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Preface

This thesis consists of five Chapters.

The main purpose of the first chapter is to serve as an introduction. We will define all

necessary concepts and discuss the problems that are studied in this thesis as well as stating

the main results of it.

This thesis deals with two different directions of extremal graph theory. In the first part we

consider two kinds of positional games, the so-called strong games and the Maker-Breaker

games.

In the second chapter we consider the following strong Ramsey game: Two players take

turns in claiming a previously unclaimed hyperedge of the complete k-uniform hypergraph on

n vertices until all edges have been claimed. The first player to build a copy of a predetermined

k-uniform hypegraph is declared the winner of the game. If none of the players win, then

the game ends in a draw. The well-known strategy stealing argument shows that the second

player cannot expect to ever win this game. Moreover, for sufficiently large n, it follows from

Ramsey’s Theorem for hypergraphs that the game cannot end in a draw and is thus a first

player win. Now suppose the game is played on the infinite k-uniform complete hypergraph.

Strategy stealing and Ramsey’s Theorem still hold and so we might ask the following question:

is this game still a first player win or a draw. In this chapter we construct a 5-uniform

hypergraph for which the corresponding game is a draw. This chapter is based on [45].

In the third chapter we consider biased (1 : q) Maker-Breaker games: Two players called

Maker and Breaker alternate in occupying previously unoccupied vertices of a given hyper-

graph H. Maker occupies 1 vertex per round and Breaker occupies q vertices. Maker wins if

he fully occupies a hyperedge of H and Breaker wins otherwise. One of the central questions

in this area is to find (or at least approximate) the maximal value of q that allows Maker to

win the game. In this chapter we prove two new general winning criteria -one for Maker and

one for Breaker- and apply them to two types of games. In the first type, the target is a fixed

uniform hypergraph and in the second it is a solution to an arbitrary but fixed linear system

of inhomogeneous equations. This chapter is based on [53].

ix
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The second part of this thesis deals with two types of questions from extremal combi-

natorics. The first type is of the following form: suppose we are given a certain property

of hypergraphs, what is the minimum possible number of edges a k-uniform hypergraph can

have such that it does have the property of interest. The second type goes in the different

direction. If a certain family of hypergraphs has the minimum number of edges satisfying a

certain property, i.e. if the family is extremal in that sense, then how can we characterise it

and what operations can we perform while maintaining extremality?

In the fourth chapter, we investigate the minimum number f(k) of edges a k-uniform

hypergaph having Property O can have. In [24] it is shown that k! ≤ f(k) ≤ (k2 ln k)k!,

where the upper bound holds for sufficiently large k. We improve the upper bound by a

factor of k ln k showing f(k) ≤
(
bk2c+ 1

)
k! − bk2c(k − 1)! for every k ≥ 3. We also answer

a question regarding the minimum number n(k) of vertices a k-uniform hypergaph having

Property O can have. This chapter is based on [51].

In the fifth chapter, we consider shattering extremal set systems. A set system F ⊆ 2[n]

is said to shatter a given set S ⊆ [n] if 2S = {F ∩ S : F ∈ F}. The Sauer-Shelah Lemma

states that in general, a set system F shatters at least |F| sets. Here we concentrate on the

case of equality. A set system is called shattering-extremal if it shatters exactly |F| sets. The

so-called elimination conjecture, independently formulated by Mészáros and Rónyai as well as

by Kuzmin and Warmuth, states that if a family is shattering-extremal then one can delete a

set from it and the resulting family is still shattering-extremal. We prove this conjecture for

a class of set systems defined from Sperner systems and for Sperner systems of size at most

4. Furthermore we continue the investigation of the connection between shattering extremal

set systems and Gröbner bases. This chapter is based on the extended abstract [52].

Notation Throughout this thesis we will use fairly standard notation, generally follow-

ing [23]. For the convenience of the reader, we have included the required definitions needed

to understand a particular chapter in the corresponding sections of the introduction.

In chapter 4 we make use of asymptotic notation. Given two functions f, g : N→ R we write

f = O(g) if there exists a constant C > 0 such that for n sufficiently large |f(n)| ≤ C|g(n)|
holds. We write f = Ω(g) if g = O(f), and f = θ(g) if f = O(g) and f = Ω(g). We write

f = o(g) if f(n)
g(n) → 0 as n tends to infinity. If g = o(f) then we write f = ω(g). Finally, if

f(n)
g(n) → 1 as n tends to infinity, we write f ∼ g and say that f and g are asymptotically equal.
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Chapter 1

Introduction

Combinatorics is a branch of mathematics that focuses on the study of discrete mathematical

objects. Originally, combinatorial problems arose in other areas of pure mathematics, most

notably in Probability Theory, Algebra and Geometry to name a few. In the last 60 years, it

has experienced an enormous growth and matured into an independent and important branch

of mathematics. Its methods and techniques have found numerous applications in Computer

Science, Mathematical Optimisation and Statistical Physics.

The work presented in this thesis takes place in two very active areas of Combinatorics:

Positional Games and Extremal Combinatorics.

The Theory of Positional Games aims at providing the mathematical foundation for var-

ious perfect information games between two players. A positional game is described by a

set of elements (or positions) and a family of subsets (the winning sets). Two players alter-

nately occupy elements of the set until all elements have been occupied. There are several

different types of positional games with different rules and using the rules one defines which

player is considered the winner of the game. Positional games have deep connections to other

mathematical disciplines, such as Probability Theory and Ramsey Theory.

The Extremal Theory of Set Systems aims to determine or at least approximate the

maximimum or minimum size of a set system satisfying some prescribed conditions. One of

the oldest and most famous results in this area is Sperner’s Theorem. It determines the largest

possible size a set system can have if none of its sets is allowed to be contained in any other

set of the set system. This branch too has many connections to other mathematical fields

and proof-techniques often use methods from Probability Theory, Algebra and Topology.

The purpose of this chapter is twofold. Firstly, it introduces the problems that are studied

in the following chapters and provides their respective background and motivation. Secondly,

it provides an overview of almost all main results of this thesis. Most technical details and

proofs are omitted (unless needed) and will be dealt with in the individual chapters.

1
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1.1 Strong Ramsey games

1.1.1 Introduction to strong games The theory of positional games on graphs and hy-

pergraphs goes back to the seminal papers of Hales and Jewett [40] and of Erdős and Sel-

fridge [27]. The theory has enjoyed explosive growth in recent years and has matured into

an important area of combinatorics (see the monograph of Beck [7], the recent monograph of

Hefetz et al. [44] and the survey of Krivelevich [49]). There are several interesting types of

positional games, the most natural of which are the so-called strong games.

Let X be a (possibly infinite) set and let F ⊆ 2X be a family of subsets of X. As is usual, X

is referred to as the board of the game and the elements of F are called the winning sets. The

strong game on (X,F) is a perfect information game, played by two players, called FP (the

first player) and SP (the second player), who take turns in claiming previously unclaimed

elements of the board, one element per move. The winner of the game is the first player

to claim all elements of a winning set A ∈ F . If no player wins the game after some finite

number of moves, then the game is declared a draw. In case the board is finite, it is a draw

if, once all elements of X have been claimed, neither player fully claimed a winning set. A

very simple but classical example of this setting is the game of Tic-Tac-Toe, which we shall

briefly discuss now.

In the game of Tic-Tac-Toe or Noughts and Crosses the board X is simply given by the

(3× 3)-grid [3]2 and the family of winning sets F is given by:

F =
{
{(i, j) : j ∈ [3]} i ∈ [3]

}
∪
{
{(i, j) : i ∈ [3]} j ∈ [3]

}
∪
{
{(1, 1), (2, 2), (3, 3)}, {(1, 3), (2, 2), (3, 1)}

}
In words, the winning sets are given by all horizontal, vertical and diagonal lines of length

three. A straightforward case analysis, done by many of us when we were little, reveals that if

both players play optimally, then the game will inescapably end in a draw. In fact, if we assume

that both players play optimally or that both players have access to an computationally all-

powerful computer, each strong game is determined and has exactly three possible outcomes:

(i) FP has a winning strategy;

(ii) SP has a winning strategy;

(iii) both FP and SP have a drawing strategy.

Intuitively one might ask that, if both players actually play optimally, then how could SP ever

have a winning strategy? Having the first move should somehow give FP a big advantage.

This is indeed the case and is the content of the so-called strategy stealing argument. It says
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that in a strong game played on (X,F), FP can guarantee at least a draw. See [7] or [44]

for its easy proof. We would like to emphasise that this statement is valid for every strong

game. In particular it holds when X is infinite as well. Unfortunately this argument has a

little flaw: it is a purely existential result and does not tell us anything as to how to find such

a strategy that guarantees at least a draw for FP.

A nice consequence of strategy stealing is the following. If in a strong game played on (X,F)

there is no final drawing position, then FP has a winning strategy. It turns out that the

combination of these results with results from Ramsey Theory is, on the one hand, quite

powerful (as we will discuss shortly in 1.1.2), but on the other hand these two tools are the

only tools we have to analyse strong games.

1.1.2 The strong Ramsey game For integers n ≥ q ≥ 3, consider the strong Ramsey

game R(Kq, n). The board of this game is the edge set of Kn and the winning sets are the

copies of Kq in Kn. As noted above, by strategy stealing, FP has a drawing strategy in

R(Kq, n) for every n and q. Moreover, it follows from Ramsey’s famous Theorem [63] (see

also [39] and [21] for numerous related results) that, for every q, there exists an n0 = n0(q)

such that for every n ≥ n0, no matter how one two-colours the edges of the complete graph

Kn, there exists a monochromatic copy of Kq. If we imagine that the players colour the edges

of Kn in order to claim them, then this exactly means that R(Kq, n) has no final drawing

position and is thus FP’s win for every n ≥ n0. An explicit winning strategy for FP in

R(Kq, n) is currently only known for two values of q. Firstly, for q = 3 and every n ≥ 5

it is an easy exercise to find such an explicit strategy. For q = 4 and n sufficiently large

this is already non-trivial, but an explicit winning strategy was shown by László Hegedűs

as mentioned by Beck in [9]. Moreover, for every q ≥ 4, we do not know what the Game

Ramsey number of q is, i.e., the smallest n0 = n0(q) such that R(Kq, n) is FP’s win for every

n ≥ n0. Determining this value seems to be extremely hard even for relatively small values

of q. Furthermore, we do not know the smallest number of moves FP needs in order to win.

In fact, we do not even know if this number grows with n or is bounded from above by some

function of q. This question was posed by Beck [7] as one of his “7 most humiliating open

problems”, where he already considers the case q = 5 to be “hopeless” (see also [55] and [18]

for related problems).

1.1.3 The transition to the infinite board Consider now the strong game R(Kq,ℵ0).

Its board is the edge set of the countably infinite complete graph KN and its winning sets

are the copies of Kq in KN. Even though the board of this game is infinite, strategy stealing

still applies, i.e., FP has a strategy which ensures that SP will never win R(Kq,ℵ0). Clearly,
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Ramsey’s Theorem holds as well, i.e., any red/blue colouring of the edges of KN yields a

monochromatic copy of Kq. Hence, as in the finite version of the game, one could expect to

combine these two arguments to deduce that FP has a winning strategy in R(Kq,ℵ0). Indeed,

if n = 18 it is known that FP has a winning strategy in R(K4, 18), since the Ramsey number

for the K4 is known to be 18. The same holds when n is 19, 20 or 1010. What possible reason

could there be that would prevent FP from having a winning strategy in R(K4,ℵ0)? Well, SP

might be able to delay FP indefinitely by making infinitely many threats, so that FP could

never complete a Kq, and the game would be drawn. This does not happen when q = 3,

as FP can use the same winning strategy as in the finite game. It does not happen when

q = 4 either (see [9]), so our intuition seems to be correct. However, the question whether

R(Kq,ℵ0) is a draw or FP’s win is wide open for every q ≥ 5. In fact, it is not hard to see

that this question is equivalent to Beck’s question of whether the number of moves needed

for FP in order to win R(Kq, n) grows with n (the corresponding infinite game is a draw) or

not (the corresponding infinite game is FP’s win).

Of course, when playing Ramsey games, there is no reason why we should restrict our

attention to cliques, or even to graphs for that matter. We can easily extend the game to

a more general setting: For every integer k ≥ 2 and every k-uniform hypergraph H, we

can study the finite strong Ramsey game R(k)(H, n) and the infinite strong Ramsey game

R(k)(H,ℵ0). The board of the finite game R(k)(H, n) is the edge set of the complete k-

uniform hypergraph Kk
n and the winning sets are the copies of H in Kk

n. As in the graph

case, strategy stealing and Hypergraph Ramsey Theory (see, e.g., [21]) shows that FP has

winning strategies in R(k)(H, n) for every H and every sufficiently large n. The board of

the infinite game R(k)(H,ℵ0) is the edge set of the countably infinite complete k-uniform

hypergraph Kk
N and the winning sets are the copies of H in Kk

N. As in the graph case,

strategy stealing shows that FP has drawing strategies in R(k)(H,ℵ0) for every H. Hence,

here too one could expect to combine strategy stealing and Hypergraph Ramsey Theory to

deduce that FP has a winning strategy in R(k)(H,ℵ0) for every H.

However, in Chapter 2, we show that, while it might be true that R(Kq,ℵ0) is FP’s win

for any q ≥ 5, basing this solely on strategy stealing and Ramsey Theory is ill-founded. The

following result is joint work with Dan Hefetz, Lothar Narins, Alexey Pokrovskiy, Clément

Requilé and Amir Sarid.

Theorem 1.1.1. There exists a 5-uniform hypergraph H such that the strong game R(5)(H,ℵ0)

is a draw.

Apart from being very surprising, Theorem 1.1.1 might indicate that strong Ramsey games

are even more complicated than we originally suspected. We discuss this further in Section 2.4.
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1.2 Maker-Breaker G-games and van der Waerden games

1.2.1 Introduction to Maker-Breaker games As indicated in the previous section,

strong games are very hard to analyse, mainly because we only have two tools to tackle

them: the strategy stealing argument and some Ramsey-type results. Moreover, if the play-

ers play optimally, then SP has no chance of ever winning the game. To resolve this issue,

one could redefine the aim of SP: instead of trying to fully claim a winning set, he could

simply try to prevent FP from doing so, and consider himself the winner if he succeeds. The

resulting game is called a Maker-Breaker game and has received great attention in the last

decades (see [7], [13], [20], [27], [36], [44] and [50] for many nice results) and matured into an

important area in Combinatorics. We start by giving a precise definition of the game.

Let X be a finite set and let F ⊆ 2X be a family of subsets of X. In a Maker-Breaker

game over (X,F), the players are called Maker and Breaker and they take turns in occupying

previously unoccupied elements of the board X. Maker starts. The winner is

• Maker, if he fully occupies a winning set by the end of the game;

• Breaker, if he occupies one element of every winning set.

Again, the game is a perfect information game. But note that here a draw is of course

impossible, because the players have complementary goals.

We would like to point out that in this thesis we speak of ‘occupying’ an element in the

Maker-Breaker setting, whereas in the strong games we use the term ‘picking’. Of course this

is only done for convenience and these words are often used interchangeably for both type of

games in the literature.

Interestingly, Maker can actually benefit from the fact that Breaker does not try to occupy

all elements of a winning set any more. Indeed, Maker does not need to worry about Breaker

occupying a winning set and so he can concentrate fully on occupying one himself. An easy

example is the game of Tic-Tac-Toe with the Maker-Breaker rules, where one can see that

Maker has a winning strategy. Unfortunately, one flaw remains: many Maker-Breaker games

are fairly easy wins for Maker. Some examples are

• the K3 game, where X = E(Kn) and Maker’s aim is to build a K3;

• the connectivity game (E(Kn), Cn), where Cn denotes the edge sets of spanning con-

nected subgraphs of Kn;
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• the perfect matching game (E(Kn),PMn), where PMn denotes the edge sets of perfect

matchings of Kn (n even);

• the Hamiltonicity game (E(Kn),HCn), where HCn denotes the edge sets of Hamiltonian

cycles of Kn.

It is worth noticing that in all of these games Maker not only wins fairly easily, but he also

wins ‘fast’ (see [42] and [43]). For example, in [42] the authors show that Maker can construct

a perfect matching in n/2 + 1 moves (n even) and that this is tight. Since Maker obviously

needs at least n/2 rounds to win, he only needs one additional round and hence wins ‘fast’

in that sense.

To help Breaker one would like to give him more power in order to improve his winning

chances. To achieve this Chvátal and Erdős [20] introduced a bias and so-called biased Maker-

Breaker games, which we shall define below.

Let p and q be positive integers, X be finite set and let F ⊆ 2X . The biased (p : q) Maker-

Breaker game on (X,F), which we denote by G(F ; q), is the same as the Maker-Breaker game

with one exception: Maker occupies p elements per round and Breaker occupies q elements.

We refer to p and q as the bias. If in the last round there are fewer unoccupied elements

of the board left then the bias of the player whose turn it is, then he simply occupies the

remaining elements.

So by allowing Breaker to occupy more than one element per round, we make it harder for

Maker to win.

