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8 Finite-time singularities

8.1 A compactness property

Using the interior estimates in Theorem 6.15, we can prove compactness of a set of solutions
satisfying natural geometric conditions. We first define what is meant by a converging sequence
of solutions to (2.5).

Definition 8.1 Let (gk, uk)(t) be a family of solutions to (2.5) on [TA, TO) × Σk where Σk

is complete. Let xk be a base point in Σk. Furthermore let Σ∞ be a complete Riemannian
manifold, (g∞, u∞)(t) a solution to (2.5), and x∞ ∈ Σ∞ be a base point. Then the sequence
(Σk, (gk, uk)(t), xk) converges to (Σ∞, (g∞, u∞)(t), x∞), if there exists a sequence of open sets
Uk ⊂ Σ∞ containing x∞, and a sequence of diffeomorphisms Fk : Uk → Vk where Vk ⊂ Σk is
open, satisfying Fk(x∞) = xk such that any compact set in Σ∞ eventually lies in all Uk and
the pullbacks g̃k(t) := F ∗

k gk(t) and ũk(t) := F ∗
kuk(t) converge to (g∞, u∞)(t) on every compact

subset of (TA, TO) × Σ∞ uniformly together with all their derivatives.

The compactness theorem is given by:

Theorem 8.2 Let TA, TO be given such that −∞ ≤ TA < TO ≤ ∞ and fix t0 ∈ (TA, TO).
Let (Σk, gk(t), uk(t), xk) be a pointed sequence of complete solutions to (2.5) for t ∈ [TA, TO)
satisfying

sup
Σk

|Rmk|gk(t)(t) ≤ C0 ∀t ∈ (TA, TO) (8.1)

sup
Σk

|uk|(TA) ≤ C ′
0 (8.2)

where C0 and C ′
0 are independent of k. Assume in addition that (gk, uk)(t0) is κ-noncollapsed

for some κ > 0 independent of k. Then there exists a subsequence

(Σk, gk(t), uk(t), xk)
C∞

−→ (Σ∞, g∞(t), u∞(t), x∞) ,

converging in the sense of Definition 8.1 to a complete, κ-noncollapsed solution of (2.5). All
derivatives of the curvature Rm∞ and of u∞ are bounded above and there is a lower bound on
the injectivity radius of g∞.

To prove the theorem, we first show an auxiliary lemma which corresponds to [Ham95a, Lemma
2.4]. We estimate the solutions (gk, uk)(t) with respect to the limit metric g∞(t) on compact
subsets of (TA, TO)×Σ∞ using bounds at t = t0 and bounds for gk(t), uk(t) with respect to the
individual metrics gk(t). We carefully distinguish to which metric the norms and derivatives
belong.
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Lemma 8.3 Let (Σ, g) be a Riemannian manifold and K ⊂ Σ be a compact subset. Assume
(gk, uk)(t) is a collection of solutions to (2.5), defined on neighborhoods of [α, ω] ×K such that
α < 0 < ω. Let ∇, | · | denote covariant differentiation and length with respect to g and k∇, | · |k
with respect to gk. Furthermore suppose that at time t = 0 on K we have the bounds

(a) cg(X,X) ≤ gk(X,X) ≤ Cg(X,X) for all X ∈ X (Σ)

(b) |∇pgk| ≤ Ĉp for all p ≥ 1

(c) |∇puk| ≤ Ĉ ′
p for all p ≥ 0 ,

and in addition

(d) sup
[α,ω]×K

|k∇pRmk|k ≤ Cp for all p ≥ 0

(e) sup
[α,ω]×K

|k∇puk|k ≤ C ′
p for all p ≥ 0

with constants c, C, Ĉp, Ĉ
′
p, Cp, C

′
p independent of k. Then the following holds:

(i) c̃g(X,X) ≤ gk(X,X) ≤ C̃g(X,X) on [α, ω] ×K

(ii) sup
[α,ω]×K

|∇pgk| ≤ C̃p for all p ≥ 1

(iii) sup
[α,ω]×K

|∇puk| ≤ C̃ ′
p for all p ≥ 0

for constants c̃, C̃, C̃p, C̃
′
p independent of k, α, ω and K.

