Medizinische Fakultät der Charité – Universitätsmedizin Berlin Campus Benjamin Franklin

Medizinische Klinik I, Gastroeneterologie, Infektiologie, Rheumatologie.
Direktor: Prof. Dr. med. M. Zeitz

THEMA

Untersuchungen zum morphologischen Ablauf und zur Regulation der mitotischen Katastrophe in Kolonkarzinomzellen nach Behandlung mit Irinotecan

Inaugural-Dissertation
zur Erlangung der
medizinischen Doktorwürde
der Charité – Universitätsmedizin Berlin
Campus Benjamin Franklin

vorgelegt von Minh-Tung Cao aus Saigon (Vietnam)

Referent:	Prof. Dr. rer. nat. Chr. Hanski
Korreferent:	Prof. Dr. med. U. Keilholz
Gedruckt mit G Campus Benjan	enehmigung der Charité - Universitätsmedizin Berlin nin Franklin
Promoviert am:	17.04.2007

Meiner Mutter, Thi-Yen Cao, gewidmet

Inhaltsverzeichnis

I.	Abkürzungen	1
II.	Zusammenfassung	5
III.	Einleitung	8
1.	Kolorektales Karzinom	
1	1.1. Ätiologie	10
	1.1.1 Hereditäre Prädisposition	10
	1.1.1.1. Familiäre adenomatöse Polyposis (FAP)	10
	1.1.1.2. HNPCC (Lynch-Syndrom)	10
	1.1.1.3. Gardner-Syndrom	11
	1.1.1.4. Peutz-Jeghers-Syndrom.	11
	1.1.2 Exogene Faktoren.	12
	1.1.2.1. Chronische Darmerkrankungen.	12
	1.1.2.2. Ernährung.	12
	1.1.2.3. Lebensgewohnheiten	12
	1.1.2.4. Iatrogene Faktoren	12
	1.1.3 Modell der Mehrschrittkanzerogenese kolorektaler Karzinome	13
1	1.2. Standardtherapie	14
	1.2.1 Kurative Therapie	14
	1.2.2 Adjuvante Therapie	14
	1.2.3 Palliative Therapie	15
	1.2.4 Neuere Chemotherapeutika.	15
	1.2.4.1. Oxaliplatin	16
	1.2.4.2. Irinotecan (CPT-11)	17
2.	Zelluläre und molekulare Antwort auf die Chemotherapie	17
2	2.1 Die Rolle von p53	
2	p53-vermittelter Zellzyklusarrest	
	2.2.1. G ₁ /S-Kontrollpunkt	
	2.2.2. p53-vermittelter G ₁ -Arrest	
	2.2.3. G ₂ /M-Kontrollpunkt und p53-vermittelter G ₂ -Arrest	
	2.2.4. Mitotischer Kontrollpunkt	
	2.3 p53-vermittelte Apoptose	
	2.4 Nekrose	
	2.5 Seneszenz.	
	2.6 Mitotische Katastrophe	
3.	Cyclin D1 und hMps1	
	3.1. Rolle von Cyclin D1	
	3.2. Rolle von hMps1 im mitotischen Kontrollpunkt	
IV.	Fragestellung	30

V.	Material	31
1.	Chemikalien	31
2.	Lösungen	32
3.	Reagenzsätze ("Kits")	33
4.	Instrumente	33
VI.	Methoden	35
1.	Zellkultur	35
1	1.1. Allgemeine Techniken	35
1	1.2. Zellkulturmedium.	35
]	1.3. Auftauen und Einfrieren der Zellen	35
]	1.4. Kultivierung der Zellen	36
1	1.5. Zellzahlbestimmung	36
2.	Proteinchemie, Immunchemie, Molekularbiologie	36
2	2.1. Lysatherstellung	36
2	2.2. Proteinbestimmung nach Bradford	36
2	2.3. SDS-Polyacrylamidgelelektrophorese (SDS-PAGE).	37
2	2.4. Western Blot.	37
2	2.5. Isolation der Plasmid-DNA mit Qiagen-Säulen.	39
2	2.6. Isolation von RNA aus Zellen	40
2	2.7. RT-PCR	40
2	2.8. Restriktionsverdau.	40
2	2.9. Agarose-Gel-Elektrophorese	40
3.	Zellbiologie	41
3	3.1. Immunhistochemie	41
	3.1.1 Anfertigung von Cytospins	41
	3.1.2 Kernfärbung mit DAPI.	41
	3.1.3 Allgemeine Methodik der Fluoreszenzfärbung der Zellen.	41
	3.1.3.1 PARP-Färbung	42
	3.1.3.2 Zentrosomenfärbung mit anti-γ-Tubulin	42
	3.1.3.3 Doppelfärbung der adhärenten Zellen mit anti-Mps1 und anti-γ-Tubulin	42
3	3.2. Transiente Transfektion	43
	3.2.1 Transiente Überexpression von plasmidkodierten Proteinen.	43
	3.2.2 Transiente Suppression von selektierten Genen	43
VII.	Ergebnisse	44
1.	Morphologische Untersuchung des Verlaufes der mitotischen Katastrophe nach	SN-38-
	Behandlung	44
]	1.1. Transformation der Zellkerne während der mitotischen Katastrophe	44
1	1.2. Mitotische Katastrophe mündet in Apoptose	47
]	1.3. SN-38-induzierte Apoptose in HCT116 p53-/Zellen findet vor und die Entscheidung zur Bildu	ıng von
	Mikronukleationen nach der Prometaphase statt	48

