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6 Interior estimates for the flow

Before we can start with the proof of the interior estimates, we have to introduce auxiliary
functions and prove some of their properties. In addition, we get an estimate for changing
distances under the flow from these considerations.

6.1 Preparations

The first auxiliary function we need is a time dependent scaling function.

Lemma 6.1 Let R > 0 be a fixed radius and T > 0 be a fixed time. We define a scaling function

ϕ : [0, T ] → +, ϕ(t) :=
R2t

R2 + t
. (6.1)

It satisfies for all k ≥ 0 and all t ∈ [0, T ]:

∂tϕ
k+1 = (k + 1)ϕk (6.2)

ϕ ≤ R2 . (6.3)

Furthermore ϕ is invertible for t > 0, and the inverse is given by

ϕ−1 =

(
1

R2
+

1

t

)

∀t > 0 . (6.4)

Proof:

These are short calculations.

We want to prove local estimates on the following union of metric balls at different times:

Definition 6.2 Let g(t) be a time dependent Riemannian metric on a complete manifold Σ with
distance function dt(x, y). Let x0 ∈ Σ and a radius R > 0 be given. Then we define

B(τ, x0, R) :=
⋃

t∈[0,τ ]

B̄t
R(x0) ⊂ [0, τ ] × Σ

as the union of the geodesic balls B̄t
R(x0) :=

{
(t, x) ∈ {t}×Σ

∣
∣dt(x0, x) ≤ R

}
of radius R around

a point x0 ∈ Σ at times t ∈ [0, τ ].

We need to estimate the time dependent distance function to show that these sets are compact.
To this end we use the squared distance:
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Lemma 6.3 Let B(T, x0, R) be given as above. Then the squared distance function

r : B(T, x0, R) → + ⊂ Σ, r(t, x) := 1
2dt(x0, x)

2

satisfies

|∇r(t, x)| ≤ R ∀(t, x) ∈ B(T, x0, R) . (6.5)

If |Rc| ≤ (n− 1)κ2 holds on B(T, x0, R), then there are the estimates

∆r(t, x) ≤ n+ (n− 1)κ · dt(x0, x) (6.6)

−∂tr(t, x) ≤ (n− 1)κ2 · dt(x0, x1)
2 . (6.7)

Before we prove this lemma, we first need an estimate for the derivative of the maximum of a
smooth function.

Lemma 6.4 Let F (t) := supy∈Y {f(t, y)} for a smooth function f where Y is a compact set.
Then F is Lipschitz continuous in t, and we can estimate the derivative in the sense of difference
quotients as follows:

inf
{
∂tf(t, y)

∣
∣y ∈ Y (t)

}
≤ d

dt
F (t) ≤ sup

{
∂tf(t, y)

∣
∣y ∈ Y (t)

}

where Y (t) :=
{
y ∈ Y

∣
∣F (t) = f(t, y)

}
.

Proof:

The upper bound for the derivative of F is proven in [Ham86, §3] where also the notion of the
derivative of a Lipschitz function is defined. We want to prove the lower bound and proceed
along the lines of the proof of [Ham86, Lemma 3.5]:

Choose a sequence tj ↘ t such that

lim
j→∞

F (tj) − F (t)

tj − t
= lim inf

h↘0

F (t+ h) − F (t)

h
.

Since Y is compact, the supremum of f at each tj is attained, and there is a sequence (yj) ⊂ Y
with F (tj) = f(tj , yj). After passing to a subsequence, we may assume that yj → y∗. Since F
and f are continuous, we have

F (tj) → F (t) and f(tj , yj) → f(t, y∗) for j → ∞

which gives F (t) = f(t, y∗) and therefore y∗ ∈ Y (t). Furthermore

f(tj , y
∗) ≤ f(tj , yj) = F (tj) = sup

{
f(tj , y)

∣
∣y ∈ Y

}

holds, meaning that

F (tj) − F (t) = f(tj , yj) − f(t, y∗) ≥ f(tj , y
∗) − f(t, y∗) .
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We can apply the Mean Value Theorem to f at y∗ and find

f(tj , y
∗) − f(t, y∗) = ∂tf(Tj , y

∗) ·
(
tj − t

)

for some Tj ∈ (t, tj). Since tj ↘ t implies Tj ↘ t, there is the estimate

lim
j→∞

F (tj) − F (t)

tj − t
≥ lim

j→∞
f(tj , y

∗) − f(t, y∗)
tj − t

= lim
j→∞

[
∂tf(Tj , y

∗)
]

= (∂tf)(t, y∗)

for some y∗ ∈ Y (t) from the continuity of ∂tf . This implies

d

dt
F ≥ inf

y∈Y (t)

{
∂tf(t, y)

}

as required.

By choosing F appropriately, the lemma allows us to control the time derivative of the metric
distance:

Corollary 6.5 Let (g, u)(t) be a solution to (2.5) on [0, T ]×Σ where Σ is complete. Let x0, x1

be two fixed points in Σ and dt(x0, x1) the time dependent distance between x0 and x1. Then
there is the following bound on its time derivative:

−Λdt(x0, x1) ≤
d

dt
dt(x0, x1) ≤ Ωdt(x0, x1)

whenever sup[0,T ]×Σ |Rc| ≤ Λ and sup[0,T ]×Σ |Sy| ≤ Ω. The result is still true, if the bounds only
hold along all minimizing geodesics between x0 and x1 at all times 0 ≤ t ≤ T .

Proof:

We first compute the evolution of the length of a fixed curve under the flow. Let γ : [0, L] → Σ
be a smooth curve parametrized by arc length. Then its time dependent length is defined to be

Lt(γ) :=

∫

γ

√

gij(t, γ(s))γ̇i(s)γ̇j(s)ds .

We compute the time derivative:

∂tL
t(γ) =

∫

γ

1

2|γ̇|t
· (∂tgij)γ̇iγ̇jds = −

∫

γ
Sy(γ̇, γ̇)ds .

Consider the compact set Γ of smooth curves γ parametrized by arc length and having at most
a finite but large length L:

Γ :=
{
γ
∣
∣γ : [0, L0(γ)] → Σ, γ(0) = x0, γ(L

0(γ)) = x1, L
0(γ) ≤ L

}
.

Recalling that by definition dt(x0, x1) = infγ∈Γ L
t(γ), we see that −dt(x0, x1) = supγ∈Γ

(
−Lt(γ)

)
.

Applying Lemma 6.4 with F (t) := −dt(x0, x1), f(t, γ) := −Lt(γ), and Γ as above, we thus
conclude that

inf
{
−∂tLt(γ)

∣
∣γ ∈ Γ(t)

}
≤ − d

dt

(
dt(x0, x1)

)
≤ sup

{
−∂tLt(γ)

∣
∣γ ∈ Γ(t)

}
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which is equivalent to

− sup

{∫

γ
Sy(γ̇, γ̇)ds

∣
∣γ ∈ Γ(t)

}

≤ d

dt
(dt(x0, x1)) ≤ − inf

{∫

γ
Sy(γ̇, γ̇)ds

∣
∣γ ∈ Γ(t)

}

.

