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Notation guide

All notation will be carefully introduced in Section 2.1. Below is a list of the most used
symbols as an aid to memory for the readers convenience.

b · c, d · e Floor and ceiling
[n] := {1, . . . , n} Range
∪, ∩ Union, intersection
∪̇ Disjoint union
Xc Complement
O, Ω, and Θ (Bachmann-)Landau symbols
H Hilbert spaces
d := dim(H) Dimension
A ∈ B(H) Bounded operators
A† (Hermitian) adjoint
[ · , · ], { · , · } Commutator and anti-commutator
O(H) Observables
Tr Trace
A ∈ T (H) Trace class operators
ρ ∈ S(H) (Quantum) states
〈A〉ρ Expectation value
T +(H) Quantum channels
‖ · ‖p (Schatten) p-norms
D( · , · ) Trace distance
M Sets of POVMs
DM( · , · ) Distinguishability
S( · ) Von Neumann entropy
H Hamiltonians
Ek, |Ek〉 Energy eigenvalues, eigenstates
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Notation guide and definitions

· T , · Time averages
$H( · ) Dephasing map
G Interaction (hyper)graph
V Vertex set
E Edge set
⊗ Tensor product
fx, bx, f †x, b

†
x Annihilation and creation operators

X, Y, S,B ⊂ V Subsystems
HX Subsystem Hilbert spaces
dX Subsystem Hilbert spaces dimension
HX Restricted Hamiltonians
H0 Uncoupled Hamiltonians
HI Interaction Hamiltonians
A�X Truncated operators
ρX Reduced states
covρ( · , · ) Covariance in state ρ
EX|Y ( · ) Geometric measure of entanglement
β Inverse temperature
g[H](β) Gibbs states
[E,E + ∆] Energy intervals
u[H]([E,E + ∆]) Microcanonical states
deff(ω) Effective dimension
ω = $H(ρ(0)) = ρ Time averaged/dephased state
pk Energy level populations
U(d) Group of unitary operators
HR Subspaces
µHaar Haar measure
#∆[H](E) Number of energy levels
RS|B(ψ) Effective entanglement
Ceq Equilibration coefficient
J Local interaction strength
d( · , · ) Graph distance
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Preface

The subject of this thesis is the interplay between quantum mechanics and statistical
mechanics, a subject that has been the topic of an ongoing scientific debate since the
late 1920s.

When reviewing such an old and extensive field a selection of the existing mate-
rial is unavoidable. Such a selection is necessarily to some extent subjective and in
the present work a focus has been put on the contributions of the author, in particular
[GME11, Gog10a, Gog10b, KGKRE13, RGE12] and other recent works with a sim-
ilar mindset. However, with almost 300 references, a large portion of which are at
least summarized and many of which are discussed in detail, the current work arguably
constitutes the most comprehensive review of the literature on equilibration and ther-
malization in closed quantum systems.

This thesis is divided into two chapters and a conclusion chapter. Chapter 1 sets the
scene with a brief review of the canonical foundations of (classical) statistical mechan-
ics and thermodynamics. Chapter 2 is the main chapter of this work. It starts with
a careful introduction of the notation and mathematical concepts and then gradually
builds up the theory of the “pure state quantum statistical mechanics” approach, by
addressing topics such as equilibration in closed quantum system, decoherence, typi-
cality, time scales of equilibration, thermalization and the absence thereof, the role of
integrability, and finally correlations in thermal states. Chapter 3 contains concluding
remarks and provides an outlook.

In the main chapter (Chapter 2) an effort has been made to minimize the amount
of “slang terminology” and to carefully introduce and define all terms that are not
absolutely standard. This is reflected in the relatively long “preliminaries and notation”
section (Section 2.1). That this potentially makes the reading experience for the experts
slightly doggerel, is more than made up for by the increased readability for people from
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Preface

related fields who would like to get into the subject.

Most sections can be read independently of each other. Whenever this is not the case,
or a section builds upon material that was covered in previous sections, corresponding
cross-references are provided.

Many sections in Chapter 2 finish with a discussion section that contains more spec-
ulative assertions, subjective opinions of the author, brief descriptions of related lines
of research that could not be covered in full depth in this work, and discussions of weak
points and contrary points of view. The style of these sections will tend to be more col-
loquial than the main text. The motivation for adding these sections is to give a more
complete picture of the ongoing scientific debate concerning the subject of this the-
sis, while at the same time not interrupting the general narrative implied by the results
covered in the main text. The discussion sections are not essential to understand the
following material, but it is the hope that they will help to make it easier to understand
the big picture.

There exist at least four other works that are related to this thesis which should not
remain unmentioned. They offer a wealth of information complementing the content
of this work and should be considered by the interested reader:

First, the book by Gemmer, Michel, and Mahler [GMM09] entitled “Quantum Ther-
modynamics”. Especially Part II of this book advertises an approach towards the foun-
dations of thermodynamics that is in spirit very close to the approach of this work. The
focus is however more on typicality, which we will discuss in Section 2.5, but which is
not the central topic of this work. Moreover, the first edition of the book is from 2004,
and even though it has been expanded in the second edition from 2009, much of the
newer material that takes the center stage in this work is not covered.

Second, the editorial of a New Journal of Physics focus issue on “dynamics and ther-
malization in isolated quantum many-body systems” by Cazalilla and Rigol [CR10a].
The editorial not only explains the significance of the individual articles published in
the focus issue (some of which also play a prominent role in the current work) to the
more general endeavor of developing a better understanding of the coherent dynam-
ics of quantum many body systems, but on top of that gives an overview of many of
the currently pursued research directions and many additional references. This renders
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Preface

this editorial an excellent entry point into the more recent literature on the subject. On
the other hand it provides only very little background information, almost no historical
context, and assumes that the reader is already familiar with the jargon of the field.

Third, a colloquium in Reviews in Modern Physics by Polkovnikov, Sengupta, Silva,
and Vengalattore [PSSV11a] entitled “Nonequilibrium dynamics of closed interacting
quantum systems”. This work gives an overview of recent theoretical and experimental
insights concerning such systems, but focuses mainly on the dynamics following so-
called quenches, i.e., rapid changes in the Hamiltonian of a system and the eigenstate

thermalization hypothesis (ETH). We will discuss the ETH in Section 2.7.2, but the
scope of the present work is considerably broader and we will also take a slightly
different, quantum information theory inspired, point of view and put the focus more
on analytical results.

Forth, a review entitled “Equilibration and thermalization in finite quantum systems”
by Yukalov [Yuk11]. It contains a review of the history of both the experimental real-
ization of coherently evolving, well controlled quantum systems and the observation
and numerical investigation of equilibration and thermalization in such systems. In ad-
dition it contains results on equilibration in closed systems with a continuous density
of states and in systems undergoing so-called non-destructive measurements.
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1 Remarks on the foundations of
statistical mechanics

“Statistical physics [...] has not yet developed a set of generally accepted
formal axioms, and consequently we have no choice but to dwell on its
history.”

— Jos Uffink [Uff06]

We begin the discussion with a sketch of the most influential canonical approaches
towards the foundations of thermodynamics and statistical mechanics. We will roughly
follow the historical development, but emphasize more the problems of the respective
approaches then their undeniable success and ingenuity.

Contrary to the rest of this work, this introductory chapter is rather superficial. The
main justification for the brevity is the existence of several comprehensive works on
the topic, in particular the review by Uffink [Uff06] and the book by Sklar [Skl95],
but also Refs. [EE02, Haa55, Pen79] and Chapter 4 in Ref. [GMM09]. Adding yet
another work to this list simply seems superfluous and a detailed review of the history
of statistical mechanics is beyond the scope of this thesis. Also, we will not address the
more subtle issues of the classical approaches, such as the interpretation of probability
and the problem of comparing discrete and continuous measures.

This chapter also differs from the following material in that we will not build the
theory from the ground up, but assume that the reader is already familiar with the
basic concepts of thermodynamics and statistical mechanics. This seems eligible as
this chapter is not essential for an understanding of the main part of this thesis and can
be skipped safely.
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1 Remarks on the foundations of statistical mechanics

This chapter is intended to partially answer the legitimate question of a person al-
ready familiar with thermodynamics and statistical physics: “Why should I care about
pure state quantum statistical mechanics? Weren’t all the foundational questions al-
ready solved in the works from the 19th and early 20th century?” As we will see,
despite the numerous attempts and the great amount of work that has been put into
establishing a convincing justification for the methods of statistical mechanics, a com-
monly accepted foundation for thermodynamics and statistical mechanics is still miss-
ing. As Jaynes [Jay57a] puts it: “There is no line of argument proceding from the
laws of microscopic mechanics to macroscopic phenomena that is generally regarded
by physicists as convincing in all respects.”

1.1 Canonical approaches

Thermodynamics was originally developed as a purely phenomenological theory. Pro-
totypical for this era are the laws of Boyle–Mariotte and Gay–Lussac that state empir-
ically observed relations between the volume, pressure, and temperature of gases.

The more widespread acceptance of the atomistic hypothesis in the 18th century
opened up the way for a microscopic understanding of such empirical facts. The
works of Clausius [Cla57], Maxwell [Max60a, Max60b], Boltzmann [Bol72], and
Gibbs [Gib02] in the second half of the 19th and the beginning of the 20th century
are often perceived as the inception of statistical mechanics (see also Refs. [Bol96b,
Skl95, Uff06]). In this section we review some of these early attempts to develop a
deeper understanding of thermodynamics based on microscopic considerations.

1.1.1 Boltzmann and the H-Theorem

One of Boltzmann’s arguably most important contributions to the development of sta-
tistical mechanics is his derivation of what is known today as the Boltzmann equation

and his H-theorem [Bol72] (see also the first chapter of Boltzmann’s book “Vorlesun-
gen über Gastheorie. Bd. 1.” [Bol96b] as well as Ref. [GMM09, Chapter 4] and
Ref. [Skl95]).
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1.1 Canonical approaches

(a) Time reversal objection (Loschmidt)

t−→ ~v → −~v t−→

(b) Recurrence objection (Poincaré, Zermelo)

t−→ . . .
t−→ t−→ . . .

t−→

Figure 1.1.1: The time reversal objection, also known as Loschmidt’s paradox [Los77], but
actually first published by William Thomson [THO74], states that it should not
be possible to deduce time reversal asymmetric statements like the H-theorem,
implied by the Boltzmann equation, from an underlying time reversal invariant
theory. More explicitly, it argues that for any process that brings a system into
an equilibrium state starting from a non-equilibrium situation, there exists an
equally physically allowed reverse process that takes the system out of equilib-
rium. The initial state for that process is obtained from the equilibrium state
by reversing all velocities (see Panel (a)). The recurrence objection, which is
based on the Poincaré recurrence theorem but was made explicit by Zermelo
[Zer96], states that Boltzmann’s H-theorem is in conflict with Hamiltonian dy-
namics, because it can be proven on very general grounds that all finite systems
are recurrent, i.e., return arbitrarily close to their initial state after possibly very
long times (see Panel (b)).

In his 1872 article [Bol72] Boltzmann aims at showing that the Maxwell-Boltzmann

distribution is the equilibrium distribution of the speed of gas particles and that a gas
with an initially different distribution must inevitably approach it. He tries to do this on
the grounds of microscopic considerations and starts off from the prototypical model
of the hard sphere gas. He takes for granted that in equilibrium the distribution of the
particles should be “uniform” and that their speed distribution should be independent
of the direction of movement. He assumes that the number of particles is large and
introduces a continuously differentiable function called “distribution of state”1, which
is meant to approximate the (discrete) distribution of the speed of the particles. He
then derives a differential equation for the temporal evolution of this function, known

1German original [Bol72]: “Zustandsverteilung”

8



1 Remarks on the foundations of statistical mechanics

today as the Boltzmann equation. He also defines an entropy for the “distribution of
state” and shows that it increases monotonically in time under the dynamics given by
the Boltzmann equation, a statement he calls H-Theorem, after the letter H used for
denoting the entropy.

During the derivation he makes several approximations. Essential is his “Stoßzahl
Ansatz”, later dubbed the“hypothesis of molecular disorder” in Ref. [Bol96b], which
explicitly breaks the time reversal invariance of classical mechanics. This breaking of
the time reversal symmetry is responsible for the temporal increase of entropy reminis-
cent of the second law of thermodynamics. Naturally this assumption has been much
criticized. Famous are the time reversal objection of William Thomson and Loschmidt
and the recurrence objection due to Poincaré and Zermelo [Skl95] (see Fig. 1.1.1).

The bottom line of this debate, also later acknowledged by Boltzmann [Bol96a], is
that any statement that implies the convergence of a finite system to a fixed equilibrium
state/distribution in the limit of time going to infinity is incompatible with a time re-
versal invariant or recurrent microscopic theory. This will be important for the notions
of equilibration we will discuss later in Section 2.2.

1.1.2 Gibbs’ ensemble approach

For many, Gibbs’ book “Elementary principles in statistical mechanics” [Gib02] from
1902 marks the birth of modern statistical mechanics [Uff06]. Central in Gibbs’ ap-
proach is the concept of an ensemble, which he describes as follows: “We may imag-
ine a great number of systems of the same nature, but differing in the configurations
and velocities which they have at a given instant [. . . ] we may set the problem, not to
follow a particular system through its succession of configurations, but to determine
how the whole number of systems will be distributed among the various conceivable
configurations and velocities at any required time [. . . ]”

In fact, the book then is not so much concerned with (non-equilibrium) dynamics, but
rather with the calculation of statistical equilibrium averages. Gibbs considers systems
whose phase space is, as in Hamiltonian mechanics, spanned by canonical coordinates
and introduces the microcanonical, canonical, and grand canonical ensemble for such
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1.1 Canonical approaches

systems. He assumes that the number of states is high enough such that a description
with a, as he calls it, “structure function”, a kind of density of states, is possible. He
shows how various thermodynamic relations for quantities such as temperature and
entropy can be reproduced from his ensembles, if these quantities are properly defined
in terms of the structure function.

Gibbs is mostly concerned with defining recipes for the description of systems in
equilibrium. He gives little insight into why the ensembles he proposes capture the
physics of thermodynamic equilibrium or how and why systems equilibrate in the first
place [Uff06]. Instead of addressing such foundational questions he is “contented with
the more modest aim of deducing some of the more obvious propositions relating to
the statistical branch of mechanics”[Gib02].

1.1.3 (Quasi-)ergodicity

The ergodicity hypothesis was essentially born out of the incoherent use of different
interpretations of probability by Boltzmann in his early work [BH68] and was formu-
lated by him in Ref. [Bol71] as follows: “The great irregularity of the thermal motion
and the multitude of forces that act on a body make it probable that its atoms, due to
the motion we call heat, traverse all positions and velocities which are compatible with
the principle of [conservation of] energy.”2 The concept of ergodicity was made promi-
nent by P. and T. Ehrenfest in Ref. [EE02], who proposed the ergodic foundations of

statistical mechanics [Uff06].

Roughly speaking, a system is called (quasi-)ergodic if it explores its phase space
uniformly in the course of time for most initial states. Making precise what “uni-
formly”, “most”, and “in the course of time” mean in this context already constitutes a
mayor challenge [Uff06]. However, if one is willing to believe that a systems at hand
is ergodic in an appropriate sense then it readily follows that (infinite time) temporal
averages of physical quantities in that system are (approximately and/or with “high
probability”) equal to certain phase space averages, such as for example that given by
the microcanonical ensemble.

2The English translation is taken from Ref. [Uff06].
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1 Remarks on the foundations of statistical mechanics

The ergodic foundations of statistical mechanics are then roughly based on argu-
ments along the following lines: Any physical measurement must be carried out during
a finite time interval. What one actually observes is not an instantaneous value, but an
average over this time span. The relevant time spans might seem short on a human
time scale, but can at the same time be “close to infinite” compared to the microscopic
time scales. Think for example of the process of measuring the pressure in a gas con-
tainer with a membrane. The moment of inertia of the membrane is much too large
to observe the spikes in the force due to hits by individual particles. It is thus reason-
able to assume that observations are well described by (infinite time) averages of the
corresponding quantities, which, if the system is quasi-ergodic, can be calculated by
averaging in an appropriate way over phase space.

The arguably most striking objection against such reasoning is the following [Skl95]:
If it were in fact true that all realistic measurements could legitimately be described as
infinite time averages, then the observation of any non-equilibrium dynamics, including
the approach to equilibrium, would simply be impossible. The latter is manifestly not
the case.

Besides this issue of the “infinite time” averages and the other problems mentioned
above it is extraordinarily difficult to show that a given system is (quasi-)ergodic. De-
spite the ground breaking works of Birkhoff and von Neumann on the concept of metric

transitivity, Sinai’s work on dynamical billiards, and more recent approaches such as
Khinchin’s ergodic theorem, the full problem still awaits solution [Uff06].

1.1.4 Jaynes’ maximum entropy approach

Conceptually very different from the three previously discussed approaches is the work
of Jaynes [Jay57a]. He fully embraces a subjective interpretation of probability and
proposes to regard statistical physics as a “form of statistical inference rather than
a physical theory”. He then introduces a maximum entropy principle. In short, the
maximum entropy principle states that in situations where the existing knowledge is
insufficient to make definite predictions the best possible predictions can be reached by
finding the distribution of the state space of the system that maximizes the (Shannon)
entropy and is compatible with the knowledge. The principle is inspired by the work
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1.2 Closing remarks

of Shannon [Sha49] who, as Jaynes claims, had shown that the maximum entropy
distribution is the one with the least bias towards the missing information [Jay57a]:
“[The] maximum entropy distribution may be asserted for the positive reason that it
is uniquely determined as the one which is maximally noncommittal with respect to
missing information.”

Moreover, in Ref. [Jay57a], Jaynes shows in quite some generality that the “usual
computational rules [as presented in Gibbs’ book [Gib02]] are an immediate conse-
quence of the maximum entropy principle”. In addition, he points out various other
advantages of his subjective approach. For example that it makes predictions “only if
the available information is sufficient to justify fairly strong opinions”, and that it can
account for new information in a natural way.

While Jaynes principle can be used to justify the methods of statistical mechanics
it gives little insight into why and under which conditions these methods yield results
that agree with experiments. In other words: The maximum entropy principle ensures
that making predictions based on statistical mechanics is “best practice”, but does not
explain why this “best practice” is good enough. The question “Why does statistical
mechanics work?” hence remains partially unanswered.

A last point of criticism is that Ref. [Jay57a] works in a classical setting. While
an extension to quantum mechanics is possible [Jay57b] the subjective interpretation
of probability advertised by Jaynes is arguably less convincing or at least debatable in
this setting, although this is of course to some extend a matter of taste [Fuc10, Tim08].
Problems arise because mixed quantum states can be written as convex combinations
of pure states in more than one way so that more complicated arguments are needed to
identify the von Neumann entropy as the right entropy measure to be maximized.

1.2 Closing remarks

Except for Jaynes subjective maximum entropy principle, all approaches we have dis-
cussed in this chapter differ in one important point from that advertised in the main
part of this thesis: They are based on classical mechanics. The applicability of classi-
cal models to systems that behave thermodynamically is however questionable.

12



1 Remarks on the foundations of statistical mechanics

Consider for example two of the most prominently used models in statistical me-
chanics: The hard sphere model for gases and the Ising model for ferromagnetism.
The atoms and molecules of a gas, as well as the interactions between them, in prin-
ciple require a quantum mechanical description. It is however often claimed that in
the so-called Ehrenfest limit, i.e., if the spread of the quantum mechanical wave pack-
ets of the individual particles is small compared to the “radius” of the particles, the
classical hard sphere approximation is eligible. It can however be shown that under
reasonable conditions systems typically leave the Ehrenfest limit on timescales much
shorter than those of usual thermodynamic processes [GMM09, Chapter 4]. Moreover,
whether the Ehrenfest limit constitutes a sufficient condition for the applicability of
(semi)classical approximations in the first place is debatable [BYZ94]. Similarly, the
relevant elementary magnetic moments of a piece of iron, namely the electronic spins,
are intrinsically quantum. In fact, it is known that classical physics alone cannot ex-
plain the phenomenon of ferromagnetism in a satisfactory way — a statement known
as Bohr–van Leeuwen theorem [Aha00, Boh72, NR09]. The extremely simplified de-
scription employed in the Ising model can thus, despite its pedagogical value, arguably
not capture all the relevant physics.

In addition to this, there are many situations where thermodynamic behavior cannot
be understood in a purely classical framework [Gre95]: For example, black-body radi-
ation cannot be understood without postulating a quantization of energy to avoid the
ultraviolet catastrophe. Further prime example for this are gases of indistinguishable
particles. An application of classical physics leads to Gibbs’ paradox for the mixing
entropy and the statistics of Bose and Fermi gases at low temperatures cannot be ex-
plained classically. Last but not least, the “freezing out” of certain internal degrees of
freedom of molecular gases, which impacts their heat capacities, cannot be understood
in a convincing way from classical physics alone.

In the light of the above discussion it appears reasonable to try to “derive” statistical
mechanics and thermodynamics from quantum mechanics. In the following we will
thus specifically use quantum mechanics as the underlying microscopic theory and
exploit quantum effects. It is not claimed that this can solve all the problems of the
canonical approaches, but, as we will see, it does help in explaining thermodynamic
behavior (for a comparison of the difficulties of that arise when one tries to justify the
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1.2 Closing remarks

methods of statistical mechanics starting either from classical or quantum mechanics
see also Ref. [RE13]).
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2 Pure state quantum statistical
mechanics

“Whenever a theory appears to you as the only possible one, take this as
a sign that you have neither understood the theory nor the problem which
it was intended to solve.”

— Karl Popper

As we have seen in the introductory chapter (Chapter 1) the canonical approaches
cannot convincingly explain the emergence of thermodynamic behavior from a micro-
scopic theory. Can this situation be improved by explicitly taking quantum effects into
account? In the remainder of this thesis we will investigate to which extend this is
possible.

Especially Refs. [Deu91, GMM09, Llo88, PSW05, PSW06, Sre94] argue for a new
interpretation of the foundations of statistical mechanics based on quantum theory. Fol-
lowing Refs. [Llo13, Llo88], we shall call this approach pure state quantum statistical

mechanics. During the last few years there has been enormous progress and the field
has attracted a significant amount of attention.

This development has partly been fueled by revolutionary improvements in the ex-
perimental techniques that have made it possible to observe the coherent, quantum me-
chanical non-equilibrium evolution of large systems, in particular in clouds of ultracold
atoms and ions [Aid+11, Blo05, GMEHB02, GMHB02, H+̈05, HLFSS07, KWW06,
RJ05, SHLVSK06, Str+07, TOPK06, Wel+08] (see also the reviews Refs. [BZ08,
Yuk11]) and the experimental observation of equilibration and thermalization in such
systems [Che+12, Gri+12, LGKRS13a, LGKRS13b, Tro+12].
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The great interest in the topic is reflected by an enormous amount of theoretical stud-
ies, including many (mostly) numerical works on equilibration and thermalization in
closed quantum systems and related topics [BMH13, CCJFL11, DSFVJ12, FEKW13,
IWU13, JS85, LOG10, RDYO07, SKS13, WM10, Yuk11, ZCH12, ZW13], often with
a focus on so-called quenches, i.e., rapid changes of the Hamiltonian [CCR11, CZ10b,
DOV11, GA12, JF11, KLA07, KRnRV11, KRRnGG12, MK08, MREF13, RDO08,
RF11, Rig09, RMO06, RS12, THS13, ZCH12]. In addition, there exists a large num-
ber of partly or entirely analytical works that study these and related phenomena in
concrete systems or classes of models (often integrable ones) [AGL11, Caz06, CC07,
CEF11, CIC12, CZ10a, EK08, EKMR13, Fag13, FCMSE08, FM10, GLMS13, IC09,
IC10, KGO10, KTS12, QKNS13, SPS04]. The above list is grossly incomplete.

The focus of this work lies on the fundamental aspects of the interplay between quan-
tum mechanics, statistical physics and thermodynamics. At the heart of the approach
advertised in this thesis lies the attempt to use standard quantum mechanics only to
explain the emergence of thermodynamic behavior, and to do this in a mathemati-
cally rigorous and general way. It is an invitation to explore how much of statistical
mechanics and thermodynamics can be derived from quantum mechanics. Derived

here means to justify the well established methods and postulates of equilibrium and
non-equilibrium statistical mechanics by means of the microscopic picture provided by
quantum mechanics. It is by no means the intention to overthrow statistical mechan-
ics, but rather to install a sound and solid foundation that can serve as a basis for this
extremely well corroborated theory.

We will follow three main guiding principles:

The first principle is to strictly stay in the well-defined setting of finite dimensional
closed system quantum mechanics with unitary time evolution. No additional pos-
tulates and no uncontrolled approximations are to be used. In particular, we will not

break the time reversal invariance of quantum mechanics, e.g., by making a Born-Mark

off approximation. In addition, we will try to avoid “putting probabilities by hand” by,
for example, assuming the applicability of a description relying on ensembles.

The second principle is to start off considering very general scenarios and to grad-
ually add more structure, and finally consider more concrete systems only, once this
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2 Pure state quantum statistical mechanics

seems indispensable to show the specific effect one is interested in. This is motivated
by the fact that thermodynamic behavior is ubiquitous in nature and that it hence seems
plausible that it is the consequence of very general mechanisms independent of specific
(toy) models. Moreover, this approach has the advantage of yielding insights into pre-
cisely which properties of a specific model are necessary or sufficient to yield a certain
behavior.

The third principle is that of mathematical rigor. It is the intention of the author to
reach a level of mathematical rigor that is above the standard of an average physics
article. Rigorous results will be organized in lemmas, theorems, and corollaries. Only
when stating a fully rigorous result would be too cumbersome, or giving all the nec-
essary conditions would obfuscate the physically relevant statement too much, we will
resort to making semi rigorous statements and call them observation.

On the downside, the elevated level of rigor will make it necessary to spend quite
some time to carefully introduce the basic concepts. On the upside, this will make it
easier to see exactly which assumptions are needed to prove a particular statement and
allow us to present the results in a form that makes them easily reusable in future work.

The main reason why an elevated level of rigor seems necessary is that on an intu-
itive, non-rigorous level we already know that statistical mechanics and thermodynam-
ics work and in which situations we expect them to be applicable. Arguing in favor of
the methods of statistical mechanics in a hand-wavy way thus seems superfluous.

For a reader with a good physical intuition many of the results discussed in this text
will be not very surprising. What is remarkable is the extent to which vague physical
intuition can actually be turned into rigorous theorems and what can be learned in the
process of doing this.

2.1 Preliminaries and notation

In this section we will fix the notation and introduce the concepts that form the mathe-
matical foundation of the theory of (mostly) finite dimensional, non-relativistic quan-
tum mechanics. The presentation will be limited to the minimum necessary to make
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2.1 Preliminaries and notation

the following statements well-defined. An effort has been made to make this intro-
duction self-contained. However, a basic knowledge of analysis, linear algebra, group
theory and related subjects is assumed. Technical terms are typeset in italics on their
first occurrence and when a definition is given. For some facts and terms that can safely
be assumed to be standard knowledge of readers familiar with quantum mechanics we
will not provide specific references. These facts and additional background informa-
tion can be found in introductory textbook such as Refs. [Fey70, NC07, Sak94], in the
more rigorous works Refs. [GP90, GP91, Tes09, Thi02], as well as in more specialized
textbooks, such as Refs. [Bha07, Bha97, RS75, RS80].

To begin with, we fix some general notation. We denote the logical and by ∧ and
the logical or by ∨. Given a number r ∈ R we denote by brc the greatest integer that
is less than or equal to r and by dre the least integer that is greater than or equal to r.
Given a positive integer n ∈ Z+ we use the short hand notation [n] := {1, . . . , n} for
the range of numbers from 1 to n and set [∞] := Z+. Given a complex number c ∈ C
we write |c| for its modulus and arg(c) for its argument, i.e., c = |c| ei arg(c).

Given a setX we denote its cardinality by |X|. IfX has a universal superset V ⊃ X ,
we write Xc := V \ X for its complement. It will always be clear from the context
what the universal superset is. We denote the empty set by ∅. Given two sets X, Y we
write X ∪ Y and X ∩ Y for their union and intersection. To stress that a set V is the
union of two disjoint sets X, Y , i.e., X ∩ Y = ∅ we write V = X ∪̇ Y . Given a set X
of sets we write ∪X :=

⋃
x∈X x for the union of the sets in X . For sequences S, |S|

denotes the length of the sequence. When we define sets or sequences in terms of their
elements we use curly { · } or round ( · ) brackets respectively.

Given two functions f, g with suitable domain and image we denote by g ◦ f their
composition, i.e., the function that is equivalent to applying g to the outcome of an
application of f .

When we write log we will always mean the logarithm to base 2 and denote the
natural logarithm by ln. We denote by δx,y the Kronecker delta, which for x, y ∈ C is
equal to 1 if x = y and zero otherwise.

We use the (Bachmann-)Landau symbols O, Ω and Θ to denote asymptotic growth
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2 Pure state quantum statistical mechanics

rates of real functions f, g : R→ R. In particular

f(x) ∈ O(g(x)) ⇐⇒ lim sup
x→∞

|f(x)/g(x)| <∞, (2.1.1)

and for Ω we adopt the convention from complexity theory that

f(x) ∈ Ω(g(x)) ⇐⇒ g(x) ∈ O(f(x)) (2.1.2)

and write f(x) ∈ Θ(g(x)) if both f(x) ∈ O(g(x)) and f(x) ∈ Ω(g(x)).

To simplify the notation we work with natural, or Planck units such that in particular
the Planck constant ~ and the Boltzmann constant kB are equal to 1.

2.1.1 Hilbert space and state vectors

Let H be a separable Hilbert space over C. We use Dirac-notation, i.e., we denote
by 〈ϕ|ψ〉 the inner product of |ϕ〉, |ψ〉 ∈ H, write |ψ〉 ∈ H for elements of H and
denote linear functionals on H by 〈ψ| : H → C. The inner product induces the norm
‖| · 〉‖ :=

√
〈 · | · 〉 on vectors fromH, which we will refer to as the Hilbert space norm.

We call the normalized elements |ψ〉 ∈ H, i.e., those with ‖|ψ〉‖ = 1, state vectors. A
countable subset B ⊂ H of linearly independent vectors is called a basis of H if each
element in H can be arbitrarily well approximated by a linear combination of vectors
from B. The number of elements in a basis of a given Hilbert space H is independent
of the particular choice of the basis and is called the dimension dim(H) ∈ Z+∪{∞} of
H. A basisB = (|k〉)dim(H)

k=1 is called orthonormal if 〈k|l〉 = δk,l for all k, l ∈ [dim(H)].