2.	Untersuchung zur Regulation von Cyclin D1 bzw. hMps1-Kinase nach Behandlung o	der
	Kolonkarzinomzellen mit SN-38.	56
2.1	Protein-Expression von Cyclin D1 bzw. hMps1 entspricht der RNA-Expression	56
2.2	Versuch der Regulation von Cyclin D1 bzw. hMps1-Kinase durch das Plasmid-kodierte p	53-
	Protein.	59
2.3	Versuch der Regulation von Cyclin D1 bzw. hMps1-Kinase durch das Adenovirus-kodierte p53- bz	ZW.
	p21-Protein.	60
2.4	Untersuchung der potentiellen Rolle von STAT-3 in der Cyclin D1-Regulation	65
3.	Einfluss von hMps1-Kinase bzw. Cyclin D1 auf den Verlauf der mitotisch	ıen
	Katastrophe	67
3.3	•	
	Behandlung.	
3.4		
3.5		
	Expression von Cyclin D1 kodierendem Plasmid in HCT116 p53 ^{-/-} -Zellen	
	Optimierung der Suppression von Cyclin D1-mRNA durch siRNA	
VIII.	Diskussion7	15
1.	Einleitung	75
2.	Morphologische Stadien der mitotischen Katastrophe – mitotische Katastrophe mündet	in
	Apoptose	
3.	p53 reguliert die Expression von hMps1 und Cyclin D1 – modulatorische Wirkung von p217	
4.	hMps1 trägt zur SN-38-induzierten Apoptose bei	
5.	hMps1-Kinase reguliert nicht die Zentrosomenzahl nach DNA-Schädigung	
6.	Das Konzept der klinischen Antwort im Vergleich zur biologischen Antwort	
IX.	Perspektiven7	9
Χ.	Literaturverzeichnis8	80
XI.	Anhang	39
1.	Lebenslauf	89
2.	Publikationen & Poster	91
3.	Eidesstattliche Erklärung.	92
4.	Danksagung	.93

I. Abkürzungsverzeichnis

A	Adenin
Abl	Abelson Leukämie
ABTS	2,2'-Azino-Di-[3-Ethylbenzthiazolin Sulfonat]
Akt	Ser/Thr Proteinkinase; Proteinkinase B
AP-1	Aktivatorprotein 1
Apaf-1	Apoptotische Protease aktivierender Faktor
APC	Adenomatöse Polyposis Coli
APC/C	Anaphase fördernder Komplex / Cyclosom
APS	Ammoniumpersulfat
ATM	Ataxia telangiectasia mutated
ATP	Adenosintriphosphat
ATR	Ataxia telangiectasia related
ATRIP	ATR-interagierendes Protein
Bad	Bcl-2 Antagonist; proapoptotisches Protein
Bak	Bcl-2 Antagonist; proapoptotisches Protein
Bax	Bcl-2 assoziiertes Protein X; proapoptotisches Protein
Bcl-2	B-Zell Lymphom/Leukämie; antiapoptotisches Protein
Bcl-X _L	Bcl-2 verwandtes Protein, lange Isoform; antiapoptotische Protein
Bcl-X _S	Bcl-2 verwandtes Protein, kurze Isoform; antiapoptotische Protein
Bid	BH3 interacting domain death agonist
Bik	Bcl-2 interacting killer; proapoptotisches Protein
Bim	Bcl-2 interagierendes Protein; Antagonist, proapoptotisches Protein
Bok	Bcl-2 verwandtes proapoptotisches Protein
bp	Basenpaar
BRCA	Brustkarzinomgen
BSA	Rinderserumalbumin
Bub	Budding uninhibited by benzimidazole
C	Cytidin
CAK	CDK-aktivierende Kinase
CCNU	N-(2-Chloroethyl)-N'-Cyclohexyl-N'-Nitrosoharnstoff
Cdc	Cell-division cycle kinase
CDK	Cyclin-abhängige Kinase
cDNA	Komplementäre DNA
ch2/ch3	Chromosom 2/ Chromosom 3
chk	Kontrollpunktkinase
CIPI	Cyclin inhibitorisches Protein 1 = p21
CKI	Cyclin abhängige Kinasen Inhibitor
CLL	Chronische Lymphatische Leukämie
CPT	Camptothecin
CPT- 11	Irinotecan