Here Γ(t) is the set of minimizing geodesics between x0 and x1 at time t. Now the estimates

−
∫

γ
Sy(γ̇, γ̇)ds = −

∫

γ
Rc(γ̇, γ̇)ds+ 2

∫

γ
|du(γ̇)|2ds ≥ − sup

[0,T ]×Σ
|Rc| · Lt(γ)

= − sup
[0,T ]×Σ

|Rc| · dt(x0, x1) ≥ −Λ · dt(x0, x1)

and

−
∫

γ
Sy(γ̇, γ̇)ds =≤ sup

[0,T ]×Σ
|Sy| · dt(x0, x1) ≤ Λ · dt(x0, x)

for all γ ∈ Γ(t) imply the desired result.

Proof: (of Lemma (6.3))
From the definition r(t, x) := 1

2dt(x0, x)
2 we get ∇r(t, x) = dt(x0, x)·∇dt(x0, x) where ∇ denotes

the spatial gradient at time t. This implies (6.5):

|∇r(t, x)| = |dt(x0, x)| · |∇dt(x0, x)| ≤ R · 1 .

To estimate ∆r, we use the Laplacian Comparison Theorem: At each time t ∈ [0, T ] the Lapla-
cian of the distance function can be estimated away from the cut locus as follows:

∆
(
dt(x0, x)

)
≤ (n− 1)

(
1 + κ · dt(x0, x)

)

dt(x0, x)

whenever supB̄t
R(x0) |Rc| ≤ (n−1)κ2 holds. This is proven in [SY94, Corollary 1.2]. We compute

∆
(

1
2dt(x0, x)

2
)

= ∇k

(
dt(x0, x) · ∇kdt(x0, x)

)
= |∇dt(x0, x)|2 + dt(x0, x) · ∆

(
dt(x0, x)

)

≤ 1 + (n− 1)
(
1 + κ · dt(x0, x)

)
≤ n+ (n− 1)κ · dt(x0, x1) ,

proving (6.6). Finally, to prove (6.7), we use Corollary 6.5 and show

−∂tr(t, x) = −∂t
(

1
2dt(x0, x)

2
)

= dt(x0, x) · (−∂tdt(x0, x)) ≤ (n− 1)κ2 · dt(x0, x)
2 .

This finishes the proof of Lemma 6.3.

Corollary 6.5 allows us to compare the distance of points at two different times:

Corollary 6.6 Assume (g, u)(t) is a solution to (2.5) on [0, T ] × Σ where Σ is complete. Let
x0, x1 ∈ Σ be two fixed points and 0 ≤ t1, t2 ≤ T be two arbitrary times. If |Rc| ≤ Λ and
|Sy| ≤ Ω hold along all minimizing geodesics γ connecting x0 and x1 at times 0 ≤ t ≤ T , then
the distances at time t1 and t2 satisfy:

e−Λ(t2−t1)dt1(x0, x1) ≤ dt2(x0, x1) ≤ eΩ(t2−t1)dt1(x0, x1) .
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Proof:

Given these conditions, we can apply Corollary 6.5 to get

−Λ ≤ d

dt

(
ln dt(x0, x1)

)
≤ Ω .

Integrating on [t1, t2], we can estimate

−Λ(t2 − t1) ≤ ln dt2(x0, x1) − ln dt1(x0, x1) ≤ Ω(t2 − t1) .

After exponentiation this is the desired result:

exp
(
−Λ(t2 − t1) + ln dt1(x0, x1)

)
≤ dt2(x0, x1) ≤ exp

(
Ω(t2 − t1) + ln dt1(x0, x1)

)
.

The corollary implies that the sets B(τ, x0, R) are compact.

Corollary 6.7 Let x0 ∈ Σ and R > 0 be fixed, and suppose (g, u)(t) is a solution to (2.5) on
[0, T ] × Σ satisfying the bound supB(T,x0,R) |Sy|2 ≤ Λ <∞. Then the set B(T, x0, R) is compact
with respect to the manifold topology of [0, T ] × Σ.

Since we want to prove local estimates, we need a cut-off function.

Lemma 6.8 Let η be the cut-off function on B(T, x0, R) defined by

η : B(T, x0, R) → +, η(t, x) := (R2 − r(t, x))2 . (6.8)

For all θ ∈ [0, 1), η has the properties:

η ≤ R4 (6.9)

η−1 ≤ (1 − θ)−2R−4 on B(T, θR, x0) (6.10)

|∇η|2 ≤ 4R2 · η . (6.11)

Whenever supB(T,x0,R) |Rc| ·R2 ≤ C̃ holds, there is the additional estimate

(
∂t − ∆

)
η ≤ C(n)C̃ ·R2 (6.12)

for a scaling invariant constant C̃ and C(n) depending only on n.
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Proof:

(6.9) and (6.10) are immediate. To prove (6.11), we use (6.5):

η−1|∇η|2 = (R2 − r)−2 · 4(R2 − r)2|∇r|2 = 4|∇r|2 ≤ 4R2 .

The Laplacian of η is given by

∆η = ∇k(−2(R2 − r)∇kr) = 2|∇r|2 − 2(R2 − r)∆r ,

and the time derivative by
∂tη = −2(R2 − r)∂tr .

Using (6.6) and (6.7), we therefore calculate

(
∂t − ∆

)
η = −2(R2 − r)∂tr − 2|∇r|2 + 2(R2 − r)∆r ≤ 2(R2 − r) ·

(
∆ − ∂t)r

≤ 2R2 ·
(
n+ (n− 1)

( √

C̃√
n− 1R

R+
C̃

(n− 1)R2
·R2

)
)

≤ 2R2 ·
(
C(n) + C̃

)
≤ C(n)C̃R2

where the suprema are on B(T, x0, R), and we assumed without loss of generality that C̃ ≥ 1.
This proves (6.12) as required.

6.2 Estimates for the Lapse function

The evolution equations for u and |du|2 give us good control on the behavior of the logarithm
of the Lapse function. We prove several a priori estimates.

Lemma 6.9 Let (g, u)(t) be a solution on [0, T )×M for closed M with initial data (g̃, ũ). Then,
for all t ∈ (0, T ], there are the following a priori estimates:

sup
x∈M

|du|2(t, x) ≤ max
x∈M

|dũ|2(x) (6.13)

sup
x∈M

|du|2(t, x) ≤ 1
4 t

−1 . (6.14)

Proof:

The first estimate follows straight from the maximum principle for subsolutions applied to the
evolution equation (2.11)

(
∂t − ∆

)
|du|2 ≤ 0 .