Throughout most of this thesis we will work in the framework of finite dimensional
quantum mechanics. That is, if not explicitly stated otherwise, we consider systems
that are described by a Hilbert spaceH over C whose dimension d := dim(H) is finite.
In Section 2.2.3 however, we will consider systems of bosons, whose Hilbert space is
infinite dimensional. As we have to make this exception, we will keep this introduction
more general than would be necessary in the exclusively finite dimensional setting and
be a bit more careful when introducing the fundamental concepts, without, however,
delving into the details of functional analysis [BR87, BR97, RS75, RS80].
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2.1 Preliminaries and notation

2.1.2 Observables and states

Let B(H) be the Banach space of bounded (linear) operators on the (for now not
necessarily finite dimensional) Hilbert spaceH, i.e.,

∀A ∈ B(H) : ‖A‖∞ := sup
|ψ〉∈H : ‖|ψ〉‖=1

‖A|ψ〉‖ <∞. (2.1.3)

We call ‖ · ‖∞ the operator norm and denote the identity operator onH by 1 ∈ B(H).
Each A ∈ B(H) has a unique (Hermitian) adjoint A† ∈ B(H) with the property that

∀|ψ〉, |φ〉 ∈ H : 〈φ|A|ψ〉∗ = 〈ψ|A†|φ〉. (2.1.4)

We call an operator A ∈ B(H) self-adjoint if A = A†. The space of bounded linear
operators B(H), together with the usual operator multiplication (concatenation) and
the involution † is a C∗-algebra [Arv76].

For any two operators A,B ∈ B(H) we define their commutator [A,B] := AB −
BA and their anti-commutator {A,B} := AB + BA. We say that A,B commute

or anti-commute if [A,B] = 0 or {A,B} = 0 respectively. The rank of an operator
A ∈ B(H), denoted by rankA, is the dimension of its image.

An operator Π ∈ B(H) is a projector if Π Π = Π. A projector Π ∈ B(H) is self-
adjoint if and only if it is an orthogonal projector, i.e., it acts like the identity on a
subspace of H and maps the orthogonal subspace to zero. An operator U ∈ B(H)

is called unitary if U † U = U U † = 1. The unitary operators on a Hilbert space of
dimension d form a group, which we denote by U(d). The elements of the subspace
O(H) ⊂ B(H) of self-adjoint operators are called observables.

Denoting by (|j〉)dim(H)
j=1 some orthonormal basis ofH, we define the trace

Tr(A) :=

dim(H)∑
j=1

〈j|A|j〉, (2.1.5)

for any operator A ∈ B(H) for which the series in Eq. (2.1.5) is absolutely convergent.
Any such operator is said to be trace class and the trace Tr is a linear functional on
the space of trace class operators T (H). Note that the definition is independent of the
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choice of the orthonormal basis. If A ∈ T (H) and B ∈ B(H), then both AB ∈ T (H)

and BA ∈ T (H), i.e., the space of trace class operators is an ideal.

To keep the rest of this section as simple as possible we will from now on assume
thatH is finite dimensional.

The spectral theorem tells us that any self-adjoint operatorA ∈ O(H) can be written
in the form

A =

| spec(A)|∑
k=1

ak Πk, (2.1.6)

which is called the spectral decomposition ofA. The sequence spec(A) := (ak)
| spec(A)|
k=1

of distinct and ordered, i.e., k < l =⇒ ak < al, eigenvalues ak ∈ R of A is called its
spectrum, Πk ∈ O(H) are the orthogonal spectral projectors onto the eigenspaces of
A, i.e.,

∀k ∈ [| spec(A)|] : AΠk = ak Πk. (2.1.7)

Eq. (2.1.6) moreover implies that for any self-adjoint operator there exists at least one
orthonormal basis (|ãk〉)dk=1 of eigenstates in which the operator A is diagonal, i.e.,
〈ãk|A|ãl〉 ∝ δk,l.

Given a measurable function f : R → R, the (Borel) functional calculus allows to
assign for any A ∈ O(H) (with spectral decomposition as in Eq. (2.1.6)) in a natural
way an operator to the expression f(A) that satisfies

f(A) =

| spec(A)|∑
k=1

f(ak) Πk. (2.1.8)

We will make use of this, for example, for the exponential function exp.

We call an operator A ∈ B(H) positive and write A > 0 if ∀|ψ〉 ∈ H : 〈ψ|A|ψ〉 > 0

and accordingly for negative. All positive and all negative operators are self-adjoint.
We call a self-adjoint operator A ∈ B(H) non-negative and write A ≥ 0 if spec(A) ∈
R+

0 and accordingly for non-positive. We generalize this notion to pairs of operators
A,B ∈ O(H) and write A ≥ B if A−B ≥ 0 and accordingly for ≤, >, and <.
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Together with the Hilbert-Schmidt inner product

∀A,B ∈ B(H) : 〈A,B〉 := Tr(A†B), (2.1.9)

B(H) is itself a Hilbert space with the induced norm

∀A ∈ B(H) : ‖A‖2 :=
√

Tr(A†A), (2.1.10)

called the (Schatten) 2-norm.

Consider the dual space B∗(H) of the space of bounded linear operators B(H), i.e.,
B∗(H) is the space of linear functionals that map B(H) to C. Riesz representation

theorem ensures that all elements of B∗(H) can be uniquely written in the form 〈A, · 〉
for some trance class operator A ∈ T (H). The natural norm on the space of trace class
operators T (H) is the (Schatten) 1-norm defined by

∀A ∈ T (H) : ‖A‖1 :=

dim(H)∑
j=1

|〈j|A|j〉| <∞, (2.1.11)

where (|j〉)dim(H)
j=1 is some orthonormal basis of H. The definition is independent

of the choice of the orthonormal basis. The normalized trace class operators ρ ∈
T (H), ‖ρ‖1 = 1 whose associated linear functional 〈ρ, · 〉 is non-negative, i.e., ∀A ≥
0: 〈ρ,A〉 ≥ 0, form the convex set S(H) of (quantum) states or density operators. As
we will see later in Section 2.1.3, the quantum state of a system encodes all the infor-
mation about a system that is necessary to predict the probabilities of the outcomes of
all measurements that can be performed on it.

It turns out that in the finite dimensional setting considered here S(H) ⊂ O(H) is
the convex set of self-adjoint, non-negative operators with unit trace. We call the state
1 /d ∈ S(H) the maximally mixed state. The extreme points of S(H) are rank one
projectors of the form |ψ〉〈ψ| and are called pure states. Up to a complex phase they
are in one to one correspondence with state vectors. Given a state vector |ψ〉 ∈ H we
will sometimes use the short hand notation ψ := |ψ〉〈ψ| for the associated quantum
state.

Given a bounded operator A ∈ B(H) and a state ρ ∈ S(H), the expectation value of
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A in state ρ is defined as
〈A〉ρ := Tr(Aρ). (2.1.12)

This expression is most useful in the case where A is an observable, i.e., A ∈ O(H),
to express the expectation value of the observable in successive measurements on in-
dependently and identically prepared quantum systems. We will see what measuring
an observable means in the next section.

2.1.3 Measurements and completely positive maps

Quantum mechanics is an operational theory, i.e., its formalism includes mathematical
objects that describe what can be done with a quantum system prepared in a certain
state. The actions on a system can be either measurements or so-called (quantum)

operations.

The most general measurements possible in quantum mechanics are so-called posi-

tive operator valued measurements (POVMs) [NC07]. A POVM with K measurement
outcomes is a sequence M = (Mk)

K
k=1 of operators Mk ∈ B(H), called POVM ele-

ments, with the property that
K∑
k=1

Mk = 1 . (2.1.13)

Upon measuring a system in state ρ ∈ S(H) with the POVM M , outcome number k is
obtained with probability Tr(Mk ρ). When we say that an observable A ∈ O(H), with
spectral decomposition A =

∑d′

k=1 ak Πk, is measured, we mean that the POVM M =

(Πk)
d′

k=1 is measured and the measurement device outputs the value ak when outcome
k is obtained. The average value output by the device in measurements of identically
prepared systems is then indeed given by Eq. (2.1.12). A measurement of a POVM
where all the POVM elements are projectors is called a projective measurement. The
measurement statistic of a POVM in a state ρ is the vector of probabilities Tr(Mk ρ).

The most general (quantum) operations in quantum mechanics are captured by
so-called completely positive trace preserving maps, also-called quantum channels

[NC07]. We call maps B(H) → B(H) superoperators. We denote the identity su-
peroperator by id : B(H) → B(H). A linear map C : O(H) → O(H) is then called
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completely positive trace preserving if for all separable Hilbert spacesH′ it holds that

∀ρ ∈ S(H⊗H′) : (C ⊗ id) ρ ∈ S(H⊗H′). (2.1.14)

In the finite dimensional setting considered here, it turns out that fixing H′ = H in
Eq. (2.1.14) already gives a necessary and sufficient condition for a map C : O(H)→
O(H) to be completely positive trace preserving [NC07]. We denote the set of all
completely positive trace preserving maps on S(H) by T +(H).

A particularly important kind of quantum operation is time evolution under a Hamil-
tonian (more on that in Section 2.1.6).

2.1.4 Norms, distance measures and distinguishability

The natural norm for observables is the operator norm ‖ · ‖∞. A useful family of further
norms are the unitary invariant norms, i.e., norms ||| · ||| with the property that

∀U ∈ U(d) : ||| · ||| =
∣∣∣∣∣∣U ·U †∣∣∣∣∣∣ , (2.1.15)

and a particularly useful subclass thereof are the (Schatten) p-norms. For every 1 ≤
p <∞ the Schatten p-norm of an operator A ∈ B(H) is defined as [Bha97]

‖A‖p :=

[
d∑
j=1

(sj(A))p

]1/p

, (2.1.16)

where (sj(A))dj=1 is the ordered, i.e., s1(A) ≥ · · · ≥ sd(A), sequence of non-negative,
real singular values of A. If the operator A is self-adjoint and non-degenerate, then
the sequence of its singular values is equal to the sequence of the moduli of its eigen-
values. For p = 1, p = 2, and p → ∞ definition Eq. (2.1.16) is consistent with
Eq. (2.1.11), Eq. (2.1.10), and Eq. (2.1.3). The Schatten p-norms are ordered in the
sense that [Bha97]

∀A ∈ B(H) : ‖A‖p ≤ ‖A‖p′ ⇐⇒ p ≥ p′ (2.1.17)
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and in the converse direction the following inequalities hold [Bha97]

‖ · ‖1 ≤
√
d ‖ · ‖2 ≤ d ‖ · ‖∞ . (2.1.18)

For quantum states a natural and frequently used distance measure is the trace dis-

tance [NC07]
∀ρ, σ ∈ S(H) : D(ρ, σ) :=

1

2
‖ρ− σ‖1 . (2.1.19)

It is, up to the factor of 1/2, the metric induced by the Schatten 1-norm ‖ · ‖1 (see
Eq. (2.1.11)). Its relevance stems from the fact that it is equal to the maximal difference
between the expectation values of all normalized observables in the states ρ and σ, i.e.,
[NC07]

D(ρ, σ) = max A∈O(H) : 0≤A≤1 Tr(Aρ)− Tr(Aσ). (2.1.20)

Moreover, if one is given an unknown quantum system and is promised that with prob-
ability 1/2 it is either in state ρ or state σ, then the maximal achievable probability pmax

for correctly identifying the state after a single measurement of the optimal observable
from Eq. (2.1.20) is given by [AL13, Sho10]

pmax =
1 +D(ρ, σ)

2
. (2.1.21)

Inspired by this, one can define the distinguishability of two quantum states under a
restricted setM of POVMs. The optimal success probability for single shot state dis-
crimination is then again given by an expression of the form (2.1.21), but with D(ρ, σ)

replaced by [SF12]

DM(ρ, σ) := sup
M∈M

1

2

|M |∑
k=1

|Tr(Mk ρ)− Tr(Mk σ)|, (2.1.22)

and it holds that
DM(ρ, σ) ≤ D(ρ, σ). (2.1.23)

with equality for all ρ, σ ∈ S(H) if and only ifM is a dense subset of the set of all
POVMs [SF12]. It is worth noting that DM( · , · ) is a pseudometric on S(H), i.e., it is
a symmetric, positive semidefinite bilinear form, but DM(ρ, σ) = 0 6=⇒ ρ = σ. For
further properties of the distinguishability DM see for example Ref. [AL13].
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2.1.5 Entropy

An important quantity in quantum information theory is the von Neumann entropy

S(ρ) := −Tr(ρ log2 ρ). (2.1.24)

It is a generalization of the Shannon entropy for classical probability distributions and it
has many desirable features [Thi02]. The von Neumann entropy has many applications
in quantum information theory [NC07], but there is no a priori reason to believe that it
is the, or a, thermodynamic entropy. Nevertheless, it will feature in some of the results
that we will discuss later.

2.1.6 Time evolution

A physically particularly important type of quantum operation is time evolution of a
closed system under a Hamiltonian. This type of time evolution is often described
in either of two equivalent formulations known as the Schrödinger picture and the
Heisenberg picture. In the former, the state of a quantum system is considered to be
time dependent and the observables are time independent. In the latter, the observables
are evolved backwards in time from the time of the measurement to the beginning of
the time evolution (for more details see for example Ref. [KGE13]). We will mostly
work in the Schrödinger picture.

The (time independent) Hamiltonian H ∈ O(H) of a finite dimensional quantum
system has the spectral decomposition

H =
d′∑
k=1

Ek Πk (2.1.25)

where the Πk ∈ O(H) are its orthogonal (and mutually orthogonal) spectral projectors

and d′ := | spec(H)| ≤ d = dim(H) is the number of distinct, ordered (energy)

eigenvalues Ek ∈ R of H , i.e., k < l =⇒ Ek < El. The subspaces on which the Πk

project are called (energy) eigenspaces or energy levels. IfH is non-degenerate it holds
that Πk = |Ek〉〈Ek| with (|Ek〉)dk=1 a sequence of orthonormal energy eigenstates of H
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and d := dim(H) the dimension of H. If H has degeneracies the energy eigenstates
are not unique (not even up to a phase), but a basis of orthonormal energy eigenstates
can still be constructed by choosing an arbitrary orthonormal basis in each energy
eigenspace.

The Hamiltonian H governs the time evolution ρ : R→ S(H) of the state of a quan-
tum system via the (Schrödinger-)von-Neumann-equation, which in the Schrödinger
picture reads

∂

∂t
ρ(t) = −i[H, ρ(t)]. (2.1.26)

Its formal solution can be given in terms of the time evolution operator, which in the
case of time independent Hamiltonian dynamics is given by the operator exponential

∀t ∈ R : U(t) := e−iH t ∈ B(H). (2.1.27)

The time evolved quantum state at time t is then

ρ(t) := U †(t) ρ(0)U(t), (2.1.28)

with ρ(0) the initial state at time t = 0.

The temporal evolution of the expectation value of an observable A ∈ O(H) then
solves

〈A〉ρ(t) = Tr[AU †(t) ρ(0)U(t)] = Tr[U(t)AU †(t) ρ(0)]. (2.1.29)

One can thus equally well-define the time evolution of an observable A : R → O(H),
with the initial valueA(0) given by the operatorA from Eq. (2.1.29), by settingA(t) :=

U(t)A(0)U †(t), and consider a fixed quantum state ρ ∈ S(H), equal to the initial state
ρ(0) in Eq. (2.1.29). Then 〈A(t)〉ρ is equal to 〈A〉ρ(t) from Eq. (2.1.29) for all t ∈ R.

The time evolutionA : R→ O(H) of an observable in the Heisenberg picture solves
the differential equation

∂

∂t
A(t) = i[H,A(t)]. (2.1.30)

We call all observables A ∈ O(H) that commute with the Hamiltonian, i.e., for
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which [H,A] = 0, conserved quantities. It follows directly from Eq. (2.1.30) that
the expectation value of all conserved quantities is independent of time, irrespective
of the initial state, which justifies the name. If the Hamiltonian H is non-degenerate,
then exactly the observables that are diagonal in the same basis as H are conserved
quantities. In the presence of degeneracies exactly the observables A ∈ O(H) for
which some basis exists in which both A and H are diagonal are conserved quantities.

2.1.7 Time averages and dephasing

Given a function f depending on time, we define its finite time average

f
T

:=
1

T

∫ T

0

f(t), (2.1.31)

and its (infinite) time average

f := lim
T→∞

f
T
, (2.1.32)

whenever the limit exists. In all cases we will be interested in, the existence of the limit
in Eq. (2.1.32) is guaranteed by the theory of (Besicovitch) almost-periodic functions
[Bes26].

In particular we will encounter the time averaged state ω := ρ, which is, in the finite
dimensional case considered here, equal to the initial state ρ(0) dephased with respect
to the Hamiltonian H , i.e., ω = $H(ρ(0)), with the dephasing map

$H( · ) :=
d′∑
k=1

Πk ·Πk (2.1.33)

and (Πk)
d′

k=1 the sequence of orthogonal spectral projectors ofH (see also Section 2.3).

2.1.8 Composite quantum systems and reduced states

We will encounter systems consisting of smaller subsystems. Often their Hamiltonian
can be written as a sum of Hamiltonians that each act non-trivially only on certain
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subsets of the whole system. We will refer to such systems as composite (quantum)

systems or as locally interacting (quantum) systems, depending on whether we want to
stress that they consist of multiple parts or that the interaction between the parts has a
special structure. If a composite system consists of two or three subsystems, then we
will also call it a bipartite or tripartite system. Of course this does not exclude that
those subsystems are themselves composite systems.

The notion of locally interacting quantum systems can be formalized by means of an
interaction (hyper)graph G := (V , E), which is a pair of a vertex set V and an edge set

E . In the following we will explain in detail what the vertex and edge sets are and how
the Hilbert spaces of a composite system can be constructed.

The vertex set V is the set of indices labeling the sites of the system and we will
work under the assumption that |V| < ∞. The Hilbert space H of such a system is
either, in the case of spin systems, the tensor product

⊗
x∈V H{x} of the Hilbert spaces

H{x} of the individual sites x ∈ V , or, in the case of fermionic or bosonic systems, the
Fock space, or a subspace of the latter.

We will encounter bosons, which usually need to be described using infinite dimen-
sional Hilbert spaces, only in Section 2.2.3, hence we want to avoid the technicalities of
a proper treatment of infinite dimensional Hilbert spaces and unbounded operators in
the framework of functional analysis. We will thus only introduce the minimal notation
necessary to formulate the statements we will discuss in Section 2.2.3.

The sites x ∈ V of fermionic and bosonic composite systems are often called modes.
In the case of fermions each mode is equipped with the Hilbert space Hf

{x} = C2

with orthonormal basis ((|n〉f )1
n=0, and in the case of bosons with the Hilbert space

Hb
{x} = `2 of square summable sequences with orthonormal basis (|n〉b)∞n=0.

Bosons and fermions are two kinds of indistinguishable particles that occur in na-
ture. The indistinguishability has profound implications for their statistical proper-
ties and their mathematical description. The Hilbert space of a composite system of
fermions/bosons is not the tensor product of the Hilbert spaces of the modes. For
composite systems with exactly N fermions or bosons in M modes, i.e., V = [M ],
the Hilbert space is given by a so-called Fock layer. The Fock layer to particle num-
ber N is the complex span of the orthonormal Fock (basis) states |n1, . . . , nM〉f or
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|n1, . . . , nM〉b respectively, where for each x ∈ V , nx is the number of particles in
mode x and thus

∑
x∈V nx = N with nx ∈ {0, 1} in the case of fermions, and nx ∈ [N ]

in the case of bosons.

The full Fock space of a system of fermions or bosons is the Hilbert space comple-
tion of the direct sum of the Fock layers for each possible total particle number. For
fermions it holds that N ≤ M due to the Pauli exclusion principle, and the resulting
Hilbert space is hence finite dimensional. In the case of bosons N is independent of M
and the Fock space is thus infinite dimensional already for a finite number of modes.

We define the fermionic and bosonic annihilation operators fx and bx on site x and
the corresponding creation operators f †x and b†x (collectively often referred to as simply
the fermionic/bosonic operators) via their action on the Fock basis states given by

fx|n1, . . . , nM〉f = nx(−1)
∑x−1

y=1 ny | . . . , nx1 , nx − 1, nx+1, . . . 〉f (2.1.34)

f †x|n1, . . . , nM〉f = (1− nx)(−1)
∑x−1

y=1 ny | . . . , nx1 , nx + 1, nx+1, . . . 〉f (2.1.35)

and

bx|n1, . . . , nM〉b =
√
nx|n1, . . . , nx1 , nx − 1, nx+1, . . . , nM〉b (2.1.36)

b†x|n1, . . . , nM〉b =
√
nx + 1|n1, . . . , nx1 , nx + 1, nx+1, . . . , nM〉b. (2.1.37)

They satisfy the (anti) commutation relations

{fx, fy} = {f †x, f †y} = 0 {fx, f †y} = δx,y (2.1.38)

[bx, by] = [b†x, b
†
y] = 0 [bx, b

†
y] = δx,y. (2.1.39)

The products f †x fx and b†x bx are called particle number operators as

f †x fx|n1, . . . , nM〉f = nx|n1, . . . , nM〉f (2.1.40)

and respectively for bosons.

Any operator that commutes with the total particle number operator
∑

x∈V f
†
x fx or∑

x∈V b
†
x bx respectively is called particle number preserving. In systems with particle
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number preserving Hamiltonians a constraint on the particle number can be used to
make the description of bosonic systems with finite dimensional Hilbert spaces possi-
ble. The Hilbert space is then a finite direct sum of Fock layers. We say that a state has
a finite particle number if it is completely contained in such a finite direct sum of Fock
layers.

Two comments concerning the mathematical structure are in order: First, for
fermions f †x is indeed the adjoint of fx in the sense of Eq. (2.1.4). Second, strictly
speaking, for bosons expressions such as those in Eq. (2.1.39) are in the context of this
work not rigorously well-defined. The operators bx and b†x are unbounded operators

and we have not introduced the mathematical machinery necessary for a proper treat-
ment of such operators. Equations such as those in Eq. (2.1.39) in the current work are
to be seen as formal expressions. For example, the action of [bx, by] on a Fock basis
state can be calculated using the relations in Eq. (2.1.36). To avoid the difficulties
of a proper treatment of unbounded operators we will in the following only consider
the identity operator and operators that can be written as polynomials in the bosonic
operators, whenever we talk about systems of bosons.

In systems of fermions, all operators can be written as polynomials of the fermionic
operators. A polynomial of fermionic operators is called even/odd if it can be written
as a linear combination of monomials that are each a product of an even/odd number
of creation and annihilation operators. According to the fermion number parity super-

selection rule [BnCW09], only observables that are even polynomials in the fermionic
operators can occur in nature. The same holds for the Hamiltonians and density ma-
trices of such systems. Consequently, whenever we make statements about systems of
fermions we assume that all observables, states and the Hamiltonian are even.

We refer to subsets of the vertex set V as subsystems. Generalizing the notation
introduced for the Hilbert spaces of the individual sites we denote the Hilbert spaces
associated with a subsystem X ⊆ V by HX and its dimension by dX := dim(HX). In
the case of composite systems of fermions or bosons it is understood that if an upper
bound on the total number of particles has been imposed, then HX is taken to be the
direct sum of Fock layers corresponding to the sites in X up to the total number of
particles. The size of a (sub)system X ⊆ V is given by the number of sites or modes
|X|, not the dimension of the corresponding Hilbert space.
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For spin systems we define the support supp(A) of an operator A ∈ B(H) as the
smallest subset of V such that A acts like the identity outside of X . For systems of
fermions or bosons we define the support of an operator via its representation as a
polynomial in the respective creation and annihilation operators. The support is then
the set of all site indices x ∈ V for which the polynomial contains a fermionic or
bosonic operator acting on site x, e.g., b†x or fx. The support of a POVMs is simply the
union of the supports of its POVM elements. Similarly, we define the support supp(C)

of a superoperator C : B(H)→ B(H) as the smallest subset of V such that

∀A ∈ B(H) : supp(A) ⊆ supp(C)c =⇒ C(A) = A. (2.1.41)

We say that an observable, POVM, or superoperator is local if the size of its support is
small compared to and/or independent of the system size.

In order to fully exploit the notion of a subsystem we need to understand how
the description of a joint system fits together with the description of a subsystem as
an isolated system, i.e., how systems can be combined and decomposed. For every
subsystem X ⊆ V there is a canonical embedding of B(HX) into B(H) that bijec-
tively maps B(HX) onto the subalgebra of bounded linear operators A ∈ B(H) with
supp(A) ⊆ X , and similarly for all operators that are polynomials of bosonic op-
erators. In the case of spin systems the embedding is simply the natural embedding
A ∈ B(HX) 7→ A ⊗ 1Xc ∈ B(H), where 1Xc denotes the identity operator on HXc .
In systems of fermions or bosons we associate to each operator onHX the operator on
H that has the same representation as a polynomial in the fermionic/bosonic operators,
but, of course, in terms of the fermionic/bosonic operators of the fully system with
Fock spaceH rather than the fermionic/bosonic operators that act onHX . For systems
of fermions, because of the phase in Eq. (2.1.34) that depends non-locally on the state,
this embedding depends on the exact position the sites in X have in the vertex set V .
The vertex set should hence rather be called vertex sequence, but for even operators the
phases cancel out, which is why we ignore this subtlety.

Conversely, for any A ∈ B(H) and any subsystem X ⊆ V : X ⊇ supp(A) that
contains supp(A) we define the truncation A�X ∈ B(HX) of A as the operator that
acts on the sites/modes in the subsystem X “in the same way” as A, in the sense that
a truncation followed by a canonical embedding gives back the original operator. In
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particular, for spin systems anyA ∈ B(H) is of the formA = A�supp(A)⊗1supp(A)c . For
general systems, the identity operator 1 of course satisfies 1X = 1�X for any X ⊂ V .

We now turn to the edge set. The edge set E is the set of all subsystems X ⊂ V for
which a non-trivial Hamiltonian term HX with supp(HX) = X exists that couples the
sites in X .

The Hamiltonian of a locally interacting quantum system with edge set E is of the
form

H =
∑
X∈E

HX , (2.1.42)

with supp(HX) = X for all X ∈ E . Generalizing this notation to subsystems X ⊂ V
that are not in E we define for any subsystem X ⊂ V the restricted Hamiltonian

HX :=
∑

Y ∈E : Y⊆X

HY ∈ O(H), (2.1.43)

which obviously fulfills supp(HX) ⊆ X . Note that we adopt the convention that HX

is an element of O(H) and not of O(HX).

We will also need the graph distance. In order to define it, we first need to give a
precise meaning to a couple of intuitive terms: We say that two subsystems X, Y ⊂ V
overlap if X ∩ Y 6= ∅, a set X ⊂ V and a set F ⊂ E overlap if F contains an edge that
overlaps with X , and two sets F, F ′ ⊂ E overlap if F overlaps with any of the edges
in F ′. A subset F ⊂ E of the edge set connects X and Y if F contains all elements of
some sequence of pairwise overlapping edges such that the first overlaps with X and
the last overlaps with Y and similarly for sites x, y ∈ V .

The (graph) distance d(X, Y ) of two subsets X, Y ⊂ V with respect to the (hy-
per)graph (V , E) is zero if X and Y overlap and otherwise equal to the size of the
smallest subset of E that connects X and Y . The diameter of a set F ⊂ E is the largest
graph distance between any two sets X, Y ∈ F . We extend the definition of the graph
distance to operators A,B ∈ B and set d(A,B) := d(supp(A), supp(B)).

A short side remark: We have now introduced for any subsystemX ⊂ V the notation
HX for the subsystem Hilbert space, HX for the restricted Hamiltonian, and A�X for
the truncation of an operator. Slightly abusing this notation we will later also give
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special meaning to symbols such as H0, HI or HR where the subscript is not a subset
of the vertex set V .

We will also make use of the notion of reduced states, or marginals. Given a quan-
tum state ρ ∈ S(H) of a composite system with subsystem X ⊂ V we write ρX for the
reduced state on X , which is defined as the unique quantum state ρX ∈ S(HX) with
the property that for any observable A ∈ O(H) with supp(A) ⊆ X

Tr(A�X ρ
X) = Tr(Aρ). (2.1.44)

Defining the reduced state in systems of fermions in this way is important to avoid
ambiguities [FLB13]. We will denote the map linear ρ 7→ ρX by TrXc . As TrXc is
linear can we naturally extend its domain to all of B(H) so that

TrXc : B(H)→ B(HX). (2.1.45)

In the case of spin systems TrXc is indeed the partial trace overXc = V \X as defined
for example in Ref. [NC07]. For time evolutions ρ : R → S(H) we use the natural
generalization of the superscript notation, i.e., ρX = TrXc ◦ ρ : R→ S(HX).

2.1.9 Correlations and entanglement

Correlations play a central role in the description of composite systems and hence in
condensed matter physics and statistical mechanics. It is beyond the scope of this work
to give a comprehensive overview of the different types and measures of correlations
(see for example Refs. [Kas11b, KE13, NC07, PV05]).

An important measure of correlation is the covariance, which for a quantum state
ρ ∈ S(H) and two operators A,B ∈ B(H) is defined to be

covρ(A,B) := Tr(ρAB)− Tr(ρA) Tr(ρB). (2.1.46)

It satisfies
| covρ(A,B)| ≤

√
〈A2〉ρ 〈B2〉ρ (2.1.47)
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and hence one defines the correlation coefficient as covρ(A,B)/
√
〈A2〉ρ 〈B2〉ρ. We

will encounter a slightly generalized version of the covariance in Section 2.10.

For a given state ρ ∈ S(H), if the outcomes of a measurement of two observables
A,B ∈ O(H) are considered as random variables, then covρ(A,B) = 0 if the random
variables are independent. The converse, however, is not necessarily true.

The covariance is most interesting as a correlation measure ifA andB act on disjoint
subsystems, i.e., supp(A) ∩ supp(B) = ∅. If for a given state ρ ∈ S(H) of a bipartite
system with V = X ∪̇ Y and any two observables A,B ∈ O(H) with suppA ⊆ X

and suppB ⊆ Y it holds that covρ(A,B) = 0, then we say that ρ is uncorrelated with
respect to the bipartition V = X ∪̇ Y .

