EST-based detection and analysis of mammalian transcripts

Shobhit Gupta

Nov 2005
1. Reviewer: Prof. Dr. Martin Vingron
2. Reviewer: Prof. Dr. Ulf Leser

Defence Date: 16-Nov-2005
For my Parents
Acknowledgments

My first days in Berlin were actually my first days outside India. That had quite an impact on my ability to get adapted to the new environment. But for that matter, the CMB department of Max Planck Institute was a very good choice. The group members were extremely friendly and easily approachable for both personal as well as work-related issues.

To start with the acknowledgments I thank my supervisor, Martin Vingron. I am most grateful to Martin for offering me an opportunity to work under his supervision. His excellence at work as well as clarity of ideas was obvious to me beforehand. Additionally he has proved to be a fantastic supervisor both in terms of project-related and personal guidance.

I express my deepest gratitude to Stefan Haas. He has been my mentor throughout. I sincerely appreciate his patience with me especially during the paper-writing sessions (read cycles). I sincerely thank my collaborators Dorothea Zink and Bernd Korn for providing a close experimental support to my computational work. Bernd has also been a critical and very helpful member of my PhD committee.

I deeply appreciate the company of all past and present CMB group members. The discussions during the weekly group meetings have been very fruitful for the advancement of my project as well as for the broadening of my knowledge-base. I would also like to thank our system administrator, Wilhelm Ruesing. He has been relentless and exceptionally prompt in cracking down on infra-structural problems.

On a personal note, special thanks goes to Birgit Pils and Johanna Holbrook for great help during my initial days. Additionally, I am thankful to my friends in Germany especially Stefanie Koeniger, Shivendra Kishore, Harindar Keer and Abha Singh. They have been very motivating during the inevitable low periods of graduate research.

Lastly but perhaps the most significantly, I appreciate the support of my mother before and during my graduate studies. I would have been nowhere without her enormous struggle for my education.
Contents

Acknowledgments iii

1 Motivation 1

2 From simple genome to complex proteome 3
 2.1 Transcription 3
 2.1.1 Splicing of pre-mRNA 7
 2.1.2 Alternative splicing 10
 2.2 Translation 12

3 Resources for transcriptome analysis 13
 3.1 DNA microarrays 13
 3.1.1 Hardware 13
 3.1.2 Experiment 14
 3.1.3 Applications 14
 3.2 Serial Analysis of Gene Expression (SAGE) 16
 3.2.1 Methodology 16
 3.2.2 Applications 18
 3.2.3 Limitations 18
 3.3 Expressed Sequence Tags (ESTs) 19
 3.3.1 Generation of ESTs 19
 3.3.2 Normalization of cDNA libraries 19
 3.3.3 Clustering of the EST data 21
 3.3.4 Assembly of the EST clusters: GeneNest 21
 3.3.5 Genomic mapping of the EST data 23
 3.3.6 Expression levels using EST data 29
 Expression levels in GeneNest 29
 Expression levels in SOURCE database 29
 Tissue/tumor-specific transcripts in ASAP 31
B The RT-PCR Experiments 93
 B.1 Experimental Protocol .. 93
 B.2 List of tissues .. 93

C IUPAC nucleotide ambiguity codes 95

D Availability 97
 D.1 Quality computation software 97
 D.2 T-STAG software .. 97
 D.3 T-STAG Database .. 97

E List of related publications 99

F Curriculum vitae 101
List of Figures

2.1 Central dogma of molecular biology .. 4
2.2 Schematic illustration of transcription 5
2.3 Regulation of transcriptional initiation 6
2.4 The mammalian consensus sequences at the 5' splice site and the 3' splice site in the pre-mRNA ... 8
2.5 The assembled commitment complex during pre-mRNA splicing 9
2.6 The two trans-esterification reactions during pre-mRNA splicing ... 10
2.7 Classification of alternative splicing 11

3.1 Illustration of a microarray experiment 15
3.2 Schematic of SAGE procedure ... 17
3.3 Generation of cDNA libraries from mRNAs 20
3.4 Normalization of cDNA libraries .. 22
3.5 The GeneNest visualization .. 23
3.6 SpliceNest visualization of the gene structure 25
3.7 The ASAP's geneview ... 26
3.8 The ASD approach: transcript confirmation for introns 27
3.9 The ASD visualization of splice isoforms for the human C2F gene ... 28

