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9 Asymptotically flat solutions

In this section we consider the case that (Σ, g̃, ũ) is a complete and asymptotically flat manifold.
This is interesting for applications in physics since one class of solutions to the Einstein equations
consists of metrics which describe the gravitational field of a single body like a star or a black
hole. These are known as isolated systems. The model for such a solution is an asymptotically
flat manifold where the metric satisfies certain decay conditions near infinity. We give two
precise definitions of solutions which are asymptotically flat and prove that a decay behavior
at time t = 0 is maintained as long as the solution satisfies a supremum bound. This indicates
the usefulness of the flow (0.4) in general relativity and provides a necessary first step in that
direction. Note that the following estimate though is applicable for a general solution satisfying
the stated bounds. This applies for example to all solutions given by Theorem 3.22.

Lemma 9.1 Let (g, u)(t) be a solution to (2.5) on [0, T ] × Σ with initial data (g̃, ũ) such that
|Rm| + |∇2u| + |du|2 ≤

√
K on [0, T ] × Σ. Then we get for t ∈ [0, T ], any x0 ∈ Σ, and any

R > 0 the estimate:

sup
x∈Bt

R/4
(x0)

|Φ|2(t, x) ≤ 2 sup
x∈B0

R(x0)

|Φ|20(0, x) · eCC̃t/R
2

where C̃ := max{R2 ·
√
K, 1} is a scaling invariant constant and C depends only on n.

Proof:

From (2.21) we have the evolution inequality

(
∂t − ∆

)
|Φ|2 ≤ −2|∇Φ|2 + C|Φ|3 + C|du|2|Φ|2 .

The assumptions imply R2
(
|Φ| + |du|2

)
≤ R2 ·

√
K on B(T, x0, R). Set C̃ := max{R2 ·

√
K, 1}.

(
∂t − ∆

)
|Φ|2 ≤ −2|∇Φ|2 + C(n)C̃R−2 · |Φ|2 .

Define a cut-off function η for a fixed radius R > 0 by

η̃(t, x) := R−4 ·
(
R2 − r(t, x)

)2
.

This function differs from the one in (6.8) only by the factor R−4, and we therefore can use the
results obtained in Lemma 6.8 for η modified by this factor. Setting f := |Φ|2 · η̃, we compute

(
∂t − ∆

)
f ≤

(
∂t − ∆

)
|Φ|2 · η̃ + |Φ|2 ·

(
∂t − ∆

)
η̃ − 2∇|Φ|2∇η̃

≤ −2|∇Φ|2η̃ + C(n)C̃R−2f + C(n)C̃R−2|Φ|2 + |∇Φ|2η̃ + C(n)R−2f

≤ C(n)C̃R−2f ,

using the bound η̃−1 ≤ 16
9 on B(T, x0, R/4) and C̃ ≥ 1. From (6.5) we estimated

−2∇|Φ|2∇η ≤ 8|∇Φ||Φ| · (R2 − r)|∇r|
R4

=

(

|∇Φ|R
2 − r

R2
· 8|∇r||Φ|

R2

)

≤ |∇Φ|2η̃ + CR−2|Φ|2 .
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We consider the associated ordinary differential equation

d

dt
v(t) = CC̃R−2v(t)

with initial value v(0) := 9
8 supx∈B0

R(x0) f(0, x). The solution is given by v(t) = v(0) · eCC̃t/R2

and satisfies f(0) < v(0) at time t = 0. Choose ε := 1
16 supx∈B0

R(x0) f(0, x) and a point (t∗, x∗)
such that f(t∗, x∗)− v(t∗) = −ε is true for the first time on B(T, x0, R/4). Since x∗ then is also
a spatial maximum at time t∗, this implies:

(
∂t − ∆

)(
f − v

)
(t∗, x∗) ≥ 0 .

Altogether we have at (t∗, x∗) that

0 ≤
(
∂t − ∆

)
(f − v) ≤ CC̃R−2(f − v) = CC̃R−2(−ε) < 0

which is a contradiction. Therefore v(t) is a barrier for f(t) for all t ≥ 0 as follows:

sup
x∈Bt

R/4
(x0)

[
|Φ|2(t, x) · η̃(t, x)

]
≤ 9

8 sup
x∈B0

R(x0)

[
|Φ|2(0, x) · η̃(0)

]
eCC̃t/R

2

.