We remark that throughout this thesis Maker’s bias is always 1, i.e. p = 1.

Of course, the strong Ramsey games can be played with the rules of the Maker-Breaker

setting. It is not hard to see that again, if the board is large enough, then Maker has a winning

strategy in the unbiased (1 : 1) Maker-Breaker game. On the other hand, Breaker wins these

games when his bias is q =
(
n
2

)
(and the target graph is not just an edge). Another useful

observation is that if Breaker wins with a bias of q, then he also wins with a bias of q∗ ≥ q.

Conversely, if Maker wins the biased (1 : q) game, then he also wins the biased (1 : q − 1)

game. This leads to the following central definition of biased Maker-Breaker games:

Let X be a finite set and let ∅ 6= F ⊆ 2X such that min{|F | : F ∈ F} ≥ 2. The unique

positive integer qF such that Breaker wins the (1 : q) game (X,F) if and only if q ≥ qF is

called the threshold bias of (X,F).

One of the main questions, or perhaps the central question, of biased Maker-Breaker games

is to determine the threshold bias of natural games. Indeed, this has successfully been done

for the connectivity game, the perfect matching game and the Hamiltonicity game. We have
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qCn , qPMn , qHCn = (1 + o(1))
n

lnn

where qCn , qPMn , qHCn denotes the bias for the connectivity game, the perfect matching game

and the Hamiltonicity game respectively (see [37] and [50]). However, for the seemingly

‘easier’ K3 game, we only know that qK3 = θ (
√
n) (see [6] and [44] for a detailed discussion).

Again it was Chvátal and Erdős [20] who observed a stunning connection to random graphs.

Indeed, when studying the connectivity game, they wrote that the threshold bias ‘ought to

come around n/ lnn’ and in fact prove just that. They provide the following intuition, which

is now called the probabilistic intuition. Assume that the two players do not play cleverly,

but instead play completely randomly, that is: whenever a player has to occupy an edge,

he occupies it uniformly at random from among all edges that have not yet been occupied.

Playing the biased (1 : q) connectivity game on X = E(Kn), we get that Maker would create

a random graph G ∼ G(n,M) with M = d 1
q+1

(
n
2

)
e. Standard facts from random graph

theory (see [46] or [44]) now say that such a graph asymptotically almost surely (a.a.s.) is

connected if M ≥ (1 + o(1))n lnn
2 and is a.a.s. disconnected if M ≤ (1− o(1))n lnn

2 . Hence if

q ≤ (1 − o(1)) n
lnn Breaker wins a.a.s and if q ≥ (1 + o(1)) n

lnn , then a.a.s. Maker wins. The

same intuition works for the perfect matching game and for Hamiltonicity game. In other

words, for almost every value of the bias q, the outcome of the game played by two clever

players is the same as the typical outcome of the game when both players play randomly.

Note that this intuition is not very well understood yet and does not always apply. A first

easy example is the K3 game: here we already mentioned that the bias threshold lies around
√
n. However, the probabilistic intuition would suggest that the correct value lies around n,

a much larger value than the correct one. More examples when this probabilistic intuition

fails are discussed in Sections 1.2.2 and 1.2.3 where a different probabilistic intuition seems

to hold. This will be briefly discussed at the end of Chapter 3.

Before moving on, let us introduce some notation. We denote the number of vertices of a

hypergraph H by v(H), the number of edges by e(H) and its density by d(H) = e(H)/v(H).

Given a subset S ⊆ V (H) of vertices, let d(S) = |{e ∈ H : S ⊂ e}|. For any integer ` ∈ N
the maximum `-degree is given by ∆`(H) = max{d(S) : S ⊆ V (H), |S| = `}. Note that if H
is k-uniform for some integer k ∈ N, then ∆k(H) = 1 and ∆`(H) = 0 for all integers ` > k.

Furthermore, in order to simply notation, we shall often identify a hypergraph H with its

edge set E(H).

1.2.2 The Maker-Breaker G-game Given a fixed graph G, one can consider the Maker-

Breaker G-game. The board of the game is the edge set of a Kn and the winning sets are

simply the copies of G in Kn. Another way of phrasing it goes as follows: Consider the
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hypergraph HG(n) encoding the copies of G in Kn, i.e. V (HG(n)) = E(Kn) and

E(HG(n)) =
{
{f1, ..., fe(G)} ⊆ E(Kn) : {f1, ..., fe(G)} = E(G)

}
.

Here, Maker and Breaker take turns in occupying vertices of HG, where Maker’s goal is to

fully occupy an edge of HG (i.e. a copy of G in Kn) and Breaker’s goal is to prevent Maker

from achieving his. Note that HG is a k-uniform hypergaph with k = e(G). Moreover

v(HG(n)) = θ(n2), e(HG(n)) = θ(nv(G)) and ∆1(HG(n)) = e(G)d(HG(n)) .

Bednarska and  Luczak determined the threshold bias, q(G), up to a constant factor for

every graph G with at least three non-isolated vertices. It turns out that the threshold bias

depends mainly on the density of G. Hence, let us introduce the measure of density needed

in this context:

Given some graph G on at least 3 non-isolated vertices, one defines its 2-density as

m2(G) = max
F⊆G
v(F )≥3

e(F )− 1

v(F )− 2
. (1.1)

We can now state the following classical result of Bednarska and  Luczak.

Theorem 1.2.1 (Bednarska- Luczak [13]). For every graph G with at least 3 non-isolated

vertices, the threshold bias of the Maker-Breaker G-game on Kn satisifies q(G) = θ
(
n

1
m2(G)

)
.

We consider the following generalisation. Given some r-uniform hypergraph G on at least

r+1 non-isolated vertices, the Maker-Breaker G-game is played on the edge set of the complete

r-uniform hypergraph on n vertices, denoted K(r)
n . We define the r-density of G to be

mr(G) = max
F⊆G

v(F)≥r+1

e(F)− 1

v(F)− r
. (1.2)

Note that this is an obvious generalisation of the 2-density of a graph. Furthermore, we call

G strictly r-balanced if mr(G) > (e(F)− 1)/(v(F)− r) for every proper subhypergraph F of

G on at least r + 1 vertices. Let Hn(G) denote the hypergraph of all copies of G in K(r)
n and

refer to G(Hn(G); q) as the (1 : q) Maker-Breaker G-game on K(r)
n . Using our new general

winning criteria for Maker and Breaker, which will be introduced in Subsection 1.2.4, we will

generalise the result of Bednarska and  Luczak and prove the following statement.

Theorem 1.2.2. For any integer r ≥ 2 the following holds. If G is an r-uniform hypergraph

on at least r + 1 non-isolated vertices, then the threshold bias of the Maker-Breaker G-game

on K(r)
n satisfies

q(Hn(G)) = Θ
(
n1/mr(G)

)
.
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Lastly, we would like to point out that these games do not obey the probabilistic intuition.

First we need the following notion of density. Given a graph G, define the maximum density

as follows:

m(G) = max
F⊆G
v(F )>0

e(F )

v(F )
.

Now, if G is a fixed graph with at least on edge then for p � n
− 1

m(G) we know that

the binomial random graph G(n, p) a.a.s. does not contain G as a subgraph, whereas for

p� n
− 1

m(G) we know that G(n, p) a.a.s. does contain G as a subgraph. This beautiful result

was in full generality first proved by Bollobás in 1981 (see [15] or [46]). It was previously

shown for balanced graphs (i.e. graphs G with m(G) = e(G)/v(G)) by Erdős and Rényi in

their groundbreaking 1960 paper ‘On the Evolution of Random Graphs’ [28]. The probabilistic

intuition would now suggest that the threshold bias of the Maker-Breaker G-game lies around

n
1

m(G) which it does not. This was already hinted at above in context of the triangle game.

1.2.3 The van der Waerden game and its generalisation Let k ≥ 3. A k-term

arithmetic progression (k-AP for short) is a set of integers that can be written in the form

{a, a + d, . . . , a + (k − 1)d} for some a, d ∈ Z, and d 6= 0. Beck introduced the (unbiased)

van der Waerden games [12] as the Maker-Breaker positional games played on the board

[n] = {1, ..., n}, where Maker’s aim is to occupy a k-AP and Breaker tries to prevent Maker

from achieving this. The well-known theorem of van der Waerden [75] states that for every

k ≥ 3 there exists an integer N such that any two-colouring of [N ] contains a monochromatic

k-term arithmetic progression. The smallest such integer is called the van der Waerden

number, and is usually denoted by W (k). It is not hard to see that Maker wins if n ≥W (k).

Beck defined W ?(k) to be the least integer, such that Maker has a winning strategy in the

unbiased game when the board has size n ≥W ?(k), and established that W ?(k) = 2(1+o(1))k.

This moderate growth is in strong contrast to the known bounds of the van der Waerden

number(see [73] and [38]).

Again, we will consider this game in terms of a hypergraph. Let Hk-AP(n) be the hypergraph

encoding k-AP’s, i.e. V (Hk-AP(n)) = [n] and

E(Hk-AP(n)) =

{
e ∈

(
[n]

k

)
: e = {a, a+ d, ..., a+ (k − 1)d} for some a, d ∈ [n]

}
Note that

e(Hk-AP(n)) = θ(n2), ∆1(Hk-AP(n)) = O(n) and ∆2(Hk-AP(n)) = O(1) (1.3)

where the implicit constants can depend on k.
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Let q(Hk-AP(n)) denote the threshold bias of the game G(Hk-AP(n); q). In Section 3.1 we

will prove the following theorem.

Theorem 1.2.3. For every k ≥ 3, the threshold bias of the van der Waerden game G(Hk-AP(n); q)

satisfies

q(Hk-AP(n)) = θ(n1/(k−1)).

Remark 1.2.4. Theorem 1.2.3 will be a special case of a much more general theorem, namely

Theorem 3.5.5.

To motivate its statement and the fact that we refer to it as a ‘generalised van der Waerden

game’, we will define the k-AP game (i.e. the van der Waerden game) in the following different

way.

Consider the following (k − 2)× k matrix with integer coefficients:

Ak-AP =


1 −2 1

1 −2 1

...

1 −2 1

 ∈ Z(k−2)×k

It is not hard to see that the solutions with pairwise distinct entries to the corresponding

homogeneous system of linear equations Ak -AP xT = 0T are k-AP’s. Since in the k-AP

game, we are only interested in non-trivial k-AP’s, we will disregard all solutions with repeated

coordinates. We can now define the Maker-Breaker game G(Ak-AP, n; q) played on the board

[n], where Maker’s goal is to occupy a solution (without repeated coordinates) to Ak -AP xT =

0T and Breaker’s goal is to prevent Maker from doing so. Note that this is the exact same

game as G(Hk-AP(n); q). The advantage of this formulation is that it naturally leads to the

following question: Instead of considering the game G(Ak-AP, n; q) for the k-AP matrix, what

happens if we play the game with an arbitrary matrix A ∈ Zr×m? In order to do so, one needs

to identify certain properties of matrices that give rise to a non-trivial game. For example,

if for a matrix A the corresponding system of linear equations AxT = 0T has no solution at

all, then clearly this is not a particularly interesting game. These properties will be given in

Chapter 3.

Of course one also has to specify what kinds of solutions should count. Starting with

the classical result of Rado (see [62]) most combinatorial research has focused on proper

solutions, that is solutions to the linear system of homogenous equations AxT = 0T without

repeated coordinates. Our results will also cover the case where the system is inhomogenous.

Furthermore we will discuss the effect that repeated coordinates in solutions have on the

game. More precisely, we will identify exactly which coordinate-equalities make the game
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easier for Maker and wich do not. In order to state our results more precisely, we need some

fairly technical definitions which we shall present in Chapter 3.

It turns out that for certain matrices one can define a density parameter, first introduced

by Rödl and Ruciński for a more restricted class of matrices, just as in the hypergraph case.

Our main result, Theorem 3.5.5, shows that as in the Maker-Breaker G-game, the threshold

bias of the (non-trivial) games we will define only depends on the density of a given matrix.

For completeness, we will also state a result that covers all remaining cases, i.e. the ”trivial”

games, see Proposition 3.5.7.

1.2.4 General winning criteria When trying to determine the threshold biases for certain

natural games, in particular those mentioned above, we have essentially two ways to trying

to do so: for each game we could try to come up with some clever ad-hoc argument (cf.

Section 3.1) or we could try to find an argument or a strategy that works for many games.

The first such argument was proven in [27] and is usually referred to as the Erdős-Selfridge

Criterion:

Theorem 1.2.5 (Erdős-Selfridge [27]). Let F be a hypergraph. If
∑
F∈F

2−|F | < 1/2, then

Breaker wins the unbiased game on F .

Its proof method is the first example of the method of conditional expectation. The power

of this method is that it leads to an efficient deterministic strategy for Breaker (see [44] for a

detailed discussion).

In 1982 Beck generalised the Erdős-Selfridge criterion to biased games.

Theorem 1.2.6 (Beck [11]). Let X be a finite set set and let F ⊆ 2X be a family of subsets

of X. Let p and q be positive integers. If
∑
F∈F

(1 + q)−|F |/p < 1
1+q , then Breaker has a winning

strategy in the (p : q) game on F .

Beck also proved a sufficient condition for a Maker win, but this condition has found far

fewer applications than his biased Erdős-Selfridge criterion. However, since we will see one

application of his Maker’s win criterion, we state it here.

Theorem 1.2.7 (Beck [11]). Let X be a finite set and let F ⊆ 2X be a family of subsets of

X. Let p and q be positive integers. If

∑
F∈F

(
p+ q

p

)−|F |
>

p2q2

(p+ q)3
∆2(F) · |X|, (1.4)

then Maker has a winning strategy in the (p : q) game on X.
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For the proofs of the aforementioned criteria, we refer the reader to [44].

We will now introduce two new general winning criteria for Maker and Breaker, whose proofs

will be presented in Chapter 3. The results stated and described in the previous two sections

will then be applications of these criteria.

In order to state the winning criterion for Maker, we will need to introduce the following

function. For a k-uniform hypergraph H, we define

f(H) = min
2≤`≤k

(
d(H)

∆`(H)

) 1
`−1

(1.5)

and note that 1/f(H) = max2≤`≤k (∆`(H)/d(H))1/(`−1). As an example, for the hypergraph

encoding non-trivial k-AP’s we have, using the properties listed in (1.3):

f(Hk-AP(n)) = θ(n1/(k−1)).

Note that this value coincides with the threshold bias given in Theorem 1.2.3 We can now

state the first winning criterion.

Theorem 1.2.8 (Maker Win Criterion). For every k ≥ 2 and every positive c1 ≥ k there

exist c = c(k, c1) > 0 and c̃ = c̃(k, c1) > 0 such that the following holds. If H is a k-uniform

hypergraph satisfying

(i) ∆1(H) ≤ c1 d(H) , (ii) 1/f(H) < 1, and (iii)
v(H)

f(H)

(
1− 1

f(H)

)
≥ c̃

then Maker has a winning strategy in G(H; q) if

q ≤ c f(H)− 1. (1.6)

Let us now spend a few sentences in order to give some intuition for these conditions.

Note that if H is a k-uniform hypergraph, then clearly ∆1(H) ≥ k d(H). If in addition H is

regular, then we in fact have equality. So Condition (i) ensures that the hypergaph is not too

far from being regular. Maker’s strategy will be a random one and the proof that it succeeds

with positive probability is based on a probabilistic statement, namely Theorem 3.2.3. It

turns out that when working in the so-called binomial random subset model, 1/f(H) will be

the correct probability to work with. Condition (ii) makes thus sure that this is in fact a

non-trivial probability. Finally, Condition (iii) serves two purposes. Firstly, by choosing c̃ to

be large, we can enforce that the number of vertices of H is large too. Secondly, if a random

variable is binomially distributed with parameters v(H) and 1/f(H), then Condition (iii)

precisely says that its variance has to be big, namely at least as big as c̃ which in applications

will be exponential in k.
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The second statement now gives a winning criterion for Breaker. The proof will be given in

Section 3.3 and is based on multiple applications of the biased Erdős-Selfridge Theorem joint

with a bias-doubling strategy that mimics a common alteration approach of the probabilistic

method.

Theorem 1.2.9 (Breaker Win Criterion). For every integer k ≥ 2 and 0 < ε < 1 there

exists v0 = v0(k, ε) and a constant C1 = C1(k) > 0 such that the following holds. If H is a

k-uniform hypergraph on v(H) ≥ v0 vertices, then Breaker has a winning strategy in G(H; q)

provided that

q ≥ C1 max

(
∆1(H)

1
k−1 , max

2≤`≤k−1

(
∆`(H)

1
k−`

)
v(H)ε

)
. (1.7)

Remark 1.2.10. We remark that the bounds stated in Theorem 1.2.8 and Theorem 1.2.9

coincide -up to constant factor- in all games we have considered above, namely the Maker-

Breaker G-games and the generalised van der Waerden games.

We remark that the proofs of both these criteria are build on the ideas laid out by Bed-

narska and  Luczak in [13]. The results presented in the above sections are joint work with

Juanjo Rué, Christoph Spiegel and Tibor Szabó.

