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4 The monotonicity formula

An important tool to control solutions of evolution equations in general are monotone quantities.
Such a monotonicity formula also exists for the flow (2.5), which we will show for closed M in
this section. Although there is the monotone entropy E given by (2.1), it will turn out that this
is not sufficient for all our purposes.

We want to replace the entropy E by a scaling invariant integral and to this end introduce
explicitly a scale parameter τ into the formula as it is done in [Per02, §3]. One should think
of τ as backwards time, measured back from some fixed time. M will be a closed Riemannian
manifold for the rest of this section.

Definition 4.1 Let τ ∈ be a positive real number. Then the entropy W of a configuration

(g, u, f, τ) ∈ M(M) × C∞(M) × C∞(M) × +

is defined to be

W (g, u, f, τ) :=

∫

M

[
τ(S + |df |2) + f − n

]
(4πτ)−

n
2 e−fdV . (4.1)

From this definition we see that W is scaling invariant in the following sense:

Lemma 4.2 Let α > 0 be a constant and ϕ be a diffeomorphism of M . Then the entropy W is
invariant under simultaneous scaling of g and τ by α in the sense that

W (αg, u, f, ατ) = W (g, u, f, τ)

and invariant under diffeomorphisms

W (ϕ∗g, ϕ∗u, ϕ∗f, τ) = W (g, u, f, τ) .

Proof:

This is a short computation:

W (αg, u, f, ατ)

=

∫

M
[ατ
(
R(αg) − 2(αg)ij∂iu∂ju+ (αg)ij∂if∂jf

)
+ f − n](4πατ)−

n
2 e−f

√

det(αg)dx

=

∫

M
[ατ
(
α−1R− 2α−1|du|2 + α−1|df |2

)
+ f − n]α−n

2 (4πτ)−
n
2 e−fα

n
2 dV

= W (g, u, f, τ) .

The invariance under diffeomorphisms is clear since we are dealing with geometric quantities.
One can use coordinates induced by ϕ for a proof.
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We choose a variation vector (v, w, h, σ) as we did for E and compute the first variation of W,
abbreviating (4πτ)−

n
2 e−fdV by dm in the following. The first component gives:

δW [g, u, f, τ ](v, 0, 0, 0) =

∫

M

(
τ [δR(g)](v) − 2τvij∂iu∂ju+ τvij∂if∂jf

)
dm

+

∫

M

[
τ(S + |df |2) + f − n

]
(4πτ)−

n
2 e−f [δdV (g)](v)

=

∫

M
τ · (−∆(tr v) + ∇i∇jvij −Rijvij + 2vij∂iu∂ju− vij∂if∂jf) dm

+

∫

M

[
τ(S + |df |2) + f − n

]
· tr v

2 dm

=

∫

M
vij · {−τSij − τ∇i∇jf} + tr v

2 · {2τ∆f − 2τ |df |2}dm

+

∫

M

[
τ(S + |df |2) + f − n

]
· tr v

2 dm

where we used that by partial integration
∫

M
(−∆(tr v) + ∇i∇jvij) e

−fdV =

∫

M

[
tr v · (∆f − |df |2) + vij(∂if∂jf −∇i∇jf)

]
e−fdV

holds. The variation of u is given by

δW [g, u, f, τ ](0, w, 0, 0) =

∫

M
−2τ [δ|du|2](w)dm =

∫

M
(−2τ · 2∂iw∂iu)dm

=

∫

M
4τw · (∆u− 〈du, df〉)dm =

∫

M
8w · { τ2∆u− τ

2 〈du, df〉} dm ,

and for f we find

δW [g, u, f, τ ](0, 0, h, 0)

=

∫

M

(
τ [δ|df |2](h) + h

)
dm+

∫

M

[
τ(S + |df |2) + f − n

]
(4πτ)−

n
2 [δe−f ](h)dV

=

∫

M
(τ · 2∂ih∂if + h) dm+

∫

M

[
τ(S + |df |2) + f − n

]
(−h)dm

=

∫

M

(
h · {−2τ∆f + 2τ |df |2} + h

)
dm+

∫

M

[
τ(S + |df |2) + f − n

]
(−h)dm .