Uncorrelated states of spin systems are product states. Consider a bipartite spin sys-
tem with Hilbert space H and vertex set V = X ∪̇ Y . A quantum state ρ ∈ S(H) is
said to be product with respect to this bipartition if ρ = ρX ⊗ ρY . The claimed equiv-
alence can be seen as follows: Given a state ρ ∈ S(H), covρ(A,B) = 0 implies that
Tr(AB (ρX ⊗ ρY )) = Tr(AB ρ). If this holds for all A,B ∈ O(H), then necessarily
ρX ⊗ ρY = ρ. We call a basis that consists entirely of product states a product basis.

Still in the setting of a bipartite spin system with Hilbert space H and vertex set
V = X ∪̇ Y , all quantum states of the form

ρ =
∑
j

pj ρ
X
j ⊗ ρYj (2.1.48)

with (pj)j a probability vector, i.e.,
∑

j pj = 1 and pj ≥ 0 for all j, and ρXj ∈ S(HX)

and ρYj ∈ S(HY ) for all j, are called separable or classically correlated with respect
to the bipartition V = X ∪̇ Y .

In spin systems all states that are not separable are entangled. There is a plethora of
measures of entanglement [PV05] and in multipartite scenarios even multiple inequiv-
alent forms of entanglement exist [HHH09]. In fermionic systems the situation is even
less clear [BnCW07].

One particular measure of entanglement that we will encounter in Section 2.8 is the
geometric measure of entanglement. For a state vector |ψ〉 ∈ H of a bipartite spin
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system with V = X ∪̇ Y the geometric measure of entanglement is defined as [BL01,
Shi95, WG03]

EX|Y (|ψ〉) := 1− sup
|φX〉∈HX ,|ψY 〉∈HY

|〈ψ|(|φX〉 ⊗ |φY 〉)|2 (2.1.49)

As for pure state vectors |ψ〉, |φ〉 ∈ H it holds that 1 − |〈ψ|φ〉|2 = D(ψ, φ)2 [NC07,
Section 9.2.2 and 9.2.3] the geometric measure of entanglement is a measure for how
far a given pure state is from the closest pure product state in trace distance, hence the
name.

2.1.10 Gibbs states

In quantum statistical mechanics a particularly important class of states are so-called
thermal, canonical, or Gibbs states. Essentially they are the quantum version of the
canonical ensemble. The Gibbs state of a system with Hilbert spaceH and Hamiltonian
H ∈ O(H) at inverse temperature β ∈ R is defined as

g[H](β) :=
e−β H

Z[H](β)
∈ S(H), (2.1.50)

where Z[H] is the (canonical) partition function defined as

Z[H](β) := Tr(e−β H). (2.1.51)

The Gibbs state has the important property that it is the unique quantum state that
maximizes the von Neumann entropy (2.1.24) given the expectation value of the Hamil-
tonian [Thi02]. This is a direct consequence of Schur’s lemma [Bha97] and the fact
that the same statement holds in classical statistical mechanics, as can be seen from
a straight forward application of the Lagrange multiplier technique. In fact, the in-
verse temperature β is nothing but the Lagrange parameter associated with the energy
expectation value.

For locally interacting quantum systems with a Hamiltonian H ∈ O(H) of the form
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given in (2.1.42) we adopt the convention that for any subsystem X ⊂ V

gX [H](β) = TrXc(g[H](β)) ∈ S(HX) (2.1.52)

denotes the reduction of the Gibbs state of the full system to the subsystemX (compare
Eq. (2.1.44)), while we write

gX [H](β) := TrXc(g[HX ](β)) = g[HX �X ](β) ∈ S(HX) (2.1.53)

for the reduced state on X of the Gibbs state of the restricted Hamiltonian HX , or
equivalently the Gibbs state of HX �X (compare Eq. (2.1.43)).

2.1.11 Microcanonical states

The microcanonical ensemble in quantum statistical mechanics takes the form of the
microcanonical state. Usually one defines the microcanonical ensemble and state with
respect to an energy interval [E,E + ∆]. Here we make the slightly more general
definition that will be useful later: The microcanonical state to any subset R ⊆ R of
the real numbers of a system with Hilbert space H and Hamiltonian H ∈ O(H) with
spectral decomposition H =

∑d′

k=1EkΠk is defined as

u[H](R) :=

∑
k:Ek∈R Πk

Zmc[H](R)
∈ S(H), (2.1.54)

where Zmc[H] is the microcanonical partition function defined as

Zmc[H](R) := Tr(
∑

k:Ek∈R

Πk). (2.1.55)

2.2 Equilibration

The dynamics of finite dimensional quantum system, as described in the previous sec-
tion, is recurrent [BL57, BM86, Per82, Sch78, Wal13] and time reversal invariant and
hence equilibration in the sense of an H-Theorem [Haa55] (see Section 1.1.1) is im-
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possible. This apparent contradiction between the microscopic theory of quantum me-
chanics and the thermodynamics behavior observed in nature is one of the big puzzles
of physics.

We will see in this section that the unitary time evolution of pure states of such sys-
tems does imply in a surprisingly general and natural way that certain time dependent
properties of quantum systems do dynamically equilibrate and that hence this apparent
contradiction can be resolved to a large extend.

We will concentrate on two notions of equilibration that we will call equilibration on

average and equilibration during intervals. After an introduction of these two notions
in Section 2.2.1 we will discuss them in detail in Sections 2.2.2 and 2.2.3. We conclude
in Section 2.2.4 with a conjecture concerning the relation of transport and equilibration.

2.2.1 Notions of equilibration

In this section we define and compare two notions of equilibration compatible with
the recurrent and time reversal invariant nature of unitary quantum dynamics in finite
dimensional systems. These notions will capture the intuition that equilibration means
that a quantity, after having been initialized at a non-equilibrium value, evolves towards
some value and then stays close to it for an extended amount of time. At the same
time, what we will call equilibration is less than what one usually associates with the
evolution towards thermal equilibrium. We will define a quantum analog of the latter,
call it thermalization, and discuss it in detail in Section 2.7.

To keep the definition of equilibration as general as possible we will refer ab-
stractly to time dependent properties of quantum systems, by which we mean func-
tions f : R→M that map time to some metric space M , for example R or S(H). The
metric will allow us to quantify how close the value of such functions is for different
times and in particular how close it is to the time average and “equilibrium values” of
the function.

Properties that we will be interested in include for example the time evolution of
expectation values of individual observables. We will also encounter subsystem equili-

bration. In this case the property is the time evolution of the state of the subsystem and
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the metric the trace distance. It will also be convenient to speak more generally of the
apparent equilibration of the whole system with the metric then being the distinguisha-
bility under a restricted set of POVMs introduced in 2.1.4.

We will discuss the following two notions of equilibration in more detail:

Equilibration on average: We say that a time dependent property equilibrates on av-

erage if its value is for most times during the evolution close to some equilibrium

value.

Equilibration during intervals: We say that a time dependent property equilibrates

during an interval if its value is close to some equilibrium value for all times during

that interval.

The use of the notion of equilibration on average in the quantum setting goes back to
at least the work of von Neumann [Neu29] and has recently been developed further, in
particular in Refs. [LPSW09, Rei08, Rei12, RK12, SF12, Sho10, Tas98]. We will see
that equilibration on average, especially for expectation values of observables as well
as for reduced states of small subsystems of large quantum systems, is an extremely
generic feature. In contrast, equilibration during intervals can to date only be proven
for few systems with very specific properties [CDEO08, CE09].

Equilibration on average implies that the equilibrating property spends most of the
time during the evolution close to its time average. This allows for a reasonable defini-
tion of an equilibrium state, which is then the time averaged or dephased state. As we
will see later in Section 2.7, this makes it possible to tackle the question of thermaliza-

tion in unitarily evolving quantum systems and to make statements about decoherence
in Section 2.4.

On the down side, a proof of equilibration on average alone does not immediately
imply much about the time scale on which the equilibrium value is reached after a
system is started in an out of equilibrium situation. We will see that even though it
is possible to bound these time scales, the bounds obtainable in the general settings
considered here are only of very limited physical relevance (see Section 2.6).

As we will see in the following, the statements on equilibration during intervals are
much more powerful in this respect. They imply bounds on the time it takes to equi-
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librate that scale reasonably with the size of the system and hence prove equilibration
on experimentally relevant time scales. On the other hand, in the few settings in which
equilibration during intervals of reduced states of subsystems has been proved, it is
known that the equilibrium states are not close to thermal states of suitably restricted
Hamiltonians. In particulate, no proof of thermalization (in the sens of the word we
will defined later in Section 2.7.1) based on a result on equilibration during intervals is
known to date.

We discuss both notions of equilibration in detail in the following two sections.

2.2.2 Equilibration on average

In this section we discuss equilibration on average. The outline is as follows: After
giving some historic perspective we will go through the main ingredients that feature
in the known results on equilibration on average and discuss their roll in the arguments
and to what extent they are physically reasonable and mathematically necessary. After
this preparation we will state, prove and interpret the arguably strongest result on equi-
libration on average known to date.

Already the founding fathers of quantum mechanics realized that the unitary evo-
lution of large, closed quantum systems, together with the immensely high dimension
of their Hilbert space and quantum mechanical uncertainty, could possibly explain the
phenomenon of equilibration. Most notable is an article of von Neumann [Neu29] from
1929, which already contains a lot of the ideas and even variants of some of the results
that can be found in the modern literature on the subject. The renewed interest in the
topic of equilibration was to a large extent a consequence of two independent theoret-
ical works by Reimann [Rei08] and Linden, Popescu, Short, and Winter [LPSW09].
The approach outlined there was then more recently refined and the results gradually
strengthened. Important contributions are in particular Refs. [RK12, SF12, Sho10].
Also very noteworthy is the often overlooked earlier work [Tas98].

The first fact that plays a prominent roll in the proofs of equilibration on average is
the immensely high dimension of the Hilbert space of most many body systems. As
we have seen in Section 2.1.8, the dimension of the Hilbert space of composite systems
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grows exponentially with the number of constituents. What actually matters, of course,
is the number of significantly occupied energy levels, rather than the number of levels
that are in principle available but not populated. For each k ∈ [d′] we define the occu-
pation pk := Tr(Πk ρ(0)) of the k-th energy level. Refs. [Rei08, Tas98] use max kpk,
the occupation of the most occupied level, to quantify the number of significantly occu-
pied energy levels. Ref. [LPSW09] uses a quantity called effective dimension, denoted
by deff(ω), which in our notation can be defined as

deff(ω) :=
1∑d′

k=1 p
2
k

≥ 1

max kpk
. (2.2.1)

If the initial state is taken to be an energy eigenstate, the resulting effective dimension is
one, while that resulting from a uniform coherent superposition of d̃ energy eigenstates
to different energies is d̃. This justifies the interpretation of deff(ω) as a measure of the
number of significantly occupied states. It is also reciprocal to a quantity that is known
mostly in the condensed matter literature as inverse participation ration [NM12] and
related to the time average of the Loschmidt echo [CZ10a, LUP98].

There are a number of different ways to argue why it is acceptable to restrict oneself
to initial states that populate a large number of energy levels when trying to prove the
emergence of thermodynamic behavior from the unitary dynamics of closed systems.
First, one can argue that initial states that only occupy a small subspace of the Hilbert
space of a large system behave essentially like small quantum systems and such sys-
tems are anyway not expected to behave thermodynamically, but rather show genuine
quantum behavior. Second, one can invoke the inevitable limits to the resolution and
precision of experimental equipment to conclude that preparing states that overlap only
with a handful of the roughly 21023 energy levels of a macroscopic system is impossi-
ble, even if we had apparatuses that were many orders of magnitude more precise than
the equipment available today [Rei08, RK12]. Finally, one can also take a more math-
ematical point of view and use results based on a phenomenon called measure concen-

tration [Cha07, Led01] that guarantees that uniformly random pure states drawn from
sufficiently large subspaces of a Hilbert space have, with extremely high probability,
an effective dimension with respect to any fixed, sufficiently non-degenerate Hamilto-
nian that is comparable to the dimension of that subspace [Gog10b, LPSW09, PSW05,
PSW06] (more on such typicality arguments in Section 2.5). If one is willing to assume
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Figure 2.2.1: Illustration of the non-degenerate energy gaps condition. No gap between two
energy levels may occur more than once in the spectrum, but the individual levels
may well be degenerate.

that such states are physically natural initial states, this can justify the assumption of a
large effective dimension. We will come back to this in Section 2.5 where we discuss
typicality. For an earlier work that directly mingles typicality arguments and dephasing
to derive an equilibration result see also Ref. [BL59].

As we will see below, it is actually sufficient for equilibration that max′k pk, the
second largest of the energy level occupations, is small. Note that in the physically
relevant situation of a system that is cooled close to its ground state max′k pk can be
orders of magnitude smaller than max kpk or 1/deff(ω). Although the proof of this
extension of previous results is not trivial [RK12], the physical intuition behind it is
clear: The expectation values of all observables of a system that is initialized in an
energy eigenstate are already in equilibrium. What can prevent equilibration on average
are not macroscopic populations of one energy level, but rather initial states that are
coherent superpositions of a small number of energy eigenstates. Such states can show
a behavior reminiscent of Rabi-Oscillations and not exhibit equilibration.

The second main ingredient to the proofs of Refs. [LPSW09, Neu29, Rei08, Tas98]
is the condition of non-degenerate energy gaps originally called the non-resonance

condition. We say that a Hamiltonian H has non-degenerate energy gaps, if for every
k, l,m, n ∈ [d′]

Ek − El = Em − En =⇒ (k = l ∧m = n) ∨ (k = m ∧ l = n), (2.2.2)

i.e., if every energy gap Ek −El appears exactly once in the spectrum of H . The orig-
inal condition used in Refs. [LPSW09, Neu29, Rei08, Tas98] is stronger and excludes
in addition all Hamiltonians with degeneracies, i.e., requires that d′ = d. Although the
non-degenerate energy gaps condition appears pretty technical at first sight, the moti-
vation for imposing it can be made apparent by the following consideration: The main
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concern of Ref. [LPSW09] is the equilibration on average of the reduced state ρS(t) of
a small subsystem S of a bipartite system with V = S ∪̇ B. If the Hamiltonian of the
composite system is of the form

H = HS +HB, (2.2.3)

i.e., S and B are not coupled (remember the definition of the restricted Hamiltonian
in Eq. (2.1.43)), then ρS(t) will simply evolve unitarily and equilibration of ρS(t) is
clearly impossible. Hence, one needs a condition that excludes such non-interacting
Hamiltonians. Imposing the condition of non-degenerate energy gaps is a mathemat-
ically elegant, simple, and natural way to do this. It is easy to see that Hamiltonians
of the form given in Eq. (2.2.3) have many degenerate gaps, as their eigenvalues are
simply sums of the eigenvalues of HS and HB.

In the more recent literature, the condition of non-degenerate energy gaps has been
gradually weakened. Ref. [SF12] defines the maximal number of energy gaps in any
energy interval of width ε

N(ε) := sup
E∈R
|{(k, l) ∈ [d′]2 : k 6= l ∧ Ek − El ∈ [E,E + ε]}|. (2.2.4)

Note that N(0) is the number of degenerate energy gaps and a Hamiltonian H satis-
fies the non-degenerate energy gaps condition if and only if N(0) = 1. The above
definition allows to prove an equilibration theorem that still works if a system has a
small number of degenerate energy gaps. Moreover, it has the advantage that it allows
to make statements about the equilibration time. As we will see in the next theorem,
equilibration on average can be guaranteed to happen on a time scale T that is large
enough such that T ε � 1 where ε must be chosen small enough such that N(ε) is
small compared to the number of significantly populated energy levels.

The arguably strongest and most general result concerning equilibration on average
in quantum systems can be obtained by combining the two recent works Refs. [RK12,
SF12]. In fact, we will see that it even goes slightly beyond a mere proof of equilibra-
tion on average, as it does have non-trivial implications for the time scales on which
equilibration happens.
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Theorem 2.2.1 (Equilibration on average). Given a system with Hilbert space H and

Hamiltonian H ∈ O(H) with spectral decomposition H =
∑d′

k=1Ek Πk. For ρ(0) ∈
S(H) the initial state of the system, let ω = $H(ρ(0)) be the dephased state and define

the energy level occupations pk := Tr(Πk ρ(0)). Then, for every ε, T > 0 it holds that

(i) for any operator A ∈ B(H)

(〈A〉ρ(t) − 〈A〉ω)2
T
≤ ‖A‖2

∞ N(ε) f(ε T ) g((pk)
d′

k=1), (2.2.5)

and (ii) for every setM of POVMs

DM(ρ(t), ω)
T
≤ h(M)

√
N(ε) f(ε T ) g((pk)d

′
k=1), (2.2.6)

where N(ε) is defined in Eq. (2.2.4), f(ε T ) := 1 + 8 log2(d′)/(ε T ),

g((pk)
d′

k=1) := min(
d′∑
k=1

p2
k, 3 max′

k
pk), (2.2.7)

and h(M) := min(|∪M|/4, dim(Hsupp(M))/2), (2.2.8)

with max′k pk the second largest element in (pk)
d′

k=1, ∪M the set of all distinct POVM

elements inM, and supp(M) :=
⋃
M∈∪M supp(M).

Proof. Eq. (2.2.5) for g((pk)
d′

k=1) equal to the first argument of the min in Eq. (2.2.7)
is Theorem 1 in Ref. [SF12]. The same statement, but with g((pk)

d′

k=1) equal to the sec-
ond argument in the min, follows from Eqs. (44), (50), (61), and (63) in Ref. [RK12].
With |∪U | in Eq. (2.2.8) replaced by the total number of all measurement outcomes,
i.e.,

∑
M∈M |M |, Eq. (2.2.6), for g((pk)

d′

k=1) equal to the first argument of the min

in Eq. (2.2.7), is implied by Theorems 2 and 3 from Ref. [SF12]. A careful in-
spection of Eq. (B.1) in Ref. [SF12] however reveals that the slightly stronger re-
sult holds. In particular one can first use the bound maxM(t)∈MDM(t)(ρ(t), ω) ≤∑

Ma∈∪M | tr(Ma ρ(t)) − tr(Ma ω)| for the argument of the time average in the right
hand side of the first line of Eq. (B.1) and then use the triangle inequality to pull the
time average into the sum. For g((pk)

d′

k=1) equal to the second argument the result
follows using Eq. (2.2.5) instead of Theorem 1 from Ref. [SF12] in the proofs of
Theorems 2 and 3 from Ref. [SF12].
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Figure 2.2.2: Equilibration on average is compatible with the time reversal invariant and re-
current nature of the time evolution of finite dimensional quantum systems. The
figure shows a prototypical example of equilibration on average. Started in a
non-equilibrium initial condition at time 0 the expectation value of some observ-
able A quickly relaxes towards the equilibrium value 〈A〉ω and then fluctuates
around it, with far excursions from equilibrium being rare. After very long times
the system returns (close to) its initial state and so does the expectation value of
the observable. A similar behavior is observed when the initial state is evolved
backwards in time.

What is the physical meaning of the theorem? The quantity g((pk)
d′

k=1) is small,
except if the initial state assigns large populations to few (but more than one) energy
levels. For initial states with a reasonable energy uncertainty and large enough systems
it can be expected to be of the order of O(1/d′), i.e., reciprocal to the total number of
distinct energy levels. The quantity h(M) on the other hand can be thought of as a
measure of the experimental capabilities in distinguishing quantum states and can rea-
sonably be assumed to be much smaller than d′. In particular, when all measurements
in M have a support contained inside of a small subsystem S ⊂ V it is bounded by
dS/2. Because of the conditions for equality in Eq. (2.1.23), the theorem then also
implies an upper bound on D(ρS(t), ωS)

T
and hence proves subsystem equilibration

on average.

For fixed H and ε > 0 we have limT→∞ f(ε T ) = 1, hence the theorem proves, for a
wide class of reasonable initial states, equilibration on average of all sufficiently small
subsystems and apparent equilibration on average of the state of the full system under
realistic restrictions on the number of different measurements that can be performed.
In this sense it improves and generalizes the results of Refs. [LPSW09, Rei08].

On what time scales is equilibrium reached? The product N(ε) f(ε T ), which is
lower bounded by one, will typically be close to one only if T is comparable to d′2,
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2.2 Equilibration

i.e., to the total number of energy gaps, and will otherwise be roughly of the order of
Ω(d′2/T ) for smaller T . So, even under the favorable assumption that g((pk)

d′

k=1) is
of the order of O(1/d′), equilibration of a subsystem S can only be guaranteed after a
time T that is roughly of the order of Ω(d2

S d
′).

Discussion

A brief comment concerning equilibration time scales is in order, even though we will
discuss this in more detail in Section 2.6. As we have seen, Theorem 2.2.1 can guar-
antee equilibration of subsystems only over time scales on the order of Ω(d2

S d
′). Both

d′ and dS typically grow exponentially with the size of the composite system and the
subsystem S respectively. Hence, times of the order of Ω(d2

S d
′) are unphysical already

for systems of moderate size. This weakness of theorems such as Theorem 2.2.1 has
been rightfully criticized in Ref. [GD11].

There are at least two possible replies to this criticism: First, it is known that there
are systems in which equilibration does indeed take extremely long (see Section 2.6)
and thus, being a very general statement, Theorem 2.2.1 is probably close to optimal.
Proofs of shorter equilibration times will need further assumptions, such as locality
or translation invariance of the Hamiltonian, and restrictions on the allowed measure-
ments [LPSW09, SF12]. Second, almost all systems in which equilibration has been
studied and in which equilibration of some property on reasonable time scales could
be demonstrated were found to exhibit equilibration towards the time average (see for
example [CCJFL11, CZ10a, Fag13, GMM09, RDYO07, RF11, RMO06]), so in these
cases the upper bound on the equilibration time implied by Theorem 2.2.1 is not tight,
but the theorem still captures the relevant physics. Transient equilibration to metastable
states that precedes equilibration to the time average seems to require special structure
in the Hamiltonian. That the physics of such special systems is not captured by a result
as general as Theorem 2.2.1 is not too surprising.

An interesting variant of the subsystem equilibration setting is investigated in
Ref. [Hut11], in which the subsystem S can initially be correlated (either classically or
even quantum mechanically) with a reference system R. The “knowledge” about the
initial state of S stored in the reference R can in principle help to distinguish the state
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ρS(t) from ωS . Still, by using decoupling theorems [DBWR10, SDTR13, Sze12] and
properties of smooth min and max entropies [CBR13, KRS09] it is possible to show
subsystem equilibration on average under conditions similar to those of Theorem 2.2.1,
in the sense that the combined state of S and R is on average almost indistinguishable
from ωSR = ρSR.

In the above disquisition on equilibration we have put a focus on the more recent
literature. From a historical perspective this is highly unjust. Many of the ideas be-
hind the results mentioned above can already be found in the work of von Neumann
[Neu29]. I encourage the interested reader to consider the English translation [Neu10]
of this article and the discussion of von Neumann’s results in Ref. [GLMTZ10] and the
brief summary of parts of this article in Section 2.5 of this work.

Further statements concerning equilibration towards the dephased state, which are
related to those discussed above, can also be found in Refs. [Ba+12, Cra11, MRA13,
Žni12]. We will discuss these works in more detail in Section 2.6.

2.2.3 Equilibration during intervals

In this section we will investigate under which conditions equilibration during intervals
can be guaranteed. After a brief overview of the literature on the topic we will con-
centrate on the results presented in Ref. [CE09]. Instead of reproducing the full proof
we will only give the intuition behind it and describe the general structure. One reason
for this is that Ref. [CE09] is concerned with a special class of bosonic Hamiltonians,
so-called quadratic bosonic Hamiltonians, i.e., Hamiltonians that are quadratic poly-
nomials in the bosonic creation and annihilation operators. For these Hamiltonians
there exists a special formalism based on so-called covariance matrices that allows,
for example, to calculate for a special class of initial states, namely Gaussian states,
the time evolution of the expectation values of certain observables in a computationally
efficient way. A full introduction of this formalism is beyond the scope of this thesis.
More details can be found for example in Refs. [AI07, And03, Bra05].

Equilibration during intervals of non-Gaussian initial states under certain quadratic
Hamiltonians was proved in Ref. [CDEO08] and the results have later been generalized
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and improved in Ref. [CE09]. The techniques are inspired by earlier works [DKS03]
on classical harmonic crystals, i.e., systems of coupled classical harmonic oscillators,
and can be seen as bounds on the pre-asymptotic behavior and an extension to finite
system sizes of the results on equilibration of Ref. [LR72a]. See also Refs. [BS08,
LR72a, TY94] for related results on equilibration starting from Gaussian initial states.

More precisely, the results on equilibration during intervals concern systems evolv-
ing under certain quadratic Hamiltonians of the form

H =
1

2

∑
x,y∈V

(
b†xAx,y by + bxAx,y b

†
y

)
, (2.2.9)

where bx, b†x are the bosonic annihilation/creation operators on site x ∈ V and A ∈
R|V|×|V|. The operator H , as defined in Eq. (2.2.9), is unbounded and hence, in princi-
ple, a careful treatment of the system with the methods of functional analysis [RS75,
RS80] would be necessary. The Hamiltonian in Eq. (2.2.9) is however particle number
preserving. Thus, when we restrict to initial states with finite particle number the whole
evolution happens in a finite dimensional subspace of the Fock space. The Hamilto-
nian H and all relevant observables can then be represented by bounded operators on
this subspace. We are hence back in the framework of finite dimensional quantum me-
chanics as introduced in Section 2.1 (see in particular Section 2.1.8) and the following
statement is well-defined:

Theorem 2.2.2 (Equilibration during intervals). Consider the class of systems with a

finite number of bosons in M modes on a ring with nearest neighbor interactions, i.e.,

V = [M ] and E = {(1, 2), (2, 3), . . . , (M, 1)}, evolving under a Hamiltonian of the

form given in (2.2.9) with A = −δ|i−j| mod M,1. LetH be the direct sum of Fock layers

up to the maximal particle number. If the initial state ρ(0) ∈ S(H) satisfies a form

of decay of correlations (Assumptions 1–3 in Ref. [CE09]), then for every S ⊂ V and

every ε > 0 there exists a system size M∗, such that for all M ≥ M∗ there exists

a time trelax independent of M and a time trec ∈ Ω(M6/7) such that there is a state

ω̃S ∈ S(HS) such that

∀t ∈ [trelax, trec] : D(ρS(t), ω̃S) ≤ ε. (2.2.10)
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Proof. The theorem is essentially implied by Theorem 2 and Corollary 1 from
Ref. [CE09], the scaling of the times trelax and trec follows from Eq. (61) and Lemma 4
in Ref. [CE09].

The theorem proves equilibration during the interval [trelax, trec] of all small subsys-
tems of a sufficiently large system. Important for the proof is the decay of correlations
in the initial state and that the specific quadratic Hamiltonian under consideration leads
to transport through the system. The time trelax depends on the size of the subsystem
S under consideration, but is independent of the size of the composite system. It de-
pends on the speed at which the Hamiltonian is able to transport correlations through
the system and the length scale on which the correlations in the initial state decay. The
time trec is a lower bound on the recurrence time and is slightly smaller than the time
it takes for a signal to travel around the ring of bosonic modes.

Discussion

According to Ref. [CE09] a similar theorem can also be proved for systems on other
lattices evolving under more general quadratic Hamiltonians of the form given in
(2.2.9), but even such more general results would suffer from the following limitation:
Quadratic Hamiltonians of the form given in Eq. (2.2.9), whose A matrix is banded,
i.e., has non-zero entries only for pairs of sites that are geometrically close to each
other, have local conserved quantities, i.e., observables that commute with H but have
support only on a small number of sites independent of the system size. The time
averaged state has the same expectation values for all these local observables as the
initial state so that equilibration of subsystems to a state that is close in trace distance
to a thermal/Gibbs state of the truncated Hamiltonian is impossible for most initial
states [CE09, LR72a].

2.2.4 A conjecture concerning equilibration

In this section we formulate the equilibration from transport conjecture. It claims the
existence of a general equilibration mechanism based on the spreading of the support
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of local observables during the time evolution under a certain class of Hamiltonians.
The line of reasoning that we will use to justify this conjecture is based on the proofs
of the results concerning equilibration during intervals that we discussed in the last
section.

The proof of Theorem 2.2.2 exploits the special structure of quadratic Hamiltonians
and the covariance matrix formalism. However, taking a birds eye perspective reveals
the general mechanism behind the equilibration process described in Ref. [CE09].

The four main ingredients are:

1. Natural notion of distance: The Hamiltonian of the system must contain only short
range interactions, in the sense that a reasonable locality structure emerges that
allows for the definition of a (pseudo)metric with the property that far apart regions
do not interact directly or do so with sufficiently quickly decreasing strength.

2. Decay of correlations: The initial state must satisfy a form of decay of correla-
tions in this distance. That is, subsystems that are sufficiently far apart must be
sufficiently uncorrelated initially.

3. Maximal speed of propagation: The dynamics must obey some upper bound on
the speed at which correlations can spread through the system, a so-called Lieb-

Robinson [KGE13, LR72b] bound.

4. Transport: The system must exhibit a form of transport that makes initially uncor-
related parts of the system interact with each other sufficiently quickly.

Properties 1 and 2 make sense independently of the specific model studied in Ref. [CE09]
and both short range interactions and the assumption of some form of decay of corre-
lations in the initial state seem to be physically appealing and plausible starting points
for a proof of equilibration. Likewise, a wide range of physically relevant composite
systems share Property 3. See for example Ref. [KGE13] and the references therein
for a review of the topic of Lieb-Robinson bounds.

The most vague of the properties in the above list is Property 4. This is also where
the proof of Ref. [CE09] makes most explicitly use of the particular structure of the
system that is considered. Hamiltonians of the form given in Theorem 2.2.2 exhibit

50



2 Pure state quantum statistical mechanics

ballistic transport. The elementary excitations of Hamiltonians of this form behave
very similarly to freely moving particles, which is why systems with quadratic Hamil-
tonians are also sometimes referred to as free systems [LR72a], and can travel arbitrary
distances with a constant speed.

In order to prove statements similar to Theorem 2.2.2 for more general systems,
a better understanding of the transport that is responsible for the mechanism behind
Theorem 2.2.2 seems necessary. We will now define a notion of transport that appears
to be sufficient for equilibration during intervals. It turns out to be more convenient to
formulate it in the Heisenberg picture, i.e., to consider observables as time dependent
and conversely quantum states as static (see also Section 2.1.6).