Proof:

Since (gk, uk)(t) solves (2.5), we get for all vector fields X ∈ X (Σ) and all k that

∂tgk(X,X) = −2Rck(X,X) + 4duk(X) ⊗ duk(X).

Using (d) and (e), we can estimate

2
∣
∣Rck(X,X) − 2duk(X) ⊗ duk(X)

∣
∣ ≤ 4(|Rck|k + |duk|2k)|X|2k
≤ (nC0 + (C ′

1)
2)gk(X,X) =: A0gk(X,X)

with a constant A0 = A0(n,C0, C
′
1), implying that

∂tgk(X,X) ≤ A0gk(X,X) .

Reorganizing terms gives

∂t
(
ln gk(X,X)

)
=

1

gk(X,X)
∂tgk(X,X) ≤ A0

such that we get
∣
∣∂t
(
ln gk(X,X)

)∣
∣ ≤ A0 .
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This can be integrated

ln gk(X,X)(t) = ln gk(X,X)(0) +

∫ t

0
∂τ
(
ln gk(X,X)(τ)

)
dτ

≤ ln gk(X,X)(0) + sup
τ∈[0,t]

∣
∣∂τ
(
ln gk(X,X)(τ)

)∣
∣(t− 0)

≤ ln gk(X,X)(0) +A0 · T

and exponentiated

gk(X,X)(t) ≤ exp
(
ln gk(X,X)(0) +A0 · T

)
= eA0T gk(X,X)(0).

From this we conclude
gk(t) ≤ eA0T gk(0) ≤ eA0TCg =: C̃g

where C̃ = C̃(n,C0, C
′
1, T, C) and (a) was used. Using (a), we analogously get the lower bound

gk(t) ≥ e−A0T gk(0) ≥ e−A0T cg =: c̃g

for a constant c̃ = c̃(n,C0, C
′
1, T, c). This proves (i). Denote by Z from now on all constants

depending only on c̃, C̃ which control the equivalence of the metrics.

Recall the evolution equation (2.9) for the connection Γk. Since Γ (of g) is time independent,
we have

∂t
(
Γk − Γ

)
= k∇Rck + duk ∗ k∇2uk .

Making use of (d) and (e), this implies

∣
∣∂t
(
Γk − Γ

)∣
∣
k
≤ c(n)|k∇Rck|k + c(n)|duk|k|k∇2uk|k ≤ C1 + C ′

1C
′
2 =: A1

for a constant A1 = A1(n,C1, C
′
1, C

′
2). Since

∇gk ' Γk − Γ ' k∇−∇, (8.3)

we deduce
|∂t∇gk| ≤ c(n)

∣
∣∂t
(
Γk − Γ

)∣
∣ ≤ c(n)Z

∣
∣∂t
(
Γk − Γ

)∣
∣
k
≤ Z ·A1

where the constant Z comes from (i) which is already proven. Using the bounds (b) on ∇gk at
t = 0, integration gives

∣
∣∇gk

∣
∣(t) =

∣
∣
∣
∣
∇gk(0) +

∫ t

0
∂τ∇gk(τ)dτ

∣
∣
∣
∣
≤ |∇gk|(0) + ZA1T ≤ Ĉ1 + ZA1T =: C̃1 . (8.4)

Here C̃1 depends only on n, c̃, C̃, Ĉ1, C1, C
′
1, C

′
2, n, and T . Since uk is bounded on [α, ω]×K by

(e) and | · | = | · |k on functions, we easily obtain

|uk|(t) = |uk|k(t) ≤ C ′
0 =: C̃ ′

0 . (8.5)

Similarly using (e) and (i), we calculate for the differential:

|∇uk|(t) = |duk|(t) = |k∇uk|(t) ≤ Z · |k∇uk|k(t) ≤ Z · C ′
1 := C̃ ′

1 (8.6)
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where C̃ ′
1 only depends on c̃, C̃ and C ′

1.