Using η̃(0) ≤ 1 and η̃−1 ≤ 16
9 on B(T, x0, R/4), the desired result follows.

In the same way we can proof:

Lemma 9.2 Let (g, u)(t) be a solution to (2.5) on [0, T ] × Σ with initial data (g̃, ũ) such that
|Rc|2 ≤ K on [0, T ] × Σ. Then we get for t ∈ [0, T ], any x0 ∈ Σ, and any R > 0 the estimate:

sup
x∈Bt

R/4
(x0)

|du|2(t, x) ≤ 2 sup
x∈B0

R(x0)

|dũ|20(0, x) · eCC̃t/R
2

where C̃ := max{R2 ·
√
K, 1} is a scaling invariant constant and C depends only on n.

Proof:

Since |du|2 satisfies the evolution inequality

(
∂t − ∆

)
|du|2 ≤ −2|∇2u|2,

we only need a bound on the Ricci curvature to apply (6.12). The remaining proof is analogous
to the proof of Lemma 9.1.

We can now deal with complete asymptotically flat manifolds. A strong definition is given as
follows:
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Definition 9.3 Let Σ be a complete n-dimensional connected Riemannian manifold. (Σ, g, u)
is called strongly asymptotically flat of mass m, if there is a compact subset K ⊂ Σ such that
ΣK := Σ \K is diffeomorphic to n \ B1(0) where B1(0) is the Euclidean unit ball, and (g, u)
satisfy in the exterior region ΣK :

∣
∣
∣
∣
g −

(

1 − 2m

r̃

)

δ

∣
∣
∣
∣
≤ C0 · r̃−2 (9.1)

|∂kg| ≤ Ck · r̃−k−1, k = 1, 2, 3 (9.2)
∣
∣
∣u+

m

r̃

∣
∣
∣ ≤ D0 · r̃−2 (9.3)

|∂ku| ≤ Dk · r̃−k−1, k = 1, 2, 3 (9.4)

for some constants Ck, Dk, k = 0, . . . , 3 where r̃(x) :=
√

x2
1 + · · · + x2

n is the radial coordinate
of n and | · | and ∂ are with respect to δ.

A very important physical property of an asymptotically flat manifold is its ADM mass. For
manifolds as defined above it is given by the coefficient m in the expansion of (g, u). In general
it is defined as follows:

Definition 9.4 Let (Σ, g) be asymptotically flat. Then the ADM mass of (Σ, g) is defined by:

mADM (g) := c(n) lim
ρ→∞

∫

Sρ

n∑

i,j=1

(∂igij − ∂jgii)N
jdA

where Sρ ⊂ Σ is the coordinate sphere of radius ρ, N its outer unit normal, dA the associated
Riemannian metric on Sρ, and c(n) a dimension-dependent normalization constant.

It is shown in [Bar86] that the ADM mass is invariantly defined and independent of the asymp-
totic coordinate system. We prove that the flow (2.5) preserves the class of asymptotically flat
manifolds as defined above.

Theorem 9.5 Let (g, u)(t) be the solution to (2.5) on [0, T ] × Σ for T < ∞ with initial data
(g̃, ũ) given by Theorem 3.22. Assume that (Σ, g̃, ũ) is strongly asymptotically flat of mass
m := m(g̃) with K = B̄0

ρ(O) for constants Ck, Dk. Then (Σ, g(t), u(t)) is strongly asymptotically
flat for all t ∈ [0, T ]. In particular there is a constant C(t) = C(t, k0, c0, s0, Ck, Dk) depending
only on time, the bounds from Theorem 3.22, and the asymptotic decay of (g̃, ũ) such that

∣
∣
∣
∣
g(t) −

(

1 − 2m

r̃

)