Definition 2.2.1 (Spreading transport). An infinite sequence of composite quantum sys-

tems indexed by their system size |V| with respective Hilbert spaces H(|V|), evolving

under Hamiltonians H(|V|) ∈ O(H(|V|)) exhibits spreading transport if there exists a

D ∈ O(1) and a time t2 ∈ Ω(|V|1/D) such that up to t2 the support of every initially

observable A : R → O(H(|V|)) which was initially local, i.e., | supp(A(0))| ∈ O(1)

grows with time in the sense that for every sufficiently small 0 < ε ∈ O(1) and every

Ã : R→ O(H(|V|)) and all 0 ≤ t1 ≤ t2 it holds that(
∀t ∈ [t1, t2] :

∥∥∥Ã(t)− A(t)
∥∥∥
∞
≤ ε
)

=⇒ inf
t∈[t1,t2]

| supp(Ã(t))| ∈ Ω(t1).

(2.2.11)

The intuition behind this definition is as follows: If A(0) is a local observable with
support only on a small subsystem, then, if the system exhibits spreading transport, for
all t up to a time t2, which grows with the system size, A(t) = U(t)†AU(t) will act
non-trivially on a subsystem of size at least proportional to t, and it will do so in a way
that it cannot be approximated by any other observable Ã(t) with a significantly smaller
support. Hence it will depend significantly on a large part of the initial state. If the
initial state exhibits some form of clustering of correlations with a correlation length
that is small compared to the size of the region on which A(t) acts sufficiently non-
trivially, the expectation value 〈A(t)〉ρ will be a sum of many small and uncorrelated
contributions, and will hence look equilibrated. Thus it seems that spreading transport
together with conditions 1–3 should be sufficient to guarantee that an “equilibrium”
value is reached after a time independent of the system size.
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The reason why we need to speak about a sequence of systems is that we must have
a way to guarantee that the expectation value of A(t) stays equilibrated for a long time.
To do this, we must be able to exclude that its support shrinks again due to a (quasi)
recurrence in the system, which is why we introduce the time t2. The quantity D is
meant to play the role of a spacial dimension, such that |V|1/D can be thought of as a
measure of the linear size of the system. It seems plausible that for a suitably chosen
but fairly general class of Hamiltonians, Lieb-Robinson type bounds can guarantee the
existence of such a time in a way similar to how this is achieved with a more specialized
bound in Ref. [CE09].

The condition on the growth rate of the support of local observables given in Defini-
tion 2.2.1 is actually weaker than what one would reasonably expect to find in natural
locally interacting systems, but seems sufficient for equilibration on time scales inde-
pendent of the system size. If D is the spacial dimension of the lattice of the system,
one can expect that inft∈[t1,t2] | supp(Ã(t))| scales more like Ω(tD1 ), the volume inside
the “light cone” of the dynamics, or at least like Ω(tD−1

1 ), its surface area.

Based on the above considerations I make the following conjecture:

Conjecture 2.2.1 (Equilibration from transport conjecture). Any sufficiently large lo-

cally interacting system with sufficiently quickly decaying correlations in the initial

state and a maximal speed of propagation of correlations that exhibits spreading trans-
port has the property that all sufficiently small subsystems equilibrate during a time

interval with a system size independent lower bound and an upper bound that grows

with the system size.

Discussion

Spreading transport excludes the existence of local conserved quantities and hence, in
particular, requires that the system is not localized due to, for example, spacial disorder.
A proof of the above conjecture would therefore fit nicely into the folklore knowledge
that disorder prevents systems from reaching thermodynamic equilibrium, and the of-
ten invoked picture of quasi particles propagating through a system, thereby leading to
equilibration [CC07].
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Whether the above conjecture can be turned into a theorem and whether Defini-
tion 2.2.1 is the right notion of transport is the subject of further research.

2.2.5 Other notions of equilibration

In this section we briefly cover two other notions of equilibration for closed quantum
systems.

The first alternative notion of equilibration we want to discuss was proposed in
Ref. [GLMTZ10]. This work is closely related to an article of von Neumann [Neu29],
which investigates why large quantum systems can be well described within the frame-
work of statistical mechanics. To that end it is postulated that on large systems only a
set of so-called macroscopic observables is accessible. The macroscopic observables
are required to commute, thus they divide the Hilbert space in subspaces, so-called
phase cells, each containing states that belong to the same sequence of eigenvalues for
all the macroscopic observables (see also the more detailed discussion of Ref. [Neu29]
in Section 2.5). If one of the phase cells is particularly large, Ref. [GLMTZ10] asso-
ciates it with thermal equilibrium and says that a system is in thermal equilibrium if
and only if its state is almost entirely contained in that cell. Variants of the results from
Ref. [Neu29] can then be used to prove equilibration in this sense.

Reminding oneself that measurements of quantum systems are ultimately sampling

experiments opens up an entirely new vista on the problem of equilibration, which leads
us the second alternative notion of equilibration. Performing a measurement of an ob-
servable does neither provide the experimentalist with the measurement statistic nor
does it yield the expectation value of the observable. Both can only be approximately
determined by repeatedly performing the same experiment many times. How many
repetitions are needed to distinguish whether the measurement statistic of a given ob-
servable is close or far from that predicted by equilibrium statistical mechanics? Such
questions have been posed and partially answered in the fields of sample complexity

[Bat+01, BFRSW00, CRS12] and state discrimination [AMV12, Aud14]. Using the
complexity of the task of collecting information about a quantum system as a justi-
fication for a statistical description was recently proposed in Ref. [UWE13], which
defines the concept of information theoretic equilibration. Essentially the authors of
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Ref. [UWE13] are able to show that with the use of very fine grained observables pure
quantum states are practically indistinguishable from states corresponding to statistical
ensembles.

2.3 A quantum maximum entropy principle

We have seen in Section 2.2.2 that if the expectation value of an observable or the
reduced state of a subsystem equilibrates on average, then they necessarily equilibrate
to their expectation value in, or the reduced state of, the time averaged/dephased state
ω = ρ = $H(ρ(0)). The state ω hence encodes the information necessary to describe
the equilibrium properties of such a system. Moreover, it has a peculiar property that
implies the following quantum mechanical maximum entropy principle:

Theorem 2.3.1 (Maximum entropy principle [GME11]). Consider the time evolution

ρ : R→ S(H) of a quantum system with Hilbert spaceH and HamiltonianH ∈ O(H).

If the expectation value of an operator A ∈ B(H) equilibrates on average, then it

equilibrates towards its time average, given by

Tr(Aρ) = Tr(Aω), (2.3.1)

where ω = ρ is the unique quantum state that maximizes the von Neumann entropy S,

given all conserved quantities.

Proof. That the equilibrium value of the expectation value of A is given by Tr(Aω)

follows directly from the definition of equilibration on average. The time averaged
state ω is equal to the dephased initial state

$H(ρ(0)) =
d′∑
k=1

Πk ρ(0) Πk. (2.3.2)

The dephasing map $H is a so-called pinching and the von Neumann entropy is non-
decreasing under pinchings [Bha97, Problem II.5.5] (this is a generalization of Schur’s

theorem). Furthermore, two states σ1, σ2 ∈ S(H) yield the same expectation values
for all conserved quantities, i.e., all A ∈ O(H) that commute with the Hamiltonian
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[A,H] = 0, if and only if $H(σ1) = $H(σ2). This already shows that ω has the maximal
achievable von Neumann entropy given all conserved quantities. It remains to show
uniqueness. Let B be a basis of the linear span of all A ∈ O(H) with [A,H] = 0. The
objective function of the maximization problem, namely the von Neumann entropy, is
a strictly concave function S : S(H)→ R and it is optimized over all σ ∈ S(H) under
the finite number of affine equality constrains ∀B ∈ B : Tr(B σ) = Tr(B ρ(0)). Under
these conditions uniqueness follows from a standard result from convex optimization
[BV04].

ρ(0) =

(a)

ρ(t) =

(b)

ρ =

(c)

Figure 2.3.1: Dephasing implies a maximum entropy principle. A quantum system started in
an initial state ρ(0) represented in panel (a) in an eigenbasis of its Hamiltonian
H with degenerate subspaces corresponding to the squares, evolves (b) in a way
such that time averaging its evolution (c) has the same effect as dephasing the ini-
tial state with respect to H . The time averaged state ρ is the state that maximizes
the von Neumann entropy under the constraint that all conserved quantities give
the same expectation value as in the initial state ρ(0).

Discussion

Theorem 2.3.1 is very reminiscent of Jaynes’ maximum entropy principle. It is how-
ever remarkable that it is not, as in Jaynes’ approach, a postulate motivated by a subjec-
tive interpretation of probability that is taken as a starting point of a statistical theory,
but a consequence of purely quantum mechanical considerations. The unitary quantum
dynamics of closed systems alone gives rise to a maximum entropy principle.

While this is remarkable, Theorem 2.3.1 is at the same time a bit disappointing, or
at least not the whole story. Note that it says that the equilibrium expectation val-
ues of all observables that equilibrate on average can be calculated from the state that
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maximizes the von Neumann entropy given all conserved quantities (compare also
Ref. [BHH07b]). The number of all linearly independent conserved quantities of a
composite quantum system however increases exponentially with the number of con-
stituents, and finding them usually again requires resources that scale exponentially
with the system size. The predictive power of Theorem 2.3.1 is hence rather limited.

The truly interesting question that arises from Theorem 2.3.1 is the following: If
one is interested in only, say, equilibrating local observables, how many, and which,
conserved quantities does one need to keep fixed such that entropy maximization still
yields a good approximation to their equilibrium expectation values? In particular, one
might expect that in this situation taking into account all, in some appropriate sense, lo-

cal conserved quantities should be sufficient. One might even hope that in systems that
do not have any such local conserved quantities, just fixing the expectation value of the
energy and maybe the particle number could already suffice. This has been investigated
numerically in the context of the so-called generalized Gibbs ensemble in Refs. [Caz06,
CC07, CCJFL11, CCR11, CEF11, CIC12, EK08, Fag13, FM10, IC09, IC10, RDO08,
RDYO07, RF11, RMO06, SKS13, ZCH12] (just to name a few references). Unfor-
tunately very little is known analytically [CM11], the results of Ref. [CE09] being a
noteworthy exception (see Section 2.2.3 for more details). We will come back to this
when we discuss thermalization in Section 2.7.

2.4 Decoherence

The main aim of the decoherence program is to explain the emergence of classical
behavior in quantum systems as a consequence of a loss of coherence, which is also
called dephasing, or just decoherence. A prime example of this is einselection, which
we will describe below. It is the subject of an ongoing scientific debate to which extent
decoherence provides a satisfactory explanation of the emergence of classicality and
whether and to which extent it can solve the measurement problem [ACFL09, Adl03,
Sch05a]. It is beyond the scope of this thesis to provide a comprehensive review of
decoherence theory. More detailed information can for example be found in the reviews
Ref. [Sch05a, Zur03].

56



2 Pure state quantum statistical mechanics

Decoherence theory is similar in spirit to the approach taken in this work in that it
tries to justify a macroscopic theory based on purely microscopic, quantum mechanical
considerations, thereby leading to a reconciliation of the two theories. In fact, the con-
nection exists not only on this meta level, but there also is a far more direct connection.
The results on equilibration of Ref. [LPSW10] were used in Ref. [Gog10a] to obtain a
very general proof of decoherence under weak interactions. In order to properly under-
stand the meaning of this result we will first review some concepts from decoherence
theory and then reproduce and discuss a bound on the speed of fluctuations around
equilibrium from Ref. [LPSW10].

An important concept in decoherence theory is that of environment induced super se-

lection (einselection), a term due to Zurek [Zur03]. In short, einselection can be shown
to occur in bipartite systems with V = S ∪̇B that have a HamiltonianH that commutes
with the projectors onto an orthonormal basis of so-called pointer states (|p〉)dSp=1 for
the subsystem S [Zur03, Zur82]. The Hamiltonian and time evolution operator are then
of the form

H =

dS∑
p=1

|p〉〈p| ⊗H(p) (2.4.1)

and U(t) =

dS∑
p=1

|p〉〈p| ⊗ U (p)(t), (2.4.2)

with U (p)(t) := exp(−iH(p) t) for some Hamiltonians H(p) ∈ O(HB) on the subsys-
tem B. If the initial state is product with respect to the bipartition V = S ∪̇ B, i.e.,
if

ρ(0) = ρS(0)⊗ ρB(0), (2.4.3)

then a straight forward calculation shows that for all t during the evolution

ρS(t) =

dS∑
p,p′=1

|p〉〈p|ρS(0)|p′〉〈p′| Tr(ρB(0)U (p)(t)† U (p′)(t)). (2.4.4)

This implies that the diagonal elements of ρS(t) are conserved by the time evolution,
i.e., 〈p|ρS(t)|p〉 = 〈p|ρS(0)|p〉. The off diagonal elements 〈p|ρS(t)|p′〉 with p 6= p′ on
the other hand are suppressed by a factor of Tr(ρB(0)U (p)(t)† U (p′)(t)) ≤ 1, which in
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many situations decreases with t on short time scales [Hor09, Joo+96, Zur03, Zur82].
That is, an interaction of the form given in Eq. (2.4.1) makes the state ρS(t) almost
diagonal in the basis of the pointer states. This process is called einselection.

The result on decoherence of Ref. [Gog10a], which we will discuss next, uses a
theorem proved by Linden, Popescu, Short, and Winter [LPSW10]. The main concern
of this work is to bound the speed at which subsystems that equilibrate on average
fluctuate around their equilibrium states.

As a measure of the speed at time t of the state ρS(t) = TrSc(ρ(t)) of a subsystem
S during a time evolution ρ : R → S(H) of a bipartite system with V = S ∪̇ B they
propose

vS(t) := lim
∆t→0

D(ρS(t), ρS(t+ ∆t))

∆t
=

∥∥∥∥∂ρS∂t (t)

∥∥∥∥
1

, (2.4.5)

where
∂ρS

∂t
(t) = i TrSc([ρS(t), H]). (2.4.6)

The main result of Ref. [LPSW10] is an upper bound on the average speed of fluc-
tuations. Here, we give a slightly strengthened version of the result (remember the
definition of the restricted Hamiltonian Eq. (2.1.43)):

Theorem 2.4.1 (Speed of fluctuations). Given a HamiltonianH ∈ O(H) of a compos-

ite quantum system with Hilbert spaceH and V = S ∪̇B with spectral decomposition

H =
∑d′

k=1Ek Πk. Let HI := H−HS−HB and for ρ(0) the initial state of the system

define the energy level occupations pk := Tr(Πk ρ(0)). Then

vS ≤ ‖HS +HI‖∞ dS

√
N(0) g((pk)d

′
k=1), (2.4.7)

where N(0) is the maximal number of degenerate energy gaps (2.2.4) and, as in Theo-

rem 2.2.1,

g((pk)
d′

k=1) := min(
d′∑
k=1

p2
k, 3 max′

k
pk). (2.4.8)

Proof. Use Eq. (2.2.5) from Theorem 2.2.1 for the case T → ∞ instead of Eq. (9) in
the proof of Theorem 1 in Ref. [LPSW10].
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2 Pure state quantum statistical mechanics

The above result essentially tells us that the conditions that are sufficient for equili-
bration on average (Theorem 2.2.1) also imply that, for most times t during the evolu-
tion, the speed vS(t) ≥ 0 with which the state of a small subsystem changes is small
compared to ‖HS +HI‖∞.

We are now in the position to state the result of Ref. [Gog10a], which implies a
behavior that is very similar to the einselection process described above.

Theorem 2.4.2 (Decoherence under weak interaction [Gog10a]). Let ρ : R → S(H)

be the time evolution of a bipartite quantum system with V = S ∪̇B under a Hamilto-

nianH ∈ O(H) with the property thatHS�S is non-degenerate. Denote the eigenvalues

and normalized eigenstates of HS�S by ES
k and |ES

k 〉 respectively, then for all t ∈ R

‖HS‖∞ +
1

2
vS(t) ≥ max {(k,l)}

∑
(k,l)

|ES
k − ES

l | |〈ES
k |ρS(t)|ES

l 〉| (2.4.9)

≥ max k,l∈[dS ]|ES
k − ES

l | |〈ES
k |ρS(t)|ES

l 〉|, (2.4.10)

where the maximization in Eq. (2.4.9) is performed over all groupings of the elements

of [dS] into disjoint pairs (k, l).

Under the assumption that the energy level populations of the initial state are (except
for the largest one) all sufficiently small and thatH does not have any highly degenerate
energy gaps (see Section 2.2.2 for details), we know from Theorem 2.4.1 that vS(t) is
much smaller than ‖HS +HI‖∞ for all sufficiently small subsystems S and most times
t during the evolution. For those times, the left hand side of Eq. (2.4.9) is approximately
equal to ‖HS‖∞.

Whenever this is the case, all off-diagonal elements of ρS(t) in the eigenbasis of
HS�S that belong to energy differences that are comparable in size with ‖HS‖∞ must
be small. The latter is true not only for each of them individually, but, as Eq. (2.4.9)
shows, even sums of up to bdS/2c of them, weighted with their respective energy
difference, must be approximately smaller than ‖HS‖∞.

Comparing this result with einselection, we see that if the interaction is weak enough
compared to the energy gaps of HS�S , then the eigenbasis of HS�S emerges as a natural
“pointer basis” in the sense that the time evolution leads to decoherence in this basis,
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i.e., ρS(t) is close to being diagonal in this basis for most times t during the evolution.
Instead of the very specific assumptions on the interaction Hamiltonian and initial state
we had to make to reach Eq. (2.4.4), we only needed the rather natural assumptions
that also guarantee equilibration on average plus an assumption of sufficiently weak
coupling.

Discussion

A physically relevant situation where the above result seems particularly fitting is the
following: Imagine an atom or small molecule whose few lowest electronic excitations
can be modeled by a finite dimensional quantum system with Hamiltonian HS . The
gaps of HS typically correspond to visible or even ultra violet wave lengths. Now,
imagine the particle is part of a gas. A coupling HI that models collisions with other
particles of the gas will have a strength that is comparable to the thermal energy of the
particles in the gas and will hence be orders of magnitude smaller than the gaps of HS .
If the system is started in a suitable initial state and the Hamiltonian describing the gas
has not too many degenerate energy gaps, Theorems 2.4.1 and 2.4.2 imply that the atom
or molecule is for most times during the evolution in a state that is close to diagonal in
its energy eigenbasis, i.e., in a state that is a classical probabilistic superposition of its
electronic energy eigenstates.

Theorem 2.4.2 does not imply anything physically meaningful about the time scales
on which decoherence happens, but without further assumptions on the Hamiltonian
Eq. (2.4.4) from the usual decoherence approach is equally incapable of doing this.

2.5 Typicality

Our disquisition of equilibration and decoherence has been literally very much in the
spirit of pure state quantum statistical mechanics in the sense that we have made state-
ments that hold for all initial (and in particular also for pure) states that have certain
properties. We have thereby, up to now, managed to avoid the introduction of ensem-

bles, or as one could say not put any probabilities by hand.
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However, ensembles and averages with respect to certain postulated probability dis-
tribution do play important roles in statistical mechanics. In this section we will review
some arguments that can be used in the framework of pure state statistical mechanics to
justify their use. These approaches to explain the applicability of statistical mechanics
are based on the insight that under certain assumptions most individual instances of a
situation lead to a behavior that is very similarly to the average, or typical behavior.

We will begin by reviewing the most influential articles on the subject in historic
order, starting with the works of Schrödinger [Sch27] and von Neumann [Neu29]. We
will then state, prove, and discuss a general typicality theorem for uniformly random
quantum state vectors. We finish this section with a discussion of typicality in other
ensembles and the most common objections against typicality arguments.

The strategy behind justifications for the use of ensembles is to argue that most states
drawn according to some reasonable measure from a set of physically reasonable states
have approximately the same properties, so that for computations it is practical to work
with an average state. This average state can, for example, turn out to be the state
corresponding to a microcanonical or canonical ensemble.

The use of such typicality arguments has a long history. First considerations along
these lines already appear in a work by Schrödinger [Sch27] from 1927. After an intro-
duction into (first order) perturbation theory and a discussion of resonance phenomena
in quantum mechanics with a focus on energy exchange in weakly interacting systems
he goes on discussing what he calls a “statistical hypothesis”1. He aims at describing
the long time behavior of weakly interacting systems hoping to find thermodynamic
behavior. More specifically, he considers two systems that each have a pair of energy
levels with the same gap. The coupling between them that mixes the levels is assumed
to be weak. As his previous calculation had shown that the time averaged state depends
on the initial state, he proposes to make an assumption about the initial energy level
populations. His assumption is that the populations of the levels are proportional to the
products of the degrees of degeneracy of the non-interacting levels. By introducing an
entropy like quantity, he argues that if one of the systems is sufficiently large, this im-
plies that when populations of energy levels whose reduced states on the small system
are almost identical are combined, then the combined populations satisfy a canonical

1German original [Sch27]: “Statistische Hypothese”
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distribution. By this, he effectively argues that initial states fulfilling his “statistical
hypothesis” have reduced states on the small system that are well described by thermal
states.

The concept of typicality is even more prominent in an article by von Neumann
[Neu29] from 1929. His work has been translated by Tumulka [Neu10] and reviewed
and refined by Goldstein, Lebowitz, Mastrodonato, Tumulka, and Zanghi [GLMTZ10].
Von Neumann sets out to clarify “how it can be that the known thermodynamic meth-
ods of statistical mechanics enable one to make statements about imperfectly (e.g., only
macroscopically) known systems that in most cases are correct.”2 He goes on describ-
ing that this means to clarify “first, how the strange, seemingly irreversible behavior
of entropy emerges, and second, why the statistical properties of the (fictitious) micro-
canonical ensemble can be assumed for the imperfectly known (real) systems, and that
these questions will be tackled with the methods of quantum mechanics.”3 He further
argues that the phase space of classical systems [Kin49], a central object in Gibbs’ for-
mulation of classical statistical mechanics [Gib02], should, in the context of quantum
mechanics, be replaced by a system of mutually commuting macroscopic observables
that approximate the true non-commuting quantum observables. Each sequence of
eigenvalues of all macroscopic observables is associated with a phase cell, i.e., the sub-
space spanned by the state vectors that all give precisely these measurement outcomes
for the macroscopic measurements, but which are macroscopically indistinguishable
from each other. Following Ref. [GLMTZ10], we denote the projector onto the phase
cell characterized by the sequence ν of macroscopic measurement outcomes by Pν .
The approximation of the microscopic observables is to be taken coarse enough, such
that, for example, the commuting macroscopic position and momentum observables do
not get in conflict with Heisenberg’s uncertainty relation for the true microscopic po-
sition and momentum operators. One of von Neumann’s main results is his “quantum

2German original [Neu29]: “[. . . ] wie es kommt, daß die bekannten thermodynamischen Methoden der
statistischen Mechanik es ermöglichen, über mangelhaft (d.h. nur makroskopisch) bekannte Systeme
meistens richtige Aussagen zu machen.”

3German original [Neu29]: “Insbesondere, wie erstens das eigentümliche, irreversibel scheinende Ver-
halten der Entropy zustande kommt, und warum zweitens die statistischen Eigenschaften der (fik-
tiven) mikrokanonischen Gesamtheit für das mangelhaft bekannte (wirkliche) System unterstellt
werden dürfen. Und zwar sollen diese Fragen mit den Mitteln der Quantenmechanik angegriffen
werden.”
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ergodic theorem”4. Essentially, he is able to show the following (for details see the
original article and Theorem 1 in Ref. [GLMTZ10]): Fix the dimensions rank(Pν) of
the phase cells, if they are all neither too small not too large, then for any fixed Hamil-
tonian without degeneracies and non-degenerate energy gaps (see also Section 2.2.2),
most decompositions of the Hilbert space into phase cells with these dimensions have
the property that, for all initial states and most times during the evolution, the evolving
state of the system and a suitable microcanonical state are approximately macroscop-
ically indistinguishable. This property is called “normal typicality” by the authors of
Ref. [GLMTZ10]. The result can actually be slightly generalized (Theorems 2 and 3 in
Ref. [GLMTZ10]) and von Neumann’s theorem can be reformulated into a statement
about all initial states, all decompositions into phase cells, and most Hamiltonians
[GLMTZ10].

It is worth noting that the notion of typicality in Refs. [GLMTZ10, Neu29] concerns
not the quantum state (vector) but the set of macroscopic observables. The statement
holds for most decompositions of the Hilbert space in phase cells (with certain prop-
erties), or most Hamiltonians, but for all initial states. In the following, typicality will
mostly concern the quantum state (vector), i.e., we will encounter statements that hold
for most (initial) state vectors.

Typicality arguments feature prominently in the PhD thesis of Lloyd [Llo88] (see
also Ref. [Llo13]). Essentially he shows that for any fixed observable, if quantum state
vectors are drawn uniformly at random from a subspace of a Hilbert space (we will
soon make this more precise), then the mean square deviation of the expectation value
of the observable in such a random state from that in the corresponding microcanonical
state is inverse proportional to the dimension of the subspace.

In a similar spirit, the concept of typicality is a cornerstone of the arguments in
the book by Gemmer, Michel, and Mahler [GMM09]. As a measure of typicality the
authors propose the Hilbert space variance and derive bounds for the Hilbert space
variance of various physically interesting quantities, ranging from expectation values of
observables and distances of reduced states to entropies and purities. As in Ref. [Llo88]
and the present work, the aim is to use typicality to justify the methods of statistical
mechanics and thermodynamics.

4German original [Neu29]: “Ergodensatz [...] in der neuen Mechanik”
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Many of the ideas of the works summarized above have later reappeared in an in-
fluential work by Goldstein, Lebowitz, Tumulka, and Zanghì [GLTZ06] in which the
term canonical typicality was coined. Ref. [GLTZ06] is intended to be a clarification
and extension of the work of Schrödinger [Sch27], which we discussed earlier, and
remarks in his book [Sch52] on statistical thermodynamics. After a translation of the
classical proof of the canonical ensemble from the microcanonical one to the quantum
setting, the authors argue that the law of large numbers implies that if a state vector
is drawn uniformly at random from a high dimensional subspace, its reduced state on
a small subsystem will look similar to the reduced state of the microcanonical state
corresponding to that subspace.

Before we go on, we must say more precisely what we mean by drawing a state vec-
tor uniformly at random from a subspace. Intuitively it should mean that any state from
the subspace is as probable as any other. Mathematically this is made precise in the
notion of left/right invariant measures [Hal74]. Haar’s theorem [Haa33] implies that
for any finite d there is a unique left and right invariant, countably additive, normalized
measure on the unitary group U(d) [Hal74]. We refer to this measure as the Haar mea-

sure on U(d) and denote it by µHaar[U(d)]. Left and right invariant means that for any
unitary U ∈ U(d) and any Borel set B ⊆ U(d)

µHaar[U(d)](B) = µHaar[U(d)](U B) = µHaar[U(d)](B U), (2.5.1)

where U B and B U are the left and right translates of B. In this sense, the Haar
measure µHaar[U(d)] is the uniform measure on U(d).

The Haar measure on the group of unitaries that map a (restricted) subspaceHR ⊆ H
of dimension dR into itself induces in a natural way a uniform measure µHaar[HR] on
state vectors |ψ〉 ∈ HR. We call state vectors drawn according to this measure, and
also pure quantum states |ψ〉〈ψ| drawn according to the natural induced measure, Haar

random and write |ψ〉 ∼ µHaar[HR].

A practical way to obtain state vectors distributed according to this measure is to fix
a basis (|j〉)dRj=1 for the subspace HR and then draw the real and imaginary part of dR
complex numbers (cj)

dR
j=1 from normal distributions of mean zero and variance one.
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The state vector

|ψ〉 =

∑dR
j=1 cj|j〉√∑dR
j=1 |cj|2

(2.5.2)

is then distributed according to µHaar[HR], i.e., |ψ〉 ∼ µHaar[HR] [ZS01]. We will
denote the probability that an assertion A(|ψ〉) about a state vector |ψ〉 is true if |ψ〉 ∼
µHaar[HR] by P|ψ〉∼µHaar[HR](A(|ψ〉)).

In the framework of measure theory [Hal74], typicality can be seen as a consequence
of the phenomenon of measure concentration [Cha07, Led01]. In particular a result
known as Levy’s lemma, has been used in Refs. [PSW05, PSW06] to obtain theorems
in the spirit of Refs. [GLTZ06, Llo88], but with stronger bounds on the probabilities to
observe large deviations from the (micro)canonical ensemble. Refs. [PSW05, PSW06]
focused mainly on reduced states of small subsystems of states drawn at random from
high dimensional subspaces. Based on the same techniques, in Ref. [Gog10b], similar
results have been obtained for the expectation values of individual observables on the
full system as well as their variances, and for sets of commuting observables, develop-
ing further ideas of Ref. [Neu29] concerning macroscopic measurements.

Furthermore, an extension to the distinguishability under a restricted set of POVMs
introduced in Section 2.1.4 is possible. We summarize these results in a single the-
orem, which however is not optimal in terms of constants and scaling (compare
Refs. [Gog10b, PSW05] for details).

Theorem 2.5.1 (Measure concentration for quantum state vectors). Let R ⊂ R and let

HR ⊆ H be the subspace of the Hilbert space H of a system with Hamiltonian H ∈
O(H) that is spanned by the eigenstates of H to energies in R and let dR := dim(HR).

Then for every ε > 0 it holds that (i) for any operator A ∈ B(H)

P
|ψ〉∼µHaar[HR]

(
|〈A〉|ψ〉〈ψ| − 〈A〉u[H](R)| ≥ ε

)
≤ 2 e−C dR ε

2/‖A‖2∞ , (2.5.3)

and (ii) for any setM of POVMs

P
|ψ〉∼µHaar[HR]

(DM(|ψ〉〈ψ|,u[H](R)) ≥ ε) ≤ 2h(M)2 e−C dR ε
2/h(M)2 , (2.5.4)
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where C = 1/(36π3) and

h(M) := min(|∪M|, dim(Hsupp(M))). (2.5.5)

Remember the definition of the microcanonical state u[H](R) from Section 2.1.11.