Since we already have a bound for ∇gk on [α, ω] ×K, we can estimate ∇2u at time t using the
equivalence (8.3):

∂t∇2uk = ∇2fk = (∇− k∇)dfk + k∇dfk = ∇gk ∗ k∇fk + k∇2fk

where fk(t) := ∆kuk(t) ∈ C∞([TA, TO) × Σ) is just an abbreviation. Therefore we can estimate

|∂t∇2uk| ≤ |∇gk|Z|k∇fk|k + Z|k∇2fk|k ≤ C̃1ZC(n)C ′
3 + ZC(n)C ′

4 =: B2

by (e) with B2 = B2(n, c̃, C̃, C̃1, C
′
3, C

′
4). Using (c), an integration gives

|∇2uk|(t) ≤ |∇2uk|(0) +

∫ t

0
|∂τ∇2uk(τ)|dτ ≤ Ĉ ′

2 +B2T =: C̃ ′
2

with C̃ ′
2 depending on n, c̃, C̃, C̃1, Ĉ

′
2, C

′
3, C

′
4, and T .

Higher derivatives of (gk, uk) with respect to g can be estimated in pairs (∇pgk,∇p+1uk) for all
p ≥ 2. The technique is similar for all p ≥ 2, so we only state the case p = 2 as reference. Since
∇ commutes with ∂t we get an expression for ∂t∇pgk from the flow equations (2.5):

∂t∇2gk = ∇2∂tgk = ∇2
(
−2Rck + 4duk ⊗ duk

)
= ∇2Rck + ∇3uk ∗ duk + ∇2uk ∗ ∇2uk .

Using (8.3), this can be rewritten in the following way:

∇2Rck = (∇− k∇)∇Rck + k∇(∇− k∇)Rck + k∇2Rck

= ∇gk ∗
(
(∇− k∇)Rck + k∇Rck

)
+ k∇(∇gk ∗Rck) + k∇2Rck

= ∇gk ∗ ∇gk ∗Rck + ∇gk ∗ k∇Rck + k∇∇gk ∗Rck + ∇gk ∗ k∇Rck + k∇2Rck .

Since the second derivatives can be compared as follows

k∇∇gk = ∇2gk + (k∇−∇)∇gk = ∇2gk + ∇gk ∗ ∇gk ,

we get altogether:

∂t∇2gk = ∇2gk ∗Rck +∇3uk ∗∇uk +∇gk ∗∇gk ∗Rck +∇gk ∗ k∇Rck + k∇2Rck +∇2uk ∗∇2uk .

Therefore it is necessary to control ∇3uk to get an estimate for ∇2gk. Keeping this in mind, we
estimate with the help of (d) and (e):

|∂t∇2gk| ≤ ZC0|∇2gk| + ZC̃ ′
1|∇3uk| + Z

{
C̃2

1C0 + C̃1C1 + C2 + (C̃ ′
2)

2
}

≤ A1(|∇2gk| + |∇3uk|) +A2 ,
(8.7)

defining A1 := Zmax{C0, C̃
′
1} and A2 = A2(n, c̃, C̃, C0, C1, C2, C̃1, C̃ ′

2). Doing the same calcula-
tion for ∇3uk, we get:

∂t∇3uk = (∇− k∇)∇dfk + k∇(∇− k∇)dfk + k∇2dfk

= ∇gk ∗ ∇2fk + k∇(∇gk ∗ dfk) + k∇2(k∇fk)
= ∇gk ∗ (∇− k∇)dfk + k∇∇gk ∗ dfk + ∇gk ∗ k∇2fk + k∇3fk

