal bundles has importance itself, the last 20
years much interest has emerged in some areas of theoretical physics. For instance, In
the series of articles [I3], 14 [I5], R. Friedman, J. Morgan and E. Witten address the
construction of these moduli spaces over elliptic curves and their behavior along elliptic
fibrations. They realize the importance of theses moduli spaces for understanding the
duality between heteoretic string and F-theory.

Also, in [34], an algebro-geometric version of the Gromov-Witten invariants studied
in symplectic geometry through vortex equations is introduced. This leads to a gauge
Gromov-Witten theory. Stable maps to a geometric quotient are given by decorated
principal bundles on nodal (in fact stable) curves. A modular completion and the
construction of a compact coarse moduli space of such objects, involves understanding
compact moduli spaces of principal G-bundles on nodal curves.

Historical Introduction and Known Results

The problem of classification of bundles on curves began in the late 50’s of the last
century with the works of A. Grothendieck [20] and M. Atiyah [3] which were focused
on the classification of vector bundles over the projective line and elliptic curves respec-
tively. However, it was not until 1963 when D. Mumford provided, in [38], an algebraic
(quasi-projective) variety structure to the set of isomorphism classes of stable vector
bundles on a projective smooth curve of genus grater or equal than 2. Thus, he gave the
first construction of such a moduli space. For that, he developed geometric invariant
theory [42)], started by D. Hilbert and many others in the 18th century, giving a central
role to the concept of stability. A few years later, in 1967, C. S. Seshadri [56] gave
a natural compactification of D. Mumford’s moduli space by including the semistable
vector bundles. In the next fifteen years much work was done for generalizing the above
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constructions for irreducible curves [44] and, more generally, for reduced curves [57]. In
the first case, semistable torsion-free sheaves were needed and in the second case the
problem was solved by including semistable sheaves of depth one.

R. Pandharipande gave, in 1996, a very remarkable construction. He showed that
there exists a scheme, relatively projective over the moduli space of stable curves M,
such that the fiber over a point, [C] € Mg, coincide with the compact moduli space of
stable torsion-free sheaves (quoted out by the group of automorphisms of C') over the
curve C.

Since vector bundles of rank r can be seen as principal GL(n)-bundles, a natural
question comes up: is it possible to get similar constructions for a general algebraic
group G over smooth algebraic curves? This question was answered positively by A.
Ramanathan in his Ph.D thesis, which was published in 1996 [47]. A central problem
in this work is the concept of semistability for principal G-bundles, with G a reductive
algebraic group. In his construction, A. Ramanathan used the existence of the moduli
space of vector bundles by considering the Lie algebra, Lie(G), of G. In 2002, A.
Schmitt [49] realised that a principal G-bundle can always be seen as a pair formed
by a vector bundle and certain morphism of sheaves of algebras, once a fully faithful
representation p: G — SL(n) is fixed. He constructed the compact moduli space of
so called §-semistable singular principal G-bundles over smooth projective varieties.
Although this moduli space depends a priori on the fixed representation, he proved
that the moduli space constructed by A. Ramanathan agrees with it. In 2005, he
generalized this construction to the case of an irreducible nodal curve with one node
[52], and in 2013, A. Langer [35], gave a construction of a compact moduli space of J-
semistable singular principal G-bundles in the case of a family of irreducible projective
varieties.

This work will be focused on the construction of a compactification of the moduli
space of principal G-bundles on a stable curve. Therefore, it will be given a special
emphasis on the behavior of these objects along families of curves. The method of A.
Schmitt, mentioned above, will be used for the construction. Let us describe it briefly.

Let X be a smooth projective curve of genus g and let G be a semisimple linear
algebraic group. The heart of A. Schmitt’s work consists on the following observation:
given a faithful representation p: G — SL(V) being V a complex vector space of
dimension n there is a bijection

isomorphism classes of pairs (€, T)
isomorphism classes N where £ is a locally free sheaf of rank
of principal G-bundles on X | — n with trivial determinant and

7: X — Isomy (V ® Ox,€)/G

Here, a morphism between pairs, (€, 7) and (£’,7'), is a morphism f: & — &’ such that
the diagram

t
Isomy (V ® Ox,€)/G ! Isomy (V ® Ox, &) /G

\/

X

commutes, f# being the morphism induced by f. Although the extra structure 7: X —
Isomp, (V ® Ox,€)/G is quite difficult to deal with, we can make it easier in the

2
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following way. Note that
Isomp, (V ® Ox,€) C Homp, (V @ Ox, €),

and consider the GIT quotient Homy, (V®Ox, &) /G = Spec(S*(V®EV)Y), where S°
denotes the symmetric algebra. Since the group G can be identified with a subgroup of
SL(V') via the representation p, we can show, looking at the fibers, that the determinant
function defined on Hom(V, £(x)) is G-invariant, so Isom(V, E(x)) are the stable points
of the above vector space. With this in hand one shows that there is an open immersion

Isomp, (V ® Ox,&)/G C Homy  (V ® Ox,€)/G.

Thus, in particular, giving a section 7: X — Isomy (V ® Ox,&)/G is equivalent to
giving a morphism of algebras 7: Spec(V ® &) — Ox such that the induced morphism
X — Homp, (V®OXx,E) /G takes values in the space of local isomorphisms. Therefore,
one may give the following generalization: a singular principal G-bundle over X is a
pair (£,7) where £ is a locally free sheaf of rank r and 7: S*(V ® £)¢ — Ox a non
trivial morphism of Ox-algebras. The geometric counterpart of a singular principal
G-bundle is given by means of the following fibered product

P((C/‘77_)7 - 7>I—107HHQX(V®OX>SV)

v |

X ——Homy (V®0x,&")/G.

If the image lies in the space of local isomorphisms, we recover the concept of a principal
G-bundle. The next step is to generalize the concept of semistability for singular
principal G-bundles, (£, 7). The presence of the extra structure given by 7 forces us to
introduce a semistability parameter § € Q. One, then, says that a singular principal
G-bundle is ¢-(semi)stable if for any weighted filtration (£, m) the inequality

> mi(P(ENK(E) — P(E)K(E)) + (e, m, 7)(2)0
i=1

holds true. The quantity p(E,m, ) is, essentially, the semistability function of the
point 7, with respect to the action of the group SL(&,) and the one parameter subgroup
defined by the restriction of the filtration (&, m), to the generic point n € X. This
let us to construct a coarse moduli space parametrizing J-semistable singular principal
G-bundles, SPB(p)(;;(S)S, with Hilbert polynomial P. Then it is to shown that there is
a closed (in fact also open) subscheme parametrizing semistable principal G-bundles in

the sense of A. Ramanathan. Therefore, we find M(G) C SPB(p)(IS;(S)S. The last step

is to show SPB(p)ép_(s)s C M(G) which follows from a global boundedness argument.
The case of an irreducible curve X with one node is more involved and uses torsion
free sheaves instead of just locally free sheaves. First, the semistability notion is ex-
tended to singular principal G-bundles. Its complexity does not allow us to construct
the corresponding moduli space of semistable (honest) singular principal G-bundles
directly. Instead, A. Schmitt uses the theory of generalized parabolic bundles on the
normalization Y — X to construct it, following the ideas of U. Bhosle for vector bun-
dles [6]. On Y, the moduli space of (k,d)-semistable descending principal G-bundles

3
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is constructed. Descending principal G-bundles are those principal G-bundles with a
generalized parabolic structure which descends to singular principal G-bundles on X.
This construction leads to a morphism M(p)&9)-(5)s — SPB( p)ij(s)s for certain values of
the semistability parameters. Thus, the main moduli space is defined as the schematic
image of this morphism. A. Schmitt proves that, if the representation p takes val-
ues in the symplectic group the last morphism is surjective and for large values of ¢,
SPB(p)(SP_(S)S parametrizes semistable (honest) singular principal G-bundles.

Structure and Results of this Work

As we have said before the aim of this work is to construct a compact moduli space
for principal G-bundles over a nodal curve X. The construction process of this moduli
space, based on A. Schmitt’ work, can be summarized in the following schema:

€ = locally fere sheaf of rank r
and degree d

L = invertible sheaf

o1 (EBN)BY _, det(£)®C @ L

£ = locally free sheaf of rank r
and degree d
7 S(EQV)E 5 Oy

0 E(u]) ® EWF) ~ Ry

Moduli space of (&, 6)-(semi)stable
tensor fields with generalized parabolic
structure (€, ¢, q)

1,6)-(s)s
(3) Tgpsimor(s
T — _Theorem 3128

_ -

_ - Theorem [2.1.44]

,7_5—(5)5 -

a 73

F = tosrion free sheaf of rank r
and degree d
L = invertible sheaf

Theorem [2.2.12]

4t E(W}) ® EW?) > Ry

Moduli space of (&, §)-(semi)stable
descending G-bundles (&, 7, q)

M(p) D% ()

Theorem [4.4.3] — — -
— o P
Y D8 ={yl,v3 - vl vl}
Section
lﬂ Section © (4.13)
XDS=A{x1,...,z,}
-7 —
Theorem [2.2.18|—~ — —
SPB(p)E* (2)
JF = torsion free sheaf of rank r
Theorem [2:2.12] and degree d

r: S F V)¢ 5 O0x

o (FOHOb 5 £
Moduli space of §-(semi)stable
tensor fields (F, ¢)

Moduli space of §-(semi)stable
singular principal G-bundles

heorem [A.4.18] (case d = 0)

JF = tosrion free sheaf of rank r
and degree d

7 S (F@ V)¢ o O0x

Moduli space of (semi)stable

honest singular principal

G-bundles (F, )
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In Chapter 1 we give the background in GIT, coherent sheaves of depth one over
reduced projective curves and principal G-bundles. In Section 1 we present some ex-
amples for the calculation of the Hilbert-Mumford semistability function which will be
crucial in Chapter 3. In Section 2 we present the basic theory of coherent sheaves of
depth one on reduced projective curves. We characterize them as the subsheaves of
locally free sheaves with torsion cokernel (Theorem , therefore we complete [50],
Lemma 5]. The main result in this section is Lemma which will allow us to
prove, among other results, Theorem [2.2.12] Finally, in Section 3, we state the basic
theory of principal G-bundles following the classical work of J-P. Serre [55].

Chapter 2 is devoted to the construction of SPB(p)?(S)S. In Section 1 we construct

the moduli space of §-(semi)stable tensor fields over X, 7;5‘(5)3 (Theorem . We
follow [8| [I7] closely. Since our curve X is not irreducible we have to change ranks by
multiplicities in the definition of -semistasbility (see Definition [2.1.9). In Section 2 we
construct the moduli space of §-semistable singular principal G-bundles, SPB(p)(Isj(S)S
(Theorem . We first show how to assign to any singular principal G-bundle a
tensor field, for what we need to linearize the problem (Theorem . This is done by
using some result on graded algebras (Lemma . After, we need to show that this
assignment is injective (Theorem , making use of Lemma which is a kind
of a vanishing theorem for sections of torsion free sheaves on certain opens subsets. In
this way, we built the moduli space as a closed subscheme of the moduli space of tensor
fields. At this stage we make an important observation. One of the main purposes of
this work is to lay the groundwork for the construction of a compactification of the
universal moduli space of principal G-bundles over Mg. This is the idea behind the
proof of Theorem since we can show that the linearization can be done uniformly

along M, (see Remark [2.2.7).

In Chapter 3 we deal with the upper level of the conceptual schema. In Section 1 we
construct the moduli space of tensor fields with generalized parabolic structures over
a (possibly) non connected smooth projective curve ¥ = H§:1 Y;. The semistability
condition will depend now on v + 1 (rational) parameters, K1,...,kK,,0, due to the
presence of the extra structure given by the parabolic structure. We show that the
right Gieseker space in which the parameter space is embedded is not a cross product
of as many Gieseker spaces (as in the irreducible case) as components we have (see
Subsection . The right polarization is found in Subsection The comparison
between GIT semistability in the parameter space and (k, §)-semistability is presented
in Theorem The moduli space of (&, §)-semistable singular principal G-bundles
with generalized parabolic structures on Y is constructed, as in the nodal case, as
a closed subscheme of the moduli space of tensor fields with generalized parabolic
structure. Finally, we study semistability condition for the objects, that these moduli
spaces represent, for large values of the semistability parameters. The existence of
several minimal points in the curve Y makes impossible to translate the results of [52].
Since each minimal point gives us a (eventually) different function field, the first step
is to put all the data in the same category. For that, we restrict the tensor field to
each minimal point and then we make a base change to the function field of the smooth
projective variety Y7 x ... x Y].

In Chapter 4 we describe explicitly a method for representing a given singular
principal G-bundle by a descending G-bundle, and compare the semistability notion of
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both objects for large values of the semistability parameters. With this in hand we can
define the morphism
0: M (k,0)-(s)s SPB -(s)s
: M(p)p - (P)p "

Proposition [f.4.6|and Proposition [£.4.7|show that the schematic image of © satisfies the
same properties as in the irreducible case (see [52]). Thus, Mx(p) := Im(0©) consists
on semistable honest singular principal G-bundles and every stable honest singular
principal G-bundle lies in Mx(p). Finally Theorem shows that SPB(;))(;;(S)S
parametrizes (semi)stable honest singular principal G-bundles, which generalizes the
results given in [51] to any nodal curve.



Chapter 1

Preliminaries

1.1 Geometric Invariant Theory

In this section we give an introduction to Geometric Invariant Theory, which deals
with the problem of constructing quotients of algebraic group actions on schemes. We
follow closely [42], [44] and [53] to develop the basic theory, and we finish this section
describing some important examples which will be crucial in the construction of the
moduli spaces appearing along this work.

We fix for this section an algebraically closed field k of characteristic zero. Thanks
to [30], great part of the geometric invariant theory developed by Mumford (see [42]),
holds true in positive characteristic. However, Hilbert-Mumford criterium fails when
the characteristic is positive, and we need to use it systematically throughout all this
work.

1.1.1 First Definitions and Properties

Let X be a k-scheme and G an algebraic group over k acting on X. This action is given
by a morphism of k-schemes o: G x X — X such that o(g,0(¢’,2)) = 0(g- ¢, x) and
ole,x) =z,Vg,9 € Gand Vx € X.

Definition 1.1.1. A pair (Y, ¢) consisting of a scheme Y and a morphism ¢: X — Y
is a categorical quotient of X by G if

a) ¢(o(g,2)) = é(x),
b) given a pair (Z, @) as before satisfying a), there is a unique morphism £: Y — Z
such that ¢ = & o ¢.

If a categorical quotient exists then it is unique up to a cononical isomorphism.

Definition 1.1.2. A pair (Y, ¢) consisting of a scheme Y and a morphism ¢: X — Y
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is a good quotient of X by G if

a) ¢ is affine, surjective and G-invariant,

b) if U is open in Y, then the morphisms of rings ¢*: Oy (U) — Ox (¢~ (U))
induces an isomorphism Oy (U) ~ Ox (¢~ 1(U))%,

c) if Z C X is closed and G-invariant then ¢(Z) is closed,

d) if Zy, Zy C X are closed and G-invariant such that 73 N Zy = @
then, ¢(Z1) N ¢(Z2) = 2.

Proposition 1.1.3. ([53, Lemma 1.4.1.1]) Every good quotient of X by G is also a
categorical quotient.

Definition 1.1.4. A pair (Y, ¢) consisting of a scheme Y and a morphism ¢: X — Y
is a geometric quotient of X by G if it is a good quotient and ¢~!(y) consists of a
single orbit for every geometric point y € Y, i.e., the map ¢: X/G — Y induced by ¢
is bijective.

Definition 1.1.5. A universal categorical (resp. good, geometric) quotient is a cate-
gorical (resp. good, geometric) quotient such that for every morphism g: Y/ — Y the
projection onto the second factor ¢/ := po: X xy Y’ — Y’ is a categorical (resp. good,
geometric) quotient.

Some geometric properties of a categorical quotient are inherited from the scheme
X on which G is acting on.

Proposition 1.1.6. (42, Chap. 0, §2, (2)]). Let (Y,¢) be a categorical quotient. If
X is reduced (resp. connected, irreducible, locally integral, locally integral and normal)
then Y is reduced (resp. connected, irreducible, locally integral, locally integral and
normal).

To understand the link between constructing quotients and proving the existence
of certain moduli spaces we need, first of all, to introduce some basic definitions and
the concept of (local) universal families.

Let Schy, be the category of k-schemes and Sets the category of sets. For any scheme
X we denote hyx(—) = Homgen, (—, X) its functor of points. Consider a contravariant
functor

®: Sch;, — Sets.

Definition 1.1.7. The functor ® is representable if there exists a pair (M, f), M being
a k-scheme and f: ® — hjs a natural transformation, such that f is an isomorphism.

A moduli problem is determined once we fix a class of objects, A, an equivalence
relation between them, ”~”, and the concept of family of objects parametrized by a k-
scheme S, A(S), with an equivalence relation ~g. We require to the pairs (A(S), ~g)
to satisfy some functorial properties, and that (A(Spec(k)), ~gpec(r)) = (A,~). With
precision, A is a category, p: A — Schy, is a fibered category (see [21]), A endowed with
an equivalence relation ~, compatible with pullbacks and such that A(Spec(k)) = A,
and the equivalence relation ~ satisfies that, restricted to A (Spec(k)), is precisely given
by the isomorphisms of A.
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The moduli problem is hereby presented in a categorical way as a functor

® 4: Schy — Sets

S — Obj A(S)/ ~ (1.1)

and the main question is whether this functor is representable or not. A positive answer
solves the moduli problem and we call any representative M € Sch a fine moduli space.
Suppose this is the case. Then there is a canonical family parametrized by M which is
given by U := f~1(idys) € ®(M) and we call it a universal family.

Although most of the moduli problems we can find do not admit fine solutions, we
can partially solve them by proving the existence of a coarse moduli space (schemes
whose geometric points may be identified with the geometric points of the functor

)

Definition 1.1.8. A pair (M, f), as in Definition is a coarse moduli space for the
moduli functor (1.1)) if ® 4(k) = har(Spec(k)) and for any other pair, (N, g), as before,

there exists a unique natural transformation
Q:h M — h N
such that g = Qo f.

Note that in this case we can not define the concept of universal family. Instead we
define:

Definition 1.1.9. A family U parametrized by a scheme M € Schy is said to be
locally universal if for any other family U’ parametrized by a scheme M’ and any point
m/ € M’ there exists an open neighborhood m’ € V'.C M’ and a morphism ¢t: V — M
such that U ~U'|y.

Now we can establish the link between moduli problems and quotients by algebraic
groups

Proposition 1.1.10. (J44, Proposition 2.13]) Suppose there exists a scheme M and
a local universal family U parametrized by M for the moduli problem . Suppose,
further, that there is an algebraic group G acting on M such that for any pair of points
m,n € M, U, ~U, if and only if both points lie in the same orbit. Then

(1) any coarse moduli space is a categorical quotient of M by G,
(7i) a categorical quotient of M by G is a coarse moduli space if and only if it is

an orbit space, i.e., the fibers of ¢: M — M /G consist of single orbits.

1.1.2 Affine Quotients

Let G be an algebraic group. For any G-module M we denote by MY c M the
G-submodule of invariant elements. This operation defines a left exact endofunctor
(—)%: G-Mod — G-Mod. A Reynolds operator in G is a (functorial) retract of
G-modules R(M): M — MY for every G-module M. A G-module M is simple or
irreducible if there is no non trivial G-submodule. The algebraic group G is reductive
if every G-module is a direct sum of simple G-submodules.

The exactness of the functor (—)& and the existence of a Reynolds operator char-
acterize reductive groups.
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Theorem 1.1.11. ([48, Theorem 7.1, Theorem 7.2]) The following conditions are
equivalent

a) G is reductive,

b) there exists a (unique) Reynolds operator in G,

¢) the functor (=) is exact.

The problem of the existence of the quotient of an affine scheme by the action of
an algebraic reductive group is solved in the following theorem.

Theorem 1.1.12. ([42] Theorem 1.1.]) Let X = Spec(A) be an affine scheme and
G an algebraic reductive group acting on X. Then the induced morphism Spec(A) —
Spec(A%) is a universal categorical quotient. Moreover, if k is a field and A is a
finitely generated (resp. mnoetherian) k-algebra then AC is a finitely generated (resp.
noetherian) k-algebra.

The first part of the theorem is proved by using the existence of the Reynolds
operator and the second part holds also in positive characteristic. This theorem is
crucial for the proof of the existence of manageable moduli spaces in algebraic geometry.

1.1.3 The General Case. Semistability

We have shown the way to construct quotients of affine schemes. Now, to understand
what is going on with more general schemes, let us describe the case X = Proj(A), A
being a graded k-algebra (see [43]).

Let A be a finitely generated graded algebra over k. The degree 0 piece is assumed
to be k. Let Ay = ®,>04; be the irrelevant ideal of A, and as usual we denote it by
{0} as a point in the spectrum of A. The grading always induces an action of G,,,
given by

Gy x A, — A,
(A\a) = A "a

which leaves invariant the ideal {0}. Therefore, this action induces an action on
Spec(A)—{0} and the quotient by G, exists, giving us the usual homogeneous spectrum
of A, that is, Spec(A4) — {0}/G,, = Proj(A).

Let A and B be finitely generated algebras over k as before and let us consider a
graded morphism of rings f#: B — A of degree 0. This morphism induces a morphism
between spectra f: Spec(A) — Spec(B). However, the formation of the homogeneous
spectrum does not transform, in general, graded morphisms between graded algebras
into morphisms between the homogeneous spectra, since there might be points outside
from the irrelevant ideal of B lying in the irrelevant ideal of A via f#. Despite this
obstruction, we can still do something else. Define S’(f) := f~1({0}). Then we have a
morphism

f: Spec(A) \ S'(f) — Spec(B) \ {0},
and taking the quotient by G,, we get

Proj(f): Proj(4) \ S(f) - Proj(B),

4



1. Preliminaries

S(f) being the closed subset defined as the image of S’(f) \ {0} by the quotient mor-
phism Spec(A) — {0} — Proj(A). Applying this general situation to the example
A = k[zo,...,z,] and B = A% with G an algebraic reductive group acting on the space
of polynomials of degree one (and therefore acting on the whole ring by extending it
algebraically to higher degree polynomials), we get the following morphism

Proj(F): P"\ S(f) — Proj(A%). (1.2)

Here S(f) is the closed subset on whose points the G-invariant homogeneous polynomi-
als of high degree vanish (see [23], §2, 2.8) and the complement is thus the open space
to which a point belongs if it satisfies that there exists a G-invariant homogeneous poly-
nomial not vanishing on it. We will show that the morphism is a good quotient
and we will take the above as a first approach to the definition of semistable point,
concluding that a quotient of a projective scheme exists over the semistable locus.

Let us start with the general formalism. Let X be a scheme, G an algebraic group
acting on X via o0: G x X — X and £ an invertible sheaf on X.

Definition 1.1.13. A G-linearization of £ consists of an isomorphism ¢: c*£L — p3L
on G x X satisfying that the diagram (cocycle condition)

(co(lg x0))*L taxa)e (p20o(lg x0))*L

(ex1x)* %

(p2o(px1x))"L

is commutative, where u: G x G — G is the group law, po: G X G x X — G and
pa3: G X G x X = G x X are the obvious projections.

Remark 1.1.14. ([42, Chap. 1, §3])
1) A G-linearization of G on £ can be understood as a lifting of the action on X to
an action on the fibers of the associated line bundle L := Spec S°L,

Gx L2 . [

GxX-ZsX .

2) Tt can also be understood as a (dual) action of H*(G,Og) on H°(X, L), when
the space of golbal section is non zero,

HO(X, L) 5 HYG x X,0"L) S HY(G x X,piL) ~ HY(G, Og) ® HY(X, L).
The last isomorphism is given by the Kiinneth formula.

3) The group of isomorphism classes of G-linearized invertible sheaves is denoted
by Pic%(X).
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Example 1.1.15. Let X = Spec(k), where k is a field. Any line bundle £ on X is
isomorphic to Ox = k, and any action of an algebraic reductive group, o: GXX — X, is
equal to the second projection. Therefore a G-linearization on L is just an isomorphism
¢: Og ~ Og; that is, an invertible function on G, G — G,,, satisfying the cocycle
condition. These morphisms form precisely the characters of G.

Definition 1.1.16. Let £ be an invertible sheaf on X and let ¢: 0*L — p5L be a
G-linearization on £. Then:

a) ¢ € X is semistable with respect to £ and ¢ if there exists n > 0 and a section
s € H°(X,L") such that s(z) # 0, Xy = {x € X| s(x) # 0} is affine and s is an
invariant section.

b) x € X is polystable with respect to £ and ¢ if there exists n > 0 and a section
s € HY(X,L") such that s(x) # 0, X; is affine, s is invariant, and the action on
Xs ={x € X|s(z) # 0} is closed.

c) x € X is stable with respect to £ and ¢ if there exists n > 0 and a section
s € HY(X, L"), such that s(x) # 0, X5 = {x € X| s(x) # 0} is affine, s is an invariant
section, the action of G on Xj is closed and the isotropy group is finite.

We denote X*°(L) (resp. X*(L)) the (open) set of semistable (resp. stable) points.
Both concepts, linearizations and semistablity, allow us to solve the problem of the
existence of quotients for more general schemes by the action of an algebraic reductive
group. It is shown that, although we can not ensure in general the existence of a
quotient, we can do so for some open G-invariant subsets, once we fix a G-linearized
invertible sheaf on the scheme, as we have seen in the example of the introduction of
this subsection.

Theorem 1.1.17. ([42, Theorem 1.10]) Let X be a scheme of finite type over a field
k, G a reductive algebraic group acting on it and L o G-linearized invertible sheaf.
Then a universal categorical quotient (Y, @) of X*5(L) exists, Y being quasi-projective,
and there is an ample invertible sheaf N on Y such that ¢*(N) ~ L™ for some n.
Moreover, there is an open subset Y C 'Y such that ¢~ *(Y®) = X5(L) and such that
Plxs(cy: X5(L) — Y* is a universal geometric quotient.

The formation of the semistable and stable locus with respect to some linearization
enjoys some remarkable functorial properties. For instance, the (semi) stability condi-
tion does not change after changing the base field and have a nice behavior under finite
pullbacks to projective schemes.

Proposition 1.1.18. ([42, Proposition 1.14]) Let X be a scheme of finite type over k,
G a reductive algebraic group acting on it and L € PicG(X). Let k C K be any field
extension and denote £ and X the invertible sheaf and the scheme after the field base

change. Then X (L) = X5(L) and X (L) = Xs5(L).

Proposition 1.1.19. ([42, Proposition 1.18, Theorem 1.19]) Let X, Y be schemes of
finite type over a field k, G an algebraic reductive group acting on them, f: X = Y
a G-morphism and £ € Pic®(Y). If f is quasi-affine then f~(Y*(L)) C X5(f*L).
Moreover, if X is proper over k, f is finite and L is ample then f~1(Y®3(L)) =
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1.1.4 Hilbert-Mumford Criterion

In this section we will assume that X is a projective scheme over a field k£ of char-
acteristic zero acted on by an algebraic reductive group G. As we have seen before,
the existence of the quotient of X by G cannot be ensured in the general case, but
what we can do is to take the quotient of some open G-invariant subset (the semistable
locus) of X by G, once we fix a G-linearized invertible sheaf. For this reason it is quite
important to find out effective tools which can help us to identify the points lying in
this open subset

First of all, the following proposition let us to reduce our efforts in looking for this
tool to the case of the projective space P",

Proposition 1.1.20. ([42, Proposition 1.7]) Let L be a G-linearized invertible sheaf
on X such that its sections have no common zeroes. Then the morphism I[: X — P"
induced by the complete linear system H°(X,L) is G-equivariant, the action on P"
being the one induced by the action of G on H(X, L).

Therefore, Proposition [1.1.19] and Proposition [1.1.20| imply that it will be enough
to find out the (semi)stable points of P™ with respect to a G-linearization of Opn (1) to
describe the (semi)stable points of X with respect to £ = I*Opn (1) with the induced
linearization.

The key construction ([42, Chap. 2 §1. Def. 2.2]) is the following. We come back
to the general case in which X is a projective scheme over a field k, and consider x € X
a closed point and A: G,,, — G a one parameter subgroup. Consider the morphism
fni=0z0X: Gy — X, 0, being the orbit map associated to z induced by the action
o of G on X. We identify G, with Spec(k[t];) C A'. Since X is projective, we can
extend f, to a morphism f: A — X. The closed point f(0) is

f(0) = lim o(A(?), ),

t—0

and is fixed by the action of G,, induced from that of G via A. Let £ be a G-linearized
invertible sheaf on X and consider the induced G,,-linearization of L|(. By Example
1.1.15] we know that this linearization is given by a character x(t) = t7, v € Z. We
define

W (@A) = —. (1.3)

Proposition 1.1.21. ([42, Chap.2, §1]) The integer u“(x, \) enjoys the following re-
markable properties

(i) pE(o(t,z),\) = p(@, t7L-A-t), t € Gpp.

(13) Fiz x and A, uc(x, A) is a morphism of groups as a function of L.

(i11) If f: X =Y is G-equivariant, £ € Pic®(Y) and z € X is a closed point,

then p!" = (x, A) = p(f(x), A).

Let us give now an interpretation of the integer defined in (|1.3)) in the case of

the projective space and in terms of local coordinates. For that, we first need some

comments about G;,-actions on the projective space. Consider X = P™ acted on by
Gy, and ¢ a Gyy,-linearization of Opx(1). This induces an action on H°(P™ Opn (1))

7
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and therefore an action on the affine cone A" = Spec(S*H°(P", Opn(1))) of P"
compatible with the projection

G x AP — {0} Z— A" — {0}

lm i

Gp x P? Z P .

This action can be diagonalized, that is, for some basis of H°(P™, Opx (1)) the
action of any t € G,, is given by a diagonal matrix

th
(1.4)

t'Yn«l»l

With this in hand we have the following important proposition

Proposition 1.1.22. ([42] Proposition 2.3|) Let G be an algebraic reductive group
acting on P™. Let x € P" be a closed point, x* € A"! a closed homogeneous point
with ©(z*) = z, and X\ a one parameter subgroup. Fiz coordinates in A"T' which
diagonalize the induced action of G, as in and write x* = (x7,...,x} ). Then,

pOW (2, X) = max{—ila; # 0}. (1.5)

Moreover, if we denote f*(0) = %in% o*(A(t),z*), then f*(0) does exists in A" and
H

is different from 0 (resp. equal to 0, resp. does not exists) < u(x,\) = 0 (resp.

w(z,A) <0, resp. p(z,A) >0).

Remark 1.1.23. We can write down the last equation in terms of vector spaces instead
of varieties. For that, we recall that A"*' = Spec(S®*(V)), being V := k"1 and
P" = Proj(S*(V)). If {vi,...,vn41} is a basis of V diagonalizing A and ¢ is a linear
form on V representing x € P™, then equality turns into

1O (@, X) = max{—yilp(v;) # 0}.

With this, we finally have the last result of this section, which provide us, together
with Proposition |1.1.22 with a very useful tool to describe the (semi)stable points.

Theorem 1.1.24 (Hilbert-Mumford criterion). ([42, Theorem 2.1]) Let X be a
projective scheme over a field k acted on by an algebraic reductive group G. Let L €
Pic%(X) be an ample line bundle and x € X a closed point. Then

x € X¥(L) & pf(xz,\) >0, V one parameter subgroup \,

e X35(L) < pF(z,\) >0, Y one parameter subgroup .

1.1.5 One Parameter Subgroups and Weighted Flags

Let V be a p-dimensional vector space. A weighted flag of V of length s is a pair
(V*,m) where
Ve (0O)cwvic...cVosC Ve =V

8
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is a flag of vector subspaces and m = (mq,...,ms) is a tuple of positive rational
numbers,

Z
m; € — = {ﬁ, with n € Z}.
p p

Two flags (Ve,m), (VJ,m') of V are isomorphic if m = m’ and there is an automorphism
of V' which is compatible with the flag structures. The group of flag isomorphisms of a
given flag, P C GL(V), is a parabolic subgroup

Let A: G, — SL(V) be a one parameter subgroup. We know from the last section
that A is diagonalizable, i.e., there exists a basis v = {v1,...,vp} and integers v; <
... < 9p satisfying > ; = 0, and such that A(t) - v; = t7v;. Consider the vector of
integers 7 = (71,...,7p) € ZP and define

ngi= P e Dy p— L. (1.6)
p p
Then, we clearly have
7 p—1
. . — |
= Zni’y](f), being V;(;Z) =@ =D,y i —Dyly...yi) (1.7)
. . 7 .

(Conversely, given rational numbers ni,...,n,—1 € — as before, there are integers

Y1, - - satifsying Y v; = 0 such that (1.6 holds). pNow, given the data (v,7v), we
define a weighted filtration in the following way: 'y < ... < I's4; are the different
integers among v1 < ... < 1, the vector spaces giving the flag are defined by V; :=
({v;}|IT'; < T';) and the weights (my, ..., ms) are defined as the non zero numbers among
the n}s. We denote this weighted flag as (Va(X), m(X)).

Let (Vs,m) be a weighted flag. To this weighted flag we can associate the vector

S
7= mo,
i=1

and its components y; < ... <, obviously satisfy Y v; = 0. Let {v1,...,vdim; } be a
basis of V7, complete it to get a basis of Vo, and so on. In this way we get a basis v of
V and we may define a one parameter subgroup, A = A(v,7), as A(t) - v; = t7iv;.

This shows that to any one parameter subgroup, we can attach a weighted flag,
and any weighted flag can be obtained in this way. Moreover, if A is a one parameter
subgroup and P is the parabolic subgroup of automorphisms of the associated weighted
flag (Va(A),m())), then the weighted flag associated to g~!-\-g, for g € P, is isomorphic
to (Ve(X),m(\)). Because of this, we use the notation P()) for the parabolic subgroup
P. The importance of this relationship becomes clear after the following proposition,

Proposition 1.1.25. ([42, Proposition 2.7]) Let G be a reductive group act on a pro-
jective scheme X over k. Then for allx € X, L € PicG(X), and any one parameter
subgroup, A: G, — G, we have

po (@, ) = pF (g A g)

for all g € P()\).
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That means that the value of the semistability function p“(z,)), as a function
of A\, depends only on the associated weighted flag (V4(A), m(\)) when the group is
isomorphic to a closed subgroup of the special linear group.

With this in hand, we can improve a bit more the equality given in Remark

uOW (@, X) = max{—yi| ¢, # 0}. (L8)

1.1.6 Products of Groups

For this section we follow [45] and [53] closely. Let X be a projective scheme over k
and let G, H be algebraic reductive groups such that K := G x H is acting on X.
Let £ be a K-linearized very ample invertible sheaf and consider the K-linear closed

immersion (see Proposition |1.1.20))
I: X — P(W) = Proj(S*(W)), being W = H(X, L). (1.9)

The induced linearization in O(1) determines a representation p: K = GxH — GL(W)
and restricting to G and H we get two more representations p': G — GL(W) and
p"+ H — GL(W). We want to describe the semistability condition of the action of
K in terms of the semistability condition of the actions of G and H. Because of the
linearity of and Proposition it is enough to do this description for the
projective space. We use the notation (s)s, (s)s’, (s)s” for the (semi)stability with
respect to p, p', p".

Consider the quotient Qg := P(W)/ G by the induced action of G and let 7g :
P(W)* — Qg be the quotient map. Recall that Qg = Proj(S*(W)%). By [23,
Proposition 2.4.7] we know that Qg ~ Proj(S@ (W)%) for d > 0 (being S (W)¢ =
D0 ST (W)Y) and is generated in degree 1 [23, Proposition 3.1.10]. Therefore, there
is a closed immersion

on: Qe = P(S"(W)“).

Since the actions p’ and p” commute with each other, we find that H acts, via p”, on
Qg, S*(W)% and P(S™(W)%) in such a way that ¢, is H-linear. Consider the very
ample invertible sheaf £, := O(1)|p(gnw)c). The semistability notion with respect to
Ly, is independent on n, thus:

Theorem 1.1.26. ([45, Proposition 1.3.1, Proposition 1.3.2]) We have P(W)* =
ﬁ&l(QSGS”) C P(W)*'. Moreover, we have P(W)/,(G x H) ~ Qa/lyH. For the

polystable points we have PPS = PPs' N 7751(@7(’;”).

1.1.7 Direct Sums of Representations

Let p;: GL,,(C) — GL(V;) be a finite dimensional representation of dimension d;,
which is homogeneous of degree h;, i = 1,...,s. Assume that hq,..., hs have all the
same sign. Next, let m; be a positive integer, 1 =1,...,s, and

t:GL,(C) x -+ x GL;,(C) = GLR(C), R: =mq-ri+---+ms-Ts,

the embedding which sends (g1, ..., gs) to the block diagonal matrix in which ¢ is first
repeated my times, then go is repeated mo times, and so on.
Set

G:=1'(SLg(C)) and V:=Vi @ --- @ V..

10



1. Preliminaries

We obtain the representation p : G — GL(V). We write an element of V in the form
p = (p1,...,ps), pi being the component of pin V;,i=1,...,s.

Lemma 1.1.27. Let p = (p1,...,ps) €V be a linear form and A = (A1,...,As) a one
parameter subgroup of H. Then

u(p, A) = max{u(p;, \i)li =1,...,1}

Proof. Note that there is a basis w; = {wj 1,...,w;q,} of V; such that

)\l(z) c Wi = Z’yfi'wi’j, 1= 1, ey Sy j = dl.
These bases w; induces a basis w = {w;1,...,W;q,| ¢ = 1,...s} of V in the obvious
way, and we have '
/\(Z) CWi 5 = )\Z(Z) CWj 5 = zﬁwm. (1.10)
Then we conclude by Remark [1.1.23 O

Proposition 1.1.28. Let p = (p1,...,ps) € V. Then, the following conditions are
equivalent:

(i) The point p is p-semistable.

(i) For i = 1,...,s, the point p; is ﬁi-semistabl(ﬂ p; being the restriction of p; to
SL,,(C).

Proof. Let us first discuss the easy implication ” (i7) = (i)”. A one parameter subgroup
A: C — G can be written as a tuple (A1, ..., \s) where ); is a one parameter subgroup
of GL,,(C), i =1,...,s. Given A\, we may find rational one parameter subgroups A, of
SL,,(C) and rational numbers 7;, such that

ANi=XN+EN i=1,...,s.
Here E! is the rational one parameter subgroup defined by

1 .
— o (z— 2z%E,,), where n; = &
bi bi

Since p; # 0 and p; is homogeneous of degree h;, i = 1,...,s, we have

pp(A, p) = max{pp, (\i,pi) + hini| i =1,...,s}.

By assumption,

Mﬁi()‘zﬁpi) 20, iIl,...,S.
If hy =--- = hs =0, we are done. Otherwise, we use
my-ryom o+t ms s ns = 0.

Since the h; are either all negative or positive, there must be an index ig € {1,...,s}
with h;, - 14, > 0, so that

Mp(Aap) > /’Lﬁbo ()\ioapio> + hio " Mig > 0.

IThis in particular means that p; # 0 for each 3.

11
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Let us turn to the reverse implication ” (i) = (i7)”. We will discuss the case h; > 0,

i=1,...,s. First, suppose that p; = 0. Set o =--- =75 := —1 and
mg-Tg+ -+ Mg 7Ts
m: = .
mi -7
Then,
A= (EN,... El)
is a rational one parameter subgroup of G with
Lp(A,p) < max{—ha,...,—hs} <O0.

For the rest, we may assume p; # 0, ¢ =1,...,s. Let us show that p; is p;-semistable.

If it were not, we would find a one parameter subgroup A;: G,,(C) — SL,, (C) with

5, (A1, p1) < 0.

Define n1, ..., ns as before, choose € € Q~¢, such that

5, (A1, p1) +€-m - hy <0,

and set
A= (N +EM E,T;, L ECY)

T ) Ts

This is a rational one parameter subgroup of G with
tp(A, p) = max{pp (A1,p1) +€-m - hi,—€-ha,...,—€-hs} <O.

This proves the proposition. ]

1.1.8 Example 1

Let p,r be integers such that 1 < r» < p — 1. Let Gr := Grass(U%2 r) be the
Grassmannian of 7-dimensional quotients of U®2, U being a p-dimensional vector space,
and let N be positive integer. The Grassmannian can be embedded into the projective
space through the Pliicker embedding

t: Gr — P(A"U®?)
(7: U2 5 R) = (A"1: AU 5 k)

The group SL(U) acts on both spaces through the diagonal § : SL(U) < SL(U®?) in
the obvious way, and ¢ is SL(U)-equivariant. If O(1) is the tautological invertible sheaf
on P(ATU®2), then £ := 1*O(1) is a SL(U)-linearized very ample invertible sheaf. Let
us compute the semistability function of points in Gr with respect to L.

Let us explicitely describe the action of SL(U) on P(A"U®?). Let {uy,...,u,} be
a basis of the vector space U. Then, a basis of A"U®? is given by the vectors

ur,g = (wi, 0) Ao A (uy,0) A (0,u5,) Ao A (0,14, ).