δ

∣
∣
∣
∣
0

+
∣
∣
∣u(t) +

m

r̃

∣
∣
∣
0
≤ C(t) · r̃−2

|∂kg|0 + |∂ku|0 ≤ C(t) · r̃−k−1

holds on [0, T ] × Σ \ B2ρ(O) for k = 1, 2, 3 with C(t) → ∞ for t → ∞. In particular the ADM
mass is preserved by the flow and we have m(g(t)) = m for all t ∈ [0, T ].
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Proof:

Let (Σ, g̃, ũ) be asymptotically flat on ΣK := Σ \ B̄ρ(O). Assume without loss of generality that
ρ ≥ 1. We know from the definition that there is a constant C̄ such that

sup
x∈ΣK

[
|Φ|0(0, x)r̃3(x)

]
≤ C sup

x∈ΣK

[
(|∂2g̃|0 + |∂g̃|20 + |∂2ũ|0 + |∂g̃|0|∂ũ|0)r̃3

]
≤ C̄ .

Fix x0 ∈ Σ \ B0
2ρ(O) and choose R := 1

4 r̃(x0). Using the equivalence of the norms | · |0 and | · |
and the bounds on |Φ| + |du|2 from Theorem 3.22, we can apply Lemma 9.1 to find

|Φ|20(t, x0) ≤ ect|Φ|2(t, x0) · η̃(t, x0) ≤ ect · sup
x∈Bt

R/4
(x0)

[
|Φ|20(t, x) · η̃(t, x)

]

≤ ect · 2 sup
x∈B0

R(x0)

[
|Φ|20(0, x) · η̃(0, x)

]
· eCC̃t/R2 ≤ 2ect · sup

x∈B0
R(x0)

[
|Φ|20(0, x)

]
· eCC̃t/R2

for a constant c depending only on n, k0, c0 where c0 := supΣ |dũ|20. Since B̄0
R(x0) is compact,

the supremum is attained at some point x∗ ∈ B0
R(x0). Multiplying by r̃6(x0) leads to

|Φ|20(t, x0) · r̃6(x0) ≤ 2ecteCC̃t/R
2 · |Φ|20(0, x∗) · r̃6(x0) .

Examining the constants, we see that either C̃ = 1 and eCC̃t/R
2 ≤ eCt/ρ

2

or C̃ = R2 ·
√
K such

that eCC̃t/R
2 ≤ eC

√
Kt. In both cases we get

ecteCC̃t/R
2 ≤ ec̄t

for a constant c̄ = c̄(n, k0, c0, s0, ρ) independent of x0. Here s0 := supΣ |∇̃2ũ|20 as in Theorem
3.22. On all of B0

R(x0) there is the estimate

r̃(x) ≥ r̃(x0) −R = 3
4 r̃(x0)

such that we obtain

|Φ|20(t, x0) · r̃6(x0) ≤ 12ec̄t ·
(
|Φ|20(0, x∗) · r̃6(x∗)

)
≤ 12C̄2ec̄t .

Note that the choice of R guarantees that the ball B0
R(x0) is fully contained in ΣK . Therefore

we can use the asymptotic expressions. Furthermore the constants c̄ and C̄ do not depend on
x0. This implies that the estimate is uniform for all x ∈ Σ \B0

2ρ(O) and we have

|Φ|0(t, x) ≤ A · r̃−3(x) (9.5)

on [0, T ] × Σ \B0
2ρ(O) for a constant A = A(t) depending only on t with A(t) → ∞ for t→ ∞.

In the same way as above, we get using Lemma 9.2:

|du|20(t, x) ≤ B · r̃(x)−4 (9.6)

on [0, T ] × Σ \ B̄2ρ(x0) with B(t) → ∞ for t → ∞. The estimates (9.5) and (9.6) allow us to
integrate pointwise for all x ∈ Σ \B0

2ρ(O):

∣
∣
∣
∣
g(t) −

(

1 − 2m

r̃

)

δ

∣
∣
∣
∣
0

≤ C0r̃
−2 +

∫ t

0
|∂tg(τ)|0dτ ≤ C̃0r̃

−2 + 4

∫ t

0

(
|Rc|0 + |du|20

)
(τ)dτ

≤ C̃0r̃
−2 +

(
Ar̃−3 +Br̃−4

)
· T = C̃0 · r̃−2

(9.7)
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where C̃0 = C̃0(n,C0, A,B, T ) is independent of x. For u(t) we integrate:

∣
∣
∣u(t) +

m

r

∣
∣
∣
0
≤ D0r̃

−2 +

∫ t

0
|∂tu(τ)|0dτ ≤ D0r̃

−2 +

∫ t

0
|∆u|0(τ)dτ

≤ D0r̃
−2 + nAT · Cr̃−3 = D̃0 · r̃−2

(9.8)

where D̃0 = D̃0(n,D0, A,B, T ) also does not depend on x. This shows that (g, u)(t) remains
asymptotically flat at zeroth order on Σ \B0

2ρ(O).

To estimate the first derivative of g, we need the first derivative of Φ. From (2.21) we have

(
∂t − ∆

)
|∇Φ|2 ≤ −2|∇2Φ|2 + C

{
|Φ||∇Φ|2 + |du||Φ|2|∇Φ| + |du|2|∇Φ|2

}
.

Estimating (|du|2 + |Φ|) ≤ C̃R−2 as before and using Young’s inequality, this implies

(
∂t − ∆

)
|∇Φ|2 ≤ −2|∇2Φ|2 + CC̃R−2|∇Φ|2 +A4r̃−12 .

The remaining calculations go through as above such that we find for f := |∇Φ|2 · η̃:
(
∂t − ∆

)
f ≤ CC̃R−2f + CA4r̃−12(x0) .

Here we used that η̃ ≤ 1 on B(T, x0, R) and r̃−1(x) ≤ 4
3 r̃

−1(x0). Let v(t) be the solution to

d

dt
v(t) = CC̃R−2v(t) + CA4r̃−12(x0)

with initial value v(0) := 9
8 supx∈B0

R(x0) f(0, x). Then v is given explicitly by

v(t) = −CA4r̃−12(x0) ·
R2

CC̃
+ eCC̃t/R

2 ·
(
v(0) + CA4r̃−12(x0) ·

R2

CC̃

)

≤ eCC̃t/R
2 ·
(
v(0) + CA4r̃−10(x0)

)

from the choice of R and since C̃ ≥ 1. Since v is a barrier for f for all t > 0, we find:

sup
x∈Bt

R/4
(x0)

[
|∇Φ|2(t, x) · η̃(t, x)

]
≤ 2
(

sup
x∈B0

R(x0)

[
|∇Φ|20(0, x)η̃(0, x)

]
+ CA4r̃−10(x0)

)
· eCC̃t/R2

.

The asymptotic conditions for |∂3g| and |∂3u| imply that for x ∈ Σ \B0
ρ(O) at t = 0 we have

|∇Φ|0(0, x) ≤ C̄ · r̃−4

for a constant E independent of x. We finally find at a point x∗ ∈ B0
R(x0) where the supremum

is attained that

|∇Φ|2(t, x0) · r̃8(x0) ≤
(
2|∇Φ|20(0, x∗) · r̃8(x0) + CA4r̃−10 · r̃8(x0)

)
· eCC̃t/R2

≤ (32C̄ + CA4r̃−2(x0))e
CC̃t/R2

=: E(t)

holds as required. Here we used r̃−1(x0) ≤ 1.
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This implies the decay

|∇Φ|0(t, x0) ≤ E(t) · r̃−4(x0)

on [0, T ] × B2ρ(x0). Observe that E(t) only depends on t and E(t) → ∞ for t → ∞. An
integration gives

|∂g|0(t) ≤ |∂g̃|0 +

∫ t

0
|∂t∂g|0(τ)dτ ≤ C1 · r̃−3 + 4 sup

τ∈[0,T ]
(|∇Rc|0 + |du|0|∇2u|0)(τ) · T

≤ C1 · r̃−3 + 4T · Er̃−4 + 4T
√
BAr̃−5 ≤ C̃1 · r̃−3 .