4.1 Linear membership functions ... 34
4.2 Fuzzy Logic Vs Boolean logic .. 35
4.3 Application of implication method .. 36
4.4 Membership function of common boundaries (GeneNest) 38
4.5 Membership function of common boundaries (SpliceNest) 38
4.6 Membership function of tolerance required for detection of the common boundary (SpliceNest) ... 39
4.7 Membership function of EST count 40
4.8 Membership function of splice signal 40
4.9 Quality values for exon/intron boundaries 42
4.10 Computation of exon quality ... 42
4.11 Flow-diagram of splicing confidence computation 44
4.12 Boundary quality values when the splice signal is present 45
4.13 Boundary quality values for terminal exons 46
4.14 Boundary quality values when splice signal is absent 46
4.15 Boundary quality values for gapped alignment 46
4.16 SpliceNest visualization of alternative splicing 48
4.17 Quality values of known alternative exons vs predicted alternative exons 50
4.18 Confidence values of known alternative splicing events vs predicted alternative splicing events 51
4.19 Quality values for the known alternative exons (AEDB) for different perturbations in the fuzzy logic model 53

5.1 Prediction approach for tissue-specific transcripts 60
5.2 RT-PCR validation experiment of a putative brain-specific isoform 64
5.3 RT-PCR amplification analyzing expression pattern of gene PRAME 66

6.1 T-STAG database schema .. 71
6.2 The T-STAG query interface .. 73
6.3 The hyper-linked output of T-STAG 74

A.1 The Universal Genetic Code ... 92
List of Tables

3.1 Tissues with specifically expressed genes (via GeneNest database) . . . 30

4.1 Rules for computing quality values for splice boundaries 43
4.2 Rules for computing confidence values for splice events 44
4.3 Perturbations applied to the fuzzy logic system 52
4.4 Experimentally verified alternative splice events 55

5.1 Tissues with predicted specific transcripts 61
5.2 RT-PCR validation results for tissue and disease-specific splice isoforms 63

B.1 Tissues for which RT-PCR experiments were performed 94
Abbreviations

Abbreviations in alphabetical order

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>adenine</td>
</tr>
<tr>
<td>AEDB</td>
<td>alternative exon database</td>
</tr>
<tr>
<td>ASAP</td>
<td>alternative splicing annotation database</td>
</tr>
<tr>
<td>ASD</td>
<td>alternative splicing database</td>
</tr>
<tr>
<td>BLAST</td>
<td>Basic local alignment search tool</td>
</tr>
<tr>
<td>bp</td>
<td>base pair(s)</td>
</tr>
<tr>
<td>°C</td>
<td>degree celsius</td>
</tr>
<tr>
<td>c</td>
<td>cytosine</td>
</tr>
<tr>
<td>CAGE</td>
<td>cap analysis gene expression</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA; DNA synthesized from mRNA by RT</td>
</tr>
<tr>
<td>CDS</td>
<td>coding sequence</td>
</tr>
<tr>
<td>CGH</td>
<td>Comparative genomic Hybridization</td>
</tr>
<tr>
<td>ChIP</td>
<td>chromatin immunoprecipitation</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>EST</td>
<td>expressed sequence tag</td>
</tr>
<tr>
<td>g</td>
<td>guanine</td>
</tr>
<tr>
<td>Kb</td>
<td>kilobase(s); 1,000 nt</td>
</tr>
<tr>
<td>Mb</td>
<td>megabase(s); 1,000,000 nt</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>nt</td>
<td>nucleotide</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>polyA</td>
<td>polyadenylation signal</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>RT</td>
<td>reverse transcription</td>
</tr>
<tr>
<td>RTase</td>
<td>reverse transcriptase; an enzyme</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>reverse transcription-polymerase chain reaction</td>
</tr>
<tr>
<td>SAGE</td>
<td>serial analysis of gene expression</td>
</tr>
<tr>
<td>snRNP</td>
<td>small nuclear ribonucleoprotein</td>
</tr>
<tr>
<td>t</td>
<td>thymine</td>
</tr>
<tr>
<td>u</td>
<td>uracil</td>
</tr>
<tr>
<td>UTR</td>
<td>untranslated region; part of mRNA transcripts</td>
</tr>
</tbody>
</table>
For a compilation of IUPAC symbols for nucleotide nomenclature see Appendix C.