Let X\: G, — SL(U) be a one parameter subgroup. Fix a basis v = {u1,...,up} and
integers v; < ... < 7, such that A = A(u, 7). Then, the induced action of A\ on A"U®?2
is given by B

At) -up gy = T T gy

12
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i p—i
A O N e .
ssume vy = yp = (i —p,...,i —p,i,...,i) and let a,c € N be the smallest integers
such that v, = ... =, =7, =... =7j. =% —p. Then

Y0 =Y+ v v+, =ri—(a+c¢)p=p(2i —a—c) — i dim(Ker(7))
Now, a short calculation shows that
a+c=dim (L} ® L?),
being L} = ((u1,0),. .., (u;,0)), L2 = {((0,u1),...,(0,u;)), and therefore
v1.7 = p dim(Ker(7) N (L} @ L?)) — i dim Ker(7).

Moreover, for a general weighted vector v we have
(7, A, v)) Zz dim(Ker(7)) — p dim(Ker(7) N (U; ® U;)) (1.11)

where (U,,m) is the weighted filtration associated to .

1.1.9 Example 2

Let Y1, ...,Y; be smooth projective connected curves, and consider their disjoint union,
Y :=|]Y;. Let N1,..., N be invertible sheaves on Y7, ..., Y] respectively and denote
by N := @ N, the corresponding invertible sheaf on Y. Let r, n € N and let U be a
k-vector space of dimension p > r. Consider now, for each ¢, the projective space given
by

i =P (Hom(A U, H(Y;, Ni(rn)))"),

and define Gy nr = Gi/\/ X ... X Gll,N~ Let b1,...,b; € N and consider the very ample
invertible sheaf on G given by

L:= WTOG},N(bl) ®...® WTOGQ,N([’Q

with the obvious SL(U)-linearization. For the sake of clarity we will use the symbol
L; to denote the invertible sheaf Og: N(l). We want to compute the semistability
function for points in the space Gz with respect to the linearized invertible sheaf L.
By Proposition (i) and (iii) we deduce that

l

l
= Z biﬂﬂ;&([h]v A) = Z biﬂﬁi([hi]7 A)s (1.12)
=1

i=1

[h;] being the i-th component of [h]. Therefore the calculation of the semistability func-
tion of points of G1 o with respect to £ is reduced to the calculation of the semistability
function of points of GZL A With respect to £;

Let £ be a locally free quotient sheaf of rank r

¢:U®0y(—n) € —0

13
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whose determinant is isomorphic to /. Restricting to the i-th component, twisting by
n, taking the r-th exterior power and taking global sections we find the morphism

HO(A"(qi(n))): A" U — H(Y, Nj(rn)),

whose equivalence class defines a point [H°(A"(g;(n)))] € G} -
Let us compute the semistability function for points of the form

([HON (@), [HY (A (@(m)))]) € Gi-
Note that the group SL(U) acts on Gli,/\/ by the rule
Vg € SL(U) , (T ® g)(wiyy ... ui,) =T(gui, A...Agu;,),

where {u1,...,up,} is a basis for U. Let A\: G,,, — SL(U) be a one parameter subgroup.
Then there exists a basis {u1,...,u,} of U and integers v1,...,7p € Z with 31 < ... <
vp and ). v; = 0 such that

A2)u; = 2"y, Vz € Gy

For any multiindex I = (i1,...,4,) with 1 <13 < ... <id, <plet ur =uy A... A\wy,
and v7 =74, + ...+ %,. The vectors {us}; form a basis for the vector space A" U and
A: Gy, = SL(U) acts on A" U by the rule

Az)our =2"uy , Vz € Gy,
A short calculation shows that

N([T]a)‘(ﬂﬂl)) = Zni,LL([T]?)‘(Q? 7§Z)))7 (1'13)
being fy}(f) =G—p,..., i —p,i,...,0) asin 1) so the quantity we need to compute is

u((T] A, 5”)-

Consider again the locally free quotient ¢: U0y (—n) — €. Let g; be its restriction
to Y; and denote ¢;(n) the twisting by Oy,(n). Then, giving the quotient ¢;(n) is the
same as giving p global sections,

ej: Oy = Ey,(n),

one for each u; such that, for each point y € Y, the familly of vectors {e1(y),...,ep(y)}
generate de fiber €y, (n)(y). Now, the morphism defined by the quotient ¢;,

HO(N"(qi(n))): A" U — HO(Y, Ni(rn)),
is given by
HO(A"(q;(n))(ur) = er :=es, A ..., Aei, € HO(Y, N;(rn)).
Therefore, we deduce the following
HOA(q(n))(ur) 0= e, A...,he;, 0 <

{ei(y),. ... €, (y)} is a basis
& ¢ of &y, (n)(y), for every point
in a dense open subset of Y;

This gives to us a geometric interpretation of the multiindices that must to be taken
for the calculation of the semistability function (see Remark |1.1.23]).

14
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Remark 1.1.29. Let £ be a locally free Oy-module and F C £ a locally free subsheaf.
We say F is a saturated subsheaf if £/F is again locally free. Any subsheaf F C &
generates a saturated subsheaf in the following way. Denote T' the torsion part of £/F
and G the locally free part. We have a diagram

0 F—*t seg T ¢g/F 0
id id lw’
v !

0—— Ker(r' o) E1556G 0

Because of the conmutativity of the right square, the identity morphism induces a
morphism F — Ker(n' o w). Moreover, because of Short Five Lemma, the induced
morphism is injective. We say F* := Ker(n' o ) is the saturated subsheaf generated by
F.

Consider the locally free quotient ¢: U® Oy (—n) — £ and denote U; = (uq, ..., u;).
Then, for each index i we have the locally free (saturated) subsheaf generated by U;:

E=qU;®Oy(—n))* C &
and, therefore, we get a filtration
0CECEC... CE1CE=E.

Denote k1 the index of the first non-zero subsheaf, ko the first subsheaf such that
&k, € Ek,, and so on. We get in this way a multiindex K = (ki,...,k,) giving us the
minimum in (1.1.23]). Thereby,

s ([HO(A (g5 ()] M v§7)) = =75 = =Yy = - = b, =
— (il )i — p) — (7 — K(Eily,))i =
= rk(&ly;)p — ri.

From ({1.13]) we can finally conclude
i ([HO (A" (gj(n) memy—mm», (1.14)

being (U;,m;) the ith term of the weighted filtration associate to A and &y, the
restriction to Y; of the saturated subsheaf generated by Us;.

1.1.10 Example 3

Consider the same situation as in Example 2. Let £ be an invertible sheaf on Y, U a
p-dimensional vector space and a,b,c,n € N. For any other invertible sheaf N" on Y
we consider the projective space

G,y = P(Hom(Uyp, H(Y,N®° ® L(na)))"),

being U, := (U®?)®°. Consider the pair (g, $) given by a locally free quotient sheaf of
rank 7, ¢: U ® Oy (—n) — &, whose determinant is isomorphic to A/, and a morphism

15
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¢: (£8P 5 N®¢® L. Denote A: Usp — U(?é the diagonal linear map, and consider
the morphism

H((q(n)®*)®") 0 A: Uyp — HO(Y, (£%9)® @ Oy (na)).
Twisting by Oy (na) the morphism ¢ and taking global sections, we find
HO(¢(na)) : H(Y, (£9)®" @ Oy (na)) — HO(Y,N®° @ L(na)).
Composing both morphisms we get a point in Go yr,
[HO(¢(na)) o H((q(n)**)®%) o A]: Udp — H(Y,N®° @ L(na))] € Go,n- (1.15)
Set p = dim(U) and let u = (u1,...,up) be a basis of U. For any multiindex
I = (i1,...,1iq) with i; € {1,...,p} define

U = Uiy Q... Q Uiy,

k
u’}:(O,...,O,u)],O,...,O).

Then the elements u’} form a basis of U, 3. Also, the group SL(U) acts on Hom(Ug, HO(Y,N®®
L(na))) by the rule
(T » g)(uf) = T(guf),

being gu’; =guj, ... R gu;,.

We want to compute the semistability function for points T € Go nr of the form
(1.15) with respect to the natural SL(U)-linearization of Og, , (1)

Let A\: G,, — SL(U) be a one parameter subgroup. Then there exists a basis
Ui, ..., up of U and integers y1 < ... <y, with ) ~; = 0 such that

AM2)u; = 27, Vz € Gy,

For any multiindex I = (i1,...,4,) consider u; and define vy = ~;, +--- 4+ ;,. Then
A: G, = SL(U) acts by

Az) oub =27 ek V2 € G,
By Remark [I.1.23] we know that

([T, X) =max{—[T(uk) # 0} > 0 =
— — min{y|T(u}) # 0} > 0.

Remark 1.1.30. Given a multiindex I = (i1,...,1,) we want to compute vy = 7;, +
o Vi forfy:fy; =(—p,...,i —p,i,...,1). Denote by v(1,i) = #{jli; < i}. Then
11y 7iy(I,i) <1 and il/(l’i)Jrl, ..y 1g > 1. Therefore

v = (@ —p)v(l,i)+ila—v(1,i)) =ia—v(I,i)p. (1.16)

A short calculation, as in Example 2, shows that
w([T],A) = Z m;(v(I, dimU;)p — dimUsa), (1.17)
i=1

(Us,m) being the associated weighted flag and I = (i1,...,1,) is the multiindex giving
the minimum of the semistability function.
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1.2 Sheaves on Nodal Curves

In this section we develope briefly the basic theory of torsion free sheaves on nodal
curves. We give some new results dealing with their characterization and their local
structure.

1.2.1 Depth

Let R be a commutative ring and M a R-module. An element z € R is said to be M-
regular if xm = 0 with m € M implies m = 0, that is, the endomorphism -z : M — M
is injective.
Definition 1.2.1. A sequence x = x1,...,z, of elements of R is said to be M-regular
if

1) @ is M/(x1,...,x;—1)M-regular

2) M/xzM # 0
being x the ideal (z1,...,x,).

Definition 1.2.2. Let I C R be an ideal. A sequence x = z1,...,x, is said to be an
M-sequence in [ if it is an M-sequence and z; € I for each i. An M-sequence in I,
X = Z1,...,Tn, is said to be maximal if there is no x € I such that z,...,2,,r is an

M-sequence in I.

The following Theorem of Rees shows that the length of a maximal sequence in [
is an invariant of the module M.

Theorem 1.2.3. ([I0, Theorem 1.2.5.]). Let R be a Noetherian ring, M a finitely
generated R-module and I an ideal such that IM # M. Then, all maximal M -sequences
i I have the same length given by

n = min{i : Ext%,(R/I, M) # 0}.
In the above conditions, we define the grade of I on M as
grade(I, M) := n = min{i : Ext%(R/I, M) # 0}.
Now we can define the depth of a finitely generated module.

Definition 1.2.4. Let R a Noetherian local ring with maximal ideal m and M a finitely
generated R-module. The depth of M is defined as

depth(M) := grade(m, M).

Lemma 1.2.5. ([I0, Proposition 1.2.10 (d)]) Let R be a Noetherian ring, I an ideal
and M a finitely generated R-module. If x = x1,...,x, is a reqular M -sequence in I,
then

grade(I/xz, M /xM) = grade(l, M /xM) = grade(I, M) — n.

Let R be a Noetherian local ring. A finitely generated R-module M # 0 is a Cohen-
Macaulay module if depth(M) = dim(M). The ring R is Cohen-Macaulay if it itself
is a Cohen-Macaulay module. If R is an arbitrary noetherian ring, then a R-module
M is Cohen-Macaulay if My, is a Cohen-Macaulay Ry-module for all maximal ideal
m € supp(M). We consider the zero module to be Cohen-Macaulay.

17
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Definition 1.2.6. (Serre’s condition (S,)). A finitely generated R-module over a
Noetherian ring R satisfies Serre’s condition (Sy,) if

depth(Mp) > min(n, dim(Mp))
for all p € Spec(R).

Definition 1.2.7. Let R be a Noetherian local ring with maximal ideal m and residue
field k. If M is a finitely generated R-module we define its injective dimension as

inj.dim(M) := sup{i : Extl(k, M) # 0}.

We say that M is a Gorenstein module if inj.dim(M) < oco. R is a Gorenstein ring if
it is Gorenstein as an R-module.

Note that any Gorenstein ring is also Cohen-Macaulay. In fact, we can shovv that a
local Noetherian ring R of Krull dimension n is Gorenstein if and only if Ext (k, R) = 0
for all i < n and Ext's(k, R) ~ k (see [37, Theorem 18.1]).

1.2.2 Sheaves of Depth One on Reduced Projective Curves

We assume that k is an algebraically closed field of characteristic zero. For the rest of
this work, the word curve will mean a one dimensional noetherian scheme of finite type
over k. In this case a curve X is projective if and only if it is proper over k. A curve is
reduced if its local rings are reduced.

Remark 1.2.8. Every reduced Noetherian local ring of dimension one is Cohen-
Macaulay (see [10] Ex.2.1.20). Therefore any reduced projective curve X is a Cohen-
Macaulay scheme and, hence, satisfies condition (S,,) for each n.

Let X be a reduced projective curve over k and let Ox (1) be an ample invertible
sheaf (polarization). For any coherent sheaf F, the Euler characteristic of F is

(X, F) = dimH(X, F) — dimH(X, F),

and we denote Pr(n) := x(X,F(n)) its Hilbert function. This is a polynomial in the
variable n with integral coefficients (see [55]). The natural number

gx =1 —-x(X,0x) (1.18)

is called the arithmetic genus of X. The degree of the polarization Ox (1) is defined as
the leading coefficient of the Hilbert polynomial of the structure sheaf, and we denote
it by h,

Po,y(n) = x(X,0x(n)) =h-n+--
In general, if F is a coherent sheaf on X we define its rank and its degree with respect
to the fixed polarization as the numbers r(F), deg(F) such that

Pr(n) = (hr(F))n + deg(F) + r(F)x(X, Ox) € Z[n]. (1.19)

The multiplicity of F with respect to the given polarization is defined as the leading
coefficient of its Hilbert polynomial, a(F) := hr(F). Note that r(F) and deg(F) are
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not, in general, natural numbers. The slope of F is defined as p/(F) = deg(F)/a(F),
and the reduced Hilbert polynomial is

pr(n) = =n+u'(F)+ Y (1.20)

Recall that a dualizing sheaf for X is a coherent sheaf w$ such that Homx (F,wxo) ~
HY (X, F)V, and it exists since X is projective (see [31, Proposition 7.5]). Moreover,
since X is Cohen-Macaulay (see Remark we already know that, for any locally
free sheaf F, the following

H(X,F)~H7 (X, F'ouw%)Y, i=0,1
holds true (see [31, Corollary 7.7]).

Let X be a reduced projective curve over k. A singular point z € X is called a node
or ordinary double point if Ox , ~ k[[x,y]]/xy. The curve X is a nodal curve if all of
its singularities are nodes. Note that any nodal curve is Gorenstein, and therefore it
has a dualizing sheaf which is an invertible sheaf.

One of the most important objects we will deal with along this work is defined in
the following:

Definition 1.2.9. Let X be a reduced projective curve over the field k. A (non-zero)
coherent Ox-module F on X is said to be of depth one if for each closed point of its
support z € supp(F) C X, Fy is an Ox z-module of depth one.

Definition 1.2.10. A coherent sheaf of depth one (see Definition [1.2.9) is semistable if
for any proper subsheaf G C F we have pg(n) < pr(n), or, equivalently, u/(G) < p/(F).

Remark 1.2.11. Note that the semistability condition depends, in general, on the
polarization Ox (1) we are working with.

The following definition and theorem shows the importance of the concept of semista-
bility.

Definition 1.2.12. Let X be a reduced projective curve over k£ and let F be a non
zero coherent sheaf of depth one on X. A Harder-Narasimhan filtration for F is an
increasing filtration

O=FCHhC--CH=F

such that the factors gr; := F;/F;_1 are semistable sheaves of depth one with reduced
Hilbert polynomials p;, satisfying
pmax(f) =pr > >pp= pmin(-/r)‘ (121)

Theorem 1.2.13. ([33, Theorem 1.3.4]) Every coherent sheaf of depth one on X has
a unique Harder-Narasimhan filtration.

Remark 1.2.14. i) This theorem shows, in particular, that there is no ambiguity
in the notation p,ee and ppgn. Note that a coherent sheaf F of depth one is
semistable if and only if pyaz(F) = Pmin(F).
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ii) By Equation ((1.20) we can rewrite Equation (1.21)) in terms of slopes. In par-
ticular, the quantities p),,.(F) and p . (F) are defined as the slopes of F; and

F/Fi_1 respectively.

Let us recall the concepts of torsion free, torsionless and reflexive module, and
rank(see [10, Chapter 1, §1.4]). Let R be a commutative ring, ¥ its total ring of fractions
and M a finitely generated R-module. We say that M is torsion free if the canonical
map M — M ® X is injective. The dual of M is defined as MV = Hompg(M, R) and
there is a canonical map ¢: M — M"YV defined by ¢(m)(f) := f(m). We say that M is
torsionless if ¢ is injective, and is reflexive if ¢ is an isomorphism. We say that M has
rank r if M @ ¥ ~ X% as a ¥-module. Suppose now that R is noetherian and reduced.
In this case R has finitely many minimal points 71,...,n, and they corresponds to
the irreducible components V(n;) = Spec(R/n;) of Spec(R). If we denote by ¥; the
field of fractions of the ith irreducible component then ¥ =[] | ¥;. The multirank
of a finitely generated R-module is the tuple (ry,...,r,), being r; is the rank of M
restricted to V (n;).

These definitions can be extended to schemes and sheaves in the obvious way. Note
that, in case X is an irreducible and reduced projective curve, torsion free, torsionless
and depth one describe the same concept.

Characterization on Reduced Projective Curves
Our propose is to generalize [57, Septiéme Partie, Lemme 5].

Lemma 1.2.15. Let O be a noetherian local domain with mazimal ideal my and M,
M’ free O-modules of the same rank r. Let f: M — M’ be a non-zero morphism of
O-modules. The following statements are equivalent

i) f+ M — M’ is surjective

i) f: M — M’ is an isomorphism

iii) f(z): M/myx — M'/my is an isomorphism

Proof. 1)=2) Assume f: M — M’ is surjective and denote by M" its kernel. If ¥ is
the field of functions of O then, since both modules have the same rank, we have

fR1LMeoL~M 0%,

that is, M"” ®o X = 0, so that M" is a torsion submodule of M. Since M is free,
M" must be the zero module, so f: M ~ M’. Step 2)=-3) is trivial. For step 3)=1),
consider the right exact sequence

M —J M'" — Coker(f) — 0.

Since f(x) is an isomorphism we deduce that Coker(f)/(ms)Coker(f) = 0, that is,
Coker(f) = (m,)Coker(f). Now by Nakayama’s Lemma we finde Coker(f) = 0, so f
is surjective. [

Theorem 1.2.16. Let X be a connected and reduced projective curve over k and F a
coherent sheaf. The following statements are equivalent:

i) F is a depth one coherent sheaf of uniform multirank r,

ii) there exists m > 0 such that there exists an injection F — @" Ox(m) whose
cokernel is a torsion sheaf.
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Proof. ii)= 1) is trivial. Let us see i)=-ii). Assume F is a depth one coherent sheaf of
uniform multirank . Fix a non-singular point x; one for each irreducible component
X;. Denote D = x1 + - - - + x; the corresponding divisor, denote with the same leter its
support, and denote i: D <> X the natural inclusion. Consider the sheaf

G := Homoy (F,EP Ox),

which is also torsion free. Consider the canonical morphism

l
¢: G — i.i"G = P G(x:).
Let K be the kernel. Since ¢ is surjective we have an exact sequence
0— K G %ii*G — 0.

Let m be an integer large enough such that H'(X, K(m)) = 0. Take tensor product by
Ox(m) in the above exact sequence

0 — K(m) <= G(m) $i-i*G — 0.

Since G(m) ~ Homo (F,P" Ox(m)), taking global sections, we find a surjective linear
map

r l
Homo, (F, P Ox(m)) S5 G(a:) — 0.
Since F is torsion free and the points z; are non-singular we deduce that
G(z;) ~ Homy (F(z;), k").
Fix an isomorphism g; : F(x;) >~ k" for each point, and let g: F — @" Ox(m) be such

that ¢(g) = (g1, ..., ). In particular, because of Lemma [1.2.15] g satisfies

T
Ge:t Fo, =~ P Ox -

Let @@ = Ker(g). Clearly )z, = 0 for each i so that supp(Q) consists only on finitely
many points on X. Since F has depth one we deduce ) = 0, and hence

g: F— @Ox(m)
O

Remark 1.2.17. Observe that, from this theorem, we infer that a coherent sheaf over
a reduced projective curve is torsion free if and only if has depth one.

The non existence of torsion elements in the sheaf of rings of a reduced projective
curve implies the following important property.

Proposition 1.2.18. Let F be a coherent Ox-module. Then FV is torsion free.
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Proof. Tt is enough to show that Homoe, , (, F))=0for all z € X. Assume there is a
point and a non zero morphism ¢': k — F,’. Consider the diagram

0 mgf OXJ k 0
N o
JT_‘\/

Note that there exists a morphism f: F, — Ox , such that ¢(a) = af forall a € Ox,.
In particular af = 0 for every a € m, so there exists z € F, such that f(z) # 0 and
af(z) = 0 for every a € m, but this is not possible because Ox , do not have torsion
elements. O

Flatness Properties on Gorenstein Curves

We show that the dual of a flat family of coherent sheaves of depth one is also flat.

Lemma 1.2.19. ([12, Chapter III, Lemma 2.5.]) Let ¢ : A — B be a local morphism of
noetherian local rings, B A-flat, with mazimal ideals m and n and k = A/m. Assume
B := B/mB is a Gorenstein ring. Let F be a B-module of finite type, flat over A
such that F := F ® k has depth(F) = 1. Then FY = Hompg(F, B) is flat over A and
FY @4 k ~ Homgz(F, B)

Corollary 1.2.20. Let S be a noetherian scheme and f: X — S a flat morphism of
finite type such that the geometric fibres of f are Gorenstein curves. Let F be an S-flat
coherent Ox -module inducing on the fibres of f Cohen-Macaulay sheaves. Then

1) FY is flat over S.

2) for each point s € S, the canonical morphism ([22, Chapter 0, §4, 4.4.6.])

FF) = (fiF)Y (1.22)

s an isomorphism, where

Proof. (See [12], Chapter III, Proposition 2.7.). The problem is local on S. But if F
is Cohen-Macaulay then F, is zero or F is a depth one Ox ;-module. If 7, = 0 then
FV is trivially flat over z € X and the natural map in 2) is trivially an isomorphism in
x € X. Suppose that F, # 0. Then result follows applying Lemma for F := F,,
B := OX,a: and A := OS,f(z)- ]

A Useful Result on Torsion Free Quotients

Let X be a reduced projective curve over k and £ a torsion free sheaf on X. Recall
that a quotient sheaf of £ is a surjection ¢q: &€ — F — 0 where F is torsion free. An
isomorphism between two quotients is an isomorphism between the two sheaves which
are compatible with the surjections. Then we have:
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Proposition 1.2.21. Let g¢;: € — F — 0, i = 1,2, be two torsion free quotients such
that
Filu

QV

Elu
\ oUu
@l

Faolu

commutes over a dense open subscheme U C X. Then, there exists an isomorphism,
¢ : F1 ~ Fo, of quotients extending ¢y .

Proof. Denote «;: U — X the open immersion. Since U is dense, the complement,
Z = X — U, consists of finitely many closed points. From the exact sequence (see [29])

0 = HY(Fi) = Fi B au(Filv) = Hy(F) =0

and the fact that depth(F;) = 1, we deduce that H%(F;) = 0. Thus, the canonical
morphism,

Di: Fi = an(Filu),
is injective. The same argument is applied to &£, so the canonical morphism &: £ —
as(E|y) is injective. Therefore, we have the following commutative diagram

Now we claim that the morphism f; = au(¢y)o®; takes values in Fy and the morphism
fo= a*(qbu)*l o ®5 takes values in F7. It is enough to show this at the level of stalks.
By the surjectivity of ¢; and the injectivity of ®9, it is obvious that for any element
m € JFi there is a unique element m’ € Fy such that fi(m) = Po(m’) (the same
argument holds for f). This, together with the fact that the diagram commutes,
implies that f; and fy are inverses to each other, so they determine an isomorphism
between both quotients. ]

Remark 1.2.22. Note, that this proposition says that if £&,& C & are saturated
subsheaves (i.e. with torsion free quotients) which are equal on some dense open sub-
scheme, then they are globally equal.
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1.2.3 Local Structure of Torsion Free Sheaves on Nodal Curves

Let us recall the local structure of a torsion free sheaf F on the nodal points of the
nodal curve X.

Proposition 1.2.23. ([57, Chap. 8, Proposition 2|) Let x be a nodal point of X lying
in only one irreducible component X; of X. Then a finitely generated O,-module M
has depth one if and only if there exist a;,b; € N with

M ~ 0% g m?. (1.23)
Remark 1.2.24. The integers a; and b; are unique because

k(M 0, k) = a; + 2b;,
I‘k(M) =aqa; +b;.

Proposition 1.2.25. ([57, Chap. 8 Proposition 3|) Let x be a nodal point of X lying
in two irreducible components X; and X; of X. Then a finitely generated Oy -module
M has depth one if and only if there ewist a;j, b;;,c;j € N with

M~ 0% a0 e 05 (1.24)
Remark 1.2.26. Again, the integers a;j, b;; and ¢;; are unique because

I'k(M X0, Oxl) = a;; + bij
I‘k(M X0, O;Ej) = ai; + ¢ij
rk(M X0, k‘) = a;j + bij + ¢4

Suppose that F has uniform multirank r. If x is a nodal point lying in only one
irreducible component X;, then the local structure of F at z is determined by the
number a; because r = a; + b;. In the same way, if x is a nodal point lying in two
irreducible components X; and X; the the local structure of F at x is determined by
the number a;; because r = a;; + b;j; and r = a;; + ¢;; (so bj; = ¢;j = r — a;;). Since for
a nodal point lying in two irreducible components we have m, ~ O, © Oy, (see [57])

we also find, in this particular case, that M ~ 03" @ Oy, “’ @ O;]._a” ~ Oy @my .

Definition 1.2.27. A torsion free sheaf of rank r is of type a; at a nodal point x; (lying
in one or two irreducible components) if F, ~ OF & m}~%.

1.2.4 Extending the Local Structure

Let X be a projective connected nodal curve over k of genus g and let us denote
T1,...,T, its nodes.

Lemma 1.2.28. If F is a torsion free sheaf on X and x; a node lying in only one
irreducible component X' (resp. lying in two ireducible components X', X") then for
each open subset U such that x; € U, x; € U for j # i and contained in X' (resp.
contained in X' U X"), we have

Fu C Fy,.
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Proof. Let U be an open subset satisfying the above conditions. Consider the natural
morphism

D: Fy —>fmi,

N
PR
1
and let s € Fyy be an element of the kernel and assume that s # 0. Since ? = 0 there

exists 0 # f € Oy \ mg, such that fs = 0, m;, C Oy being the maximal ideal of ;.
Consider the submodule M := (s) C Fy. Since ®(s) = 0 we have M,, = 0. Therefore
there is a finite set of points C = {p1,...,p} C U suth that My =0 being V =U\ C,
that is, M is supported on C (this is because of the properties that U satisfies). Then
on each point of C we find that M), ~ k™, and therefore for each ¢ we have an inclusion
M,, ~ k" — F,, which can not be possible, so s = 0 and ® is injective. [

Theorem 1.2.29. Let F be a torsion free sheaf on X of uniform multirank r. Let
x € X be a node and suppose that F is of type a on x, i.e. Fp ~mi S O~ Then
there is an (affine) open neighborhood, U, of x not containing more nodes and an
isomorphism

Oy Fy ~ ﬁg ©® OTU_a

satisfying Py, = .
Proof. Let V be an open subset as in the Lemma [1.2.28] Then we have

d _
Fo—Fmi @ Ora

]

Fv
Let {mi,...,m;} be generators of Fy. Then

si  fi _ _
Dy (m;) = ?l + 2 spemy, f; € 0777, gity € Oy \ W,

i gi

Consider the ideal I = ({g¢;}, {t:}) and let U' = V'\ V(I). Then we have a conmutative
diagram

@ _
Fp——mi® O

j\ Oy

Fure —¥me @ 00

Since @y, is an isomorphism there exists an open subset U’ D U > z such that @y is
an isomorphism. O

1.3 Sheaves on Non Connected Smooth Projective Curves

Let Y = II'_,Y; be a curve where Y; is an irreducible smooth projective curve for all
i, and let Oy (1) be a polarization. For each i we denote by w;: Y; < Y the natural
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inclusion. We assume along this section that [ > 1. A coherent sheaf £ of depth one
on Y a locally free sheaf. Moreover, for any locally free sheaf £ on Y we have

l
&= @uz*&, where E,'Z = g‘yl (1.25)
=1

Recall from Remark that the semistability condition depends on the polarization

we fix on the curve. The aim of this section is to show that, for some special polariza-

tions, the tensor product of two semistable locally free sheaves, £ ® F, is semistable.
Let us denote h = deg(Oy (1)) and h; = deg(Oy;(1)). First of all note that, by

Equation ([1.25)), we have
!
= Z X (&)
Z{h rk(E)n + deg(&) + k(&) x (Y, Oy,)}.
Since Pg(n) = a(E)n + deg(€) + rk(E)x(Y, Oy ), we can easily show that

l R
= Zeirk(&-), where ¢; = #,
' (1.26)

1
deg(€) = —1k(E)X(Y, Oy) + >_ {rk(E)x(Y;, Oy,) + deg(&) }.
=1

Recall that the slope of a locally free sheaf £ is defined as u(€) = deg(€)/a(E). We say
that & is semistable if for any subsheaf F C &£, we have u(F) C u(€). For any tuple of

locally free sheaves, £,...,£" and for any polarization Oy (1), we define
. hitk(ED) .. .1k(EP i
AZ(517.”’571) — r (gz) r (gz) —_ a(g)

S hrk(ED) . xk(er)  al€)
h; ho

(1.27)
B'(Oy(1)) :=

being £ = ' ® -+ ® E™ and &; = £y, the restriction to the ith component.

Lemma 1.3.1. For any tuple of locally free sheaves E',... E™ we have

HE' ®.. @E") = ZAZ en{Biov( +Zu57}

Proof. By equality ([1.26]) we know that

deg(E'®@ - @ &) = —1k(E' @ ... ® EMX(Y, Oy)+

l
+y {rk(f;} ®...®EMY(Y,0y) +deg(El ® ... ® 5;1)}.
=1
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Since

k(& ®...® &)

[t

k(€@ @) =Y e(]] k().
=1 j=1
deg(E} @... @ &) =3 deg(el)([ ] r(]),
k=1 i#k
we deduce that
l n
dog(€’ &% =~ (L e [ k(. 09+

1

M~ ﬁ‘

+

j=1
{ﬁ x(Y, Oy,) +Zdeg5k Hrké’] }

1 k=1 j£k

[

Since the slope is
deg(El®...® &)

1 ny _
WE . 08 = e e

we get

_ St { T (€)X (Ox) + LR deg(€F) (T, 07k (E)) }
flo. . gemy = X0 i Sk . 7 -
HE G e =T WSt e T t(ED))
_x(©0y) X { Ty k(&) (Oy,) + hi Ty rk(E) S peh}
h A(C e T tk(€))
_ i [ tk(E)O%) — ex(Or)) | i (hi Tl k(&) S,y (&)
A e TTj tk(€)) Ay e T tk(€))

S WIGarkED) L x(On) x(Oy) s
_ ' i) &l -
;{ Zlh-nmrk(&?){( - ) >+k§_;u<l>}}

_ ZAZ {Bz(Oy( ) + u(&k)}-

k=1

Remark 1.3.2. From the last lemma we find, in particular, that

l

u(€) = D AE) B0y (1) + ulE |-

i=1
Note that
i) If there is just one component [ = 1, then we obviously have A(£) = 1 and

B(Oy (1)) = 0.
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! .
ii) if BY(Oy) = 0 for all i, we find u(&) = Zi:;?;;g(m, that is, deg(&) =
Zﬁ:l deg(&;).

iii) let F be a locally free sheaf on the ith component Y;, and consider the sheaf
E =uiF on Y. Then u(€) = u(F) + BY(Oy(1)).

Lemma 1.3.3. If £ is a semistable locally free sheaf on' Y, then u(€) = BY(Oy (1)) +
w(&), for all i with & # 0.

Proof. We can reduce the lemma to the case & # 0 for all 4. For the sake of notation,
we set D' := BY(Oy (1)) + u(&;) for each i. Then we know that p(u&;) < p(€) since
£ is semistable. Therefore

0 < p(€) — p(uix&s) ZAJ W{B Oy (1)) + u(€)}) — (B'(Oy (1)) + u(&:) =

(D)
j=1
= AYED 4 -+ (AY(E) - 1D + - - + AYE) D
Recall that A47(€) = (Zy((%)) for all j. Thus AY(&) — 1 = W. Since a(€) =

S a(&), we get,

0 < u(€) = plup;) =AY E)D" = DY) + -+ ATHE(D™! = DY)+
+Ai+1(8)(Di+1 _Di) —i—---—l—Al(S)(Dl —Di).

Since A7(£) > 0 for all j, we deduce that there must be at least one superindex j such
that (D7 — D) > 0, that is, D’ can not be the maximum of the set of rational numbers
{D',...,D'}. Since this is true for all i, we deduce that the set {D',..., D'} has no
maximum. Thus D! = ... = D!. In particular, we find that 0 = (&) — pu(uix&;) for all
%, SO
(&) = p(uiné;) = B(Oy (1)) + pu(&).
]

Lemma 1.3.4. If £ is a semistable locally free sheaf on'Y , then &; is semistable for all
1 with SZ 75 0.

Proof. We can reduce the lemma to the case & # 0 for all 7. Let 7' C &; be a subsheaf
on Y; and let F := u; F' C E. Since £ is semistable, we know that u(F) < u(€). By
Lemma we deduce that

W(F) < BY(Oy (1)) + p(&:)-

Finally, by Remark (iii), we know that u(F) = B*(Oy (1)) + u(F;) and therefore
w(F;) < p(&), that is, & is semistable. O

Theorem 1.3.5. A locally free sheaf £ on'Y is semistable if and only if all non zero
components & are semistable and B (Oy (1)) + u(&) = u(€).
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Proof. We can reduce the theorem to the case & # 0 for all 5. The direct implication
follows from Lemma and Lemma Let us see the inverse. Let F C £ be a
subsheaf and let F; be a non zero component. Since &; is semistable, we know that

W(F;) < u(&) = u(€) — B (Oy(1)).

Therefore,

u(F) = 3 AFEBOr ) +u(F) | < D AFE) = (),

Fi#0 Fi#0
so £ is semistable. O

Remark 1.3.6. This in particular shows that any semistable sheaf £ on Y; is semistable
as a sheaf on Y independently on the polarization we are working with.

Definition 1.3.7. We say that the polarized curve (Y, Oy (1)) has the property P if
the following holds true on Y

if £ and F are semistable locally free
P= sheaves with support equal to Y
then £ ® F is also semistable

Theorem 1.3.8. The polarized curve (Y,Oy (1)) has the property P if and only if
BY(X) =0 for all i.

Proof. We first prove that there exists a constant A such that B*(Oy (1)) = A and then
we show that A must be zero. Suppose that (Y, Oy (1)) satisfies property P. Now, let
&, F be semistable locally free sheaves of uniform rank. By Theorem [1.3.5] we know
that

i) all components &;, F; are semistable

ii) BY(Oy (1)) + p(&) = p(€) for all i

iii) BY(Oy (1)) + u(F;) = u(F) for all

By Lemma [I.3.7] and Theorem [I.3.5] £ ® F is semistable if and only if & ® F; is
semistable and B*(Oy (1)) + (&) + u(F;) = u(€ ® F). Since it is semistable because
(Y, Oy (1)) satisfies property P, the last equality holds. Therefore

WE® F) = B (Oy(1) + (=B'(Oy(1)) + u(€)) + (-B(Oy (1)) + u(F)) =
= —B'(Oy(1)) + u(€) + p(F).

thus B*(Oy (1)) is constant. The reciprocal follws by the same argument. Let us show
that the constant must be zero. Let A be such that B{(Oy (1)) = A for all i. Then

x(Oy)
P

and taking the sum over all the components we get
hA = x(Oy) — x(Oy) = 0.

Since h # 0, we get A = 0. O

29



1. Preliminaries

Corollary 1.3.9. If B (Oy (1)) = 0 for all i, then for every couple of semistable locally
free sheaves,
i) the tensor product, £ ® F, is semistable.

i) we have (€ @ F) = (&) + u(F).

Proof. 1t is implicitly proved in the last theorem. O

1.4 Principal G-bundles on Curves

In this section we will introduce the theory of principal G-bundles following [55]. Re-
ductions and extensions of the structure group will become quite important and they
will allow us to construct our compact moduli spaces of principal G-bundles considering
locally free sheaves with an extra structure and their degenerations. This point is in
the heart of all the constructions of the moduli spaces of principal G-bundles we have
so far.

Let k be an algebraically closed field of characteristic 0. Any scheme considered in
this section will be a separated noetherian k-scheme.

1.4.1 Coverings

Definition 1.4.1. Let Y be a scheme. A pair (X, f) consisting of a scheme X and a
morphism of schemes f: X — Y is said to be a covering if f is finite (i.e. there exists
a covering of affine open subschemes U; = Spec(4;) C Y such that V; := f~1(U;) is
affine, say V; = Spec(B;), and B; is a A;-module of finite type) and surjective.

Remark 1.4.2. Observe that given a finitely generated B;-module we automatically
get a finitely generated A;-module, simply by considering M with its induced A;-module
structure. Therefore, the functor f.(—) tranforms coherent Ox-modules into coherent
Oy-modules.

We will find different types of coverings depending of the characteristics of the A;-
algebras B;. Those who will be considered here are the unramified, étalé and Galois
coverings.

Definition 1.4.3. Let X and Y be schemes, f: X — Y a morphism locally of finite
type, z € X a point of X and y = f(x) € Y. Then f is said to be unramified at z if
m, = m,Ox and k(z) is a finite separable extension of k(y). The morphism f is said
to be unramified if it is unramified at every point x € X.

The next proposition allow us to characterize geometrically the unramified condi-
tion,

Proposition 1.4.4. ([I, Proposition 3.3]) Let X and Y be schemes, f: X — Y a
morphism locally of finite type, v € X a point of X and y = f(x) € Y. Then the
following conditions are equivalent:

(7) Q}X/Y is zero at x.

(ii) the diagonal Ax/y is an open immersion in a neighborhood of x.

(7i1) fis unramified at x.
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Remark 1.4.5. The last proposition says that the morphism f: X — Y is unramified
if and only if Q& Iy = 0, but this condition must to be checked only on closed (thereby,
rational in our condiitions) points. Thus, f is unramified if and only if Qk Iy = 0 at
every rational point z.

Definition 1.4.6. Let X and Y be schemes, f: X — Y a morphism locally of finite
type, x € X a point of X and y = f(z) € Y. Then f is said to be étalé at x if it is flat
and unramified at .

Proposition 1.4.7. ([I, Corollary 4.5]) Let X and Y be schemes, f: X — Y a mor-
phism locally of finite type, x € X a point of X and y = f(x) € Y. If fy: @y — O,
is an isomorphism, then f is étalé at x. Com;Aersely, suppose that k(x) = k(y) or that
k(y) is algebraically closed. If f is étalé then f, is an isomorphism.

Remark 1.4.8. Since we are dealing with noetherian k-schemes, we have the equiv-
alence: f is étalé at a closed point z if and only if f, is an isomorphism. As before,
the morphism f is étalé if it is étalé at every point, thus, if and only if f,Ox is a flat
Oy-module and Qﬁ(/y =0.

We say that a morphism locally of finite type f: X — Y is flat (resp. unramified,
resp. étalé) at a point y € Y if it is flat (resp. unramified, resp. étalé) at every poitn
x € X such that f(x) = y. With this in hand, we have, as a trivial consequence, the
following

Corollary 1.4.9. Let f: X — Y be a covering (finite, surjective), étalé at a point
y € Y. Then (fiOx)y is free of rank n = §{x € X|f(x) = y}. Moreover, if f is an
étalé cover then f.Ox is a locally free sheaf on Y with constant rank on each connected
component. Therefore, f.(—) transforms locally free sheaves into locally free sheaves.

In the particular case in which we have that f,Oy is locally free of rank r, we say
that the étalé covering f has degree n.

A morphism between coverings, f: X — Y and g: X’ — Y, is a morphism between
X and X’ as Y-schemes. The group of automorphism of a given covering f: X — Y,
is denoted by G;. If the covering is étalé connected and of degree n we can bound the
order of the group of automorphisms by n.