cRNA	Komplementäre RNA
DAPI	4',6-Diamidino-2-Phenylindol-2HCI
dATP	Desoxyadenosin 5'-Triphosphat
dCTP	Desoxycytosin 5'-Triphosphat
DEPC	Diethylpyrocarbonat
dGTP	Desoxyguanosin 5'-Triphosphat
DMEM	Dulbecco's MEM
DMSO	Dimethylsulfoxid
DNA	Desoxyribonukleinsäure
dNTP	Nukleotid
DTT	Dithiothreitol
dTTP	Desoxythymidin 5'-Triphosphat
dUTP	Desoxyuridin 5'-Triphosphat
EDTA	Ethylendiamintetraessigsäure
EGF	Epidermaler Wachstumsfaktor
EGTA	Ethylen-Glycol-Bis-(β-Aminoethyl-Ether) N, N, N', N'-Tetraessigsäun
ELISA	Enzyme linked immunosorbent assay
ERK	Extrazelluläre Signal-regulierende Kinase (MAP Kinase oder MAPK)
FACS	Fluoreszenz aktivierter Zellsortierer
FCS	Fetales Kälberserum
5-FU	5-Fluorouracil
G	Guanin
Gl	Gap 1 (Restphase des Zellzyklus vor der Replikationsphase)
G2	Gap 2 (Restphase des Zellzyklus vor Mitose)
Gadd45	Wachstumsarrest- und DNA-schädigungsinduzierbares Gen
Hec1	Highly expressed in cancer
hMLHI	Humanes Mut-L Homolog-1
hMps1	Humane monopolare Spindel 1
hMSH2	Humanes Mut-S Homolog-2
hMSH3	Humanes Mut-S Homolog-3
hMutL	Humanes Mut-L Homolog
hMutS	Humanes Mut-S Homolog
IAP	Survivin
kb	Kilobasen
kDa	Kilodalton
KIPI	Kinase inhibitorisches Protein 1
M	Molarität or Mitose
MAD	Mitotic arrest deficient
MAP	Mitogen-aktiviertes Protein
Mdm2	Murine double minute-2
MEKI/2	Mitogen-aktivierte Proteinkinase Kinase 1/2 (MAPK Kinase oder MKK)
μM	Mikromolar

mM	Millimolar
MMR	Mismatch Reparatur / Fehlpaarungs-Reparatur
MNNG	N-Methyl-N'-nitro-N-Nitrosoguanidin
mRNA	Massenger RNA
MTT	3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyl-Tetrazolium Bromid
Mut	mutiert
MutL,	
MutS,	Vommononton dos Mismotoli Dononetunevetem in E. osli
MutH	Komponenten des Mismatch Reparatursystem in E. coli
N 2N	Haploide DNA
	Diploide DNA Tetraploide DNA
4N	Tetraploide DNA
8N	Oktaploide DNA
NADH	Nicotinamid-Adenin-Dinucleotid-Hydrogenat
NADPH	Nicotinamid-Adenin-Dinucleotid-Phosphat-Hydrogenat
nM	Nanomolar
Noc	Nocodazole
NSCLC	Non-small cell lung carcinoma
OD	Optische Dichte
PAGE	Polyacrylamid-Gel-Electrophorese
PARP	Poly(ADP-ribose)polymerase
PBS	Phosphat gepuffertes Salz
PCR	Polymerase-Kettenreaktion
PDH	Pyruvate-Dehydrogenase (Lipoamid)
PI	Propidiumiodid
PKC	Proteinkinase C
PMSF	Phenylmethylsulfonylfluorid
PUMA	p53 upregulated modulator of apoptosis
PVDF	Polyvinylidenfluorid
PYT	Phosphotyrosin aufgenommene Threonin Kinase
Raf	Mitglied der Ser/Thr Familie der Proteinkinasen
Ras	Mitglied der Ser/Thr Familie der Proteinkinasen
pRb	Retinoblastom Protein
RNA	Ribonukleinsäure
RT	Reverse-Transkription
RT-PCR	Reverse-Transcriptions-Polymerase-Kettenreaktion
S	Synthesephase des Zellzyklus
SDS	Sodiumdodecylsulfat
Ser	Serin
SN-38	7-Ethyl-10-hydroxycamptothecin
SSC	Sodiumchlorid/ Citrat
STAT3	Signal transducer and activator of transcription 3