A closer look at (2.11) reveals

∂t
(
t · |du|2

)
≤ 1 · |du|2 + t

(
∆u− 2|∇2u|2 − 4|du|4

)
≤ ∆

(
t · |du|2

)
+ t−1

(
t|du|2 − 4t2|du|4

)

such that we get at the first point (t1, x1) ∈ [0, τ ]×M , with τ < T arbitrary, where f := t · |du|2
attains its maximum:

0 ≤ t−1
(
f − 4f2

)
.
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This implies for t > 0
f
(
1 − 4f2

)
≥ 0

which forces f ≤ 1
4 on (0, T ) ×M , implying |du|2 ≤ 1

4 t
−1 independent of the initial data. In

addition this yields a uniform bound on [T2 , T ) and therefore the claim for t = T .

Since we can estimate |Rm|2 + |∇2u|2 for solutions of (2.5) on complete Σ, it is possible to
prove a priori bounds for the logarithm of the Lapse function u(t) also on complete, noncompact
manifolds. To this end we need a maximum principle for complete noncompact manifolds:

Theorem 6.10 Let Σ be a complete Riemannian manifold and (g, u)(t) be the solution of (2.5)
on [0, T ]×Σ constructed in Theorem 3.22 with T <∞. Let f be a smooth function on [0, T ]×Σ.
Assume furthermore that there is a vector field a ∈ X ([0, T ]×Σ), and a function b ∈ C∞([0, T ]×
Σ) satisfying sup[0,T ]×Σ

(
|a| + |b|

)
≤ α, and

(
∂t − ∆

)
f ≤ a · ∇f + bf

f(0) ≤ 0 on Σ

|∇f |2 ≤ β on [0, T ] × Σ

hold for some numbers α, β <∞. Then f ≤ 0 holds on [0, T ] × Σ.

Proof:

This is a specialization of the quite general maximum principle [EH91, Theorem 4.3]. Using
the knowledge on solutions of (2.5), we can settle some of the assumptions there. At first we
show two properties of the metric g(t): Since we know that |Rm|2 + |du|2 ≤ c(n, k0, c0, s0) on
[0, T ] × Σ from Theorem 3.22, we get

sup
[0,T ]×Σ

|∂tgij | ≤ sup
[0,T ]×Σ

(
2n|Rm| + 4|du|2

)
≤ c <∞ .

Furthermore the curvature bound implies that Rc ≥ −(n − 1)κ2 for some κ > 0. We get the
desired volume growth estimate

|Bt
ρ(x0)| ≤ ec(1+ρ2) (6.15)

for an arbitrary x0 ∈ Σ and all ρ > 0 from the Bishop volume comparison theorem for some
constant c = c(n, κ). A bound |∇f |2 ≤ β implies the integral bound (iii) in [EH91, Theorem
4.3]. In particular we have for every fixed t
∫

Σ
e−(c+2)d2t (x0,x)|∇f |2dV dr ≤ β lim

ρ→∞

∫

Bt
ρ(x0)

e−(c+2)d2t (x0,x)dV = β lim
ρ→∞

∫ ρ

0

∫

St
r(x0)

e−(c+2)r2dAdr

≤ β lim
ρ→∞

∫ ρ

0
e−(c+2)r2 |Str(x0)|dr ≤ β lim

ρ→∞

∫ ρ

0
ec+r

2(c−c−2)dr

≤ C(n, κ)β lim
ρ→∞

[
−2e−2ρ2 + 2

]
= 2C(n, κ)β

where we used the volume estimate (6.15). Integrating in time, we therefore get

∫ T

0

∫

Σ
e−(c+2)d2t (x0,x)|∇f |2dV dt ≤ C(n, κ)βT <∞
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as required. Now the maximum principle of Ecker and Huisken can be applied to f .

As an application we show that u is controlled completely by its initial value.

Lemma 6.11 Let (g, u)(t) be a solution on [0, T ) × Σ where Σ is closed or complete and non-
compact. Assume in the second case that (g, u)(t) is the solution from Theorem 3.22. Then we
have the following bounds

inf
x∈Σ

ũ(x) ≤ u(t, x) ≤ sup
x∈Σ

ũ(x)

for all t > 0 as long as the solution exists.

Proof:

The statement for closed Σ follows directly from the parabolic maximum principle applied to

∂tu = ∆gu .

In the complete case we want to apply the maximum principle Theorem 6.10 to the two functions
u1(t, x) := u(t, x) − supx∈Σ ũ(x) and u2(t, x) := infx∈Σ ũ(x) − u(t, x). For i = 1, 2

∂tui = ∂tu = ∆gu = ∆gui

holds. At time t = 0 on Σ, we have ui ≤ 0 by definition. In addition there is the bound
|du|2 ≤ C = C(n, k0, c0, s0) from Theorem 3.22. Thus all the assumptions in Theorem 6.10 are
satisfied, and the claim follows.

A second application of the maximum principle leads to the following time decay estimate for
du which is similar to the estimate (6.14) in the closed case.

Lemma 6.12 Let Σ be a complete Riemannian manifold, and (g, u)(t) the solution to (2.5) on
[0, T ]×Σ constructed in Theorem 3.22 with initial data (g̃, ũ). Then the derivative of u satisfies:

sup
x∈Σ

|du|2(t, x) ≤ B · t−1

for B := supx∈Σ |ũ|2(x).

Proof:

We define a test function f := t|du|2 + |u|2 −B. From (2.11) we find

(
∂t − ∆

)
f ≤ |du|2 − 2t|∇2u|2 − 4t|du|4 − 2|du|2 ≤ 0 ,

and the initial data satisfies

f(0) = 0 · |du|2 + |u|2(0) −B = |ũ|2 −B ≤ 0 .

Considering the bound |u|2 + |du|2 + |∇2u|2 ≤ C(n, k0, c0, s0) from Theorem 3.22, we can apply
Theorem 6.10 to conclude for all t > 0

0 ≥ f(t) = t|du|2 + |u|2 −B ⇒ t|du|2 ≤ B − |u|2 ≤ B ,
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proving the lemma.

In the next lemma, we proof a local bound on |du|2. The technique is adapted from [EH91,
§3] and goes back to [Shi89]. We will use the same ideas for the more complicated estimates to
follow.

Lemma 6.13 Let (g, u)(t) be a solution to (2.5) on [0, T )×Σ where Σ is complete. Fix x0 ∈ Σ
and a radius R > 0. If there is an estimate

sup
B(T,x0,R)

R2|Rc| ≤ C̃ ,

then for all θ ∈ [0, 1) and all t ∈ (0, T ] there exists a constant C(n), depending only on n, such
that:

sup
x∈Bt

θR(x0)

|du|2(t, x) ≤ C(n)(1 − θ)−2C̃

(
1

R2
+

1

t

)

.

Proof:

Using the scaling function ϕ from (6.1), we define f := ϕ · |du|2. A calculation from (2.11) and
(6.2) shows that

(
∂t − ∆

)
f ≤ ϕ−1(f − 4f2) .