Proposition 1.4.10. Let f: X — Y be an étalé covering of degree n. Let X' be a

connected scheme and ¢: X' —'Y be a morphism. Then

Homy (X', X) = Hom/ (X', X xy X') = { connected components of }

X xy X' isomorphic to X'

In particular, #Homy (X', Y) < n and the inequality becomes into an equality if and
only if X xy X' — X' is a trivial covering.

Proof. The two equalities are clear. Let us show the inequality. We define
r = #Homx (X', Y) = #Hom /(X' Y xx X').

Then, there is an injective morphism X' II.7. 11 X’ — Y x x X’ of coverings over X'.
Therefore, » < n. Note that the equality holds if and only if r = n, i.e. the above
injection is a bijection. O
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The next theorem let us to introduce the concept of Galois covering.

Theorem 1.4.11. Let f: X — Y be an étalé covering with Y connected. Then there
exists an étalé covering g: X' — Y which trivializes f,

XU.. . UX X xy X' — X'

Proof. We proceed by induction on the degree. For degree equal to one is obvious.
Let n be the degree. Since the identity of Y is an automorphism of coverings, by
Proposition we conclude that X xy X = X II X; II...1I X,. Here, each X;
is a connected étalé covering of degree strictly smaller that n. Now, we conclude by
induction. O

We arrive, therefore, naturally to the following definition

Definition 1.4.12. A connected étalé covering f: X — Y is principal or Galois if it
trivializes itself.

Example 1.4.13. The Galois coverings of the point Spec(k) are precisely the Galois
extensions of k.

A link between geometric invariant theory for finite groups and Galois coverings is
stablished in the following theorem of Artin

Theorem 1.4.14. (Artin) Let f: X — Y be an étalé covering and G C Auty(X) a
subgroup. Then the geometric quotient X/G is equal to Y if and only if f is a Galois
covering and G = Auty (X).

1.4.2 Fiber Spaces and Principal Bundles

Definition 1.4.15. Let X be a scheme and G an algebraic group. A fibered system
over X with group G is a pair (P, 7) where P is a scheme acted on by G (on the right)
and m: P — X is G-invariant, i.e., 7(¢g-p) = m(p). A morphism between fibered spaces
over X with group G is a morphism of X-schemes, f: P — P’, which is G-equivariant,

ie flg-p)=g-f(p)

We denote by Fibx (G) the category of fibered spaces over X with group G. Given
a fibered space over X with group G and an X-scheme f: X’ — X, the fibered product
P x x X’ with the induced morphism 7’: P x x X’ — X' is a fibered space. It is usually
denoted by f*(P). Therefore, any X-scheme induces a functor

f*: Fibx (G) — Fibx:(G).

For any scheme X we can consider the first projection 7: X x G — X and the
standard action of G on X x G. Then (X x G, 7) is a fibered space and we say that a
fibered space is trivial if it is isomorphic to (X x G, ).

Definition 1.4.16. A principal G-bundle over X with structure group G is a fibered
space (P,m) with group G which is isotrivial: for any point x € X there exists an
open neighborhood U C X of z and an unramified covering f: X’ — U such that the
induced fibered space f*P|y — X' is trivial.
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Morphisms between principal G-bundles over X are the morphisms as fibered
spaces. We will denote by Bunx (G) the category of principal G-bundles over X. This
category is also stable under pullbacks, and for any X-scheme we have an induced
functor

f*: Bunx(G) — Bunyx/(G)

as before.

Example 1.4.17. 1) Trivial fibered spaces (X x G, 7) are principal bundles.

2) Given a finite group G, any Galois cover of a scheme X is a principal bundle
over X.

3) If G is an affine algebraic group over k and H C G is a closed subgroup of G,
then G/H is a smooth quasi-projective scheme and G is a principal G-bundle over G/H
with structure group H (see [5, Theorem 6.8]).

A basic property of the category Bunx (G) is stated in the following proposition,

Proposition 1.4.18. ([55 §3.1]) Let X be a scheme and 7: P — X, n': P/ - X
principal G-bundles. Then Morgyy, () (P, P') = Isompyy () (P, P’).

1.4.3 Isotriviality Criterion

Let X be a scheme, G an algebraic group, and (P, 7) a fibered system over X with
group G. Let us denote by o: P x G — P the group action on P and ps : P x G — P
the second projection. Consider the following properties for fibered spaces

P1) The morphism ® = (o,p2): P x G — P xx P over X is an isomorphism of
X-schemes.

P2) For any point z € X, there is an étalé covering f: U' — U C X over an open
neighborhood of x and a morphism s: U’ — P such that the diagram

is commutative.
Then we have,

Proposition 1.4.19. ([55, Proposition 2|) The fibered system (P, ) is locally isotrivial
(so, a principal G-bundle) if and only if P1) and P2) are satified.

1.4.4 Associated Fibered Spaces. Extensions and Reductions of the
Structure Group

Let X be a scheme and G an algebraic group. Let 7: P — X be a principal G-bundle
and F' a quasi-projective scheme (left) acted on by G. Consider the product P x F' and
let G act on P x F by the rule

. f)g=Ww 99" f.

Then, the result is
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Proposition 1.4.20. ([55, Proposition 4]) There is a unique separated scheme of finite
type, Q, such that P x F is a principal G-bundle over Q).

Remark 1.4.21. Note that @ is just the categorical quotient (P x F')/G. This scheme
is usually denoted by P x© F, and it is called the associated fibered space with tyPical
fiber F.

Example 1.4.22. ([53, Example 2.1.1.8.]) Let X be a scheme and V' a k-vector space
of finite dimension r. Consider the group G := GL(V) and let P be a principal G-
bundle. The group G acts on V' by matrix multiplication and, therefore, we can consider
the associated fibered space @ := (P x V)/GL(V). One can easily see that @ is, in
fact, a vector bundle with tyPical fiber V over X. The map P ~» @ is functorial and
it establishes an equivalence between isomorphism classes of principal GL(V')-bundles
and isomorphism classes of vector bundles with typical fiber V. The converse of this
map is, precisely, given by the construction of the frame bundle associated to the vector

bundle @, that is, Isom(V ® Ox, Q).

There are another two important applications of this proposition: extensions and
reductions of the structure group.

Extensions of the Structure Group

Let a: G — G’ be a morphism of groups. Then G acts on G’ via « in an obvious way,
g9 = a(g)g’. Therefore, applying the above proposition to any principal G-bundle,
we get the associated principal G-bundle P x G’ — P x% G’. Moreover

Proposition 1.4.23. ([55, Proposition 5|) The associated fiber space P x& G’ is a
principal G'-bundle.

Thus, any morphism of groups a: G — G’ defines a functor

o : Buny (G) — Buny (G'), au(P): = P x% Q.

Reductions of the Structure Group

Let G be an algebraic group, H C G a subgroup and P — X a principal G-bundle.
Note that the natural action of H on G induces an action of H on P. Consider the
scheme F := G/H and let P x (G/H) — P x% (G/H) the principal G-bundle deduced

from Proposition [1.4.20 Then

Proposition 1.4.24. ([55, Proposition 8]) The induced morphism P — P x% (G/H)
is a principal H-bundle. Therefore, P x% (G/H) = P/H.

Thereby, we find the following equivalence,
Proposition 1.4.25. ([55, Proposition 9]) Let G be an algebraic group and a: H — G
a subgroup. Giving a principal H-bundle over X 1is equivalent to giving a principal G-
bundle over X and a global section of the associated fibered space s: X — PxC(G/H) =
P/H.

34



1. Preliminaries

Proof. Let @ be a principal H-bundle and let o (Q) = Q x™ G be a associated prin-
cipal G-bundle. Consider now the associated fibered space a.(Q) x& (G/H), which is
isomorphic to Q x (G/H). Since the action of H on G/H leaves the neutral element
fixed, there is a canonical section s: X — a.(Q) x¢ (G/H).

Conversely, let P — X be a principal G-bundle and s: X — P x% (G/H) a global
section. Then we define the principal H-bundle ) by means of the pullback

s(P)= Q- - -p
: lH—bundle
)Y( P x%(G/H)

Finaly, we can show that reduction and extension of structure group are operations
inverse to each other (up to canonical isomorphism). O
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Chapter 2

Singular Principal G-Bundles on
Nodal Curves

The goal of this chapter is to construct the moduli space of singular principal G-bundles
over a nodal projective curve over the complex numbers. Following [49] and [§], we first
construct the moduli space of tensor fields and then we construct our moduli space by
associating a tensor field to any singular principal G-bundle (linearizing the moduli
problem). The construction of the moduli space of tensor fields is done following the
same steps as in [I7], and adapting the calculations to our situation. The hardest part
of the construction is to show that linearizing the moduli problem is an injective map,
as in the irreducible case.

Along this chapter, X will be a nodal projective curve over an algebraically closed
k = C and Ox(1) an ample invertible sheaf whose degree will be denoted by h (see
Chapter 1, Section |1.2.2]).

2.1 Moduli Space of Tensor Fields

The main result of this Section is Theorem which claims the existence of a
projective moduli scheme for J-semistable tensor fields on the nodal curve X. We
extend the d-semistability notion given in [17] substituting ranks by multiplicities. The
multiplicity of a coherent Ox-module, F, with respect to the polarization Ox (1) is
defined as the leading coefficient of its Hilbert polynomial Pr(n) := x(F(n)), n € N.
Since the rank of a locally free sheaf on a smooth projective curve is defined in the
same way, this permits us to follow the same argument as in [I7] to solve the problem.

The calculations in [I7, Lemma 2.6.] are adapted to our case in Lemma
which is crucial in proving Lemma [2.1.26] and, hence, in giving the equivalence between
d-semistability and sectional semistability. This, and an adaptation of the polarization
of the parameter space , allow us to compare d-semistability and GIT semistability
in the parameter space (Subsection

2.1.1 Tensor Fields and /-Semistability

Let P be a polynomial with integral coefficients of degree one, and let D be a locally
free sheaf on X. We also fix natural numbers a,b € N.
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Definition 2.1.1. A tensor field over X is a pair (F,¢) where F is a coherent Ox-
module of uniform multirank r, with Hilbert polynomial P and a non-zero morphism
of Ox-modules,

¢: (FE*)® — D.
From now on we will say that P is the Hilbert polynomial of the tensor field (F, ¢) and
r is its rank.

Definition 2.1.2. Let (F,¢) and (G,~) be two tensor fields with the same Hilbert
polynomial P. A morphism between them is a pair (f,«) where o € k and f: F — G
is a morphism such that the following square

(Fen s gene

P T

D ald

commutes.

Definition 2.1.3. Let F be a coherent Ox-module on X. A weighted filtration,
(Fe,m), of F is a filtration

Fe=(0)CFHCFoC...CFt CFy1=F,

equipped with positive numbers my ..., my € Qsg. We adapt the following convention:
the one step filtration is always equipped with m = 1. A filtration is called saturated
if the quotients F/F; are torsion free sheaves.

Definition 2.1.4. Let F be a coherent Ox-module over X. Two weighted filtrations,
(Fe,m) and (F,,m), are isomorphic if there is an isomorphism f: F ~ F such that
f(Fi) = F/, that is, if there is a commutative diagram

(0)—> FiC—> . > F > F
() FlC s Fle o F

Definition 2.1.5. Let ¢: (F®*)®® — D be a tensor field on X, and (Fs, m), (Fi,m),
weighted filtrations. Suppose that there is a flag isomorphism f: (Fe,m) ~ (F.,m).
We say that f is compatible with the tensor structure if (f,1) is a morphism of tensor
fields.

Let ¢: (F®*)® — D be a tensor field on X and let (F,,m) be a weighted filtration.
For each F; denote by «; its multiplicity and just « the multiplicity of F. Define the

vector .
L=> "m0,
1
l a—l
——— N
where I = (I — o, ...,1 —a,l,...,l). Let us denote by J the set

J = { multi-indices I = (i1, ...,1)|L; € {1,...,t+1}}.
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Define
W(Faim,6) = minges{Ta, + .+ Ta |0l 0 om0 20} (21)

Lemma 2.1.6. Let ¢: (F®)® — D be a tensor field on X and let (Fo,m) be a
weighted filtration as above. Denote €;(Fs) the number

€i(Fo) = #{k € (i1,... 1)k < a4},
(i1,...,1q) being one multi-index giving the minimum in u(Fe,m,p). Then, the follow-

ing holds,

Fn 7 Zmz az o) )

Proof. We know that
(627 a—oy

P = (g —a,...,0; — a, a5, .., m). (2.2)

Then I'y, is the k-th component of the vector I' = Zi m;['*. Therefore

Faij =miog + ...+ M 10,1+

+ mz‘j(az‘j — )+ mij+1(04z'j+1 —a)+ . my(y —a) =

= E m;o — O‘E mg,

k=i
o)
t t t
@, T —G—Fala—aZmZal aka— —aka:

1 k=i1 k=iq

¢ ¢

= aZmlozl — aZmiw(I) =
1 1

= Zmi(aai - Oﬂji([))v
1

where v;(I) = t{k € I = (i1,...,1a)|ox < a;}. Note that if I is a multi-index giving
the minimum, then v;([) = ei(]-" ), and we are done. O

Lemma 2.1.7. Let (F,,m) be a weighted filtration, with
Fe=0)CFL C...CFs C Fsy1=F.
Consider a partition of the multitindez (1,2,...,s)
I:=(,2,...,8) =11 Uy,
let us say Iy = (i1,...,1) and Iy = (k1,...,ks—¢). Then

Zml (a—=1) > pu(Fe,m, ) > — Zmz ala — 1),

s—t

2) ju(Fo,m, ¢) < p(Fa,ma, 6) + (Y maji)a(a—1),

i=1
bez'ng]:1 Fi and]—"2 F;-

]
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2. Singular Principal G-Bundles on Nodal Curves

Proof. For the sake of clarity, we first introduce some notation that will be used later.
We denote I} = (1,...,t) and I}, = (1,...,s — t), and by ¢; (resp. ¢2) the bijection
between I; and I (resp. Iz and Ij) given by ¢1(ij) = j (resp. ¢a(k;) = 7).

1) Being v;(J) < a, we have

w(Fe,m, P) = z:mZ vi(J)a —aa;) <

< Zami(a — ;) <
=1
S

< Zami(a —-1) =
i=1
S

= (Z m;)a(a — 1).

i=1

On the other hand, being v;(J) > 0 and «; + 1 < o we deduce

w(Fe,m, @) Zmz vi(J)a — ac) >

> mi(a(l - a)) = —a(d_mi)(a—1).
j =1

2) Let J be a multiindex giving the minimum in u(F}, m;, ¢). Then we have

p(Fe,m, ) < ZmZ ac; — vi(J)a) =
s—t
= Zml,j(aaij — v (J)a) + ngJ(aakj — v (J)a) <

f,,ml, me (a—1)

O]

Lemma 2.1.8. Let ¢: (F®)® — D be a tensor field on X, and let (Fo,m) and
(Fo,m) be two weighted filtrations for whom there is an isomoprhism compatible with
the tensor structure over a dense open subscheme U C X. Then

p(Foym, 7) = pu(Fo,m, 7).
Proof. Follows trivially by Proposition [1.2.21] Remark [1.2.22] Definition and de

construction of p(—,—, —). O

Definition 2.1.9. Let ¢ be a positive rational number. A tensor field (F,¢) is o-
(semi)stable if for each weighted filtration (Fe,m) the following holds

t
> mi(aPr, — a;P) + 6u(Fe, m, ¢)(<)0. (2.3)
1
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2. Singular Principal G-Bundles on Nodal Curves

The following lemma will be quite important in the analysis of the d-semistability
condition and, therefore, in the construction of the moduli space.

Lemma 2.1.10. There is a positive integer A, depending only on the numerical input
data (P,a,b and D), such that it is enough to check the 6-semistability condition
for weighted filtrations with m; < A.

Proof. Note that a tensor field is J-(semi)stable if and only if Equation ([2.3)) holds for
every integral weighted filtration, i.e., filtrations with integral weights. Now, the result
follows from [I7, Lemma 1.4] changing ranks by multiplicities. O

2.1.2 Boundedness

In order to construct our moduli space we have to be sure that the set of torsion free
sheaves appearing in our problem is small enough. We develop the basic definitions and
results about bounded families, and we prove, following closely [17], the boundedness
of the family of torsion free sheaves appearing in 0-(semi)stable tensor fields.

Let X be a k-scheme of finite type. For any field extension k£ — K, we denote by
Xk := X X K the base change. Let k — K;, i = 1,2 be two field extensions of k, and
let F1, F2 be coherent sheaves over Xr, and X, respectively. We say that F; and F»
are equivalent, F; ~ JFo, if there exists a common field extension

Kl\
k\ K
Kg/
such that F1 @k, K ~ F2 Qk, K over Xg.

Definition 2.1.11. Let E be a set of equivalence classes of coherent sheaves on X. We
say that E is bounded if there exists a k-scheme of finite type and a coherent sheaf F
over X x S — S such that for any member £ of E on X, there is a point s € S such
that €& ~ Fs, being Fs = F ®g k(s).

This can be generalized to the relative case, in which X is a S-scheme for some
k-scheme S, in the obvious way. In case X is projective, there is a very important
characterization,

Theorem 2.1.12. ([20, n° 221, Theorem 2.1]) Let X be a noetherian projective scheme
over k and Ox (1) a very ample invertible sheaf. Let E be a set of equivalence classes
of coherent sheaves over X. FE is bounded if and only if the following holds:

i) there exist natural numbers n,N € N such that E is contained in the set of
equivalence classes of coherent sheaves which are quotients of Ox(—n)®N.

i1) the set of Hilbert polynomials Pr of sheaves F €F is finite.

Remark 2.1.13. Note that Theorem [2.1.12]implies that the union of a finite number
of bounded sets of equivalence classes of coherent sheaves is also bounded.
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2. Singular Principal G-Bundles on Nodal Curves

We can also characterize boundedness of the set E looking at the regularity of the
sheaves living inside it.

Definition 2.1.14. Let m be an integer and F a coherent sheaf on X. We say that F
is m-regular if A
H'(X,F(m —1)) =0, foralli>0.

Clearly, if F is m-regular and m’ > m then F is also m/-regular. From Serre’s
vanishing theorem, it follows that there is always an integer m such that F is m-regular.
Therefore, we can define,

Definition 2.1.15. Let F a coherent sheaf on X. The regularity of F is defined by
reg(F) = inf{m € Z : F is m-regular}.
Therefore, we have

Theorem 2.1.16. ([33, Lemma 1.7.6]) Let X be a noetherian projective scheme over
k and Ox(1) a very ample invertible sheaf. Let E be a set of equivalence classes of
coherent sheaves over X. FE is bounded if and only if the following holds:

i) there is a uniform bound reg(F) < p for all F € E.

i) the set of Hilbert polynomials Pr of sheaves F €F is finite.

Corollary 2.1.17. ([20, n° 221, Lemma 2.5]) Suppose that X has dimension l. Let
G be a coherent sheaf on X and E a set of equivalence classes of sheaves F which are
quotients of G. The Hilbert polynomial of the sheaves in E are of the form

Pr(n) =an' /Il +bn! "1/ — 1) + ...

Then, a is bounded from above and b is bounded from below. If b is bounded from above,
then the family of quotients F is bounded.

Let X be a reduced projective curve of genus g and Ox (1) a very ample invertible
sheaf. Let us denote by h its degree and let H be an ample divisor determining its
class. Given a coherent sheaf, F, we have defined its slope as

_ deg(F)

1 (F) alF)

Nevertheless, we will also use, in this chapter, the quantity

W(F) = r(1—yg) +deg(]-')’

(0%

which is also defined as the slope of F by C. Simpson (see [58]). As always, « its
the multiplicity of F, r = a//h its rank and deg(F) its degree (see Chapter 1, Section
1.2.2). Recall that a torsion free sheaf, F, is semistable if for any subsheaf ' C F (see

Chapter 1, Section ,
W (F) < 1(F).

Note that this is the same as saying that u(F’') < u(F). Recall also that for any torsion
free sheaf, F, there is a unique filtration (Harder-Narasimhan filtration)

O=FpCFH C...CFr=F
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2. Singular Principal G-Bundles on Nodal Curves

such that the quotients F;/F;_1 are semistable torsion free sheaves with decreasing
slopes (Chapter 1, Section [1.2.2)). Note that this is true independently on the definition
of the slope, u or p/, that we use.

Lemma 2.1.18. ([58, Corollary 1.7],[32, Lemma 2.2]) Let « € N. There exists a
positive integer B, depending only on «, such that if X is a reduced projective curve
and F is a semistable torsion free sheaf of multiplicity less or equal than «, then

hO(X, F(m))

- < [u(F)+m+ B]4, withn e N.

Lemma 2.1.19. Let X be a reduced projective curve over k. Let a > 0 be an integer.
Then there exists a positive integer B such that for every torsion free sheaf F, with
multiplicity 0 < o < «, we have,

ROCX, F(m)) < (0 = 1) ftmas(F) +m + By + [tmin(F) +m + Bl).
Proof. We follow [32]. Consider the Harder-Narassimhan filtration of F
0=FyC F C...C.Fk:f,

where F;/F;_1 are semistable torsion free, and we denote their multiplicities by 3; =
a(F;/Fi—1). For every i = 1,..., k, we have exact sequences

0—= Fio1—= F; = Fi/Fie1 — 0.

Taking global sections and applying Lemma [2.1.18| we get

k
hO(X, F(m)) <Y Bilps +m + Bl

i=1
Moreover,

k k
ZBZ[M'L +m + B]+ < Bio[umin(]:) +m+ B] + Z ,Bi[,umax(f) +m + B]Jr <
i=1 i#io
(i = ig—1) [tmin (F) +m + By + (@ig—1 — @iy + &) [lmaa(F) +m + By
<[pmin(F) +m + By + (& = 1) [pmax(F) +m + B4
O

Lemma 2.1.20. Let C” be a constant, and let E be a bounded set of equivalence classes
of coherent sheaves on X. The set of torsion free quotients F — F" of sheaves F in E
with deg(F") < C”, is bounded.

Proof. Follows from Theorem [2.1.12| and Corollary [2.1.17 O

Theorem 2.1.21. Let P(n) € Z[n] be a polynomial of degree one and C' € R a constant.
The family of sheaves F with Hilbert polynomial P and such that fime:(F) < C is
bounded.

Proof. This is a particular case of [58, Theorem 1.1]. O
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2. Singular Principal G-Bundles on Nodal Curves

Corollary 2.1.22. Let X be a reduced projective curve over k, let § € Qs and o € N.
The set of torsion free sheaves of multiplicity o and degree d occurring in 6-semistable
tensor fields (F, ¢) is bounded.

Proof. We follow [17]. Consider the one-step flag 0 C F; C Fo = F with a(F1) = k.
The associated one parameter subgroup is determined by
k a—k

(k)
' =(k—-a,....k—a,k,... k).

For each multiindex I = (iy,...,1i,) denote

gr =Ta, +...+Tq,,,
and s the number of indices 7; = 1 and sy the number of indices ¢; = 2. Then we have

gr = s1(k — a) + s2k.
Since s1 > 0 and so < a we find, for every multiindex [

alk —a) < g; < ak.
Hence, applying Lemma [2.1.7] we get,
alk — o) < u(Fe, 9,1) < ak.

Now, the semistability condition means that aPr, — kP < da(a — k). If we denote by
C the constant

ala—1)

nw(F) + 4

(note that pu(F) is constant since the degree and the multiplicity are fixed) then we
conclude that p(Fy) < C. Thus, by the Theorem [2.1.21] the family is bounded. O]

2.1.3 Characterizing /-Semistability

We want to prove Theorem [2.1.26, The proof will be done in several steps, following
closely [I7]. Just minor changes must be done to adapt their proofs to the case of
reduced projective curves.

Let us fix some notation. Let F be a coherent Ox-module, and suppose we have a
filtration, F,, of F. We will denote by o' the multiplicity of F/F; and by «; the
multiplicity of F; (thus, a(F) = a; + o). Let now P(z) € Z[z] be a polynomial, o, d
rational numbers such that P(x) = az + E(l —g)+d, and m a natural number. Then,

we define:

1) S* is the set of d-semistable tensor fields (F,¢) with a torsion free sheaf with
Hilbert polynomial P.

2) S/, is the set of tensor fields (F,¢) with F a torsion free sheaf with Hilbert
polynomial P, and such that

> mi(ah®(X, Fi(m)) — aiP(m))) + 6pu(Fo,m, ¢) < 0
=1
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2. Singular Principal G-Bundles on Nodal Curves

for every weighted filtration (F,,m).
3) S/ is the set of tensor fields (F,¢) with F a torsion free sheaf with Hilbert
polynomial P, and such that

Zmi(aiP(m) — ah?(X, F{(m))) + Su(Fe,m, ¢) <0,
i=1

for every weighted filtration (Fe,m).
4) Sy = (UmZNSfo) us® N eN.

Lemma 2.1.23. There exist integers, N1 and C, such that, if (F,¢) € Sn, then, for
all saturated weighted filtrations, the following holds ¥ i:
d—ad

deg(Fi) — aips < C, where pis = ,
a

and either 1) — C < deg(F;) — a;pis, or
2.a) (X, F;(m)) < a;(P(m) — ad), if (F,¢) € S* and m > Ny
2.b) &'(P — ad) < a(Pri — ad) if (F,¢) € Um>n, St

1—
Proof. Let B be as in Lemma [2.1.18 and B’ = B + ( . 9) being h = deg(Ox(1)).

Choose C > aé and such that the leading coefficient of the polynomial G — (P — ad)/«
is negative, where

1 1 1
G(m) = (1= =)(us + 50 +m+ B) + —(ps — ~C+m+ B)

(Note that G — (P — ad)/« is, in fact, a constant polynomial, so the above condition
means that G(m) — (P(m) — ad)/a < 0 for each m). Choose N; > 0 such that

C
ps — —+m-+B >0, VYm > Nj.
(6%

Then the proof will be done considering the two possible cases.
Case 1: (F,¢) € S°. Let (Fo,m) be a saturated weighted filtration. For each i
consider now the one-step filtration F; C F. Since (F, ¢) is d-semistable, we have

(aP]:i — Oézp) + 5u(.7:.7m7 ¢) S 0
or, equivalently
adeg(F;) — aid + Spu(Fe,m, ¢) < 0.
Then

If we sum and subtract a;ad/« in the last inequality, we find

deg(]:z) — Qs — 0

aia5+u(}'.,m,¢)5 <
(6% (6%

or, equivalently ( F )3
a;a— [ o, 11,
- .

deg(ﬁ) — Qs <
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Since p(Fe,m, ) = aja — e(F; C F)a and e(F; € F) < a we get

(aia - M(}—MMa ¢))5

«

< af,

SO
deg(Fi) — aips < ad, (2.4)

but we know that ad < C, so
deg(F;) — aips < C.

Now, assume that 2a) do not holds, that is —C' > deg(F;) — ajuis. Let Fimax S Fi be
the term in the Harder-Narasimham filtration of F; with maximal slope. Because of

Equation (2.4, we have

deg(F; max) ad
. i) = ! imax) = —— = < s ——— < s d. 2.5
MmaX(J—..) : (f7 ) OC(]:i,max) =1 M O‘(E,max) =N e ( )

Since —C' > deg(F;) — a;ps, we find

deg(F; C
in(F) < () = SBFD ), C 26)
a; o
By Lemma we know that:
WX, Fi(m)) < (@i — 1)[ptmax(Fi) + m + By + [pmin(F) + m + B]) = 27

= (@ = Dlptmax(F3) +m + B4 + [pgnin(F3) +m + B')).
Using equations ([2.5)), (2.6) and , we find
C
(X, Fi(m) < (i = Dlps + ad +m+ By + [ps = — +m + B)
and therefore

10 X, Fi 1 1 C
((Tn))<(1—')[N8+a(5+m+B/]++a'[Ms_a+m+B/]+’

Q; Q; i

If we denote by G;(m) the right hand side then

Gi(m) — G(m) = P (= —ad) <0,
SO hO(X’ji(m)) < Gi(m) < G(m) < P(mzl— ad

hence, we have the result.

Case 2: (F,¢) € Sl with m > Ny. Let (Fo,m) be a saturated weighted filtration,
and for each i consider the quotient ' = F/F;. Let F'. the last factor of the Harder-
Narasimham filtration of F¢ (so u(F; ) = fimin(F?)). Denote by F’ the kernel, so we
have

0= F —F—=Fi.

— 0,
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and let 7/ C F be the one step filtration. Since
C
m—a+m+3>0

we deduce that, for the fixed m, G(m) > 0. Since (F,¢) € S), we know also that

ol P(m) — ah®(X, Fiy) + p(F € F,1,4)6 < 0. Hence we have,

G(m) < é(P(m —ad) <

< 1L X, Fi(m)

7
o o «

uF S F L)
hO(X')‘Fr’L'Iﬂn(m)) o (S'UJ(JT_./ g- F717¢) +ao‘f’nin

d—ad) =

7

(@ ac o

Now, we know that

A = —a,...,d —a,d,... ) =
= (= pins -+ > ~pin, @ — — Onin)»
so there is an integer [ < a, such that
WF' G F, 1L ¢) = U(—aym) + (@ — 1) (@ — ).
Finally we get that
(F S F,1,¢) + aapyy, = (a—Da > 0.

Since 6 > 0 we find, A
hO(X, Frin ()

G(m) < ; ,
amin
and because of Lemma [2.1.18, we have
hO(X, Fi . . .
G(m) < ( aimm(m)) S,U/min(]ﬂ)+m+B:M;nin(P)+m+B/'

Show that the above inequality implies the inequality for the constant coefficients

. 1 C
- >ps+ (1 ——)ad — —.
Pomin (F*) = ps =+ ( a)“ 2

From the above equation and the fact that u/ . (F*) < p/(F?), we get

eg(F") _ eg(l ):u’(}"’)Zus—i-(l——)aé——z.

a— q; at « «

Therefore,

4 deg(F) = deg(F) > apy — s + (1 2)ad — G)(a— o)
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Reordering and using the fact that o > a; > 0 (and assuming C + a(1 — «) > 0) we
find,

1 C
deg(Fi) — aipis < d — s + ((a —1)ad + @)(O‘ — ;) =

= a5+ (5~ 1)+ a0 <
<a5—|—((é—1)—|—%)a:

Assume now that the first alternative does not hold, i.e. —C > deg(F;) — a;jus. Then,
ol = (a0 — i) pis = apis — ips <
< aps —deg(F;) —C =
=d—ad—deg(F;)) —C =
=d—ad —d+deg(F') - C =
= deg(F") — ad — C < deg(F?) — ad.

So, we finally deduce ‘
a'(P —ad) < aPri — ad).

Lemma 2.1.24. The set Sy is bounded.

Proof. Let (F,¢) € Sy. Let F' be a subsheaf of F and F” the saturated subsheaf of
F generated by F'. We always have

W(F) < u(F).
Therefore, by Lemma [2.1.23

1 - l—g
+ <y +0+ 2
aF™) h Hs +C h

Then, by Theorem [2.1.21] the set Sy is bounded. O

g

p(F) < u(F") < ps +

Lemma 2.1.25. Let Sy be the set of saturated subsheaves, F' C F, of coherent sheaves,
F, appearing in tensor fields (F,¢) € Sn, and satisfying

|deg(F") — o'ps| < C.
Then Sy is bounded.

Proof. Consider F’' € Sy. The sheaf F”’" = F/F' is torsion free. Since Sy is bounded,
there are just finitely many Hilbert polynomials in Sy so there is a maximun [ =
maxreg, |[deg(F)|. Then

|deg(F")| =|deg(F) — deg(F")| < |deg(F)| + |deg(F')| <
=maxresy|deg(F)| + C + alus| =

=+ C + a|us|.
That is, deg(F") is bounded. Then by Lemma [2.1.20| the set of quotients F” as above
is bounded and therefore Sy is bounded too. L]

48



2. Singular Principal G-Bundles on Nodal Curves

Then we have

Theorem 2.1.26. There is an integer Ny such that if m > Ny, the following properties
of tensors (F, @), with F torsion free and Pr = P, are equivalent:

1) (F, ) is 0-(semi)stable.
2)V (Fe,m) we have Zi m;(ah®(Fi(m)) — a; P(m)) + op(Fe, m, ¢)(<Z)0.

3) ¥ (Fo,m) we have Y7y my(a’ P(m) — ah®(F(m))) + 6u(Fe, m, ¢)(<)0.
Furthermore, for any tensor field satisfying these conditions, we have h' (X, F(m)) = 0.

Proof. By Theorem [2.1.16] a family E is bounded if and only if { Pz, };cx is finite and
reg(F;) < p for all t. Since Sy and Sy are bounded (for all N), we can fix Ny > Ny
such that sheaves F in S and Sy are Ny-regular and F; ® ... ® F, is Ng-regular for all

Fi,...,Fqis Sp (see Remark [2.1.13)).

2) = 3) Fix m > Ny. Let (F,¢) € S, and consider a weighted filtration (Fe,m).
Then

Zmi(aiP(m) — ahO(X, .Fl(m))) + 0p(Fo,m, @) <
i=1

<Y mi(ah®(X, Fi(m)) = a;P(m))) + 6p(Fe, m, ¢)(<)0.
=1

The above inequality is because

> mi(a’P(m) — ah®(X, Fi(m))) = Y mi(ah®(X, Fi(m)) — 0; P(m))) =
=1 =1

=Y _mi{(a’ + ;) P(m) — a(h°(X, F'(m)) + h°(X, Fi(m)))} <
=1

<> mi{aP(m) — ab®(X, F(m))} < 0.
=1

1) = 2) Let (F, ¢) € S*® and consider a saturated weighted filtration (F,, m). Since
F is No-regular, P(m) = h°(X, F(m)). If F; € So, then Px,(m) = h%(X, F;(m)). If F;
do not belongs to Sy, then the second alternative of Lemma [2.1.23] holds, so

ah®(Fi(m)) < a;(P(m) — ad). (2.8)

Let T" ¢ T = {1,...,t} be the subset of those i for which F; € Sy. Let (F,,m) the
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corresponding subfiltration. Then

t
(D mi(ah®(X, Fi(m)) = a;P(m))) + 6p(Fe, m, ¢) <
=1

<O mi(eh®(X, Fi(m)) — i P(m))) + (b, Fo,ml) +6( Y miac;) =
=1 ieT-T'

=3~ mi(ah®(X, Fi(m)) — 0;P(m))) + (e, Fi,mi)+ (2.9)
€T’

+( Y mi(eh®(X, Fi(m)) — auP(m)) + acid)) <
ieT-T'

<(3 mi(aPr,(m) — a;P(m))) + 8a(6, Fiml) (<)0.
€T’

The first inequality follows by Lemma [2.1.7 and the last inequality comes form the fact
that h®(X, Fi(m)) = Px,(m) if i € T', and from the fact that

ah®(X, Fi(m)) — a;P(m) + ac;6 < 0

because of equation . We can remove the condition that F; is saturated because
RO(X, F;(m)) < hO(X, Fi(m)) and u(¢, Fe, m) = ju(Fe, m, ¢), where F; is the saturated
subsheaf generated by F; in F.

3) = 1) Let (F,¢) € S”,. Thus, F is No-regular and P(m) = h°(X, F(m)). Con-
sider a saturated weighted filtration (Fs,m). If F; € So, then P, (m) = h%(X, F;(m)).
Let (F,,m') be the subfiltration formed by those terms F; lying in Sy. Then, by
hypothesis

(> mi(a'P(m) — aPx,(m))) + 6u(¢, Fu,m')(<)0.
Fi€So

Since a = o; + o' and P(m) = Pr,(m) + Pr:(m), the above is equivalent to

(Y mi(aPr,(m) — a;P(m))) + du(¢, Fo, m')(<)0
FicS0

and, therefore, equivalent to

(> milaPr, — aiP)) +ou(¢, Fo,m)(<)0. (2.10)
Fi€So

If F; do not belongs to Sy, then the second alternative in Lemma [2.1.23] holds so

aPr, — o P + sa;6 < 0. (2.11)

Using Lemma and equations (2.10) and (2.11)), we get

() mi(aPr, — aiP)) + 61(Fe, m, $)(<)0.
=1

We can remove the condition F; is saturated as we did before. ]
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Corollary 2.1.27. Let (F,¢) be a §-semistable, m > Ny and assume that there is a
weighted filtration (Fe,m) such that

O~ mi(ah®(Fi(m)) — asP(m))) + 6pu(Fo, m, ¢) = 0. (2.12)
=1

Then F; € So and h°(X, F;(m)) = Pr,(m) for all i.

Proof. Equality (2.12)) implies that the inequalities in (2.9) become equalities, so T' =
T, F; € Sy for all i, and we are done. O

Let us recall the result [35 Lemma 2.3.]. Let k& be an algebraically closed field
and X a reduced projective curve over k . Let C be a smooth curve, and fix a point
0 € C' and denote Z := X x C. Consider the projections px: Z — X and pc: Z — C.
Let Y be a non-empty proper closed subscheme of X x {0} of dimension 0 and denote
i:Y — Z the closed embbeding. Denote also U = Z —Y and let j: U — Z be the
open immersion.

Lemma 2.1.28. [35, Lemma 2.3] If F is a torsion free sheaf, then we have a canonical
isomorphism p3F =~ j.j*(p%xF). In particular, Oz ~ j.Oy and for any locally free
sheaf & on Z we have £ ~ j,j*&.

Proof. Denote G = p%F and let Hy(G), HY(G) be the cohomology sheaves with
support in Y (see [29, Chapter 1, Section 2]). From the canonical morphism G — j.j*G
we get an exact sequence (see [29, Corollaire 2.11])

0— HY(G) = G = juj*G — Hy(G) — 0. (2.13)

This shows that it will be sufficient to prove that H%(G) = 0 for i = 0,1. Because of
[29, Proposition 3.3.], it will be sufficient to prove that depth(G,) > 2 for each point
y €Y. Let s be a parameter of O¢y. We have the diagram

XX x{0})—t—sXxCcZsXx
l px
Spec(Oc,0/s0c,0) = {0}——C
Then, for each y € Y,
Gy/sGy = (u"G)y = ((px o u)"F)y = Fy. (2.14)

Since F is torsion free, we know that depth(F,) > 1 (in fact, is equal to one because
depth(F,) is bounded by dim(X) = 1). Consider the projection pc: X x C'— C. This
induces a local morphism of local rings

®,: A:=0co— Ozy =B

(that is q)y_l(mB) =my). Show also that the sheaf G,/sG, is, with precision, the sheaf
Gy/(®(s))Gy. Now, applying Lemma to this situation (®(s) is regular in mp) we
get

depth(G,) = depth(G,/sGy) +1 > 2, (2.15)
and the result follows. For the second part, show that if £ is locally free on Z then u*&
is locally free on X so we can repeat the proof. O
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Lemma 2.1.29. Let C be a smooth curve, (0) € C a fized point and let G be a family
of coherent sheaves parametrized by C with Hilbert polynomial P (that is, a coherent
Ox xc-module flat over C') such that Gy is torsion free for each t € C'\ {(0)}. Denote
F =G0y Then, there exists a torsion free sheaf F' with Hilbert polynomial P and an
inclusion

0— F/T(F)—F, (2.16)
where T'(F) is the torsion subsheaf of F.

Proof. Let X < P be the closed immersion given by the polarization Ox (1) and
consider the diagram

XxC——~=" PN xC
J Jj
< 4(0) pN

Denote by G the pushforward of G to PN x C and F = G(o)' Applying [58, Lemma
1.17] we find a coherent sheaf of depth 1, 7", and an injection

F|T(F) — F".
Since F/T(F) is torsion free, the restriction of this injection to the curve is still injective
iy F/T(F) = ijp) F".
Since iz‘o)? = j*G = G(g) = F we finaly get the desired injection

FJT(F) = F = F'|x.

Then, we finally have,

Proposition 2.1.30. Let C' be a smooth curve, 0 € C a fized point and (G,®P) a
family of tensor fields parametrized by C with Hilbert polynomial P such that G; is of
pure dimension one for each t € C'\ 0. Denote by (F,¢) the tensor field on the fibre
corresponding to 0. Then there exists a tensor field (F',¢") with F' of pure dimension
one and Hilbert polynomial P and a morphism

(B,a): (F,¢) = (F,¢)

such that
Ker(B) = T(F).

Proof. Follows as in [8, Proposition 2.12], using Lemma [2.1.28/ and Lemma [2.1.29] O
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2.1.4 The Parameter Space

Let D be a locally free sheaf on X, let us fix a polynomial P of degree one with integral
coefficients and a,b € N. Given m € N, let H be the subscheme of the quot-scheme
parametrizing torsion free quotients V @ Ox(—m) — F with Hilbert polynomial P (m
is fixed later). Let Ny be as in Theorem Since the set of sheaves which can
appear in 6-(semi)stable tensor fields (F, ¢) is bounded, we can find N > Ny such that
for each m > N and for each d-(semi)stable tensor field, (F, ¢), F(m) is generated by
its global sections, h'(X, F(m)) = 0, and also such that D(m) is generated by global
sections and h'(X, D(m)) = 0.