T	Thymin
TAE	Tris Azetat-EDTA Puffer
TBS	Tris gepuffertes Salz
TEMED	N,N,N`,N`-Tetramethylethylendiamin
6TG	6-Thioguanin
Thr	Threonin
Topo 1	Topoisomerase 1
TTK	T-Zell Tyrosin Kinase
TUNEL	Terminal deoxynucleotidyl transferase dUTP nick-end labeling
Tyr	Tyrosin
UCN-01	7-Hydroxystaurosporin
UV	Ultraviolet
Wee1	Tyrosin spezifische Proteinkinase
wt	Wild-Typ

II. Zusammenfassung

Der Topoisomerase-I-Inhibitor Irinotecan (CPT-11) sowie sein aktiver Metabolit SN-38 lösen in p53^{wt}-Kolorektalkarzinomzelllinien einen lang anhaltenden Zellzyklusarrest und in p53^{mut}-Zellen einen transienten Arrest aus, gefolgt von Apoptose. Der Mechanismus der p53-unabhängigen Apoptose ist noch unklar; die mitotische Katastrophe scheint dabei eine wichtige Rolle zu spielen. Da die meisten Kolonkarzinome im p53-Gen eine Mutation aufweisen, ist die p53-unabhängige Apoptose von Interesse.

In dieser Arbeit wurden fünf etablierte p53^{mut}-Kolonkarzinomzelllinien zur morphologischen Darstellung des Verlaufs der mitotischen Katastrophe und zur Untersuchung der Beteiligung von Cyclin D1 und der hMps1-Kinase verwendet.

Die morphologischen Merkmale der mitotischen Katastrophe sind aberrante Mitosen, Mikronukleationen und Kernkondensationen (Fig. 10). Durch Arretierung der Zellen mit Nocodazol und die anschließende morphologische und biochemische Untersuchung konnte ich zeigen, dass die SN-38-induzierte (nichtmitotische) Apoptose in HCT116 p53^{-/-}-Zellen vor und die Entscheidung zur Mikronukleation nach der Prometaphase stattfindet (Fig. 18). Das spricht für zwei Wege, die zur Apoptose führen: Der eine Weg führt über die Bildung von aberranten Mitosen (mitotische Katastrophe), der andere Weg, ohne Bildung von aberranten Mitosen, entspricht der klassischen Apoptose, die jedoch hier p53-Status unabhängig ist.

Nach Behandlung mit SN-38 ist die hMps1-Kinase in allen untersuchten p53^{wt}-Zellen supprimiert und in allen untersuchten p53^{mut}-Zellen hochreguliert (Fig. 21). Zur Untersuchung der Regulation der hMps1-Kinase wurden die Zellen HCT116 und HCT116 p21^{-/-} mit einem adenoviralen Vektor, kodierend für p53, transduziert. Ich konnte damit zeigen, dass das p53-Protein die hMps1-Kinase-Expression supprimiert und dass das p21-Protein die p53-vermittelte Suppression verstärkt (Fig. 27).

Nach Suppression der hMps1-Kinase durch die hMps1-siRNA konnten die SN-38-induzierte PARP-Fragmentierung sowie die Kernkondensation signifikant vermindert werden (Fig. 32). Dieses Ergebnis spricht dafür, dass die hMps1-Kinase-Expression nach DNA-Schädigung zur Entstehung der kondensierten Kerne und PARP-Fragmentierung und somit zur Apoptose beiträgt.