We multiply by the cut-off function η defined in (6.8) and calculate on B(T, x0, R):

(
∂t − ∆

)
(fη) ≤ ϕ−1(f − 4f2) · η − 2∇η∇f + f · C(n)C̃R2

from (6.12), using the curvature bound. Rewriting the second term and applying (6.11)

−2∇η∇f = −2η−1∇η∇(ηf) + 2η−1|∇η|2f ≤ −2η−1∇η∇(ηf) + 8R2f ,

we find

(
∂t − ∆

)
(fη) ≤ −4ϕ−1f2η + ϕ−1fη − 2η−1∇η∇(fη) + C(n)C̃R2 · f + 8R2 · f .

Fix τ ∈ [0, T ). Since ϕ(0) = 0, η|∂Bt
R(x0) = 0 for all t ∈ [0, τ ] and fη ≥ 0, the first maximum

point (t∗, x∗) of fη in the compact set B(τ, x0, R) (compare Corollary 6.7) must be an interior
point. Consequently, we have at this point

∂t(fη) ≥ 0, ∆(fη) ≤ 0, ∇(fη) = 0,

and obtain at (t∗, x∗), assuming C̃ ≥ 1:

4ϕ−1f2η ≤ ϕ−1fη + C(n)C̃R2 · f .

Using (6.9) on the right hand side and multiplying the equation by ϕη, we find

4f2η2 ≤ fη ·R4 + C(n)C̃R2ϕ · fη ≤ 3f2η2 + C(n)C̃2R8 (6.16)
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where the second estimate is due to Young’s inequality and (6.3). Since (t∗, x∗) was a maximum
point, we get

sup
B(τ,x0,R)

fη ≤ C(n)C̃R4 .

The estimate (6.10) for η−1 together with (6.16) implies that for any θ ∈ [0, 1)

sup
x∈Bt

θR(x0)

|du|2(t, x) ≤ C(n)(1 − θ)−2C̃ϕ−1

holds, proving the lemma for all 0 < t < T . Since the estimate is uniform on [T/2, T ), it also
holds for t = T completing the proof of Lemma 6.13.

We can localize Proposition 2.17 to find that local control on the Riemann tensor implies local
control on the Hessian of u.

Proposition 6.14 Let Σ be complete and (g, u)(t) be a solution on [0, T )×Σ. Suppose that for
fixed x0 ∈ Σ and a fixed radius R > 0 there is a bound:

sup
B(T,x0,R)

R4|Rm|2 ≤ C̃2 . (6.17)

Then for all t ∈ (0, T ] and θ ∈ [0, 1) there is a constant C(n), depending only on n, such that
we have the estimate

sup
x∈Bt

θR(x0)

|∇2u|2(t, x) ≤ C(n)(1 − θ)−2C̃2

(
1

R2
+

1

t

)2

.

Proof:

We prove the theorem by using a trick of [Shi89, §7]. We combine the evolution inequalities
(2.12) and (2.11) for |∇2u|2 and |du|2 in a clever way. To this end, define the test function
f := ϕ2|∇2u|2

(
λ + ϕ|du|2

)
where the constant λ will be chosen later. In the following, C will

denote a constant only depending on n that can change from line to line. Using (6.17), we get
from Lemma 6.13 for all θ ∈ [0, 1) the estimate

sup
B(T,x0,θR)

ϕ|du|2 ≤ C(n)(1 − θ)−2C̃ . (6.18)

The evolution of f is given by

(
∂t − ∆

)
f = ·

(
∂t − ∆

)
(ϕ2|∇2u|2) · (λ+ ϕ|du|2) − 2ϕ2∇|∇2u|2 · ϕ∇|du|2

+ ϕ2|∇2u|2 ·
(
∂t − ∆

)
(λ+ ϕ|du|2) ,

(6.19)

and we compute for the first term on B(T, x0, θR)

(
∂t − ∆

)
(ϕ2|∇2u|2) ≤ −2ϕ2|∇3u|2 + Cϕ−1 · ϕ2|∇2u|2(1 + ϕ|Rm| + ϕ|du|2)

≤ −2ϕ2|∇3u|2 + Cϕ−1C̃ · ϕ2|∇2u|2
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from (6.17) and (6.18). Note that we can estimate

ϕ|Rm| =
R2t

R2 + t
|Rm| = R2|Rm| · t

R2 + t
≤ C̃ · 1 . (6.20)

Multiplying by (λ+ ϕ|du|2), we get
(
∂t − ∆

)
(ϕ2|∇2u|2) · (λ+ ϕ|du|2) ≤ −2ϕ2|∇3u|2 · (λ+ ϕ|du|2) + Cϕ−1C̃ · f .

For the last term in (6.19) we compute
(
∂t − ∆

)
(λ+ ϕ|du|2) ≤ −2ϕ|∇2u|2 + C|du|2 ≤ −2ϕ|∇2u|2 + Cϕ−1 · (λ+ ϕ|du|2) ,

such that multiplication by ϕ2|∇2u|2 gives
(
∂t − ∆

)
(λ+ ϕ|du|2) · ϕ2|∇2u|2 ≤ −2ϕ3|∇2u|4 + Cϕ−1 · f .

The cross term in (6.19) can be estimated using Kato’s inequality
∣
∣∇|(·)|

∣
∣ ≤ |∇(·)| as follows:

−2ϕ2∇|∇2u|2 · ϕ∇|du|2 ≤ 8ϕ2|∇2u||∇3u| · ϕ|du||∇2u|
≤ 2ϕ|∇3u|(λ+ ϕ|du|2) 1

2 · 4(λ+ ϕ|du|2)− 1

2ϕ
1

2 |du|ϕ 3

2 |∇2u|2

≤ 2ϕ2|∇3u|2 · (λ+ ϕ|du|2) +
8ϕ|du|2

λ+ ϕ|du|2ϕ
3|∇2u|4 .

We choose λ := 7C̃ ≥ 7ϕ|du|2 and compute

8ϕ|du|2
λ+ ϕ|du|2 − 2 ≤ 8ϕ|du|2

8ϕ|du|2 − 2 ≤ 1 − 2 ≤ −1 .

This simplifies (6.19) to
(
∂t − ∆

)
f ≤ −ϕ−1(λ+ ϕ|du|2)−2 · f2 + CC̃ϕ−1 · f ,

assuming C̃ ≥ 1 without loss of generality. We estimate further

−(λ+ ϕ|du|2)−2 ≤ −C̃−2

and find using Young’s inequality:
(
∂t − ∆

)
f ≤ −1

2ϕ
−1C̃−2 · f2 + CC̃4ϕ−1 .

The product of f and the cut-off function η from (6.8) satisfies
(
∂t − ∆

)
(fη) ≤ −1

2ϕ
−1C̃−2 · f2η + CC̃4ϕ−1η − 2η−1∇η∇(fη) + CC̃R2 · f .