Fix such a natural number m > N and let V be a vector space of dimension
p = P(m). For any integer [ > m denote V' = H°(X,Ox (Il —m)). For [ large enough,
there is a projective embedding (Grothendieck embedding)

P(1)
H—P(\VVa V") ,
P(l)
q+— /\ H(g®1)

where

g®1:VeOx(l—m)— F(I) .
P(l) P(l) P(l)
A B 1): N(VeV) — N\ HX FO) =~k

Let P be the projective space
P =P((V¥))Y @ H'(D(sm))). (2.17)
Its functor of points is given by

equivalence classes of invertible quotients
P(T) = (VE)® @ HY(X, D(am))V) @ Or — L 3. (2.18)
over T’

For any scheme 7' we define a family of 0-(semi)sable tensor fields with Hilbert
polynomial P and uniform multirank r parametrized by T as a tuple (Fr,¢r, N),
where Fr is a relatively torsion free sheaf of uniform multirank r on X x T flat over
T, with Hilbert polynomial P on each fiber, IV is an invertible sheaf on T and ¢ is a
morphism

o7 (FEH® — D@ 5N (2.19)

such that for each point t € T' the pair (Fr4, 1) is 0-(semi)stable.
We want to solve the moduli problem defined by the functor

isomorphism classes of
J-(semi)stable torsion free tensor fields
(Fr, ¢r, N) of uniform multi rank r
and with Hilbert polynomial P

d-(s)s

Tensorspp , ,(T) =

(2.20)
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2. Singular Principal G-Bundles on Nodal Curves

The strategy which we will follow for giving a coarse solution for the above moduli
problem consists of, first rigidify the problem and give a fine solution and, finally, quot
out that solution by the automorphisms of the rigidifying datum. The rigidifying datum
will consist only in giving an isomorphism

gr: Ve Or ~ WT*fT(m).
First we need to represent the functor (for m fixed as in the introduction)

isomorphism classes of tuples (Fr, ¢, N, gr)
where (Fr, ¢r, N) is a tensor field with
Hilbert polynomial P and g7 is a morphism
gr: V@ Op — mp.Fr(m) such that
the induced morphism V' ® Ox 1 — Fp(m)
L is surjective

rigTensorsﬂDﬂ,b(T) = (2.21)

where two tuples, (Fr, ¢r, N, gr) and (Fr, ¢/, N, g7), are isomorphic if there exists
an isomorphism (f, &) (see Definition [2.1.2) between (Fr, ¢7, N) and (F7., ¢/, N') such

that w7 (f(m)) o g7 = g

Lemma 2.1.31. Let X be a reduced connected projective curve, T a scheme and G a
coherent Ox wp-module such that hl(Xt, Gy) =0 for allt € T. Assume there is a non
zero global section s € G. Then, for any point iy: t — T, if7res # 0 if and only if
iy s # 0., being mr and m; the projections onto the second factor,

X, X xT

1t

Proof. By base change theorem, condition h' (Xt,G¢) = 0 implies that ifmp.G ~ mnirG.
Then we just have to show that if7mr.s € ifm7r.G (resp. muifs € mui;G), which follows
from the fact that X is connected. O

Proposition 2.1.32. There is a natural transformation of functors
u: "8Tensorspp ,, — H* x P°.

Proof. The trasformation u is defined as follows. For each scheme T, let (Fr, ¢7, N, gr) €
rigTen501rs§?,7p7(17b(T) and let

7T3<~7T*]:T(m) — fT(m)

be the canonical map. Composing with gr we get a surjection gr: V ® Oxxr(—m) —
Fr, by definition of l”igTensorsﬁD’ ap- This gives an element in #*(T). Now, composing
the morphisms

(q%a)eab . (V®a)€Bb ® OXXT N (JrT(m)@)a)EBb

¢EM - (Fr(m)®)® = 1% D(am) @ w5 N
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2. Singular Principal G-Bundles on Nodal Curves
we get ®: (V) @ Oxyr — i D(am) @ m5N . Since m7.Oxx1 ~ Or, because X
is connected, and 7.7 D(sm) ~ H°(X, D(sm)) ® Or we find
T4 (®): (VO © Op — H(X, D(am)) ® N,
and therefore a morphism, which we denote with the same letter,
71 (®): (VE)® @ HO(X, D(am))V) ® Op — N.

Now we claim that 77, (®) is surjective. Since a morphism is surjective if and only if
it is residually surjective we just have to show that ¢} 7p.(®) # 0 for each point ¢t € T
Observe that the fact that h'(X, D(m)) = 0 implies that

W (X, i Homoy, » (VE)P @ Oxyr, 7% D(am) @ ©N)) = 0 for all t € T

Now the claim is proved following [8, Section 2.2] and using Lemma [2.1.31} So the
transformation is given, at the level of objects, by

(FT7 ¢T7 N7 gT) = (QTJ WT*(@))
The definition at the level of morphisms is the obvious one. ]

Consider a pair (g7, pr) € H*(T) x P*(T). Then we can construct

(g5")®b

(VEY)® © Oy yor
iﬂ%(w)
HO(X, D(am)) @ 73(N)
iﬂ}(f)@
mx (D(am)) © 7(N)

(F(m)®4)®b — 0 (2.22)

where f: H°(X, D(am)) ® Ox — D(am) is the natural surjection.
We need the following Lemma,

Lemma 2.1.33. Let X be a connected k-scheme, G a coherent sheaf generated by its
global sections and W a finite dimensional k-vector space. Let d: W @ Ox — G be a
morphism, ¥y: = m*m.(d): W@ Ox — HY(X,G) ® Ox the associated morphism, and
f: HY(X,G) ® Ox — G the canonical morphism. Then d = f o W,. Furthermore, if
d:We0x = Gand ¥: We0x — HY(X,G)®0x are morphisms such thatd = foW,
then U = U,

Proof. The first part is trivial. Let us see the second part. Suppose we have a commu-
tative diagram
W ® Ox d g

H(X,G)® Ox
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Then we can construct

H°(G) ® Ox

H°(G) ® Ox

from which we deduce that f o W; = f o WU, that is, V5 — W factorizes through the
kernel of the surjection f: H°(G) ® Ox — G. Since H°(Ker(f)) = (0), it follows that
Uy =W. O

Proposition 2.1.34. Let T be a k-scheme. A point (qr,@r) belongs to Im(u(T)) if
and only if there is a morphism

(Fr(m)®) — 7% (D(am)) ® 7N
closing diagram . Accordingly, the natural transformation wu is injective.

Proof. Tt is enough to show that (¢r, 1) = w(T)(Fr, ¢r, N,gr) € H*(T) x P*(T) if
and only if the morphism

o7 (Fr(m)®)® — 7% (D(am)) @ mp N

close the diagram ([2.22)). We show it for k-points. The general case follows by the
same argument. Assume there exists a tensor field (F, ¢) such that u(k)(F, ¢) = (g, ¢).
Then, the above diagram is

(g®)®P
(V®a)€Bb ® OX (]:(m)®a)®b 0
v
iﬂ*w*é P 4
s
H°(X,D(am))® Ox .~
P e ¢®am
V.
A
D(sm)

and the equality ¢@™ o (¢®*)%® = f o ¥, (%" o (¢®*)®?) follows from Lemma [2.1.33
The converse follows also trivially from the above lemma. O

Consider now the relative version of the above diagram

(g3)®b

0 K ! (VO @ Ox wpup ——— (T oy e (m)¥4) 0 ——0
iww)
H°(X,D(am)) ® m};, p(v*N) hi=(m% (f)®1)o(m5(®))
iw&(f)@

% (D(am)) ® 75, p(V*N) = A
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where N is the universal invertible sheaf of P. Note that h factorizes if and only if
h' = 0. Recall the following lemma,

Lemma 2.1.35. ([I7, Lemma 3.1]) Let Y be a scheme, and let f: G — F be a morphism
of coherent sheaves on X X Y. Assume F is Y-flat. Then there is a unique closed
subscheme Z C Y satisfying the following universal property: given a Cartesian diagram

X x § T oy
S h Y

h*f =0 if and only if h factors through Z.

If we apply Lemma [2.1.35[to Y = H x P and h': K — A we get a closed subscheme
Z;n’D C H x P whose points parametrizes tenor fields. If we denote by ¢ the inclusion

of Z,’np, then i b/ = 0 and " h factorizes giving us a universal family of tensor fields.

Theorem 2.1.36. The functor rigTensorsTlE{D’a’b is represented by the closed subscheme

1
ZmD-

Proof. Follows trivially from the last results. O

2.1.5 Semistability in the Parameter Space

We want to compare J-semistability for tensor fields and GIT semistability in the
parameter space with respect to the action of SL(V'). The main result is Theorem
2.1.41] To prove it we will follow [I7]. The polarization, and its linearization, is the
one given there, adapted to our case.

Let Z,, p C Z;%D be the closure of the locus representing d-semistable tensor fields.
Consider the projections

PH - Zm,D —H
pp: Zm,D — P

and define a polarization on Z,, p by
Oz, p(n1,n2) := p Oy (n1) @ ppOp(n2), (2.23)

n1 and ng being positive integers such that

n1  P(l) —dim(V)
= i) s (2.24)

The natural action of SL(V) on H X P preserves the projective scheme Z and the
linearizations on Oy (1) and Op(1) induces a linearization on Oz(ny, ng).

The objective of this section is to analyze the semistable points of the projective
scheme Z,, p with respect to the linearized polarization Oz, ,(n1,n2).
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Given a subspace V' C V and a quotient ¢: V ® Ox(—m) — F, we define the
subsheaf Fy of F as Im(qlyrgoy (—m)), and we have

V©Ox(—m)—F

|

V, & OX(—m) —— FV"

Hence, the subsheaf Fy/(m) is always generated by its global sections.
On the other hand, for any surjection ¢: V® Ox(—m) — F and any subsheaf 7' C
F we define Vz := ¢ 1(H°(X, F'(m))), where we denote with the same letter q the
induced linear map V — H%(X, F(m)) (observe that H(X, F'(m)) C HY(X, F(m))).
Lemmas [17, Lemma 3.2, Lemma 3.3] are easily adapted from the smooth case to
our case.

Lemma 2.1.37. Given a rational point (q,[¢]) € Z (which corresponds to a tensor
(F,)) such that q induces an injection V < H°(X,F(m)), and a weighted filtration
(Fe,m) of F, we have

1) ‘7:\/]_.1_ C F;

Q)If Qﬁ’(]:”@__@fia)@b =0 then ¢|(Vf¢1 ®"'®v}_ia)®b =0

3)3°1 —mie(d, Foym) < 377 —mie(®, Vi, , m)

Furthermore, if q induces a linear isomorphism V ~ H°(X, F(m)), all F; are m-
regular and all F;; ® --- @ F;, are am-regular, then 1) becomes an equality, 2) becomes
an if and only if, and 3) an equality.

Proof. 1) Let ' C F be a subsheaf. Then we have H(X, F'(m)) Cc H°(X,F(m)).
From the injectivity of the map V «— H°(X, F(m)) we get Ve =V N H°(X, F'(m)),
thus the commutative diagram

V ® Ox(—m) F
./_"//
Ve ® Ox(—m) ]:V]_-/

from which follows that Fy,, C F.

2) Let 0 C F; C Fo... C Fy C Fiy1 = F be a filtration. Assume that, for I =
(i1, ...,1s), the restriction @|r: (Fi; ®...,®F;, )% — D is the zero morphism, that is,
qb\(;il@“@fia) = 0. Hence, ¢ induces a zero morphism

AT (Fiy(m) @ ..., @F;,(m)® — D(am))
and, therefore, the zero linear map
of: H(X,(X) Fi, (m))** — H°(X, D(am)).
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In the other hand, ¢: V ® Ox — F(m) induces
o) = H(qP)®: (Vr, ... 0 VE, )% = HY(X, Q) Fi;(m)*.
Composing we get the zero morphism
(I)|(VF¢1®~"®VFia)®b =oloal . (Vr, ®...0® VEE)% — H°(X, D(am)).

3) Follows trivially from 2).

Suppose now that ¢ induces an isomorphism. Then, clearly, 1) becomes an equality.
Furthermore, if F; are m-regular and F;, @ --- ® F;, are am-regular too, then ® is
surjective. Therefore, <I>|(Vfi1®m®vfia)@b = 0 implies that ®/ = 0. Since F;,(m)® -+ ®

Fi,(m) and D(am) are globally generated, it implies that ¢|(]_—i1®,,,®]_—ia)@b = 0.
]

Lemma 2.1.38. Given a rational point (q,[®]) € Z (which corresponds to a tensor
(F,)) such that q induces an injection V < H°(X,F(m)), and a weighted filtration
(Va,m) of V., we have

1)V; C V]'—vi

2)¢’(]:V¢1®-"®J:V¢a)@b = 0 if and only if @\(%1@“@%&)% =0

3)5°0 —mie(¢, Fv,,m) = 34 —mie(®, Vo, m)

Proof. 1)Let V! C V be a vector subspace. Then we have Fy» C F, hence Vg, C V.
Since the square

V©Ox(—m)——F

|

V/ ® OX(—m) —— Fvl

commutes, we get commutative diagram

Ve——s HY(X, F(m))

V' HO(X, Fyr(m)

- =

VA HY(X, Fyi(m)) == Vi,

By the commutativity follows the existence of an injection V' C Vr,.-
2) Consider a filtration

ocvicVa...cViC Vi =V. (2.25)

By 1) of this lemma and 2) of Lemma [2.1.37] we deduce the direct implication. Let us
see the inverse. Assume that

Dl (Vi ®...0V;,)® = HY(X, D(am)) (2.26)
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is the zero morphism. Each V;; C V defines a subsheaf ‘7:Vij and we have a commutative
diagram
V®Ox(—m) ——F

)

V;j & Ox(—m) *>.Fvij .

Consider the restriction ¢|r: (Fy; ® ... ® Fv,,)®® — D. Taking tensor product am
times by Ox (1), we get

o|r: (]:VZ.1 (m)®...® Fv,, (m))@b — D(am).

Now, from g;;: Vi, ® Ox(—m) — ]:Vij we get the surjective map

7% (Viy ®... @V, )® @ 0x — (Fy, (m) @ ...® Fy, (m)® — 0.
Composing these two morphisms we find the morphism
®a (VS - \@b
al$ 00l (Viy @ ... @ Vi) & Ox — D(am),

from which taking global sections we get the initial (zero) morphism. But then we
deduce that

Olr: (Fy, (m)® ... Fy, (m))® = D(am)

is the zero morphism, thus ¢[(z, . 7, je» = 0.
i1 iq
3) Follows trivially from 2). O

Proposition 2.1.39. For sufficiently large l, the point (q,¢) € Z is GIT-(semi)stable
with respect to Ox(ni1,n2) if and only if for every weighted filtration (Vo,m) of V

n1 (> m(dimV; P(1) — dimV P, (1)) + n2dpu(¢, Ve, m)(<)0.
1

Furthermore, there is an integer Ay (depending on m, P, s, b, ¢ and D) such that it is
enough to consider weighted filtrations with m; < As

Proof. Tt follows exactly as in [I7, Proposition 3.4] by applying the same argument
given in Lemma [2.1.10 O

Proposition 2.1.40. A point (q,¢) is GIT-(semi)stable if and only if for all weighted
filtrations (Fe,m) of F,

3" mi((dimVi, — e(Va)8)(P — ad) — (Pr,, — €(Va)d)(dimV — a8))(=)0.
1

Furthermore, if (q, [¢]) is GIT-semistable, then the induced map fo: V — HO(X, F(m))
18 injective.
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Proof. We follow [19] closely. First, let us show the second part. Let (g, [¢]) be a GIT
semistable point. The quotient ¢ induces a linear map

fo: V — HY(X, F(m)).

Let V' C V be ist kernel. Obviously, Fy» = 0 and u(¢, V' C V) = adim(V’). Proposi-

tion [2.1.39] give us
n1dim (V") P(1) + nadim(V') <0

hence V' = 0.
Using the polarization given in (2.24)), the inequality of Proposition [2.1.39| becomes

> mi((dim(V;) — e(Va)8)(P(1) — ad) — (Pr,, (1) — €:(Va)8) (dim(V) — ad))(<)0.
1=1

Since the family {Fy-}y/cy is bounded there are just finitely many polynomials Pr,,.
By Proposition there is an Ao such that we just need to choose m; < As Then
we can take [ large enough (depending on m, s,b,c, P, D and §) so that the inequality
holds for [ if and only if it holds as an equality of polynomials. Now, the proposition

follows as in [17, Proposition 3.5] using Lemma and Lemma [2.1.38 O

Theorem 2.1.41. Assume m > N. Forl large enough, a point (q,[¢]) in Z is GIT-
(semi)stable if and only if the corresponding tensor field (F,¢) is §-(semi)stable and
the linear map f,: V. — H°(X, F(m)) is an isomorphism.

Proof. 1) We will see that if (q,[¢]) is GIT-(semi)stable then (F,¢) is d-(semis)stable
and ¢ induces the isomorphism. The leading coefficient of (2.1.40)) gives the inequality

> mi((dim(Vr,) — &(Ve)d)ar — o (dim(V) — ad)) < 0,
1
or, equivalently
> mi(dim(VE, o — apdim(V)) + dpu(Fa,m, ¢) < 0. (2.27)

=1

Since dim(V) = P(m) and P(m) < h°(F;(m)) + h°(F(m)), inequality becomes
(> mi(a’P(m) — ah®(X, F'(m)))) + 6p(Fo, m, ¢) < 0. (2.28)
=1

To be able to apply Theorem [2.1.26] we need to show that F is torsion free. Applying
Proposition [2.1.30, we know that there exists a tensor field (G,1) with G torsion free
and Hilbert polynomial P, and an exact sequence

0> T(F) = F—G. (2.29)
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Consider a weighted filtration (G, m) of G. Let G = G/G;, F' be the image of F in G’
and F; the kernel of F — Fi. We can construct the diagram

0 Q(GI)—=Q(9)

0 G g G’ 0
| J

0 Fic F F 0

0 K T(F)

By the Short Five Lemma we get K ~ T(F), so K is a torsion sheaf. From the
fact that P = Pr = Pg, we get Ppr) = Pgg) € k, so Q(G) and, hence, Q(G;)
are torsion sheaves. Since the Hilbert polynomials of K and Q(G;) are scalars we
deduce that the leading coefficients of the Hilbert polynomials of F; and G; are the
same so a(F;) = «(G;). Also, because of the right vertical injection, we know that
RO(X,Gi(m)) > h%(X, Fi(m)). Let us see now that u(Ge,m, ) = ju(Fe,m, ¢). Recall
that for each multi-index I = (iy,...,is) we have (note that we have seen that «; :=

a(F;) = a(Gi)), t
Y, + ...+ Yoy = Z mi(aai B Vi(I)a)
=1

where v;(I) is the number of elements k of the multi-index I such that oy < «;. Since
w|(gil®__®gia)@b # 0 if and only if <Z>|(]_-i1®._.®].-m)@b we, finally, get

N(govmv 1/}) = /L(F.,m, ¢)
Using this and applying (2.28) to G; we find

(Y mi(a’P(m) — ah®(X,G'(m)))) + 611(Ge, m, ) <
=1

- mi(@'P(m) — ah®(X, F'(m)))) + 641(Ge, m, ¢) =
=1

) mi(@'P(m) — ah®(X, F(m)))) + Su(Fe, m, ¢) < 0.
=1

Now, applying Theorem we deduce that (G, 1) is d-semistable. If we show that
T(F) = 0, we will deduce that (F, ¢) ~ (G, 1) because the Hilbert polynomials are the
same. Define 7" as the image of F in G. Since (G,) is d-semistable, G is m-regular
so P(m) = h°(X,G(m)). Therefore,

P(m) —ad = h°(X,G(m)) — ad > h°(X, F"(m)) — ad > P(m) — ad

where the last inequality follows from the third equation applied to the one-step fil-
tration T(F) C F. Then, instead of inequalities we have equalities so h°(X,G(m)) =
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hO(X, F"(m)). Since G is globally generated (see [39, Lecture 14, Proposition]), G = F”
so T(F)=0. Finally we have seen that f;: V — H°(X, F(m)) is injective (Proposition
and since (F,¢) is d-semistable, dim(V) = h°(X, F(m)) so f, is, in fact, an
isomorphism.

2)Assume (F,¢) is 6-(semi)stable and that ¢ induces an isomorphism f; : V =~
HY(X, F(m)). Since f, is an isomorphism then Vz = H°(X, F'(m)) for any subsheaf
F' C F. Thus, by Theorem we have

Z mi(adimVzy, — a;P(m)) + dp(Fe, m, ¢)(<)0 (2.30)
i=1

for all weighted filtrations. Observe that the left hand side of Equation ([2.30)) is precisely
the leading coefficient of the polynomial

Zmi((dimei —€i(Fe)0)(P — ad) — (Pr, — €i(Fe)0)(dimV — ad)).
i=1

We deduce that if we have a strict inequality in Equation (2.30]) then,
t

> mi((dimVz, — €i(Fo)8)(P — $6) — (Pr, — €i(Fo)8)(dimV — s5)) < 0.
=1

If (F,¢) is strictly d-semistable, by Theorem [2.1.26| there is a filtration (F,,m) giving
an equality in (2.30))
t

> mi(adim(Vz,) — aiP(m)) + dpu(Fe,m, ¢) = 0. (2.31)
=1

Note that

Zmi {(dim(Vz,) — €d)(P — ad) — (Pr, — €0)(dim(V) — ad)} =
=1

= m; {(dim(VE,)P — dim(V)Pr,) + 6(Pr,a — & P) —
=1
—0(dim(Vg,)a — €,dim(V))} .

The degree one coeflicient of this polynomial is given by

> mi((dim(Vr, o — dim(V)ai) + 6(cia — ) =
=1

¢
=Y _miladim(Vz,) — aiP(m)) + ou(Fo, m, ¢) = 0,
i=1
which is equal to 0 because ([2.31)) holds. Using the equalities P(n) = (dim(V') —am) +
an, Pr,(n) = (dim(Vr,) — a;m) + a;n (this last equality follows from Corollary [2.1.27
) and again (2.31)), it follows that the constant coefficient of this polynomial is also 0.
Finally the result follows by Proposition [2.1.40] O
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2.1.6 Construction of the Moduli Space

We fix a polynomial P € Z[n] of degree one, natural numbers a and b, a rational
number § € Q¢ and a locally free sheaf D on X. For m € N, let Z,, p be the scheme
constructed in Section and let Zq%, p be the open subscheme parametrizing points
(F, ¢, g) with F a torsion free sheaf and g an isomorphism.

Proposition 2.1.42. (Glueing Property) Let S be a scheme of finite type over C
and s1,s2: S — Z?n’D two morphisms such that the pullbacks of (F o D,(bZo D) via

s1 X idx and sy X idx are isomorphic. Then there exists an étalé coverjz'ng c:T — S
and a morphism g: T — SL(W) such the triangle

T
SL(W) x Z),

gx(‘m /5:00

T

1s commutative.

Proof. Morphisms s; xidy : SxX — ZS% pxX provide us with two families, (F, é, (j)}g, N é, al)
and (F2, %, Ng, g%), via pullback of the universal family, such that there are isomor-
phisms & : ]-'é ~ ]-'g and ¢ : Ng ~ Ng, making the diagram commutative

(pE)®P ((F2)®ay®b

J/qsls J/q%
-
i D(am) @ TENS j—%%}D(am) ® TENZ

Note also that there is an isomorphism,

1

V®0s

Tsx(F& @ 5 Ox(n))

7TS*(¢‘®idﬂ_* o (n)) 92
X me(FE@ w4 Ox(n)) S

V®O0g

which determines a morphism h': S — GL(V'). Let det(h’) =det o h': S — Gy, be the
determinant morphism, Now we define T" by means of the following cartesian product

T::SXGmeHGm z
ic \ \LX@ I
g det(h') G, P

Obviously ¢: T — S is a Galois covering (therefore étalé) of degree p. Denote A.: T —
Gy, the morphism y.oA. Now, the T-point of SL(V) is obtained from ¢’ by composing
with ¢ and dividing by the determinant, i.e

W T A_1x(h'oc)

Gm x GL(V) SL(V).
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All of this together determines a T-point of Zgl D

hx(s10c¢)

T SL(V) % 28, p —— 20, -

which corresponds to the family of tensor fields on 7" obtained by pulling back to T
(via ¢) the family on S given by h e (¢ x idx)*(FL, ok, N&, gb) = (f%,gﬁ%,N’Tl,g%).
Here, F¢ = (¢ x idx)*F&, N = ¢*N&, g7t is given by the composition

h~l®id, «

V©i0x(—n) — X @ 1t Ox (—n) —— mra((e x idy)* FL)

and gb% is the morphism obtained by pulling ¢ back to T x X via (¢ x id). Finally,
the isomorphism

D:=A-((cxidy)*® 1) : (cx idy)*F2 —— (e x idx)* F&
gives an equivalence with the family (¢ x idx)*(FZ, ¢%, N2, g2). O

Proposition 2.1.43. (Local Universal Property) Let S be a scheme of finite type over
C and (Fs,¢s) a family of 6-(semi)stable tensor fields parametrized by S. Then there
erists an open covering S;, © € I of S and morphisms B;: S; — Z%D, i € I such
that the restriction of the family (Fs,7s) to S; x X is equivalent to the pullback of
(fzghD,qngnD) via $; x idx for all i € I.

Proof. Since n is large enough so that hl(X;, Fss ® Ox,) =0 for all s € S we deduce
that mg.(Fgs @75 Ox(n)) is locally free. Then, any finite covering {.S;} of S trivializing
it satisfies the statement of the proposition (see [50, Proposition 2.8]). O

Finally we have,

Theorem 2.1.44. Fix a polynomial P, natural numbers a and b, a rational number
6 € Qso and a locally free sheaf D on X. There is a projective scheme ng'ss and an
open subscheme ’7}‘;'3 C 7}5‘53 together with a natural tranformation

(s)s. 5-(s)s
a'\®s: TensorsRD,mb — th,(s)s

with the following propoerties:
0-(s)s

1) For every scheme N and every natural transformation o' : TensorsP,D%b — hy,

there exists a unique morphism @: 77.5‘(5)5 — N with o/ = h(p) o al®)*,
2) The scheme TS is a coarse moduli space for the functor Tensors‘;;’sDﬂ’b

Proof. Consider the closed immersion Z,, p < H x P. Let m and [ be large enough
so that Theorem holds. Then, the GIT construction ensures that the categor-
ical quotientZ?* , /SL(V') exists and is a projective scheme. The categorical quotient
Z5 p/SL(V) C ZZfD/SL(V) is an open subset and a geometric quotient. Now the the-
orem follows by the same argument as in [I7, Theorem 1.8], using Proposition

Proposition [2.1.43] and Proposition O
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2.2 Moduli Space of Singular Principal G-Bundles

In this section, the moduli problem for singular principal G-bundles on a nodal curve
and a semisimple algebraic group G is solved. Although a semistability notion for this
objects is given (Definition , we will attack the problem by considering the notion
of J-semistabillity.

We follow [8] 49] for the construction of the moduli space SPB(p)?(S)S. The main
difficulty will be to give the notion of d-semistability. We first attach to any singular
principal G-bundle, (F,7), a tensor field, (F, ¢), of certain type (s,b), which depends
only on the numerical input data, and then we define the function u(F,, m,7) as the
semistability function of the corresponding tensor field. The key results in this process
are Theorem and Theorem which make use of the structure of torsion free
sheaves around nodal points (Lemma and Lemma [2.2.5)).

2.2.1 Singular Principal G-Bundles on Nodal Curves and Semistabil-
ity

Let G be a semisimple linear algebraic group and p: G — SL(V) C GL(V) a faithful
representation, V' being a k-vector space of dimension n.

Let X be a nodal projective curve with v nodes. We denote by x1,...,z, the nodes
of X. If we need to refer to the nodal points lying in more than one component we will
use the notation z; for the ith of those nodal points. Let X, ..., X; be the irreducible
components of X and let p;: X; < X be the closed immersion of the i-th irreducible
component. Let U := X — Sing(X) be the regular part, U; = U N X; and j;: U; — X;
the ith open embedding. We fix an ample invertible sheaf Ox (1) and we denote by h
its degree.

Definition 2.2.1. A singular principal G-bundle over the nodal curve X is a pair (F, )
where F is a torsion free sheaf on X and 7: S*(F® V)% — Ox a non trivial surjective
morphism (is not the projection onto the degree zero component) of Ox-algebras. Let
r € N, P € Z[n] a polynomial of degree one. Then, (F,7) is of type r, P if F has
uniform multirank r and Hilbert polynomial P.

Let (F,7) be a singular principal G-bundle. Note that if F is locally free then
SV ® F)¥ = Homg, (V ® Ox,FY)[G. For the sake of notation we will denote
Homg, (V®Ox, FY) := S*(V®F) for any torsion free sheaf 7. Giving 7 is, therefore,
the same as giving a section 7: X — Hom,, (V®Ox, F")//G. The pair (F,7) provides
us with a commutative diagram

P(F,1) @OX(V®OX,fV)

| |

X —T— Home (V@ Ox, F¥) |G

being P(F, 7) the fiber product. Note that over U := X — Sing(X), F is always locally
free, so if 7(U) C Isome, (V @ Oy, F|;) /G, then P(F,7)|y determines a principal
G-bundle over U.
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Definition 2.2.2. We say that a singular principal G-bundle (F,7) on X is honest if
the image of 7|y is contained in the open subscheme Isomy (Ox|y ®@ V, F|)/G. We
say that it is quasi-honest if it is honest over some subcurve X’ C X.

Definition 2.2.3. Let (F,7) and (G, ) be singular principal G-bundles on X. A
morphism between them is a morphism of Ox-modules f: F — G such that the triangle

SYFoV)C S (G ® V)¢

N A

is commutative, being f the morphism of O x-algebras induced by f. Isomorphisms are
the obvious ones.

Now, let us define the semistability condition for honest singular principal G-
bundles. Let A: G, — G X ... X G be a one parameter subgroup of the product of [
copies of G. Then, A = (A\1,...,A), Ai: G, — G being a one parameter subgroup for
all 7. For any i, the one parameter subgroup A; defines a weighted flag (V4 (\;), m(\;))
in V and a parabolic subgroup, Qg (\) C G, defined as the G-stabilizer of the flag.
Define U; := UN X;. A reduction to the one parameter subgroup X is a tuple of sections

/3 = (/317 cee 75[)7 being
Bi: Ui = P(Flx;, Ai)/Qa(Ni).

This defines a weighted flag of F as follows. Any section
Bi: Ui = P(Flx,» Mi)/Qa (M) = Isom(V @ Oy, FIth,) /Qauvy (M)

induces a weighted filtration of locally free sheaves

Fle=(0) CFi C ... C Flyy C FI,

m; = (mf, ... ,mi(i)) i=m(A;)

such that rk(]-"}) = dim(V;(X:)), since the bundle Isom(V @ Oy,, F|y;. )/ Qaivy(Ni) is the
bundle of flags of the same type as (Va(A;),m(\;)). For any t € {1,...,s(i)}, consider

the surjection '
F’Ui — .7:;\/ — 0,

and denote by G! its kernel. Note that there is a canonical isomorphism F|y, =~
(ptF/T;)|u, being T; the torsion part of p;F. Therefore, we can consider G; as a
subsheaf of (p!F/T;)|u, = j5(pfF/T;). Pushing it forward to X; we get

JixGt = Jindi (0iF)Ti) — piF|T;

and denote by R! the image of this morphism. Then, we get weighted filtrations of
torsion free sheaves

(piF/Ti)e = (0) CRY C ... CRYg -

m; = (ms(i)> ce 7m21)
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These filtrations lead to a weighted filtration of

l l
P risp;F/T)e = (0) C Ry C ... C Ry € P pis (0} F/T5)
; =1
m: (mlu"'7m9)

by the procedure described in Chapter 3, Section From the exact sequence (see
[57, Septieme Partie, §1]),
!

0= F < @ piupjF/Ti) T =0
i=1

we finally get a weighted filtration of F,
Fge=0)CFC...CFgCF.

mg = (ma,...,mp)
Thus, we define,

Definition 2.2.4. An honest singular principal G-bundle, (F, ), is (semi)stable if for
every reduction 8 = (f1,..., ;) of (F,T) to a one parameter subgroup A = (A1,..., ;)
the inequality

L fg.,mﬁ Zmz OzP]: OzZP]:)(S)O

holds true, being o the multiplicity of .7-" and «; the multiplicity of F;.

2.2.2 Some Results on Graded Algebras

We are going to prove that given a submodule of a commutative R-algebra generating
it at a point p, C R, then the submodule generates it over some open neighborhood of
that point. This result will be crucial in order to get a satisfactory linearization of our
moduli problem for principal bundles, and will allow us to construct this space going
by the moduli space of tensor fields.

Lemma 2.2.5. Let R be a commutative ring and X = Spec(R). Let B be a finitely
generated commutative R-algebra and A C B a sub-R-algebra. Let x € X be a point
such that A, = By, then there exists an affine open neighborhood U C X of x such that
Ay = By.

b
Proof. Consider such a point x. From the equality A, = B, it follows that — € A,
s

for any b € B and any s € R\ p,. Thus, we conclude that for all b € B there exists
s € R\ p such that sb € A. Since B is finitely generated we can consider {b1,...,b;} a
finite set of generators. For any i = 1,...,[ there exists s; € R\ p, such that b;s; € A.
Define f:=s1-...- 5.

Let us show now that for any b € B there exists a natural number n € N such
that f"b € A. Let b € B. Since B is finitely generated there there exists a polynomial
P € R[z1,...,x;] such that

b=P(br,....b) => aj ;b ... b
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Let n := deg(P). Then

Since all the terms in this sum belong to A it follows that f"b € A.
Consider now the inclusion Ay C By and an element F € By. From the last

argument there is a natural number n € N such that

b bfn

o gem S
from what we deduce that Ay = By. O
Theorem 2.2.6. Let X be a nodal projective curve over k with nodes z1,...,z,, G a

reductive group and p: G — SL(V') a faithfull representation, V' being a k-vector space
of dimension p. Fiz r € N. Then there exists a natural number s = s(p,r,v) such that
for any torsion free sheaf F of rank r on X, the graded Ox-algebra S*(V ® F)C is
generated by the submodule @;_, S'(V @ F)°.

Proof. Let us denote B = S*(V ®F)Y. We will find this natural number in three steps.

Step 1:

a) Let F be a torsion free sheaf on X of rank r and structure constants aq,...,a,
(see Definition . Let x € X be a point and consider the Ox ;-algebra B, =
S*(V ® F,). Let s, be the minimal natural number such that @3z, S4(V @ F,)¢
contains a set of generators of B,.

b) For any point x € X we construct an affine open neighborhood in the following
way. Fix x € X and consider the sub-Ox-algebra A C B generated by the sub-Ox-
module P;*,(V ® F)“. Then obviously A, = B,. By Theorem we deduce that
there exists an affine open neighborhood U, such that Aly, = Bly,.

¢) We get in this way a covering of X, {U,},cx by affine open subschemes and
we can choose finitely many regular points z1,...,2; € X such that X =U,, U... U
U., UU; U...UUy,. Let s,,,...,8.,,54,--.,5z be the corresponding natural numbers
defined in a) and define s = max(sz,, ..., 82, Says---» Sz,)-

d) Note that the natural number s’ constructed in c) does not depends on the finite
open cover we have chosen, since s;, = ... = s, for all regular points.

Step 2:

The natural number constructed in Step 1 depends apparently on F, but it does
not. Actually, it just depends on the structure constants aq,...,a,, the rank r and
p. Suppose we have two torsion free sheaves F, G of rank r and the same structure
constants. Observe that the natural numbers defined in a) depends just on F, and G,.
But with the above assumption, F, ~ G, for all x € X, and therefore they have the
same structure constants, so s’ = s’(r, Dy A1y, Qy).

Step 3:

Since there are only finitely many possibilities for the structure constants (once
we fix the rank) we get in this way finitely many natural numbers s’. Consider the
maximum of all of them and denote it by s. Then, s depends just on p,r and v, and
satisfies the properties of the statement.

O
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Remark 2.2.7. 1) The last theorem also holds for non-connected cuurves.
2) Let m: Y — X be the normalization of X. If X has v nodal points, then we have
an exact sequence

v
O—>(’)X<—>7r*(’)y—>@k—>0,
i=1
and therefore gx = gy +v. Since both, gy and v, are natural numbers, we deduce that
for a fixed genus g = gx there are finitely many possibilities for the number of nodes
v. Fixing the genus g = gy and taking the maximum of the numbers s = s(p,r,v)
varying v we get a number s = s(p,r, g) which does not depend on the curve X. This
will be the main result in solving the problem of the compactification of the universal
moduli space of principal G-bundles over Wg.

2.2.3 Associated Tensor Field and /-Semistability of Singular Princi-
pal G-Bundles

Let X be a projective possibly non connected nodal curve. Consider a singular principal
G-bundle on X, 7: S*(V ® F)¢ — Ox. Let s € N be as in the last section. Then
S*(V @ F)Y is generated by the submodule @;_, S'(V ® F)“. Let d € N* be such that
> id; = s!. Then we have:

é)(v ® F)% — ® SU(S(V e F) - ® SH(S'(V e F)T = Ox

=1 =1 =1

Adding up these morphisms as d € N varies we find a tensor field
ér: (V@ F)®H*N = Ox (2.32)

We want to prove that the assignment 7 +— ¢, is injective on isomorphism classes. We
start with the following proposition,

Proposition 2.2.8. Let © € X be a node, A = Ox, the local ring and 7,7+ A™ — A
two non zero morphisms such that S(1) = S%(7') for some natural number d € N.
Then there exists a d-th root of unity, &, such that 7/ = &7,

Proof. We have to consider two cases

a) x is the intersecting point of two components:
Let py,, py, be the minimal prime ideals of A. Let {ei,...,e,} be the canonical basis
of A™. Then S%(7) = S%(7') means that

T(eiy)...m(eiy) = 7'(€iy) ... T (eiy) V(it, ... iq) with 1 <ij; <m. (2.33)

In particular 7(e;) = 7/(e;)? V1 < j < m. Let j be such that 7(e;) and 7/(e;) are non
zero. Since A is reduced this means that

T(ej)aT,(ej) ¢ Py OV Py = (O)
so, in particular, there exists [ = 1,2 such that
T(@j), T/(Cj) ¢ pmv
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and therefore 7(e;), 7'(e;) are invertible in Ay, = ¥;. Consider the equality 7(e;)? =

7'(e;)? in ;. This exactly means that

)4 =11n %,

so there exists a d-th root of unit §; such that
7'(ej) = &7 (e;y) for all j|7(e;), 7' (e;) # 0.

From Equation (2.33), we deduce that &; does not depend on j, so 7 = £7'.
b) x is not an intersecting point of two components:
This case follow from the last part of the above argument. O

Corollary 2.2.9. Let x € X be a node, A = Ox, the local ring, M be a finitely
generated A-module and ,7': M — A two non zero morphisms such that S%(t) =

S(7') for some natural number d € N. Then there exists a d-th root of unity & such
that 7" = &7,

Proof. Let {m1,...,m} € M be such that {my,...,m;} € M®4k is a basis. Consider
the canonical surjection

m: At > M.

ey — m;
Composing with 7 and 7" we find
rom T om: At — A.
By Theorem there exists a d-th root of unity £ such that 7/ om = {7 o, that is
'(m;) =&r(m;) for all 1 < j <+t
so 7 =¢&T. O
Theorem 2.2.10. Let F be a coherent Ox-module on X and
7,7 F = Ox

non zero morphisms such that S¢(t) = S4(7') for some d € N. Then, there exists a dth
root of unity, &, one for each connected component, such that

7—/|X¢ = giT’Xi'

Proof. For all z € X we have 7,,7.: Fr — Ox . with S%(r,) = S%(7.). By Corollary
there is a d-th root of unit &, such that 7. = £,7,. We know that for any point z
there is an open subset z € U C X such that 7} C F,/ (see Lemma so for any
point z € X there is an open subset U such that

T =&t
from which we deduce that &, do not depends on x and that 7/|x, = £'7|x,. O
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|

Lemma 2.2.11. Let s € N and & a S—,'—th root of unity for i = 1,...s such that for
i

any partition of s!, di + 2ds + ... sds = s!, the following holds:

1=]]¢&" (2.34)
=1

Then 5{ =¢; forallje{l,... s}

Proof. Consider the complex representation for each &

Jk;
& = exp(2ms—!]), k; € N.
Equations ([2.34)) are equivalent to
kidy + 2kods + . .. + sksds = 0 mod(s!) for all partitions (dy, ..., ds), (2.35)

which writen in matrix form become to

dl 2d} ... sd} k1 0
d? 2d% ... sd? ko 0
' .2 : . . = mod(s!),
dr o 2dy ... sd™ ks 0

m being the total number of partitions. Note that we can easily find s linearly inde-
pendent solutions for this linear system

1 0' 0
1 s 0
) 2 ) :

: s!