1.3 Hypergraphs with Property O

1.3.1 Introduction of the problem Recall that a hypergraph is a pair H = (V,E), where

V is a finite set whose elements are called vertices and E is a family of subsets of V , called

edges. It is k-uniform if every edge contains precisely k vertices. When studying certain

hypergraph properties, one is often interested in a question of the following form: what is

the minimum possible number of edges a k-uniform hypegraph can have, such that it does or

doesn’t have the property of interest. Arguably the most famous example is property B, first

introduced by Bernstein [14] in 1908. A hypergraph H has Property B if there exists a proper

two-colouring of its vertex set. One can then ask for the minimum possible number of edges a

k-uniform hypergraph can have such that its vertex set is not properly two-colourable. Here,

the function of interest is the following. Let k ≥ 2, one defines

m(k) := min{|E| : there exists a k-graph H = (V,E) that does not have property B}.

In 1963 Erdős [25] proved that every k-graph with fewer than 2k−1 edges has Property B,

i.e. m(k) ≥ 2k−1. The proof is very simple, just colour the vertices randomly by two colours

and apply the union bound. This was improved by Beck [8] in 1978 to m(k) = Ω
(
k1/32k

)
.

Building on Beck’s idea, Radhakrishnan and Srinivasan [61] in 2000 proved the current best

lower bound: m(k) = Ω
(√

k/ log k 2k
)

. Both proofs apply a random recolouring and are
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nice examples of the so called alteration method (see [2] for more information). In 2015,

Cherkashin and Kozik [19] found a very nice proof of this lower bound which is based on a

random greedy colouring developed by Pluhár [60].

The best known upper bound, due to Erdős [26] from 1964, is a nice twist of the probabilistic

argument, where the k-sets are chosen randomly and each colouring defines an event. He

showed that m(k) = O
(
k22k

)
.

Since the expected number of monochromatic edges in a random two-colouring of a hyper-

graph with m edges is m/2k−1, it is natural to consider the following normalised quantity:

m(k)/2k−1. This quantity measures the ratio between m(k) and its trivial lower bound. From

the above we have m(k)/2k−1 = O
(
k2
)

and m(k)/2k−1 = Ω
(√

k/ log k
)

. Although these

bounds remain quite far apart, they do show that m(k) is bounded away from its trivial lower

bound.

In a recent paper, Duffus, Kay and Rödl [24] introduce the following property, called

Property O. Fix an integer k ≥ 2 and some finite set V . An ordered k-set is a k-tuple

e = (x1, ..., xk) of distinct elements of V . We write e to denote the underlying k-set of e. An

oriented k-uniform hypergraph, or oriented k-graph, is a pair H = (V, E), where E ⊂ V k is

a family of ordered k-sets with no two k-tuples forming the same k-element set. In the case

that E contains an ordered k-set for every k-subset of V , we call H a k-tournament.

Given a linear order < on V , we say that an ordered k-set e = (x1, x2, ..., xk) is consistent with

<, if x1 < x2 < ... < xk. For convenience, we shall then simply say that e is <-consistent.

Definition 1.3.1. Let k ≥ 2 and let H = (V, E) be an oriented k-graph. We say that H has

the ordering property or Property O, if for every linear order < on V , there exists e ∈ E that

is consistent with <. Furthermore, let

f(k) := min{|E| : there exists an oriented k-graph H = (V, E) having Property O}.

In words, f(k) is the minimum number of edges in an oriented k-graph having Property O.

It is easy to check that f(2) = 3 and an example for the upper bound is a cyclically ordered

triangle. Apart from this trivial case, the following is known about f(k):

Theorem 1.3.2 (Duffus-Kay-Rödl [24]). The function f(k) satisfies k! ≤ f(k) ≤ (k2 ln(k))k!

where the lower bound holds for all k and the upper bound for k sufficiently large.

Their proof of the upper bound is probabilistic: they showed that a randomly chosen

k-tournament on n vertices with (k2 ln(k)k!) edges has Property O with positive probability

(for suitably chosen n and k sufficiently large). Furthermore they showed that almost all

k-tournaments with (1− o(1))
√
k · k! edges don’t have Property O.
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1.3.2 Results: an improved upper bound The aim of Chapter 4 is to prove the following

improvement, by giving an explicit construction of an oriented k-graph.

Theorem 1.3.3. Let k ≥ 3. Then there exists an oriented k-graph with
(
bk2c+ 1

)
k!−bk2c(k−

1)! edges with Property O. Hence

f(k) ≤
(
bk

2
c+ 1

)
k!− bk

2
c(k − 1)!

Note that, in contrast to Theorem 1.3.2, our upper bound holds for all k ≥ 3. However,

the question whether f(k) is bounded away from k! remains open.

Unfortunately we are not able to improve the (trivial) lower bound for general k, namely

f(k) ≥ k!. We will include its proof here for the convenience of the reader. Suppose that

H = ([n], E) is an oriented k-graph that has Property O. Then every e ∈ E is consistent with(
n

k

)
(n− k)! =

n!

k!

orders on [n]. Since H has Property O, we must have

|E| · n!

k!
≥ n!

and hence f(k) ≥ k!.

Another question posed in [24] is to determine the minimum number of vertices a 3-uniform

hypergraph having Property O can have.

Definition 1.3.4. For k ≥ 2 we define

n(k) := min{|V | : there exists an oriented k-graph H = (V, E) having Property O }

Duffus et al. proved that 6 ≤ n(3) ≤ 9. For the upper bound they gave a construction and

the lower bound was proved using an exhaustive computer search. In Section 4.2 we prove

that n(3) = 6 by providing two different constructions. The results of this section are joint

work with Gal Kronenberg, Piotr Micek and Tuan Tran.

1.4 Shattering extremal families

1.4.1 Shattering The notion of shattering occurs in many mathematical disciplines like

combinatorics, statistics and logic as well as other closely related fields such as computer

science and machine learning. We will start with some notations and then define the concept

of shattering.
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Given some sets X ⊆ [n] and I ⊆ [n] \ X, recall that we write 2X to denote the power

set of X. We write I + 2X for the family {I ∪ A : A ⊆ X} and
(
X
k

)
for the collection of

subsets of X of size k. Throughout this thesis the terms ‘set system’ and ‘family’ are used

interchangeably.

Definition 1.4.1. A set system F ⊆ 2[n] shatters a given set S ⊆ [n] if

2S = {F ∩ S : F ∈ F}.

Let us remark that we omit multiplicities in the above definition. We denote the family

of subsets of [n] shattered by F by Sh(F). A set system F ⊆ 2[n] is a down-set (up-set) if

G ⊆ F and F ∈ F (G ∈ F) implies G ∈ F (F ∈ F). Note that Sh(F) is always a down-set.

From here on, if not specified otherwise, F will always be from 2[n].

We would like to point out that the notion of shattering can also be stated in terms of the

trace of a set system. Given a set S ⊆ [n], the trace F|S of a set system F on S is defined as

F|S = {F ∩ S : F ∈ F}. Then S is shattered by F precisely if F|S = 2S . This naturally

leads to certain forbidden trace problems. Here, we are given two set systems F and G and

we say that F traces G if there is S ⊆ [n] such that F|S contains a family isomorphic to G.

Then the question is, what is the largest size of a set system F that does not trace G. For

more details we refer the interested reader to the survey of Füredi and Pach [35].

Let us have a look at a small example. If n = 3 and F = {∅, {1}, {2}, {1, 3}}, then the

shattered sets are Sh(F) = {∅, {1}, {2}, {3}}.
A natural first question is to ask how the size of a family F relates to the size of the family

it shatters. This question is answered from one side in the following fundamental result, which

is usually referred to as the Sauer-Shelah lemma.

Proposition 1.4.2 (Sauer [69], Shelah [72]). Let F ⊆ 2[n] be a set system. Then

|Sh(F)| ≥ |F|.

Note that this bound is tight as shown by the example above. This statement was proved

independently by several authors, most prominently of course by Sauer [69] and Shelah [72].

Note that the above example shows that this inequality can be achieved and hence is tight.

As is usual in Extremal Combinatorics, families that achieve equality for certain inequalities

are of special interest and in what follows we shall focus on those.

Definition 1.4.3. Let F ⊆ 2[n] be a set system. We call F shattering extremal, or s-extremal

for short, if it shatters exactly |F| sets, i.e. if |Sh(F)| = |F|.
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An important class of s-extremal families are down-sets. Indeed, if F is a down-set, then

it is not hard to see that Sh(F) = F : Every set S ∈ F is clearly shattered by F since S and

all its subsets already belong to F . On the other hand, all sets S /∈ F cannot be shattered

by F , because F ∩ S 6= S for every F ∈ F since F is a down-set. Hence Sh(F) = F , and so

down-sets are s-extremal.

Many interesting results have been obtained in connection with these combinatorial ob-

jects, among others by Bollobás, Leader and Radcliffe in [16], by Bollobás and Radcliffe in

[17], by Frankl in [31] and recently Kozma and Moran in [48] provided further interesting

examples of s-extremal set systems. Anstee, Rónyai and Sali in [4] related shattering to stan-

dard monomials of vanishing ideals, and based on this, Mészáros and Rónyai in [65] developed

algebraic methods for the investigation of s-extremal families, which we will briefly recall in

Chapter 5.

To broaden the picture, we now mention some well known related results. The Vapnik-

Chervonenkis dimension of F , denoted by dimV C(F), is the size of the largest set shattered

by F . This notion plays a fundamental role in machine learning. An easy corollary of the

Sauer-Shelah lemma is the following result, known as the Sauer-inequality, which has found

applications in a variety of contexts.

Proposition 1.4.4 ([69],[72]). Let 0 ≤ k ≤ n and F ⊆ 2[n]. If F shatters no set of size k,

i.e. dimV C(F) ≤ k − 1, then

|F| ≤
k−1∑
i=0

(
n

i

)
. (1.8)

This bound is tight: Let F be the family of all subsets of [n] of size less than k. Then

F shatters no set of size k and has size exactly
∑k−1

i=0

(
n
i

)
. Families satisfying (1.8) with

equality are called maximum classes, and serve as important examples in the theory of machine

learning. They have several nice properties, among others they are s-extremal. In the case of

uniform families the above bound can be strengthened.

Proposition 1.4.5 (Frankl-Pach [33]). Let 0 ≤ k ≤ l ≤ n and F ⊆
([n]
l

)
. If F shatters no

set of size k, i.e. dimV C(F) ≤ k − 1, then

|F| ≤
(

n

k − 1

)
.

A set family S ⊆ 2[n] is called a Sperner family, or an antichain, if none of its sets is

contained in another. Note that uniform families are Sperner. We define the up-set generated

by S as

Up(S) = {F ⊆ [n] : ∃ S ∈ S such that S ⊆ F}.
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In connection with Proposition 1.4.5 it is an interesting open problem whether the above

bound holds for Sperner families in general and not merely for uniform ones (see [32]). Sperner

families will play an important role in our study of s-extremal set systems, since one can use

them to ‘build’ s-extremal set systems.

1.4.2 The elimination conjecture Now let us return to the study of s-extremal families.

The main goal here is to find good characterisations of them. A positive answer to the

following conjecture, formulated in [59], would be a possible way for this.

Conjecture 1.4.6. For every s-extremal set system F ( 2[n] there exists F /∈ F such that

F ∪ {F} is again s-extremal.

As by Theorem 2 in [17] F is s-extremal if and only if 2[n] \ F is so, the above conjecture

has an equivalent form, namely that for every non-empty s-extremal set system F ⊆ 2[n] there

exists F ∈ F such that F \{F} is again s-extremal. The conjecture was originally formulated

like this and that’s why we refer to it as the elimination conjecture. This latter form was

formulated by Litman and Moran independently, and called the corner peeling conjecture.

For maximum classes essentially the same was conjectured by Kuzmin and Warmuth in [54]

and proven by Rubinstein and Rubinstein in [66]. In this thesis we will always consider the

version as formulated in Conjecture 1.4.6. There are several other cases when the conjecture

is known to be true. First of all it is trivially true for down-sets, as there one can always add

any minimal element not belonging to it. Mészáros and Rónyai in [58] and [59], using a graph

theoretic approach, proved the conjecture for s-extremal families of VC-dimension at most 2.

According to personal communication, the same result was independently proven by Litman

and Moran. Some examples of Anstee in [3] and of Füredi and Quinn in [34] also turned out

to be s-extremal and they also satisfy the conjecture.

1.4.3 The results In order to state our results, we first introduce some further notation.

Suppose we are given a Sperner family S ⊆ 2[n] and a function h : S → 2[n] such that h(S) ⊆ S
for every S ∈ S. For H ⊆ S ⊆ [n] define

PS = S + 2[n]\S and QS,H = H + 2[n]\S .

Note that PS = Up(S) and that PS and QS,h(S) are hypercubes of the same dimension,

namely n − |S|, and in particular |PS | = |QS,h(S)|. Furthermore QS,H can be thought of as

all sets whose intersection with S equals H. This will be very convenient in future proofs.

Lastly, set

F(S, h) = 2[n] \
⋃
S∈S
QS,h(S).
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Remark 1.4.7. We would like to point out that one could of course introduce the above

notation for general families S. However, in this case, letting S ′ denote the collection of

minimal elements in S, we get that S ′ is a Sperner family, H(S) = H(S ′), and F(S, h) =

F(S ′, h). Using this, most of our results can be formulated and proven for general families

S. For simplicity and since our interest mostly lies in the case of Sperner families, we will

consider only them.

The following proposition is the starting point for our discussion which might be a good

first step towards a nice characterisation of s-extremal families.

Proposition 1.4.8. Let S ⊆ 2[n] be a Sperner family and let h : S → 2[n] be a function such

that h(S) ⊆ S for every S ∈ S. Then F = F(S, h) is s-extremal with Sh(F) = 2[n] \
⋃
S∈S PS

if and only if ∣∣∣∣∣ ⋃
S∈S
PS

∣∣∣∣∣ =

∣∣∣∣∣ ⋃
S∈S
QS,h(S)

∣∣∣∣∣ . (1.9)

We will prove this Proposition in Chapter 5.

The reason this might be a good starting point to tackle the elimination conjecture is that

every s-extremal family F ⊆ 2[n] is of the form F(S, h) for a unique Sperner system S and

function h. Indeed, the Sperner family is simply the collection of all minimal sets not shattered

by F and we will show the existence and uniqueness of an appropriate h in Chapter 5, see

Lemma 5.3.5. This further justifies the fact that we restrict our attention to Sperner families

S, as mentioned in the remark above.

We will study the applications of Proposition 1.4.8 in three different ways. Firstly we will

prove Conjecture 1.4.6 for a special class motivated from Equation (1.9). More precisely, we

will show the following theorem.

Theorem 1.4.9. Let S = {S1, ..., SN} ⊆ 2[n] be a Sperner family and A ⊆ [n] be a fixed

set. Furthermore let hA : S → 2[n] be defined as hA(S) = S ∩ A. Then Conjecture 1.4.6

holds for F(S, hA), i.e. F(S, hA) is s-extremal and there is F /∈ F(S, hA) such that F ′ =

F(S, hA)∪{F} is again extremal. Moreover F ′ = F(S ′, hA) for some suitable Sperner family

S ′.

So in fact we will start with a Sperner family S and define the function h by fixing some

set A ⊆ [n] as described in the Theorem. A first step will be to show that the resulting set

system F(S, hA) is indeed s-extremal, see Proposition 5.1.3.

Secondly, we will prove the conjecture when the corresponding Sperner family is small.

For this, we shall present an equivalent form of Conjecture 1.4.6 which is formulated in terms

of the cubes QS,h.
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Theorem 1.4.10. Let S ⊆ 2[n] be a Sperner family of size at most four, h : S → 2[n] be a

function such that h(S) ⊆ S for every S ∈ S and suppose that the resulting family F(S, h)

is s-extremal. Then Conjecture 1.4.6 holds for F(S, h), i.e. there is F /∈ F(S, h) such that

F ′ = F(S, h) ∪ {F} is again extremal.

Lastly we continue the study of the connection between so-called Gröbner bases and s-

extremal families, initiated by Mészáros and Rónyai [65]. Since the result requires some more

definitions we will only state it after introducing Gröbner bases in Chapter 5. The results of

this section are joint work with Tamás Mészáros.



Chapter 2

Strong Ramsey games: Drawing on

an infinite board

Recall that the main aim of this chapter is to prove Thereom 1.1.1, i.e. to show that there

exists a 5-uniform hypegraph H such that the strong Ramsey game R(5)(H,ℵ0) is a draw.

We begin by outlining the idea of the construction of H as well as the strategy for SP. We

then prove some sufficient conditions a hypergraph H has to satisfy such that the game

R(k)(H,ℵ0) is a draw. This will be followed by an explicit construction of a 5-graph that

satisfies these conditions, thus proving Theorem 1.1.1. The last section will contain some

concluding remarks and open problems.

2.1 Overview of the proof

Since the proof of our main result is fairly technical, even though it is based on a very simple

idea, we briefly sketch this idea now.