Proof. Eq. (2.5.3) is Theorem 2.2.2 from Ref. [Gog10b]. We now prove Eq. (2.5.4)
for h(M) equal to the second argument of the min in Eq. (2.5.5). Let S :=⋃
M∈∪M supp(M) and remember that then for all ρ, σ ∈ S(H)

DM(ρ, σ) ≤ D(ρS, σS). (2.5.6)

Then Eq. (75) in Section VI.C of Ref. [PSW05] yields the result. To finish the proof,
note that Eq. (2.1.22) implies that for any ρ, σ ∈ S(H)

DM(ρ, σ) := sup
M∈M

1

2

|M |∑
k=1

|Tr(Mk ρ)− Tr(Mk σ)| (2.5.7)

≤ 1

2

∑
M∈∪M

|Tr(M ρ)− Tr(M σ)| (2.5.8)

≤ 1

2
|∪M| sup

M∈∪M
|〈M〉ρ − 〈M〉σ|. (2.5.9)

Together with Boole’s inequality this yields that for every σ ∈ S(H)

P
|ψ〉∼µHaar[HR]

(DM(|ψ〉〈ψ|, σ) ≥ ε)

≤1− P
|ψ〉∼µHaar[HR]

( ⋂
M∈∪M

|〈M〉|ψ〉〈ψ| − 〈M〉σ| <
2 ε

|∪M|

)
(2.5.10)

= P
|ψ〉∼µHaar[HR]

( ⋃
M∈∪M

|〈M〉|ψ〉〈ψ| − 〈M〉σ| ≥
2 ε

|∪M|

)
(2.5.11)

≤
∑

M∈∪M

P
|ψ〉∼µHaar[HR]

(
|〈M〉|ψ〉〈ψ| − 〈M〉σ| ≥

2 ε

|∪M|

)
. (2.5.12)

The proof of the result for h(M) equal to the first argument of the min in Eq. (2.5.5)
can then be finished by choosing σ = u[H](R), using Eq. (2.5.3), and the fact that for
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all M ∈ ∪M it holds that ‖M‖∞ ≤ 1. Disregarding a favorable factor of 2 and using
the (highly non-optimal) bound |∪M| < |∪M|2 yields the unified result as stated in
the theorem.

A physically particularly relevant case is when supp(M) is contained in some small
subsystem S ⊇ supp(M) and R = [E,E + ∆] is some energy interval. Then the
theorem yields a probabilistic bound on the distance D(|ψ〉〈ψ|S,uS[H]([E,E + ∆])).
If |ψ〉 ∼ µHaar[HR] and the dimension dR of the microcanonical subspace HR to the
energies in the interval [E,E + ∆] fulfills dR � dS , then D(|ψ〉〈ψ|S,uS[H]([E,E +

∆])) is small with very high probability. That is, the reduced state on S of a random
state from the subspace corresponding to the energy interval R is indistinguishable
from the reduction of the corresponding microcanonical state, with high probability.

The same holds in the more general setting that one has access only to a sufficiently
small number of measurements, which in total have a sufficiently small number of
different outcomes. If the total number of different outcomes | ∪M| is much smaller
than the dimension of the subspace corresponding to the energy interval [E,E + ∆],
a random state from this subspace is with high probability indistinguishable from the
microcanonical state.

For a family of Hamiltonians of locally interacting quantum systems with increasing
system size, if ∆ is kept fix and E is chosen such that R = [E,E + ∆] is not too close
to the boundaries of the spectrum of the Hamiltonian, then dR typically grows expo-
nentially with the system size |V|. For a locally interacting system with a macroscopic
number of constituents one would thus need to be able to distinguish an astronomi-
cally large number of different measurement outcomes to have a realistic chance of
distinguishing a random state from a microcanonical state.

Similar methods as those used above were employed in Ref. [LPSW09] to prove that
for Haar random pure states from high dimensional subspaces the effective dimension
(which we encountered in Section 2.2.2) with respect to a fixed Hamiltonian is of the
order of the dimension of the subspace, with probability exponentially close to one.
The result can be generalized to certain measures over states that are product with
respect to a bipartition V = S ∪̇B [Gog10b].
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In addition to the Haar measure, other measures over quantum state vectors have
been considered in the literature:

Refs. [BBH05, BHH07a, FM13, MGE11] introduce the mean energy ensemble. In-
stead of the uniform measure on a subspace corresponding to some energy interval,
the mean energy ensemble consists of random state vectors which have a fixed energy
expectation value with respect to some given Hamiltonian H . Under certain conditions
on the spectrum of H it can be shown that the mean energy ensemble exhibits measure
concentration [MGE11]. In addition to that, it is possible to identify the typical reduced
state of states drawn from the mean energy ensemble [MGE11], and it can be shown
that under certain conditions states from the mean energy ensemble typically have a
high effective dimension [Gog10b].

Ref. [Rei07] considers an ensemble of quantum state vectors of the form given in
Eq. (2.5.2), in which the expansion coefficients cj = 〈j|ψ〉 have fixed modulus but
random phases. Concentration results, similar in spirit to Theorem 2.5.1, can be shown
for this ensemble that yield typicality whenever sufficiently many energy levels are
populated.

Ref. [BG09] extends the notion of typicality to the dynamics of systems. Similarly as
in the mean energy ensemble, the authors define an ensemble of initial states that share
the same expectation value with respect to some given observable and then investigate
the time evolution of this expectation value under a Hamiltonian. The authors find
dynamical typicality, i.e., that states that initially give similar expectation values also
typically lead to a similar dynamical evolution of these expectation values.

Typicality can also be used to speed up numerical calculations. Instead of sampling
over exponentially large sets of states, often drawing just a few representatives can
already be sufficient to estimate expectation values [SS12]. A new approach, which
has recently been put forward in Refs. [Gar13, GO13, GOHZ10, GOZ10], is to in-
vestigate and exploit typicality in the context of so-called matrix product states. The
effects of typicality allow for the numerical approximation of thermal expectation val-
ues of observables in situations where naive approaches are infeasible [Gar13]. In
Ref. [SKNGG14] a method for numerically checking the validity of the eigenstate

thermalization hypothesis (see Section 2.7.2) is proposed that exploits techniques to
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apply exponentials of operators to random pure states. Typicality ensures that only few
such random states are needed to obtain conclusive results, thereby vastly reducing the
computational cost.

Discussion

Typicality arguments are frequently misunderstood and often criticized for being “un-
physical” [BL58, FL57]. Ref. [GLMTZ10], for example, contains a very interesting
review of the mostly negative reception of von Neumann’s quantum ergodic theorem
(see also Section 2.5). Whether the concept of typicality is really superior to other ap-
proaches towards the foundations of statistical mechanics and thermodynamics, such
as ergodicity, the principle of maximum entropy, or ensembles, is of course to some
extent a matter of personal taste.

However, especially with respect to the latter, I think that typicality has an important
advantage. Instead of simply postulating that a certain ensemble yields a reasonable
description of a certain physical situation, typicality shows, in a mathematically very
well-defined way, when and why details do not matter. If most states anyway exhibit
the same or very similar properties, then this does provide a heuristic, but pretty con-
vincing, argument in favor of the applicability of ensembles. For me this is the main
virtue of the typicality approach. I see it not as a replacement of the ensemble approach,
but rather as an argument supporting a description of large systems with ensembles.

2.6 Time scales for equilibration on average

In this section we summarize what is known about the time scales on which subsystem
equilibration to the reduction of the dephased state happens, i.e., on which time scales
small subsystems equilibrate towards their time averaged state. We will see that it
is possible to go beyond what Theorem 2.2.1 implies, but that all analytical results
known to date that do so have the disadvantage of not being applicable to concrete
Hamiltonians, but are only statements about all but few Hamiltonians from certain
probability measures.
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We will refer to and use methods of typicality that we discussed in Section 2.5. This
made it necessary to delay the discussion of this important topic until now.

We argued in the paragraphs following Theorem 2.2.1 that the bounds in Eq. (2.2.5)
and Eq. (2.2.6) can be expected to become meaningful only if T is of the order of
Ω(d2

S d
′). As d′ usually grows exponentially with the system size the equilibration

times implied by Theorem 2.2.1 become physically meaningless already for medium
sized systems.

There are good reasons to believe that without further assumptions on the Hamil-
tonian no significantly better general bounds on the equilibration time can hold. An
example of a system that indeed can take exponentially long to equilibrate is a bipar-
tite system in which the subsystem is only coupled to a low dimensional subspace of
the Hilbert space of the bath. It can then take exponentially long before the Hamilto-
nian on the bath has rotated the state of the bath into this subspace, thereby effectively
leaving the subsystem uncoupled for extremely long times. Such a couping to a low
dimensional subspace is however necessarily non-local and hence unphysical.

Numerical evidence suggests that most natural, locally interacting systems started
in reasonable initial states do not exhibit such extremely long equilibration times (see
for example Refs. [CCJFL11, CEF11, CZ10a, CZ10b, EK08, Fag13, GA12, GMM09,
RDO08, RDYO07, RF11, RMO06, SKS13, THS13]). In addition, the results concern-
ing equilibration during intervals of Ref. [CE09], which we presented in Section 2.2.3,
lead to more physical equilibration times.

As it is still unclear how the features of natural many body models, such as lo-
cality of interactions, can be exploited to derive tighter bounds on equilibration time
scales, Refs. [Ba+12, Cra11, MRA13, Žni12] instead consider random Hamiltonians.
Masanes, Roncaglia, and Acín [MRA13] go beyond the rather unrealistic scenario of
Hamiltonians with Haar random eigenstates, which is why we will concentrate on this
work in the following.

As a warm-up, we shall however consider exactly the situation of Hamiltonians with
Haar random eigenvectors. First, we define what a Haar random Hamiltonian is: Con-
sider a system with Hilbert space H of dimension d and fix an observable G ∈ O(H).
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Then for U ∼ µHaar[U(d)] the operator

HG(U) := U GU † (2.6.1)

is a Haar random Hamiltonian. Of course, G and HG(U) share the same spectrum
and eigenvalue multiplicities for any unitary U , but the energy eigenstates / spectral
projectors of HG(U) are Haar random. Fixing G is thus equivalent to fixing the eigen-
values and degeneracies of the ensemble HG(U), U ∼ µHaar[U(d)] of Haar random
Hamiltonians.

A quantity that will play an important role in the theorems to come is

fG(t) :=
1

d

d∑
k=1

e−i Ẽk t, (2.6.2)

where (Ẽk)
d
k=1 is the sequence of eigenvalues with respective multiplicity of G (and

hence also of HG(U) for any unitary U ). The function fG can be interpreted as the
Fourier transform of the sequence (Ẽk)

d
k=1 [MRA13].

We can now state the first result of Ref. [MRA13], which concerns quantum systems
composed of so-called qubits, i.e., quantum systems whose Hilbert space is C2:

Theorem 2.6.1 (Equilibration under Haar random Hamiltonians [MRA13, Result 1]).
Consider a bipartite system consisting of |V| many Qubits, i.e., V = S ∪̇ B and H =⊗

x∈V H{x} withH{x} = C2 for all x ∈ V , starting in a fixed initial state ρ(0) ∈ S(H).

Then, for every G ∈ O(H), every t ∈ R, and every ε > 0 it holds that

P
U∼µHaar[U(d)]

D(ρS(t), ωSHG(U)) >

√
dS

2 ε

√
|fG(t)|4 +

g2
G

d2
+

7

dB

 < ε, (2.6.3)

where ωSHG(U) := TrB($HG(U)(ρ(0))) and gG := max k∈[d]|{l : Ẽl = Ẽk}| with (Ẽk)
d
k=1

the sequence of eigenvalues with respective multiplicity of G.

A very similar result is also contained in Ref. [Ba+12].

Essentially, Theorem 2.6.1 connects the temporal evolution of the trace distance of
ρS(t) from the equilibrium state ωSG with the temporal evolution of |fG(t)|. If the bath
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is large and the Hamiltonian has only few degeneracies, then for most Haar random
Hamiltonians the distance D(ρS(t), ωSHG(U)) is small whenever |fG(t)| is small. This
will make it possible to give bounds on equilibration time scales.

The above result can be extended to a more general ensemble of random Hamil-
tonians. More specifically, consider again the setting of a composite system of N
Qubits and the ensemble HG(U), but now with G ∈ O(H) diagonal in some product
basis and U given by a random circuit of circuit depth C ∈ Z+. Here, a circuit is
a sequence of so-called quantum gates, i.e., unitary quantum channels that each act
on only one or two Qubits. The gates can be members of a so called universal gate

set, i.e., a set of quantum gates such that any unitary can be approximated arbitrarily
well by a circuit of gates from this set. The circuit depth of a circuit is the number of
gates in the circuit. Finally, a random circuit is a circuit in which the gates have been
drawn randomly according to some measure from a universal gate set. We write µC
for the measure on unitaries induced by random circuits of circuit depth C with gates
drawn uniformly at random from some fixed, finite universal gate set. It is known that
limC→∞ µC = µHaar[U(d)] and that for large enough C the measure µC approximates
µHaar[U(d)] in the sense of being an approximate unitary design [BHH12]. This holds
regardless of which finite universal gate set is used.

For the random circuit ensemble of random Hamiltonians the following statement
holds, which generalizes Theorem 2.6.1:

Theorem 2.6.2 (Equilibration under random circuit Hamiltonians [MRA13, Result 3]).
Consider a bipartite system consisting of N := |V| many Qubits, i.e., V = S ∪̇ B and

H =
⊗

x∈V H{x} with H{x} = C2 for all x ∈ V , starting in a fixed initial state ρ(0).

There exists a constant α ∈ R that depends only on the universal gate set such that for

everyG ∈ O(H) diagonal in a product basis, every t ∈ R, every circuit depth C ∈ Z+,

and every ε > 0

P
U∼µC

D(ρS(t), ωSHG(U)) >

√
dS

2 ε

√
|fG(t)|4 +

g2
G

d2
+

7

dB
+ d3 2−αC/N

 < ε,

(2.6.4)
where ωSHG(U) := TrB($HG(U)(ρ(0))) and gG := max k∈[d]|{l : Ẽl = ẼK}| with (Ẽk)

d
k=1

the sequence of eigenvalues with respective multiplicity of G.
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As can be seen from Eq. (2.6.4), a slightly super linear circuit complexity, i.e., C =

C(N) /∈ O(N), is sufficient to make the additional term in Eq. (2.6.4) (compared to
Eq. (2.6.3)) go to zero for large N .

If this is the case, and in addition N is large enough, the bath is much larger than
the subsystem, i.e., dB � dS , and G has only few degeneracies, i.e., gG � d,
then the right hand side of both Eq. (2.6.3) and (2.6.4) is approximately equal to
|fG(t)|2

√
dS/(2 ε). Hence, the bounds are non-trivial for reasonably small ε for all

t for which
√
ds |f(t)|2 � 1. For which times t this is the case of course crucially

depends on the spectrum that was fixed by fixing G.

The spectrum of the Ising model with transverse field, for example, leads to an ap-
proximately Gaussian decay of |f(t)|2, implying an estimated equilibration time of the
order of O(N−1/2) [MRA13]. For more general locally interacting Hamiltonians onD-
dimensional lattices one can show equilibration times of the order of O(N1/(5D)−1/2)

[Cra11].

This means that given an initial state ρ(0), if G is chosen to be the Hamiltonian
of the transverse field Ising model and U ∼ µHaar[U(d)], then the dynamics under
the Haar random Hamiltonian HG(U), which has the same spectrum as G, is, with
high probability, such that the time evolution ρ : R → S(H) is such that the state of
any small subsystem S equilibrates to the reduced state of the dephased state on that
subsystem, during a time of the order of O(N−1/2).

Discussion

Do the above results solve the issue of equilibration times? Despite them being very
important contributions, I think it is fair to say that they still have at least two serious
shortcomings:

First, the derived equilibration time scale appears to be rather unphysical. Subsys-
tems of larger systems should take longer to equilibrate, simply because excitations in
locally interacting spin systems travel with a finite speed (see [KGE13] and the refer-
ences therein). One would expect that for locally interacting systems of N spins on a
D dimensional regular lattice with nearest neighbor or short range interactions, sub-
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system equilibration should happen on a time scale of the order of Θ(N1/D), where
N1/D is the linear size of the system. A subsystem equilibration time of the order of
O(|N |−1/2), which becomes shorter with increasing system size, is clearly unphysical.

Second, irrespective of the above point, it is unfortunate that Theorems 2.6.1 and
2.6.2 do not say anything about concrete Hamiltonians, but are statements about typical
Hamiltonians from an ensemble. Even more worrying is the fact that one can show that
for Haar random Hamiltonians the subsystem equilibrium state is the maximally mixed
state [Cra11, Corollary 1] and a similar statement can be shown for the random circuit
ensemble of random Hamiltonians. Systems to which the above results apply can thus
never exhibit subsystem equilibration to an interesting, e.g., finite temperature, state.

The reason for both of these problems is that neither the model of Haar random
Hamiltonians nor that of Hamiltonians whose diagonalizing unitary is given by a ran-
dom circuit with high circuit complexity are good models for realistic, locally interact-
ing quantum systems. Simply put, even though random Hamiltonian ensembles have
been successfully used to model certain features of realistic Hamiltonians in the context
of random matrix theory [BGS84, CRFSS11, Fyo05, GMM09, GMW98, KRnRV11,
Meh91, Tab89, Tao12], the eigenstates of reasonable locally interacting quantum sys-
tems are far from Haar random.

What can be said for concrete Hamiltonians? Ref. [Gog10b] contains some lower

bounds on equilibration time scales. For example, if a state has overlap only with
energy eigenstates of the Hamiltonians in an energy interval of width ∆E, then the
equilibration time is at least of the order of Ω(1/∆E) (see also Ref. [Sre94]). Similarly,
if the Hamiltonian H of a bipartite system with V = S ∪̇ B is uncoupled, except for
a small coupling Hamiltonian HI := H − HS − HB, then the equilibration time is at
least of the order of Ω(1/ ‖HI‖∞) [Gog10b, Section 2.6.3].

Similarly, lower bounds on the equilibration/thermalization time follow from bounds
on the rate of change of certain entropies [Hut11, HW13]. In addition, in Ref. [Kas11a],
lower bounds on the equilibration time of the type Ω(N1/2) have been obtained for a
class of spin systems with long range interactions. For spin systems with short range
interactions, Lieb-Robinson bounds immediately imply lower bounds on the equilibra-
tion time for certain initial states that are of the order of the linear size of the system.
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Finally, in systems whose density of states can be approximated by a continuous
function the Riemann-Lebesgue Lemma [BC49] can be used to give upper bounds on
equilibration time scales [Yuk11].

Despite the large number of results the full problem still awaits a solution.

2.7 Thermalization

Given the findings presented in the last sections a natural question to ask is: When
do closed quantum systems in pure states that evolve unitarily not only equilibrate
and decohere, but actually thermalize in the sense that under reasonable restrictions
on the experimental capabilities they appear to be thermalized or in thermodynamic

equilibrium?

To make this question meaningful we will define the term thermalization in this sec-
tion. Then, in Section 2.7.2 and 2.7.3, we will discuss two complementary approaches
to explain and understand thermalization in the framework of pure state quantum sta-
tistical mechanics in detail. The first approach is the so-called eigenstate thermal-

ization hypothesis (ETH), the second is based on a quantum version of the classical
derivation of the canonical ensemble from the microcanonical one, augmented with
rigorous perturbation theory. The first approach is based mostly on assumptions on
the eigenspaces/eigenstates of the Hamiltonian, while the second one instead requires
stronger assumptions on the initial state. It is possible to interpolate between the two
to some extent. We will say more on that and on alternative notions of thermalization
in Section 2.7.4.

Throughout this section a focus will be put on subsystem thermalization, i.e., the
thermalization of a small part (subsystem) of a large composite quantum system via the
interaction with the rest of the system (bath). The whole composite system (subsystem
and bath together) is thereby assumed to be in a pure state evolving according to the
standard Schrödinger/von Neumann equation under some Hamiltonian H . Let S ⊂ V
be the vertex set of the subsystem and B = Sc that of the bath, then we will call the
sum HS + HB =: H0 of the two restricted Hamiltonians HS and HB (remember the
definitions from Section 2.1.8) the non-interacting Hamiltonian and HI := H − H0

75



2.7 Thermalization

the interaction Hamiltonian. We will say that a Hamiltonian H is non-interacting if
H = HS +HB.

Whenever the term bath is used in the following it refers to this model of thermal-
ization. In particular we do not mean quantum systems that are already initially in a
thermal state or other models of heat baths. It is crucial to note that approaches that
explain thermalization in quantum systems by investigating the behavior of systems
coupled to such thermal baths cannot solve the fundamental problem of thermaliza-
tion, as they leave open the question how the thermal bath became thermal in the first
place.

2.7.1 What is thermalization?

Whenever a term from one theory is used in a different context, a proper definition is
mandatory. This is particularly true for terms as involved as thermalization and ther-

modynamic equilibrium which, already in classical statistical mechanics, have several
different meanings depending on the context.

To take account of the complex nature of the term thermalization we will not jump
directly to a definition. Instead, we will consider a number of conditions that each cap-
ture certain aspects of thermalization and whose fulfillment, depending on the context,
one might or might not find necessary to say that a system has thermalized. The cata-
log of properties that we will consider has been chosen with the setting of subsystem
thermalization in mind. Based on this discussion we will then carefully define what
we consider sufficient to call a (sub)system thermalized, leaving open the possibility
of defining other, possibly less strict, notions of thermalization. In addition to that,
we will also define the term subsystem initial state independence, a property that we
regard as a necessary prerequisite for the thermalization of subsystems, and which we
will discuss in more detail in Section 2.8.

The aspects of thermalization that we will use as a guideline for our definition of
thermalization are:
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1. Equilibration: Equilibration is generally considered to be a necessary condition for
thermalization. In the following we will mostly be concerned with subsystem equili-

bration on average and apparent equilibration on average of the whole system under
restricted sets of POVMs (see also Section 2.2.1).

2. Subsystem initial state independence: The equilibrium state of a small subsystem
should be independent of the initial state of that subsystem. If a system exhibits some
local exactly conserved quantities then one might still call it thermal and describe its
equilibrium state by, for example, a so-called generalized Gibbs ensemble [Jay57a,
Jay57b, RDYO07]. However, even such a behavior is often already considered to
be non-thermal. We will take the more cautious point of view that a system should
not be considered thermalizing if its equilibrium state depends on details of its own
initial state, despite the absence of local exactly conserved quantities.

3. Bath state independence: It is generally expected that the equilibrium expectation
values of local observables on a small subsystem are almost independent of the de-
tails of the initial state of the rest of the system, but should rather only depend on
its “macroscopic properties”, such as the energy density, which one would expect to
have an influence on the temperature of the thermalizing subsystem.

4. Diagonal form of the subsystem equilibrium state: The equilibrium state of a small
subsystem should be approximately diagonal in the energy eigenbasis of a suitably
defined “self-Hamiltonian”. If the interaction with the bath makes the state of the
subsystem approximately diagonal in some basis one could call this decoherence

(see also Section 2.4).

5. Gibbs state: Ultimately, one would like to recover the standard assumption of
(classical) statistical physics that the equilibrium state is in some sense close to a
Gibbs/thermal state.

In the light of Condition 1 it seems to be a sensible approach to define thermaliza-
tion on average or during an interval depending on the type of equilibration that goes
along with thermalization. Conditions 2 and 3 make clear that thermalization should
be defined with respect to sets of initial states. This leads us to the following definition
of thermalization:
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Definition 2.7.1 (Thermalization on average). We say that a system with Hilbert space

H and Hamiltonian H ∈ O(H) thermalizes on average with respect to a set M of

POVMs and for a given set of initial states S0 ⊆ S(H) if for each state ρ(0) ∈ S0, the

system apparently equilibrates on average to an equilibrium state ω = $H(ρ(0)) that

is close to a thermal state g[H](β) for some β ∈ R in the sense that DM(ω, g[H](β))

is sufficiently small.

Definition 2.7.1 implicitly also defines thermalization on average of subsystems. Just
chooseM to be the set of all POVMs with support on a subsystem S. The Hamiltonian
HS�S would then be a good choice for what we called self-Hamiltonian in Condition 4.

Thermalization during intervals can be defined equivalently, but as we will not dis-
cuss it here, we keep the definition as simple as possible.

It seems worth emphasizing again that the above definition does not say that a system
thermalizes if and only if the given conditions are met, but only says that it thermalizes
if they are met. It gives a set of conditions that are sufficient for thermalization.

An obvious question to ask is: What are reasonable sets S0 of initial states? Par-
ticularly important is the energy distribution of the initial states, i.e., the sequence
(pk)

d′

k=1 of the energy level populations pk := Tr(Πk ρ(0)), as it is conserved under
time evolution. Taking the classical derivation of the canonical ensemble from the mi-
crocanonical one as a guideline, thermalization can only be expected to happen for
initial states whose energy distribution is not too wide, i.e., the energies of the signif-
icantly populated levels must be in an interval small compared to ‖H‖∞. We will see
in Sections 2.7.2 and 2.7.3 that such a condition will play an important role in proofs
of thermalization.

In the above definition of thermalization on average we deliberately left open the
question of what “sufficiently small” means. This is ultimately to be decided in the
specific situation at hand. One would probably want that DM(ω, g[H̃](β)) somehow
suitably decreases with the size of the system. However, we want to have a definition
of thermalization that is applicable to finite systems. Moreover, we want to avoid the
technicalities of defining thermalization for sequences of quantum systems of increas-
ing size. This could have been be done in a similar way as in the definition of spreading
transport (Definition 2.2.1), but would have lead to an equally involved definition.
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We follow the same ratio when defining subsystem initial state independence:

Definition 2.7.2 (Subsystem initial state independence). We say that a composite

system with Hilbert space H and Hamiltonian H ∈ O(H) satisfies subsystem ini-
tial state independence for subsystem S on average with respect to a given set of

initial states S0 ⊆ S(H) if for all ρ(0) ∈ S0 the equilibrium state on S is suffi-

ciently independent of its initial state in the sense that for every quantum channel

C ∈ T +(H) with support supp(C) ⊆ S the states ρ(0) and C(ρ(0)) have the property

that D(TrSc [$H(ρ(0))],TrSc [$H(C(ρ(0)))]) is sufficiently small.

In short: A system fulfills subsystem initial state independence if, for each initial
state in S0, changing only the subsystem part of the initial state does not noticeably
influence the equilibrium state of the subsystem.

2.7.2 Thermalization under assumptions on the eigenstates

At the center of the first approach to show thermalization in quantum systems is the
eigenstate thermalization hypothesis (ETH). There exist various version of the ETH in
the literature and we will give a more precise definition below, but a minimal version
of the ETH can informally be phrased as follows: “A Hamiltonian fulfills the ETH
if the expectation values of physically relevant observables in its energy eigenstates
are approximately smooth functions of their energy.” As we will see in this section,
observables for which a system fulfills the ETH thermalize on average under reasonable
conditions. The ETH is usually said to date back to two works by Deutsch [Deu91]
and Srednicki [Sre94]. As the role of these works is however often misunderstood it is
worth starting this section with a short historical review.

Already in 1985 Jensen and Shankar [JS85] investigated numerically how relatively
small quantum systems equilibrate to a state that can be well described by statistical
mechanics. The computational power available at that time made it possible to study a
spin-1/2 Ising chain with up to seven sites in a transverse field by means of exact diag-
onalization. Ref. [JS85] investigates the equilibration behavior of both global and local
observables and compares time averages with microcanonical and canonical averages.
The authors conclude that “both integrable and nonintegrable quantum systems with as
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few as seven degrees of freedom can exhibit statistical behavior for finite times.” They
also describe the reason for the statistical behavior they observe, which is essentially
the mechanism that is today known as the ETH: “If the expectation values [of an ob-
servable in the energy eigenstates] are smooth functions of the energy [. . . ], then the
short-time average of the observable will be very close to the ensemble average.” In
fact, it seems fair to say that the authors did anticipated large parts of the recent debate
on equilibration and thermalization in closed quantum systems. The last sentence of
the abstract for example reads “This work clarifies the impact of integrability and con-
servation laws on statistical behavior. The relation to quantum chaos is also discussed.”
It is remarkable that Ref. [JS85] is nevertheless essentially completely ignored by al-
most the whole recent literature centered around such questions (Refs. [RE13, Yuk11]
being notable exceptions).

In Ref. [Deu91] a mechanism that can lead to the thermalization of quantum sys-
tems is identified, which the author calls eigenstate thermalization. A quantum and
a classical version of a hard sphere gas serve as prototypical examples to illustrate
this mechanism. A central role is played by Berry’s conjecture. It states that in cer-
tain quantum systems, whose classical counterparts exhibit classical chaos, the energy
eigenstates to energies in the bulk of the spectrum are superpositions of plain waves
with random phases and random Gaussian amplitudes [Ber77]. It is argued that in the
hard sphere gas, whose classical version is indeed chaotic, all energy eigenstates that
satisfy Berry’s conjecture have a single particle momentum distribution that is thermal.
Finally, thermalization is explained by the accumulation of relative phases between
energy eigenstates due to time evolution. This dephasing destroys any fine tuned set-
ting of the phases that might have been present in the coherent superposition of energy
eigenstates that made up the initial state. Such a fine tuning is necessary to get an initial
state that is out of equilibrium.

Ref. [Sre94] aims at providing a quantum mechanical justification for the applicabil-
ity of statistical ensembles. The main idea is to model interacting composite quantum
systems by starting with a non-interacting Hamiltonian that can be well understood,
and then modeling generic effects of the interactions by adding a small random Hamil-
tonian — very much in the spirit of random matrix theory [BGS84, Meh91, Tao12].
Due to the fact that composite quantum systems generically have exponentially dense
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spectra, i.e., either exponentially small gaps between neighboring eigenvalues and/or
exponentially large degenerate eigenspaces, any extremely small perturbation will typ-
ically mix an exponentially large number of energy eigenstates of the non-interacting
Hamiltonian. This smears out their individual properties and should make the expec-
tation values of physical observables in individual energy eigenstates of the perturbed
Hamiltonian similar to those in a microcanonical state with a similar mean energy.

A much more rigorous formulation of the idea behind eigenstate thermalization can
be found in a work by Tasaki [Tas98] (see also Ref. [Tas97]). This article considers
bipartite systems with V = S ∪̇ B, whose non-interacting part H0 = HS + HB of
the Hamiltonian H = H0 + HI is non-degenerate. The interaction Hamiltonian HI is
assumed to couple only neighboring energy levels, i.e., it is of the form

∀k ∈ [d] : 〈E0
k |HI |E0

k′〉 = λ/2 δ|k−k′|,1 (2.7.1)

for some λ ∈ R such that εmax
B � λ � εmin

S with εmax
B the maximal spacing be-

tween the energy eigenvalues of HB and εmin
S the minimal level spacing of HS . It is

first argued heuristically and then proved, under some additional technical assump-
tions, that such Hamiltonians indeed exhibit eigenstate thermalization in the sense that
for most k and all observables AS with supp(AS) ⊆ S it holds that 〈Ek|AS|Ek〉 ≈
Tr(AS g[HS](β(Ek))) (see Eq. (5) and (6) in Ref. [Tas97]).