1 2
0 s

Therefore the general solution for the system is given by

A
b 1 0 0 "
ko 1 i 0 A1+ >\2§
=Y N R IR RO W P = : . (2.36)
) ) : S! ’ |
5 s!
k’s 1 0 s )\1 =+ )\sg

with Aj,...,A\s € Z/s!. Note also that 5{ = ¢; if and only if jki — jk; = 0 mod(s!).
But by equation (2.36)), we know that

|
jki — jk; = gk — j( + Aj%) = —\;s! = 0 mod(s!).
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Theorem 2.2.12. The assignment

isomorphism classes isomorphism classes
of singular principal » — of tensor fields
G-bundles of type (s!,N,Ox)

18 injective.

Proof. Following [53] page 187, we have to show that, if ¢, = ¢+ then (F,7) ~ (F, 7).
For i > 0 consider the degree i components of 7 and 7/, 7, 7/: S{(V ® F)¢ — Ox.
Observe that 7 (resp. 7') is completely determined by @;_;7; (resp. @;_;7;). Consider

now:
o P SV eRnYe.. o8tV eF)Y) - 0k,
a2
the morphism induced by 7,...,7s. Define in the same way 72 Note that from the

surjectivity of the first two morphisms defining (2.32)) it follows that if ¢, = ¢,/ then
7s = 7. This implies, in particular, that

Si(r) = $8i(7)), VO < i < s.

From Theorem [2.2.10| and Lemma [2.2.11| we deduce that for any connected component
X; (j=1,...,t) there exists an s!-root of unity &; such that:

Tilx, = (fj)iTi\Xj, i=1,...,s.

Denote by

&1
u= F~ F,

&t

the induced automorphism on F. If we apply u to the singular principal G-bundle
(F,7) we get a singular principal G-bundle (F,7")

S®(1xu)

S (Ve F)© S (V& F)©
g,

Clearly, 77" = 7/, V0 < i < s on each connected component, and therefore on the whole
curve. Since s is large enough we deduce that 7/ = 7”7 and hence (F,7) ~ (F,7"). O

Let 7: S*(V ® F)¢ — Ox be a singular principal G-bundle. Let s € N be as in
Theorem so @5, S{V ® F)Y contains a set of generators, and let ¢.: ((V ®
F)®HEN _ O be the associated tensor field. Then,

Definition 2.2.13. Let 6 € Q¢ . A singular principal G-bundle (F, 7) is §-(semi)stable
if its associated tensor field (F, ¢,) is d-(semi)stable.
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2.2.4 The Parameter Space

The aim of this section is to prove the existence of a coarse projective moduli space for
the moduli functor given by

isomorphism classes of
families of d-(semi)stable singular
principal G-bundles on X parametrized
by S with Hilbert polynomial P

SPB(p) ;" (9) =

We will use the same strategy as in Section for the construction of this moduli
space. Therefore, we need to rigidify the moduli problem. Let n € N and W a vector
space of dimension P(m). Consider the functor

isomorphism classes of tuples (Fg, 75, gs) where
(Fs,Ts) is a family of singular principal G-bundles
NeSPB(p)(S) = parametrized by S with Hilbert polynomial P and
gs: W ® Og — mg«Fs(n) is a morphism such that the
induced morphism W ® 7*Ox — Fg(m) is surjective
(2.37)
and let us show that there is a representative for it. Let Q be the Quot scheme of

quotients
W& Ox(—n) —» F

with Hilbert polynomial P. Consider the following morphism on Q x X
h: S* (VoW @ niOx(—n)) - S*(V @ Fo) - S*(V & Fo)¢,
induced by the universal quotient and the Reynolds operator. Let s € N be as in

Theorem [2.2.6 Then

s

WEP S'(V & W @ rxOx(-n)))

i=1
contains a set of generators of S*(V ® Fg)®. A morphism k: @_, SV @ W &
Ox(—n)) — Ox breaks into a family of morphisms

k' STV @ W) @ Ox(—in) ~ SV @ W @ Ox(—n)) — Ox,
obtaining, therefore, a family of linear maps
k' SUV @ W) — H°(Ox(in)).
Thus, any singular principal G-bundle 7: S*(V ® F)¢ — Ox is completely determined
by a point in the space
0" = O x @D Hom(S'(V & W), HO(Ox (in)).
i=1

We want to put a scheme structure on the locus given by the points ([¢], [k]) that comes
from a morphism of algebras

S*(V @ Faojyxx)® = Ox.
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2. Singular Principal G-Bundles on Nodal Curves

On Q* x X there are universal morphisms
" SV @ W) ® Ogryx — H(Ox(in)) ® Ogexx
Consider the pullbacks of the evaluation maps to Q* x X
H°(Ox(in)) ® Ogrxx — T Ox(in).

Composing we get
@' SV W) ®Ogrxx — mxOx(in).
Summing up we get
p: Vor: = @ SV @W @ 1%0x(—n)) = Og-xx.
i=1

Now ¢ gives a morphism
T/Q*: S.(VQ*) — OQ*X)(.

Consider again the universal quotient gg and the following chain of surjections

Se(1
SV e W ® @ryOx(—n) 0212 so(v @ k., «For)
T iReynolds
SV SV ® Ty xFor )¢

Let us denote by 5 the composition of these morphisms and consider the diagram

0 —— Ker(8)—— S*Vo- S S*(V® Wé*xX}—Q*)G —0

~N
~ TQ* -
~N *
N Q

A
OQ*XX

Define D = {c = ([q], [h])|75-|c = 0}. This is a closed subscheme of Q* over which 7.
lifts to

m: S*(V & mhey xFor)? = Ogrxx.
To see this, note that D = ﬂdZODd with
D40 = {c = ([g], [h)|78|. : Ker(8%)|. — Ox is trivial}
which are closed in Q*. Then, we have,
Theorem 2.2.14. The functor "9SPB(p)} is represented by the scheme D.

Proof. Follows trivially from the construction of D. O
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2. Singular Principal G-Bundles on Nodal Curves

2.2.5 Construction of the Moduli Space

Recall from Corollary that the family of torsion free sheaves F which appears in
a d-(semi)stable tensor field is bounded. As a consequence, there is a natural number
n € N such that for n > ng, F(n) is globally generated and h!(X, F(n)) = 0. Fix such
a natural number n and consider the functors

isomorphism classes of tuples (Fg, ¢s, N, gs)
where Fg is a coherent sheaf with Hilbert
polynomial P and gg is a morphism
gs: W ® Og — mg.Fs(n) such that ’
its image genrates Fg and ¢ is a
morphism ¢: (V ®@ Fg)®H®N — 74N
isomorphism classes of tuples (Fg, 7g, gs) where
(Fs,Ts) is a family of singular principal G-bundles
"eSPB(p)%(S) = parametrized by S with Hilbert polynomial P and
gs: W ® Og — mg«Fs(n) is a morphism such that the
induced morphism W ® 7*Ox — Fg(m) is surjective

rigTensors}?a,O L (8) =

Note that the natural GL(WW)-action on the universal quotient W ® 75 Ox(—n) —
Fo+ determines an action on the space D,

I': GL(W) x D — D.

We can view the GL(WW)-action as a (C* x SL(WW))-action. Thus, we will construct
the quotient of D by GL(W) in two steps, considering the actions of C* and SL(W)
separately. Consider the action of C* on "8SPB(p)%. By Theorem and Definition
there is a C*-invariant natural transformation

reESPB(p)p — rigTensors’ﬁox .

Moreover, the morphism induced between the representatives is a SL(W)-equivariant
injective and proper morphism

BZ ]D)//(C* — Z7/,-L’OX7P.

Let Dy C D be the open subscheme consisting of points such that W — H°(F(n)) is
an isomorphism and F is torsion free. Then we have,

Proposition 2.2.15. (Glueing Property) Let S be a scheme of finite type over C and
s1,82 : S — Dy two morphisms such that the pullbacks of (Fp, ™) via s; x idx and
so Xidx are isomorphic. Then there exists an étalé covering c : T — S and a morphism
h:T — SL(W) such the triangle

SL(W) x Dy Do

hx (s10c¢) /SZOC

T

1s commutative.
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2. Singular Principal G-Bundles on Nodal Curves

Proof. Morphisms s; xidy : § x X — D x X provide us with two families, (]-"é, Té, g}g)
and (F2,72,g%), via pullback of the universal family, such that there is an isomorphism
o F é ~ ]-"g making the diagram commutative

° * id®7r§x ¢ ° *
S (V®7TS><X]:§’)G = S (V®7TS><XJT§‘)G

1
\
2
Ts

OSXX

Note also that there is an isomorphism,

1

V®O0Os Tsx(Fo ® 1% Ox(n))

75+ (2®idrs 0y (n)) 9%

s« (F§ @ 3 Ox (n)) V®Os.

which determines a morphism A’ : S — GL(V). Let det(h’) = detoh’ : S — G, be the
determinant morphism, Now we define T" by means of the following cartesian product

T::SXGmeHGm z
ic \ lXp I
g det(h') G, P

Obviously ¢ : T — S is a Galois covering (therefore étalé) of degree p. Denote A, :
T — Gy, the morphism x. o A. Now, the T-point of SL(V) is obtained from A’ by
composing with ¢ and dividing by the determinant, i.e

W T A_1x(h'oc)

G x GL(V) SL(V).
All of this together determines a T-point of D

hx(s10c¢)

T SL(V) x D —=D,

which corresponds to the family of singular principal G-bundles on T obtained by
pulling back to 7' (via c¢) the family on S given by g e (Fi,7d) = (]-':91, 7':91). Here, ]_—;}
is the quotient

o g9 ' ®id,
qs: Vo1 Ox(—n)

;{OX(fn

V @ 1% 0x(—n) —— (¢ x idx)*FL,

and T:ql is the morphism of algebras obtained by composing. Finally, the isomorphism
@ = A ((exidx)*® 1) : (¢ x idx)*Fg — (¢ x idx)*Fb
gives an equivalence with the family (¢ x idx)*(F2,72). O
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2. Singular Principal G-Bundles on Nodal Curves

Proposition 2.2.16. (Local Universal Property) Let S be a scheme of finite type over
C and (Fg,1s) a family of 0-(semi)stable singular principal G-bundles parametrized by
S. Then there exists an open covering S;, © € I of S and morphisms 3;: S; =D, 1€ 1
such that the restriction of the family (Fs,7s) to S; x X is equivalent to the pullback
of (Fp, ™) via B; X idx for alli € I.

Proof. Since n is large enough so that h!(Xj, Fss® Ox,) =0 for all s € S we deduce
that mg.(Fg,s @75 Ox(n)) is locally free. Then, any finite covering {.S;} of S trivializing
it satisfies the statement of the proposition (see [50, Proposition 2.8]). O

Consider the linearized invertible sheaf O Zé,ox,p(nl’ ng) given in Section and
let £:= "0z o) (1, n2).

Proposition 2.2.17. In the above situation, we have:

1) All L-semistable points lie in Dy.

2) A point y € Dy is L-(semi)stable if and only if the restriction of the universal
singular principal G-bundle to {y} x X is -(semi)stable.

Proof. Follows from the construction of the morphism S, Definition [2.2.13|and Theorem

2141 O
We finally have,

Theorem 2.2.18. There is a projective scheme SPB(p)(SPS(S)S and an open subscheme

SPB(p)%* C SPB(p)(SPJ(S)S together with a natural tranformation

s)s o-(s)s
al9)s SPB(p)P() — hSPB(p)(;(S)s

with the following propoerties:

1) For every scheme N and every natural transformation o' : SPB(p)(;;(S)S — hy,
there exists a unique morphism @: SPB(p)gPS(S)S — N with o = h(p) o al®)s.

2) The scheme SPB(p)%* is a coarse moduli space for the functor SPBp(p)°*

Proof. By Proposition [2.2.15] Proposition [2.2.16| and Proposition the quotients
SPB(/))?(S)S = D)5 JGL(V) exist, D* JGL(V) is a projective scheme and satisfies 1)
and 2). O
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Chapter 3

Generalised Parabolic Structures
on Smooth Curves

The goal of this chapter is to construct the moduli space of singular principal G-bundles
with generalized parabolic structure over a smooth projective (possibly) non-connected
curve over an algebraically closed field k of characteristic zero. Following [52], we first
construct the moduli space of tensor fields with generalized parabolic structure and then
we construct our moduli space by associating a tensor field to any singular principal G-
bundle. This is the same strategy we have followed in Chapter 2. Since Theorem
holds in this case, this part will not imply extra difficulties. The construction of the
moduli space of tensor fields is done following the same steps as in [52], and adapting
the calculations to our situation. We put a special emphasis in the properties for very
large values of the semistability parameters. Since the semistability function does not
split as a sum of the different semistability functions on each connected component,
we need a different geometric interpretation of such semistability function from that of
52].

Let X be a nodal curve with nodes zi,...,x, and 7: Y — X its normalization.
We fix an ample line bundle Ox (1) on X and we denote Oy (1) the ample line bundle
obtained by pulling back Ox (1) to Y = [[Y;. We denote h = deg(Oy(1)). We denote
by yi,y% the points in the preimage of the ith nodal point z;. We denote also by
D; =yt + v& the corresponding divisor on Y and by D = 3" D; the total divisor.

3.1 Moduli Space of Tensor Fields with Generalised Parabolic
Structures

The main result of this section is Theorem [3.1.28] In Subsection B.1.5] and Subsection
we find the right Gieseker space and its polarization, respectively, that allow
us to compare (k, d)-semistability and GIT semistability in Theorem Given a
coherent sheaf, £, on Y we denote by « := «(€) its multiplicity (see Chapter 1) and
given a subsheaf, &' C £, we use the notation o for a(&’).



3. Generalised Parabolic Structures on Smooth Curves

3.1.1 Generalized Parabolic Structures on Tensor Fields

Definition 3.1.1. A generalized parabolic bundle of rank r on the smooth curve Y is a
tuple (€,q1,...,q,) where & is a locally free sheaf of rank r (that is, uniform multirank
equal to ) and ¢; is a quotient of dimension r

E(yg) being the fibre of £ over y;

Denote by R := ®R; the total vector space. Since the supports of the divisors D;
are disjoint we get the equality I'(D,&|p) = @T'(D;,€|p,). From this, we can form
the quotient

q: =&q:I'(D,€p) — R—0.

Definition 3.1.2. Let (£,¢;,...,q,) and (£',¢},...,q,) be generalized parabolic bun-
dles on Y. A homomorphism between them is a tuple (f,u1,...,u,) where f: & — &’
is a homomorphism of Ox-modules and u;: R; — R is a homomorphism of vector
spaces such that the diagram commutes

FWHof(ys) , :
——=&'(y}) ® E'(vh)

Yy
J{qz‘ i‘d

(2

Notation. In order to abreviate the notation we will use the symbol ¢ to refer to the
tuple (q1,...,q).

Definition 3.1.3. Let & = (k1,...,K,) be a vector of rational numbers with ; €
(0,1) N Q. Let (£,q) be a generalized parabolic bundle. We define the s-parabolic
degree for any subsheaf F C £ as

t-pardeg(F) = deg(F) = > r; dim ¢i(F(y}) @ F(y3))- (3.1)
=1

Now we will introduce the notion of a family of these objects. Let us introduce
some notation. If S is a scheme we will denote by Sp, the subscheme S x {yt,y5} of
S x Y and by S, the subscheme S x {z;} of S x X.

Definition 3.1.4. Let S be a scheme. A family of generalized parabolic bundles
parametrized by S is a tuple (g, gs1,- - -, gsy) which consists of a family of locally free
sheaves £g on Y parametrized by S of rank r and locally free quotients of rank r on

Sz,
qs;: WSi*(gS‘SDi) — Ri — 0, (3.2)

msi: Sp, — Sz, being the natural projection.

Definition 3.1.5. Let S be a scheme and (€s,qy), (Sg,i’s) generalized parabolic
vector bundles. A morphism between them is a pair (f,u) whith f: & — £ and
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3. Generalised Parabolic Structures on Smooth Curves

u = (u1,...,u,), where u; is a morphism u;: R; — R} making the diagram commute,

TS f
Tsix (Eslsp,) el six(E51SD,)

\qui lQSi

R; R .

Definition 3.1.6. Fix non negative integers a, b, ¢ and an invertible sheaf £ on Y. A
generalized parabolic tensor field is a triple (£, ¢, ¢) such that (£,¢) is a generalized
parabolic vector bundle and ¢: (£8%)® — det(£)®¢ ® L is a non-zero morphism.

Definition 3.1.7. We fix numbers § € Q¢ and &; € (0,
& = (K1,...,ky) . A generalized parabolic tensor field (€
for every weigted filtration (€., m) of £, the inequality

1)NQ,i=1,...,v. Denote
,q, P) is (K, 0)-(semi)stable if

Py(Ee;m) 4 dp(Eaym, ¢)(>)0 (3.3)

holds, being Py (e, m) = >, mi(k-pardeg(€)a; — k-pardeg(&;)a) and «, «; the mul-
tiplicities of £ and &; respectively. Here, p(E, m, ¢) is defined as in Chapter for each
&; denote by «; its multiplicity and just by « the multiplicity of £. Define the vector

t

D= "m0,
1
l a—l
—N—
where I') = (I —a,...,l —a,1,...,1). Let us denote by J the set

J = { multi-indices I = (i1, ...,1q)|L; € {1,...,t+1}}.
Then we define
(1(, €, m) = —minge {Ta, +...+Ta,| Sl 006, )00 # O} (3.4)

Lemma 3.1.8. There is an integer A, depending only on the input data (P,a,b,c
and L), such that it is enough to check the semistability condition for weighted
filtrations with m; < A.

Proof. The same observation we have made in the proof of Lemma 2.1.10]is valid in this
case. Now the lemma follows from [I7, Lemma 1.4] changing ranks by multiplicities,
since the function P, (&, m) is linear on the cone C = {(71,...,%) : M < ... <Y} €
7%, being « the leading coefficient of the polynomial P. O

Definition 3.1.9. Let S be a scheme and fix non negative integers a,b,c and £ an
invertible sheaf on Y. A family of generalized parabolic tensor fields is a quadruple
(Es, QS,NS, ¢s) where (Eg,q S) is a family of generalized parabolic bundles, Ny is an
invertible sheaf on S, and ¢g: (6'5@‘1)691’ — det(E9)®° ®@ 73 L ® m5Ng is a morphism of
vector bundles on S x Y such that ¢g|fsxy is non-zero for all s € S.
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3. Generalised Parabolic Structures on Smooth Curves

Homomorphisms (hence isomorphisms) between quadruples are defined in the ob-
vious way and (k,d)-(semi)stable families are families which are (k,d)-(semi)stable
fiberwise.

The aim of this section is to solve the moduli problem given by the following functor

isomorphism classes of families
(&5)_(5)5(5) _ ) of (K, 9)-(semi)stable generalized parabolic
P.L{D;} tensor fields (€5, ¢4, Ns, ¢s) parametrized
by S with Hilbert polynomial P

ParTensors (3.5)

3.1.2 Boundedness

Let r,d € N and let us denote by Fg, the family of locally free sheaves on Y of uniform
multirank r and degree d, and let h = deg(Oy(1)). Recall that a family of sheaves
E C Eg, onY is bounded if and only if there is a natural number ng such that for
all n > np and all locally free sheaves £ € E, h'(Y,E(n)) = 0 and £(n) is globally

generated (see Theorem [2.1.12]).

Lemma 3.1.10. A family E C Eg, of sheaves on Y is bounded if and only if there
exists a constant C' such that for each € € E the inequality

_ deg(Q)
a(Q)

Umin(E) = min{u(Q) | € — Q locally free }

> (&) +C

(3.6)

holds true.

Remark 3.1.11. Before proving the lemma let us remark that the above condition is
equivalent to de condition: there exists a constant C’ such that for each £ € E the
inequality

_ deg(F)
a(F)

Hmax(E) = max{u(]—") |F C & locally free}

<u(&)+C.
holds true.

Proof. We follow [53, Proposition 2.2.3.7] closely. Assume E is bounded and suppose
the lemma is false. Let ng € N be such that h!'(Y,E(ng)) = 0 for every £ € E. Let
lo :== #{i|lgy, = 0}, the number of rational components, and let Y’ be the subcurve
consisting on the components of genus equal or greater than 2. Then, for the constant

d r 1
Ci= =% o= iy — Sy (Y, 0y
o no hO O[X( 3 Y)7

there is a locally free sheaf & € F and a locally free quotient, ¢: £ — Q, with rk(Q) = »/
d 1

and degree d’, such that hu(Q) = — < h(u(€)+C) = —hng—rlg—=x(Y’, Oy’). Denote
r r
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by r; =rk(Q;). Then we have

hl(Y, S(no)) hO(EV(—no) ®wy) hO(QV(—no) ®wy)

7,/ T', TI
X(Q¥(—no) ®wy) b X(QY (—ng) ®wy,)
- r! - r! -
_ Xy —rix(Yi, O) — deg(Qi) — rfhing
74/ i
i—1 Tix(Ys, O
> 21 0% 1) — hng >
Ly
r.
> =Y x(i, 0y,) = hn(Q) — hno.

=1

/
We have to consider different cases to analyze the term — ZZ 1 x(Y;, Oy;),

rl 7! max;{r’}
gv: = 0= x(Y;,0y) = 1 = —x(Y;,0y) = — > —— 02 > —,
r r! mlnj{rj}
/
rt
gy, = 1= x(Y;,0y,) = 0= —#va Oy,) =
/

T 1
Therefore, we have

RL(Y, Loy
ozwz ZT—isz,Oy — hp(Q) — hng =
=1

r

<

1
> ~rlg — ~X(Y",Oy1) — hp(@Q) ~ hng > 0,

which is a contradiction.

Assume now that there exists a constant C' such that holds true. Let £ € E,
and let n be a natural number such that h'(Y,E(n)) # 0. From Serre duality theorem
we know that h!(Y,&(n)) = dimgHomy (€(n),wy). Therefore, there is a non trivial
morphism ¢: £(n) — wy, whose image is denoted by L. Let us denote by F C & the
kernel of the projection ¢: & — L, which is a locally free sheaf. Then we have

an +d = deg(E(n)) = deg(F) + deg(L) = a(F)u(F) + deg(L) <

)
< a(}")g + a(F)C + deg(wy ) <

<(a- 1)% F(a—1n+ (a—1)C — 24(Y, 0y).

d
Therefore, for n > (—— + (a — 1)C — 2x(Y, Oy)), the conclusion h!(Y,E(n)) = 0 holds
«

d

true. This, in particular, implies that for any n > (—— + (o — 1)C — 2x(Y, Oy)) + 1
o

every £ € E verifies that £(n) is globally generated. This is because, given n € N as
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above, h'(Y,E(n)(—y)) = 0, and the long exact sequence in cohomology deduced from
the short exact sequence

0—=&(n)(—y) = &) — EMn)|y, =0
is truncated in H'(Y,E(n)(—y)), that is, there is a surjection
HO(Y,E(n)) = E(n)]y, =0
Therefore, /' is bounded. ]
Lemma 3.1.12. Let (&, m) be a weighted filtration, with
Ce=(0)C&E C...CECEsy1=¢.
Consider a partition of the multitindez (1,2,...,s)
I:=(1,2,...,s) =1L Ul

let us say Iy = (i1, ...,it) and Iy = (ki,...,ks—¢). Then

z:mZ (a—1)> p(le,m,d) > — Zml (a—1),

being Ejl =¢&;; and 8} = &;-

Proof. For the sake of clarity, we first introduce some notation that will be used later.
We denote I} = (1,...,t) and I} = (1,...,s —t), and by ¢ (resp. ¢2) the bijection
between I and I (resp. Iz and I5) given by ¢1(i;) = j (resp. ¢2(k;) = j).

1) Being v;(J) < a, we have

(Eeym, §) = Zmz (i(J)a — aay) <
< Zami(a —a) <
P
< iamz»(a— -
Zml (a—1).

On the other hand, being v;(J) > 0 and «; + 1 < o we deduce

w(Eeym, @) Z:mZ vi(J)a — acy) >
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2) Let J be a multiindex giving the minimum in (&}, m;, ¢). Then we have

w(Eeym, @) > Zml ac; — vi(J)a) =
s—t
=— Zml,j(aaij — v (J)a) — ZmQ,j(aakj — v, (J)a) >

5,,m1, Zm“ (a—1)

O

Proposition 3.1.13. There is a non negative constant Cy depending only ond,a,r, h,v
and 0, such that for every (k,d)-(semi)stable tensor field with generalized parabolic
structure, (€,q, ¢), of degree d and rank r, and every non trivial proper subsheaf &' C &,
W& = deg(g) < deg( ) +C = &)+ 0.

Proof. Let S’ C & be a proper subsheaf. By Lemma[3.1.12] u(€’,1,7) < a(a—1). Then
we have

k-pardeg(£)a’ — k-pardeg(£)a + da(a — 1) >

>k-pardeg(€)a’ — k-pardeg(Ea + du(E',1,7) >0,

from which we deduce
r-pardeg(§)  k-pardeg(&’) N da(a — 1)

/ /

> 0.

(e « (870

Since r-pardeg(&’) = deg(&’) — Dor_; ridim(q(&,(yh) @ E,(y%)) and k-pardeg(E) =
deg(€) — r(>o;_1 ki), we find

deg(€") _ deg(€)  r(Siim) , Yo, midim(a(E4(vi) @ Eu(wh) |, dala—1)
o T« Q o aa’
< deg(&) N da(a—1) tr< deg(&) +ab 4+
o
Then, defining C; = ad 4+ rv and applying Lemma [3.1.10| we get the result. 0
deg(&)

Remark 3.1.14. Let C{ = aCy. Note that if deg(€) < 0 then deg(&’) < +C1,

and if deg(€) > 0 then deg(&’) < deg(€)+ C1. In both cases the degree of any subsheaf
& C & is bounded by a constant depending only on a,d,a,v,d. This in particular
means that for any locally free sheaf £ of rank r and degree d appearing in a (k,d)-
semistable tensor field with generalized parabolic structure we have that deg(€ly;) is
bounded from below and above by constants depending only on a,d, o, v, d which we
denote by A_(r,d,d) and Ay(r,d,d), or just by A_ and A, if there is no confusion.

As a trivial consequence we find,

Proposition 3.1.15. Fiz k; € (0,1)NQ, i =1,...v and § € Q=g. Then the family of
locally free sheaves of degree d and rank r appearing in (k,0)-(semi)stable generalized
parabolic tensor fields of type (a,b,c, L) is bounded.

Proof. Follows from Lemma [3.1.10| and Proposition O
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3.1.3 Sectional Semistability

Fix the Hilbert Polynomial P, a,b,c € N and k1,...,k, € (0,1) NQx¢. Given a tensor
field with generalized parabolic structure, (£, ¢, ¢), we will use the notation

parx(£(n)) = x(E(n)) = Y kydim(g; (E(y]) ® E(¥))),
parh(£(n)) = h(E(n)) = Y w;dim(g; (€ (y]) © E(y3))-

In the next theorem, we adapt [50, Theorem 2.12] to our case.

Theorem 3.1.16. There exists n1 € N such that for any n > ny and every (k,0)-
(semi)stable (€,q, @), the following inequality

Zmi(parx(é'(n))ozi - parho(&(n))a) + 0p(Eeym, @) (>)0

holds true for every weighted filtration (Ee,m).

Proof. Let (£a.,m) be a weighted filtration. Assume that each &; satifies that &(n) is
globally generated and h'(Y,&;(n)) = 0 for each i = 1,...,s. Then, for each i we have

parx(€(n))a; — parh®(&i(n))a =
(“MW-W@UMF

Z“J Z“Jdlm q;(€ y1) ®& (yz))) )=

Jj=1 =
=%®%—&4)F

14

Zm Z@dlm gi(E(y]) @ Ei(1))) =

:d(é’)al - d(gl) -

14

Z@ Zf@dlm 4 () © E:(13))) =
:pardeg(é’)ai — pardeg(é’i)a,

and we are done.

By Proposition [3.1.13] there exist a positive constant C such that for all (k,¢)-
(semi)stable tensor fields with generalized parabolic structure, (£,q,¢), and for all
g cé,

d
/L(‘S/) < o + .

Fix another positive constant C. Consider the set of isomorphism classes of locally
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free sheaves £’ such that

a‘) M(E/) > - 027
b)1<d <a-1, (3.7)

d
[0

d
C) ,Ufmax(g/) < & + Ch.

Note that a),b),c) in Equation implies that there are finitely many different
Hilbert polynomials in the family. This fact and ¢) again implies that the family is
bounded (see Theorem [2.1.21)). For any (k,J)-(semi)stable tensor field (£,q, ) and
every (0) C & C &, either p(&') < & — Cy or p(€') > & — Cy. In the second case
(boundedness) we know that there exists no € N such that £'(n) is globally generated
and h'(&'(n)) = 0. We deduce that there is a natural number n; € N such that for all
n > ny, for all (k,0)-(semi)stable (€, ¢, ) and for all & C & either u(€') < £ — Cy or
£'(n) is globally generated and h'(£’(n)) = 0. From Lemma we know that

/_
hO(S’(n))So/<a ,1[d+01+n+B’] +1,[d—02+n+3'} )
« « L oo +

Assume n is large enough so that g +Cy +n+ B and g — Oy +n + B’ are positive .
Then,

WE M) < (@ =D&+ Crtnt B)+( —Crtnt BY) =

d
o/(a+01+n+B’)—Cl—CQ:
d
:a’(—+n+B’—%)+Cl(a’—1)§

«
d
<d(=+n+B Cs

- « «

)+ C1(a —1) <

Sa'(g—kn—l—B/—%—i—Cl(a—l)).

Thus, we deduce that

i
h
d C
—a(=4+n+B - 22+ C(a—1)a =
« «
1 oo’

:ao/(ﬁ - B) — 9 +d/'Cy — Crad (a — 1) >

>aa/(—B) + Cy — Cra(a—1)? >
>a?(=B) + Cy — Cra(a —1)2

x(Em) —h(E' (n)a> (=(1 —g)+d+ an)a’'—
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where the last inequality follows from the fact that B is positive. Then,

parx(E(n))a; — parho(é’i(n))a =
=(x(E(n))a; — h°(&; (n))a)—

v

Kj)) Zwm% W) @ &h))a) >

—_

j:
>a?(—B) + Cy — Cla(oz —1)%-

Z% E}@m% () @ E(yh)))a) >

>a?(—B) + Cy — Cra(a —1)% — Ta(z Kj)-

j=1
Since B depends only on «, we can define

= K(Cl, Cg, a, l, {k;},d/) =

=a’(=B) + Cy — Crafa — 1)> = ra()_ k).
j=1

Let Cy be lange enough so that K > da(a — 1) and let n; be as before. Let (€, m) be
a weighted filtration with € = (0) C & C ... C & C € and m = (my,...,ms). We
make a partition of this filtration as follows. Let ji,...,j: the indices such that

d
W) W& 2 1~ C
b) £, is globally generated
c) hl(Y’ gji) =0

fori=1,...,t. Letly,...,ls— the set of indices {1,2,...,s} —{j1,...,J¢} in increasing
order. Define the weighted filtrations (&1, m;) and (€2,4,m5) as

Co1= (0)C & C...CE& CE, my=(my,...,mj,),
5.72 = (0) Cgll cC... Cgls—t C(‘:, mo = (mll7"'7mls—t)'

From Lemma [B.1.12 we find that

(1(Eay, @) > (1(Ea2, s, §) — Z%qa—l
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Thus
> mi(parx(€(n)a; — parh®(Ei(n))a) + du(Ea,m, §) >
t
> " mj, (parx(€(n))ay, — parh®(Ej,(n))a) + Su(Eer,my, ¢)+
q=1
s—t
+ Zmlq (parx(£(n))oy, — parh® (&, —( Z my,)a(a —1)
q=1
t
> my, (parx(€(n))ay, — parh®(€;, (n)a) + Su(Ea,my, $)+
q—l
Z my, ) K — 0( Z my,)a(a —1) >0,
and the result is proved. ]

3.1.4 The Parameter Space

Let H be an effective divisor of degree h in Y such that Oy (H) ~ Oy (1). By Propo-
sition [3.1.15] we know that there exists a natural number ng € N such that for every
n > ng and every (k, §)-(semi)stable generalized parabolic tensor field of type (a, b, ¢, £)
with rank r and degree d the following holds

HY(Y,£(n)) = 0 and £(n) is golbally generated,

H'(det(£(rn))) = 0 and det(E(rn)) is globally generated,

H'(det(£)%¢ ® L ® Oy (an)) = 0 and det(£)®° ® L ® Oy (an) is globally .generated

Let n; € N be as in Theorem [3.1.16} and fix n > max{ng,n1} and d = (d1,...,d;) €

N with d = 22:1 d;, and let p = rx(Oy)+d+ an (recall &« = hr). Let U be the vector
space k7. We will use the notation U, , for (U®%)®". Denote by Q° the quasi-projective
scheme parametrizing equivalence classes of quotients q: U ® 75Oy (—n) — £ where
€ is a locally free sheaf of uniform multirank » and multidegree (dy,...,d;) on Y, and
such that the induced map U — H®(Y,&(n)) is an isomorphism. On Q% x Y, we have

the universal quotient
qgo: U® W;Oy(—n) — 5QO.

Since n > ng, the following sheaf is locally free,
H =Homo,(Uap ® Ogo, 7o, (det(€)®° @ 7y L ® 7y Oy (na))).
Consider the corresponding projective bundle 7’: h = P(H") — Q" and let
Gp: U@ my Oy (—n) = &

be the pullback of the universal bundle to h x Y. Now, the tautological invertible
quotient on b,
T HY — Oy(1) — 0,
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3. Generalised Parabolic Structures on Smooth Curves

induces a tautological morphism on h x Y,
sp - Uap @ Oy — det (&) @ my L @ my Oy (na) @ mp Oy (1).
Now, from the universal quotient we get a surjective morphism
(@) . U,y @ 75Oy (—na) — (Eé?a)éeb.

Denoting by K its kernel, we get a diagram

~
~
~
~

0 K Uap @ 13Oy (—na) ———— (£ —0

~
EN

det(&y)®° @ 75, L @ 13 Oy (1)

~ _ lsw@w;}idoy(na)

Applying Lemma [2.1.35[ to the morphism K — det(&,)®° ® 75 L ® 7r;;(9h(1), where X
is, in this case, the curve Y and X’ is b, we get a closed subscheme & C h. Note that
& is the closed subscheme over which sy @ 7y-ido,, (—na) factorizes through a morphism

do + (€)% det(€e) @ THL @ 73N (3.8)

T Ne being the restriction of Oy(1) to &. Then, on the scheme & x Y we have a family
of tensor fields (€g, N, ds) parametrized by &. In order to include the parabolic
structure, we need to consider the grassmannian Gr := Grass,(U®2) of r dimensional
quotients of U®2. Recall that v is the number of nodes of the curve, so that we have v
divisors, D; = yzl + y%, in the normalization Y. Define,

v

——
Z:=6XxXgrx---xgr

and denote ¢; : Z — Gr the ith projection. Consider the pullback of the universal
quotient of the grassmannian Gr by the projection ¢;,

in . U2 ® Oz — Ry,
and take the direct sum

qz - U@2V®OZ %@RZ
1

Consider now the two natural projections

B xY Z XY
& Z.

Denote by Mg «gr the pullbak of Mg to & x Y and by qz, £z and ¢z the pullbacks to
Z x'Y. Look at the following conmutative diagram

ZxY <107 x {yi,vi}

L

Zx X —57 x {o;} ~ 2.
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For each 4, there are quotients f; : U9? x Oy — 771(52|y§,y§)- Tanking the direct sum
over all i we get f: = ®(f;) : U x Oz — @ﬂ'i(gzly%’yé). Consider the following
diagram,

0 ——Ker(f) —=U%" x Oy —>@7r (Ezl,:

e l
oy az
.

@D Rz

7y2 ) 0

Denote by J4 C Z the closed subscheme given by the zero locus of the morphism ¢’
(see Lemma [2.1.35). Then the restriction of ¢ to J,4 factorizes through

14
@ﬂ SZ’ TR ‘3d @Wf‘d* ng vl b %@Rz‘jd @R%'
1

Since f and gz are diagonal morphisms we deduce that ¢, is also diagonal. Therefore
3, 1s determined by v morphisms

Q%i : 7'('%1* (gji‘yi,yé) — Rji‘

Denote by (&3,, My, ¢3,) the restriction of (£z7,Mz, ¢z) to J4. Then we have a universal
family of generalized parabolic tensor fields,

(gjiagjda mjia ¢3¢)7 (39)
with rank r and multidegree (di,...,d;). Let us denote
l
I(T‘, d’ 5) = {(dlv s ,dl)| Zdl =dand A <d; < A+}7 (310)
i=1

where A_ and A, are as in Remark [3.1.14] Then we define

Jrd,s de (3.11)

del

3.1.5 The Gieseker Space

We will show that there is a natural closed embedding of the parameter space J;4 which
is SL(U)-equivariant.
Fix a Poincaré line bundle P; on Y; x Picdi(Yi) and let n € Z. Define the sheaf

G} = Homo,, . /\U@OPIC ((v2)r TPicti (v, (Pi ® T3, Oy, (rn))). (3.12)

The natural number we have fixed satisfies n > max{ng, n1}, therefore the above sheaf
is locally free, and we can consider the corresponding projective bundle on Pic% (Y3)

=P(G1").
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Recall the functor of points of G%. For each Pic% (Y;)-scheme f : § — Pic%(Y;) we have
A equivalence classes of invertible
G (S) = quotients f*GiV — N — 0
on the fibers of f: S — Pic%(Y;)
Since Homog (f*G1V,N) ~ f*Gi @ N we find that
Homo, (f*GiY,N) ~ H°(S, f*Gi @ N) ~
o~ Hom(/\ U ® Og, [ Tpiedi (v, (Pi ® 7y, Oy, (rn)) QN) ~

~ Hom(/\ U ® Og,ms«(id x f)*(P; ® 7y, Oy, (rn)) @ N).

Therefore

' equivalence classes of non zero morphisms
G (S) =4 N U®0s = ms.(id x f)*(P; @ 1y, Oy;(rn)) @ N
on the fibers of f: S — Pic%(Y;)

Note that the determinant map &, — A &, ly; = A(&,ly;) defines a morphism
0; 1 34 — Picti(Y;).

Consider now on J4 X Y the universal quotient g, : U @7y Oy (—n) = & 4+ Restricting
to the ¢th component, twisting by n and taking the determinant we find

/\q%i(n) : /\U® Ozyxv; = /\gji’Yi ® my. Oy, (nr).

Let Aj be a line bundle on Jg4 such that A\" &, |y, = (0; x idy;)*P; @ 75 Nj. Then we

have defined a morphism

N6, (n) : \U® Os,xy, = (0 x idy,)*(P; @ 73, O, (nr)) @ 75 N,
from what we get the morphism
(N B, () 2 \U ® O3, = m3,4(0; x idy;,)*(P; @ 73, Oy, (nr)) @ Ni.

Each of these morphisms of locally free sheaves on J4 gives a point in Gi*(J4) and,
therefore, a morphism

Ja i G x...xG}
\ /
Picd(Y)
Define now the sheaf,

gQ - Homopicd(y) (Ua,b ® OPicd(Y)? ﬂPicd(Y)*(lP(gc ® W;E ® W;OY (na))>
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For n > max{ng,n1}, G2 is also locally free and we can consider the corresponding
projective bundle on Pic?(Y),
Go = P(Gy).

Recall the functor of points of Go. For each Pic(Y)-scheme f : S — Picd(Y) we have
equivalence classes of non zero morphisms

G5(S) =< Uap ® Og = wsu(id x f)*(P?° @ 7y, L © 73Oy (1n)) @ N
on the fibers of f: S — Picd(Y)

Consider now the universal quotient q3, : U ® Oy,xy(—n) — &, and the universal
tensor field
b3, (£8P0 5 det(£)® @ THL ® 75, N3y

Composing (q3,(n)®*)®" with the tensor field ¢5, we find
$3, 0 (43, () %) * : Uy p ® Oy = det(E)*° @ my L ® 75,9y, @ 75Oy (na).

Let N be an invertible sheaf on Jg such that det(&5,) = (0 x id)*P @ 73 V. Then we

have
Uap ® O34y = (0 x 1d)*" P @ 7y L @ 75, (M, ® N¥) ® 13- Oy (na).

Note that Uy p @ Oz, xy =~ 7r§d(Ua7b ® (931). Therefore taking 75, and composing with
the adjuntion morphism ¢ : Uy ® Oy, — Wj*gﬁd(UaJ, ® Oy,) we get

30 (63,0(65, (M) *) )0t : Uy p®03, = 3,5 (0%id)* (PEe@ny L&Y Oy (na)) @My, @N

hence, a morphism ‘
34+ (834 © (5, (M) E)EP) 035 : 3y — G

Altogether, with the obvious morphism J; — (Gr)”, give us the so called Gieseker
morphism

Gies : J4 (Gf % ... X G}) Xpjeayy G2 x (Gr)" =: G.
Proposition 3.1.17. The Gieseker morphism Gies : I3 — G is injective and SL(U)-
equivartant.