The main properties of the construction are that the hypergraph H has a distinguished

degree 2 vertex z while all other vertices have degree at least 4, and that H \ z is highly

asymmetrical and still has minimum degree at least 3.

The main idea of the proof is fairly simple and goes as follows: SP can create an almost

copy of H, namely a copy of H\ z, before FP can make a single threat. SP can then make an

infinite series of threats, each one forcing FP to respond immediately. Making such a series of

threats is possible due to the properties of H which make z unique. Moreover, since H \ z is

asymmetric, when FP blocks a threat, he does not create a threat of his own. It is of course

possible that FP will be the first to initiate a (possibly infinite) series of threats. However,

for similar reasons, SP will be able to block all of them, thus preventing FP from completing

a copy of H. Hence, the rough idea of the strategy of SP may be summarised as follows:

21
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(i) Build a copy of H \ z before FP can create a threat. Otherwise SP essentially ignores

the moves of FP.

(ii) Once SP has build H \ z, he looks at the hypergraph FP built.

(a) If FP created a threat, SP blocks it.

(b) If FP did not create a threat, SP starts an infinite series of threats.

The precise strategy containing all details will be given in the proof of Theorem 2.2.1 in the

following section.

2.2 Sufficient conditions for a draw

In this section we list several conditions of a k-uniform hypergraph H which suffice to ensure

that R(k)(H,ℵ0) is a draw. Recall that the degree of a vertex x ∈ V (H) in a hypergraph H,

denoted by dH(x), is the number of edges of H which are incident with x. The minimum

degree of H, denoted by δ(H), is min{dH(u) : u ∈ V (H)}. In the remainder of this chapter

we will often use the terminology k-graph or simply graph rather than k-uniform hypergraph.

Lastly, we say that a k-graph F has a fast winning strategy if a player can build a copy

of F in |E(F)| moves (note that this player is not concerned about his opponent building a

copy of F first).

Theorem 2.2.1. Let H be a k-graph which satisfies all of the following properties:

(i) H has a degree 2 vertex z;

(ii) δ(H \ {z}) ≥ 3 and dH(u) ≥ 4 for every u ∈ V (H) \ {z};

(iii) H \ {z} has a fast winning strategy;

(iv) For every two edges e, e′ ∈ H, if φ : V (H \ {e, e′}) −→ V (H) is a monomorphism, then

φ is the identity;

(v) e ∩ r 6= ∅ and e ∩ g 6= ∅ holds for every edge e ∈ H, where r and g are the two edges

incident with z in H.

(vi) |V (H) \ (r ∪ g)| < k − 1.

Then R(k)(H,ℵ0) is a draw.

Before proving this theorem, we will introduce some more notation and terminology which

will be used throughout this section.
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Definition 2.2.2. Let e ∈ H be an arbitrary edge, let F be a copy of H \ {e} in Kk
N and let

e′ ∈ Kk
N be an edge such that F ∪{e′} ∼= H. If e′ is free, i.e. it is not claimed by either player,

then it is said to be a threat and F is said to be open. If F is not open, then it is said to be

closed.

Moreover, e′ is called a standard threat if it is a threat and e ∈ {r, g}. Similarly, e′ is called

a special threat if it is a threat and e /∈ {r, g}.

Next, we state and prove two simple technical lemmata. These lemmata nicely highlight how

to apply the monomorphism property (iv) of Thereom 2.2.1.

Lemma 2.2.3. Let H be a k-graph which satisfies Properties (i), (ii) and (iv) from Theo-

rem 2.2.1. Then, for every edge e ∈ H, if φ : V (H\{e}) −→ V (H) is a monomorphism, then

φ is the identity.

Proof. Fix an arbitrary edge e ∈ H and an arbitrary monomorphism φ : V (H \ {e}) −→
V (H). It follows by Properties (i) and (ii) that there exists an edge f ∈ H \ {e} such that

V (H \ {e, f}) = V (H). Hence, φ equals its restriction to V (H \ {e, f}) which is the identity

by Property (iv).

The next lemma plays an important role in the proof of Theorem 2.2.1. It asserts that given

a copy of H\{z} and a vertex x disjoint from V (H\{z}), there exists a unique pair of edges

r, g completing a copy of H. It is clear from the outlined strategy for SP that this property

is crucial for the strategy to work.

Lemma 2.2.4. Let H be a k-graph which satisfies Properties (i) and (iv) from Theorem 2.2.1.

For any given copy H′ of H \ {z} in Kk
N and any vertex x ∈ V (Kk

N) \ V (H′), there exists a

unique pair of edges r′, g′ ∈ Kk
N such that x ∈ r′ ∩ g′ and H′ ∪ {r′, g′} ∼= H.

Proof. Let H′ be an arbitrary copy of H\{z} in Kk
N and let x ∈ V (Kk

N)\V (H′) be an arbitrary

vertex. It is immediate from the definition of H′ and Property (i) that there are edges

r′, g′ ∈ E(Kk
N) such that x ∈ r′ ∩ g′ and H′ ∪ {r′, g′} ∼= H. Suppose for a contradiction that

there are edges r′′, g′′ ∈ E(Kk
N) such that {r′′, g′′} 6= {r′, g′}, x ∈ r′′∩g′′ and H′∪{r′′, g′′} ∼= H.

Let φ : V (H′ ∪{r′, g′})→ V (H′ ∪{r′′, g′′}) be an arbitrary isomorphism. The restriction of φ

to V (H′) is clearly a monomorphism and is thus the identity by Property (iv). Since x is the

only vertex in (r′ ∩ g′) \ V (H′) and in (r′′ ∩ g′′) \ V (H′), it follows that φ itself is the identity

and thus {r′, g′} = {r′′, g′′} contrary to our assumption.

We are now in a position to prove the main result of this section.

Proof of Theorem 2.2.1. Let H be a k-graph which satisfies the conditions of the theorem

and let m = |E(H)|. At any point during the game, let G1 denote FP’s current graph and
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let G2 denote SP’s current graph. We will describe a drawing strategy for SP. We begin by a

brief description of its main ideas and then detail SP’s moves in each case. The strategy is

divided into three stages. In the first stage SP quickly builds a copy of H\{z}, in the second

stage SP defends against FP’s threats, and in the third stage (which we might never reach)

SP makes his own threats.

Stage I: Let e1 denote the edge claimed by FP in his first move. In his first m − 2 moves,

SP builds a copy of H \ {z} which is vertex-disjoint from e1. SP then proceeds to Stage II.

Stage II: Immediately before each of SP’s moves in this stage, he checks whether there are

a subgraph F1 of G1 and a free edge e′ ∈ Kk
N such that F1∪{e′} ∼= H. If such F1 and e′ exist,

then SP claims e′ (we will show later that, if such F1 and e′ exist, then they are unique).

Otherwise, SP proceeds to Stage III.

Stage III: Let F2 be a copy of H\{z} in G2 and let z′ be an arbitrary vertex of Kk
N\(G1∪G2).

Let r′, g′ ∈ Kk
N be free edges such that z′ ∈ r′ ∩ g′ and F2 ∪ {r′, g′} ∼= H. If, once SP claims

r′, FP cannot make a threat by claiming g′, then SP claims r′. Otherwise he claims g′.

It readily follows by Property (iii) that SP can play according to Stage I of the strategy

(since Kk
N is infinite, it is evident that SP’s graph can be made disjoint from e1). It is obvious

from its description that SP can play according to Stage II of the strategy. Finally, since

SP builds a copy of H \ {z} in Stage I and since Kk
N is infinite, it follows that SP can play

according to Stage III of the strategy as well.

It thus remains to prove that the proposed strategy ensures at least a draw for SP. Since,

trivially, FP cannot win the game in less than m moves, this will readily follow from the next

three lemmata which correspond to three different options for FP’s (m−1)th move. We start

with the easiest case and proceed in increasing order of difficulty.

2.2.1 No threat The first lemma deals with the case in which FP does not make a threat

with his (m − 1)th move. According to SP’s strategy, he will start making standard threats

of his own and so the main point to prove here is that he can do so in such a way, that the

answer of FP can’t be a “counter-threat”, i.e. a move that simultaneously blocks SP’s threat

and is a threat itself.

Lemma 2.2.5. If FP’s (m− 1)th move is not a threat, then he cannot win the game.

Proof. Assume that SP does not win the game. We will prove that, under this assumption, not

only does FP not win the game, but in fact he does not even make a single threat throughout

the game. We will prove by induction on i that the following two properties hold immediately

after FP’s ith move for every i ≥ m− 1.
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(a) FP has no threat.

(b) Let G′1 denote FP’s graph immediately after his (m − 1)th move. Then G1 \ G′1 consists

of i −m + 1 edges em, . . . , ei, where, for every m ≤ j ≤ i, ej contains a vertex zj such

that dG1(zj) = 1.

Properties (a) and (b) hold for i = m − 1 by assumption. Assume they hold for some

i ≥ m − 1; we will prove they hold for i + 1 as well. Since FP’s (m − 1)th move is not a

threat, SP’s ith move is played in Stage III. By the description of Stage III, in his ith move

SP claims an edge e′ ∈ {r′, g′}, where both r′ and g′ contain a vertex z′ which is isolated in

G1. If FP does not respond by claiming the unique edge of {r′, g′}\{e′} in his (i+ 1)th move,

then SP will claim it in his (i+ 1)th move and win the game contrary to our assumption (by

Property (a), FP had no threat before SP’s ith move and thus cannot complete a copy of

H in one move). It follows that Property (b) holds immediately after FP’s (i + 1)th move.

Suppose for a contradiction that Property (a) does not hold, i.e., that FP makes a threat in

his (i + 1)th move. As noted above, in his ith move, SP claims either r′ or g′ and, by our

assumption that Property (a) does not hold immediately after FP’s (i+ 1)th move, in either

case FP’s response is a threat. Hence, immediately after FP’s (i+ 1)th move, there exist free

edges r′′ and g′′ and copies Fr and Fg of H \ {z} in G1 such that Fr ∪ {r′, g′′} ∼= H and

Fg ∪ {r′′, g′} ∼= H. By Property (ii) and since, by the induction hypothesis, Property (b)

holds for i, we have Fr ⊆ G′1 and Fg ⊆ G′1. Suppose for a contradiction that e1 ∈ Fr. Since

Fr ∪ {r′} is a threat, with z′ ∈ r′ in the role of z, it follows by Property (v) that r′ ∩ e1 6= ∅.
However, SP could have created a threat by claiming r′ in his ith move which, by Stages I

and III of SP’s strategy, implies that r′ ∩ e1 = ∅. Hence e1 /∈ Fr and an analogous argument

shows that e1 /∈ Fg. Since |E(G′1) \ {e1}| = m − 2, it follows that Fr = G′1 \ {e1} = Fg.
Therefore, by Lemma 2.2.4 we have {r′, g′′} = {r′′, g′}. Since, clearly r′ 6= g′, it follows that

{r′′, g′′} = {r′, g′} contrary to our assumption that both r′′ and g′′ were free immediately

before FP’s (i + 1)th move. We conclude that Property (a) holds immediately after FP’s

(i+ 1)th move as well.

2.2.2 Special threat The next lemma deals with the case in which FP makes a special

threat in his (m − 1)th move. According to SP’s strategy, he will first block this special

threat. Here, a main point is to prove, using the monomorphism property (iv), that FP

cannot win in his mth move. In fact, we will show that in this case FP makes exactly one

(special) threat.

Lemma 2.2.6. If FP’s (m− 1)th move is a special threat, then he cannot win the game.
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Proof. Assume that SP does not win the game. We will prove that, under this assumption, FP

does not win the game. We begin by showing that he does not win the game in his mth move.

Let e′ be a free edge such that G1 ∪ {e′} ∼= H. Playing according to the proposed strategy,

SP responds to this threat by claiming e′. Let f ′ denote the edge FP claims in his mth

move. Suppose for a contradiction that, by claiming f ′, FP completes a copy of H. Note that

(G1 \ {f ′}) ∪ {e′} ∼= H and so there exists an isomorphism φ : V ((G1 \ {f ′}) ∪ {e′})→ V (G1).

The restriction of φ to V (G1 \ {f ′}) is clearly a monomorphism and is thus the identity by

Lemma 2.2.3. However, V ((G1 \ {f ′})∪ {e′}) = V (G1 \ {f ′}) and so φ itself is the identity. It

follows that e′ ∈ G1 and thus e′ ∈ G1 ∩ G2 which is clearly a contradiction. We conclude that

indeed FP does not win the game in his mth move. Next, we prove that, in his mth move, FP

does not even make a threat. Suppose for a contradiction that by claiming f ′ in his mth move,

FP does create a threat. Immediately after FP’s mth move, let f ′′ ∈ G1 and f ′′′ ∈ Kk
N\(G1∪G2)

be edges such that H′ := (G1 \ {f ′′}) ∪ {f ′′′} ∼= H. Recall that H′′ := (G1 \ {f ′}) ∪ {e′} ∼= H
as well. Let φ : V (H′′)→ V (H′) be an isomorphism. The restriction of φ to V (H′′ \ {e′, f ′′})
is clearly a monomorphism and is thus the identity by Property (iv). Since FP’s (m − 1)th

move was a special threat, it follows that V (H′′ \ {e′, f ′′}) = V (H′′) and thus φ itself is the

identity. Therefore e′ ∈ H′. Since e′ 6= f ′′′ we then have e′ ∈ G1 and thus e′ ∈ G1 ∩ G2 which

is clearly a contradiction. We conclude that indeed FP does not make a threat in his mth

move.

It remains to prove that FP cannot win the game in his ith move for any i ≥ m+ 1. We

will prove by induction on i that the following two properties hold immediately after FP’s ith

move for every i ≥ m.

(a) FP has no threat.

(b) G1 contains at most one copy of H \ {z}.

Starting with the induction basis i = m, note that Property (a) holds by the paragraph

above. Moreover, since FP’s (m− 1)th move is a special threat, immediately after this move,

there exists a vertex u of degree two in G1. By Property (ii), this vertex and the two edges

incident with it cannot be a part of any copy of H \ {z} in G1 immediately after FP’s mth

move. Property (b) now follows since FP’s graph contains only m − 2 additional edges.

Assume Properties (a) and (b) hold immediately after FP’s ith move for some i ≥ m; we will

prove they hold after his (i + 1)th move as well. As in the proof of Lemma 2.2.5, we can

assume that in his (i+ 1)th move FP claims either r′ or g′. Since both edges contain a vertex

which was isolated in G1 immediately before FP’s (i+ 1)th move, neither edge can be a part

of a copy of H \ {z} in G1. Hence, Property (b) still holds. As in the proof of Lemma 2.2.5,

if FP does make a threat in his (i+ 1)th move, then G1 must contain two copies Fr 6= Fg of
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H \ {z} contrary to Property (b). We conclude that Property (a) holds as well.

2.2.3 Standard threats The following and final lemma deals with the case in which FP

makes a standard threat in his (m− 1)th move. Intuitively, this is the hardest case since here

FP has more control over the game.

Lemma 2.2.7. If FP’s (m− 1)th move is a standard threat, then he cannot win the game.

Proof. The basic idea behind this proof is that either FP continues making standard threats

forever or, at some point, he makes a move which is not a standard threat. We will prove

that, assuming SP does not win the game, in the former case there is always a unique threat

which SP can block, and in the latter case, by making his own standard threats, SP can force

FP to respond to these threats forever, without ever creating another threat of his own.

We first claim that, if FP does win the game in some move s, then there must exist some

m ≤ i < s such that FP’s ith move is not a threat. Suppose for a contradiction that this is

not the case. Assume first that, for every m− 1 ≤ i < s, FP’s ith move is a standard threat.

We will prove by induction on i that, for every m − 1 ≤ i < s, immediately after FP’s ith

move, G1 satisfies the following three properties:

(a) G1 contains a unique copy F1 of H \ {z};

(b) Let em−1, . . . , ei denote the edges of G1 \ F1. Then, for every m− 1 ≤ j ≤ i, there exists

a vertex zj ∈ V (G1) such that {zj} = ej \ V (F1) and dG1(zj) = 1;

(c) F1 ∪ {ei} is open and F1 ∪ {ej} is closed for every m− 1 ≤ j < i.

Properties (a), (b) and (c) hold by assumption for i = m− 1. Assume they hold for some

i ≥ m−1; we will prove they hold for i+1 as well. Immediately after FP’s ith move, let e′i be

a free edge such that F1 ∪ {ei, e′i} ∼= H. Note that e′i exists by Property (c) and is unique by

Lemma 2.2.4. According to his strategy, SP claims e′i thus closing F1 ∪ {ei}. By assumption,

in his (i + 1)th move FP makes a standard threat by claiming an edge ei+1. It follows that

ei+1 \ V (F1) = {zi+1}, where, immediately after FP’s (i+ 1)th move, dG1(zi+1) = 1. Hence,

Property (b) is satisfied immediately after FP’s (i+1)th move. Since δ(H\{z}) ≥ 3 holds by

Property (ii), it follows that Property (a) is satisfied as well. Finally, G1 satisfies Property (c)

by Lemma 2.2.4. Now, by Properties (a), (b) and (c), for every m− 1 ≤ i < s, immediately

after FP’s ith move there is a unique threat e′i. According to his strategy, SP claims e′i in his

ith and thus FP cannot win the game in his (i+ 1)th move. In particular, FP cannot win the

game in his sth move, contrary to our assumption.