At the first maximum point of fη on B(τ, x0, R), one has similarly to Lemma 6.13

2f2η2 ≤ CC̃6η2 + CC̃3R2ϕ · fη ≤ f2η2 + CC̃6R8

again using (6.3), (6.9) and Young’s inequality. As before, this leads to

sup
B(τ,x0,θR)

ϕ2|∇2u|2 ≤ C(1 − θ)−2C̃3(λ+ ϕ|du|2)−1 ,

and we can estimate C̃(λ + ϕ|du|2)−1 ≤ C̃/λ = 1
7 . The remainder of the proof is analogous to

the proof of Lemma 6.13.
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6.3 Interior a priori estimates

Having done all necessary preparations, we finally prove local a priori estimates for solutions
with bounded curvature. To this end, we estimate the derivatives of Φ where Φ is defined
as in (2.20), giving an explicit dependence of the result on the initial curvature bound. This
constitutes a regularity theory for the solutions of (2.5) in the sense that solutions with bounded
curvature are always smooth.

Theorem 6.15 Let (Σ, g̃) be a complete Riemannian manifold. Suppose that (g, u)(t) is a
solution on [0, T ) × Σ satisfying

sup
B(T,x0,R)

R4|Rm|2 ≤ C̃2 (6.21)

for some radius R > 0 and some point x0 ∈ Σ. Then the derivatives of Φ satisfy for all m ≥ 0
and for all t ∈ (0, T ] the estimates

sup
x∈Bt

R/2
(x0)

|∇mΦ|2(t, x) ≤ C(n,m)C̃m+2

(
1

R2
+

1

t

)m+2

where C = C(n,m) is a constant depending only on n, and m.

Proof:

The proof is an induction argument, using similar techniques as in the proof of Proposition 6.14.
The curvature bound (6.21) together with Lemma 6.13 provides the estimate

sup
B(T,x0,θ−1R)

ϕ|du|2 ≤ CC̃

for θ−1 := 5
6 . From Proposition 6.14 we know, using (6.21) in combination with (6.20), and

setting θ0 := 3
4 , that

sup
B(T,x0,θ0R)

ϕ2|Φ|2 = sup
B(T,x0,θ0R)

ϕ2
(
|Rm|2 + |∇2u|2

)
≤ C̃2

(
1 + C(1 − θ0)

−2
)
≤ CC̃2

holds where C depends only on n. This proves the theorem in the case where m = 0.

In the following C denotes a constant depending only on n and m which can change its value
from line to line. In the induction step we assume that

sup
x∈Bt

θsR(x0)

ϕs+2|∇sΦ|2(t, x) ≤ C(1 − θs)
−2C̃s+2 ≤ CC̃s+2 (6.22)

holds for all t ∈ (0, T ] and all 0 ≤ s ≤ m. The choice of θs := 1
2 + 1

s+4 guarantees that 1
2 < θs < 1

is true for all s and θi > θj for all i < j. We assume without loss of generality that C̃ ≥ 1 in
the following.

To prove the estimate for s = m+ 1, we define a test function

f(t, x) := ϕm+3(t)|∇m+1Φ|2(t, x)
(
λ+ ϕm+2(t)|∇mΦ|2(t, x)

)
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where λ is a constant that will be chosen later. The evolution of f is given by

(
∂t − ∆

)
f =

(
∂t − ∆

)
(ϕm+3|∇m+1Φ|2) · (λ+ ϕm+2|∇mΦ|2)

+ ϕm+3|∇m+1Φ|2 ·
(
∂t − ∆

)
(ϕm+2|∇mΦ|2) − 2ϕm+3∇|∇m+1Φ|2ϕm+2∇|∇mΦ|2 .

(6.23)

We want to estimate the individual terms on Bt
θm+1R

(x0), using the estimate for the derivatives
of Φ from Lemma 2.23 and the evolution equation (6.2) for powers of ϕ. We start with

(
∂t − ∆

)
(ϕm+3|∇m+1Φ|2)
≤ (m+ 3)ϕm+2 · |∇m+1Φ|2 − 2ϕm+3|∇m+2Φ|2

+ Cϕm+3

{
∑

α+β=m+1

|∇αΦ||∇βΦ||∇m+1Φ| +
∑

α+β=m

|du||∇αΦ||∇βΦ||∇m+1Φ|

+
∑

α+β+γ=m−1

|∇αΦ|∇βΦ||∇γΦ||∇m+1Φ| + |du|2|∇m+1Φ|2
}

≤ −2ϕm+3|∇m+2Φ|2 + Cϕ−1 · ϕm+3|∇m+1Φ|2
(
1 + ϕ|Φ| + ϕ|du|2

)

+ Cϕ−1
∑

α+β=m+1

α>0,β>0

ϕ
α+1

2 |∇αΦ|
α+1

α+2ϕ
β+2

2 |∇βΦ| · ϕ 1

2 |∇αΦ| 1

α+2ϕ
m+3

2 |∇m+1Φ|

+ Cϕ−1
∑

α+β=m

ϕ
α+2

2 |∇αΦ|ϕβ+2

2 |∇βΦ| · ϕ 1

2 |du|ϕm+3

2 |∇m+1Φ|

+ Cϕ−1
∑

α+β+γ=m−1

ϕ
α+1

2 |∇αΦ|
α+1

α+2ϕ
β+2

2 |∇βΦ|ϕ γ+2

2 |∇γΦ| · ϕ 1

2 |∇αΨ| 1

α+2 |ϕm+3

2 |∇m+1Φ| .

Having paired the correct powers of the scaling function with the derivatives of Φ, we can apply
the induction hypotheses (6.22) and find

(
∂t − ∆

)
(ϕm+3|∇m+1Φ|2)
≤ −2ϕm+3|∇m+2Φ|2 + Cϕ−1 · ϕm+3|∇m+1Φ|2(1 + C̃)

+ Cϕ−1

{
∑

α+β=m+1

α>0,β>0

C̃α+1C̃β+2 +
∑

α+β=m

C̃α+2C̃β+2 +
∑

α+β+γ=m−1

C̃α+1C̃β+2C̃γ+2

}

≤ −2ϕm+3|∇m+2Φ|2 + CC̃ϕ−1 · ϕm+3|∇m+1Φ|2 + CC̃m+4ϕ−1

where we used Young’s inequality and C̃ ≥ 1. Multiplication by (λ+ ϕm+2|∇mΦ|2) gives

(
∂t − ∆

)
|∇m+3Φ|2 · (λ+ ϕm+2|∇mΦ|2) ≤ −2ϕm+3|∇m+2Φ|2(λ+ ϕm+2|∇mΦ|2) + CC̃ϕ−1f

+ CC̃m+4ϕ−1(λ+ ϕm+2|∇mΦ|2) .
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The second term in (6.23) can be estimated as follows:

(
∂t − ∆

)
(λ+ ϕm+2|∇mΦ|2)
≤ (m+ 2)ϕm+1|∇mΦ|2 − 2ϕm+2|∇m+1Φ|2

+ Cϕ−1

{
∑

α+β=m

ϕ
α+1

2 |∇αΦ|
α+1

α+2ϕ
β+2

2 |∇βΦ| · ϕ 1

2 |∇αΦ| 1

α+2ϕ
m+2

2 |∇mΦ|

+
∑

α+β=m−1

ϕ
α+2

2 |∇αΦ|ϕβ+2

2 |∇βΦ| · ϕ 1

2 |du|ϕm+2

2 |∇mΦ|

+
∑

α+β+γ=m−2

ϕ
α+1

2 |∇αΦ|
α+1

α+2ϕ
β+2

2 |∇βΦ|ϕ γ+2

2 |∇γΦ| · ϕ 1

2 |∇αΦ| 1

α+2ϕ
m+2

2 |∇mΦ|

+ ϕ|du|2ϕm+2|∇mΦ|2
}

≤ −2ϕm+2|∇m+1Φ|2 + Cϕ−1 · ϕm+2|∇mΦ|2
(
1 + C̃

)

+ Cϕ−1

{
∑

α+β=m

C̃α+1C̃β+2 +
∑

α+β=m−1

C̃α+2C̃β+2 +
∑

α+β+γ=m−2

C̃α+1C̃β+2C̃γ+2

}

≤ −2ϕm+2|∇m+1Φ|2 + Cϕ−1C̃ϕm+2|∇mΦ|2 + Cϕ−1C̃m+3,

and we get for the product

(
∂t − ∆

)
(λ+ ϕm+2|∇mΦ|2) · ϕm+3|∇m+1Φ|2

≤ −2ϕ2m+5|∇m+1Φ|4 + Cϕ−1C̃f + Cϕ−1C̃m+3ϕm+3|∇m+1Φ|2

≤ −3
2ϕ

2m+5|∇m+1Φ|4 + Cϕ−1C̃f + Cϕ−1C̃2(m+3) .

Here we used Young’s inequality in the following way:

ϕ−1(CC̃m+3 · ϕm+3|∇m+1Φ|2) ≤ ϕ−1 · 1
2ϕ

2m+6|∇m+1Φ|4 + ϕ−1CC̃2(m+3) .

The cross term in (6.23) is controlled in the same way as in Proposition 6.14:

−2ϕm+3∇|∇m+1Φ|2ϕm+2∇|∇mΦ|2

≤ 2ϕm+3|∇m+2Φ|2(λ+ ϕm+2|∇mΦ|2) +
8ϕm+2|∇mΦ|2

λ+ ϕm+2|∇mΦ|2 · ϕ2m+5|∇m+1Φ|4 .

Altogether (6.23) comes down to

(
∂t − ∆

)
f ≤ ϕ2m+5|∇m+1Φ|4

(
8ϕm+2|∇mΦ|2

λ+ ϕm+2|∇mΦ|2 − 3
2

)

+ CC̃ϕ−1f

+ Cϕ−1C̃m+4(λ+ ϕm+2|∇mΦ|2) + Cϕ−1C̃2(m+3) .

We choose λ := 7C̃m+2 ≥ 7ϕm+2|∇mΨ|2 ≥ 1 and compute

8ϕm+2|∇m+2Φ|2
λ+ ϕm+2|∇mΦ|2 − 3

2 ≤ 8C̃m+2
(

7C̃m+2 + C̃m+2
)−1

− 3
2 = 1 − 3

2 = −1
2

(λ+ ϕm+2|∇mΦ|2) ≤ 8C̃m+2 .
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This simplifies the above equation to

(
∂t − ∆

)
f ≤ −1

2ϕ
2m+5|∇m+1Φ|4 + CC̃ϕ−1f + Cϕ−1C̃2(m+3) . (6.24)

Estimating

−(λ+ ϕm+2|∇mΦ|2)−2 ≤ −(8C̃m+2)−2 = − 1
64 C̃

−2(m+2),

we can complete the first term in (6.24) to f2:

(
∂t − ∆

)
f ≤ − 1

128ϕ
−1C̃−2(m+2)f2 + CC̃ϕ−1f + Cϕ−1C̃2(m+3) .

Applying Young’s inequality

ϕ−1CC̃f ≤ 1
256ϕ

−1C̃−2(m+2)f2 + CC̃2(m+3)ϕ−1

to the second term in (6.24), we conclude that

(
∂t − ∆

)
f ≤ − 1

256 C̃
−(m+2)ϕ−1f2 + CC̃m+3ϕ−1 .

To localize this estimate, we multiply f by η defined in (6.8) and get on the ball Bt
θm+1R

(x0):

(
∂t−∆

)
(fη) ≤ − 1

256 C̃
−2(m+2)ϕ−1f2η+CC̃2(m+3)ϕ−1η−2η−1∇η∇(ηf)+C(1+C̃)R2 ·f (6.25)

where we used the evolution equation (6.12) for η. From the definition of ϕ and η we conclude
that the function fη attains its maximum on the compact set B(τ, x0, θm+1R) for an arbitrary
τ < T in an interior point (t∗, x∗). At this point, we therefore have

∇(fη) = 0,
(
∂t − ∆

)
(fη) ≥ 0 .

Putting this into (6.25), we get with C̃ ≥ 1 that

0 ≤ − 1
256 C̃

−2(m+2)ϕ−1f2η + CC̃2(m+3)ϕ−1η + CC̃R2f .

Multiplying by 256C̃2(m+2)ϕη and using (6.3) and (6.9), we get

f2η2 ≤ CC̃4m+10R8 + CC̃2m+5R4fη .

Estimating CC̃2m+5R4 · fη ≤ 1
2f

2η2 + 1
2CC̃

4m+10R8, we conclude

fη ≤ CC̃2m+5R4 .

By choice of θm+1, (6.10) implies η−1 ≤ (1 − θm+1)
−2R−4 ≤ CR−4 on Bt

θm+1R
(x0), and we

therefore get

|∇m+1Φ|2 ≤ CC̃2m+5
(
λ+ ϕm+2|∇mΦ|2

)−1
ϕ−(m+3) ≤ CC̃2m+5(7C̃m+2)−1ϕ−(m+3) .

Plugging in the expression for ϕ−1 from (6.4), we finally arrive at

|∇m+1Φ|2(t, x) ≤ CC̃m+3

(
1

R2
+

1

t

)m+3
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for all (t, x) ∈ B(τ, x0, θm+1R) since (t∗, x∗) was maximal in B(τ, x0, θm+1R). Since τ ∈ [0, T )
is arbitrary, this provides a uniform estimate for all t ∈ [T2 , T ):

sup
x∈Bt

θm+1R(x0)

|∇m+1Φ|2(t, x) ≤ CC̃m+3

(
1

R2
+

1

T

)m+3

,

and we can conclude that the same estimate is valid for t = T . This proves the induction step,
and since θm > 1

2 for all m ≥ 0, it also proves the theorem.