Proof. Follows as in the connected case (see for instance [16, Lemma 4.3]). O

3.1.6 Semistability in the Gieseker Space

In this section we will compute the semistability function for those points in the Gieseker
space which lie in the image of the Gieseker map. In fact, we will compute the semista-
bility function just with respect to some special filtrations. This calculation will become
important in later results.
Let by,...,b;,¢,k1,...,k, be positive integers and consider the ample invertible
sheaf on G,
Og(bl, cee ,bl, C, kl, ey k‘,,)
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3. Generalised Parabolic Structures on Smooth Curves

Consider the obvious linearization of Og(by, ..., b, ¢, ki,...,k,), and let G()® be
the set of points which are (semi)stable with respect to the given linearization. Consider
a weighted flag (U®, m), being

vt:(0)cU,cCc...cUsCU (3.13)

and m = (mi,...mg). Let X\ : G,, — SL(U) be a one parameter subgroup whose

weighted flag is (U®, m). Let t be a rational point of J4 and Gies(t) = (t1,1,...,t1,t2,t3.1, - .-

its image in G. Let
G :U®0Oy(—n) =&

be the locally free quotient sheaf corresponding to ¢t. The weighted filtration (3.13))
induces a filtration of £ defined by &, := q(U, ® Oy (—n)) C €. Assume that

l, := dim(U,) = h°(E,(n))
0 = hl(Eu(n)).
Then, the semistability function is given by

v

11(\, Gies(t me@q A t1) + cpigy (N t2) + O kipigr(N t3) =
=1 =1

= Zb Zmu rk(E)p — rh®(Eu(n)))+
(3.14)

_|_CZmu Io, —aho(gu(n)))+

" Zk Zmu p dim(ai(E4(5}) © Ealu)) — rhO(Eu(m))).

We fix now a concrete polarization, defined as follows,
bi=bdi;,b=p—b, b =0 +0b,, by =ad, by=r>"_ kK
c=drd=3"_, ord;

k‘l' = KR;&X

Then, Eq [3.14] becomes into,

p(X, Gies(t Zmu{Zb (rk(£L)p — rh%(Eu(n)))+

c(v(Io,lu)p — ah®(E,(n)))+
> ki(pdim(g; (Eu(y}) @ Eu(yh))) — rh"(eu(n)))} :
=1

Note that (3, b;) 4+ ac + (2%, ki) = ap. Then,

I
p(A, Gies(t Z o {(Z birk(E2)p) — A2 (Eu(n))ap+
i=1

i=1

cv(lo lu)p+ Y _ akipdim(g; (Eu () a@é))} :
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Now, since Zézl(birk(é’i)) = bay,, we find

p(A, Gies(t)) = Z mu{baup — W (&u(n))ap+
u=1

cv(lo L)p+ ) aripdim(gi(Eu(yi) @ Su(yé))} :

=1

Again, since b = p — b} — b}, by = ad and o, = 22:1 dirk(EL), we get

M(AC;eS(t)) _ Zmu{pau — ah®(&,(n))+

u=1
l
+6) di(rv(Io, lu) — ark(E}))+

i=1
3 asclin(alE, ) 404) o |.
i=1
Since the first cohomology groups are assumed to be 0, we find
oy, — O‘ho(gu(n)) = auPS(n) - aPSu (n) = audeg(g) - adeg(gu)'
We also know that

v

pardeg(€) = deg(€) — (D _ ki)
i=1

pardeg(&,) = deg(& Z redim(qi(Eu(yi) ® Eu(y))

Then, we finally get

()\C;les Z mu{ (awpardeg(€) — apardeg(&u))+

u=1

d(av(Iy,ly) — aay,) }

3.1.7 (k,d)-Semistability and Hilbert-Mumford Semistability

The goal of this subsection is to prove Theorem [3.1.24) which shows that (k,?¢)-
(semi)stability is equivalent to GIT (semi)stability in the Gieseker space under some

conditions.

Let B be the constant given in Theorem [2.1.18] «, d, h, a, v, § as always, and let

K’ be a constant with the property
aK' > max{d(w —a)+arv+ad(a— 1)+
+Ba(a—1)|w = 1...a—1},
and such that d + K’ > 0.
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Lemma 3.1.18. There exists n > 0 such that for any triple t = (¢ : U ® Oy (—n) —
£,q,9) of degree d = deg(&) and multiplicity o whose induced map U — H°(E(n)) is
injective, and giving a semistable point in the Gieseker space, G5 the following holds

Ve C & ulE) <d+ K.

Proof. We follow [50}, Section 2.3.8]. It is enough to show that deg(£’) < deg(€) + K’
for the maximal destabilizing subsheaf, since

d K’
- eg(& )/+

u(E") < u(E') < deg(€) + K.

Let Q := £/&’ be the quotient vector bundle. We know that it is semistable. Assume
that deg(£’) > d + K'. For all n € N we have

0 B 0 if u(Q)+n+B<0
WY, Qn)) < (Q)[u(Q) +n+ By = { a(Q)(u(Q) +n+ B) otherwise
We have to study both cases separately.
a) h°(Y,Q(n)) < a(Q)(u(Q) +n + B). Let us denote U’ := H(E'(n)) NU. Then
we have,

dim(U") > p — h°(Y, Q(n)) >
1-yg

> (=) +d+an—a(Q(uQ) +n+ B) =

> a(l% +n)+d— a(Q)(l_Tg +n) —d(Q) —a(Q)B =
_ 0/(1%9 )+ dE) - a(Q)B >
za’(l_Tg+n)+d+K’—B(a—1)-

Consider the locally free sheaf E:=ImU' ® Oy(=n) = &). Thus U’ C HO(Y,E(n)) N
U (see Lemma [2.1.38)), rk(€ly;) < rk(€']y;) and & is generically generated by global
sections. Let {u1,...,u;} be a basis for U" and complete it to a basis u = {uy,...,up}

of U. Consider the associated one parameter subgroup A = A(u, ’y](f)). Then

pei (N ini(t) = prk(Ely,) — rdim(U7) <
< prk(&'ly;) — rdim(U").

Also, since v(1,1) < a, we have

6, (0 i2(1)) < alp — dim(U")).
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3. Generalised Parabolic Structures on Smooth Curves

Therefore,
(X, Gies(t sz,u@ (A, 01,i(t)) + cpgy (A, i2(t))+
3 k(pdim( (E(0}) © ) — rdim(U") <
i=1
!
< Z bi(prk(E'ly;) — rdim(U"))+
i=1

+ ca(p — dim(U"))+

+ ) ki(pdim(gi (€' (y}) @ €'(3))) — rdim(U")) =

i=1
l l
=S di(p— a8 — (3 k) (prk(€']y,) — relim(U) +
i=1 i=1
l
+ Z d;ora(p — dim(U"))+
i=1
+ 3 wialpdim(a (€ (41) © €'@h))) — rhdim(U).
i=1

An easy calculation gives us

pe (A, Gies(t)) = y
e <l {p—r ki)} — a{dim(U
" { ; { )—

’ (3.17)
- Z ric(dim(q; (€' (y7) ® E'(y5))))} + ad(a — o).
=1

Since p = a(n + 1%9) + deg(€) and dim(U’) > d+ K' 4+ o/(n + 1%) — B(a — 1), we
deduce that,

l‘d)"i’msm) <ad(a — ') — aK' + Ba(a —1)—
— ’I“O/(Z Ki) + a(z ridim(q; (€' (y1) © E'(y5))))
i=1 i=1
+d(d — a).

Since o/r(3°1_ ki) > 0, ad i, kidim(g:(E'(y}) ® E'(¥4))) < avr (because k; < 1),
a— o < a—1, and the definition of K’ (see Equation [3.15)), we get

pe (A, Gies(t))
p

< 0.

But we know that Gies(¢) is semistable so we get a contradiction.

97



3. Generalised Parabolic Structures on Smooth Curves

b) h°(Y,Q(n)) = 0. In this case, assuming n > QT’ we have dim(U’) = p. The
same calculation as before (3.17)) shows that

He B < o/ — (Y i) - afaim(U)-

=1
= 2 mdim(a (€' (y1) © £'(4)))} + ad(a — o) <
< (@ —a)(p - ad).

Assume n is large enough so that p — ad > 0 (recall that p = rx(Oy) + d + an). Then,
pc (A, Gies(t))/p < 0 and we get a contradiction. O

Proposition 3.1.19. There exists n large enough and a constant Cs so that for any

triplet = (¢ : U® Oy (—n) — £,q,¢) of degree d and multiplicity o whose induced map

U — HY(&E(n)) is injective, giving a semistable point in the Gieseker space, G5, the

following holds

deg(&)
Q@

,Umax(g) < + Cs.

Proof. Because of Lemma(3.1.18|there exist a constant K’ such that u(€') < deg(&)+K’
for all £ C £. We can assume that K’ is large enough so that deg(€) + K’ > 0. Then

(&) < deg(€) + K' =
« a
), ) ) g
«
Defining C3 (5) (v — 1) + K’ we get the result. O

Given a tensor field with generalized parabolic structure, (£,¢,7), we define the

parabolic slope as
pardeg(&)

pary(€) i= 225

Lemma 3.1.20. Let (E,,m) be a weighted filtration such that
paru(&;) < paru(€) — Cy, C1=ad +rv,
foralli=1,...,s. Then P;(Ee,m) + 0p(Ee,m, ) > 0

Proof. By Lemma [3.1.12] we have

Py(Eaym) + 0pu(Eam, ¢) = > my(pardeg(€)a; — pardeg(€;)a)—
=1

s—1
— (Z m;)oa(a — 1),
=1
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and, because of the condition of the statement,
pardeg(&;)a — pardeg(&)a; < —Chraq;.

Then, since C1 = ad + rv (see Proposition3.1.13)), we get

s—1
P.(Eeym) + dpu(Eemy, ) > Zmi(Claai —dala—1)) =
i=1
s—1
= Zmi(aé(aai —a+1)+rvaw]) > 0.
=1

As a trivial consequence we have

Corollary 3.1.21. (£,q,¢) is (k,6)-(semi)stable if and only if for any weighted filtra-
tion (Es,m), such that parp(&;) > paru(E) — C1, where Cy = ad + rv, the inequality

Pi(Ee,m) + 0p(Ea; m, 9) (=)0
holds.
Proof. Follows from Lemma [3.1.20] O

Proposition 3.1.22. There exists n large enough so that, if t € Gies‘l(G(S)S) then
(&t 4, ¢1) is (K, 9)-(semi)stable.

Proof. By Lemma [3.1.18] we know that for all &' C &, deg(€’) < deg(&;) + K'. Then,
by Proposition [3.1.19, Gies(t) € GO~()* implies jimax (&) < deg(€) | ¢, We also know,
by Corollary (3.1.21} that (&, q,, #¢) is (k,0)-(semi)stable if and only if

[0

Py(Eeym) + 6uu(Eaym, ) (>)0

for every (&, m) with paru(&;) > parp(€) — C1. Observe that, in this case,

14
u(E;) > parp(E;) > parp(€) — C1 > p(€) — + = O,

and denote C; = 7 + €. Consider the family of locally free sheaves satisfying

imax(E') < deg(é)

parp(€') > parp(€) — C1,
1<d <a-1.

+ Cs,
(3.18)

This family is clearly bounded (see proof of Theorem . Therefore, there is
a natural number, n € N, large enough such that £'(n) is globally generated and
h1(£'(n)) = 0 for any &’ of this family. From the construction of the parameter space,
we know that ¢, induces an isomorphism U ~ H%(&(n)).

Now, fix a weighted filtration (&,,m) satisfying the second condition in
(thus the three conditions). Let u = {uj,...,u,} be a basis of U, such that there
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are indices Iy,...,l; with U%) .= (ur,...,uy) =~ H°(&(n)) for each j. Define y =

Z;Zl ajfyl()lj ) and consider the one parameter subgroup, A(u, ’y,(;lj )) . Let Iy be a multi-

index giving the minimum in pg,(A(u,7)). Then pg(A(u, ), Gies(t))(> 0) if and only
if pe(A(u,v),Gies(t))/p (> 0). But looking at the calculations at the beginning of
Section [3.1.6, we have
O(S)ug(A(u, 7), Gies(t))
p

= > mu{(@ypardeg(€) — apardeg(&,)) + d(av(lp, 1) — ady)},

u=1

being a the saturated subsheaf generated by &;. Since @; := a(éA'i) = a; and pardeg(g'i) >
pardeg(&;), then

pe(Mu,v), Gies(t))

0(<) ) =
= Z my{(a&ypardeg(E) — apardeg(gu)) + d(av(lo,ly) —aqy)} <
u=1
<" mu{(aupardea(€) — apardes(&,)) + 5o (To,l) — aw)} =
u=1

=P.(E,m) + 6p(E, m, T).
Thus, the tensor field is (k, §)-semistable. O

Proposition 3.1.23. There exists n>> 0 such that, if (&, q,,7) is (k,0)-(semi)stable,
then t € Gies™H(G)?).

Proof. By Theorem [3.1.16| we deduce that
> mi(parx(€(n))a; — parh®(&;(n))a) + dp(Ea, m, $)(2)0 (3.19)
i=1
for any weighted filtration (£,,m). Let A be a one parameter subgroup and (U,, m’) a
weighted filtration such that A = \(U,, m’), being
Us=(0)CcU,C...CUy CU.
The quotient ¢ : U ® Oy,(—n) — & induces a chain
0)cé& cCc...cée ce (3.20)
and, therefore, a filtration
Ee=(0)C & C...C&ECE,

formed by the different subsheaves collected in the above chain. Let J = (i1,...,1s)
be the multiindex defined by the following condition: i; € {1,...,s'} is the maximum
index among those k € {1,...,s'} such that £ = &]. Denote by m; the sum of the
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numbers mj, corresponding to those sheaves in the chain (3.20) which are equal to &;,
i.e.,

m; :mk+mk+1—|—...—|—mij
(k,k+41,...,i;) being the indices such that & =&, = ... = 5i’j = &;. We get in this
way a weighted filtration (&€, m). Multiplying by p in Equation (3.19) we get
0< Zmi{pzai — ph%(&(n))a + dp(aw;(Io) — ac;)+

=1

+p Yy ridim(g;(E(y]) @ &) —rp(Y_ Ry }

j=1 j=1

The reverse calculation done in Section [3.1.6] gives

l s
03 b S miCek(€X)p — rhO(Ex(m))+
u=1 =1
—I—CZmi(w(I@)p—aho(&-(n)))—i— (3.21)
i=1

+ 3 kY milpdim(q;(E:(y]) ® E(1))) — rh°(Ei(n))).
j=1 i=1

By the fact that [; := dimU; < h°(&;(n)) and by the definition of the numbers m;,
inequality (3.21) turns into

l s’
0<) by Y mi(rk(E)p — rli)+
u=1 i=1

+ CZ ml(v;(Io)p — al;)+
=1

(3.22)
+ i k; SZ m(pdim(q;(Ei(y]) ® E(13))) — rli) =
=1 =1
= J/LG()‘(UMm/)? Gies(t)),
and the proposition is proved. ]

Finally we have,

Theorem 3.1.24. There ezists n large enough so that, (€, q,,7:) is (k, 0)-(semi)stable
if and only if t € Gies™ (G®)).

Proof. Follows from Proposition and Proposition O
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3.1.8 Properness of the Gieseker Map.

We will show that the Gieseker morphism Gies: 33 — G is proper (Theorem [3.1.25)).
Let us fix an effective divisor H of degree h in Y such that Oy (H) ~ Oy (1).

Theorem 3.1.25. There exists n large enough such that, the Gieseker map,
Gies:Jg = G
is proper for any d € I, 45.

Proof. For the sake of notation we drop the subindex d. We use the the valuative
criterion for properness. Let (O, m, k) be a DVR being K its function field and assume
we have a conmutative diagram

Spec(K) e ”gf(s)s

{0,7} = S : == Spec(0) h L G©s,

The morphism hg is given by a family (gx, o) over Y :=Y x Spec(K), where

g
aqK U ® OYK(—TL) —» SK

b (ERPY = det(Ex)%° @ L (3.23)
4K 3F(£K|y§7yé) — Ry

~

Let us see that hx can be extended to a family, h = (gg, QSS,QS), over Y x S. The
quotient qx defines a point in the Quot scheme of quotients of U ® Oy (—n) with the
fixed Hilbert polynomial P(n). Therefore, there exists a (unique) flat extension

qgs : U @7 Oy(—n) - &g (3.24)
over Y x S. Define now the sheaves

G = ms.(U*)* @ 75 0y)
H = mg.(det(E5)® @ 15 L @ 13Oy (an))

Both sheaves are locally free, so we can form the projective space over S
prg : P:= P(Homp(G,H)") — S
which carries a tautological morphism over P x Y,
pripre, (U292 & pryyOy ) = (idy x prg)*det(€5)% @ pry Oy (an) ® pri £ © priOg(1)

Now, the canonical morphism A : prjprp, (U9)® @750y — (U®)® @ 15Oy induces
a diagram

K — prpprp, (U%*)® @ pry,Oy) — (idy x prg)*(Es(n)®*)*"

g l

A
H :
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where H' = (idy x prg)*det(Eg)®° @ pry Oy (an) ® pry L @ prpOp(1). Let S C P be the
closed subscheme over which g is the zero morphism, i.e., over which the tautological
morphism factorizes through (idy x prg)*(Es(n)®*)®*. Thus, we have over S x Y a
tautological morphism

(idy x prs)*(5®a)@b — (idy x prs)"‘det(ﬁs)@C ® pry L ® prpOp(1)

Note now that the morphism ¢ : (E5*)®? — det(Ex)¥°® Lk defines a point Spec(K) —
S. Since S is projective this point extends (uniquely) to a point Spec(O) — S, i.e., to
a morphism

ps: (EFY)E = det(E9)** @ Ty LON (3.25)
Let us extend now the parabolic structure. Since £g, ~ Ex we have mx.(Esy|p;) =~
Tr«(Ex|p,;). Thus composing with mx.(Ex|p,) - Rk, we get a surjection
T« (Esy|D;) = Ri
Notice that the morphism wg : D; x § — S is finite, thus affine and proper. By flat
base change, we know that
7"'I(>«e((c/‘AS',77|Di) = j*ﬂ'S*(gS|Di)-

j being the open embedding j : n < S. Now we can form the morphism
775*(55|Di) Hj*j*ﬂ-S*(gﬂDi) — J« Rk
4s

Let Rg C j«Rxk be its image. Then by [26, Proposition 2.8.1], Rg is S-flat (thus a free
O-module) and the quotient

qis : ms«(Es|p;) > Rs (3.26)

extends ¢;s : Tr«(Ex|p,) - Rk (thus rk(Rg) = 7). Then the family h = (g5, ¢s,4g)
given in Equations (3.24)), (3.25)), (3.26]) extend the family given in Eq. (3.23)). Clearly,
the family (QS7¢S,75) defines an S-valued ¢t : S — G in the Gieseker space. Since
t(n) = h(n) we deduce that ¢(0) = h(0), thus it defines a semistable point in the Gieseker
space G. Let us show that ¢() induces an isomorphism U ~ H°(Y,&(p)(n)). To show
that it is injective, we consider the kernel, H C U, of H%(q(p)(n)) : Y — HO(Y, &) (n)).
Since t(0) is semistable we have,

l v
0)) = Z bitigy (A, t1:(0)) + cug, (X t2(0) + Y kingr(A, t3,4(0)) =

i=1
= Zb —rdim(H)) + ca(—dim(H))+
+ Z ki (pdim (to(H & H) — rdim(H)) =
i=1
v l
= Z di(p—ad —r Z ki))(—rdim(H)) + Z diora(—dim(H))+
i=1 i=1

+ Z kia(—rdim(H)) = —apdim(H) > 0
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so we must have dim(H) = 0, i.e, U — H°(Y,&)(n)) is injective.

Let us show that it is in fact an isomorphism. For that we just need to show that
R(Y, &@)) = 0. Suppose it does not. Then, by Serre duality, there is a non trivial
morphism &) — wy. Let G be its image, and consider the linear map

Q:U <= HYY, &g (n)) = H°(Y,G(n))

Let H C U be the kernel of €2, let A be the corresponding one parameter subgroup and
let F C &) be the subsheaf generated by H. Since ¢(0) is semistable, we get:

0< p, Ges(t)) :{paf — adim(H)+

!
+46 Z di(rv(Iy, dim(H)) — ark(F?))+
i=1

+ Y amgdim(qi(F(yi) © Fly3)) — b/2a]-'} :

i=1

Since h(Y,G(n)) > p — dim(H), we get

0 §{—pag +ah®(Y,G(n))+

l
+46 Z di(rv(Iy, dim(H)) — ark(F?))+
i=1

+ Y aridim(gi(F(y1) ® F(ys)) — b’zaf} :
i=1
and therefore

h'(Y,G(n)) > pag + B

B being a constant not depending on G. Note that p = an + d + r(1 — g) and that we
can assume h%(Y,wy) > h°(Y,G(n)). Then, if n is 1 arge enough we get a contradiction,
so hl(Y, 5(0)) = 0.

Let us show now that &) has no torsion. Assume it has torsion, 7 C & (n),
supported on the divisors D;, and let T = H°(T). Let now H := HO0(q(o) (n))~YT) c
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U. Again, since t(g) is semistable, we have

0 < ug(A (0 ZbZ:U’GZ A 11,i(0)) + cpg, (A, t2(0)) + Zkiﬂgr()\atfﬂ,i(o)) =
=1

= Z bi(—rdim(H)) + ca(—dim(H))+

+ Z ki(pdim(tio(H © H) — rdim(H)) =
=1

v l
= Z di(p—ad —r Z ki))(—rdim(H)) + Z d;ora(—dim(H))+
=1

=1

+ Z ki —rdim(H)) + > ki(pdim(tio(H @ H)) =
1 i=1

= Z rio(pdim(tio(H & H)) — apdim(H) <

i=1
= Z riapdim(Tp,) Z apdim(Tp,) =
=1 =1

—apz i — 1)dim(Tp,)

Since k; — 1 < 0 we must have dim(7p,) = 0, that is 7 = 0, so &) has no torsion
supported on the divisors D;. Furthermore, from the last calculation it is clear that
there can no be any torsion subsheaf supported outside the divisors D;, Therefore &)
is locally free.

Thus, the extended family defines a point in J4. Since the corresponding point in G
lies in the semistable part we deduce that the extended family also lies in G*®), and
by Theorem we are done. O

3.1.9 Construction of the Moduli Space

Let 0 € Qx0, 7,d,a,b,c € Nand d € I, 45 be as in Section [3.1.4) Equation Let Jg4
be the parameter space constructed in Section Over Y x J,4 there is a universal
family satisfying the local universal property,

Proposition 3.1.26. (Local Universal Property) Let S be a scheme of finite type over
C and (Es,qs,Ns, ¢s) a family of (k,0)-(semi)stable generalized parabolic tensor fields
of rank r and multidegree d with a decoration of type a,b, c, L parametrized by S. Then
there exists an open covering S;, © € I of S and morphisms 3; : S; — Jgq, © € I such
that the restriction of the family (Es,qs,Ns, ds) to S; X Y is equivalent to the pullback
of (Egi,gjd,‘ﬁji,%i) via f; X idy for alli € I

Proof. Follows using the standard arguments given in Proposition [2.2.16] O
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Note that the natural SL(V') action on Q°, h and Gr determines an action on the
space Jgq,
I':SL(V) x Jg — Ja.

Then we have
Proposition 3.1.27. (Glueing Property) Let S be a scheme of finite type over C
and s1,s2 : S — Jq two morphisms such that the pullbacks of (gji,gjd,mji,qui) VLG

s1 X idx and s9 x idx are isomorphic. Then there exists an étalé cove}mg c: T — S
and a morphism g : T — SL(V') such the triangle

SL(V) X 34 j@
QX(M %ZOC
T
1§ commutative.
Proof. Follows using the standard arguments given in Proposition [2.2.15 O

Finally, we have

Theorem 3.1.28. There is a projective scheme PTF (1,0)-s5

PTF gf 9)- together with natural tranformations

(k,6)—(s)s
Pvcv{Di}

and an open subscheme

a®)5 . ParTensors — h

PTIEDEKS)'(S)S

with the following propoerties:

1) For every scheme N and every natural transformation ParTensorsgf){_ D(fg}),s —

has, there exists a unique morphism ¢ : 737']:%’6)_(5)5 — N with o/ = h(p) o al®)*,
(k,0)-s

2) The scheme PT]:;S){; } is a coarse moduli space for ParTensors,

Proof. Consider the Gieseker map Gies : J; — G, which is injective and SL(U)-
equivariant (see Proposition [3.1.17). Consider on G the polarization,

O(bl,...,bl,c,kl,...,k,,)
given in Subsection and let £ := Gies*O(by,...,b;, ¢, k1,...,k,). By Proposition
1.1.21} we know that Gies™1(G(®)%) = Jés)s, and therefore Theorem |3.1.24] implies that

3&8)8 = jgf’(s)_(s)s. By Theorem [3.1.25] we deduce that the restriction of the Gieseker
map to the semistable locus is a SL(U)-equivariant injective and proper morphism.
Thus

1) the good quotient 777-.7-"

2) the geometrlc quotlent PTF, (£,9)
scheme of PTFE df

= 3%’6)_55 J/SL(U) exists and is projective,
ors jgf’é)_s/SL(U) exists and is an open sub-

Define
PTJ—_. K,0)-(s)s — H PTF&E’(S)_(S)S,
del(r,d,) -
Now, 1) and 2) follow from this construction, Proposition [3.1.26/and Proposition|3.1.27]

O
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3.2 Moduli Space of Singular Principal G-Bundles with
Generalised Parabolic Structures

The aim of this section is to prove Theorem which shows the existence of a
coarse moduli space of (k, §)-(semi)stable singular principal G-bundles with generalized
parabolic structure. The strategy we will follow here is the same one as we have
followed in Chapter 2, for the construction of the moduli space of 0-(semi)stable singular
principal G-bundles.

3.2.1 Singular Principal G-Bundles with Generalized Parabolic Struc-
tures on Non Connected Smooth Curves

Definition 3.2.1. A singular principal G-bundle with a generalized parabolic struc-
tures over Y is a triple (€, 7, q) where (£, ¢) is a generalized parabolic bundle of rank r
(see Definition [3.1.1)) and (£, ) is a singular principal G-bundle.

Definition 3.2.2. Let (£,7,¢) and (G, \,p) be singular principal G-bundles with gen-
eralized parabolic structure on Y. A morphism between them is a morphism of Oy-
modules f : F — G compatible with both structures. The isomorphisms are the obvious
ones.

Definition 3.2.3. We say that a singular principal G-bundle with a generalized parabolic
structure on Y, (£,7,¢q), is honest if the singular principal G-bundle (£, 7) is. We say
that it is quasi-honest if it is honest over some subcurve Y’ C Y.

Following Section we can assign to any singular principal G-bundle with
generalized parabolic structure a tensor field with a generalized parabolic structure,

(&, 1,9) = (€, r,9),

this map being injective. Also, we can define, for any weighted filtration (&, m), the

semistability function p(&,,m, 7) as in Section [2.2.3] (see Definition (2.2.13))).

Definition 3.2.4. We fix numbers § € Q-¢ and ; € (0,1)NQ, i = 1,...,v. Denote
& = (K1,...,Ky) . A singular principal G-bundle with generalized parabolic structure,
(£,4,7), is (K, 6)-(semi)stable if for every weigted filtration (£,,m) of £, the inequality

Py(&e,m) + 6p1(Ee, m, 7)(>)0 (3.27)

holds true.

3.2.2 The Parameter Space

The aim of this section is to prove the existence of a coarse projective moduli space for
the moduli functor given by

isomorphism classes of
families of (k, d)-(semi)stable singular
SPBGPS(p) &0 (5) = principal G-bundles with
generalized parabolic structure on Y
parametrized by S with Hilbert polynomial P
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We will use the same strategy as in Section for the construction of this moduli
space. Therefore, we need to rigidify the moduli problem. Let m € N and W a vector
space of dimension P(m). Consider the functor

isomorphism classes of tuples (€s, ¢ 5 TS gs) where
(Es,7s) is a family of singular principal G-bundles
parametrized by S with Hilbert polynomial P
"9SPBGPS(p)%(S) ={ (Es.q ) is a family of generalized parabolic bundles
and gs : W ® Og — mg.Es(n) is a morphism
such that the induced morphism
W ® Oyxs(—n) — Eg is surjective

(3.28)
and let us show that there is a representative for it.

We will reproduce the construction given in Chapter 2, Section Recall from
Proposition that the family of locally free sheaves £ of rank r and degree d
which appear in (k, §)-(semi)stable tensor fields with generalized parabolic structure is
bounded. In consequence, there is a natural number ng € N such that for n > ng, £(n)
is globally generated and H'(&£(n)) = 0.

Fix n > max{ng,n1} and d = (di,...,d;) € N' with d = S°\_ d;, and let p =
rx(Oy) +d + an (recall o = hr). Let W be the vector space k7. Denote by Q°
the quasi-projective scheme parametrizing equivalence classes of quotients q : U ®
w3 Oy (—n) — £ where € is a locally free sheaf of uniform multirank  and multidegree
(di,...,d;) on Y, and such that the induced map U — H?(Y,&£(n)) is an isomorphism.
On Q% x Y, we have the following morphism on Q° x Y,

h:S* (VoW @ryOy(—n)) = S (V@ Eqp) — S (V& E)C.

Let s € N be as in Theorem Then

hWEP S'(V @ W @y Oy (—n))),
=1

contains a set of generators of S*(V ® £g0)“. A morphism k: &5, S{(V e W ®
Oy (—n)) — Oy breaks into a family of morphisms

k' SHV @ W) @ Oy (—in) ~ SV @ W @ Oy(—n)) — Oy
and therefore into morphisms
K SHV W) S SV e W)@ k® — HO(Oy(in)),
A being the diagonal morphism. Consider the space

0" = 0 x (D Hom(S'(V @ W), HO(Ox (in)).

=1

We want to put a scheme structure on the locus given by the points ([q], [k]) € Q* that
comes from a morphism of algebras

S*(V & Egopyxv)® = Oy
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On Q* x Y there are universal morphisms
@SV @ W) ® Ogexy — HO(Oy (in)) ® Og-xy .
Consider the pullbacks of the evaluation maps to Q* x Y,
H°(Oy (in)) ® Og:xy — 7Oy (in).

Composing we get o
@' S(VeW)®Og-xy — myOy(in).

and summing up,

o Vor =P S (VW a0y (—n)) = Og-xy.
i=1

Now, ¢ gives a morphism
T/Q* . S.(VQ*) — OQ*XY.

Consider again the universal quotient mg and the following chain of surjections

S®(m
SV W ® @m0y (—n) 2§V @ 1.,y Ea)

| |

S*Vo SV @ 7y yE0+)C

Let us denote by 8 the composition of these morphisms and consider the diagram
0 ——Ker(f)—— S*Vgr ——=S*(V ® Tr*Q*XyEQ*)G —0
S T/Q* l ,
~ TQ*
N
Og xy

Define D = {c = ([q], [h])|75-|c = 0}. This is a closed subscheme of Q* over which 7o~
lifts to
D : S*(V @75y Ear) = Ogrxy-

Thus the pullback of (£g«,75.) to D x Y gives a universal family (£p,7p). In order to
include the parabolic structure as well we need to consider the Grassmannian Gr :=
Grass, (U%2) of r dimensional quotients of U2, Define

14

——f
Z:=Dxgrx...xgr,

and denote by ¢; : Z — Gr the projection onto the ith Grassmannian. Consider the
pullback of the universal quotient of the ith grassmannian to Z:

¢ U2 0z — Ry,
and take the direct sum

qz : UEB2V®OZ —>EBR2.
1
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Consider now the two natural projections

DxY ZxY
D Z.

Denote by qz, £ and 77 the pullbacks to Z x Y and look at the following commutative
diagram

ZxY <07 x {y, ub}
P
Zx X <57 x {;} = Z.
For each i, there are quotients
fi : U692 X OZ — Tri(gz‘yi,y%)'

Tanking the direct sum over all ¢ we get

f= @(fz) : U@ZV X Oy — @ﬂ-i(gzbi,yé)‘

Consider the following diagram,

0— > Ker(f) ——= U x Oy — > @i (&)

ey l
qz

=
D R~

Denote by 9M4(G) C Z the closed subscheme given by the zero locus of the morphism
¢’ (see Lemma [2.1.35)). Then, the restriction of gz to M4(G) factorizes

vyl ) 0

I y(G)

D mi(E2ly; y3)lma() = D Tany () (Ema(@) lys 1) D Bzl c) = D Ry (c)-

Since f and gz are diagonal morphisms we deduce that goy, (@) is also diagonal. There-
fore gon, () is determined by v morphisms

qé:rti((;) : Wéni(c)*(gmi(c)!yg,y;) = Rony(c)-

Denote by (&, (), T, (@) the restriction of (£z,77) to My(G). Then we have a
universal family of singular principal G-bundles with generalized parabolic structure

(gfmg(G) J ngi((;)v TWQ(G))' (3.29)

Theorem 3.2.5. The functor "9SPBGPSY is representable.

Proof. Follows from the construction of M;(G) and taking the disjoint union over all
the possible multidegrees as in Theorem [3.1.28] which we denote by IM(G). O

110



3. Generalised Parabolic Structures on Smooth Curves

3.2.3 Construction of the Moduli Space

Recall from Proposition that the family of locally free sheaves £ which appears
in a (k, d)-(semi)stable tensor field with generalized parabolic structure is bounded. As
a consequence, there is a natural number n € N such that for n > ng, £(n) is globally
generated and h'(Y,£(n)) = 0. Fix such natural number n and consider the functors

isomorphism classes of tuples (£, qg, s, N, gs) )
where (g, ¢,) is a family of generalized parabolic
bundles with polynomial P and gg is a morphism
rigParTensorsﬁOY(S) = gs : W ® Og — mg«Es(m) such that
the induced morphism W ® Oy xs(—n) — &g
is surjective and ¢g is a morphism
ps: (V@ Eg)®MHON - nxN
isomorphism classes of tuples (£s, ¢ TS gs) where
(Es,Ts) is a family of singular principal G-bundles
(&s,q S)is a family of generalized parabolic bundles
with Hilbert polynomial P and gs : W ® Og — mg.Es(n)
is a morphism such that the induced morphism
W @ Oy xs(—n) — Es is surjective

eSPBGPS(p)(S) =

Note that there is a natural GL(W) action the space M (G),
I': GL(W) x M(G) — M(G).

We can view the GL(W)-action as a (C* x SL(W))-action. Thus, we will construct the
quotient of M(G) by GL(W) in two steps, considering the actions of C* and SL(W)
separately. Consider the action of C* on "8SPBGPS(p)%. By Theorem and
Definition there is an injective C*-invariant natural transformation

"eSPBGPS(p)h — rigParTensors%OY .

Moreover, the morphism induced between the representatives is a SL(W)-equivariant
injective and proper morphism,

B:M(G))C* < [ Iras- (3.30)
Then we have

Proposition 3.2.6. (Local Universal Property) Let S be a scheme of finite type over
C and (€s,4qs,7s) a family of (k,d)-(semi)stable singular principal G-bundles with gen-
eralized parabolic structure parametrized by S. Then there exists an open covering
Si, i € I of S and morphisms B; : S; — M(G), i € I such that the restriction of the
family (Es,qs,Ts) to S; X Y is equivalent to the pullback of (59%(0)@937(@’7937(0)) via
Bi x idy for alli € 1

Proof. Follows using the standard arguments given in Proposition [2.2.16 O
Note that there is a natural SL(W)-action on the space MM (G),
I': SL(W) x M(G) — M(G).

Then we have,
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Proposition 3.2.7. (Glueing Property) Let S be a scheme of finite type over C and
s1,82 S — M(G) two morphisms such that the pullbacks of (Sm(g),gm((;), Top(@)) via
s1 X idx and so X idx are isomorphic. Then there exists an étalé covering ¢ : T — S
and a morphism g : T — SL(W) such the triangle

SL(W) x M(G) —= M(G)
g% (8100) %c
T
s commutative.
Proof. Follows using the standard arguments given in Proposition [2.2.15 ]

Consider the linearized invertible sheaf £ given in the proof of Theorem [3.1.28| and
let £ := 8*L£. We finally have

Theorem 3.2.8. There is a projective scheme SPBGPS(p)(ﬁ"S)_SS and an open sub-
scheme SPBGPS(p)®&9)=s ¢ SPBGPS(p)E9)=55 together with a natural tranformation

ol SPBGPS(0) 57" — happaps )i~

with the following properties:
1) For every scheme N and every natural transformation o : SPBGPS(/))%"S)_(S)S —
hye, there exists a unique morphism o : SPBGPS®)-()(p) — N with o/ = h(p)oa®s.
2) The scheme SPBGPS®9)3(p) is a coarse moduli space for SPBGPSE)3(p).

Proof. By Proposition Proposition and Proposition the quotients
SPBGPS*()5(p) := M(G)®)* JGL(V) exist, IM(G)*JGL(V) is a projective scheme,
M(G)?/GL(V) is an open subscheme, and 1), 2) hold true. O

3.3 Moduli Space for Large Values of ¢

We will define the notions of generic semistability and asymptotic semistability. In
[52], it is shown that, for the connected case, generic semistability corresponds to GIT
semistability of the corresponding tensor field restricted to the generic point, 7, of the
base curve Y. In our case, we have many connected components, ¥ = HﬁzlYi, making
it impossible to reproduce the known arguments. We solve the problem restricting to
each connected component and changing the base field to the field of fractions of the
[-dimensional projective smooth variety Y7 x ... x Y.

3.3.1 Generic Semistability

Fix natural numbers a,b,c,r,d,h1,...,h; € N and a line bundle £ on Y. Denote
h=hi+- -+ h;, and o = hr.

Definition 3.3.1. Let £ be a locally free sheaf of rank r and ¢ : (£9%)®" — det(£)®°®L
a tensor field. We say that (£, ¢) is generically semistable if (€, m,®) > 0 for every
weighted filtration (&, m).
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The aim of this section is to characterize geometrically the generic semistability
condition. Let Y = Y7 II---I1'Y; be a disjoint union of smooth projective curves and
let Oy (1) be a very ample invertible sheaf of multidegree (hi,...,h;). Set V := C",
and let H C GL(V) x --- x GL(V) be the subgroup defined by :~*(SL(V")), ¢ being
the obvious morphism of groups ¢ : GL(V) x -+ x GL(V) — GL(V").

Consider now the diagram,

S (3.31)

le...x}/i
/ \

Y

Note that S is a smooth projective variety, and that its field of functions is given by
K:= (K Q- Q Kl)(o), K; being the field of functions of the ith component Y;. We
will show that a tensor field (€, ¢) defines a K-valued point, [¢], in the projective space
P(V®)® @ ... ¢ (V)9 with V = C", and that generic semistability of (£, ¢) is
equivalent to semistability of this point with respect to the action of H defined through
the homogeneous representation

p: F - GL(V) X% GL(V) N GL((v@a)GBb X oo X (V®a)69b)

of degree a. Furthermore, we will show that this representation is a direct summand of
the natural representation p’ : H — GL(((V®h)®9)®) where VOh = V& g.. .o,
This permits us to define an H-equivariant closed immersion

o P((v@a)éBb Q--® (V®a)€Bb) s P(((v@h)@a)@b)

and, with this in hand, to show that u(&,m, ¢) = u(o([¢]), \), A being the one param-
eter subgroup induced by the filtration (€., m), as we will explain later.

Preliminaries

Here we will show how (€, #) defines a K-valued point in P((V®)®0 @ ... @ (V©9)9P),
For that, we will need to trivialize the vector bundles £ and L, so we will need to make
some choices. However, we will prove that the semistability function of this point does
not depend on them.

Consider a tensor field ¢ : (£99)®% — det(£)®¢ ® L on Y, being £ a locally free
sheaf of rank r, and a weighted filtration (E,,m). The tensor field ¢ determines a
tensor field ¢ : (E[$")®" — det(€]y;)¥° @ Lly; on ¥;. Likewise, the filtration (£, m)
induces a weighted filtration, (£I,m"), of €|y, for each i € {1,...,l} (see Equation
. Let V be the vector space C" and let w = {wy,...,w,} be a basis of V. For each
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i€ {l,...,r}, wedefine V; = (wy,...,w;), and for each i € {1,...,1}, the weighted flag
(€L, m?) determines a weighted flag (V#, m?) of V, being V}Z = Vix(eiy- If the weights are
J

integral, these weighted flags define one parameter subgroups, A\(w, m) : G,,, — GL(V).
Otherwise, we can find a natural number k € N such that km’® are all of them integral,
and they define again one parameter subgroups, A(w, km’) : G,, — GL(V). In any
case, we can form a one parameter subgroup, G,, — GL(V) x -+ x GL(V) (actually,
it factorizes through H), which we denote by A(w,m) (resp. A(w, km)).
For each i € {1,...,1}, we can find an open subset U; C Y; over which,
(1) there is an isomorphism ¥} : €|y, ~ V ® Oy, such that U (EL|y,) = VI ® Oy,

(ii) there is an isomorphism WY : Lly, ~ Oy,

(iii) ¢} is surjective over U;.
Let U C S be the dense open subset defined by ¢; ' (U1) N --- N g ' (U;). Over U we
have [ quotients,

. . .1
@i 1= (g7 (det ((¥1)%) @ W 0 ¢y, o (T7 )*) )|y : (VE)** ® Oy — O,

and the sum of all of them defines a surjection,

¢: = (b1,...,¢1): (VENP ... g (VI @ Oy — Op.