= ∇gk ∗ ∇gk ∗ k∇fk + ∇2gk ∗ k∇fk + ∇gk ∗ ∇gk ∗ k∇fk + ∇gk ∗ k∇2fk + k∇3fk .
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This leads to the estimate (again using (e)):

|∂t∇3uk| ≤ ZC(n)C ′
3|∇2gk| + C(n)Z

{
C̃2

1C
′
3 + C̃1C

′
4 + C ′

5

}
≤ A3|∇2gk| +A4 (8.8)

where A3 = A3(n, c̃, C̃, C
′
3) and A4 = A4(n, c̃, C̃, C̃1, C

′
3, C

′
4, C

′
5). Putting (8.7) and (8.8) together

and realizing that | · | is independent of time, we arrive at

∣
∣∂t
(
|∇2gk| + |∇3uk|

)∣
∣ =

∣
∣|∂t∇2gk| + |∂t∇3uk|

∣
∣ ≤ A1

(
|∇2gk| + |∇3uk|

)
+A2 +A3|∇2gk| +A4

≤ B1

(
|∇2gk| + |∇3uk|

)
+B2 .

Since we know by (b) and (c) that

|∇2gk|(0) + |∇3gk|(0) ≤ Ĉ2 + Ĉ ′
3 ,

we can integrate in time to obtain

|∇2gk|(t) + |∇3uk|(t) ≤ C̃2 = C̃ ′
3 . (8.9)

Here both constants depend only on n, c̃, C̃, Ĉ2, Ĉ
′
3, C̃1, C0, C1, C2, C

′
3, C

′
4, C

′
5, and T .

For higher derivatives we compute the following equations:

∂t∇pgk = Rck ∗ ∇pgk +

p
∑

i=1

k∇iRck ∗ P (∇0gk, . . . ,∇p−igk) +Rck ∗ P (∇0gk, . . . ,∇p−1gk)

+ k∇uk ∗ ∇p+1uk +

p−1
∑

i=1

∇1+iuk ∗ ∇1+p−iuk

∂t∇p+1uk = k∇fk ∗ ∇pgk +

p+1
∑

i=2

k∇ifk ∗ P (∇0gk, . . . ,∇p+1−igk) + k∇fk ∗ P (∇0gk, . . . ,∇p−1gk)

(8.10)

where in both cases p ≥ 2 and P is a polynomial in the components of the derivatives of gk of
the designated order. The equations can be proven by induction on p. This allows us to estimate

|∂t∇pgk| ≤ ZC0|∇pgk| + Z

p
∑

i=1

Ci · C(c̃, C̃, C̃1, . . . , C̃p−i) + ZC0 · C(c̃, C̃, C̃1, . . . , C̃p−1)

+ ZC̃ ′
1|∇p+1uk| + Z

p−1
∑

i=1

C̃ ′
1+i · C̃ ′

1+p−i

≤ C(Z,C0, C
′
1)
(
|∇pgk|+|∇p+1uk|

)
+C(n, c̃, C̃, C0, . . . , Cp, C̃1, . . . , C̃p−1, C̃

′
1, . . . , C̃

′
p)

|∂t∇p+1uk| ≤ ZC ′
3|∇pgk| + Z

p+1
∑

i=2

C ′
i+2 · C(c̃, C̃, C̃1, . . . , C̃p+1−i) + ZC ′

3C(c̃, C̃, C̃1, . . . , C̃p−1)

≤ C(Z,C ′
3)|∇pgk| + C(n, c̃, C̃, C̃1, . . . , C̃p−1, C

′
3, . . . , C

′
p+3) ,

using that for all p ≥ 0

|k∇pfk| = |k∇p∆kuk| ≤ C(n)Z|k∇p+2uk|k ≤ C(n, c̃, C̃)C ′
p+2 .
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Setting F pk := |∇pgk| + |∇p+1uk|, we can calculate as before

|∂tF pk | ≤ (A1 +A3)|∇pgk| +A1|∇p+1uk| +A2 +A4 ≤ A5F
p
k +A6

which again can be integrated in time. Thus we get from the bounds (b) and (c) at time t = 0
the estimate