Assume then that there exists some m ≤ i < s such that FP makes a special threat

in his ith move. We will prove that this is not possible. Consider the smallest such i.
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As discussed in the previous paragraph, immediately before FP’s ith move, G1 contained

a unique copy F1 of H \ {z}, and every vertex of G1 \ F1 had degree one in G1. If FP

makes a special threat in his ith move by claiming some edge f ′1, then there exists a free

edge f ′2 such that, by claiming f ′2 in his (i + 1)th move, FP would complete a copy H1

of H. Since |V (F1)| < |V (H)|, there is some vertex u ∈ V (H1) \ V (F1). Immediately

after FP’s (i + 1)th move, the degree of u in G1 is at most three. Hence, by Property (ii),

u must play the role of z in H1. Therefore, H1 = (F1 ∪ {f ′1, f ′2, e′u}) \ {f ′3}, where e′u is

the first edge incident with u which FP has claimed and f ′3 is some edge of F1. Since, at

some point in the game, e′u was a standard threat, and, at that point, F1 was the unique

copy of H \ {z} in G1, there exists an edge e′′u such that H′ := F1 ∪ {e′u, e′′u} ∼= H. Let

φ : V (H′) → V (H1) be an isomorphism. It is evident that H′ \ {e′′u, f ′3} = H1 \ {f ′1, f ′2} and

that the restriction of φ to V (H′ \ {e′′u, f ′3}) is a monomorphism and is thus the identity by

Property (iv). However, V (H′ \ {e′′u, f ′3}) = V (H′) = V (F1) ∪ {u} = V (H1) and thus φ itself

is the identity entailing e′′u ∈ G1. However, e′′u ∈ G2 holds by the description of the proposed

strategy. Hence e′′u ∈ G1 ∩ G2 which is clearly a contradiction.

We conclude that there must exist some m ≤ i < s such that FP’s ith move is not a

threat. Let ` denote the first such move. In order to complete the proof of the lemma, we

will prove by induction on i that the following two properties hold immediately after FP’s ith

move for every i ≥ `.

(1) FP has no threat.

(2) Let G′1 = F1 ∪ {f}, where F1 is the unique copy of H \ {z} FP has built during his first

m− 1 moves and f is the edge FP has claimed in his `th move. Then G1 \ G′1 consists

of i −m + 1 edges em, . . . , ei, where, for every m ≤ j ≤ i, ej contains a vertex zj such

that dG1(zj) = 1.

Properties (1) and (2) hold for i = ` by assumption, by the choice of ` and by Properties

(a) – (c) above. Assume they hold for some i ≥ `; we will prove they hold for i + 1 as

well. Proving Property (2) can be done by essentially the same argument as the one used

to prove Property (b) in Lemma 2.2.5; the details are therefore omitted. Suppose for a

contradiction that Property (1) does not hold immediately after FP’s (i + 1)th move. As in

the proof of Property (a) in Lemma 2.2.5, it follows that there are free edges r′′ and g′′ and

graphs Fr ⊆ G′1 and Fg ⊆ G′1 such that Fr ∪ {r′, g′′} ∼= H ∼= Fg ∪ {r′′, g′}. Since Fr ⊆ G′1
and Fg ⊆ G′1, it follows by Property (ii) that V (Fr) = V (Fg). Let F2 ⊆ G2 be such that

F2 ∪ {r′, g′} ∼= H and let z′ be the unique vertex in r′ \ V (F2). Note that r′ \ {z′} ⊆ V (Fr)
and g′ \ {z′} ⊆ V (Fg). Hence (r′ ∪ g′) \ {z′} ⊆ V (Fr). By Property (vi), we then have

|V (F2) \ V (Fr)| ≤ |V (F2) \ (r′ ∪ g′)| < k − 1. However, e1 ∩ V (F2) = ∅ holds by the
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description of the proposed strategy and |e1 ∩ V (Fr)| ≥ k − 1 holds by our assumption that

FP’s (m−1)th move was a threat. This implies that k−1 ≤ |e1∩V (Fr)| ≤ |V (Fr)\V (F2)| =
|V (F2)\V (Fr)| < k−1 which is clearly a contradiction. We conclude that Property (1) does

hold immediately after FP’s (i+ 1)th move.

Since FP’s (m− 1)th move is either a standard threat or a special threat or no threat at

all, Theorem 2.2.1 follows immediately from Lemmata 2.2.5, 2.2.6 and 2.2.7. �

2.3 An explicit construction

In this section we will describe a 5-graph H (Fig. 2.1) which satisfies Properties (i) – (vi)

from Theorem 2.2.1 and thus R(5)(H,ℵ0) is a draw, proving Theorem 1.1.1. Before doing so,

we need one last definition.

Definition 2.3.1. A tight path is a k-graph with vertex set {u1, . . . , ut} and edge set e1, . . . , et−k+1

such that ei = {ui, . . . , ui+k−1} for every 1 ≤ i ≤ t− k + 1. The length of a tight path is the

number of its edges.

We proceed with the construction of the 5-graph H, see also Figure 2.1. The vertex set

of H is {z, v1, v2, v3, v4, v5, v6, v7, v8, v9}, and its edges are

r = {z, v1, v3, v5, v8},

g = {z, v2, v4, v7, v9},

a = {v1, v4, v6, v8, v9},

b = {v9, v1, v2, v3, v4},

e1 = {v1, v2, v3, v4, v5},

e2 = {v2, v3, v4, v5, v6},

e3 = {v3, v4, v5, v6, v7},

e4 = {v4, v5, v6, v7, v8},

e5 = {v5, v6, v7, v8, v9}.

It readily follows from the definition of H that it satisfies Properties (i), (ii), (v) and (vi)

from Theorem 2.2.1. We claim that it satisfies Properties (iii) and (iv) as well. We start with

Property (iii).

Lemma 2.3.2. H \ {z} has a fast winning strategy.
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v1
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v3

v4

v5
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v7

v8

v9

z

Figure 2.1: The 5-uniform hypergraph H. The black line from v1 to v9 represents the tight

path consisting of the edges e1, . . . , e5.

Proof. We describe a strategy for SP to build a copy of H \ {z} in seven moves. The basic

idea is to build a tight path of length 5 in five moves, and then to use certain symmetries

of H \ {z} in order to complete a copy of H \ {z} in two additional moves. Our strategy is

divided into the following three stages.

Stage I: In his first move, SP claims an arbitrary free edge e1 = {v1, v2, v3, v4, v5}. For every

2 ≤ i ≤ 5, in his ith move SP picks a vertex vi+4 which is isolated in both his and FP’s current

graphs and claims the edge ei = {vi, vi+1, vi+2, vi+3, vi+4}. If in his 6th move FP claims either

{v1, v2, v3, v4, v9} or {v1, v4, v6, v8, v9} or {v1, v3, v5, v8, v9}, then SP claims {v1, v6, v7, v8, v9}
and proceeds to Stage II. Otherwise, SP claims {v1, v2, v3, v4, v9} and skips to Stage III.

Stage II: If in his seventh move FP claims {v1, v2, v4, v6, v9}, then SP claims {v1, v2, v5, v7, v9}.
Otherwise, SP claims {v1, v2, v4, v6, v9}.

Stage III: If in his seventh move FP claims {v1, v4, v6, v8, v9}, then SP claims {v1, v3, v5, v8, v9}.
Otherwise, SP claims {v1, v4, v6, v8, v9}.

It is easy to see that SP can indeed play according to the proposed strategy and that, in

each of the possible cases, the graph he builds is isomorphic to H \ {z}.

It remains to prove thatH satisfies Property (iv). We begin by introducing some additional

notation. If φ : V (H)→ V (H) is a monomorphism, and e = {a1, a2, . . . , a5} ∈ H, then we set

φ(e) := {φ(a1), φ(a2), . . . , φ(a5)}. For two edges e, f ∈ H, let Hef = H \ {e, f}.
Next, we observe several simple properties of H and of monomorphisms. These will be

crucial for the remainder of the section. Table 2.1 shows the degrees of the vertices in H and



2.3. AN EXPLICIT CONSTRUCTION 31

Table 2.2 shows the sizes of intersections of pairs of edges in H.

Vertex v1 v2 v3 v4 v5 v6 v7 v8 v9 z

Degree 4 4 5 7 6 5 4 4 4 2

Table 2.1: Degrees of vertices in H.

r g a b e1 e2 e3 e4 e5

r 1 2 2 3 2 2 2 2

g 1 2 3 2 2 2 2 2

a 2 2 3 2 2 2 3 3

b 2 3 3 4 3 2 1 1

e1 3 2 2 4 4 3 2 1

e2 2 2 2 3 4 4 3 2

e3 2 2 2 2 3 4 4 3

e4 2 2 3 1 2 3 4 4

e5 2 2 3 1 1 2 3 4

Table 2.2: Intersection sizes of pairs of edges in H.

Observation 2.3.3. The hypergraph H satisfies all of the following properties:

(1) V (H) \ {r, g} = {v6} and r ∩ g = {z}.

(2) e1 is the unique edge satisfying |e1 ∩ r| = 3 and |e1 ∩ g| = 2.

(3) b is the unique edge satisfying |b ∩ g| = 3 and |b ∩ r| = 2.

(4) There are precisely two tight paths of length five in H, namely, TP1 := (e1, e2, e3, e4, e5)

and TP2 := (b, e1, e2, e3, e4).

(5) For every two vertices u, v ∈ V (H), there are three edges f1, f2, f3 ∈ H such that |fi ∩
{u, v}| = 1 for every 1 ≤ i ≤ 3.

Observation 2.3.4. Let F and F ′ be k-graphs, where F ′ ⊆ F , and let φ : V (F ′)→ V (F) be

a monomorphism. Then

(a) dF (φ(x)) ≥ dF ′(x) ≥ dF (φ(x))− |E(F \ F ′)| holds for every x ∈ V (F ′).

(b) If P is a tight path of length ` in F ′, then φ(P ) is a tight path of length ` in F .
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(c) Let P = (f1, f2, . . . , fm) be a tight path in F ′, where m ≥ k and fi = {pi, . . . , pi+k−1}
for every 1 ≤ i ≤ m. If φ(P ) = (e1, e2, . . . , em), where ei = {qi, . . . , qi+k−1} for every

1 ≤ i ≤ m, then either φ(pi) = qi for every 1 ≤ i ≤ m + k − 1 or φ(pi) = qm+k−i for

every 1 ≤ i ≤ m+ k − 1.

(d) For any pair of edges x, y ∈ F ′ we have |φ(x) ∩ φ(y)| = |x ∩ y|.

We prove that H satisfies Property (iv) in a sequence of lemmata.

Lemma 2.3.5. Let e and f be two arbitrary edges of H and let φ : V (Hef ) → V (H) be a

monomorphism. If φ(e′) = e′ holds for every edge e′ ∈ Hef , then φ is the identity.

Proof. Suppose for a contradiction that φ is not the identity. Then, there exist distinct

vertices u, v ∈ V (Hef ) such that φ(u) = v. By Observation 2.3.3(5), there are three edges

f1, f2, f3 ∈ H such that |fi ∩ {u, v}| = 1 for every 1 ≤ i ≤ 3. Clearly, we may assume that

f1 /∈ {e, f} and thus φ(f1) = f1 by the assumption of the lemma. Since φ(u) = v, it follows

that {u, v} ⊆ f1 which is a contradiction.

Lemma 2.3.6. Let φ : V (Hef )→ V (H) be a monomorphism. Then φ(z) = z.

Proof. Assume first that {e, f} ∩ {r, g} 6= ∅. Then dHef
(z) ≤ 1. Combined with Observa-

tion 2.3.4(a), this implies that dH(φ(z)) ≤ 1+ |{e, f}| = 3. Since z is the only vertex of degree

at most 3 in H, it follows that φ(z) = z.

Assume then that {e, f}∩{r, g} = ∅. Since φ is a monomorphism, there exists a vertex v ∈
V (Hef ) such that φ(v) = z. Suppose for a contradiction that v 6= z. By Observation 2.3.4(a),

we have dHef
(v) ≤ 2 and thus dH(v) ≤ 4. Since z is the only vertex of degree less than

4 in H, it follows that dH(v) = 4 and that both e and f contain v. Let r′ = φ−1(r) and

g′ = φ−1(g) be the other two edges of H that contain v. By Observation 2.3.4(d), we have

|r′ ∩ g′| = |r ∩ g| = 1. Looking at Tables 2.1 and 2.2, we see that the only choice of r′, g′

and v such that dH(v) = 4 and r′ ∩ g′ = {v} is v = v9 and {r′, g′} = {b, e5}. Since both e

and f contain v as well, this implies that {e, f} = {g, a}, contrary to our assumption that

{e, f} ∩ {r, g} = ∅.

Lemma 2.3.7. Let φ : V (Hef ) → V (H) be a monomorphism. If r, g ∈ Hef , φ(r) = r and

φ(g) = g, then φ is the identity.

Proof. Since φ is injective, φ(r) = r, and φ(g) = g, it follows by Observation 2.3.3 (1) that

φ(v6) = v6.

By Observation 2.3.4(a), we have that dH(φ(v4)) ≥ dHef
(v4) ≥ 5 which in turn implies

that φ(v4) ∈ {v3, v4, v5, v6}. Since, moreover, φ(v4) ∈ φ(g) = g = {z, v2, v4, v7, v9}, it follows
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that φ(v4) = v4. Since e5 is the unique edge in H containing v6 but not v4, we have that if

e5 ∈ Hef , then φ(e5) = e5.

Since φ(r) = r and φ(g) = g, it follows by Observation 2.3.4(d) and by Observation 2.3.3(2),

that if e1 ∈ Hef , then φ(e1) = e1. Similarly, using Observation 2.3.3(3), it follows that if

b ∈ Hef , then φ(b) = b. We distinguish between the following three cases.

Case 1: b, e3 ∈ Hef . As noted above φ(b) = b. Since |e3∩b| = 2, Observation 2.3.4(d) and

Table 2.2 imply that φ(e3) ∈ {e3, r}. Since, moreover, φ(r) = r by assumption, we conclude

that φ(e3) = e3. Observation 2.3.4(d) then implies that (|φ(x)∩b|, |φ(x)∩e3|) = (|x∩b|, |x∩e3|)
for every edge x ∈ Hef . Looking at the rows corresponding to b and e3 in Table 2.2, we see

that the pair (|x∩ b|, |x∩ e3|) is distinct for every x ∈ H \ {r, g}. It follows that φ(x) = x for

every x ∈ Hef . Hence, φ is the identity by Lemma 2.3.5.

Case 2: e2, e5 ∈ Hef . As noted above φ(e5) = e5. Since |e2∩e5| = 2, Observation 2.3.4(d)

and Table 2.2 imply that φ(e2) ∈ {e2, r, g}. Since, moreover, φ(r) = r and φ(g) = g by

assumption, we conclude that φ(e2) = e2. Observation 2.3.4(d) then implies that (|φ(x) ∩
e5|, |φ(x)∩e2|) = (|x∩e5|, |x∩e2|) for every edge x ∈ Hef . Looking at the rows corresponding

to e5 and e2 in Table 2.2, we see that the pair (|x∩e5|, |x∩e2|) is distinct for every x ∈ H\{r, g}.
It follows that φ(x) = x for every x ∈ Hef . Hence, φ is the identity by Lemma 2.3.5.

Case 3: {e, f} ∈ {b, e3} × {e2, e5}. Observe that e1 ∈ Hef and thus, as noted above,

φ(e1) = e1. Looking at the row corresponding to e1 in Table 2.2 and using Observa-

tion 2.3.4(d), we infer that φ(e3) = e3, φ(e5) = e5, {φ(b), φ(e2)} = {b, e2}, and {φ(a), φ(e4)} =

{a, e4}. Since φ(v6) = v6, it then follows that φ(e2) = e2 and thus φ(b) = b. Let x denote

the unique edge of {e2, e5}∩Hef . Looking at the row corresponding to x in Table 2.2, we see

that |x∩a| 6= |x∩ e4|. Using Observation 2.3.4(d), we conclude that φ(a) = a and φ(e4) = e4.

Hence, φ is the identity by Lemma 2.3.5.

Since, clearly, at least one of the above three cases must occur, this concludes the proof

of the lemma.

Lemma 2.3.8. Let φ : V (Hef )→ V (H) be a monomorphism. If b, e5 ∈ Hef , then φ(v9) = v9.

Proof. Suppose for a contradiction that φ(v9) 6= v9. By Lemma 2.3.6 we have φ(z) = z which

implies that φ(v9) 6= z. By Observation 2.3.4(a) we have dH(φ(v9)) ≤ dHef
(v9) + 2 ≤ 6 which

implies that φ(v9) 6= v4.