This, in turn, induces a morphism, which we denote by the same symbol,
U=>UxP((VE) @ ... ¢ (VE)) T2 P((VEE g ... (V)3
[
Then, following [50], we define

fi(Ee; m, ¢) := max{u(¢(s), A(w, m))| s € S}

if all the weights are integral, or

F(arm,0) = ma{ (0, ACw, m)| 5 € 5)

otherwise, being k as we said before. Let us show that the last definition does not
depend on the basis w and the trivializations W%, W} we have chosen. Let @ =
{wy,...,w,} be a different basis, and let g € GL(V') be a matrix mapping w; to w;.
Define (1\1’1 =(g® id@Ui) o Wi. Then we get | quotients

o - (VE)® @ Oy — Oy,

where ¢; = ¢; - g = det(g)°¢; o (97! ®idp, )®*)®*, and therefore a quotient

¢ = (¢1,..., ) g: (VE)P D 0 (VI ® Oy — Oy,

g acting componentwise, which, in turn, induces a morphism (denoted, again, by the
same symbol)

U—>U x P((y@a)@b BB (V®a)@b) _br2 P((y@a)@b ®-- D (V®“)@b).

=g-¢

[©-
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On the other hand, we have A(w’,m!) = g - AM(w,m?) - g~! for each i = 1,...,l. Thus,
Aw',m) = g- Mw,m) - g~!, where g is acting again componentwise. By [50, Section
1.5.1],

Wy b9 Mw,m) - g7") = u(¢, Mw, m))

so, we deduce that the definition does not depend on the basis w. Consider now
different trivializations W;. For each i € {1,...,1}, ¥; differs from V! by a family of
flag automorphisms parametrized by U, i.e., by a morphism U; — P;, being P; C GL(V)
the parabolic subgroup associated to the weighted flag (V,m?). Therefore, we get [
morphisms (see [3.31]), U — P;, and finally a morphism

U— P x---xP CGLV) x--- x GL(V),

being Py x --- X P a parabolic subgroup of GL(V') x - -+ x GL(V). Following the same
argument as in [50], we show that the definition of 1z(&, m, ¢) does no depend on the
trivializations Wi. Let now Wy be a different trivialization of L|y;. Then, W differs
from \IﬂQ by a non zero regular function over Ui,Aal- € Oy;. Let ¢; : (V®a)@b R0y — Oy
be the corresponding quotients. Then, clearly ¢; = a;¢;, and

¢ = (1gr,. .., aid;)

We have to show that u(¢(s), A(w, m)) = u(d(s), A(w, m)) for all s € S. Note that the
basis w = {w1, ..., w,} induces a basis of (V¥)® ¢ ... g (V@2)®b

{w}' = (0,...,w},...,0)[t=1,... . L,and j = 1,...,b}

with w; =(0,...,wy,...,0), and w; = w;; ® - - - ®w;,, which diagonalizes \(w, m). By
——— —
7)

Remark [1.1.23] it is enough to show that ¢(s)(w} 1) £ 0 if and only if ¢(s)(w ]t) # 0.
Observe that

Since oy € Op;, for all t, we clearly have ¢(s)(w}"t) # 0 if and only if gg(s)(w}t) # 0.
Finally, it remains to show that the definition of (&, m, $) does not depend on the
open subsets U; we have chosen for the trivializations. Note that any other open subsets
lead to an open subset U’ C S and a morphism

b U —s P((v@a)@b DD (V®a)€Bb)
Since S is irreducible, we conclude, by [50, Remark 1.5], that (&, m, ¢) is precisely the
semistability function p corresponding to the generic point. Thus, it does not depend

on the open subsets U;.
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Analysis of the semistability function u (I).

The aim of this section is to analyze the semistability function (&, m, ¢). In the last
section, we have shown that the problem is reduced to the analysis of the semistability
condition in the projective space P((V®*)®0 & ... @ (V®*)P) with respect to the action
of HC H.

The following result can help us to relate the semistability condition of points [¢]
with respect to the H-action and the semistability condition of its coordinates [¢;] with
respect to to the SL(V)-action.

Corollary 3.3.2. Consider a point [¢p = (¢1,...,¢)] € P(VE)P @ ... @ (VO)®P),
Then, we have,

(i) [¢] is semistable with respect to H if and only if [¢;] € P((VE)®) is semistable
with respect to SL(V') for alli=1...,1. Notice that this in particular means that
every ¢; is non-zero.

(17) Suppose that ;] is semistable for alli=1,...,l, and let A\ = (A\1,...,\;) be a
one parameter subgroup of H. Then, u([¢],\) = 0 if and only if u([¢s], \i) =0
foralli=1,...,L.

(131) If [¢i] is stable for alli=1,...,1, then [¢] is stable.

Proof. (i) This part follows from Proposition [1.1.28), V; being now equal to ((V/©?)®b)V,
(ii) By Lemma [1.1.27} there is an index ¢ € {1,...,l}, the one giving the maximum,
such that p([¢¢], Ar) = 0. This implies that, for every ¢ =1,...,l, we have

w([@il, M) < p([pe], Ae) = 0.

Since every [¢;] is semistable, we also have p([¢;], A\i) > 0. Therefore, u([¢i], A\i) = 0 for
alli=1,...,l. The other direction is trivial using again Lemma
(iii) This follows from Lemma |1.1.27| and (ii). O

Analysis of the semistability function 1 (II).

In the last section we have analyze the function (&, m, ¢), and we have studied the
relation between generic semistability of the tensor field (€, ¢) and generic semistability
of its components (Ely;, ¢;) (see [52] for generic semistability in a single curve). However,
in order to compare the functions 7i(Ee,m, ®) and (e, m, ), we need a numerical
description of fi(Es, m, ¢). I order to do so, we will show that there is an H-equivariant
closed immersion,

P((v@a)@b D@ (V®a)€ab) N P((<V€Bh)®a)€ab)

that will allow us to compute (€, m, ) as a multiple of the semistability function of
the corresponding point in P(((V®")®)®) (see [42, Chapter 2, §3]), which, as we will
show, coincide with p(&e,m, @).

The aim of this section is to describe the above immersion. Consider

V@h — V@hl @"'@V®hl'
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The group H acts on V" in the obvious way

H x voh _ yoh ,

(9155905 (@1, ) = (1), -+ ai(vy)

being g;(v;) = gi(v},. .. ,vg”) = (gi(v}),. .. ,gi(vlhi)) and this action induces an action

on ((V®h)®4)8b  We want to define an H-equivariant surjection:
o ((V@h)&z)@b _y (V®a)@b DD (V®a)@b‘
For the definition of o we will fix first some notation. Note that an element in

(VEmMBab — (VoM g ... @ VPB4 i 3 linear combination of elements of the
form

(((U%,l,la ce 7”}17,1,1,1)7 R (Uil,h ce ’vilzl,l,l))(g)
D((V1125-+ 5 Vhy 125+ (V1255 Vhy2))®
®((v%,1,a7 cee vv}lzl,l,a)a AR (’Uil,av ce 7v}111,l,a))7
b b b b
((7)1,1,17 e 7%1,1,1)7 ) (Ul,l,h e 7vhl,l,1))®
b b b b
(V] 1,25+ s Upy1,2)s s (V] 1255 Upy 1))@
b b b b
®((U1,1,a7 v 7vh1,1,a)a cety (vl,l,av s 7vhl,l,a))> =

where every v; ko belongs to V. We denote v(i,j, k) = Jlk Qe ® vj. 1qs and define
its image in (V&) @ ... @ (VO by,

hi hi hl dl
o(v) = (Zg(l,j, 1),...,Zg(b,j,1),...,Zy(1,j,5),...,Zy(b,j,Z)) (3.32)
j=1 j=1 j=1 j=1
and extend it by linearity.

Lemma 3.3.3. The linear map o is surjective and H -equivariant.

Proof. The H-equivariance is clear from the definition of o. Consider the elements
v(i,§) =05, ® Qv , € V®a and let

w=(v(1,1),...,0(b1),...,0(1,0),...,00b,1) € (VE)YP g ... ¢ (VE)Pb
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Then the image of the element,

((hssoe O (W O
®((v%72, ooy 0)y (fullg, .5,0)®

(Vs 50), e, (Ur -, 0)),

(W) 1,-50), oy (V] s, 0))®
(W 92,0, (0fa, -, 0))@

(s 10)s s (0], 0))) = v
is precisely w, i.e., o(v) = w. O

By Lemma o defines an H-equivariant closed embedding,

!
o X:=PED((VE)) = P(((VE")*)#")) = . (3.33)
1
Note that the map, w — v, we have defined in the last proof can by extended by
linearity, and it is clearly (GL(V') x --- x GL(V))-equivariant. Moreover, it is a retract
of o, s0 @ (VE)®) is a direct summand of (((VE)®2)®b).

Weighted Flags of Tuples of Vector Spaces

In order to compute properly the semistability function in P((((V&")@4)$b)) =. 9,
we need to understand the relation between weighted flags of V" and one parameter
subgroup of A : G, — H < SL(V®), where « : H < SL(V®") sends (g1,...,q) to
the block diagonal matrix in which g; is first repeated h; times, then gy is repeated hy
times, and so on.

On ) we consider the canonical ample invertible sheaf Ogy(1) and we denote N =
0*Oy(1). Then we know that N (p,A) = 2D (a(¢), \) for all one parameter sub-
group A : G, — H.

Let A = (A1,..., ;) be a one parameter subgroup of H. Then ); provides us with
a weighted flag for alli=1,...,1

Vi=(0)cVic...cVj,cV,
o i (3.34)
Y= Vsya1) -

Let us see how to construct the weighted flag of V®" corresponding to A (see [53] p.
212). Let y1 < ... < vs+1 be the different weights ocurring among the 7; Define

VV} = Veii(j)? with 0;(j) = max{0 = 1,...,s(i) + 1|75 < v;}.
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This gives to us chains of subspaces
O CW{C...CWICWi, =V, Vi=1,...,l, (3.35)
and therefore a weighted flag of the tuple of vector spaces (V, b, V)
Oyc (Wi, ief{l,....1H)c...c (Wi, ie{1,....,1}) c (V,.D.,V) (3.36)

and weights given by 41 < ... < 7s41. Now define Wi** = @ézl(W;)@hi and we get

V=) cwt .. c W VIR Ay = (v, vsr1). (3.37)

This is the weighted flag associated to
A: Gy — H <& SL(V®?),

Conversely, given a weighted flag of the tuple of vector spaces (V.l.)., V) as in 1) we
get chains of subspaces as in Equation (3.35) by projecting onto the ith component.
Eliminating the improper inclusions and defining

'y;- = min{y| Wf:Vjitzl,...,s-i-l}
with j=1,...,8())+1landi=1,...,1

we get weighted flags as in (3.34]).

(3.38)

Analysis of the semistability function n (III).

Since we already know the semistability function for points in P(((V®")®2)®) with
respect to the natural action of SL(V®") (see [53, Section 2.3.2]), it is easy to find
out the semistability function with respect to the action of H (through p). Let A\ =
(M, .- N) : Gy, — H be a one parameter subgroup. This defines a weighted flag as we
have seen before in Equation . Giving v = (71,...,7s+1) is equivalent to giving
m = (myq,...,ms) defined by

S
(/yla 041)’ Y1se o5 Vs+1s aT'OZ-S)v ’YS+1) — Z mﬂéai),
=1

where o =) dir =dr, a;j =) dﬂ“z (being rf = dlm(vf)) and

J a—j

’Yc(y]) = (j_av"'aj_auj"'?j)
Then,
NOQ)(D([[]’ )\) = —min{’yil +...+ ’yia‘ l‘(Witlot®._.®Wit;t)®b #* 0} =

=Y my(vj(Da - aqy).
j=1
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with v;(I) = #{i; < jlt =1,...,a}, and I the multiindex giving the minimum. This
gives to us the semistability function for [I] € 2 with respect to a one parameter
subgroup.

Let ¢; : (V¥9)® 5k, i=1,...,l, be [ linear forms. These define a linear form

qb . (V®a)EBb D...P (V®a)EBb Sk
1y 0p) = d1(vy) + -+ dilyy)
whose equivalence class defines a point in X. The corresponding point in ) is given by
composing ¢ with the surjection o,
(@) =poa: (V¥ k.

Suppose we are given weighted flags as in Equation (3.34])). Then we get a weighted
flag as in Equation (3.37). We find

Lemma 3.3.4. U(QZ))‘(WZp{)t@...@WZpot)@b #0 & (;Sj|(vej @BV ;) # 0 for some j.
a 3 11 3§ iq

(3.39)

Proof. Consider the diagram

(Wit @ ... @ Wiot)he 2 (ved)
:0/ ood ia
v
Vo) ® - @ Vi )P & - & (Vo iy ® - O Vg (i )P o= (VE) P @ (VE)P

Let us see that o o @ factorizes, thus giving rise to a surjection o’. Recall that

W = (Vi i) )P @@ (V) O

Wit = (Vg i) ® " @ - @ (Vyqan)

la

o

Now, fix a simple element in (W' ® ... ® lec;)t)eab’

(((Uil,lv cee 7Uc1ll,1,1)7 RS (Uil,h cee 77)(111,1,1))@
®((vi1,2v te 70311,1,2)7 R (vil,% ce ’Uél,lﬁ))@
®((U%,1,a7 s 7Uclll,1,a)’ cee (U%,l@a ce 7Uclll,l,a))’
,((1)11’7171, cee 77}21,1,1)7 RS ('Ullj,l,h cee 7vgl,l,1))®
b b b b
Q((V] 1,25+ s Vdy1,2)5 -+ o5 (V7 125+ -+ 5 Vg, 12))®
b b b b
(V] 1,5+ Vdy 1.a)s s (Vg -+ - 7Udl,l,a))> =v
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then, clearly v(i,j, k) = ;7,6,1 R ® v ka € Veli( N® - ® Velfc(l.a), and we can easily
show that the image,

o) i= (S ol Dy S0 0,5 1), 0 (150, 0 0(b,5,1)),

. 1 1 @b l
belongs to (Ve (i1) ® . V 01 (i )) @ . (Vel(zl)

- ® Vell(ia))@b. Therefore, o o ®

b ! ! b :
factorizes through (V i ® - ® Vbl(l ))@ ... (Vel(“) ®...® ‘/gl(ia))@ and since o
is surjective we find that its image is the whole space, i.e., the induced morphism o’ is

surjective. That means that
U(¢)|<Wfft®.<.®Wf£t>®b 70 (P12 Pl 0.8V )90 00V, 88V i )20 7O

& 94l (v Job # 0 for some j.

9(z)® ®9(z)

Comparison with the semistability fuction of tensor fields

Suppose now that a weighted filtration (&,, m) of € is given. Denote r7 ' the rank rk(&ly;)

and a; = Y =1 T
a one parameter subgroup, A : G,, — H < SL(V®9). From (&, m) and A we get the
two quantities (which do not depend on the fixed trivializations, as we have seen at the
beginning of this section)

d the multiplicity of &;. As we have seen before, this data defines

(e, m, d) = ij (v;(I"Na — aa;),

1C2W (g (9), A) = Z m;(vi(Ia — aa;).

Then, we have,

Proposition 3.3.5. The indices I and I' are the same. Thus p®»M(a(¢),\) =
u(507m7 ¢)
Proof. Follows from Lemma and the definition of ju(&, m, @). O

Corollary 3.3.6. (£, ¢) is generically semistable, if and only if o(¢) € P(((VE1)@a)Sb)
is semistable.

Proof. Note that any one parameter subgroup can be constructed from some weighted
filtration (&, m) as above. Now the result follows from Proposition m O

The following corollary will be crucial for the proof of the main result of this work

Corollary 3.3.7. Let £ be a locally free sheaf of uniform multirank r and degree d
on'Y, and let (£,7) be a singular principal G-bundle. Let (£,¢;) be the associated
tensor field. Then (€, ¢;) is generically semistable if and only if (£,7)|y, is an honest
singular principal G-bundle for all i, i.e., if and only if it is an honest singular principal
G-bundle.

Proof. Follows from [53, Corollary 4.1.2.], Corollary - , and [53, Lemma 4.2.1.]
applied to each connected component. O
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3.3.2 Asymptotic Semistability

We fix again constants a,b,c,r € N, d € Z, k1,...,k € QN (0,1) and an invertible
sheaf £ on Y. As always g denotes the genus of Y and g; the genus of Y;. Recall that
we have a polarization on Y, Oy (1) whose degree is denoted by h. Likewise, the degree
of the polarization restricted to Y; is denoted by h;.

Definition 3.3.8. A generalized parabolic tensor field of rank, (£, ¢, ¢), is k- asymp-
totically (semi)stable if a) (€, ¢) is generically semistable and b) for every weighted
filtration (&, m) such that p(Ee,m, ) = 0, it holds P, (€., m)(>)0.

Remark 3.3.9. Since every k-asymptotically semistable parabolic tensor field is gener-
ically semistable, every component ¢|y, is non-zero as well (see Corollary [3.3.2]).

Definition 3.3.10. Let K, K_ be integers such that d € [K_, K1]. A type K, tensor
field is a tensor field
b: (E2)P0 = det(E)®° @ L

such that deg(€ly;) € [K_, K4].

Lemma 3.3.11. Assume a — rc # 0. There are constants K_, K depending only on
the input data such that any generically semistable tensor field of rank r and degree d
is of type K,.

Proof. Let (€,¢) be a generically semistable tensor field of rank r and degree d. By
Lemma (€,¢) is generically semistable if and only if (€]y;, ¢|y;) is generically
semistable for each ¢ = 1,...,l. Since d = deg(€|1) + --- + deg(€|y,), it is enough
to show that for any generically semistable tensor field of a given rank on a smooth
connected projective curve, the degree of the locally free sheaf is bounded (from below
if a — re < 0, or from above if a — r¢ > 0). For that we have to distinguish two cases.
1) Assume £ is semistable. Since ¢ : (£9%)®* — det(£)®° ® L is non-zero, we deduce
that
fimin (E9%) < ¢ deg(€) + deg(L),

but we know that fimin(E®?) = apimin(€) = au(€). Therefore
(a - er)u(€) < deg(L).
2) Assume now that £ is not semistable. Consider its Harder-Narasimhan filtration
o= 0CH C---CH;CHgy1=¢.

We use the following notation: H' = H;/H;_1, r; = rk(H;), r* = rk(H?), and pi =
wu(H?). Define now

s+1
C(&) = {7 = (7, 7s41) € Ryt <o < ygiq with )y = 0}
i=1
Since (€, ¢) is generically semistable, we have
Y2 N Vs+1 — 7.
FO) = p(Eaima(3). 0) > 0, ma(y) = (P TE L R
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for all v € C(&,)\ 0. Take a multiindex I = (i1, ...,1,) with ¢’(H¢1®~--®H¢a)@b # 0. Thus,
Pmin(Hi, @ - ® H;,,) < c-deg(€E) + deg(L).

But Mmin(Hi1 ®" @ Hi,) = pmin(Hiy) + -+ + pmin(H, ) = ,uil +ee Jrﬂi“a and we deuce
that p't+- - -+pule < c-deg(€)+deg(L). Take the point v = (u(&)—pt, ..., w(E)—p*) €
C(&), and let mq,..., mgs be such that

T1 rT2—"T1 r—"Ts

s

; —— —

F:ZmJF(TZ) = (’717"'7717727"'7/727"'7’)/84-17"'7,784‘1)'
j=1

Then we know that
M(gtumo(’)/)’ ¢)) = _mlin{rail + -+ Faia’ ¢‘(H’L1®"'Hia)®b ;é 0} =

= —(u(E) =+ + p(€) — ') =
=p e —ap(€) <

< c-deg(&) + deg(L) — au(€) =

= (er — )u(€) + deg(L).

Since (e, mq(y), @) > 0 we deduce that
0<(er—a)u(€)+deg(L) = (a—cr)u(€) < deg(L).
O

Lemma 3.3.12. Let (€,q,¢) be a generalized parabolic tensor field and suppose that
Yi is a component over which deg(qixEly,) > deg(qj«Ely;) for every j =1,...,1. There
exists 69 € Q¢ depending only on the input data such that if 6 > dg and (€,q,p) is
(K, 0)-semistable then the restriction of ¢ to Y1 is non-zero. -

Proof. Suppose that ¢|y, = 0 and consider the one-step filtration given by

Recall that

s

P.(Ee,m) = Z(aipardeg(é') — apardeg(&;)) =
i=1

= micia(p(€) — (&) = Y mailei Y kjr — oy w;dim(q;(Ei(y]) @ Ei(13))))
1=1 i=1 j=1 j=1

for any weighted filtration. Since

7

. M;

=& =

(&) — m(q€ly,) = w(qi€ly;) — 1(q1+€ly;) =

=1

(u(aie€1v,) — lanel)) = 3 ulElye) — w(El)) <0
i1

by
-
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3. Generalised Parabolic Structures on Smooth Curves

and (&, q, ) is (K, 0)-semistable we deduce that

—(on Y kjr—a Y rdim(g; (&1 (y]) @ E1(1)))) + 6u(Ee, 1,0) > 0
j=1 j=1

Now, since ¢|y, = 0 we now that u(&,, 1, ) = —arh;. But there are only finitely many
possible values for the first summand, which depend only on r, h, v so, denoting by M

the maximum value and dp = o e get a contradiction. Therefore ¢|y, # 0. O
arni

Lemma 3.3.13. Let 6 > &g and let (€,q,¢) be a (k,0)-semistable generalized parabolic
tensor field of rank r and degree d. Then there are constants K’ , K', depending only
on the input data, such that (£,q,p) is of type K,.

Proof. Recall that

s

P.(Ee,m) = Z(aipardeg(é’) — apardeg(&;)) =
i=1

:Zmza,a(u(é’) Zmz azzk T_azﬁjdlm QJ y1)®5(y2))))
i=1

We can assume without lost of generality that deg(€|y;) > deg(€ly;) foralli =1,...,L
Let
H,=0CH{C---CH,CH, ,=¢&y

be the Harder-Narasimhan filtration of £|y,. Denote Hy := ¢ H{, witht = 1,..., s, and
by H, the corresponding filtration. Notice that for this filtration we have u(q1+€ly;) —
w(Hy) <0forallt=1,...,s. Then, we have

l

h; h;
(&) — p(Hy) = Z L H 1(qis€ly;) — p(Hy) < Z TH (Gi€ly;) — W q1+€lyy) =
=1 =1
th (9ix€ly;) — 1(q1+€ly1)) = th (Ely;) —u(€lv)) <0
i#£1 h 1 i#1 h R

so the summand )7 _; mia;o(p(E) — (&) < 0 is negative. Since (£,q,¢) is (k,0)-
semistable we must have

Zmz azzk‘ T aZﬂadlm ¢;(Hi(yl) ® Hi(13)))) + 6p(Ha, m, ¢) = 0

for all vector of weights m. Let us show that u(He,m, ) must be non-negative for all
vector of weights. Suppose there is m such that pu(He,m,¢) < 0. Then there is an
index j = 1,...,s such that vj(Hs)a — acy; < 0. Then we can find positive rational
numbers m7, ..., m} with m; > 0 and m; very close to 0 for all ¢ # j, such that

Zm %Zkr aZmdlmq] () @ Hi(yh))) + op(He,m!, ¢) < 0
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which is not possible. Therefore p(He,m,®) > 0 for all m. Now, by Lemma |3.3.12
er + deg(£)

Since

we can proceed as in Lemma [3.3.11f to show that deg(&ly,) < .
deg(€ly;) < deg(€ly;) and d = deg(€ly;) + - - - + deg(€ly;) we conclude. O

Theorem 3.3.14. There is a rational number 6}, € Qsq, depending only on the input
data, such that for any § > 6L, if a tensor field with generalized parabolic struc-
ture, (€,q,p), of uniform multirank v and degree d, is (k,d)-semistable then it is k-
asymptotgcally semistable.

Proof. First we assume that § > §p so Lemma holds true. It is enough to
show that it is generically semistable. Suppose it is not. Then by Corollary [3.3.2] and
Corollary it implies that the restriction of (£, ¢, ¢) some component is not gener-
ically semistable. We can assume without lost of generality that it is not generically
semistable on the first component. By [52 Proposition 3.3.3] there is a constant C1,
depending only on the input data, and a weighted filtration (£}, m!), such that

(i) Cy > Ef (mi(rk(E)deg(Ely,) — rdeg(El))

(i) p(Eq,ml, 1) <0
where (tk(£1),...,tk(£)),mi, ..., m}) belongs to a finite set which depends only on the
numerical input data a, b, c. In particular m} < A, where A is a constant which depends
only on a, b, c. From the filtration (£}, m') we can construct a weighted filtration (E,, m)
of £ defining

Eit = 11.E B 12lly, @ ully;

m;: :mil

By Proposition |1.1.28) we can assume without lost of generality that (&, m, p) < —1.
Let us give a bound for P,(&,m). Recall that we may assume that m; < A for some
constant A, and

Pu(€m) = 3 mi(an-pardeg(€) — an-pardeg(£)) =
=1

= Z m;(co;deg(E) — adeg(&;)) + Z m;(ak-par(&;) — a;s-par(€)) =
= i=1

=P(&,m) + Z m;(ak-par(&;) — a;r-par(£)),
i=1

where r-par(F) = >°7_, kidim(q(F(y}) & F(y?))) for any F C €. Let us give bounds
for both terms. For the right hand side, we have

Z m;(ak-par(&;) — a;kr-par(€)) = hr Zmi(par(g - —rk VZ ;)
i=1 i=1

<hr Z myk-par(&;) < a?Avr.
i=1
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For the left hand side, a short calculation shows that

!
a deg(& Za deg(&; |Y ) + a(a (&"Yj)Bj(OY(l)))
7j=1
l

= adeg(£)) + ) _ a deg(Ely;) + a(a(&ily,) B/ (Oy (1)), (3.41)

=2

l
a; deg(€) =Y hyr(&ily;)d,

l
a; deg(€) < Z hjr(Eily;)d < ad, where d = max = {0, d},

o deg(&;) > adeg(E}) + a(l — 1) K_ + o?B, where B = min{0, B/ (Oy (1))}.
J

> mi(a; deg(€) — a deg(&))) < Zmz ad — a(l = 1)K_ + o®B — adeg(&})) =
= =1

(ad—a(l—l)K +ao’B Z th rdeg(&

i=1

In the other hand, condition (i) implies that

C — Zm rk(EHK_ > C) — Zm (rk(&E})deg(Ely,) > Zmilrdeg(é'il)).

=1 i=1

If we define K := min{iK_|i = 0,...,7}, we finally have
R S S
C1— K> ml > mlrdeg(&l)).
i=1 i=1
Thus,

Zmi(ai deg(&) — a deg(&)) < (ad — a(l — 1)K_ + o*B — hK)aA — hCy
i=1

)

All of this together shows that there exists a constant C' which depends only on the input
data such that Py(&,m) < C. Now, since (€, m,¢) < —1, taking 6%, > max{dy, C}

we get
Pﬁ(“:ﬂm) —+ 600#(5'07&7 80) <C - 5})0 <0

which contradicts the fact that (€, ¢, ¢) is (x, §)-semistable.
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Theorem 3.3.15. Assume a—cr # 0. There exists 52, € Q¢ depending on a, b, c,d,r,
L,1,q,gi,h,h; such that for each § > 6%, any tensor field with generalized parabolic

007
structure (£, q, @) of degree d and rank r which is k-asymptotically semistable is (k,0)-

semistable as well.

Proof. First of all, note that, fixed h1, ..., hy, h, g there are only finitely many values for

; }/’b i Y7
the constants B’ (Y, Oy (1)) = X( h(’)yl) P hOY). Let us denote by {w1,...,wq}

these possible values, and define B: = max{0,ws,...,wy}. Thus, we know that

BI(Y,0y(1)) <B,Vj=1,..,l

Let us show that for any weighted filtration (£, m) there are constants Ej, Fo such
that,

a;deg(&) — adeg(&;) > Eq,
ar-par(&;) — a;r-par(€) > Es.

(i) For the parabolic part we have,
ak-par(&;) — ayk-par(€) > —ayk-par(€) > —auur > —avr =: Es.
(ii) For the non parabolic part we have,

~

a;deg(€) — adeg(&;) > a;d — adeg(&;) =
!

= aud — ) (deg(&ily;) + alEily;) B (Y, Oy (1)),
j=1

where the last equality follows from Equation (1.26). Since B/(Y,0y (1)) < B and
a(&ly;) < a, we get
N l
aideg(&) — adeg(&;) > ad — o®B — Z adeg(&ly;)-
j=1

Now by Lemma [3.3.11) and [53, Theorem 2.3.4.3], we know that deg(&ily;) < K" for
some constant depending only on the input data. Therefore,

a;deg(€) — adeg(&) > ad — o®B — alK" =: Ej.
Now we have,
Py(Eaym) + 01(Eaym, ) > E1 + Fo + 51u(Ee, m, ).
Since the tensor field is generically semistable we can assume p(Ee, m, ¢) > 1. Thus,
Py(Ee,m) + 0pu(Ee,m, @) > E1 + E2 + 6.
If we define (520 := —F — E5, we deduce that

P@(SO?m) + 5,“’(507m7 ¢) Z 0
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Corollary 3.3.16. Assume a — cr # 0. The family of isomorphism classes of locally
free sheaves £ of degree d and rank r appearing in k-asymptotically semistable parabolic
tensor fields is bounded.

Proof. Follows from Theorem [3.3.15] and Proposition [3.1.15 O

Corollary 3.3.17. Assume a —cr # 0. Let (£,q,¢) be a tensor field with generalized
parabolic structure of rank r and degree d. Then (&, q, ¢) is k-asymptotically semistable
if and only if it is (k, d)-semistable for all § > 0o

Proof. The direct part is Theorem @ Let us see the inverse. Suppose that (£, ¢, @)
is (K, d)-semistable for all § > do. If there exists a weighted filtration (€,,m) such
that (€, m, ) = 0 then obviously P.(E,m) > 0. Suppose that (&, m) is such that
1w(Ee,m, ) < 0 then we can find § large enough such that

P.(Ee,m) + 6p(Ee,m, ) <0
which is a contradiction, so (., m, ¢) must be non-negative. O

Lemma 3.3.18. Let S be a scheme and let ¢ : (E")®" — det(£5)®° ® 7*(L) be a
family of tensor fields parametrized by S. Then the set

{s € S|u(Ese, B, ¢s) > 0 for all weighted filtrations}

1S open.

Proof. Define S; = {s € S| (s iesm, ¢s5) > 0, V (Esie, m) weighted filtration of & ;}.
These subsets are open subschemes (see [53, Lemma 2.3.6.8.]). Define S, := NS; which
is also open. Clearly

Sg={seSlforall i=1,...,0,1(E e, m, s;) >0, ¥V weighted filtration of & ;}

Corollary and Corollary implies that
Sg ={s € S|p(Ese,m, ps) > 0, V weighted filtrations}

and we are done.

O

Lemma 3.3.19. Let S be a scheme and let (ES’QS’ 0s) be a family of tensor fields with
gerneralized parabolic structure parametrized by S. Then the set

S:={se S](SS7S,QSS, ¢s,5) is k-asymptotically semistable}
18 open.

Proof. Consider the open subscheme S;. For any 6 € Q~¢ consider the open subscheme
S5 consisting on those points s € S for which (Eg, g, ¢s,s) is (K, 0)-semistable tensor

fields with generalized parabolic structure. Then we can consider the open subscheme
S = 5 8 (Sg NSs) and, obviously, we have S’ = S. O
€

>0

The aim of this section is to prove the following theorem.
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Theorem 3.3.20. There exists a rational number 69 € Q>o depending only on the nu-
merical input data such that, for every tensor field with generalized parabolic structure,
(£,q,90), of degree deg(E) = d, rank rk(E) = r, and every rational number 6 > dg, the
following two conditions are equivalent:

(i) (£,q,9¢) is (K, d)-(semi)stable.

(i1) (S;g, @) is k-asymptotically (semi)stable.

Proof. Follows from Theorem [3.3.14| and Theorem |3.3.15| taking dp := max{d.,, 2.}
O

3.3.3 Semistability for Large Values of the Numerical Parameters

Consider a tensor field on Y, ¢ : (£29)%° — det(£)®° ® L, and a weighted filtration
(£s,7)- Restricting the filtration to each component we get

El=(0)C&ly, C... C&ly, CEly,.
Eliminating the proper inclusions and defining 7;- as in 1' we get weighted flags

El=0)c&lc...c& c¢&
(j) 1 ;o0 Li=1,...,1 (3.42)
1 :(’yl""”ys(j)-‘rl)'

€Ny, :Z{

Proposition 3.3.21. Let (€,7) be an honest singular principal G-bundle and (E,, m)
a weighted filtration. Then the following are equivalent:

1) p(&e,m, ¢7) = 0.

2) There are one parameter subgroups X\;, i = 1,...1 and reductions B; of the
G-bundles (Ely;, ;) to the one parameter subgroup \; of G such that (E,,m)|y, =
(Sﬁi.7mﬁi)'

Proof. 1) = 2) Suppose (€, m, ;) = 0. Since (£,7) is an honest singular principal
G-bundle we know that (€|y;,7;) is an honest singular principal G-bundle on Y; and
therefore (see [52), Corollary 4.1.2])

(Gri |y @1, K] € P((VEO)®)SS ) wi=1,... 1. (3.43)

Then by Corollary we deduce that p((Ee,m)|y;, ¢-,) = 0 and by [52, Proposition
4.2.2.], we know that there exists a reduction §; to a one parameter subgroup \; of G
such that (€., m)|y; = (&-ﬁ.,m%).

2) = 1) Over each component Y; we have that p((Ee,m)|x,, ¢+,) = 0 because of [52]
Proposition 4.2.2.]. Since (£|x,, 7;) is an honest singular principal G-bundle we deduce

by Corollary that (&, m, ;) = 0. O

Theorem 3.3.22. There is a rational number dg > 0 depending only on the input
data such that for all § > 6y and every singular principal G-bundle with a generalized
parabolic structure of rank r and degree d, the property A) and the property B) are
equivalent:

A) (€,q,7) is (k,0)-(semi)stable.

B) (£,q,7) is k-(semi)stable: (£,q,7T) is honest and for every weighted filtration
(E.,m) such that (Eoym)ly; is induced by a reduction to a one parameter subgroup, one
has P.(E.,m)(>)0.
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Proof. Consider &y to be the rational number such that ¥§ > dg (&, d)-(semi)stable is
equivalent to k-asymptotically (semi)stable (see Theorem .

A) = B) By Theorem (€,4, ¢r) is r-asymptotically semistable. In particular, it
is generically semistable. By Coroll this implies that (£,¢,7) is honest. Now
(K, 0)-semistability and Proposition implie condition B).

B) = A) Since (£,q,7) is honest, (£,q, ;) is generically semistable (see Corollary
. Condition B) and Propositionshow that if (€, m, ¢-) = 0 then P, (&, m)
is grater or equal than 0. Therefore (&, ¢, ¢,) is k-asymptotically semistable. Finally,
by Theorem this implies condition A). O
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Chapter 4

Compactification of the Moduli
Space of Principal G-Bundles on
Nodal Curves

The main result of this chapter is Theorem [4.4.18] which states the existence of a
projective coarse moduli space for semistable honest singular principal G-bundles over
the nodal projective curve X.

4.1 Descending G-Bundles

Let k be an algebraically closed field of characteristic 0, G' a semisimple linear algebraic
group and p : G — SL(V) € GL(V) a faithful representation, V being a k-vector space
of dimension n.

Let X be a reduced connected nodal curve with v nodes. We denote by x1,...,x,
the nodes of X. Denote by Y the normalization, X1, ..., X; the irreducible components
of X and Y7, ..., Y] the irreducible components of Y. Recall that Y; is the normalization
of X; and that Y =[] Y;. Denote g, g, g; and g; the arithmetic genus of X, Y, X; and
Y; respectively. The relation between the genus of the curve X and its normalization
Y is

g=g+v
We use the following notation: j; : X; < X is the natural inclusion of the ith irreducible
component of X, ¢; : Y; — Y is the natural inclusion of the ith irreducible component
of Y, w:Y — X is the normalization map of X and m; : ¥; — X, is the normalization
map for X;. For each torsion free sheaf F we denote

Fi=Ji F|T;
T; being the torsion subsheaf of j7F. We call F; the restriction of F to the ith compo-
nent. There is always an exact sequence (see [57])

0= F < @puFi >T—0 (4.1)

where T is a torsion sheaf with support contained in {x1,...,x,}. Recall that if r; =
rk(F;), we say that F is of multirank r = (r1,...,r;). If 1, = r we say that F has
uniform multirank equal to r or that F has rank r.
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We will denote by y!,v4 the points in Y lying on the ith nodal point z;. We also
denote by D; = yt + yb the corresponding divisor on Y and by D = 3" D; the total
divisor.

Let us see how to construct singular principal G-bundles on X from singular prin-
cipal G-bundles with generalized parabolic structure on Y.

Let (£,q,7) be a singular principal G-bundle with generalized parabolic structure
on Y with rk(£) = r. Consider the natural surjection

evp = @ev; : £ — 8|D = @8’Dl
and take the push-forward via 7 (the structure morphism of X)
m«(evp) : m(E) = m(E|D)-

Since 7.(€|p) is precisely the vector space @(E£(y!) @ £(yh)) supported on the nodes,
we can consider R = @@ R; as a skycraper sheaf supported on the nodes and compose
m«(evp) with ¢

goms(evp) :m(E) - R — 0.

Defining F = Ker(q o m.(evp)), we get an exact sequence
0>F—=>m()—>R—0 (4.2)

where F is a torsion free sheaf of rank r» and R is a torsion sheaf supported on the
nodes and of length I(R) = rv.

It remains to construct 7/ : S*(F @ V)¢ — Ox from the data (€, ¢, 7). Consider
the Ox-algebra S*(F ® V)¢ and take the pull-back via m, 7*(S*(F ® V)). Since the
functor (—)% is exact (see Theorem and the symmetric algebra functor behaves
well under base change, we get an isomorphism,

(SN (F @ V)E) ~ 8 (n*(F) @ V)°. (4.3)
Now, the injection F < 7.(€) defines, by adjunction, a morphism of Oy-modules
7*(F) — £ and, therefore, a morphism of Oy-algebras v : S*(7*(F) ® V)¢ — S*(€ ®
V)&, Taking the composition with v in we get
(S Fo V)% = S (€ V).
Finally if we take the composition with 7, we get
(S F o V)¢ = Oy
and, again by adjunction, a morphism of Ox-algebras
7 SHFR V)Y = 1 (Oy). (4.4)

Definition 4.1.1. A descending G-bundle of rank r on Y is a singular principal G-
bundle with generalized parabolic structure, (£,q,7), such that 7’ (see (4.4)) takes
values in Oy C m(Oy). A descending G-bundle, (£,¢,7), is principal if (£,7) is
honest.
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Definition 4.1.2. A descending G-bundle is (k,d)-(semi)stable if it is as singular
principal G-bundle with generalized parabolic structure (see Definition (3.2.4)).

A family of descending G-bundles is defined in the obvious way. Thus, we have the
moduli functor

isomorphism classes of
descending G-bundles, (£s,q g 7s)
with Hilbert polynomial P and
"ED(G)(S) = gs : W @ Og — ms.E5(n) ce SPBGPS(p)»(S)
a morphism such that the induced
morphism W ® Oy xg(—n) — s
is surjective

The functors D(G)®E9=()5 are defined is the obvious way.

4.2 Construction of Torsion Free Sheaves from Parabolic
Structures

Let F be a torsion free sheaf on the nodal curve X and consider the pull-back via
the normalization map, 7*(F). Since it may have torsion elements, we have the exact
sequence

0T 7(F)—=n"(F)/T — 0,

T being the torsion module. Taking now the push-forward of the exact sequence, we
get

0= mT = mrn™(F) = m(n™(F)/T) — 0 (4.5)
where the zero at the right hand side comes from the fact that, since 7 is affine the
higher direct images R'r,(—) are zero for i > 0.

Lemma 4.2.1. The torsion module T is concentrated on the points of the preimages,
{y;}, of the nodal points x; and mT is concentrated at the nodal points.