|∇pgk|(t) + |∇p+1uk|(t) ≤ C̃p = C̃ ′
p+1

where C̃p, C̃
′
p+1 depend on n, c̃, C̃, Ĉp, Ĉ

′
p+1, C0, . . . , Cp, C

′
3, . . . , C

′
p+3, C̃1, . . . , C̃p−1, C̃

′
1, . . . , C̃

′
p,

and T . Together with (8.4), (8.5), (8.6), and (8.9), this shows (ii) and (iii) and therefore
completes the proof of the lemma.

Using the lemma we can prove the theorem as follows:

Proof: (of Theorem 8.2)
We want to use the convergence theorem as stated in Theorem 7.4. Assume for the proof that
TA, TO <∞ and that t0 = 0 without loss of generality.

Let (gk, uk)(t) be a sequence of solutions on [TA, TO)×Σk such that |Rmk|2k(t) ≤ C0 from (8.1).
Then we can bound the injectivity radius inj(gk(0)) > δ at time t = 0 uniformly in k from the
κ-noncollapsing assumption (since κ is also uniform in k) using [CGT82, Theorem 4.7] and the
uniform curvature bound.

The uniform bound |uk(TA)| ≤ C ′
0 from (8.2) implies not only a uniform bound |uk| ≤ C ′

0 on
[TA, TO)×Σ from Lemma 6.11, but also a uniform bound |duk|2k ≤ C ′

1 = C ′
1(C0, T ), using (6.13).

Here C ′
1 only depends on C ′

0 and T . Therefore we can apply Corollary 6.16 to get uniform
bounds on all derivatives of Rmk(t) and uk(t)

sup
(TA,TO)×Σk

(
|k∇iRmk|k + |k∇i+2uk|k

)
≤ Ci = Ci(n, T, C0, C

′
0) (8.11)

for all i ≥ 0 where the Ci are constants depending only on the curvature bound C0, the initial
bound on uk given by C ′

0, n, and T , but not on k.

Using these bounds at t = 0 and the lower injectivity radius bound, we can apply Theorem 7.4
to get a convergent subsequence of (Σk, gk(0), xk), also denoted (Σk, gk(0), xk), at time t = 0 to
a limit (Σ∞, G, x∞) in the sense of Definition 7.3. The convergence is with respect to the limit
metric G, in particular we have

lim
k→∞

∣
∣G∇i

(
F ∗
k gk(0)

)
− G∇i

G
∣
∣
G

= 0 ∀i ≥ 0 . (8.12)

The pullbacks g̃k := F ∗
k gk(t) and ũk := F ∗

kuk(t) are defined for all times t ∈ (TA, TO) though.
To prove convergence of gk, uk for all t, we need uniform estimates for the derivatives of g̃k, ũk
on (TA, TO) × Σ∞. We use G as reference metric from now on.

Let [α, ω] ⊂ (TA, TO), 0 ∈ [α, ω], and K ⊂ Σ∞ be compact. Since we have convergence of (g̃k(0))
to the limit metric G at t = 0, the following is true:

1. g̃k(0) is equivalent to G on K, that is c̄G ≤ g̃k(0) ≤ C̄G holds for all k big enough and
some constants c̄ and C̄ independent of k.
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2. The covariant derivatives of g̃k(0) with respect to G are uniformly bounded on {0} ×K:
From (8.12) we have |G∇ig̃k(0)|G ≤ Ĉi for all i ≥ 1 independent of k.

3. By assumption |ũk(0)|G = |uk(0)| ≤ Ĉ0 := C ′
0 at time t = 0 independent of k. Furthermore

we also have |G∇ũk(0)|G ≤ Ĉ ′
1 independent of k since

|G∇ũk(0)|G = |dũk(0)|G = |F ∗
k

(
duk(0)

)
|G ≤ C(c̄, C̄) · |F ∗

k

(
duk(0)

)
|g̃k(0)

= C(c̄, C̄) · |duk(0)|k = C(c̄, C̄) · |k∇uk(0)|k ≤ Ĉ ′
1

from 1. and the bound for |k∇uk|k above for k big enough.