Since φ is a monomorphism, we have {φ(v9)} = φ(b∩ e5) = φ(b)∩ φ(e5). Since {φ(v9)} is

the intersection of two edges, we must have φ(v9) ∈ {v4, v5, v9, z}. Combining this with the

previous paragraph, we infer that φ(v9) = v5.

Note that 6 = dH(v5) = dH(φ(v9)) ≤ dHef
(v9) + 2. Hence, dHef

(v9) = 4 which implies

that {g, a} ∩ {e, f} = ∅. Since φ(z) = z and φ(v9) = v5, we must have φ(g) = r.
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Since e1, e5 is the unique pair of edges satisfying e1∩e5 = {v5}, it follows that {φ(b), φ(e5)} =

{e1, e5}. Suppose for a contradiction that φ(b) = e5. Then, by Observation 2.3.4(d) we have

3 = |b∩ g| = |φ(b)∩ φ(g)| = |e5 ∩ r| = 2. We conclude that φ(b) = e1 and φ(e5) = e5. We can

now determine the missing edges in Hef and in φ(Hef ).

Claim 2.3.9. e2, e4 6∈ Hef and e2, e4 6∈ φ(Hef ).

Proof. Suppose for a contradiction that e2 ∈ Hef . Since |e2 ∩ b| = 3 and v9 /∈ e2, it follows

by Observation 2.3.4(d) that |φ(e2) ∩ e1| = |φ(e2) ∩ φ(b)| = 3 and v5 /∈ φ(e2). This is a

contradiction since there is no edge x ∈ H such that |x ∩ e1| = 3 and v5 /∈ x.

Suppose for a contradiction that e4 ∈ Hef . It follows by Observation 2.3.4(d) that 4 =

|e4 ∩ e5| = |φ(e4) ∩ φ(e5)| = |φ(e4) ∩ e5| and thus φ(e4) = e4. Since, moreover, v9 /∈ e4 and

φ(v9) = v5, it follows that v5 /∈ e4, contrary to the definition of e4.

Suppose for a contradiction that e2 ∈ φ(Hef ). Let x ∈ Hef be such that φ(x) = e2. Since

φ(b) = e1, it follows by Observation 2.3.4(d) that 4 = |e1 ∩ e2| = |b ∩ x|. Looking at the row

corresponding to b in Table 2.2, we infer that x = e1. However, since v9 /∈ e1, we then deduce

that v5 = φ(v9) /∈ e2 which is clearly a contradiction.

Suppose for a contradiction that e4 ∈ φ(Hef ). Let x ∈ Hef be such that φ(x) = e4. Since

φ(e5) = e5, it follows by Observation 2.3.4(d) that 4 = |e4 ∩ e5| = |x ∩ e5|. Looking at the

row corresponding to e5 in Table 2.2, we infer that x = e4. However, we already saw before

that assuming e4 ∈ Hef results in a contradiction.

We are now in a position to complete the proof of Lemma 2.3.8. Let F = H \ {e2, e4}.
It follows from Claim 2.3.9 that Hef = φ(Hef ) = F and that φ is an automorphism of F .

Hence, in particular, dF (φ(v4)) = dF (v4) = 5. On the other hand, since φ(g) = r, it follows

that φ(v4) ∈ {v1, v3, v5, v8}. Therefore dF (φ(v4)) ≤ 4 which is clearly a contradiction.

Lemma 2.3.10. Let φ : V (Hef ) → V (H) be a monomorphism. Suppose that Hef con-

tains a tight path of length 5. Then φ is either the identity or one of (v9v1v2v3v4v5v6v7v8)(z),

(v1v9v8v7v6v5v4v3v2)(z), (v9v8)(v1v7)(v2v6)(v3v5)(v4)(z), (v1v8)(v2v7)(v3v6)(v4v5)(v9)(z), and

(v1v9)(v2v8)(v3v7)(v4v6)(v5)(z).

Proof. By Lemma 2.3.6 we know that φ(z) = z. Moreover, by Observation 2.3.3(4), we know

that Hef contains TP1 or TP2. Moreover, by Observation 2.3.4(b), if TP1 ∈ Hef , then

φ(TP1) ∈ {TP1, TP2} and if TP2 ∈ Hef , then φ(TP2) ∈ {TP1, TP2}. Accordingly, we

distinguish between the following four cases.

Case 1: TP1 ∈ Hef and φ(TP1) = TP1. It follows by Observation 2.3.4(c) that either

φ is the identity or φ = (v1v9)(v2v8)(v3v7)(v4v6)(v5)(z).
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Case 2: TP1 ∈ Hef and φ(TP1) = TP2. It follows by Observation 2.3.4(c) that either

φ = (v1v9v8v7v6v5v4v3v2)(z) or φ = (v1v8)(v2v7)(v3v6)(v4v5)(v9)(z).

Case 3: TP2 ∈ Hef and φ(TP2) = TP1. It follows by Observation 2.3.4(c) that either

φ = (v9v1v2v3v4v5v6v7v8)(z) or φ = (v1v8)(v2v7)(v3v6)(v4v5)(v9)(z).

Case 4: TP2 ∈ Hef and φ(TP2) = TP2. It follows by Observation 2.3.4(c) that either

φ is the identity or φ = (v8v9)(v1v7)(v2v6)(v3v5)(v4)(z).

Lemma 2.3.11. Let φ : V (Hef )→ V (H) be a monomorphism. If b, e5 ∈ Hef , then φ is the

identity.

Proof. Suppose for a contradiction that φ is not the identity. By Lemma 2.3.6 we know

that φ(z) = z and by Lemma 2.3.8 we know that φ(v9) = v9. Assume first that φ(b) = b.

Since φ(v9) = v9, φ(b) = b, and e5 is the unique edge whose intersection with b is {v9}, we

infer that φ(e5) = e5. Since g is the unique edge containing both v9 and z, we infer that, if

g ∈ Hef , then φ(g) = g. Since e2 is the unique edge satisfying |e2 ∩ b| = 3, |e2 ∩ e5| = 2, and

|e2∩b∩e5| = 0, it follows by Observation 2.3.4(d) that, if e2 ∈ Hef , then φ(e2) = e2. Looking

at the rows corresponding to e5 and b in Table 2.2, we see that (|x∩ e5|, |x∩ b|) is distinct for

every x ∈ H\{g, e2}. This implies that φ(x) = x for every x ∈ Hef and thus φ is the identity

by Lemma 2.3.5 contrary to our assumption. Therefore, from now on we will assume that

φ(b) 6= b. Since φ(v9) = v9, it follows that φ(b) = e5 and φ(e5) = b. We distinguish between

the following three cases.

Case 1: {e, f} ⊆ {r, g, a}. Observe that Hef contains TP1. Since, moreover, φ(v9) = v9

and φ is not the identity by assumption, it follows from Lemma 2.3.10 that

φ = (v1v8)(v2v7)(v3v6)(v4v5)(v9)(z).

Let x ∈ {r, g, a}\{e, f}. Then φ(x) is not an edge of H contrary to φ being a monomorphism.

Case 2: g ∈ Hef . As noted above, φ(g) = g. Since b is the unique edge intersecting g in

3 vertices, we have φ(b) = b, contrary to our assumption that φ(b) 6= b.

Case 3: g /∈ Hef and r, a ∈ Hef . Since r is the unique edge such that z ∈ r and v9 /∈ r,
it follows that φ(r) = r. Similarly, since z /∈ a, v9 ∈ a, φ(b) = e5, and φ(e5) = b, it follows

that φ(a) = a. Then

{φ(v1)} = φ(b) ∩ φ(r) ∩ φ(a) = e5 ∩ r ∩ a = {v8},

{φ(v2)} = φ(b) \ (φ(r) ∪ φ(a)) = e5 \ (r ∪ a) = {v7},

{φ(v3)} = φ(b) ∩ φ(r) \ φ(a) = e5 ∩ r \ a = {v5}.

Since, moreover, φ(b) = e5, it follows that φ(v4) = v6. Now, using φ(r) = r and φ(a) = a, it

is easy to see that φ(v8) = v1 and thus φ(v6) = v4, φ(v5) = v3 and φ(v7) = v2. However, then
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neither φ(e1) nor φ(e4) is an edge of H. Since {e1, e4} \ {e, f} 6= ∅, this contradicts φ being a

monomorphism.

Lemma 2.3.12. Let φ : V (Hef )→ V (H) be a monomorphism. If {e, f} ∈ {b, e5} × {r, g, a},
then φ is the identity.

Proof. Since |{e, f} ∩ {b, e5}| = 1 by assumption, Hef contains either TP1 or TP2. Hence, φ

must be one of the six permutations listed in Lemma 2.3.10.

Assume first that r, g ∈ Hef . By Lemma 2.3.6 we know that φ(z) = z and thus

{φ(r), φ(g)} ⊆ {r, g}. Therefore φ(v6) = v6 holds by Observation 2.3.3(1). This implies

that φ is the identity since this is the only permutation listed in Lemma 2.3.10 which maps

v6 to itself.

Assume then that a ∈ Hef . This implies that φ is the identity since this is the only

permutation listed in Lemma 2.3.10 which maps a to an edge of H.

Lemma 2.3.13. Let φ : V (Hef )→ V (H) be a monomorphism. Then φ is the identity.

Proof. Let e′ and f ′ denote the two edges of H \ φ(Hef ). Suppose for a contradiction that φ

is not the identity. Observe that this implies that φ−1 is a monomorphism from φ(Hef ) to H
which is not the identity.

Since φ is not the identity, it follows from Lemma 2.3.11 that {b, e5} ∩ {e, f} 6= ∅. By

Lemma 2.3.12 we then infer that {r, g, a}∩{e, f} = ∅. Similarly, since φ−1 is a monomorphism

which is not the identity, it follows from Lemma 2.3.11 that {b, e5} ∩ {e′, f ′} 6= ∅ and from

Lemma 2.3.12 that {r, g, a} ∩ {e′, f ′} = ∅.
By Lemma 2.3.6 we know that φ(z) = z and thus {φ(r), φ(g)} ⊆ {r, g}. Therefore

φ(v6) = v6 holds by Observation 2.3.3(1). By Lemma 2.3.7 we know that φ(r) = g and

φ(g) = r, which implies that φ(x) 6= x for every x ∈ V (H) \ {z, v6}.
Since g, a and b are the only edges which do not contain v5, and {e, f} \ {g, a, b} 6= ∅, it

follows that dHef
(v5) ≤ 5. Since {e′, f ′} \ {g, a, b} 6= ∅, an analogous argument shows that

dφ(Hef )(v5) ≤ 5.

Suppose for a contradiction that e5 ∈ {e, f}. Then dHef
(v4) ≥ 6 and thus dφ(Hef )(φ(v4)) ≥

6 as well. Since, as noted above, dφ(Hef )(v5) ≤ 5, it follows from Table 2.1 that φ(v4) = v4.

However, this contradicts the fact that φ does not fix any vertex of V (H) \ {z, v6}. It follows

that b ∈ {e, f}. An analogous argument shows that b ∈ {e′, f ′} as well.

Suppose for a contradiction that e1 /∈ {e, f}. Then |φ(e1)∩g| = |φ(e1)∩φ(r)| = |e1∩r| = 3

holds by Observation 2.3.4(d). Since b is the only edge of H which intersects g in 3 vertices, it

then follows that φ(e1) = b. However, this contradicts the fact that b ∈ {e′, f ′}. An analogous

argument shows that e1 ∈ {e′, f ′} as well.
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We have thus shown that {e, f} = {e′, f ′} = {e1, b}. Hence, P = (e2, e3, e4, e5) is the

unique tight path of length 4 in Hef and in φ(Hef ). Since φ(z) = z and since φ(P ) = P

holds by Observation 2.3.4(b) it follows that φ(v1) = v1 contrary to φ not fixing any vertex

of V (H) \ {z, v6}.

This ends the case analysis and the proof of Theorem 1.1.1.

2.4 Concluding remarks and open problems

As noted in the introduction, the work in this chapter originated from Beck’s open problem

of deciding whether R(Kq,ℵ0) is a draw or FP’s win. While it would be very interesting to

solve this challenging problem, there are several natural intermediate steps one could make

in order to improve one’s understanding of the problem. In this chapter we constructed a

5-uniform hypergraph H5 such that R(5)(H5,ℵ0) is a draw, thus refuting the intuition that,

due to strategy stealing and Ramsey-type arguments, R(k)(H,ℵ0) is FP’s win for every k and

every k-graph H. It would be interesting to replace H5 with a graph.

Question 2.4.1. Is there a graph G such that R(2)(G,ℵ0) is a draw?

Our proof that R(5)(H5,ℵ0) is a draw, relies heavily on the fact that H5 has a vertex of degree

2. Since this is clearly not the case with Kq, for q ≥ 5, it would be interesting to determine

whether this condition is necessary.

Question 2.4.2. Given an integer d ≥ 3, is there a k-graph H such that δ(H) ≥ d and

R(k)(H,ℵ0) is a draw?

At this point it is worth emphasising that strong games are not monotone and so one cannot

simply take a 5-graph G containing the one constructed in Section 2.3 to boost the minimum

degree and argue that FP cannot build H5 and hence cannot build G either. For example, a

key point in SP strategy was to threaten to build a copy of H, which FP had to block earlier.

When the aim is to build G, then threatening to build H is of course meaningless since FP

does not care whether SP builds H.

Another important ingredient in our proof that R(5)(H5,ℵ0) is a draw, is the fact that SP

can build H5 \ {z} very quickly. A similar idea was used in [30] and in [29] to devise explicit

winning strategies for FP in various natural strong games. On the other hand, it was proved

by Beck in [9] that building a copy of Kq takes time which is at least exponential in q.

Intuitively, not being able to build a winning set quickly, should not be beneficial to FP. This

leads us to raise the following question.
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Question 2.4.3. Is there a k-graph H with minimum degree at least 3 such that R(k)(H,ℵ0)

is a draw and, for every positive integer n, FP cannot win R(k)(H, n) in less than, say,

1000|V (H)| moves?



Chapter 3

General Winning Criteria for

Maker-Breaker games

This Chapter is organised as follows. First, as a warm up, we will consider a special case

of Theorem 3.5.5, namely the k-AP game. We then continue and provide a proof of Theo-

rem 1.2.8, the general criterion for Maker, based on a probabilistic result of Janson,  Luczak

and Ruciński in Section 3.2. This will be followed in Section 3.3 by a proof of Theorem 1.2.9,

the general criterion for Breaker, through a combination of several smaller strategies aimed

at avoiding clustering of solutions. Subsequently we will consider the Maker-Breaker G games

and prove Theorem 1.2.2. We then define our generalisation of Beck’s van der Waerden games

and prove Theorem 3.5.5. These proofs are done mostly through applications of the two gen-

eral winning criteria for Maker and Breaker. Section 3.6 will include several common minor

results regarding the counting of solutions to a linear system of inhomogeneous equations

as well as the notions of induced subsystems. Lastly, Section 3.7 will contain some open

questions as well as a reflection on the strong connection between these results and some

well-known recent sparse statements in extremal combinatorics.

3.1 The threshold bias of the k-AP game

The reason for this section is twofold. On the one hand it introduces some of the main ideas

of the proofs of both Maker’s and Breaker’s winning criterion, and thus serves as a leisurely

paced introduction to the next two sections. On the other hand, in this special case we

actually have a deterministic strategy for Maker which is in general not the case. Since the

results proven in this section are a special case of Theorem 3.5.5, this chapter may be skipped.

In order to enable the reader to do so, all necessary definitions and theorems will be stated

(and proved) both here and in Section 3.3.

39
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We will now present two strategies for Maker and one for Breaker which together imply that

the threshold bias of the k-AP game G(Hk-AP(n); q) satisfies q(Hk-AP(n)) = Θ
(
n1/(k−1)

)
,

proving Theorem 1.2.3.

3.1.1 Maker’s strategy - a deterministic approach As mentioned at the beginning

of this section, a particularly nice thing about the k-AP game is that we actually have a

deterministic strategy for Maker. Indeed, Maker can simply play according to Beck’s Maker

criterion from Theorem 1.2.7.

Note that in this case we have p = 1 and recall that v(Hk-AP) = n and ∆2(Hk-AP) ≤
(
k
2

)
.

In order to apply Theorem 1.2.7, we need a lower bound on e(Hk-AP), i.e. on the number

of k-AP’s in [n]. We claim that e(Hk-AP) ≥ n2/(4(k − 1)) is such a lower bound: Indeed,

first choose the starting point of the k-AP in [n/2] and consider the largest possible common

difference that guarantees that the k-AP fits into [n] which is obviously n/(2(k − 1)). Now

we just plug these values into Beck’s Maker criterion to get a constant cM = cM (k) such that

Maker has a winning strategy provided the bias of Breaker satisfies q < cMn
1

k−1 . �

Unfortunately, this approach does not carry over to the general framework. The main reason

for this is that the maximum 2-degree is in general non-constant.

3.1.2 Maker’s strategy - a probabilistic approach The following notion plays a crucial

role in the probabilistic approach.