A version with scaling dependent bounds is given as follows:

Corollary 6.16 Let (Σ, g̃) be a complete Riemannian manifold. Suppose that (g, u)(t) is a
solution on [0, T ) × Σ satisfying

sup
B(T,x0,R)

|Rm|2 ≤ k2
0

for a radius R > 0 and some point x0 ∈ Σ. Assume furthermore that there is a constant c > 1
such that R ≤ c

√
T . Then the derivatives of Φ satisfy for all m ≥ 0 and for all t ∈ (0, T ] the

estimates

sup
x∈Bt

R/2
(x0)

|∇mΦ|2(t, x) ≤ Ckm+2
0

where C = C(n,m, c) is a constant depending only on n,m, and c.

Proof:

From a bound |Rm|2 ≤ k2
0 we get R4 · |Rm|2 ≤ R4k2

0 =: C̃2. Applying Theorem 6.15, we
conclude for all t ∈ (0, T ]:

sup
Bt

R/2
(x0)

|∇mΦ|2 ≤ C(n,m)C̃m+2

(
1

R2
+

1

T

)m+2

≤ C(n,m)km+2
0 R2(m+2) · (2c)m+2R−2(m+2) = C(n,m, c)km+2

0

since we can estimate ϕ−1 ≤ 2cR−2.

A slightly modified version of Theorem 6.15 deduces a bound on |∇m+1Φ|2 from bounds on all
derivatives of smaller order. Here the dependencies are not as explicit as above.

Theorem 6.17 Let (Σ, g̃) be a complete Riemannian manifold and m ≥ 0 a fixed number.
Suppose (g, u)(t) is a solution to (2.5) on [0, T ) × Σ which satisfies

sup
B(T,x0,R)

R4|Rm|2 ≤ C̃0
2

,

and for k = 1 . . .m:

sup
B(T,x0,R)

ϕk+2|∇kΦ|2 ≤ C̃2
k
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for a radius R > 0 around some point x0 ∈ Σ. Then ∇m+1Φ can be estimated as follows

sup
x∈Bt

θR(x0)

|∇m+1Φ|2(t, x) ≤ C(1 − θ)−2

(
1

R2
+

1

t

)m+3

for all t ∈ (0, T ] and all θ ∈ [0, 1) where C is a constant depending only on n,m and C̃0, . . . , C̃m.

Proof:

The proof is the same as for the induction step in the proof of Theorem 6.15.

6.4 Long time existence

As an application of the interior estimates we prove a characterization of long time existence for
solutions of (2.5). To this end, we first deduce some general properties for solutions on compact
manifolds.

Proposition 6.18 Let (g, u)(t) be a solution to (2.5) on [0, T )×M where M is compact. Define
K(t) := supx∈M |Rm|(t, x). Then there exists a constant c = c(n) such that we get for all
0 ≤ t ≤ min{T, c/K(0)} that:

K(t) ≤ 2K(0) .

Proof:

From the evolution equation (2.17) we have:

∂t|Rm|2 ≤ ∆|Rm|2 + C|Rm|3 + C|Rm||∇2u|2 + C|du|2|Rm|2 .

Since K(t) = supx∈M |Rm|2(t, x) is Lipschitz continuous, we can define its derivative in the sense
of difference quotients as described in Lemma 6.4. A computation shows

d

dt
K(t)2 ≤ CK(t)3

since we can estimate |du|2(t) ≤ C supM |Rm|(t) = CK(t) from Lemma 6.13 and |∇2u|2(t) ≤
C supM |Rm|2(t) = CK2(t) from Proposition 6.14. Simplifying, we get

d

dt
K(t) ≤ CK(t)3 · 1

2K(t)−1 = 1
2CK(t)2

where C depends only on n. Solving the associated ordinary differential equation, we find

K(t) ≤
(

1

K(0)
− C

2
t

)−1

for t < 2
CK(0) . Taking c = 1/C yields the claim.
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Corollary 6.19 Let (g, u)(t) be a solution to (2.5) on [0, T )×M where M is compact and T is
the maximal time of existence. Define k0 := maxx∈M |Rm|2(0, x). Then there exists a constant
c = c(n), depending only on n, such that T > c/

√
k0.

Proof:

From Proposition 6.18 we know that the solution has bounded curvature on [0, c/
√
k0]. This

implies the smoothness of (g, u)(t) up to that time using Corollary 6.16.

Corollary 6.20 Let (g, u)(t) be a solution to (2.5) on [0, T ]×Σ with k0 := supΣ |Rm|2(0) <∞
and c0 := supΣ |du|2(0) < ∞ where T is the maximal time of existence. Then we have T >
c/(

√
k0 + c0) for a constant c = c(n) depending only on the dimension.

Proof:

This was proven in Theorem 3.22 and Corollary 6.19.

For the proof of the long time existence result, we need a technical lemma.

Lemma 6.21 Let (g, u)(t) be a solution to (2.5) on [0, T )×M with initial data (g̃, ũ) where M
is closed. Suppose there is a uniform curvature bound |Rm| ≤ k0 on [0, T ) ×M . Then for any
fixed metric ḡ with connection ∇̄ on M , we have for all t ∈ [0, T ) and all m ≥ 1:

sup
x∈M

(
|∇̄mΨ|2ḡ + |∇̄mRm|2ḡ

)
(t, x) ≤ C(n,m, k0, T, g̃, ũ)

where Ψ = (∇̄g, ∇̄u) is defined in (3.23).

Proof:

We work in normal coordinates for ḡ such that Γ̄ = 0 at the base point. In particular we assume
that Γ = Γ − Γ̄ is a tensor in this chart. From Lemma 2.8 we know that the metrics g(t) are
uniformly equivalent for (t, x) ∈ [0, T ) ×M , giving us

c−1ḡ(x) ≤ g(t, x) ≤ cḡ(x) (6.26)

for some c = c(k0, T, ũ) only depending on k0 and T and an initial bound on dũ. In the following
C = C(n,m, k0, g̃, ũ, T ) denotes a constant only depending on n,m, the curvature bound k0, the
initial data g̃, ũ, and the final time T . Applying the interior estimates from Corollary 6.16, we
get uniform bounds for t ∈ [0, T ) and all k ≥ 0:

sup
x∈M

(
|∇kRm|2 + |∇2+ku|2

)
(t, x) ≤ C(n, k, k0) .

Using (6.13), we get an estimate for |du|2:

sup
x∈M

|∇̄u|2ḡ(t, x) ≤ C sup
x∈M

|du|2(t, x) ≤ C (6.27)
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for all t ∈ [0, T ). In addition, the curvature bound and Proposition 2.17 imply the following
estimate for the Hessian:

|∇̄2u|ḡ ≤ C|∇̄2u| ≤ C|∇2u| + C|∇̄g||du| ≤ C + C|∇̄g|

since in these coordinates

∇̄i∇̄ju = ∂i∂ju = ∇i∇ju+ Γkij∂ku = ∇i∇ju+ gkl
(
∇̄igjl + ∇̄jgil − ∇̄lgij

)
∂ku . (6.28)

This allows us to estimate

|∂t∇̄g| = |∇̄∂tg| ≤ C(|∇̄Rm| + |du||∇̄2u|) ≤ C|∇Rm| + C|Γ||Rm| + C|∇̄2u| ≤ C + C|∇̄g| .