Nach Behandlung mit SN-38 ist die hMps1-Kinase in allen untersuchten p53^{mut}-Zellen hochreguliert, gleichzeitig kommt es zur Zentrosomenamplifikation. Die anschliessende Untersuchung zeigte jedoch, dass die hMps1-Kinase keinen Einfluss auf die Zentrosomenzahl nach SN-38 Behandlung hat (Fig. 31).

Die Cyclin D1-Proteinexpression wird nach SN-38-Behandlung in allen untersuchten p53^{wt}-Zellen hochreguliert und in allen untersuchten p53^{mut}-Zellen supprimiert (Fig. 20). Die Versuche mit dem gleichen p53-Expressionssysstem zeigten, dass das p53-Protein die Cyclin D1-Expression hochreguliert und dass das p21-Protein für die p53-vermittelte Hochregulation notwendig ist. Nach Transduktion der HCT116 p21^{-/-}-Zellen mit einem adenoviralen Vektor, kodierend für p21, zeigte sich, dass das p21-Protein auch alleine Cyclin D1 auf Proteinebene aber nicht auf mRNA-Ebene hochreguliert (Fig. 26).

Im Gegensatz zu hMps1-Kinase hat die Cyclin D1-Expression keinen Einfluss auf die schädigungsbedingte Apoptose.

Somit wurden in der vorliegenden Arbeit der Ablauf der mitotischen Katastrophe und der molekulare Mechanismus der Beteiligung von p53 und hMps1 an diesem Prozess aufgeklärt.

Die Hauptbefunde der vorliegenden Arbeit sind:

- SN-38 induziert in p53^{mut}-Zelllinien einen kurzen G₂-Arrest, gefolgt von einer vorzeitigen Mitose, die in mitotischer Katastrophe mündet. Dies wird begleitet von aberranten Mitosen, Mikronukleationen und kondensierten Kernen. Die letzteren weisen apoptotische Charakteristika auf, wie die PARP-Fragmentierung (Fig. 13). Die mitotische Katastrophe endet somit mit Apoptose
- 2. Die vorliegende Arbeit zeigt, dass es zwei Prozesse (mitotische Katastrophe und die klassische nichtmitotische Apoptose) gibt, die letztlich mit Apoptose enden. Kennzeichnend für die mitotische Katastrophe ist das Auftreten von aberranten Mitosen als Zwischenschritt der Konversion von tetraploiden Interphase-Zellkernen zur Mikronukleation und kondensierten Kernen. 80 % der Zellen sterben auf dem klassischen Apoptoseweg ohne Mitosebeteiligung. Die Mitose-unabhängige SN-38-induzierte Apoptose findet vor und die Entscheidung zur mitotischen Katastrophe nach der Prometaphase statt.

- 3. hMps1-Kinase wird von p53 auf mRNA-Ebene reguliert. Dabei wirkt p21 als Verstärker der p53-vermittelten Suppression der hMps1-Kinase (Fig. 27). Im Gegensatz dazu, wird Cyclin D1 nur auf Protein- und nicht auf mRNA-Ebene durch p21 hochreguliert (Fig. 29).
- 4. hMps1-Kinase-Expression nach DNA-Schädigung trägt zur Kernkondensation und PARP-Fragmentierung und damit zur Apoptose bei (Fig. 32). Die Zentrosomenamplifikation findet präferentiell in p53-/--Zellen statt, ist aber nicht von hMps1-Kinase abhängig.
- 5. Weder Überexpression noch Suppression von Cyclin D1 hat einen Einfluss auf Apoptose.

Teile dieser Arbeit wurden publiziert:

 Bhonde, M. R., Hanski, M. L., Budczies, J., Cao, M., Gillissen, B., Moorthy, D., Simonetta, F., Scherubl, H., Truss, M., Hagemeier, C., Mewes, H. W., Daniel, P. T., Zeitz, M., and Hanski, C. DNA Damage-induced Expression of p53 Suppresses Mitotic Checkpoint Kinase hMps1: the lack of thei suppression in p53mut cells contributes to apoptosis. J Biol Chem, 281: 8675-8685, 2006.

Teile dieser Arbeit wurden als Poster präsentiert:

 M R Bhonde, M L Hanski, J Budczies, M Cao, B F Gillissen, F Simonetta, H Scherübl, M Truss, C Hagemeier, P T Daniel, M Zeitz and C Hanski. DNA damage-induced expression of p53 suppresses mitotic checkpoint kinase hMps1: the lack of this suppression in p53mut cells contributes to apoptosis. *Deutscher Krebskongress*, Berlin: 2006; P503. Doc: http://www.egms.de//en/meetings/dkk2006/06dkk613.shtml

XI. Anhang

1. Lebenslauf:

Mein Lebenslauf wird aus Datenschutzgründen in der elektronischen Version meiner Arbeit nicht mit veröffentlicht.