The eigenstate thermalization hypothesis (ETH) gained wide popularity after a very
influential article by Rigol, Dunjko, and Olshanii [RDO08], which states the ETH as
follows:

Conjecture 2.7.1 (Eigenstate thermalization hypothesis as stated in Ref. [RDO08]).
The expectation value 〈Ek|A|Ek〉 of a few-body observable A in an eigenstate |E〉k of

the Hamiltonian, with energy Ek, of a large interacting many-body system equals the

thermal [. . . ] average of A at the mean energy Ek.

It is emphasized that thermal average in this context can also mean the microcanon-
ical average. Ref. [RDO08] studies a system of hard core bosons on a lattice. It is
demonstrated that the observed thermalization can be explained by the fact that certain
physically relevant observables have expectation values in most energy eigenstates that
indeed resemble those in a microcanonical state.
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The validity of numerous variants of the ETH has been studied extensively, amongst
others in Refs. [BDKM12, BKL10, BMH13, CCR11, CIC12, CJSZ11, CR10b, DS-
FVJ12, GME11, GRD10, IC09, IWU11, IWU13, KRnRV11, KRRnGG12, MS10,
NM12, PDH11, PH10, PSSV11a, RDO08, RF11, Rig09, RS12, Rut12, Sin11, SKNGG14,
SKS13, SR10, Wil11]. The various eigenstate thermalization hypotheses differ in
whether they conjecture closeness to a microcanonical or a canonical average and
concerning the type of observables they supposedly apply to. Few body and local

observables are the two most frequently encountered choices.

The bottom line of this large amount of (mostly numerical) investigations is as fol-
lows: The energy eigenstates in the bulk of the spectrum, i.e., those to energies that
are neither too low nor too high, of sufficiently large and sufficiently complicated
composite quantum systems seem to generically fulfill some variant of the ETH for
certain physically meaningful local or few body observables. Many of the studies con-
clude that the fulfillment of the ETH is related to non-integrability or chaos [BMH13,
DSFVJ12, KRnRV11, KRRnGG12, Lar13, NM12, PSSV11a, RS12, SBI12, Sin11].
Moreover, it is often suggested that systems fulfill the ETH and thermalize if and only
if they are non-integrable [BKL10, RDO08, RF11, Rig09, vPBCR10].

The numerical investigation of the connection between quantum integrability
and equilibration/thermalization has a long history [JS85]. What precisely the term
non-integrable means in the context of many body quantum mechanics and espe-
cially in systems without a well-defined classical limit and the relation between
(non-)integrability and (exact) solvability are however still the subject of a lively debate
[Bra11, CM11, FEKW13, YS13]. We will come back to this issue in Section 2.9.

A slightly generalized and sharpened version of the ETH that captures the spirit of
eigenstate thermalization and applies to degenerate Hamiltonians is the following:

Definition 2.7.3 (Eigenstate thermalization hypothesis (ETH)). A Hamiltonian H ful-

fills the eigenstate thermalization hypothesis in a set R ⊂ R of energies with respect to

a setM of POVMs if and only if all its spectral projectors Πk to energies Ek ∈ R have

the property that there is a sufficiently smooth function β : R→ R+ such that for each

k with Ek ∈ R it holds that for all normalized pure states ψ ∈ S(H) with the property

ψ ≤ ΠK the distinguishability DM(ψ, g[H](β(Ek))) is sufficiently small.
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Again, we have deliberately left open what is meant by “sufficiently smooth” and
“sufficiently small”.

It is still open under which precise conditions the ETH holds in this or a simi-
lar form. The rigorous derivations of Ref. [Tas98] have so far not been generalized
to more reasonable physical interactions. Methods to analytically check the ETH in
“non-integrable models” that are interesting in the context of condensed matter the-
ory currently seem to be out of reach. Very recently in Ref. [MAMW13] a statement
reminiscent of the ETH was proved under fairly general conditions. More precisely,
Ref. [MAMW13] shows weak local diagonality (Theorems 4 and 38) of the energy
eigenstates of a certain type of Hamiltonian. In the language used here a slightly sim-
plified version of this statement can be formulated as follows:

Theorem 2.7.1 (Weak local diagonality [MAMW13]). Consider a locally interacting

spin system with Hilbert space H and Hamiltonian H ∈ O(H) whose interaction

graph (V , E) is a hypercubic lattice of spacial dimension D and let S ⊂ B ⊂ V be

subsystems. Then there exist constants C, c, v > 0, which depends only on D and the

local interaction strength J := maxX∈E ‖HX‖∞ of the Hamiltonian such that for any

energy eigenstate |E〉 of H to energy E there exists a state ρBE ∈ S(HB) that satisfies

for any two energy eigenstates |EB
l 〉, |EB

m〉 of HB�B with energies EB
l and EB

m

|〈EB
l |ρBE |EB

m〉| ≤ e− d(S,Bc) (EB
l −E

B
m)2/(8 c v2) (2.7.2)

and at the same time

∥∥TrB\S(ρBE)− TrV\S(|E〉〈E|)
∥∥

1
≤ C A2 J

√
d(S,Bc)

4 c v2
e−c d(S,Bc)/2. (2.7.3)

Essentially the theorem tells us that if S is sufficiently far from the boundary of B,
then for each energy eigenstate |E〉 of H there exists a state in S(HB) that is both
approximately diagonal in the eigenbasis of HB�B and locally on S hard to distinguish
from |E〉〈E|. If one could improve the result to the effect that it would show local
indistinguishability not only from an approximately diagonal state but from a thermal
state then it would constitute a proof of an ETH like statement. However, such a
generalization can almost surely hold only under additional assumptions [MAMW13].
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The ETH, as defined in Definition 2.7.3, is sufficient for thermalization in the fol-
lowing sense:

Observation 2.7.1 (Thermalization in systems that fulfill the ETH). Systems whose

Hamiltonian H ∈ O(H) fulfills the ETH, as stated in Definition 2.7.3, for a set R ⊂ R
of energies with respect to a setM of POVMs, thermalize on average with respect to

the set M, in the sense of Definition 2.7.1, for all initial states for which the system

apparently equilibrates on average with respect the restricted set M of POVMs (see

also Section 2.2.1) and whose energy distribution is sufficiently narrow and contained

in R, i.e., Ek /∈ R =⇒ Tr(Πk ρ(0)) = 0.

That the ETH is sufficient for thermalization in this or a similar sense is widely
known (see for example Ref. [Tas98]).

It is worth noting that the strong requirement in Definition 2.7.3 that the distinguisha-
bility DM(ψ, g[H](β(Ek))) must be small for all normalized pure states ψ ≤ ΠK is
crucial for the above observation to hold. At the same time, this requirement obviously
becomes harder to satisfy the more degenerate the Hamiltonian is.

If one takes the point of view that one should say that a system thermalizes only if
it thermalizes in the sense of Definition 2.7.1 for all equilibrating initial states with a
sufficiently narrow energy distribution, then fulfillment of the ETH is at the same time
essentially also necessary for thermalization. We will not make this statement fully rig-
orous, but the intuition behind it is as follows: If the ETH is not fulfilled, there should
always exist initial states with a narrow energy distribution that only have overlap with
energy levels that, for certain observables or POVMs, produce a measurement statis-
tic that is sufficiently far from that of the closest thermal state. This distinguishability
from the thermal state will then still be visible in the dephased state and hence survive
dephasing and equilibration.

Such arguments, and the above mentioned apparent connection between the ETH
and (non-)integrability, has lead some authors to proclaim [BnCH11, CFMSE08,
KLA07, RDO08, Rig09] that non-integrable systems thermalize and integrable sys-
tems do not. While there is evidence that in many models this is indeed the case, we
will see in Section 2.8 and 2.9 that the situation is in fact more involved.
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Discussion

We have seen that the ETH as defined in Definition 2.7.3 is by construction essen-
tially sufficient and, in a certain sense, necessary for thermalization. Is the problem of
thermalization settled? In my opinion, no.

First, a critical person could argue that the question “When does a system thermal-
ize?” and the question “When does a system fulfill the ETH?” are essentially equally
little understood [Sin11]. I feel that, despite the great amount of new insights in the
behavior of many body systems that was gained by investigating the validity of the
ETH, such a person would have a point. Saying that a system thermalizes if (and only
if) it fulfills the ETH or is non-integrable (in some sense) is, at least at present, more a
rephrasing of the problem rather than a solution.

Second, the ETH is necessary for thermalization only if one is willing to call a
system thermalizing only if it thermalizes for a given set of POVMs for all initial states
with a sufficiently narrow energy distribution for which it also apparently equilibrates.
Hence, there is the possibility to show thermalization in systems that do not fulfill the
ETH, if one is willing to restrict the class of allowed initial states. As we will see in
the following this can indeed be done.

2.7.3 Thermalization under assumptions on the initial state

In this section we will discuss a second approach towards the problem of thermaliza-
tion that is independent of the eigenstate thermalization hypothesis (ETH). Instead of
making strong assumptions concerning the properties of the energy eigenstates of the
Hamiltonian we will show thermalization under stronger assumptions concerning the
energy distribution of the initial state. This alternative and complementing approach is
inspired by an argument from classical statistical mechanics, which we will lift to the
quantum setting. The details of this approach were first worked out in Ref. [RGE12].

The first motivation for this work comes from the fact that explaining thermalization
by using the eigenstate thermalization hypothesis has one important drawback — that
the ETH is indeed a hypothesis. One could make the provocative claim that this leads
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to the ironic situation that attempts to explain thermalization by the ETH have the
following problem: They essentially try to explain one phenomenon that is not well
understood by another one that is almost as little understood.

The second motivation comes from the consideration that demanding thermalization
of all initial states with an energy distribution that is only required to be narrow but
otherwise allowed to have arbitrary complex structure is asking for too much.

In the light of typicality arguments (Section 2.5) it seems plausible to restrict the
class of initial states for which one tries to show thermalization, or even to be content
with an argument that shows thermalization for most states from some measure. In
addition, certain restrictions on the initial states are anyway already necessary to prove
equilibration on average in the first place (Section 2.2.2), and practical limits on the
experimental capabilities can be used to argue that many initial states of macroscopic
objects are essentially impossible to prepare [Rei08, Rei12, RK12].

The third motivation comes from the known fact that in some systems the ETH is
not fulfilled and this has been linked to the integrability of these models, while non-

integrability is often associated with a fulfillment of the ETH and thermalization (see
for example Refs. [CCR11, CIC12, CRFSS11, FM10, GRD10, KRRnGG12, Lar13,
PSSV11b, RDO08, RDYO07, RF11]). What (non-)integrability even means in the
context of quantum mechanics is however far from settled [BLS03, CM11] (see also
Section 2.9). It is thus of interest to approach the problem of thermalization in a way
that is independent of the concept of integrability.

As we will see in the following, restricting the class of initial states makes it possi-
ble to rigorously prove thermalization without any reference to the ETH for both spin
and fermionic systems. The overall structure of the argument is depicted in Fig. 2.7.1.
The result that we will derive and discuss in this section can be combined with ei-
ther the typicality theorems from Section 2.5 or the dynamical equilibration theorems
from Section 2.2. The former yields a kinematic thermalization statement (Observa-
tion 2.7.3) that holds for most Haar random states from a certain subspace. The latter
yields a dynamic thermalization result (Observation 2.7.4) that proves thermalization
on average in the sense of Definition 2.7.1 for all initial states from a certain class
of states. It is hence closer to the thermalization statement obtained under the ETH
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+

Classical level counting with no
interaction

H0 = HS +HB

Perturbation theory for realistic
weak coupling

‖HI‖∞ � kB T
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Figure 2.7.1: Structure of the proof of thermalization from Ref. [RGE12]

(Observation 2.7.1), which we discussed in the last section.

In essence, the proofs of the statements presented in this section are translations of
the classical derivation of the canonical ensemble for small subsystems of large weakly
interacting systems that are described by a microcanonical ensemble to the quantum
setting. The main difficulty is that in quantum mechanics the interaction between the
small subsystem and the bath not only shifts the eigenenergies of the non-interacting
Hamiltonian, but, in addition, significantly perturbs the energy eigenstates. In many
previous accounts of the thermalization problem this issue has been partially over-
looked or at least not been addressed rigorously. Compare for example Refs. [GLTZ06,
PSW05, PSW06].

How does the interaction influence the Hamiltonian? The eigenvalues of the interact-
ing Hamiltonian are shifted at most by the operator norm of the interaction Hamiltonian
with respect to those of the non-interacting Hamiltonian [Bha97, Theorem III.2.1]. As
long as the interaction is weak, in the sense that its operator norm is small compared
to an energy uncertainty or measurement resolution, the change in the eigenvalues will
thus be insignificant.

The energy eigenstates, or in the case of a degenerate Hamiltonian the spectral pro-
jectors, are much more fragile. Naive perturbation theory breaks down [Sak94] as
soon as the strength of the perturbation is larger than the gaps of the non-interacting
Hamiltonian. The gaps of a locally interacting quantum system are however usually
exponentially small in the system size. Indeed, if the non-interacting Hamiltonian H0

and the interaction Hamiltonian HI are not diagonal in the same basis, the energy
eigenstates of H = H0 +HI will usually be markedly different from those of H0.
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Before we tackle this problem, let us consider the non-interacting case, i.e., a Hamil-
tonian of the form H0 := HS + HB. Let H0 and HS�S have spectral decompositions
H0 =

∑d′0
k E0

k Π0
k and HS�S =

∑d′S
l ES

l ΠS
l respectively. Moreover, let (|ẼS

l 〉)
dS
l=1 and

(|ẼB
m〉)

dB
m=1 be some orthonormal eigenbases with corresponding eigenvalues (ẼS

l )dSl=1

and (ẼB
m)dBm=1 of HS�S and HB�B respectively. The Hamiltonians HS�S , HB�B, and H0

are allowed to have degeneracies, i.e., l 6= l′ 6=⇒ ẼS
l 6= ẼS

l′ and m 6= m′ 6=⇒ ẼB
m 6=

ẼB
m′ and the bases are not unique. Remember that, on the other hand, by definition, the

elements of the sequences (E0
k)
d′0
k=1 and (ES

l )d
′

l=1 are distinct.

We first look at the case of spin systems. In such systems each of the spectral pro-
jectors Π0

k of H0 is of the form

Π0
k =

∑
l,m : ẼS

l +ẼB
m=E0

k

|ẼS
l 〉〈ẼS

l | ⊗ |ẼB
m〉〈ẼB

m|. (2.7.4)

The microcanonical state u[H0]([E,E + ∆]) to an energy interval [E,E + ∆] is hence
proportional to

u[H0]([E,E + ∆]) ∝
∑

k : E0
k∈[E,E+∆]

∑
l,m : ẼS

l +ẼB
m=E0

k

|ẼS
l 〉〈ẼS

l | ⊗ |ẼB
m〉〈ẼB

m|. (2.7.5)

Its reduced state uS[H0]([E,E+∆]) = TrB u[H0]([E,E+∆]) on S therefore satisfies

uS[H0]([E,E + ∆]) ∝
∑

k : E0
k∈[E,E+∆]

∑
l,m : ẼS

l +ẼB
m=E0

k

|ẼS
l 〉〈ẼS

l | (2.7.6)

=
∑

k : E0
k∈[E,E+∆]

dS∑
l=1

|ẼS
l 〉〈ẼS

l | |{m : ẼS
l + ẼB

m = E0
k}| (2.7.7)

=
∑

k : E0
k∈[E,E+∆]

d′S∑
l=1

ΠS
l |{m : ES

l + ẼB
m = E0

k}| (2.7.8)

=

d′S∑
l=1

ΠS
l |{m : ES

l + ẼB
m ∈ [E,E + ∆]}| (2.7.9)

=

d′S∑
l=1

ΠS
l #∆[HB�B](E − ES

l ), (2.7.10)
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where

#∆[HB�B](E) := |{m : ẼB
m ∈ [E,E + ∆]}| = ranku[HB�B]([E,E + ∆]) (2.7.11)

is the number of orthonormal energy eigenstates of the bath Hamiltonian HB to ener-
gies in the interval [E,E + ∆].

For systems of fermions Eq. (2.7.4) does not hold, because the Hilbert space of
the joint system is not the tensor product of the Hilbert spaces of the subsystems.
However, the following quite lengthy calculation shows an equivalent result also for
fermionic systems. Readers not interested in the details can safely jump directly to
Observation 2.7.2.

Denote by fx, f
†
x the fermionic annihilation and creation operators on H and by

f̃x, f̃
†
x with x ∈ S those acting onHS and for x ∈ B those acting onHB. Furthermore,

denote the vacuum state inH by |0〉 and the projectors in B(H) onto the subspace with
no particle in system S orB by |0〉〈0|S , and |0〉〈0|B respectively. The projectors |0〉〈0|S ,
|0〉〈0|B, and |0〉〈0| are all even operators and |0〉〈0| = |0〉〈0|S |0〉〈0|B. For each l ∈ [dS]

let pHS
l be the representation of the eigenstate |ẼS

l 〉 as a polynomial in the fermionic
operators on HS , i.e., |ẼS

l 〉 = pHS
l ((f̃s, f̃

†
s )s∈S) |0〉S , and likewise for pHB

m . Note that
the pHS

l and the pHB
m are either even or odd polynomials as otherwise the projectors

|ẼS
l 〉〈ẼS

l | and |ẼB
m〉〈ẼB

m| would not be even. Furthermore, note that commuting two
polynomials that are both either even or odd gives a global minus sign only if both
polynomials are odd. As HS and HB are even operators it is strait forward to verify
that the states |ẼS

l + ẼB
m〉 := pHS

l ((fs, f
†
s )s∈S) pHB

m ((fb, f
†
b )b∈B) |0〉 are eigenstates of

H0 to energy ẼS
l + ẼB

m. In fact, they form an orthonormal basis of H in which H0,
HS , and HB are jointly diagonal. For the sake of brevity we omit the subscripts s∈S

and b∈B in the following calculation. It is again straight forward to verify that for any
even operator A ∈ B(H) with supp(A) ⊆ S it holds that

Tr
(
A |ẼS

l + ẼB
m〉〈ẼS

l + ẼB
m|
)

(2.7.12)

= Tr
(
ApHS

l ((fs, f
†
s )) pHB

m ((fb, f
†
b )) |0〉〈0|S |0〉〈0|B pHB

m ((fb, f
†
b ))† pHS

l ((fs, fs))
†)

= Tr
(
ApHS

l ((fs, f
†
s )) |0〉〈0|S pHS

l ((fs, f
†
s ))† pHB

m ((fb, f
†
b )) |0〉〈0|B pHB

m ((fb, f
†
b ))†
)

= Tr
(
A |ẼS

l 〉〈ẼS
l |
)
. (2.7.13)
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The last step can be shown by explicitly writing out the trace in the Fock basis and
inserting an identity between the operators that are supported on S and those supported
on B.

Now, note that any operatorA ∈ B(H) with supp(A) ⊆ S can be written as a sum of
an even and odd part and that only the even part can contribute to an expectation value
of the form Tr(A |ẼS

l + ẼB
m〉〈ẼS

l + ẼB
m|). The above calculation is hence sufficient to

show that (remember the definition of the partial trace in Eq. (2.1.45))

∀l ∈ [dS],m ∈ [dB] : TrB(|ẼS
l + ẼB

m〉〈ẼS
l + ẼB

m|) = |ẼS
l 〉〈ẼS

l |. (2.7.14)

Finally, realizing that

u[H0]([E,E + ∆])

=
∑

k : E0
k∈[E,E+∆]

∑
l,m : ẼS

l +ẼB
m=E0

k

TrB(|ẼS
l + ẼB

m〉〈ẼS
l + ẼB

m|) (2.7.15)

yields an expression equivalent to Eq. (2.7.5) and the proof then proceeds analogously.

We summarize the result of the above calculation in the following observation:

Observation 2.7.2 (Gibbs states as reductions of microcanonical states of the non-in-
teracting Hamiltonians). Let [E,E + ∆] be an energy interval and H0 = HS + HB a

non-interacting Hamiltonian of a bipartite quantum system of spins or fermions with

V = S ∪̇B. If for some β ∈ R it holds that

#∆[HB�B](E) ∝ e−β E, (2.7.16)

then uS[H0]([E,E + ∆]) takes the well known form of a thermal state, i.e.,

uS[H0]([E,E + ∆]) ∝
d′S∑
l=1

ΠS
l e−β E

S
l ∝ g[HS�S](β) = gS[H0](β). (2.7.17)

Note how β, which was introduced in Eq. (2.7.16) simply as a parameter describing
the shape of the number of states, ends up being the inverse temperature of the thermal
state g[HS�S](β) of the subsystem S. Similar calculations (at least for spin systems)
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can be found for example in Refs. [GLTZ06, GMM09, Rei07, Tas98] and in many
textbooks on statistical mechanics.

For finite dimensional baths the proportionality #∆[HB�B](E) ∝ e−β E can never
be exactly fulfilled simply because #∆[HB�B](E) is not continuous. A detailed
analysis [RGE12, Appendix A] shows that if the logarithm of the number of states
ln(#∆[HB�B](E)) can be sufficiently well approximated by a twice differentiable
function whose second derivative is small compared to the width of the relevant energy
range [E−‖HS‖∞ , E+‖HS‖∞], then Eq. (2.7.17) is fulfilled approximately. The first
derivative of this approximation ends up being the inverse temperature of the thermal
state, the second derivative enters the error bound.

It is widely known that natural locally interacting Hamiltonians H with bounded
local terms “generically” have an approximately Gaussian number of states #∆[H](E)

if the system size is sufficiently large [GMM09, Section 12.2] (see also Ref. [HMH05]
for some rigorous results). It is more common to refer to the density of states in this
case, which is essentially the limit of #∆[H](E)/∆ for ∆ small and increasing system
size. If the bath Hamiltonian HB is taken to be such a model with a nearly Gaussian
density and number of states, the approximation by a twice differentiable function is
possible and the distanceD(uS[H0]([E,E+∆]), g[HS�S](β)) can be bounded [RGE12,
Appendix B] and is usually exponentially small in the size of the bath. In the following
we will call locally interacting systems that have this property “generic”.

The value of β for which D(uS[H0]([E,E + ∆]), g[HS�S](β)) is small depends on
E. If #∆[HB�B] is indeed close to a Gaussian, then ln(#∆[HB�B]) can be well approx-
imated by an inverted parabola. Its first derivative, which is essentially the optimal β,
is large for low values of E, thus associating them with low temperatures. For values
ofE in the center of the spectrum it goes to zero, corresponding to infinite temperature,
and becomes negative for even higher values of E.

In conclusion, we can say that the reduction on S of a microcanonical state to an
energy interval [E,E+ ∆] of a system that is a composite system with V = S ∪̇B and
without any interaction between S and B, whose Hamiltonian HB on B is a “generic”
many body Hamiltonian, will typically be exponentially close to a Gibbs state of HS

with an inverse temperature β that depends in a reasonable way on E. This works for
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all values of E that are neither too low nor too high. At the edges of the spectrum the
number of states of the bath will be too low to allow for a good approximation of the
number of states by a twice differentiable function. In addition, ∆ must be both small
compared to ‖H‖∞ and large compared to the largest gaps in the spectrum of H in the
relevant energy range.

Now we consider the influence of an interaction between S and B. The challenge
posed by the fact that such an interaction will typically markedly perturb the energy
eigenstates can be overcome by a perturbation theorem based on a result of Bhatia
[Bha97] (see also Refs. [BDM83, DK70]) for projectors that are sums of spectral pro-
jectors.

Theorem 2.7.2 (Stability of sums of spectral projectors (implied by Theorem 1 of
Ref. [RGE12])). Given an energy interval [E,E + ∆] and two Hamiltonians H,H ′ ∈
O(H) with spectral decompositions H =

∑
k Ek Πk and H ′ =

∑
k E
′
k Π′k. Let P

and P ′ be projectors that are sums of the spectral projectors Πk and Π′k to energies in

[E,E + ∆] of H and H ′ respectively, i.e.,

P :=
∑

k : Ek∈[E,E+∆]

Πk and P ′ :=
∑

k : E′k∈[E,E+∆]

Π′k. (2.7.18)

Then for every ε > 0

‖P − P ′‖1 ≤ (rankP + rankP ′)
‖H −H ′‖∞

ε
+ rankPε + rankP ′ε (2.7.19)

where

Pε :=
∑

k : Ek∈[E,E+ε]∪[E+∆−ε,E+∆]

Πk (2.7.20)

and

P ′ε :=
∑

k : E′k∈[E,E+ε]∪[E+∆−ε,E+∆]

Π′k. (2.7.21)

The rather technical theorem stated above has immediate consequences for the sta-
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bility of microcanonical states:

Corollary 2.7.1 (Stability of microcanonical states [RGE12]). Given an energy inter-

val [E,E + ∆] and two Hamiltonians H,H ′ ∈ O(H) with spectral decompositions

H =
∑

k Ek Πk and H ′ =
∑

k E
′
k Π′k it holds that for every ε > 0

D(u[H]([E,E + ∆]),u[H ′]([E,E + ∆])) ≤ ‖H −H
′‖∞

ε
+

∆Ω + Ωε

2 Ωmax

, (2.7.22)

where Ωmin/max := min /max(ranku[H]([E,E+∆]), ranku[H ′]([E,E+∆])), Ω :=

Ωmax − Ωmin, and

Ωε := ranku[H]([E,E + ε] ∪ [E + ∆− ε, E + ∆]) (2.7.23)

+ ranku[H ′]([E,E + ε] ∪ [E + ∆− ε, E + ∆]). (2.7.24)

Proof. By the triangle inequality

D(u[H](I),u[H ′](I)) ≤ ‖P − P
′‖1 + ∆Ω

2 Ωmax

(2.7.25)

with P, P ′ defined as in Eq. (2.7.18). Theorem 2.7.2 finishes the proof.

What is the meaning of the corollary? The statement is non-trivial if ‖H −H ′‖∞ �
∆. Then one can expect that there exists an ε with the property that ‖H −H ′‖∞ �
ε� ∆, such that both ‖H −H ′‖∞ /ε� 1 and (∆Ω + Ωε)/(2 Ωmax)� 1.

Under the assumption of an approximately uniform density of states one finds that
Ωε/(2 Ωmax) ≈ 2 ε/∆ and ∆Ω/(2 Ωmax) / ‖H −H ′‖∞ /∆ such that the optimal
choice for ε is approximately ε ≈

√
‖H −H ′‖∞∆/2, which yields

D(u[H](I),u[H ′](I)) / 4

√
‖H −H ′‖∞

∆
. (2.7.26)

While the above example provides some intuition for how powerful Theorem 2.7.2
and Corollary 2.7.1 are, the case of a uniform density of states is not the relevant situa-
tion if one is interested in showing thermalization. As we have seen in the beginning of
this section, for uS[H0]([E,E + ∆]) to become approximately thermal it is necessary
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that the number of states of the bath grows exponentially with E. What happens in this
case?

First, notice that the two terms in the right hand side of Eq. (2.7.22) are non-negative
and hence must both be small individually for the inequality to become non-trivial. For
the interesting case H = H0 + HI and H ′ = H0 this implies that it is necessary that
‖HI‖∞ � ε, so that the fist term can become small. For the second term we restrict
our attention to Ωε/(2 Ωmax) as ∆Ω can reasonably be assumed to be smaller than Ωε.

If to good approximation

#∆[H0](E) ≈ #∆[H](E) ∝ e−β E, (2.7.27)

then [RGE12, Appendix H]

Ωε

2 Ωmax

'
1− e−β ε

2 (1− e−β∆)
. (2.7.28)

That is, for Corollary 2.7.1 to be non-trivial it must be possible to chose an ε such that

β ‖HI‖∞ � β ε� 1. (2.7.29)

At the same time, if Eq. (2.7.27) is fulfilled, then also [RGE12, Appendix H]

Ωε

2 Ωmax

/
β ε

1− e−β∆
. (2.7.30)

Under the reasonable assumption that ∆Ω/(2 Ωmax)� 1 the choice ε =
√
‖HI‖∞ /β

yields

D(u[H](I),u[H0](I)) / 2

√
β ‖HI‖∞

1− e−β∆
, (2.7.31)

which gives a non-trivial upper bound as long as

‖HI‖∞ � 1/β � ∆. (2.7.32)

Concluding, we can say that for reasonable bath Hamiltonians HB, and if the coupling
is weak enough and ∆ large enough such that Eq. (2.7.32) is fulfilled, then one can
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expect that

D(uS[H]([E,E + ∆]), g[HS�S](β)) ∈ O

(√
β ‖HI‖∞

)
, (2.7.33)

i.e., that the reduced state on subsystem S of the microcanonical state is close to a
Gibbs state of the restricted Hamiltonian truncated to S.

Corollary 2.7.1 and the above discussion quantify the errors in the approximate
equalities Eq. (7) in Ref. [PSW05] and Eq. (18) in Ref. [GLTZ06].

For the rest of this section we consider a bipartite quantum system with V = S ∪̇ B
of spins of fermions with Hamiltonian H . Let H0 := HS +HB and HI := H−H0. We
are now in a position to state the kinematic version of the thermalization result, which
follows from the above discussion of Corollary 2.7.1 and Theorem 2.5.1.

Observation 2.7.3 (Most Haar random states are locally thermal [RGE12]). Let R :=

[E,E+∆] be an energy interval andHR ⊆ H the subspace spanned by all eigenstates

of H to energies in R with dimension dR := dim(HR). If the bath has a “generic”

locally interacting Hamiltonian with the property that for energies in [E,E + ∆] the

logarithm of the number of states ln #∆[HB�B] can be well approximated by an affine

function with slope β and if moreover ∆ is sufficiently large and the interaction suffi-

ciently weak such that

‖HI‖∞ � 1/β � ∆, (2.7.34)

and the interval R is sufficiently far from the edges of the spectrum, then for every

ε > 0

P
|ψ〉∼µHaar[HR]

(
D(|ψ〉〈ψ|S, g[HS�S](β)) ≥ ε+ δ(HB) + O

(√
β ‖HI‖∞

))
≤ 2 d2

S e−C dR ε
2/d2S ,

(2.7.35)

where C = 1/(36π3) and δ(HB) decreases fast with the size of the bath.