4. From (8.11) we can bound |G∇iũk(0)|G for all i ≥ 2 at time t = 0 as follows:

|G∇iũk(0)|G ≤ C(c̄, C̄)|G∇iũk(0)|g̃k(0) ≤ C · |g̃k(0)∇iũk(0)|g̃k(0) = C · |k∇iuk(0)|k ≤ Ĉ ′
i

for k big enough independent of k where we used the equivalence of G and g̃k(0) and the
convergence g̃k(0)∇i −→ G∇i at time t = 0.

Together with (8.11) this allow us to apply Lemma 8.3. We get equivalence of g̃k(t) to G on
[α, ω]×K and uniform bounds |G∇ig̃k(t)|G ≤ C̃i for all i ≥ 1 and |G∇iũk(t)|G ≤ C̃ ′

i for all i ≥ 0
on [α, ω] ×K where C̃i and C̃ ′

i do not depend on k or the chosen domain [α, ω] ×K.

Therefore all derivatives of the pullbacks g̃k and ũk are uniformly bounded with respect to the
fixed metric G on [α, ω] × K, and we can find a subsequence converging uniformly on every
compact subset of (TA, TO)×Σ∞. In addition the limit g∞(t) := limk→∞ g̃k(t) will agree at time
t = 0 with G since it already converged there by construction. Defining u∞(t) := limk→∞ ũk(t),
we see that (g∞, u∞)(t) is also a solution of (2.5) since the convergence is smooth and taking
the limit commutes with all derivatives. Furthermore it satisfies the same bounds on derivatives
and the injectivity radius.

If TA = ∞ or TO = ∞, we can apply the theorem for a sequence of times TAj → −∞ or
TOj → ∞ respectively on finite time intervals. A diagonalization argument yields a subsequence
converging on the union of these intervals [Ham95a, §2].

8.2 Rescaling the flow near singularities

Due to the noncollapsing result in Theorem 7.2 we can rescale the solution at a singular time.
This can be seen as a microscopic view on the solution when approaching the singularity. Then
a comparison of the solution near the singular time and close enough to the singular point with
the rescaling limit is possible. It is crucial to know what these regions look like to set up the
delicate surgery procedures as described in [Ham97] or [Per03]. We first give some definitions.

Definition 8.4 A solution (g, u)(t) to (2.5) on a complete Riemannian manifold is called an-
cient, if it exists for all t ∈ (−∞, T ] up to some time T ≥ 0.
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Definition 8.5 Let (g, u)(t) be a maximal solution to (2.5) on [0, T ) × Σ for some T ∈ (0,∞].
A sequence (tk, xk) ⊂ [0, T ) × Σ is called an essential blowup sequence, if ti → T , and there is
a constant C ≥ 1 such that

sup
[0,tk]×Σ

|Rm|(t, x) ≤ C|Rm|(tk, xk) .

Theorem 8.6 Let (g, u)(t) be a solution to (2.5) on [0, T ) × M for M closed and T finite.
Assume (tk, xk) is an essential blowup sequence as defined above and set Bk := |Rm|(tk, xk).
Define the rescalings gk(s) := Bk · g( s

Bk
+ tk) and uk(s) := u( s

Bk
+ tk). Then a subsequence

of (M, gk(s), uk(s), xk) converges smoothly on all compact subsets of [0, T ) ×M to a complete
ancient solution (M∞, g∞(s), u∞(s), x∞) which is noncollapsed on all scales for some κ > 0.
Moreover u∞(s) ≡ const and g∞(s) is a solution to the Ricci Flow.

Proof:

We want to apply Theorem 8.2 to the sequence of rescalings (M, gk(s), uk(s), xk).