Definition 3.1.1 ((δ, k)-Szemerédi). Let 0 < δ < 1 be given. We say that a set T ⊆ N is

(δ, k)-Szemerédi if every subset S ⊆ T of size |S| ≥ δ|T | contains an arithmetic progression

of length k.

Schacht [70] and independently Conlon and Gowers [22] proved a sparse random analogue of

Szemerédi’s theorem. The result was formulated for the binomial random subset model [n]p.

Given some finite set A of size |A| = n and 0 < p < 1 we will use the notation Ap to refer

to the binomial random set that is obtained by picking each element of A independently with

probability p. For any given subset T ⊂ A we therefore have P(Ap = T ) = p|T |(1− p)|A|−|T |.
On the other hand, given 0 ≤ M ≤ n the uniform random set AM is obtained by assigning

each subset T ⊂ A of size |T | = M the same probability P(AM = T ) = 1/
(
n
M

)
.

Theorem 3.1.2 (Schacht [70], Conlon-Gowers [22]). For every 0 < δ < 1 and every k ∈ N
there exists a constant C = C(δ, k) such that

P ([n]M is (δ, k)-Szemerédi )→ 1

for every sequence M = M(n) satisfying M(n) ≥ Cn1−1/(k−1).
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We can now prove Maker’s part of Theorem 1.2.3.

Fix an arbitrary strategy SB for Breaker. Maker will play according to the following random

strategy: in each round he picks an element uniformly at random from among all elements of

[n] that he has not previously picked. If this element was not already occupied by Breaker,

then Maker occupies it. Otherwise he occupies an arbitrary free vertex and forgets about it

for the rest of the game (and so he might pick it in a later round). Note the subtle difference

between picking and occupying an element. We label an element picked by Maker as a failure,

if that element was already occupied by Breaker. We will show that this random strategy

succeeds with positive probability against SB, so that SB is not a winning strategy. Since SB

was arbitrary, this shows that Maker must have a winning strategy.

Pick any 0 < δ < 1 and let C = C(δ, k) be the corresponding constant from Theorem 3.1.2.

Fix a positive constant cM = cM (C, δ) < (1 − δ)/(2C) and consider for q ≤ cMn
1/(k−1) − 1

the first

M = Cbn1−1/(k−1)c ≤ (1− δ)/2 · n

q + 1
(3.1)

rounds of the game. We may consider the set of elements that Maker picked in these M

rounds as the uniform random set [n]M . Note that some of his elements may be failures. We

will now upper bound the probability that Maker’s i-th move, which we refer to as mi, was

a failure. Clearly this probability is upper bounded by the probability that his M -th move

is a failure since in every round the number of ‘potential failures’ does not decrease and the

number of vertices Maker picks from strictly decreases. Note that in the first M − 1 rounds,

Maker picked exactly M − 1 vertices. So, in round M , there are n−M + 1 available vertices

to pick from. The potential failures are among the vertices occupied by Breaker and hence

their number is at most q (M − 1). Using Equation 3.1, it follows for every i ∈ [M ] that

P (mi a failure) ≤ P (mM a failure) ≤ q (M − 1)

n− (M − 1)
≤ q M

n−M
≤ 1− δ

2
.

The probability that Maker has more than (1− δ)M failures is now at most the probability

that among M independent Bernoulli trials with failure probability (1−δ)/2 there exist more

than (1− δ)M failures, which is less than 1/2 by Markov’s inequality. In other words, with

probability at least 1/2, at least δM elements picked by Maker are not failures.

By Theorem 3.1.2 we have P ([n]M is not(δ, k)-Szemerédi) ≤ 1/4 for n sufficiently large.

Consequently, with probability at least 1/4, the at least δM elements occupied by Maker

contain a k-AP. �

Note that the proof in fact shows that for q as above, Maker’s random strategy succeeds

with probability tending to 1 as n tends to infinity.

In contrast to the deterministic approach, this approach does generalise to general systems.

For this the main tasks are to generalise the notion of (δ, k)-Szemerédi sets (see Defini-
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tion 3.2.1) and to prove an appropriate version of Theorem 3.1.2 in this general context

(see Theorem 3.2.3). Here, a small change compared to Theorem 3.1.2 is that in the general

context the statement does not hold for every δ ∈ (0, 1) as above, but only for a specific value.

However, this clearly will be enough for our purposes.

3.1.3 Breaker’s strategy The main ingredient of Breaker’s strategy is the following con-

sequence of Beck’s biased Erdős-Selfridge criterion, see Theorem 3.3.2. It says that

for every hypergraph H and integer q ≥ 1 the following holds. If Breaker plays as the second

player, he can keep Maker from covering more than

(q + 1)
∑
H∈H

(
1

q + 1

)|H|
(3.2)

winning sets in G(H; q).

We also need the following definitions.

Definition 3.1.3 (Set-Theoretic Definitions). Given some hypergraph H, we define the fol-

lowing:

– an almost complete solution (H◦, h) is a tuple consisting of a set H◦ ⊆ V (H) as well

as an element h /∈ H◦ so that H = H◦ ∪ {h} is a edge in H,

– a t-fan is a family of distinct almost complete solutions {(H◦1 , h1), . . . , (H◦t , ht)} in H
satisfying |

⋂t
i=1H

◦
i | ≥ 1 and it is called simple if |H◦i ∩H◦j | = 1 for all 1 ≤ i < j ≤ t.

Given a t-fan in H we call the hi the open elements, the H◦i the major parts and the elements

of the intersection
⋂t
i=1H

◦
i the common elements.

Definition 3.1.4 (Game-Theoretic Definitions). At any given point in a positional game on

a given hypergraph H, we call an almost complete solution (H◦, h) dangerous if all elements

of H◦ have been picked by Maker and h has not yet been picked by either player. A fan is

dangerous if all of its almost complete solutions are.

Observe that for a dangerous fan we must have hi /∈ H◦j for all 1 ≤ i, j ≤ t. In the

following we will always assume that Breaker plays as second player. We say that a player

occupied a given t-fan (H◦1 , h1), . . . , (H◦t , ht) if his selection of vertices contains
⋃t
i=1H

◦
i .

Already at this point, we would like to stress a key difference in Breaker’s strategy for

k-AP’s compared to the general situation. As already seen in (1.3), the maximum 2 degree of

the hypergraph Hk-AP encoding non-trivial k-APs is constant. So in this case we do not need

to worry about many almost complete solutions having common intersection larger than 1.
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In general, however, we do have to deal with such structures and it is because of this that the

analysis of Breaker’s strategy will be much more complicated in general.

In order to prove Breaker’s part of Theorem 1.2.3, note that if Maker succeeds in occupying

a k-AP, then in some previous round he must have built a dangerous t-fan for some integer

t ≥ 1. The key point is to show that t cannot be too large.

Recall that Hk-AP is the hypergraph encoding non-trivial k-AP’s and that ∆2(Hk-AP) ≤
(
k
2

)
.

Firstly, we will show, using (3.2), that Breaker has a strategy that prevents Maker from

building a large dangerous fan.

Note that a direct application of (3.2) is difficult, due to overlaps of the not necessarily

simple fans. To resolve this issue, we will consider a dangerous and not necessarily simple

t-fan and extract from it a large number of ’large’ dangerous simple fans.

First, recall that any two elements in [n] are contained in at most
(
k
2

)
k-AP’s. Therefore,

any t-fan must contain a simple s-fan, where s = s(t) ≥ t

(k−2)(k2)
. To artificially increase the

number of simple fans, we will consider this simple s-fan as a collection of
(
s
w

)
simple w-fans,

where w = w(s) = sα, for some arbitrary but fixed 0 < α < 1. In other words, if there is a

‘large’ t-fan, then there is a ‘large’ collection of simple w-fan.

Lemma 3.1.5. For every integer k ≥ 3 the following holds. There exists a constant C ′B =

C ′B(k) > 0 such that Breaker with a bias of q ≥ C ′Bn
1

k−1 has a strategy that prevents Maker

from occupying a dangerous t-fan with t = t(q) ≥ q/2.

Proof. Let w and s be as defined above and let

F =
{ w⋃
i=1

H◦i | {(H◦1 , h1), . . . , (H◦w, ht)} simple w-fan in Hk-AP

}
to be the hypergraph of all simple w-fans in Hk-AP.

Now assume that Maker succeeds in building a dangerous t-fan, where t = t(q) ≥ q/2. From

the above discussion, we know that this t-fan contains a collection of
(
s
w

)
simple w-fans.

However, we will show that Breaker can in fact keep Maker from occupying
(
s
w

)
simple w-fans

and hence showing that the dangerous t-fan Maker built satisfies t = t(q) < q/2.

Set C ′B = C ′B(k) > (k4 · e)1/(k−1) and let q ≥ C ′Bn1/(k−1). For convenience, let q̄ = q/2.

By applying (3.2) to F we get that Breaker can keep Maker from building

(q̄ + 1)
∑
A∈F

(q̄ + 1)−|A| ≤ (q̄ + 1)

n
(
k n
k−1

)w
(k − 1)w

w!

 (q̄ + 1)−w(k−2)−1 (3.3)

simple w-fans. This inequality holds because there are n ways to fix a common element

of a simple w-fan, (k(n/(k − 1)))w is an upper bound on the number of w-tuples of k-AP’s



44 CHAPTER 3. GENERAL WINNING CRITERIA FOR MAKER-BREAKER GAMES

containing the fixed common element, since ∆1(Hk-AP(n) ≤ k·n/(k−1), and there are (k−1)w

ways of fixing the corresponding open elements. Lastly, the w! factor takes care of symmetries

and each simple w-fan has size w(k − 2) + 1. We therefore get, using s ≥ t/((k − 2)
(
k
2

)
) ≥

q̄/((k − 2)
(
k
2

)
), that

(q̄ + 1)
∑
A∈F

(q̄ + 1)−|A| ≤ n
(
k n e

w q̄k−2

)w
= n

(
k n e

q̄k−1

)w ( q̄
w

)w
≤ n

(
k(k − 2)

(
k
2

)
n e

Ck−1
B n

)w ( s
w

)w
≤ 1

2

(
s

w

)
.

for n = n(k) sufficiently large. Note that we have used that w grows with n and that

n

(
k(k − 2)

(
k
2

)
n e

Ck−1
B n

)w
≤ n

(
k4 n e

Ck−1
B n

)w
→ 0,

as n tends to infinity since C ′B > (k4 · e)1/(k−1). Therefore t = t(q) < q/2 as claimed.

Remark 3.1.6. Note that Inequality 3.3 used almost no specific information about Hk-AP(n).

Indeed the only time we did use such information was to bound the maximum degree of

Hk-AP(n) by k · n/(k − 1). This observation is crucial in the general context and in par-

ticular for Lemma 3.3.6.

We are now in a position to describe the strategy of Breaker, which consists of two parts. Let

q ≥ CBn1/(k−1), where CB = 2 C ′B and C ′B is as defined in Lemma 3.1.5.

SB1: Using q/2 moves, Breaker will play according to Lemma 3.1.5, thus preventing Maker

from occupying a dangerous t-fan, t = t(q) ≥ q/2.

SB2: With the remaing q/2 moves, Breaker will occupy all open elements of any dangerous

almost complete solution.

Note that Breaker can indeed play according to SB1 and SB2 and achieve the described goals

by choice of q. We will now prove, by induction, that after each of Breaker’s moves there is

no dangerous almost complete solution. Clearly this implies that Breaker’s strategy is indeed

a winning strategy. Initially there is obviously no dangerous almost complete solution. So

suppose the result is true in round r−1. In round r Maker claims an element b say. Then every

new dangerous almost complete solution must contain b. Therefore they all belong to the same

dangerous fan (with common element b). By Lemma 3.1.5 the size of this dangerous fan is

not more than q/2 (SB1) and hence Breaker can occupy all open elements in this dangerous

fan (SB2), which completes the inductive step and hence Breaker’s part of Theorem 1.2.3.
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3.2 Proof of Theorem 1.2.8 – Maker’s Strategy

The following notion plays a crucial role in the proof of Theorem 1.2.8 and is a natural

generalization of the notion that a set is (δ, k)-Szeméredi as defined by Conlon and Gowers [22]

(cf. Definition 3.1.1).

Definition 3.2.1 (δ-stable). Let F be a hypergraph, T ⊆ V (F) be a subset of its vertices and

0 < δ < 1. We say T is δ-stable if every subset of S ⊆ T of size |S| ≥ δ|T | contains an edge

of F .

Remark 3.2.2. Equivalently, T is called δ-stable, if the hypergraph F induced by T has

independence number less than δ|T |.

Maker’s strategy will consist of picking elements uniformly at random from among all

elements he has not previously picked. Some of these elements could have been occupied

previously by Breaker, in which case Maker occupies an arbitrary free element and forgets

about it for the remainder of the game. We will prove that with positive probability Maker

wins using this strategy. To do so, we will show that at least a δ-fraction of the elements

Maker picked were ‘legal’ moves (for some 0 < δ < 1). Furthermore we will ensure that the

set of vertices occupied by Maker is δ-stable. It then follows that Maker’s set of vertices

contain an edge with positive probability.

Given some finite set A and 0 < p < 1 we will use the notation Ap to refer to the binomial

random set that is obtained by picking each element of A independently with probability p.

For any given subset T ⊂ A we therefore have P(Ap = T ) = p|T |(1− p)|A|−|T |. On the other

hand, given 0 ≤ M ≤ n the uniform random set AM is obtained by assigning each subset

T ⊂ A of size |T | = M the same probability P(AM = T ) = 1/
(
n
M

)
.

The key ingredient to prove the existence of a winning strategy for Maker is the following

statement that says that for H as in Theorem 1.2.8, V (H)M is δ-stable for suitable M and δ.

Theorem 3.2.3. For every k ≥ 2 and for every constant c1 ≥ k there exists constants

δ = δ(k, c1) ∈ (0, 1) and c̃ = c̃(k, c1) > 0 such that the following holds. Let H be a k-uniform

hypergraph satisfying conditions (i),(ii) and (iii) from Theorem 1.2.8. Then

P (V (H)M is not δ-stable) < 3 exp

(
−M 1

c1 2k+2

)
,

for every M ≥ 2 bv(H)/f(H)c.

3.2.1 Proof of Theorem 1.2.8 from Theorem 3.2.3 We will now prove Theorem 1.2.8

assuming the statement of Theorem 3.2.3, whose proof will be presented in the next section.
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Proof of Theorem 1.2.8. Fix an arbitrary strategy SB for Breaker. Maker will play according

to the following random strategy: in each round he picks an element uniformly at random

from among all elements of V (H) that he has not previously picked. If this element was not

already occupied by Breaker, then Maker occupies it. Otherwise he occupies an arbitrary

free vertex and forgets about it for the rest of the game. Note the subtle difference between

picking and occupying a vertex. We label an element picked by Maker as a failure, if that

element was already occupied by Breaker. We will show that this random strategy succeeds

with positive probability against SB, so that SB is not a winning strategy. Since SB was

arbitrary, this shows that Maker must have a winning strategy.

Let δ = δ(k, c1) be chosen according to Theorem 3.2.3 and define c = (1 − δ)/4 > 0 to be a

constant. Let q ≤ cf(H)− 1 and consider the first

M = 2

⌊
v(H)

f(H)

⌋
≤ 1− δ

2

v(H)

q + 1
(3.4)

rounds of the game. We may consider the set of elements that Maker picked in these M

rounds as the uniform random set V (H)M . Note that some of his elements may be failures.

We will now upper bound the probability that Maker’s i-th move, which we refer to as mi, was

a failure. Clearly this probability is upper bounded by the probability that his M -th move

is a failure since in every round the number of potential failures does not decrease and the

number of vertices Maker picks from strictly decreases. Note that in the first M − 1 rounds,

Maker picked exactly M − 1 vertices. So, in round M , there are v(H) −M + 1 available

vertices to pick from. The potential failures are among the vertices occupied by Breaker and

hence their number is at most q (M − 1). Using Equation (3.4) it follows for every i ∈ [M ]

that

P (mi a failure) ≤ P (mM a failure) ≤ q (M − 1)

v(H)− (M − 1)
≤ q M

v(H)−M
≤ 1− δ

2
.

The probability that Maker has more than (1− δ)M failures is now at most the probability

that among M independent Bernoulli trials with failure probability (1−δ)/2 there exist more

than (1− δ)M failures, which is less than 1/2 by Markov’s inequality. In other words, with

probability at least 1/2, at least δM elements picked by Maker are not failures.

By Theorem 3.2.3 we have P (V (H)M is not δ-stable) < 3 exp
(
−M(c1 2k+2)−1

)
. Now

setting c̃ to be the maximum of c12k+1(log(3) + log(4)) + 1 and the corresponding value of c̃

in Theorem 3.2.3, and using that f(H) ≤ c̃−1v(H) by Condition (ii), one can verify that the

probability that the uniform random set V (H)M is not δ-stable is at most 1/4. Consequently,

with probability at least 1/4, the at least δM vertices occupied by Maker contain an edge of

H.
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Remark 3.2.4. Note that with a little more effort, the proof in fact shows that if q ≤ cf(H)−
1, then Maker’s random strategy succeeds with probability tending to 1 as v(H) tends to

infinity.