By an application of Gronwall’s lemma we get at most exponential growth for ∂t∇̄g. This shows
that on finite time intervals:

|∂t∇̄g| ≤ C(n,m, k0, g̃, ũ, T ) .

Using (6.26), an integration gives for arbitrary τ ∈ [0, T ):

|∇̄g|ḡ(τ) ≤ C|∇̄g|(τ) ≤ C|∇̄g̃| + C

∫ τ

0
|∂t∇̄g|(t)dt ≤ C(n,m, k0, g̃, ũ, T ) . (6.29)

Therefore the claim for m = 1 follows from (6.27) and (6.29). We assume that the claim is
true for s = 1 . . .m − 1. To do the induction step, we need the evolution equations for higher
derivatives. A calculation shows that we have for m ≥ 2:

∂t∇̄mg = Rc ∗ ∇̄mg + du ∗ ∇̄m+1u+Rc ∗ P (∇̄0g, . . . , ∇̄m−1g)

+

m∑

i=1

∇iRc ∗ P (∇̄0g, . . . , ∇̄m−ig) +

m−1∑

i=1

∇̄1+iu ∗ ∇̄1+m−iu

∂t∇̄m+1u = ∇3u ∗ ∇̄mg +

m+1∑

i=2

∇i+2u ∗ P (∇̄0g, . . . , ∇̄m+1−ig) + ∇3u ∗ P (∇̄0g, . . . , ∇̄m−1g) .

(6.30)

To derive these equations, we used the equivalence ∇̄g ' ∇ − ∇̄ to replace derivatives with
respect to g by derivatives with respect to ḡ in a similar way to (6.28). Furthermore P is a
polynomial in the components of the derivatives of g of the designated order as in (8.10). This
allows us to estimate

∣
∣∂t
(
|∇̄mg|ḡ + |∇̄m+1u|ḡ

)∣
∣ ≤

∣
∣|∂t∇̄mg|ḡ + |∂t∇̄m+1u|ḡ

∣
∣ ≤ C

(
|∂t∇̄mg| + |∂t∇̄m+1u|

)

≤ C
(
|∇̄mg|ḡ + |∇̄m+1u|ḡ

)
+ C,

using the induction hypotheses and the equivalence (6.26) of ḡ and the metrics g(t). Here C
depends only on n,m, k0, g̃, ũ, and T . This proves the desired result using Gronwall’s lemma.
In addition the curvature satisfies

∇̄mRm = ∇̄mg +

m−1∑

i=0

∇iRm ∗ P (∇̄0g, . . . , ∇̄m−i−1g) + ∇mRm
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which can be proven by induction and the identity (∇̄ − ∇) ' ∇̄g. Using the estimates for
|∇sRm|2 and |∇̄sg|2ḡ for s = 0, . . . ,m, the bound for |∇̄mRm|2ḡ follows in the same way as above.
This finishes the proof of the proposition.

The interior estimates provide a necessary and sufficient condition for the long time existence
of solutions on a closed manifold M .

Theorem 6.22 Let (g, u)(t) be a solution to (2.5) on [0, T )×M for closed M with initial data
(g̃, ũ). Assume that T < ∞ is maximally chosen such that the solution cannot be extended
beyond T . Then the curvature of g(t) has to become unbounded for t→ T in the sense that

lim
t↗T

[
sup
x∈M

|Rm|2(t, x)
]

= ∞ .

Proof:

We partly follow the proof of [CK04, Theorem 6.45] and show first that

lim sup
t↗T

[
sup
x∈M

|Rm|2(t, x)
]

= ∞ . (6.31)

Suppose to the contrary that the curvature stays bounded on [0, T ], say |Rm|2 ≤ k0. We prove
that the solution can be extended smoothly beyond T , contradicting the choice of T .

The inequality (6.13) implies a bound on du such that |Rm| + |du|2 ≤ C̃ holds on [0, T ] ×M .
For arbitrary X ∈ X (M) define a function g(T )(X,X) := limt→T g(t)(X,X) on M ×X (M). By
integration we get for t↗ T

|g(T )(X,X) − g(t)(X,X)| ≤
∫ T

t
|∂tg(τ)(X,X)|dτ ≤ c

∫ T

t

(
|Rc|(τ) + |du|2(τ)

)
dτ

≤ cC̃(T − t) −→ 0

uniformly in x ∈ M . Therefore the limit g(T )(X,X) is well defined and continuous in x. By
polarization we can construct a continuous limit g(T ) ∈ Sym2(M). This tensor is a Riemannian
metric because of the uniform equivalence of the metrics g(t) from Lemma 2.8. Similarly we
find a continuous limit u(T ) := limt→T u(t) on M . From Lemma 6.21 we get for t ∈ [0, T ] the
bounds

sup
x∈M

(
|∇̄mg|2ḡ + |∇̄mu|2ḡ + |∇̄mRm|2ḡ

)
(t, x) ≤ C(n,m, k0, T, g̃, ũ)

for an arbitrary background metric ḡ in a coordinate chart. Therefore (g, u)(T ) is smooth. In
addition (g, u)(t) → (g, u)(T ) is a smooth limit since we can estimate for all m ≥ 1:

|∇̄mg(T ) − ∇̄mg(τ)|ḡ ≤
∫ T

τ
|∂t∇̄mg(t)|ḡdt =

∫ T

τ
|∇̄m(∂tg(t))|ḡdt

≤ C

∫ T

τ

(

|∇̄mRm(t)|ḡ +

m∑

i=0

|∇̄1+iu(t)|ḡ|∇̄1+m−iu(t)|ḡ
)

dt

≤ C(T − τ) −→ 0
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for τ ↗ T , using Lemma 6.21 again. Taking (g, u)(T ) as initial data, the short time existence
result in Theorem 3.11 provides a solution on a small time interval [T, T + δ). This solution
extends the original one smoothly beyond T since the bounds in Lemma 6.21 together with
(6.30) imply bounds for all time derivatives of g(T ) at time t = T . This gives the contradiction.

We can replace the limes superior (6.31) with a proper limit. Define K(t) := supx∈M |Rm|(t, x).
Suppose

lim
t↗T

[
sup
x∈M

|Rm|2(t, x)
]

= ∞

does not hold. Then there exists B < ∞ and a sequence tk ↗ T such that K(tk) ≤ B. From
Proposition 6.18 we get a constant c = c(n) such that

K(t) ≤ 2K(tk) ≤ 2B

for all t ∈ [tk, Tk) where Tk := min{T, tk + c/B}. Since tk ↗ T , there is an index k0 such that
tk0 + c/B ≥ T . Therefore we get

sup
tk0

≤t<T
K(t) ≤ 2B ,

contradicting (6.31). This completes the proof of the theorem.