By choice of the scale factor the rescaled solution exists for s ∈ [−Bk · tk, 0], and we can compute

sup
x∈M

|Rmk|gk
(s, x) = B−1

k sup
x∈M

|Rm|(s/Bk + tk, x) ≤ B−1
k · CBk = C

for all s ∈ [−Bk · tk, 0] from the scaling behavior of |Rm|. Since u is controlled on closed M from
Lemma 6.11, we also get a uniform bound:

sup
M

|uk|(s) ≤ C ′

for all s ∈ [−Bk · tk, 0] independent of k since u ∈ C∞(M) is scaling invariant. Finally, because
(g, u)(t) is defined on a finite time interval and on closed M, we know from Theorem 7.2 that
it is κ-noncollapsed on the scale

√
T for some κ > 0 depending only on the initial data. From

Lemma 7.6 we see that all the rescaled solutions (gk, uk)(s) are also κ-noncollapsed for the
same κ but on larger and larger scales ρk :=

√
BkT . (Remember that Bk → ∞.) Therefore

we can apply Theorem 8.2 on all time intervals [−A, 0], A > 0, to conclude the existence of a
subsequence converging to a complete solution (M∞, g∞(s), u∞(s), x∞). The limit is ancient
since −Bk · tk → −∞ for k → ∞ and κ-noncollapsed on all scales since ρk → ∞.

It remains to show that the limit is in fact a solution to Ricci Flow. To this end, we will show
that |du∞|2g∞ ≡ 0. Recall the a priori estimate (6.14) for |du|2 which is valid for all t ∈ (0, T ):

sup
x∈M

|du|2(t, x) ≤ 1
4 t

−1 .

Since we have gk := Bk · g, we get for all s ∈ (−∞, 0] and k big enough that

|duk|2gk
(s) = (gk)

ij∂iuk∂juk = B−1
k · |du|2(s/Bk + tk) ≤ 1

4B
−1
k · Bk

s+ tkBk
= 1

4 · 1

s+ tkBk

holds. Passing to the limit k → ∞ for fixed s, we conclude that |du∞|g∞(s) ≡ 0. Since s is
arbitrary, the system (2.5) reduces to the Ricci Flow equation for g∞ on (−∞, 0] ×M∞.

An immediate consequence is:
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Corollary 8.7 For every maximal solution (g, u)(t) of the system (2.5) on [0, T )×M for T <∞
and closed M , there is a sequence of dilations such that the limit is a complete, ancient solution
to the Ricci flow which is κ-noncollapsed on all scales for some κ > 0.

Proof:

If a solution (g, u)(t) is singular at time t = T , the curvature has to blow up as t ↗ T from
Theorem 6.22 in the sense that limt↗T

(
supx∈M |Rm|(t, x)

)
= ∞. We can pick an essential

blowup sequence (tk, xk) satisfying |Rm|(tk, xk) ≥ C sup[0,tk]×M |Rm|(t, x) for some constant C
independent of k since [0, tk] ×M is compact.

In particular, we can set Λ := supM |Rm|2(0). Then there is a first time tk such that

sup
[0,tk]×M

|Rm|(t, x) = k · Λ

for all k ≥ 1. But since tk is chosen minimally and M is compact, there exists a point xk at
time tk where the supremum is attained. This allows us to choose C = 1. Then the corollary
follows from the previous theorem.

Remark 8.8 Although we can always find an essential blowup sequence at a singular time T of
a given maximal solution (g, u)(t), we point out that there may be other singularities forming at
the same time but with a higher blowup rate. These are called slowly-forming singularities. To
fully understand the solution at time T , one also needs to understand these singularities. In the
Ricci flow literature [Ham95b, §16] dilation limits at singularities are referred to as singularity
models and are classified in two types I and II(a) for T <∞. Following [Per02], we do not make
this distinction here. Perelman instead uses the concept of “ancient κ-solutions” to understand
the singularities in the Ricci flow [Per02, §11,§12].