Mein Lebenslauf wird aus Datenschutzgründen in der elektronischen Version meiner Arbeit nicht mit veröffentlicht.

2. Publikationen und Poster

Publikationen

- Bhonde, M. R., Hanski, M. L., Budczies, J., Cao, M., Gillissen, B., Moorthy, D., Simonetta, F., Scherubl, H., Truss, M., Hagemeier, C., Mewes, H. W., Daniel, P. T., Zeitz, M., and Hanski, C. DNA Damage-induced Expression of p53 Suppresses Mitotic Checkpoint Kinase hMps1: the lack of thei suppression in p53mut cells contributes to apoptosis. J Biol Chem, 281: 8675-8685, 2006.
- 2. Loddenkemper, C., Keller, S., Hanski, M. L., **Cao, M.**, Jahreis, G., Stein, H., Zeitz, M., and Hanski, C. Prevention of colitis-associated carcinogenesis in a mouse model by diet supplementation with ursodeoxycholic acid. Int J Cancer, 118: 2750-2757, 2006.

Posterpräsentationen

- M R Bhonde, M Cao, D Moorthy, M L Hanski, H Scherübl, M Notter, M Zeitz and C Hanski. SN-38 induces a p53-independent mitotic catastrophe in colon carcinoma cells: Cellular and molecular response analysis. *Proceedings of the American Association for Cancer Research:* 2004; 45, P 2253.
- Loddenkemper C, Hanski ML, Cao M, Zeitz M, Hanski C. Ursodeoxycholsäure inhibiert die Kolonkarzinogenese bei der murinen ulzerativen Kolitis. Z Gastroenterol: 2005; 43, P328.
- 3. M R Bhonde, M L Hanski, J Budczies, M Cao, B F Gillissen, F Simonetta, H Scherübl, M Truss, C Hagemeier, P T Daniel, M Zeitz and C Hanski. DNA damage-induced expression of p53 suppresses mitotic checkpoint kinase hMps1: the lack of this suppression in p53mut cells contributes to apoptosis. *Deutscher Krebskongress*, Berlin: 2006; P503. Doc: http://www.egms.de//en/meetings/dkk2006/06dkk613.shtml

3. Eidesstattliche Erklärung

"Ich, Minh-Tung Cao, erkläre,

- dass ich die vorgelegte Dissertationsschrift mit dem Thema "Untersuchungen zum morphologischen Ablauf und zur Regulation der mitotischen Katastrophe in Kolonkarzinomzellen nach Behandlung mit Irinotecan" selbst verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt, ohne die (unzulässige) Hilfe Dritter verfasst und auch in Teilen keine Kopien anderer Arbeiten dargestellt habe.
- dass keine gerichtlichen Vorstrafen einschließlich noch anhängiger staatsanwaltlicher Ermittlungsverfahren und Disziplinarverfahren vorliegen."

Datum 17.04.2007

UnterschriftMinh-Tung Cao......

4. Danksagung

An dieser Stelle möchte ich mich bei allen bedanken, die zum Gelingen dieser Arbeit beigetragen haben.

Für die unermüdliche Geduld, die hervorragende Betreuung während des experimentellen und schriftlichen Teils der Arbeit und insbesondere für die Anleitung in kritischem, hinterfragendem und wissenschaftlichem Denken bei der Auswertung und der Diskussion der Ergebnisse gilt Prof. Dr. C. Hanski mein größter Dank.

Bei den Mitarbeiterinnen und Mitarbeiter der Arbeitsgruppe Hanski: Marie-Luise Hanski, Britta Jebautzke und Dr. Mandar Bhonde bedanke ich mich sehr für die freundliche und geduldige Hilfe bei der Anwendung labortechnischer Verfahren und für die Diskussion theoretischer Fragen.

Großer Dank gebührt natürlich meiner Mutter, Thi-Yen Cao, und meiner Freundin, Christina Schulze, die mir den bisherigen Weg erst ermöglichten und die mir trotz der damit verbundenen Belastungen immer unterstützend und hilfreich zur Seite standen.

Dankeschön.