To state the dynamic result we introduce the notion of rectangular states [RGE12].
We call a state ρ ∈ S(H) of a quantum system with Hilbert space H and Hamiltonian
H ∈ O(H) rectangular with respect to an energy interval [E,E+∆] ⊂ R if dephasing
with respect to H yields the microcanonical state corresponding to [E,E + ∆]. For
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example, ifH has no degeneracies, then a state is a rectangular state if, when expressed
in the eigenbasis of H , it has non-zero matrix elements only in some diagonal block
and the same value for each entry on the diagonal in this block. The class of rectangular
states is not a very large class of states, but generally comprises a lot of pure states and
usually also states that are out of equilibrium, in the sense that their reductions on a
small subsystem are well distinguishable from a thermal state and at the same time
have a sufficiently widespread energy distribution such that Theorem 2.2.1 can be used
to guarantee equilibration on average.

Nevertheless, all these states have a tendency to thermalize dynamically:

Observation 2.7.4 (Thermalization on average [RGE12]). Let R := [E,E + ∆] be an

energy interval. Let the bath have a “generic” locally interacting Hamiltonian with

the property that in an energy interval [E,E+∆] the logarithm of the number of states

ln(#∆[HB�B]) can be well approximated by an affine function with slope β. If ∆ is

sufficiently large and the interaction sufficiently weak such that

‖HI‖∞ � 1/β � ∆, (2.7.36)

and the interval R is sufficiently far from the edges of the spectrum, then the time

evolution is such that the subsystem S thermalizes on average, in the sense of Defini-

tion 2.7.1, for any initial state ρ(0) ∈ S(H) that is rectangular with respect to R in the

sense that

D(ρS(t), g[HS�S](β))
T
≤
√
N(ε) d2

S g((pk)d
′
k=1)/2 + δ(HB) + O

(√
β ‖HI‖∞

)
,

(2.7.37)
where δ(HB) decreases fast with the size of the bath, and, as in Theorem 2.2.1,

N(ε) := sup
E∈R
|{(k, l) ∈ [d′]2 : k 6= l ∧ Ek − El ∈ [E,E + ε]}| (2.7.38)

g((pk)
d′

k=1) := min(
d′∑
k=1

p2
k, 3 max′

k
pk), (2.7.39)

with (pk)
d′

k=1 the energy populations, i.e., pk := Tr(Πk ρ(0)), and max′k pk the second

largest element in (pk)
d′

k=1.
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Discussion

The class of rectangular states seems fairly unnatural on first sight, and indeed the
condition of being rectangular can be slightly weakened. For small deviations from a
rectangular state Observation 2.7.4 still essentially holds, just an additional error must
be taken into account. If the deviation from rectangular is in a sense uncorrelated with
the relevant properties of the energy eigenstates, then even relatively large deviations
should be tolerable as the errors will not accumulate but rather cancel each other out.
In the worst case, however, the deviation from rectangular could be highly correlated
with the expectation value of, say, a local observable. Then, even small deviations from
rectangular can lead to noticeable deviations of the equilibrium state from a thermal
state. We will see that this can indeed happen in natural models for natural initial
states in Section 2.8.2 (see in particular Fig. 2.8.2). In this sense the condition of being
rectangular is necessary for thermalization if no conditions on the energy eigenstates
are to be imposed.

A comment on the notion of weak coupling used here is in order: The condition that
is needed for the above results to be non-trivial is (compare Eq. (2.7.33))√

β ‖HI‖∞ � 1. (2.7.40)

This is a significant improvement over the condition that would be necessary to guar-
antee that naive perturbation theory on the level of individual energy eigenstates is
applicable (namely that ‖HI‖∞ is much smaller than the gaps of H0). While the gaps
of H0 become exponentially small with the system size β can be expected to be an
intensive quantity, i.e., to be independent of the system size.

In the case of a 1D system with short range interactions and if S is a set of consec-
utive sites ‖HI‖∞ is also intensive. In this case, Eq. (2.7.40) is a physically natural
condition to call the coupling weak. In the analogous situation in higher dimensional
lattices, for example a system with nearest neighbor interactions on a 2D square lattice
and S the sites inside a ball around the origin, ‖HI‖∞ however scales with the surface
of the region S, making the above bounds useless already for medium sized |S|. Thus,
the above results are not entirely satisfactory.
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The reason for this is essentially that the trace distance is a very sensitive metric.
If uS[H]([E,E + ∆]) and g[HS�S](β) for the optimal β only differ slightly on each
of the sites along the boundary of S, then their trace distance (at least as long as it is
sufficiently far from one) will be approximately proportional to the surface of S. In
consequence, the unfavorable scaling of the given error bounds is expected.

It should be possible to somehow improve the results by considering the distin-
guishability under POVMs that act only on parts of S that are sufficiently far from
the boundary by exploiting the locality of the interactions (see also Ref. [ZSN10]). In
general this seems difficult, but some steps in this direction are possible, and we will
discuss this issue later in Section 2.10.

2.7.4 Hybrid approaches and other notions of
thermalization

As we have seen in the last two sections, both approaches to explain thermalization,
the eigenstate thermalization hypothesis and thermalization under assumptions on the
initial state, have their advantages and drawbacks. They can be understood as extreme
scenarios. In most cases where thermalization of closed quantum systems happens it is
probably due to a mixture of the two effects.

An interpolation between the two previously discussed approaches is provided by the
eigenstate randomization hypothesis (ERH) of Ikeda, Watanabe, and Ueda [IWU11].
The ERH is a weaker condition than the ETH. Instead of demanding that for certain
observables the expectation values of all individual energy eigenstates with nearby
energies give approximately the same expectation value (compare Conjecture 2.7.1 and
Definition 2.7.3), the ERH requires only that the variance of certain coarse-grainings of
the sequence of expectation values of an observable in the energy eigenstates becomes
sufficiently small. This, together with a condition on the smoothness of the energy
distribution of the initial state that is milder than what we required when we introduced
the class of rectangular states, is sufficient to prove a thermalization result that is similar
in spirit to Observation 2.7.4 [IWU11]. Again, numerical evidence for the validity of
the ERH in certain models has been collected [IWU11].
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As a final remark it seems worth repeating that the notion of thermalization used
here is surely not the only reasonable one. For example Ref. [GLMTZ10] works in the
setting of macroscopic commuting observables of von Neumann, which we discussed
briefly in Section 2.5. A system is declared to be in thermal equilibrium if there is
a phase cell that is much larger than all others and the state of the system is almost
completely contained in the subspace corresponding to this cell.

In the very recent work Ref. [MAMW13] thermalization is investigated in the more
specialized setting of translation invariant locally interacting system on cubic lattices.
In this work the state of a subsystem S is considered thermal if it is close to the re-
duction of a thermal state of a larger subsystem B ⊃ S and the distance decreases
with increasing size of B, or more precisely with an increasing distance of S from the
complement of B. Ref. [MAMW13] contains theorems analogous to both the kine-
matic thermalization result (Observation 2.7.3) and the dynamical result on thermal-
ization on average (Observation 2.7.4) that we discussed above. The modified notion
of thermalization makes the results of Ref. [MAMW13] applicable in situations with
a strong coupling of the subsystem to the bath where the results presented here be-
come meaningless (see the discussion section of Section 2.7.3). On the other hand,
the authors of Ref. [MAMW13] are unable to give concrete finite size bounds but are
only able to make statements about the asymptotic behavior. Moreover, the results of
Ref. [MAMW13] only work for temperatures at which the translation invariant system
has a “unique phase” (see Ref. [MAMW13, RS80] for more details) in the thermody-

namic limit of infinite lattice size. At low temperatures this condition is often violated
(for example in the 2D Ising model below the Curie temperature).

Many other definitions of thermalization or thermal equilibrium in quantum many
body systems are possible. For example, in the context of the ETH it is sometimes said
that a system is thermal if the expectation values of a given observable in the energy
eigenstates of a system are, up to small fluctuations, smooth functions of the energy
(compare for example Ref. [BMH13]).
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2.8 Absence of thermalization

This section complements the conditions derived in Section 2.7, under which subsys-
tem thermalization can be ensured, with conditions under which it can be guaranteed
that a subsystem does not thermalize. After first making more precise what type of
absence of thermalization effect we will prove, we will, in Section 2.8.1, state, explain,
and interpret the analytical results. Finally, in Section 2.8.2, the findings of numerical
experiments are reported that demonstrate the relevance of the proven results.

As we had discussed in quite some detail in Section 2.7.1, finding a good definition
for thermalization is a subtle issue. The results concerning the absence of thermal-
ization of this section do thus not refer to the arguable definition of thermalization on
average we made in Definition 2.7.1, but instead give conditions under which subsys-

tem initial state independence is violated.

Of course, there are numerous, more or less trivial, reasons due to which a closed
quantum system can fail to thermalize:

First, a system could simply fail to equilibrate. Here we will not be interested in such
situations, but concentrate on cases where a system does show some thermodynamic
behavior, specifically equilibration on average, but still fails to thermalize.

Second, one can imagine situations where a system remains close to a non-thermal
metastable state and only later, after a very long relaxation time, finally thermalizes on
average. The results concerning the absence of thermalization that we will state below
are strong enough to exclude such situations. They guarantee that the absence of ther-
malization is not a matter of time scales (see also Section 2.6). Importantly, this also
makes the results interesting for numerical tests of thermalization (see Section 2.8.2
for an example).

The kind of absence of thermalization effect we will prove is well illustrated by
Fig. 2.8.2a. We will discuss this plot in more detail below. For the moment it suffices
to know that it shows the evolution of the expectation value of a local observable after
a system has been started in two initial states that are identical on the bath but differ
on a small subsystem so that the observable initially has expectation value +1 (upper
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line) or −1 (lower line) respectively. As the plot shows, the expectation value first
approaches and then fluctuates around an equilibrium value in both cases, but the two
equilibrium values are well distinguishable.

2.8.1 Violation of subsystem initial state independence

If a system does not exhibit any local exactly conserved quantities, subsystem initial
state independence, as defined in Definition 2.7.2, with respect to a sufficiently large
set of initial states S0 ⊂ S , should be considered to be a necessary condition for
thermalization, regardless of which precise definition of thermalization is adopted.

In this section we will provide conditions that are sufficient to guarantee a violation
of subsystem initial state independence. A central role in the proofs is played by the
entanglement in the spectral projectors of the Hamiltonian, or its energy eigenstates in
the non-degenerate case. For fermionic composite systems no unique and universally
accepted definition of entanglement exists [BnCW07]. Hence, we restrict ourselves to
spin systems for the rest of this section.

As will become apparent shortly, it is a lack of entanglement in the eigenbasis of the
Hamiltonian that leads to the violation of subsystem initial state independence effect
described here. The central quantity in the following argument is the effective entan-

glement in the eigenbasis. Given a bipartite spin system with V = S ∪̇B, Hilbert space
H, and Hamiltonian H ∈ O(H) with spectral decomposition H =

∑d′

k=1Ek Πk we
define for any pure state ψ = |ψ〉〈ψ| ∈ S the effective entanglement in the eigenbasis

as

RS|B(ψ) :=
d′∑
k=1

pk D(TrB(Πk ψΠk)/pk, ψ
S), (2.8.1)

with pk := Tr(Πk ψ) the energy level populations. If the Hamiltonian is non-degenerate
it takes the simpler form

RS|B(ψ) =
d∑

k=1

pk D(TrB(|Ek〉〈Ek|), ψS). (2.8.2)

The name effective entanglement in the eigenbasis will later be justified by Theo-
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rem 2.8.2, which bounds RS|B by a quantity that is closely related to the geometric

measure of entanglement. For the moment it suffices to know that for non-degenerate
Hamiltonians the quantity RS|B(ψ), in a sense that is yet to be made precise, measures
how entangled the eigenbasis ofH looks like for the state ψ. If the eigenstates ofH are
little entangled, and ψ is a suitably chosen product state, then RS|B(ψ) will is small.

The intuition behind this statement is as follows: If an energy eigenstate |Ek〉〈Ek|
is little entangled, then TrB(|Ek〉〈Ek|) will be approximately a pure state. But then
the corresponding summand in Eq. (2.8.2) can be large only if D(TrB(|Ek〉〈Ek|), ψS)

is large, i.e., if TrB(|Ek〉〈Ek|) and ψS are quite different and at the same time pk =

Tr(|Ek〉〈Ek|ψ) is large, which can happen only if |Ek〉〈Ek| and ψ are similar. As only
one of the two previous conditions can be fulfilled for each k, each individual summand
in Eq. (2.8.2) is small and thus the whole sum not too large.

The effective entanglement in the eigenbasis is interesting because it quantifies how
much closer the reduced states on S of two different initial states can move during
equilibration on average in the following sense:

Theorem 2.8.1 (Distinguishability of dephased states [GME11, Theorem 1]). Con-

sider a bipartite spin system with V = S ∪̇ B, Hilbert space H and Hamiltonian

H ∈ O(H). For j ∈ {1, 2} let ψj(0) = ψSj (0)⊗ ψBj (0) ∈ S(H) be two initial product

states and set ωS(j) := TrB($H(ψj(0))) then

D(ωS(1), ωS(2)) ≥ D(ψS1 (0), ψS2 (0))−RS|B(ψ1(0))−RS|B(ψ2(0)). (2.8.3)

Remember that if the state of the subsystem S equilibrates on average during
the evolution under H for the two initial states, then the dephased states ωS(j) =

TrB($H(ψj(0))) are the respective equilibrium states. The theorem shows that if
R(ψ1(0)) and R(ψ2(0)) are both small, then the subsystem equilibrium states ωS(1)

and ωS(2) cannot be much less distinguishable than the initial states ψS1 (0) and ψS2 (0).

We now make rigorous the intuition that RS|B should be small for many initial states
if H is non-degenerate and has little entanglement in its eigenbasis. As said earlier, we
are interested in situations where subsystem initial state independence is violated even
though the subsystem equilibrates on average. Equilibration on average can be ensured
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by using Theorem 2.2.1 if
∑d′

k=1 p
2
k is small and the Hamiltonian satisfies certain ad-

ditional conditions (for details see Theorem 2.2.1). The following theorem yields a
constructive proof of the existence of many initial states that have both the properties
needed to ensure equilibration on average according to Theorem 2.2.1 and a smallRS|B

if H is non-degenerate and the eigenbasis is only little entangled:

Theorem 2.8.2 (States with little effective entanglement in the eigenbasis). Consider

a bipartite spin system with V = S ∪̇ B, Hilbert space H, and non-degenerate Hamil-

tonian H ∈ O(H) with spectral decomposition H =
∑d

k=1Ek|Ek〉〈Ek|. Let (|j〉)dSj=1

be an orthonormal basis for HS and let HR ⊆ HB be a subspace of HB of dimension

dR. For every j ∈ [dS]

E
|ψB〉∼µHaar[HR]

(
RS|B(|j〉〈j| ⊗ |ψB〉〈ψB|)

)
≤ 2 dS δ, (2.8.4)

where δ := max k∈[d]δk with

δk := min j∈[dS ]D(TrB |Ek〉〈EK |, |j〉〈j|), (2.8.5)

and at the same time

P
|ψB〉∼µHaar[HR]

(
d∑

k=1

p2
k > 4/dR

)
≤ 2 e−C

√
dR , (2.8.6)

with C := (ln 2)2/(72π2).

E|ψB〉∼µHaar[HR] and P|ψB〉∼µHaar[HR] respectively denote the expectation value and
the probability with respect to Haar random state vectors |ψB〉 from the subspace HR

(for more details on the Haar measure, measure concentration, and typicality see Sec-
tion 2.5).

Proof. Without the additional claim in Eq. (2.8.6) the theorem is just Theorem 2 from
Ref. [GME11] and Eq. (2.8.6) follows immediately from Theorem 2 in Ref. [LPSW09].

We summarize the implication of the theorem in the following observation:
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Observation 2.8.1 (Absence of initial state independence). Consider a bipartite spin

system with V = S ∪̇ B and Hilbert space H. Let HR ⊆ H be a subspace of di-

mension dR := dim(HR). If dR is large and the Hamiltonian H ∈ O(H) has not too

many degenerate energy gaps (see Theorem 2.2.1 for details) and an orthonormal ba-

sis (|j〉)dSj=1 for HS exists for which δ in Eq. (2.8.5) is small, then for every j, j′ ∈ [dS]

there exist many initial states of the bath ψB(0) ∈ S(HB) such that according to The-

orem 2.2.1 both |j〉〈j| ⊗ψB(0) and |j′〉〈j′| ⊗ψB(0) lead to subsystem equilibration on

average, but despite them having exactly the same initial state on the bath, the corre-

sponding subsystem equilibrium states ωS(j) and ωS(j′)remain well distinguishable for

most times during the evolution, in the sense that their trace distance D(ωS(j), ωS(j′))

is significantly larger than zero whenever j 6= j′, because of Theorem 2.8.1.

A couple of comments concerning Theorem 2.8.2 are in order:

At first sight, it seems unfortunate that dS appears in the right hand side of
Eq. (2.8.4). After all, one would expect that the larger S is, the easier it should be for
S to retain memory of its initial state. Instead, the theorem seems to quickly become
trivial for larger subsystems S. However, this is not really a limitation. If the subsys-
tem S of interest is itself a composite system, then for any interior subsystem Si ⊂ S

and any two quantum states ρ, σ ∈ S(H) it holds that D(ρS, σS) ≥ D(ρS
i
, σS

i
),

i.e., for two states to be well distinguishable on S it is sufficient that they can be
well distinguished on any interior subsystem Si ⊂ S. Thus, Theorems 2.8.2 and
2.8.1 can be applied to Si instead of S and this then still gives a lower bound on
D(TrB[$H(ψ1(0))],TrB[$H(ψ2(0))]), but in terms of dSi instead of dS .

Earlier it was claimed that Theorem 2.8.2 bounds RS|B by a quantity that is re-
lated to the geometric measure of entanglement. The quantity that was meant is δ =

max k∈[d]δk. But Eq. (2.8.5) does not quite look like the standard definition of the geo-
metric measure of entanglement ES|B (see Eq. (2.1.49)). However, it holds that [NC07,
Chapter 9.2]

δk = min j∈[dS ]D(TrB(|Ek〉〈EK |), |j〉〈j|) (2.8.7)

≤ inf
|φ〉∈HB

min j∈[dS ]D(|Ek〉〈EK |, |j〉〈j| ⊗ |φ〉〈φ|) (2.8.8)

= 1− sup
|φ〉∈HB

max j∈[dS ]|〈Ek|(|j〉 ⊗ |φ〉)|2. (2.8.9)
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So, δk is almost upper bounded by ES|B(|Ek〉). Instead of the supremum over all
|ψY 〉 ∈ HY in Eq. (2.1.49) equation (2.8.9) only contains a maximum over all |j〉 in
the basis (|j〉)dSj=1. This is however partially compensated by the fact that the basis
(|j〉)dSj=1 can be chosen freely and it makes sense to apply Theorem 2.8.2 to the optimal
basis, i.e., the one that minimizes δ.

Obviously, Theorem 2.8.2 can be further strengthened by maximizing δ only over
those k that jointly contain most of the probability weight of the initial state, i.e., whose
populations pk already sum up to almost one. This allows some of the δk to be large,
as long as those of the significantly populated levels are small.

Discussion

A statement complementing Observation 2.8.1 can be found in Ref. [LPSW09, Section
B] (see also Ref. [Hut11] for a generalization to mixed initial states and situations with
initial correlations to reference system). There it is shown that if the energy eigenstates
of a non-degenerate Hamiltonian do contain a lot of entanglement, then subsystem
initial state independence can be guaranteed. The statement is however not exactly a
converse statement as the measure of entanglement used there is quite different from
our quantity δk in Eq. (2.8.5).

In a very similar spirit as above, absence of initial state independence has also been
studied later in Ref. [Lyc10], which gives a condition that is necessary for subsys-
tem initial state independence. The article mostly studies a simplified version of this
condition, which essentially demands that the reductions of most eigenvectors of the
Hamiltonian must be sufficiently close to the maximally mixed state.

More recently, initial state independence was studied in Ref. [Hut11, HW13]). By
using the decoupling method [DBWR10, SDTR13, Sze12] and the formalism of so-
called smooth min and max entropies [CBR13, KRS09]. The authors show that it can be
decided from just looking at one particular initial state whether a system satisfies initial
state independence for most initial states. Moreover, they give sufficient and necessary
entropic conditions for initial state independence of most initial states. The authors
consider both subsystem initial state independence and bath initial state independence,
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i.e., the independence of the equilibrium state of the subsystem from the initial state of
the bath. The results concerning the absence of subsystem initial state independence
of Ref. [HW13], when compared to those of Ref. [GME11] discussed above, have the
advantage that they apply to specific points in time instead of time averaged states and
that the subsystem does not need to be small. On the other hand they only hold for
most/typical initial states.

2.8.2 A numerical investigation of the violation of initial
state independence

In this section we will see that Theorems 2.8.2 and 2.8.1 are physically meaningful
and applicable to actual, reasonable physical many body Hamiltonians. We will inves-
tigate a concrete, locally interacting system with strong interactions that is not inte-
grable (more on that in Section 2.9) in any obvious way. Still, we will provide strong
numerical evidence that it fails to thermalize due to a lack of entanglement in its eigen-
basis. This section is partially based on material that was previously published in
Ref. [GME11].

Consider the spin-1/2 XYZ chain with N sites, vertex set V = [N ], and Hilbert
space H = (C2)⊗N with random coupling and on-site field, whose Hamiltonian is
given by H := H0 +H1 with

H0 :=
∑
x∈V

hx σ
Z
x (2.8.10)

H1 :=
∑
x∈V

~bx ·~σNN
x , (2.8.11)

where ~σNN
x = (σXx σ

X
x+1, σ

Y
x σ

Y
x+1, σ

Z
x σ

Z
x+1)T and σXx , σ

Y
x , σ

Z
x are the Pauli matrices

acting on site x. The parameters hx ∈ R and the components of ~bx ∈ R3 are chosen
independently from normal distributions with zero mean and standard deviations σ0 =

1 and σ1 = 0.4, respectively. It turns out that with unit probability the Hamiltonian
H is non-degenerate and has non-degenerate energy gaps. Related models have been
extensively studied for example in Refs. [CRFSS11, PH10] in the context of many
body localization.
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Consider the bipartition V = S ∪̇ B with S = {1} and B = {2, . . . , N}. We are
interested in the equilibration behavior under H when the system is started in energy
eigenstates of H0. To that end, a numerical exact diagonalization of H is carried out,
which yields the eigenvalues and eigenvectors ofH essentially up to machine precision.
This is done for different realizations of the random parameters hx and~bx and different
system sizes N , which allows to compute the various quantities shown in Fig. 2.8.1.

Obviously, the energy eigenstates of H0 are products of the normalized eigenstates
of the Pauli Z operator σZ . Consequently, for each energy eigenstate |E0

k〉 of H0 the
state vector σX1 |E0

k〉 is also an eigenstate of H0 and differs from |E0
k〉 only on the first

site, i.e., the subsystem S = {1}. As can be seen in Fig. 2.8.1a, the trace distance
D(ωS(1), ωS(2)) of the reductions to S of the two time averaged states ω(1), ω(2) that
result from starting the system in either |E0

k〉 or σX1 |E0
k〉 is non-vanishing and almost

independent of the system size. At the same time, the effective dimension deff(ω)

(see Eq. (2.2.1)) grows rapidly with increasing N , as can be seen in Fig. 2.8.1b. The
equilibration coefficient Ceq := dS

√
1/deff(ω)/2, which is the upper bound on the

average trace distance to the equilibrium state implied by Theorem 2.2.1 in the limit
T → ∞, is shown in the inset in Fig. 2.8.1b. This already shows that the subsystem
equilibrates on average but that subsystem initial state independence is violated.

If, instead of averaging over the |E0
k〉, the optimal pair of state vectors |E0

k〉 and
σX1 |E0

k〉 is picked, then the time evolution is such that the states can even be distin-
guished for most times during the evolution (see Figs. 2.8.1c and 2.8.1d).

There is strong evidence that it is precisely the mechanism described in Observa-
tion 2.8.1 that is responsible for this. In Fig. 2.8.1a the average of the quantity δk,
defined in Eq. (2.8.5), which enters the right hand side of the upper bound on the effec-
tive entanglement in the eigenbasis in Theorem 2.8.2, is plotted. As can be seen from
the plot, it is low enough such that the bound in Eq. (2.8.4) is nontrivial and appears to
be largely independent of the system size N . A lack of effective entanglement in the
eigenbasis is the cause for the observed violation of initial state independence.

As can be seen in Fig. 2.8.1c, the described effect gets more pronounced for larger
system sizes, providing evidence that the observed absence of thermalization effect is
not just a finite size effect.
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Figure 2.8.1: (reproduced from [GME11]) For each of the product eigenvectors |E0
k〉 of H0

the equilibration properties under the dynamics of H with σ0 = 1 and σ1 = 0.4
of the subsystem S = {1} for the initial state |E0

k〉 are compared with those of
σX1 |E0

k〉, i.e., the same state but with the first spin flipped. Panels (a) and (b) dis-
play averages over energy eigenstates: (a) Average δk for the energy eigenstates
of H0 and average distance of the reduced dephased states E(D(ωS(1), ωS(2))).
(b) Average effective dimension and equilibration coefficient. Panels (c) and
(d) show quantities optimized over energy eigenstates: (c) Maximum distin-
guishability max k∆(|E(0)

k 〉) where ∆(|E(0)
k 〉) = D(ωS(1), ωS(2))−Ceq(ψ

(1)
0 )−

Ceq(ψ
(2)
0 ) (∆ > 0 ensures distinguishability for most times. See the inset for an

illustration of the meaning of the quantities. (d) Effective dimension and equili-
bration coefficient of the state maximizing ∆(|E(0)

k 〉). All quantities have been
averaged over 100 realizations of the random parameters hx and ~bx. The error
bars represent the standard deviation.
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Figure 2.8.2: For a random realization of H with σ0 = 1, σ1 = 0.4 on N = 10 sites an
eigenvector |E0

j 〉 of H0 from the center of the spectrum of H0 with the property
that 〈E0

j |σZ1 |E0
j 〉 = 1 is picked. Panel (a) shows that the expectation value of

σZ1 in the time evolution under H starting in the initial states |E0
j 〉 (upper line)

and σX1 |E0
j 〉 (lower line) equilibrates quickly and stays close to an equilibrium

value for most times during the simulated evolution, but memory of the initial
conditions prevents thermalization. Panel (b) shows that the squared moduli of
the overlaps of the picked state with the energy eigenstates |Ek〉 of H are highly
correlated with the expectation value 〈Ek|σZ1 |Ek〉 of σZ1 and fluctuate widely
between neighboring energy eigenstates.

By looking more closely at one typical energy eigenstate |E0
j 〉 for one random re-

alization of H for N = 10 spins we further elucidate the effect. Remember that the
eigenstates of H0 are product states. We pick a normalized eigenstate |E0

j 〉 with the
property 〈E0

j |σZ1 |E0
j 〉 = 1 close to the center of the spectrum of H0. It has a sig-

nificant overlap with a reasonably large number of energy eigenstates of H , but the
overlaps vary significantly between eigenstates that are close in energy (see the inset of
Fig. 2.8.2b). In other words: The state has a narrow energy distribution, but is highly
“non-rectangular” (see also Section 2.7.3).

Due to the lack of entanglement in the eigenbasis the squared moduli of the over-
laps pk = |〈E0

j |Ek〉|, i.e., the energy level populations, are highly correlated with
the expectation value 〈Ek|σZ1 |Ek〉 of σZ1 in the corresponding energy eigenstate of H
(Fig. 2.8.2b). In addition the expectation values of σZ1 in eigenstates with neighbor-
ing energies fluctuate significantly. One could say that the system does not fulfill the
eigenstate thermalization hypothesis (see Section 2.7.2), as is expected for systems
with quenched disorder [PH10].
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2.8 Absence of thermalization

As can be seen in Fig. 2.8.2a, the expectation value of σZ1 does equilibrate under the
dynamics of H when the system is started in |E0

j 〉 or σX1 |E0
j 〉, but it remains close to

its initial state for most times during the simulated evolution. Memory of the initial
condition prevents thermalization.

In addition to the numerical study of the absence of thermalization that was pub-
lished in [GME11] that we discussed above, there exist several other articles, including
Refs. [BKL10, CIC12, DOV11, vPBCR10], that numerically and analytically study
related effects. Ref. [BKL10] finds that the existence of few energy eigenstates that vi-
olate the eigenstate thermalization hypothesis (see also Section 2.7.2 and in particular
Definition 2.7.3) can lead to absence of thermalization. Ref. [vPBCR10] goes beyond
the closed system setting and considers thermalization and its absence in systems that
are coupled to thermal baths and finds that certain integrable models do not thermal-
ize. Ref. [DOV11] studies quenches in a homogeneous XY quantum spin chain with
transverse field starting in ground, excited, and thermal states. The authors find that
after certain quenches local observables fail to thermalize and relate this behavior to
criticality. Ref. [CIC12] investigates equilibration and thermalization in exactly solv-
able models and finds that in such models correlation functions can retain memory of
the initial conditions.

Discussion

In Ref. [GME11] it is rather briskly claimed that the XYZ chain studied above is non-

integrable according to various definitions of quantum (non-)integrability that exist in
the literature (more on that in Section 2.9) and is advertised as an example of a system
that does not thermalize despite being non-integrable.

While I do believe that the model discussed above is a good model for studies of
the problematic aspects of the proposed definitions of quantum (non-)integrability it
has at least one unwanted feature, namely that it is disordered. While the very recent
results of Ref. [MAMW13], in particular Theorem 4 which proves of a weak version
of the eigenstate thermalization hypothesis (see Section 2.7.2) in translation invariant
systems, make it seem less likely that a similar absence of thermalization effect due to
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2 Pure state quantum statistical mechanics

a lack of entanglement in the eigenbasis can occur in translation invariant models, this
issue is still far from settled.

Some authors associate quantum non-integrability with quantum chaos (for more
details see Section 2.9). This aspect of the debate on (non-)integrability was almost
entirely neglected in Ref. [GME11], mainly due to the two following reasons: First,
not even in classical mechanics is chaos a necessary prerequisite for non-integrability
and, second, there is no universally accepted definition of quantum chaos.