Proof. Let y € Y — 77 1(Sing(X)) and consider (7*F),. By definition (7*F), =
Fy @0y, Oyy, where x = 7(y). Since z is a smooth point we have an isomorphism
of rings Ox; ~ Oy, induced by the morphism of schemes 7 : Y — X so that F is
canonically an Oy,,-module and (7*F), = F, ®0x , Oy,y ~ F, which is torsion free.
Then we deduce that (T), = 0 outside 7 !(Sing(X)). O

Lemma 4.2.2. Let F be a torsion free sheaf on X of rank r. The canonical map
a: F — o (F) is injective.

Proof. Since the canonical map F — m,7w*(F) is an isomorphism outside the nodes and
both have the same (uniform multi-) rank we deduce that the kernel must be a torsion
sheaf but, since F is torsion free, this module must be zero. O

Lemma 4.2.3. Let F be a torsion free sheaf on X of rank r and types {a;}. Then the
torsion sheaf of the canonical exact sequence

0= FommF=T—=0

has length equal to >~7 (21 — a;).
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Proof. Consider the singular point x; and localize the exact sequence

0= Fp, < Fo, ®0,. On, = Ty, = 0.

Note that this is the exact sequence we get from

0—>(9x1.<—>(~9xi—>0xi—>0

tensoring by F,. Since Cy, = k we find that T, = F;, ®o,, k = F(z), that is, the
fiber of F at z;. But we know dim;F(z) = 2r — a; (it does not matter if the nodal
point lies in one component or in two components because F is of uniform multirank).
From this we get the result. O

Lemma 4.2.4. For every torsion free sheaf of rank r on X with types {a;} there exists
a locally free sheaf of the same rank G and an injective morphism F — G such that

T:= ’F/g = @Sing(X) k(wi)Tiai'

Proof. From [57], p. 173, there exists a locally free sheaf G’ and an injective morphism
F — G with Q := G'/F =T @& T a torsion sheaf, where supp(7”) N Sing(X) = @.
Take the projection @ — 1" and let G be the kernel of the composition G’ — Q — T".
Clearly G is torsion free of rank r, hence G, ~ OF"_ for all x € X \ Sing(X). Consider
now the diagram ’

0 0 T
0 F g’ Q 0
0 g g’ T’ 0.
T 0 0
Then it follows that G is locally free, since G, ~ G/, for all 2 € Sing(X), and is the sheaf
we where looking for. O

Lemma 4.2.5. Let F be a torsion free sheaf of rank r and types {a;}, and denote T'(F)
the torsion subsheaf of w*F. Then we have

deg(m*F) = deg(F) +rv — Z a;,
deg(T(F)) =2(rv = > _ a;).
Proof. Follows as in [4, Proposition 2.1.] using Lemma [1.2.4] O

Let us see that for each F there is a canonical locally free sheaf, &, on the normal-
ization such that F <« m,&.

Proposition 4.2.6. For every torsion free sheaf F on X there exists an immersion
B:F — m(&).
being & = 7 (F)/T.
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Proof. Form (4.5) and Lemma we get a map by composition

0 AS T (F) —— m(n*(F)/T) —=0

Consider the kernel Ker(3). For each smooth point € X we have

(™ (F))a —— (m (7" (F)/T))a

|

(F)a

where the horizontal and vertical arrows are isomorphisms because of Lemma and
the definition of a. Then Ker(S;) = Ker(/3), = 0 for every smooth point. That means
that Ker() is a torsion sheaf concentrated on the nodal points but, since F is torsion
free, it must be zero. O

Proposition 4.2.7. If F is a rank r torsion free sheaf of types {a;} then the cokernel
of the canonical injection B is a torsion sheaf of length

[(Coker()) = a := Zai

Proof. Coker(f) is a torsion sheaf because F and m,(7*F/T) have the same rank.
Consider the exact sequence

0 — F — m(n"(F)/T) — Coker(B) — 0. (4.6)

Since 7 is finite x(74(G)) = x(G) for each locally free sheaf on the normalization Y.
Then, taking the Euler-Poincaré characterisitc in (4.6|) we find

X(m(F)/T) = x(F) + I(Coker(5))

r(x(Oy)) + deg(n"(F)/T) = r(x(Ox)) + deg(F) + I(Coker(f)).

From the exact sequence

O—>(’)X_>7T*(Oy)—>@/€—>0
=1

we get x(Oy) — x(Ox) = v. Therefore
[(Coker(B)) = rv + deg(w*(F)/T) — deg(F)
and applying Lemma we get the result. O
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Theorem 4.2.8. (Factorization) Let F be a torsion free sheaf on X and suppose there
exists a locally free sheaf of uniform multirank equal to r, £, on the normalization and
an injection f : F — w.(E). Then f factorizes through (3.

i a canonical way.

Proof. Consider the morphism F — m,£. Taking the pullback we find 7*F — 7*m,.E
and composing with the canonical morphism 7*7,& — £ we get

T F s n'mE = €

Since for every locally free sheaf G of uniform multirank we have an isomorphism
Homo, (&,G) = Home, (7*F,G) given by the composition with the projection 7*F LS
&o, the above morphism factorizes

T*F —— 1", ——= &
X /
&o
Taking the pushforward we get

Q)

s
T  F = &y = &

and composing with the canonical morphism F — w.m*F
w (A
F = mrm* F = 1.8 7r—(>) T &
which is the original morphism. O

Corollary 4.2.9. Let F be a torsion free sheaf of rank r and types {a;} on X. Suppose
there exists a locally free sheaf £ on'Y with the same rank and an injection i : F — miE.
Then length(Coker(i)) = [ if and only if length(Coker(m.(\))) =1 —a being a =) a;.

Proof. Because of Theorem [£.2.§ we can construct the following diagram

0 0 0
0 F¢ 7r*§0 Q 0
0 F—sn.E Q' 0
0 0 P P’ 0
0 0 0
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so P ~ P’. Hence, we deduce that length(P) = length(P’) = length(Q’) — length(Q).
Since length(Q') = [ by hypothesis and length(Q) = a, we can conclude using Lemma
4271 O

Theorem 4.2.10. Let F be a torsion free sheaf on X of rank r and types {a;}. There
exists a locally free sheaf € on'Y of rank r and an exact sequence

0= F—=mE—Q =0
where Q is a torsion sheaf supported on the nodal points and of length rv.
Proof. For each nodal point z; fix a point in the preimage y; € 7~ !(z;). Denote by H
the resulting divisor ), y; For each integer m > 0 denote by & (m) the locally free
sheaf & ® Oy (mH). Then we have an exact sequence

0—=& <= &(m)—>P—=0

where P is a torsion sheaf supported on H. For each point y; € Supp(P) we have
length(P,;) = rm. Therefore,
J

length(P) = rvm.
Since r — a; < rm for each m > 0 we can fix a vector subspace V - P : of dimension
r — a;. Denote by V the associated torsion sub-sheaf (Supported on H ), V.— P.

Let @ the cokernel of the above injection. @ is a torsion sheaf supported on H and
length(Q)) = rvm — (rv — a). Consider the composition

E(m)—P—Q —0,
and denote by & the corresponding kernel
0— &< &(m)—Q — 0.

Since the composition

& — &(m) - P —Q — 0.

is the zero morphism there exists an injection & — £ making the diagram commutative

0 EC Eo(m) Q 0

N
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Denote by T the cokernel of the injection & — £ and consider the following diagram

0
0 0 \%
|
0 &€ Eo(m) B 0
0 EC Eo(m) Q 0
|
T 0 0
0

Then by the snake lemma we deduce that T' ~ V. Take the push-forward of the first
(column) exact sequence

0 — &y = & — mV — 0.

Now 7.V is a torsion sheaf supported on the nodes and length(m.V') = length(V) =
rv — a. Consider the composition

F = m&o = mE.

Observe that the length of the cokernel of 7,.&y — 7€ has length rv—a by construction.
Then, by Corollary we deduce that the cokernel of the injection F — m,& has
length rv. O

Remark 4.2.11. Regarding the above construction, we can show that it does not
depend on the chosen natural number m and it depends only on the divisor H. Fix the
divisor H. For the sake of notation let us say H = >_7_; z;. Fix two natural numbers
m’ > m. The above construction provide us with two exact sequences:

0—= & —=E(m) — Q — 0,
0— & —=&m) —Q — 0.

Note that for any point z; we have length(Q,,) = rm —r +a; < rm’ —r +a; =
length(Q’,) and that there is an injective morphism P < P’ making the following

D)
diagrams commutative

0 50 80(m) VJT 0
0——=E& ——=&(m)——=P ——=0
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0 v If Cf 0
0 v P’ Q' 0
from what we find a commutative diagram
0 T Eo(m) T 0
0 &' Eo(m’) Q' 0.

]

0 —— coker; —— cokery —— cokerg ——= 0

From the first two commutative diagrams we deduce that length(cokers) = length(cokers)
so coker; = 0 and therefore £ ~ &’.

Corollary 4.2.12. Let F be a torsion free sheaf of rank r on X. The surjective
morphism p of an exact sequence

0 FoméEDQ -0
as in Theorem [{.2.10] always factorizes through the canonical morphism
€ = m(E|p) = 0
i.e. there exists a surjection m(E|p) — Q' — 0 such that the triangle

W& 7+ (E|D)

N

Proof. Consider the composition morphism

18 commutative.

F = m.& — m(€|D)

and denote F(€) the image (which is a torsion sub-sheaf of m,(£|p)). Let F’ be the
kernel of the surjection m.& — m.(E|p)/F(E) — 0. Since the composition

F = m€ = m(Elp)/FE) =0

is the zero morphism there exists an injective morphism F < F’ and therefore a
diagram

0 T
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so that T~ T'. Let us see that T = T' = 0. For that it is enough to see that
length(m,(€|p)/F(E)) = length(Q’) = rv.
Restricting the exact sequence

0 FoméESQ —0 (4.7)
to the nodal point x; we obtain the long exact sequence

p(zi) .,
T

HTOI‘%QX (Q/,k‘(.%'z)) HF@(’)X k(mz) *u>ﬂ'*€ ®(9X k(l’z)

F(;) (E(y1) ® E(y2))

Now, it is clear that Im(u) = F(&)s, so

dim(F(E)y,;) = dimKer(p(x;)) =

= dim((£(y}) ® £(y5))) — dim(Q;,) =
=2r—r=r.

Then

length(m.(E(y1) © E(y3))/F(E)z;) =
dim((€(y) ® E(y3))) — dim(F(E)z,) =
2r —r =1 = length(Qy,,),

s0 1(Q") = rv, and thus we have an isomorphism

¢:Q ~m(Elp)/F(E).

Then we obtain the desired factorization

0 FC & Q' 0
A
7+(€|p) —=m(€|p)/F () —0.
O]

We can summarize the above results in the following theorem, which were proven
in [6l, Theorem 3] for the irreducible case, and more generally in [7, Proposition 3.9].

Theorem 4.2.13. Let F be a torsion free sheaf of rank r on the nodal curve X. Then
there exists a locally free sheaf € of rank r on the normalization Y and a surjection
Elp — Q of dimension rv such that F is equal to the kernel of the morphism

&€ = m(E|p) > Q — 0 (4.8)
Q being a skycraper sheaf supported on the nodes with fibre Q.

Proof. Follows trivially from Theorem [£.2.10] and Corollary O
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4.3 Construction of Honest Singular Principal G-bundles
from Parabolic Structures

Recall that a singular principal G-bundle over the nodal curve X is a pair (F, 7), 7 being
a non-trivial morphism of algebras S*(V @ F)¢ — Ox). Giving 7: S*(V® F)¢ — Ox
is the same as giving a morphism 7 : X — Homy(V ® Ox,F")/G. We say that
the pair (F, ) is quasi-honest if the image of 7|y is contained in the open subscheme
Isomy (Ox|v ® V,F|};)/G, U C X being some open (not necessary dense) subset.
If U = X \ Sing(X) then we say that it is honest. We denote by W the subset
Y — 7~!(Sing(X)). Then we have the diagram

Wl y

| b

—* s

s

Recall the following lemma

Lemma 4.3.1. ([49, Corollary 3.4]) Let (£,7:Y — Homy (V ® Oy, EY)) be a singular
principal G-bundle. Then for all i =1,...,1, 7(Y;) is either contained in Isomy (V ®
Oy, ElY,) or in the complement.

We start with the following

Lemma 4.3.2. Let F be a torsion free sheaf of rank r on the nodal curve X. Then
every morphism of Oy-algebras 7o : S*(V ® &) — Oy descends to a morphism of
Ox-algebras 7 : S*(V @ F)¢ — 7,0y via the projection 7 F — £ — 0.

Proof. Consider a morphism of Oy-algebras S*(V @ £)% — Oy. From the projection
7 F L & — 0 we get a surjective morphism of Oy -algebras

SV erF)l LSV @& -0
and we get an injective map

Homo, g (S*(V ® &), Oy) <3 Homo, a1y (S*(V @ 7 F), Oy)

so from 7y we get a morphism 7/ := 190 j : S*(V @ 7*F)¢ — Oy

Since 7*(—) commutes with (—)¢ (see [49]) and the symmetric algebra commutes
with base change ([9, Chapter 3, §6, Proposition 7]), we have S*(V@r*F)¢ = 1*S*(V®
F)E so 1/ gives a morphism of Oy-algebras, 7/ : 75*(V ® F)¢ — Oy, and then, by
adjunction, a morphism of Ox-algebras

7:5°(V @ F)¢ = 1,0y,

The following lemma is proved in [51], in case X is irreducible,

Lemma 4.3.3. Let (F,7) be a singular principal G-bundle on the nodal curve X.
Then there ezists a morphism of Oy -algebras 1o : S*(V @ &) — Oy which descends to
7: 8%V ®F) — Ox via the projection 7*F — & — 0.
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Proof. Consider the singular principal G-bundle (F,7) and the exact sequence
0—T ——71"F)——=& =m"F/T ——=0.
Since S*(V @ m*F)¢ — S*(V ® &) — 0 is still surjective we find a closed immersion
Spec(S*(V & £)¢) < Spec(S*(V @ 7 F)°) .
We have the following diagram

Spec(S*(V © £)%)— Spec(S*(V © 7" F)¢) — Spec(S*(V @ F)°)

4 4
/ /
(7)) A
\ \
\ \
\ . \
Y X,

7*(7) being the induced morphism of algebras
(1) s (SN (V @ F)Y) = 8 (V@ * F)¢ = 7*0x = Oy.

This morphism is also the one that we obtain by adjuntion when we take the compo-
sition of S*(V ® F)¢ — Ox with the natural inclusion of rings Ox C m,Oy.
Let us denote W the open subset Y —7~!(Sing(X)). Restricting the exact sequence

0—>T—>a"(F)—=E =mF/T —=0

to this open subset we get
™ Flw = Elw

s0 Spec(S*(V @ &|w)®) = Spec(S*(V & 7* F|w)¥) which means that the restriction
7 (7|w) takes values in Spec(S®*(V ® &|w)). The chain of immersions

Spec(S*(V @ Elv)C) < Spec(S*(V @ &)F) “25 Spec(S*(V @ 7 F)C)

implies that 7*(7) must then take values in SpecS®(V ® &), that is, the morphism
S*(V @ n*F)¢ — Oy factorizes through the surjection

SOV erF) = 8V ®E&)E =0

and we denote with the same symbol the induced morphism, 7*(7) : S*(V®&)¢ — Oy.
Since the procedure used here is precisely the inverse of the procedure used in Lemma
we find that the morphism of Ox-algebras that corresponds to 7*(7) is precisely
7 (in particular the resulting morphism takes values in Ox C m.Oy). O

Proposition 4.3.4. The normalization map 7w :Y — X induces isomorphisms:
a) Isomy (V @ Ox|u, Flf7) /G =~ Isomy, (V @ Oy lw, 7 Fyy,) /G-
b) Isomyy, (V @ Oy|w, 7 Fyy,) /G = Isomy (V ® Oy |w, &lyy) /G-
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Proof. a) Consider the diagram

SpecS*(V @ F)Y xx Y =———SpecS*(V @ 7* F)“ SpecS*(V @ F)¢
p2 P
Y Ul X

>

W =Y — 7 !(Sing(X)) = X = Sing(X) = U
m|w

It is clear that

prH(U) = SpecS*(V ® F|y)¢ = Homy (V ® Oy, F|})) /G
py H(W) = SpecS*(V @ ©* Flw )¢ = Homy, (V @ Ow, 7* F[\i) /G

(the second equatility follows in both cases because F|; and 7*F|}}, are locally free).
Since 7|y : W =~ U we have (r|w) 'p; {(U) = py ' (W). Now the result follows again
because 7|y is an isomorphism.

b) It is also clear since T*F|j, ~ &y - O

Proposition 4.3.5. For every singular principal G-bundle (F,T) on the nodal curve
X there exists a morphism of Oy-algebras 79 : S*(V ® &) — Oy which descends to
T: 8%V ®F) - Ox wvia the projection m™*F — & — 0 and such that (£y,70) is a
quasi-honest singular principal G-bundle on'Y if (F,T) is.

Proof. From Proposition we know that if 7(X) C Isomy(V ® Ox, F")/G then
7*(7)(W) is contained in Isomy, (V ® Oy|w, &lyy)/G and by Lemma we deduce
that 7*(7)(Y) is contained in Isomy (V ® Oy,&))/G so (€, 7*(7)) is honest. The
proposition now follows trivially from the above results and Lemma O

Remark 4.3.6. Let (£,¢,7") be a descending principal G-bundle, and consider its
direct image on the nodal curve, (F,7) := m(€,¢,7"). We can construct the diagram

Hom,, (V @ Oy, &Y) /G === Spec(5*(V ® £))¢ Spec(S*(V ® F))¢ === Homy,  (V ® Ox,F") /G
Y ul X

Let U = X —Sing(X) and V = Y —7!(Sing(X)). Recall that 7 induces an isomorphism
V ~ U. Moreover, if we restrict the above diagram to V and U we get an isomorphism
Spec(S*(V @ &|y))¢ ~ Spec(S*(V ® F|y))¥ from which it follows that (F,7) is honest.

4.4 Semistable Singular G-Bundles on Nodal Curves

We present now the main result of this work, Theorem [4.4.8] Results given in Section
Section [£.2] and Section [£.3] permit the construction of a morphism

M(g)(ﬁﬁ)-(S)S N SPB(p)i(S)S
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between the space of descending G-bundles on Y and the space of singular principal
G-bundles on X.

4.4.1 Construction of the Moduli Space of Descending G-Bundles

Let M(G) be the parameter space for singular principal G-bundles with generalized
parabolic structure (see Theorem [3.2.5)). Recall now that 9t(G) carries a universal

family (Sm(g),gm(G), Ton(c)), being

cy * TanayEmalyi i) = Bageys 1= 1,0, (49)
Tan(c) : S°(V ® Emc)® — Omneyxy-

Let Fon() be the induced family of torsion free sheaves on M(G) x X. Recall that we
have an induced morphism
TE;JI(G) : S.(}—gﬁ(g) & V)G — (idgm((;) X W)*Ogﬁ(g)xy.

The natural inclusion Owpayxx < (idoa) X 7)«Oma)xy induces a quotient and
composing with Tén(G) we get a morphism of Ogy(q)x x-algebras

S* (Faney) © V)¢ = ((idan(ay X m)«Oam(cyxv )/ Omcyxx = mx (m0y)/Ox)
Let us define ©(G) C M(G) as the closed subscheme where the above morphism van-
ishes (see Lemma [2.1.35). Denote by

(EQ(G) ) g@(G) ) T’D(G))

the restriction of the universal family to this subscheme. Clearly, ©®(G) represents the
moduli functor "8D(G). Note that there is a natural GL(W)-action on the space D(G),

I': GL(W) x D(G) = D(G).

We can view the GL(W)-action as a (C* x SL(W))-action. Thus, we will construct the
quotient of ®(G) by GL(W) in two steps, considering the actions of C* and SL(W)
separately. Consider the action of C* on ©(G), such that the closed immersion

D(G) — M(Q)

is C*-equivariant. Moreover, the morphism induced between the quotients is a SL(W)-
equivariant injective (since both are inside [[J, 44, see Equation [3.30) and proper
morphism
B:®(G))JC" — M(G))C*.

Then we have,

Proposition 4.4.1. Let S be a scheme of finite type over C and (gs,gS,Ts) a family
of (k,0)-(semi)stable singular principal G-bundles with generalized parabolic structure
parametrized by S. Then there exists an open covering S;, © € I, of S and morphisms

Bi:S; — D(G), i € I, such that the restriction of the family (ES,QS,TS) to S; xY is
equivalent to the pullback of (5@(0),g®(c), To(@)) via Bi x idy for alli € I
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Proof. See [52] Proposition 6.1.2 and [50] Proposition 2.8 . O

Proposition 4.4.2. (Glueing Property) Let S be a scheme of finite type over C and
s1,82 ¢ S = D(G) two morphisms such that the pullbacks of (gg(G),gD(G),T@(G)) via
s1 X idx and so X idx are isomorphic. Then there exists an étalé covering ¢ : T — S
and a morphism g : T — SL(W) such the triangle

SL(W) x ®(G) —=~ D(G)
gm % ¢
T
18 commutative.
Proof. Follows using the standard arguments given in Proposition O

Consider the linearized invertible sheaf £’ given in the proof of Theorem and
let £"” := *L'. We finally have

Theorem 4.4.3. There is a projective scheme M(p)%’d)'ss and an open subscheme

M(p)%’é)'s C M(p)g’é)'ss together with a natural tranformation
a(S)S R D(p)(575)_(‘9)5 — hM(p)(ﬁ’é)-(S)s

with the following properties:
1) For every scheme N and every natural transformation o/ = D(p)&0)-()5 — hy,

there exists a unique morphism o : M(p)%"s)'(s)s — N with o/ = h(p) o al®)s,
2) The scheme M(p)%’é)'s is a coarse moduli space for the functor D(p)E9)-

Proof. Follows by the same standard argument given in Theorem [2.1.44] with
M(p)E0)-()s = D (p) &A= (C* x SL(V)). O

4.4.2 Compactification of the Space of Principal G-Bundles on the
Nodal Curve

Let (£,q,7) be a descending G-bundle and (F,7’) the induced singular principal G-
bundle. Recall that both sheaves, £ and F, are related through the following exact

sequence (see Equation (4.2)))
05 F—om(l) B R—0
where the morphism p factorizes over the surjection ¢ : m(€|p) — R. For any subsheaf

G C &, the image of p restricted to m.(G) C () is precisely @7_; ¢i(G(yh) ® G(v3)).
Therefore we can construct the following diagram

0 e T (E) R
|

;o] ]

0 — Ker(p/)——m(G) — D7_; 6:(G(y}) ® G(y5)) —=0
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and we define S(G) := Ker(p'). If G is saturated then S(G) is clearly saturated. This
construction allows us to attach to any weighted filtration (£,,m) of £ by saturated
sheaves a weighted filtration (S(&),m) of F by saturated sheaves. Moreover, any
saturated subsheaf can by constructed from a saturated subsheaf of £ as follows. Let
F' C F be a saturated subsheaf and consider the composition

Fl s Feomé

Denote & = m*F'/T(F'). Then we get a commutative diagram

R
J;/

Since R and R’ are torsion sheaves and 7, (') is torsion free we deduce that the arrow

0 FC T (E) =2

0— > FC o (&)

—0.

in the middle is injective. Since F’ is a saturated subsheaf of F and R’ is a torsion
sheaf we also deduce that the arrow in the right is injective as well. Thus, F' = S(&’).

Lemma 4.4.4. Let (£,q,7) be a descending G-bundle of rank r and degree d, and
(F,7'") the induced singular G-bundle on X. For any saturated subsheaf G C £ we have

P (G C & 1) = Pr(n)a(S(9)) — Psg)(n)a(F).

Proof. We follow [52], Proposition 5.2.2]. First of all we compute the Euler characteristic
of S(G):

=7r(G)x(Y,Oy) + deg(G Zdlmq DeGyh) =

= 7(G)v + deg(g Zdlmq (y1) ® G(y2)) + r(G)x (X, Ox).

Note that the rank r(G) is equal to the rank r(S(G)) since @i, ¢:(G(y}) & G(v3))
is a torsion sheaf, and 7 is birational. From the definition of F we also know that
deg(F) = deg(&). Therefore
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Pr(n)a(S(G)) — Ps(gy(n)a(F) =deg(F)a(S(G)) — deg(S(G))a(F) =
=deg(€)a(G) — deg(S(9))a(F) =
=deg(&)a(G) — (r(G)v + deg(G)—

img(G(y}) ® G(yh))) =

\'Dc?w

=(deg(&) —vr)a(G) — (deg(g)—
=3 " dim q(G(y}) ® G(1)a(F) = Pi(G C £,1).

i=1
O

Lemma 4.4.5. Let (£,q,7) be a descending G-bundle of rank r and degree d on'Y
and (F,7') the induced singular principal G-bundle on X. For any weighted filtration
(&, m) we have

M(gh m, T) = :UJ(S<S°)’ m, 7—/>'

Proof. The multiindices I giving the minimum in both semistability functions are the
same because of the construction of (F, 7/) and the flag S(&,). Then the result follows
from the fact that the weights m are in both cases the same. O

Proposition 4.4.6. Let (£,q,7) be a descending G-bundle and (F,7") the induced
singular principal G-bundle on X. Then,

(i) if (F,7') is d-(semi)stable, then (E,q,7) is a (1,0)-(semi)stable G-bundle with
a generalized parabolic structure. B

(i) if (£,q,7) is a (1,0)-(semi)stable G-bundle with a generalized parabolic struc-
ture, then (F,7') is a 8-(semi)stable singular G-bundle.

Proof. Following [52, Proposition 5.2.2], the result follows trivially from Lemma m
and Lemma [£.4.5] O

Proposition 4.4.7. There is a number 1 > € > 0, such that for any k = (k1,...,K) €
(1—€,1)NQ)", any integral parameter § and any singular principal G-bundle (€, q, T)
with a generalized parabolic structure, we have B

1) If (€,q,7) is (k,d)-semistable, then it is (1, §)-semistable.

2) If (5,&, 7) is (1,0)-stable, then it is (k,d)-stable

Proof. We follow [52], Proposition 5.2.3.]. Recall that the (k, ¢)-(semi)stability condition
for a singular principal G-bundle with a generalized parabolic structure has to be
checked just for the weighted filtrations (£°,m) of £ for which m; < A for suitable
constant A depending only on the numerical input data. This implies that we can find
a natural number n such that

1

P(E%,m) +0u(E%,m, 7) € Z[ -]

for all such weighted filtrations. For every generalized parabolic bundle (&€, g) and every
weighted filtration (&, m) we have
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Pl(g.,m) - PN(5.7M) =

- _ Zmz {ai ( r;dim(g( y] S 5(3/;))))

Jj=1

L (az >t & @)))) } +
+Zml{az (azdlm (y; @5(3/]))))

—« (al Zdlm yj )R & (y])))) } =

_ZmZ {az 1 — kj)dim(q 5(3/])@5(%)))

J=1

—ai Yy (1= ry)dim(g(E(y)) ® E(y?)))} =

—azmz {Z (1~ wj)dim(g(Ex(y)) @ & (52))) — k(&) S (1 - fm} g
j=1

J=1

21—@ Zml{Zdlm i(y) @S(yj)))rk(&;)}.

7=1

For any choice of ¢ we have x; > 1 — €. Since dim(q(é’i(y]l-) @ El(yf))) —1k(&;) > 0 and
m; < A, we get

Pi(E°% m) — Py(E% m) < oweZmir < Ad’rve.
=1

In fact we can also show that P(£°%,m) — Py(E%,m) > —Aa’rve. Take € so that the

1
inequality Ao?rve < — holds.
n
1) Let (£,¢,7) be a (, 0)-semistable tensor field with generalized parabolic struc-
ture. Suppose it is not (1,)-semistable. Then there is a weighted filtration (., m)
with m; < A such that

Pe(Ee,m) +6p(Eaym, 7) >0

P1<507m)+6:u’<507m77_) F <0
Since P, (Es,m)+61(E, m, T) is a positive rational number, we can find n, € Q¢ such
that Pg(Ee,m) + dpu(Ee,m, 7) = "5 Therefore
= n

_% < P1(€nm> - P@(gum) = ™M

S|

n
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which is a contradiction. Thus (&, ¢, 7) must be (1, J)-semistable.

2) Let (€,q,7) be a (1,0)-stable tensor field with generalized parabolic structure.
Suppose it is not (K, 0)-stable. Then there is a weighted filtration (£, m) with m; < A
such that

Pﬁ(ghm) + 0p(Eeym, T) = % <0, ng € Qo

n (4.11)
1
Pi(Eaym) + 0p(Eaym, 7) = o > 0.
Therefore . 1

= > Pi(€,m) — Py(Eaym) = 25 >

n = n n
which is a contradiction.

O

Let € be as in Proposition m Choose k; € (1 —¢,1)NQ and § € Z~¢ so large

that Theorem [3.3.22] holds. Then Proposition and Proposition imply that
there is a well defined functor

D(G)®E)-6)s 5 SPB(p), ) (4.12)

and thus a morphism
0 : M(G) B0 5 SPB(p) 5 (4.13)

between the moduli spaces. We define M x(p) as the schematic image of ©. Then

Theorem 4.4.8. The projective scheme M x (p) consists of (semi)stable honest singular
principal G-bundles, and every stable honest singular principal G-bundle lies in it.

Proof. This follows by Proposition Proposition [£.4.7] O

This was proved in the irreducible case in [52], and this space was considered as
a good candidate for a compact moduli space for principal G-bundles on the singular
curve X. In a later work A. Schmitt observed that if we fix a representation of GG into
the symplectic group, one can prove that SPB(p);s;(S)S fulfils the desired properties to
being such compactification (see [51]).

The goal of the last result of this work is to show that SPB(p)%(S)S parametrizes
precisely semistable honest singular principal G-bundles.

To get started, let us make some minor changes on the definition of parabolic
structure on the normalization.

Definition 4.4.9. Let s = {s1,---,s,} be a set of natural numbers and denote s =
> 71 si- A generalized parabolic bundle of type (r, s) on the smooth curve Y is a tuple
(&,q1,-..,q ) where £ is a locally free sheaf of rank r (that is, uniform multirank equal
to r) and degree —s, and ¢; is a quotient of dimension r — s;

gi: T(Di, E|p,) = E(y1) © E(y3) — Ri = 0,
E(y;) being the fibre of £ over y;
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As in Chapter 3, we denote by R := @ R; the total vector space. Since the supports
of the divisors D; are disjoint we get the equality I'(D, &|p) = @TI'(D;,E|p,). From
this, we can form a quotient of dimension s.

q: = Dg;: F(D,S‘D) — R —0.

Definition 4.4.10. Let (£,q) be a generalized parabolic bundle of type (r,s). We
define the parabolic degree for any subsheaf F C £ as

pardeg(F) = deg(F) — Y _ dim ¢:(F(y}) © F(yh)). (4.14)
=1

Observe that this coincides with the old 1-pardeg(F).
Now, the definition of singular principal G-bundle of type (r,s) is the obvious one.

Definition 4.4.11. A singular principal G-bundle with a generalized parabolic struc-
ture of type (r,s) over Y is a triple (£,q,7) where (£,q) is a generalized parabolic
bundle of type (r, s) (see Definition [4.4.9) and (€, 7) is a singular principal G-bundle.

Finally, the semistability condition that we take is the old (1, J)-semistability con-
dition.

Definition 4.4.12. We fix 6 € Qsg. A singular principal G-bundle with general-
ized parabolic structure of type (r,s), (£,¢,7), is 0-(semi)stable if for every weighted
filtration (&, m) of £, the inequality

P(Ee,m) + 0p(Ea, m, 7)(=)0 (4.15)
holds true.

The analysis of the semistability condition done in Chapter 3 is valid in this situ-
ation, and we can prove the analogous theorem to Theorem [3.3.22] without any extra
work.

Theorem 4.4.13. There is a rational number dg > 0 depending only on the input
data such that for all 6 > dy and every singular principal G-bundle with a generalized
parabolic structure of type (r,s), the property A) and the property B) are equivalent:
A) (€,q,T) is 0-(semi)stable.
B) (£,q,7) is (semi)stable: (E,q,7) is honest and for every weighted filtration
(Ea,m) such that (Ee,m)|y, is induced by a reduction to a one parameter subgroup,
one has P(&E,,m)(>)0.

Let us define now descending G-bundles of type (7, s).

Definition 4.4.14. A descending G-bundle of type (r,s) on Y is a singular principal
G-bundle with generalized parabolic structure of type (r,s), (£, ¢q,7), such that 7 (see
([4.4)) takes values in Ox C mi(Oy). A descending G-bundle, (E,Q,T), is principal if
E,7) is honest.

Definition 4.4.15. A descending G-bundle is 6-(semi)stable if it is as singular principal
G-bundle with generalized parabolic structure (see Definition [4.4.12]).
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Recall Definition Now we have.

Theorem 4.4.16. Let (F,7) a singular principal G-bundle of degree 0 and suppose
that F has types a = {a;}. Then there is always a descending G-bundle of type (r,a),
(E,q,7"), such that m.(E,q,7') = (F, 7).

Proof. Follows from Proposition [£.3.5 O

Theorem 4.4.17. Let F be a torsion free sheaf of degree 0 and types a = {a;}, and
fir 6 € Qso. Let (F,T) be a d-semistable singular principal G-bundle of degree 0 and
multirank r. Then we have:

A) There is a d-semistable descending G-bundle type (r,a), (£,q,7'), such that
m(E,q,7") = (F,7).

Bj There is a positive rational number dy9 depending only on the input data such
that if § > 0y then (F,T) is honest.

Proof. A) This is Proposition m B) Follows from Proposition and Theorem
44713 O

We finally have.

Theorem 4.4.18. Let § > 0y9. An honest singular principal G-bundle, (F,T), is 0-

semistable if and only if it is semistable (see Definition . Therefore, SPB(,O)(;;(S)S
is a coarse moduli space for (semi)stable honest singular principal G-bundles.

Proof. 1) Let (F,7) be an honest singular principal G-bundle and suppose that it
is J-(semi)stable. Since § > dp, we already know that there is a J-semistable de-
scending principal G-bundle of type (r,a), (€,q,7’), on the normalization Y such that
m(E,q,7") = (F,7). Let A = (A1,...,N) : G, = G x ... x G be a one parameter
subgroup and let 3 = (1, ..., 3;) be a reduction of (F,7) to X. This defines a weighted
filtration (fg.,mﬁ) (see Chapter 2, Section , and, thus, a weighted filtration
(€e,mg) of £ following the procedure given at the beginning of this section. Thus,
Fi = S(&;). The key point is to show the following claim: the filtration £, corresponds
to a reduction of (£,¢,7’) to the one parameter subgroup A. Thus

M(fﬁhmﬂaT) = N(E"Mmﬂ”r/) =0

because of Lemma and Proposition [3.3.21] hence L(Fg,,mg)(>)0 since (F,7) is
5-(semi)stable. Let us prove the claim. The reduction 3 is given by sections

Bi : Ui — Isom(V ® OUi,}—%)/QG()‘i)'

The injection i : F — m,€ determines an isomorphism iy, : Fly, ~ &y, (being V; =
Y; N 7= 1(U)) since its cokernel is supported on the singular points. Thus, we get a
commutative diagram

Bi
0T Tsom(V & Ou. FIY,)/Qa (M) (4.16)

SN

V; < Isom(V ® Oy, €IY,)/Qc(\)

™
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and we can define a section B, = if o B0 77! : V; — Isom(V ® Ov;, €NY.)/Qc(Ni). This
section defines a weighted filtration (Gge,mg) and the isomorphisms iy, : Fly, =~ |y,
induce a flag isomorphism

(O)C fl‘UiC . fe‘UiC ‘/—:|U¢

e

(0)— G|y, = Golv ——€lv;.

On the other hand, the filtration constructed at the beginning, &,, satisfies
Filu = S(&)lu, = &ilv

where the isomorphism is induced, again, by the injection ¢ : F — m.£. Everything
together tell us that we have two weighted filtrations (€., mg) and (Gge, mg) which
are isomorphic over V. Therefore (e, mg, ') = p1(Gge, mg, 7') because of Proposition
. 3.3.5, hence (&, mg,7") = 0.

) Let us prove the inverse. Suppose that (F,7) is a (semi)stable honest singular
prln(:lpal G-bundle. By Theorem [£.4.16] there exists a descending principal G-bundle of
type (r,a) onY, (€,q,7"), such that m.(€,q,7") = (F, 7). First note that u(&,m,7’) >
0 for any weighted filtration, since (€, ¢,7’) is an honest singular principal G-bundle
(Corollary . Suppose now that (&, m, ') = 0. By Proposition it follows
that the filtration £ comes from a reduction § = (81 ...,05;) toa 1-PS A = (A1, ..., N).
Using the diagram in the other way around, we find a section

B+ Ui = Isom(V @ O, F¥|v,) /Qa (M)
for each 4, and, therefore, a weighted filtration (Fge,mgz = m) such that i : Fj|y ~
+«(Ejlw). On the other hand, we can construct from (£,,m) a weighted filtration of

F, (5(&),m), such that i : S(&;)|v ~ m(Ejlw). Thus, we get a commutative triangle

Filu

.

Flu.

S(&)lo
Applying Proposition we find a global isomorphism

5
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Therefore,
P(&,m) = L(‘F,Bnmﬁ) =0,

so (£,¢,7') is semistable. By Theorem(4.4.13) we know that (£, ¢, 7’) is also d-semistable,
so by Lemma and Lemma we deduce that (F,7) is d-semistable. O
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Zusammenfassung

In dieser Arbeit beschéaftigen wir uns mit der Konstruktion eines kompakten Modul-
raums fiir G-Prinzipalbiindel iiber einer Knotenkurve X. Der Prozess der Konstruktion
dieser Modulrdume basiert auf der Arbeit von A. Schmitt.

In Kapitel 1 geben wir den Hintergrund in GIT, kohérente Garben {iber reduzierte
projektiven Kurven und G-Prinzipalbiindeln. Wir préasentieren einige Beispiele fiir die
Berechnung der Hilbert-Mumford Semistabilitat, die in Kapitel 3 wichtig sein wird.
Wir stellen auch eine GIT-Analyse von direkten Summenreprasentationen vor, die zu
Proposition 1.1.28 fiihrt und die in Kapitel 3 entscheidend sein werden.

Kapitel 2 widmet sich der Konstruktion von SPB(p)(IS;(S) ®. In Abschnitt 1 konstru-

ieren wir nach [8, [I7] den Modulraum von é-semistabilen Tensorfeldern iiber X, Tg'(s)s
(Theorem . Da unsere Kurve X nicht irreduzibel ist, miissen wir die Rang
durch Multiplizitdt in der Definition der J-Semistabilitdt &ndern. (siehe Definition
. In Abschnitt 2 konstruieren wir den Modulraum von J-semistabilen singularen

G-Prinzipaliindeln, SPB(,o)g(S)S (Theorem . Zuerst zeigen wir, wie man jedem
singuldren G-Prinzipaliindel ein Tensorfeld zuordnen kann, fiir das, was wir brauchen,
um das Problem zu linearisieren (Theorem . Dies geschieht durch Verwendung
eines Ergebnisses auf graduierten Algebren (Lemma . Nach, miissen wir zeigen,
dass diese Zuordnung injektiv ist (Theorem , unter Verwendung von Lemma
Auf diese Weise konstruieren wir den Modulraum als geschlossenes Teilschema
des Modulraumes von Tensorfeldern.

In Kapitel 3 beschéaftigen wir uns mit Objekten auf der Normalisierung von X.
In Abschnitt 1 konstruieren wir den Modulraum von Tensorfeldern mit verallgemein-
erten parabolische Strukturen tiber eine (mdglicherweise) nicht zusammenhéngende
glatte projektive Kurve Y. Die Semistabilitdtsbedingung hangt nun von v + 1 (ratio-
nalen) Parametern ab, k1 ..., k,,0, aufgrund der Anwesenheit der zusétzlichen Struk-
tur, die durch die parabolische Struktur gegeben ist. Der Modulraum von (k,J)-
semistabilen singuldren G-Prinzipalblindeln mit verallgemeinerten parabolischen Struk-
turen auf Y ist wie im Knotenfall als geschlossenes Subschema des Modulraumes
von Tensorfeldern mit generalisierter parabolischer Struktur aufgebaut. Schlielich
studieren wir der Stabilitétsbegriffe fiir grole Werte der Semistabilitdtsparameter. Die
Existenz mehrerer Minimalpunkte in der Kurve Y macht es unmoglich, die Ergeb-
nisse von [52] zu tibersetzen. Hier, das technische Ergebnis, das es uns ermdglicht, das
Problem zu l6sen, ist Proposition [1.1.28

In Kapitel 4 beschreiben wir explizit ein Verfahren zur Darstellung eines gegebenen
singuldren G-Prinzipalblindel durch ein absteigendes G-Prinzipalbiindel und vergle-
ichen den Semistabilitatsbegriff beider Objekte fiir grole Werte der Semistabilitatsparameter.
Mit diesem in der Hand, konnen wir die endgiiltigen Ergebnisse, Theorem and
Theorem [£.4.18] prisentieren.
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