Varying τ , we compute

δW [g, u, f, τ ](0, 0, 0, σ) =

∫

M
σ
(
S + |df |2)dm−

∫

M

[
τ(S + |df |2) − f − n

]
[δ(4πτ)−

n
2 ](σ) e−fdV

=

∫

M
σ · {S + |df |2} dm+

∫

M

[
τ(S + |df |2) + f − n

]
·
(
−nσ

2τ

)
dm .

Putting this together gives

δW [g, u, f, τ ](v, w, h, σ) =

∫

M
vij · {−τSij − τ∇i∇jf} + 8w · { τ2∆u− τ

2 〈du, df〉}dm

+

∫

M

[
(

tr v
2 − h

)
· {2τ∆f − 2τ |df |2} + h+ σ · {S + |df |2}

]

dm

+

∫

M

(
tr v
2 − h− nσ

2τ

) [
τ(S + |df |2) + f − n

]
dm .
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We will think of τ as a backward time and therefore set the variation of τ to be σ ≡ −1. In the
same way as for E, we can choose the variation of f such that the measure is kept fixed:

h := tr v
2 + n

2τ ⇒ tr v
2 − h+ n

2τ = 0 .

Fix f and choose h as above. In the same way fix τ and choose σ as above. Considering W as
a functional of g and u alone, we finally get:

δW [g, u, f, τ ](v, w) =

∫

M
vij · {−τSij − τ∇i∇jf} + w · 4τ{∆u− 〈du, df〉} dm

+

∫

M

[

τ · n
2τ

(
2|df |2 − 2∆f

)

︸ ︷︷ ︸

=0

+h− S − |df |2
︸︷︷︸

=∆f

]

dm .
(4.2)

Since on closed M the following identity for the Laplacian and the norm squared of df is true

0 = (4πτ)−
n
2

∫

M
∆e−f dV =

∫

M

(
|df |2 − ∆f

)
(4πτ)−

n
2 e−fdV , (4.3)

we can cancel one term in (4.2) and replace |df |2 by ∆f in the other. If we vary W along the
variation given by the following evolution equations

v := ∂tg := −2Sy − 2∇2f

w := ∂tu := ∆u− 〈du, df〉
h := ∂tf := tr v

2 + n
2τ = −∆f − S + n

2τ

σ := ∂tτ := −1 ,

(4.4)

we calculate that

∂tW (g, u, f, τ)(t) =

∫

M

[
2τ |Sy + ∇2f |2 + 4τ |∆u− 〈du, df〉|2 − 2∆f − 2S + n

2τ

]
dm .

Since

2τ |Sy + ∇2f − 1
2τ g|2 = 2τ |Sy + ∇2f |2 + 2τ( n

4τ2 − 1
τ S − 1

τ∆f) ,

we finally conclude

∂tW (g, u, f, τ)(t) =

∫

M
2τ |Sy + ∇2f − 1

2τ g|2 + 4τ |∆u− 〈du, df〉|2 dm .

Remark 4.3 Note that the following theorem is still true for a complete noncompact manifold
Σ as long as the integrations by parts can be performed. This is possible for example by imposing
falloff conditions on (g, u, f).

So everything comes together to the following result:
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Theorem 4.4 Let M be a closed Riemannian manifold and assume that g, u, f and τ satisfy
on [0, T ) ×M the evolution equations

∂tg = −2Sy

∂tu = ∆u

∂tf = −∆f + |∇f |2 − S + n
2τ (4.5)

∂tτ = −1 .

Then the following monotonicity formula holds:

∂tW (t) =

∫

M

[

2τ |Sy + ∇2f − 1
2τ g|2 + 4τ |∆u− du(∇f)|2

]

dm ≥ 0 . (4.6)

In particular, the entropy W is nondecreasing and equality holds if and only if the solution is a
homothetic shrinking gradient soliton. In this case (g, u, f, τ)(t) satisfies at every t ∈ [0, T ):

Sy + ∇2f − 1
2τ g = 0 and ∆u− du(∇f) = 0 .

Proof:

We can apply the diffeomorphisms generated by ∇f(t) to the system (4.4) in the same way as
we did for (2.3). Then the result follows from the preceding calculations, considering that W is
invariant under diffeomorphisms of M . Solitons have been introduced in Definition 2.2.

Applications for the monotonicity formula are the proofs of nonexistence of periodic shrinking
solutions and of the noncollapse of solutions to (2.5) at finite times.