Often, properties of the spectrum of a Hamiltonian, in particular the level spacing

distribution, are taken to be signatures of quantum chaos [Haa10]. A follow up numer-
ical study of the spectral properties of the model unfortunately remained inconclusive.
For the small system sizes that can be studied numerically with todays computers, fi-
nite size effects make the energy eigenvalues neither clearly Poisson nor Wigner-Dyson
distributed. The outcome of the analysis turned out to be extremely dependent on de-
tails of the used unfolding technique. The question of whether the disordered XYZ
chain is a quantum chaotic system remains open.

2.9 Integrability

In this section we discuss a concept that has recently started playing an important role
in the debate on equilibration and thermalization in closed quantum systems — the
concept of integrability. It is often suggested or claimed that non-integrable systems
thermalize, while integrable ones do not. This wisdom has become folklore knowledge
that is often invoked in discussion and talks on the topic (compare also Refs. [BKL10,
BMH13, DSFVJ12, KRnRV11, KRRnGG12, Lar13, NM12, PSSV11a, RDO08, RF11,
Rig09, RS12, SBI12, vPBCR10]).

In the following, we will review the current state of affairs concerning the usage
of the term (quantum) integrability in the context of equilibration and thermaliza-
tion in closed quantum systems, comment on the concept of integrability and inves-
tigate to which extend the circumstantial evidence concerning the connection between
(non-)integrability and thermalization can be substantiated.
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2.9 Integrability

To that end, in Section 2.9.1, we will first recapitulate the definition of integrability
in classical mechanics. In Section 2.9.2 we will then discuss obstacles for a generaliza-
tion of the concept of integrability to the quantum setting, collect and review existing
notions of integrability, and critically assess them. This assessment is largely based on
the previous works Refs. [CM11, GME11, Wei92]. We finish with some speculations
on the connection of quantum (non-)integrability and computational complexity.

2.9.1 In classical mechanics

In classical mechanics [Arn89] (Liouville) integrability is a well-defined concept. In
order to state and explain it we need to introduce some terminology first.

Consider a classical system with n ∈ Z+ degrees of freedom, each associated with a
coordinate qk and a corresponding momentum pk. Then, in the Hamiltonian formalism,
the 2n canonical coordinates (qk)

n
k=1 and (pk)

n
k=1 span the phase space S of the

system [Kin49]. We assume that the Hamiltonian function H : S → R, i.e., the
energy functional, of the system is time independent. It then governs the time evolution
of the system via Hamilton’s equations [Arn89]:

∀k ∈ [n] : ṗk = −∂H
∂qk

q̇k =
∂H

∂pk
(2.9.1)

The dot indicates the derivative with respect to time of the corresponding quantity, i.e.,
q̇k is the temporal change of qk. Integrating these differential equations yields the phase

flow gtH : S → S , which maps the initial phase space vector of a system at time 0 to
that at time t ∈ R. Define for any two functions F,G : S → R their Poisson bracket

(F,G) : S → R as

(F,G) := lim
t→0

d

dt
F ◦ gtG. (2.9.2)

It turns out that ( · , · ) is bilinear and skew-symmetric [Arn89]. A function F : S → R
is called a first integral of motion under the evolution induced by H if (F,H ) = 0.
More generally, if for F,G : S → R it holds that (F,G) = 0, then F and G are said
to be in involution.

We can now define Liouville integrability:
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2 Pure state quantum statistical mechanics

Definition 2.9.1 (Liouville integrability [Arn89]). A classical system with n degrees of

freedom is called (Liouville) integrable if it entails a sequence (Fk)
n
k=1 of n independent

first integrals of motion that are pairwise in involution.

Liouville’s theorem for integrable systems shows that Liouville integrable systems
can be solved, i.e., the time evolution can be explicitly calculated, in a systematic way
by quadratures, i.e., by direct integration of differential equations:

Theorem 2.9.1 (Corollary of Liouville’s theorem for integrable systems [Arn89]). If

a system is Liouville integrable, its time evolution can be solved by quadratures.

In more detail: Liouville’s theorem for integrable systems essentially ensures that,
given the initial values of all canonical coordinates, the time evolution of an integrable
system is confined to a smooth submanifold of the phase space that is diffeomorphic to
an n-dimensional torus. The time evolution is quasi periodic and can be described in
terms of the so-called action angle coordinates (ϕk)

n
k=1 that parametrize the torus.

The action angle coordinates can be explicitly constructed from the sequence
(Fk)

n
k=1 of n independent first integrals of motion and the values fixed for them.

Fixing different values for the n first integrals of motion results in different tori. In the
coordinate system of the action angle variables the equations of motion are given by 2n

simple ordinary differential equations of the form Ḟk = 0 and ϕ̇k = wk, with wk ∈ R
being constants that depend on the values that were fixed for the n first integrals of
motion. For more details see for example [Arn89, Section 49].

If a Liouville integrable system is perturbed, i.e., the Hamiltonian function slightly
changed, then the time evolution is generally not confined to a torus anymore and can-
not be derived in a systematic way. For small perturbations the Kolmogorov-Arnold-
Moser (KAM) theorem ensures, under a so-called non-resonance condition, that most
tori are only deformed and the time evolution on them is then still quasi periodic
[MNE01, P0̈3, Tab89].

In summary we have: Integrability in classical systems implies systematic solvability

and thereby yields a qualitative classification of classical systems. Liouville integrable
systems are not ergodic (see Section 1.1) in the sense that their phase space trajectory
does not explore the whole phase space, but is confined to a portion of it. Whether
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or not this implies that integrable systems cannot thermalize depends on the definition
of thermalization, but the motion of the system is quasi periodic and hence no conver-
gence of the state of the system in the limit t → ∞ is possible. Non-integrability in
classical systems is not sufficient for ergodicity or chaos and hence also not sufficient
for notions of mixing or thermalization based on these concepts. Still, the concept of
Liouville integrability yields a classification of systems with strong implications for
their physical behavior.

2.9.2 In quantum mechanics

We now turn to integrability in quantum mechanics. Ideally, a notion of quantum in-
tegrability should yield a classification that divides quantum systems into two classes,
integrable ones and non-integrable ones, with markedly different physical properties.
In addition it should in some sense be a generalization of Liouville integrability. How-
ever, if one tries to generalize the concept of Liouville integrability to quantum systems
in a straight forward manner, one immediately encounters problems:

Consider a quantum system with d dimensional Hilbert space H and Hamiltonian
H ∈ O(H). An orthonormal eigenbasis (|Ẽk〉)dk=1 of H , with corresponding eigen-
values (Ẽk)

d
k=1, can always be constructed in a systematic way by diagonalizing the

Hamiltonian. The time evolution of an arbitrary initial state vector |ψ〉 ∈ H is then
given by

t 7→ |ψ(t)〉 :=
d∑

k=1

|〈Ẽk|ψ〉| ei ϕ̃k(t) |Ẽk〉, (2.9.3)

with ϕ̃k(t) := arg(〈Ẽk|ψ〉) − Ẽk t. The overlaps 〈Ẽk|ψ〉 can also be calculated sys-
tematically, so the time evolution of a (finite dimensional) quantum system can always
be obtained in a systematic way for any Hamiltonian and any initial state.

The analogy to the situation of Liouville integrable systems is striking: The dimen-
sion d plays the role of the number n of degrees of freedom of the system in the classical
case. The linear functionals |〈Ẽk| · | : H → R, induced by the eigenvectors of H , are
analogous to the first integrals of motion in Liouville’s theorem on integrable systems,
and the time independent moduli of the overlaps |〈Ẽk|ψ〉| = |〈Ẽk|ψ(t)〉| play the role
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of the values fixed for these constants of motion. Finally, the functions ϕ̃k in the right
hand side of Eq. (2.9.3) satisfy differential equations analogous to those of the action
angle variables, namely ˙̃ϕk = Ẽk, and the time evolution indeed happens on a d-torus.
As in the classical case, the specific torus to which the evolution is confined depends
on the values fixed for the conserved quantities.

Are all (finite dimensional) quantum systems integrable? The apparently simple
form of the quantum mechanical equation of motion lead Schrödinger to the following
comment in his 1927 article on the “Energy exchange according to wave mechanics”5,
in which he tries to derive thermodynamic behavior from the unitary time evolution of
quantum mechanics (see also Section 2.5): “It seems that one has to abstain from an
attempt to use some form of quasi-ergodic hypothesis to proclaim [ensemble averages]
as the correct time averages. The equations [of motion] are far too transparent to admit
such a hypothesis (they posses at least [dimension many] independent holomorphic
integrals, namely the squared moduli of the overlaps with the eigenstates”6 It seems
that the dynamics of quantum systems is far less rich than that of classical systems and
that quantum systems simply cannot be non-integrable or ergodic.

Of course, simply classifying all (finite dimensional) quantum systems as integrable
cannot be the solution. After all, as we have seen in the previous sections, under cer-
tain conditions closed quantum systems can exhibit behavior that is reminiscent of the
behavior of non-integrable classical systems, such as equilibration and thermalization.
Moreover, if one believes that quantum mechanics is indeed a fundamental theory,
then it must also be able to somehow produce the non-integrable, and sometimes even
ergodic or chaotic, behavior observable on the classical level. It is thus tempting to
define quantum versions of the notion of chaos, ergodicity and integrability via a clas-
sical limit. As we will see shortly this is only one of the many approaches that have
been pursued in the literature.

Before going on, it is reasonable to give a set of conditions that a good notion of

5Original in German [Sch27]: “Energieaustausch nach der Wellenmechanik”
6Original in German [Sch27]: “Auf den Versuch, durch irgendetwas der Quasiergodenhypothese Ana-

loges diese Mittelwerte als richtige Zeitmittel hinzustellen, muß man wohl verzichten. Die Gleichun-
gen (9) sind vie1 zu durchsichtig, um sich eine derartige Hypothese gefallen zu lassen (sie besitzen
mindestens α unabhängige holomorphe Integrale, nämlich die Amplitudenquadrate der „Normal-
schwingungen“)”.
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(non-)integrability for quantum systems should satisfy. Inspired by the work of Caux
and Mossel [CM11], we demand that a definition of quantum integrability should:

(Condition 1) have implications for the physical behavior.

(Condition 2) be applicable to a large class of quantum systems.

(Condition 3) be unambiguous.

(Condition 4) be decidable for concrete models.

Unfortunately none of the existing frequently used notions of quantum integrability
seems to fulfill all these criteria. The following is a (probably incomplete) list of the
different definitions of quantum integrability that have been introduced, together with
some (purely exemplary) references in which the corresponding definition appears or is
used (see also Refs. [CM11, GME11, Sut04, Wei92]). A system is quantum integrable:

1. If it exhibits n physically meaningful conserved mutually commuting independent
operators [Bra11, BS08, Haw08, JS85, RDYO07, ZCH12] (see also Ref. [Wei92]
and the references therein).

2. If it is integrable by the Bethe ansatz [BMH13, IWU13, Sut04].

3. If it exhibits nondiffractive scattering [Sut04].

4. If it has a classical limit that is integrable [CL06].

5. If its level statistics follows a Poisson law and is non-integrable if it is of Wigner-
Dyson type [ABGR13, BGS84, CCG85, FEKW13, JS85, KRRnGG12, PH10,
Pv13, Tab89, YS13].

6. If it does not exhibit level repulsion [BT77, SMS08].

7. If (many of) its eigenfunctions can be labeled in a certain way with quantum num-
bers [Bra11, BT77].

8. If it is exactly solvable in any way [BMH13, Bra11, FLS95, JS85].

In the first definition physically meaningful can have very different meanings. It can,
for example, in the case of composite systems, refer to local operators. The number
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n is usually taken to be equal to the number of degrees of freedom of the model or
the number of constituents in the case of composite systems. Similarly, independent

can have several meanings, linearly independent and algebraically independent being
popular choices. Usually all non-interacting composite systems and systems such as
the Hydrogen atom fall in this category. Models that are integrable according to this
definition are often also integrable according to one of the other definitions given above
(especially Definitions 2, 7, and 8). Many of the definitions of integrability of this type
suffer from the severe problem that if the definition is taken seriously, all quantum
systems classify as integrable and hence it violates Condition 1 (see the discussion
above and Ref. [Wei92] for a critic of such notions of integrability).

Definitions 2, 3, and 4 are only applicable to restricted classes of models and hence
violate Condition 2 in the above list. The same holds, although arguably in a weaker
sense, for Definition 6, which is only applicable to systems which have a natural tuning
parameter.

Definitions 5 and 6 suffer from the problem that also certain models that are usu-
ally regarded as integrable can have spectra that would classify them as non-integrable
[BLS03, BT77]. In fact, it is trivial to construct such examples. In a composite systems
of, say, spin-1/2 systems, one can simply take a Hamiltonian that is diagonal in the
usual Pauli-Z product basis and which hence should simply be integrable and set its
spectrum to be that of some non-integrable model. Moreover, natural tunable models
are known that exhibit thermodynamic behavior in both the regime that would be clas-
sified as integrable and the one that would be classified as non-integrable according to
this definition [JS85]. Hence, these definitions violate Condition 3 and 1.

Especially Definitions 1 and 8 suffer from the problem that it might simply be a lack
of imagination that prevents one from solving a given model and thus violate Condi-
tion 4. This is well illustrated by the recent (partial) solution of the Rabi model, which
was long thought to be non-integrable (see Ref. [Bra11] and the references therein).
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Discussion

In conclusion, it seems fair to say that the situation is complicated and the problems do
not end here.

What about the commonly invoked concept of (quantum) non-integrability? Should
any system that is not integrable according to any of the above definitions be called non-
integrable? It has been demonstrated that various notions of quantum non-integrability

do not imply thermalization [GME11, Lar13] (see also the discussion section of Sec-
tion 2.8). So, should a definition of quantum non-integrability be sufficient for ther-
malization and if so in which sense?

What about the thermodynamic limit? In this limit certain questions concerning
the behavior of quantum lattice systems can even become algorithmically undecid-

able [Cub11]. This leaves open the possibility that finding a criterion for quantum
(non-)integrability that fulfills Condition 3 and 4 even in the thermodynamic limit could
be more difficult than one might naively expect.

Surely, general claims that “non-integrable quantum systems thermalize” seem un-
justified at present. A commonly accepted definition of quantum integrability does not
exist. Time will tell whether the thoughtful, but rather complicated proposal made in
Ref. [CM11] can fill this gap in our understanding of quantum many body systems (an
assessment of this proposal is beyond the scope of this thesis).

Alternatively one could try to construct a notion of quantum non-integrability based
on the computational complexity of solving a given system. This would make the
question of quantum integrability a qualitative one rather than a quantitative one. In
the spirit of Ref. [MRA13], one could for example try to measure the complexity of
a Hamiltonian by the (minimal) circuit length of the diagonalizing unitary (see also
Section 2.6 for a discussion of Ref. [MRA13]).

After all, the dimension d of the Hilbert space of a system is not really analogous
to the number of degrees of freedom of a classical system. It generally grows expo-
nentially with the number of constituents, and so does the computational complexity
of naive approaches to diagonalize the Hamiltonian, or find the ground state, or sim-
ulate the time evolution. At least the latter is reminiscent of the problem encountered
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when one tries to simulate classical chaotic systems. For some quantum systems, for
example if some conserved quantities are known or if the Hamiltonian has a special
structure, the computational complexity of solving it can be drastically reduced [AI07,
And03, Bra05, Hal06, Sch05b, Whi92]. These systems could then maybe be classified
as integrable.

2.10 Decay of correlations and stability of

thermal states

The approach towards statistical mechanics taken in this work is genuinely quantum.
Hence, it is natural to ask whether the thermodynamic concepts that we encountered
in the previous sections still make sense on very small scales. Particularly interesting
in this respect is the concept of temperature. Thermometry of extremely small systems
is now experimentally feasible [GB02, Pen+13, PGBED97]. What is the meaning of
temperature on the nanoscale? In which sense is temperature really intensive? This
is often claimed in thermodynamics, but far from obvious, at least in the context of
quantum mechanics. We shall call this the locality of temperature problem.

This problem has previously been addressed in Refs. [FACCA10, HM05, HMH04a,
HMH04b], and more recently extensively studied in Ref. [KGKRE13]. The recent
results build upon and follow a tradition of previous, more mathematically inclined
works on clustering of correlations in classical systems [Rue99], translational invari-
ant Hamiltonians of continuum systems [Gin65], and Hamiltonians on cubic lattices
[Gre69a, Gre69b, PY95] (see also the book by Bratteli and Robinson [BR97]).

In Ref. [KGKRE13] three theorems are proven: A truncation formula, which allows
to express the influence of sets of local Hamiltonian terms on the expectation value of
an observable in the thermal state of a locally interacting quantum system in terms of
a correlation measure. A clustering of correlations result, which shows that above a
universal critical temperature this correlation measure exhibits an exponential decay.
And finally, a result that ensures local stability of thermal states above a universal
critical temperature and thereby partially solves the locality of temperature problem.
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To begin with, we introduce a quantity that measures correlations. We have pre-
viously touched upon the issue of quantifying correlations in Section 2.1.9. Here
we measure correlations by a generalization of the covariance that we introduced in
Eq. (2.1.46). We define for any τ ∈ [0, 1], any two operators A,B ∈ B(H), and any
quantum state ρ ∈ S(H) the generalized covariance

covτρ(A,B) := Tr(ρτAρ1−τB)− Tr(ρA) Tr(ρB) . (2.10.1)

The choice τ = 1 gives the usual covariance introduced in Section 2.1.9. The reason
for our more general definition is that the generalized covariance naturally appears in
the truncation formula, which is the first theorem of this section:

Theorem 2.10.1 (Truncation formula [KGKRE13, Theorem 1]). Consider a spin or

fermionic system with Hilbert space H and let H ∈ O(H) be a locally interacting

Hamiltonian with edge set E . Let I ⊂ E and define for s ∈ [0, 1] the interpolating

Hamiltonian H(s) := H − (1− s)
∑

X∈I HX . Then, for any operator A ∈ B(H),

Tr
(
Ag[H(0)](β)

)
− Tr

(
Ag[H(1)](β)

)
=β

∫ 1

0

∫ 1

0

covτg[H(s)](β)(A,
∑
X∈I

HX) dτ ds .
(2.10.2)

The left hand side of Eq. (2.10.2) is the difference between the expectation value of
an arbitrary observable A ∈ B(H) in the thermal states of H(0) and H(1) respectively.
Note that H(1) = H and that H(0) contains all terms of H except those with support
contained in I . The truncation formula quantifies how the expectation value of A
changes when these terms are added or removed, hence the name, and tells us that this
change can be expressed in terms of the generalized covariance.

It is important to note that Eq. (2.10.2) is an equality. The generalized covariance
exactly captures the response of expectation values in the thermal state to local changes
of the Hamiltonian, i.e., here the adding/removing of the terms corresponding to the
edges in I .

Define for any subsystem X ⊂ V the set X∂ ⊂ E of edges that overlap with both X
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and its complement, i.e.,

X∂ := {Y ∈ E : Y ∩X 6= ∅ ∧ Y * X}. (2.10.3)

Again, we extend this notation to operators A ∈ B(H) and define

A∂ := {Y ∈ E : Y ∩ supp(A) 6= ∅ ∧ Y * supp(A)}. (2.10.4)

Consider a bipartite system with V = S ∪̇ B. If I in Theorem 2.10.1 is chosen to
be S∂ , then H(0) = HS + HB is the Hamiltonian without the terms that connect S
and B, i.e., the non-interacting Hamiltonian. If supp(A) ⊂ S, then the truncation
formula tells us that the expectation value of A in g[H](β) is similar to that of A�S in
gS[H](β) = g[HS�S](β) if and only if the right hand side of Eq. (2.10.2) is small.

In other words:

Observation 2.10.1 (Locality of temperature [KGKRE13]). Temperature can be de-

fined locally on a given length scale if and only if the averaged generalized covariance

is small compared to 1/β on that length scale.

We now give conditions under which this can be guaranteed. More precisely, we will
formulate a theorem that ensures an exponential decay of the generalized covariance
covτg(β)(A,B) with the graph distance d(A,B) (remember the definitions from Sec-
tion 2.1.8) between the supports of the two operators A,B ∈ B(H) above a universal
critical temperature. Together with the truncation formula this will allows us to prove
the local stability result promised earlier.

The following theorem applies to all Hamiltonians whose interaction (hyper)graph
has a finite growth constant. To explain what this means we need some additional
notation. A subset F ⊂ E of the edge set connects X and Y if F contains all elements
of some sequence of pairwise overlapping edges such that the first overlaps withX and
the last overlaps with Y and similarly for sites x, y ∈ V . A subset F ⊂ E of the edge
set E that connects all pairs of its elements is called connected and connected subsets
F are also called animals [MS11, Pen94]. The size |F | of an animal F is the number
of edges it contains. It turns out that for many interesting (hyper)graphs the number
of animals of a given size that contain a given edge grows exponentially with the size,
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2.10 Decay of correlations and stability of thermal states

but not faster. That is, they have a finite growth constant. More precisely, the growth
constant of a (hyper)graph G = (V , E) is the smallest constant α satisfying

∀k ∈ Z+ : sup
X∈E
|{F ⊂ E connected : X ∈ F ∧ |F | = k}| ≤ αk. (2.10.5)

For example, the growth constant α of the interaction graph of nearest neighbor Hamil-
tonians on D dimensional cubic lattices can be bounded by 2D e (see Lemma 2 in
Ref. [MS11]). Moreover, there is a finite growth constant α for any regular lattice
[Pen94], and there exist upper bounds on the growth constants of so-called spread-out
graphs [MS11] that make it possible to bound the growth constant of the interaction hy-
pergraphs of all l-local k-body Hamiltonians on regular lattices [KGKRE13]. Where l-
local k-body on a regular lattice means that V can be mapped onto the sites of a regular
lattice such that E contains only subsystems which consist of at most k sites that are all
contained in a ball (measured in the graph distance of the regular lattice) of diameter
l. For details see [KGKRE13]. Apart from all l-local k-body Hamiltonians on regu-
lar lattices this also makes the following results indirectly applicable to systems with
exponentially decaying interactions (such Hamiltonians can be exponentially well ap-
proximated by l-local k-body Hamiltonians) but not to Hamiltonians with algebraically
decaying interactions, such as for example Coulomb or dipole interactions.

We can now state the clustering of correlations result:

Theorem 2.10.2 (Clustering of correlations at high temperature [KGKRE13, The-
orem 3 and 16]). Consider a locally interacting system of spins or fermions with

Hilbert space H and Hamiltonian H ∈ O(H) with local interaction strength J :=

maxX∈E ‖HX‖∞ and interaction (hyper)graph G = (V , E) with growth constant α.

Define the critical temperature

β∗ := ln((1 +
√

1 + 4/α)/2)/(2 J) (2.10.6)

and the thermal correlation length

ξ(β) :=
∣∣1/ ln

(
α e2 |β| J(e2 |β| J − 1)

)∣∣ . (2.10.7)

Then, for every |β| < β∗, parameter τ ∈ [0, 1], and every two operators A,B ∈ B(H)
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with d(A,B) ≥ ξ(β)
∣∣ln (ln(3) (1− e−1/ξ(β))/min(|A∂|, |B∂|)

)∣∣ ,

| covτg(β)(A,B)| ≤ 4 a ‖A‖∞ ‖B‖∞
ln(3) (1− e−1/ξ(β))

e− d(A,B)/ξ(β). (2.10.8)

The above theorem implies that in thermal states above the critical temperature the
correlations between any two A,B ∈ B(H) decay exponentially with their distance
d(A,B). Importantly, the critical temperature (2.10.6) is independent of global proper-
ties of H but only depends on the local interaction strength J and the growth constant
α of its interaction (hyper)graph.

In the context of this work, the most important implication of Theorem 2.10.2 is the
following result, which proves stability of thermal states above the critical temperature
against local perturbations. More precisely, it shows that changing the Hamiltonian of
a locally interacting quantum system only outside of a subsystem S, i.e., only the terms
that are not completely contained in S, has only limited influence on how thermal states
to temperatures above the critical temperature look like in the interior Si ⊂ S of S if
the distance between Si and S∂ is large enough:

Theorem 2.10.3 (Universal locality at high temperatures [KGKRE13, Theorem 4 and
17]). Let H be a Hamiltonian satisfying the conditions of Theorem 2.10.2, let β∗ and

ξ(β) be defined as in Eq. (2.10.6) and Eq. (2.10.7), let |β| < β∗, and let Si ⊂ S ⊆ V

be subsystems with d(Si, S∂) ≥ ξ(β)
∣∣ln (ln(3) (1− e−1/ξ(β))/|Si∂|

)∣∣. Then

D(gS
i

[H](β), gS
i

[HS](β)) ≤ v |β| J
1− e−1/ξ(β)

e− d(Si,S∂)/ξ(β), (2.10.9)

where v := 2 |Si∂| |S∂|/ ln(3).

If the conditions of the above theorem are met and the interior subsystem Si is suf-
ficiently far from the boundary S∂ of S such that d(Si, S∂) is large and hence the right
hand side of Eq. (2.10.9) small, then the reduced state gSi

[H](β) on Si of the thermal
state of H is almost independent of the terms of the Hamiltonian H that are not in the
restricted Hamiltonian HS .
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Discussion

Theorem 2.10.3 is not unexpected, but it is nevertheless remarkable that it can be shown
in this generality for systems of both locally interacting spins and fermions. Even
more so, because, as we have seen in the discussion of equilibration (Section 2.2) and
especially in the section on equilibration time scales (Section 2.6), a major obstacle
for improving the statements we were able to make is that it seems to be hard to use
the structure of natural many body Hamiltonians, namely that interactions are usually
few body and often short range. Theorem 2.10.3 is an instance of a result whose proof
heavily relies on the locality structure of locally interacting Hamiltonians and is able
to exploit their structure.

It is interesting to plug in the numbers of a specific model to see how physical the
derived critical temperature is. As a concrete example consider the ferromagnetic two
dimensional isotropic Ising Model without external field. The critical temperature of
Theorem 2.10.2 and 2.10.3 is 1/(β∗ J) = 2/ ln((1 +

√
1 + 1/e)/2) ≈ 24.58, whereas

the Curie temperature, i.e., the temperature at which the phase transition between
the paramagnetic and the ferromagnetic phase happens is known to be 1/(βc J) =

2/ ln(1 +
√

2) ≈ 2.27 [BK95].

The critical temperature below which the above theorems work is off by about one
order of magnitude. It is however a universal upper bound independent of details
of the particular model. Given how difficult it is to calculate or even bound critical
temperatures in lattice models (both classical and quantum) and that good bounds are
known only for very few models the existence of such a non-trivial and universal upper
bound is remarkable.

Besides being of fundamental interest, Theorem 2.10.3 has some obvious computa-
tional implications: It implies that for all |β| < β∗ reduced states of thermal states can
be approximated with a computational cost independent of the system size and polyno-
mial in the reciprocal approximation error [KGKRE13]. The proof of Theorem 2.10.2
is based on a cluster expansion (see Lemma 6 in Ref. [KGKRE13]) previously used in
Ref. [Has06] to show that thermal states above a critical temperature can be approxi-
mated by so-called matrix product operators (MPOs). The subtleties of this approxi-
mation are often misunderstood. For details see the appendix of Ref. [KGKRE13].
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3 Conclusions

We have seen that finite dimensional quantum systems in pure states evolving unitarily
according to the Schrödinger equation exhibit a wealth of phenomena that can right-
fully be called thermodynamic. Individual observables and whole subsystems have a
tendency to evolve towards equilibrium values/states and then stay close to them for
most times during the evolution or extended time intervals. The equilibrium properties
can be calculated with a maximum entropy principle implied by quantum mechanical
dynamics alone. A weak interaction with an environment naturally leads to decoher-
ence in the energy eigenbasis and under additional conditions even equilibration to a
thermal state, i.e., thermalization, can be guaranteed.

Entanglement and quantum mechanical uncertainty play key roles in these processes.
The immensely large dimension of the Hilbert space of composite quantum systems
allows to justify methods of statistical physics with typicality arguments. A quantum
information inspired approach allows to relate the possibility of defining temperature in
composite systems locally to the absence of certain long range correlation and provides
tools to give conditions under which these correlations decay exponentially. This helps
to delineate the boundaries of the applicability of thermodynamic concepts and makes
it possible to give universal bounds on critical temperatures.

Despite the coherent picture formed by the results discussed in this thesis many
problems still await a full solution. Among the most interesting open questions is the
problem to give physically reasonable bounds on the time scales for equilibration and
thermalization in concrete locally interacting quantum systems. The notion of weak
coupling used in the proof of thermalization is still not entirely satisfactory. Both of
these issues relate to the more general problem of finding ways to exploit the structure
present in locally interacting quantum systems. Advances towards a better understand-
ing of the relation of equilibration, transport, disorder, and chaos are still hampered by
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a lack of a commonly accepted and reasonable definition of the concept of integrability
in quantum systems.

It is the hope that the review provided in this exposition will help to stimulate further
research on these topics.
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A.2 Abstract

This thesis fathoms out the capabilities of the theory of quantum mechanics to explain
thermodynamic behavior. It covers in particular equilibration and thermalization in
closed quantum systems, typicality, time scales for equilibration, quantum integrabil-
ity and its connection to thermalization, decoherence, and a maximum entropy princi-
ple. Together, the presented results form the body of the theory of pure state quantum
statistical mechanics. With almost 300 references, ranging from the groundbreaking
works of the early 20th century to the most recent discoveries (up to 2013), this work
arguably constitutes the most comprehensive review of the literature on equilibration
and thermalization in closed quantum systems. All results are presented in a unified
notation and many are slightly strengthened or generalized.
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A.3 Zusammenfassung

Diese Arbeit lotet aus, inwieweit thermodynamisches Verhalten auf der Basis von
Quantenmechanik erklärt werden kann. Behandelt werden insbesondere: Equilibrie-
rung und Thermalisierung in abgeschlossenen Quantensystemen, Typikalität, die Zeits-
kalen auf denen Equilibrierung stattfindet, Integrabilität in der Quantenmechanik, De-
koherenz und ein Prinzip der maximalen Entropie. Zusammengenommen bilden die
präsentierten Resultate die Theorie der “pure state quantum statistical mechanics”. Mit
fast 300 Referenzen aus allen Phasen der Entwicklung des Feldes, von den Anfängen
im frühen 20. Jahrhundert bis zu den jüngsten Ergebnissen (bis einschließlich 2013),
gibt die Arbeit die bisher wohl umfassendste Übersicht zum Thema Equilibrierung und
Thermalisierung in geschlossenen Quantensystemen. Alle Resultate werden in einer
vereinheitlichten Notation präsentiert und viele leicht verbessert oder verallgemeinert.
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