Together with (9.6) we get the desired asymptotics for ∂g and ∂u. We have from (9.7) and (9.8):

|∂2g|0 ≤ |Rm|0 + |∂g|20 ≤ A · r̃−3 + C̃2
1 · r̃−4 ≤ C̃2 · r̃−3

|∂2u|0 ≤ |∇2u|0 + |∂g|0|∂u|0 ≤ A · r̃−3 + C̃1 · r̃−2 · D̃1 · r̃−2 ≤ D2 · r̃−3

establishing the claim for k = 2. The remaining case k = 3 is handled similarly and we obtain:

|∂3g|0 ≤ |∇Rm|0 + |∂g|0|Rm|0 + |∂g|0|∂2g|0
≤ E · r̃−4 + C̃1r̃

−2 · C̃2r̃
−3 + C̃1r̃

−2 · C̃2r̃
−3 ≤ C̃3 · r̃−4

|∂3u|0 ≤ |∇3u|0 + |∂g|0|∂2u|0 + |∂2g|0|∂u|0 + |∂2g|0|∂g|0|∂u|0
≤ E · r̃−4 + C̃1r̃

−2 · D̃2r̃
−3 + C̃2r̃

−3 · D̃1r̃
−2 + C̃2r̃

−3 · C̃1r̃
−2 · D̃1r̃

−2 ≤ D̃3 · r̃−4 .

Since g̃ and δ are equivalent, this proves that the asymptotic flatness is preserved.

The estimates (9.7) and (9.8) show that the change of (g, u) in time is of order r̃−3 and that
therefore the asymptotic form (9.1) and (9.3) of the initial data is preserved. It immediately
follows that the ADM mass stays constant under the flow (2.5). This finishes the proof of the
theorem.

The same can be proved for the following weaker definition of asymptotic flatness:

Definition 9.6 Let Σ be a complete n-dimensional connected Riemannian manifold. (Σ, g, u)
is called asymptotically flat, if there is a compact subset K ⊂ Σ such that ΣK := Σ \ K is
diffeomorphic to n \ B1(0) where B1(0) is the Euclidean unit ball, and (g, u) satisfy in the
exterior region ΣK :

|g − δ| ≤ C0 · r̃−1 (9.9)

|∂kg| ≤ Ck · r̃−k−1, k = 1, 2, 3 (9.10)

|u| ≤ D0 · r̃−1 (9.11)

|∂ku| ≤ Dk · r̃−k−1, k = 1, 2, 3 (9.12)

for some constants Ck, Dk where r̃(x) :=
√

x2
1 + · · · + x2

n is the radial coordinate of n and | · |
and ∂ are with respect to the Euclidean metric.
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Theorem 9.7 Let (g, u)(t) be the solution to (2.5) on [0, T ] × Σ for T < ∞ with initial data
(g̃, ũ) given by Theorem 3.22. Assume that (Σ, g̃, ũ) is asymptotically flat with K = B̄0

ρ(O) for
constants Ck, Dk. Then (Σ, g(t), u(t)) is asymptotically flat for all t ∈ [0, T ]. In particular there
is a constant C = C(t, k0, c0, s0, Ck, Dk) depending only on time, the bounds from Theorem 3.22,
and the asymptotic decay of (g̃, ũ) such that

|g(t) − δ|0 + |u(t)|0 ≤ C(t) · r̃−1

|∂kg|0 + |∂ku|0 ≤ C(t) · r̃−k−1

holds on [0, T ] × Σ \B2ρ(O) for k = 1, 2, 3, where C(t) → ∞ for t→ ∞. In addition, the ADM
mass stays constant in time

mADM (g(t)) = mADM (g̃)

for all t ∈ [0, T ].

Proof:

The proof is the same as the proof of Theorem 9.5. A careful investigation shows that the
integration (9.7) of the metric does not change the first order term in r̃ which determines the
mass of g(t).

Remark 9.8 Although the mass is constant for solutions of (2.5) on finite time intervals, we
expect that the mass mADM (g∞) of the limit (g∞, u∞) of a global solution (g, u)(t) for t → ∞
jumps. In particular it is not clear that the limit in time commutes with the spatial limit.