3.2.2 Proof of Theorem 3.2.3 The heart of the proof of Theorem 3.2.3 is the following

statement due to Janson,  Luczak and Ruciński, see Theorem 2.18, (ii) in [46].

Theorem 3.2.5 (Janson- Luczak-Ruciński [46]). Let A be a set and let 0 < p < 1. For a set

S ⊆ A denote by 1S the indicator random variable for the event that S ⊆ Ap. Let S ⊂ P(A)

be a family of subsets of A and let X =
∑
S∈S

1S. Then

P (X = 0) ≤ exp

(
− E(X)2∑∑

S,S′∈S
S∩S′ 6=∅

E(1S1S′)

)

where the sum is taken over all ordered pairs S, S′ with nonempty intersection.

Proof of Theoerem 3.2.3. We want to apply Theorem 3.2.5 with A = V (H), S = E(H) and

p = 1/f(H). Note that p < 1 due to Condition (ii). For X =
∑

e∈H 1e we have by linearity

of expectation E(X) = e(H) pk. Note that E(1e1e′) = p2k−|e∩e′| for e, e′ ∈ H and therefore∑∑
e,e′∈H
e∩e′ 6=∅

E(1e1e′) =
∑
e∈H

∑
∅6=S⊆e

∑
e′∈H
e∩e′=S

p2k−|S| ≤
∑
e∈H

∑
∅6=S⊆e

d(S) p2k−|S|

≤ e(H)
(

2k − 1
)

max
∅6=S⊆V (H)

(
d(S) p2k−|S|

)
≤ 2k e(H) max

1≤`≤k

(
∆`(H) p2k−`

)
= 2k e(H) p2k−1 max

(
max

2≤`≤k

(
∆`(H)

p`−1

)
, ∆1(H)

)
= 2k

E(X)2

p v(H) d(H)
max

(
max

2≤`≤k

(
∆`(H)

p`−1

)
, ∆1(H)

)

Using Condition (i) we now get

∑∑
e,e′∈H
e∩e′ 6=∅

E(1e1e′) ≤ 2k
E(X)2

p v(H)
max

(
max

2≤`≤k

(
∆`(H)

d(H) p`−1

)
, c1

)

≤ 2k
E(X)2

p v(H)
max

(
max

2≤`≤k

(
1

(f(H) p)`−1

)
, c1

)
= c1 2k

E(X)2

p v(H)
,
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where the last inequality follows from the definition of f(H) and the last equality follows from

the fact that f(H) p = 1 and c1 ≥ k. Now, using the estimate from Theorem 3.2.5, we get

P (V (H)p contains no edge of H) = P (X = 0) ≤ exp(−c′ v(H) p)

where c′ = 1/(c1 2k). Since the property of ‘not containing an edge of H’ is monotone

decreasing, we use Lemma 3.8.1 from the Appendix to restate this for the uniform random

set model as follows:

P (V (H)M̄ contains no edge of H) ≤ 3P
(
V (H)p contains no edge of H) ≤ 3 exp(−c′M̄

)
(3.5)

for any M̄ ≥ bv(H)/f(H)c.
We are now ready to finish the proof. Let M ≥ 2 bv(H)/f(H)c and let δ = δ(k, c1) > 1/2

be such that (1 − δ)(1 − ln(1 − δ)) < c′/4. To see that this is indeed possible, note that for

x ∈ (0, 1] the function f(x) = (1−x)(1− ln(1−x)) satisfies |f(x)| < 1 and f(x)→ 0 as x→ 1.

Consider pairs (S, S′) where S ⊂ V (H) with |S| = M and S′ ⊆ S is such that |S′| = δM and

S′ does not contain an edge of H. Using Inequality (3.5) with δM > bv(H)/f(H)c, we can

estimate the number of choices for a set S′ of size δM that contains no edge of H by

3 exp(−c′δM)

(
v(H)

δM

)
≤ 3 exp

(
− c′M

2

)(v(H)

δM

)
.

Hence, we can upper bound the number of pairs (S, S′) as described above by

3 exp
(
− c′M

2

)(v(H)

δM

)(
v(H)− δM
(1− δ)M

)
= 3 exp

(
− c′M

2

)( M

(1− δ)M

)(
v(H)

M

)
.

We can therefore upper bound the number of choices for a set S of size M containing a subset

of size δM that does not contain an edge of H by

3 exp
(
− c′M

2

)( M

(1− δ)M

)(
v(H)

M

)
≤ 3 exp

(
M(−c′/2 + (1− δ)(1− ln(1− δ)))

) (v(H)

M

)
.

Hence we get

P (V (H)M is not δ-stable ) ≤ 3 exp
(
M(−c′/2 + (1− δ)(1− ln(1− δ)))

)
≤ 3 exp

(
−M c′

4

)
where the last inquality follows by choice of δ = δ(k, c1).

3.3 Proof of Theorem 1.2.9 – Breaker’s Strategy

We will in fact derive Theorem 1.2.9 as a corollary of the following stronger statement.
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Theorem 3.3.1 (Breaker Win Criterion). For every k ≥ 2 and t > (2k)k the following holds.

If H is a k-uniform hypergraph, then Breaker has a winning strategy in G(H; q) provided that

q > 4 max

((
(2 v(H))1/t ∆1(H) ke

) 1
k−1

, 2k2t3

(
max

2≤`≤k−1

(
∆`(H)

(
(tk)tk kt v(H)2

) k

t1/k

) 1
k−`

+ 2

))
.

Note that e denotes Euler’s constant and should not be confused with the number of

edges. We start by giving a proof of Theorem 1.2.9 using Theorem 3.3.1. Then we define

the necessary concepts for the remainder of the section. Following this we present the two

main strategies for Breaker and prove their correctness. Finally we prove Theorem 3.3.1 using

these ingredients.

Proof of Theorem 1.2.9 from Theorem 3.3.1. Let k ≥ 2 and ε > 0 be given and set t =

log v(H). Assume that v(H) is large enough such that log v(H) > (2k)k. Using e =

v(H)1/ log v(H) it is straightforward to check that(
(2n)1/t∆1(H) ke

) 1
k−1 ≤ C ′1 ∆1(H)

1
k−1

for some constant C ′1 = C ′1(k) > 0. Similarly for v(H) sufficiently large we can upper bound

the term

2k2t3

(
max

2≤`≤k−1

(
2k ∆`(H)

(
v(H)2 (tk)tk

) k

t1/k

) 1
k−`

+ 2

)
by

C ′2 v(H)
C′3

log log v(H)

log1/k v(H) max
2≤`≤k−1

(∆`(H))
1

k−`

for some constants C ′2 = C ′2(k) > 0 and C ′3 = C ′3(k) > 0. Note that log log v(H)/ log1/k v(H)→
0 and so for v(H) large enough this will be at most v(H)ε max2≤`≤k−1

(
∆`(H)

1
k−`

)
. Choose

C1 = C1(k) ≥ max(C ′1, C
′
2, 4) and v0 = v0(k) large enough, proving Theorem 1.2.9.

3.3.1 Preliminaries and Definitions One of the most important results in the area of

positional games is the Erdős-Selfridge Theorem [27], the biased version of which is due to

Beck [10]. It ensures that Breaker can do at least as well as the expected outcome when

both players act randomly. We will use the following consequence of it heavily in the proof

of Theorem 1.2.9.

Theorem 3.3.2 (A biased Erdős-Selfridge Theorem [10]). For every hypergraph H and integer

q ≥ 1 the following holds. If Breaker plays as the second player, he can keep Maker from

covering more than

(q + 1)
∑
H∈H

(
1

q + 1

)|H|
(3.6)

winning sets in G(H; q).
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Proof. Beck showed that if
∑

H∈H (q + 1)−|H| < (q+1)−1 then Breaker has a winning strategy

in G(H; q) (see [10] or [44]). The crucial point in his argument is to show that the function

g(M,B) =
∑
H∈H
H∩B=∅

(1 + q)−|H\M |

never increases if it’s evaluated after every move of Maker. Here, M and B denote the sets

of Maker’s and Breaker’s vertices respectively. Note that before the game starts we have

g(∅, ∅) =
∑

H∈H (q + 1)−|H| and after Maker’s first move, in which he occupied the vertex m

say, g({m}, ∅) ≤ (1 + q)
∑
H∈H

(1 + q)−|H|.

Now, if Maker managed to occupy k ≥ 0 edges at some point during the game, then

clearly g(M,B) ≥ k since for every such edge H we have |H \M | = 0.

Hence, if Breaker tries to minimise the value of g in each move, he can prevent Maker

from occupying more than (q + 1)
∑

H∈H (q + 1)−|H| edges as claimed.

We will also need the following simple yet powerful remark.

Remark 3.3.3. If Breaker has a winning strategy for some positional game G(H; q0), then

he trivially still has a winning strategy in G(H; q) where q ≥ q0. It follows that if he has a

winning strategy for some game G(H1; q1) and a winning strategy for another game G(H2; q2),

then he can combine these two strategies to form a winning strategy in G(H1 ∪H2; q1 + q2).

This remark will be used extensively throughout the proof. Furthermore, we will need the

following definitions.

Definition 3.3.4 (Set-Theoretic Definitions). Given some hypergraph H, we define the fol-

lowing:

– a t-cluster is any family of distinct edges {H1, . . . ,Ht} ⊂ H satisfying |
⋂t
i=1Hi| ≥ 2,

– an almost complete solution (H◦, h) is a tuple consisting of a set H◦ ⊆ V (H) as well

as an element h /∈ H◦ so that H = H◦ ∪ {h} is a edge in H,

– a t-fan is a family of distinct almost complete solutions {(H◦1 , h1), . . . , (H◦t , ht)} in H
satisfying |

⋂t
i=1H

◦
i | ≥ 1 and it is called simple if |H◦i ∩H◦j | = 1 for all 1 ≤ i < j ≤ t,

– a t-flower is a t-fan satisfying |
⋂t
i=1H

◦
i | ≥ 2.

For each t-fan in H we call the hi the open elements, the H◦i the major parts and the elements

of the intersection
⋂t
i=1H

◦
i the common elements.

Definition 3.3.5 (Game-Theoretic Definitions). At any given point in a positional game on

a given hypergraph H, we call an almost complete solution (H◦, h) dangerous if all elements

of H◦ have been occupied by Maker and h has not yet been occupied by either player. A fan

or flower is dangerous if their respective almost complete solutions are.
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Observe that for a dangerous fan or flower we must have hi /∈ H◦j for all 1 ≤ i, j ≤ t.

In the following we will always assume that Breaker plays as second player. We say that

a player occupied a given t-fan or t-flower (H◦1 , h1), . . . , (H◦t , ht) if his selection of vertices

contains
⋃t
i=1H

◦
i . Similarly a player occupied a t-cluster H1, . . . ,Ht if his selection of vertices

contains
⋃t
i=1Hi.

3.3.2 Two important strategies for Breaker The following two lemmata give us strate-

gies that we will use to construct a larger strategy in the proof of Theorem 1.2.9. Note that

in the statement of the lemma we do not care about which player covers the open elements

of a fan.

Lemma 3.3.6. For every integer k ≥ 2 and t ≥ 1 the following holds. If H is a k-uniform

hypergraph, then Breaker with a bias of q >
(
(2 v(H))1/t ∆1(H) ke

)1/(k−1)
has a strategy that

prevents Maker from occupying 1/2
(
q
t

)
simple t-fans in the game G(H; q).

Proof. Let F =
{⋃t

i=1H
◦
i | {(H◦1 , h1), . . . , (H◦t , ht)} simple t-fan in H

}
be the hypergraph of

all simple t-fans in H. We want to apply Theorem 3.3.2, so we estimate

(q + 1)
∑
F∈F

(
1

q + 1

)|F |
≤ (q + 1)

(
v(H)

∆1(H)t (k − 1)t

t!

)(
1

q + 1

)t(k−2)+1

.

This inequality holds because there are v(H) ways to fix the common element of a simple

t-fan, ∆1(H)t is an upper bound on the number of t-tuples of edges containing the fixed

common element and there are (k−1)t ways of fixing the corresponding open elements. Note

that an open element is never a common element by definition. Furthermore, t! takes care of

the symmetry and each simple t-fan is of size t(k− 2) + 1. We therefore get, using t! ≥ (t/e)t

(q + 1)
∑
F∈F

(
1

q + 1

)|F |
≤ v(H)

(
∆1(H) ke

t qk−2

)t
= v(H)

(
∆1(H) ke

qk−1

)t (q
t

)t
< v(H)

1

2 v(H)

(q
t

)t
≤ 1

2

(
q

t

)
,

where the strict inequality follows from the choice of q. The claim now follows by applying

Theorem 3.3.2.

Lemma 3.3.7. For every integer k ≥ 2 and t > (2k)k the following holds. If H is a k-uniform

hypergraph, then Breaker with a bias of

q > max
2≤`≤k−1

(
∆`(H) ((tk)tk kt v(H)2)

k

t1/k

) 1
k−`

(3.7)

has a strategy that prevents dangerous t(q + 1)-flowers in G(H; q)
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Proof. Let F =
{⋃t

i=1Hi | {H1, . . . ,Ht} t-cluster in H
}

be the hypergraph of all t-clusters

in H. First we will show that Breaker can prevent t-clusters. Given some t-cluster H1, . . . ,Ht

let `i =
∣∣Hi ∩

⋃i−1
j=1Hj

∣∣ for all 2 ≤ i ≤ t. We call (2, `2, . . . , `t) its intersection characteristic

and observe that 2 ≤ `i ≤ k for 2 ≤ i ≤ t. We will set `1 = 2 for notational convenience. For

any ` = (`1, . . . , `t) ∈ {2} × [2, k]t−1 let F(`) denote the set of edges in F which come from

some t-cluster with the intersection characteristic ` and observe that it is v(`)-uniform where

v(`) = 2 +
t∑
i=1

(k − `i) = k +
t∑
i=2

(k − `i). (3.8)

This follows since given any cluster H1, . . . ,Ht with intersection characteristic ` we have

|
⋃t
i=1Hi| = v(`). There is the trivial upper bound v(`) ≤ tk for all ` ∈ {2} × [2, k]t−1. Let

L = {` : F(`) 6= ∅} ⊆ {2}× [2, k]t−1 be the set of all intersection characteristics that actually

occur in H. Now for any ` ∈ L we trivially have t ≤
(v(`)−2
k−2

)
which we restate as the lower

bound

v(`) ≥ t1/k for all ` ∈ L. (3.9)

Now for ` = (`1, . . . , `t) ∈ L observe that

|F(`)| ≤
(
v(H)

2

)
∆2(H)

t∏
i=2

(
k +

∑i−1
j=2(k − `i)− 2

`i − 2

)
∆`i(H)

≤
(
v(H)

2

) (
v(`)− 2

k − 2

)t−1

∆2(H)
t∏
i=2

∆`i(H) ≤ v(H)2 (tk)tk
t∏
i=1

∆`i(H).

Here, the first inequality is justified by observing that there are
(
v(H)

2

)
ways to fix two common

elements and at most ∆2(H) ways to choose the first edge H1 of a t-cluster. The product

counts ways to add the i-th additional edge Hi for 2 ≤ i ≤ t by first fixing the intersection

with the already established parts
⋃i−1
j=1Hj and then adding one of the at most ∆`i possible

ways of picking Hi. The second inequality follows since by assumption t > (2k)k so that

Equation (3.9) gives us v(`) ≥ 2k from which it follows that for all 2 ≤ i ≤ t we have(
k +

∑i−1
j=2(k − `i)− 2

`i − 2

)
≤
(
v(`)− 2

k − 2

)
.

We now want to apply Theorem 3.3.2, so we estimate

(q + 1)
∑
F∈F

(
1

q + 1

)|F |
≤ (q + 1)

∑
`2∈[2,k]

· · ·
∑

`t∈[2,k]

|F(`)|
(

1

q + 1

)v(`)

≤ (tk)tk v(H)2 (q + 1)
∑
`∈L

t∏
i=1

∆`i(H)

(
1

q + 1

)v(`)

.
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where we have just inserted the previously stated upper bound on |F(`)|. We now split up

the factor (1/(q + 1))v(`) using Equation (3.8) to obtain

(q + 1)
∑
F∈F

(
1

q + 1

)|F |
≤ (tk)tk v(H)2 1

q + 1

∑
`∈L

t∏
i=1

(
∆`i(H)

(
1

q + 1

)k−`i)
.

Note that we have ∆`(H) (1/(q + 1))k−` = 1 for ` = k and ∆`(H) (1/(q + 1))k−` < 1 for

2 ≤ ` < k due to the lower bound on q. Furthermore, since ` ∈ L is the intersection

characteristic of a t-cluster in H, the number of indices 1 ≤ i ≤ t for which `i < k must be at

least dv(`)/ke ≥
⌈
t1/k/k

⌉
. Now, due to Equation (3.7) it follows that

(q + 1)
∑
F∈F

(
1

q + 1

)|F |
≤ (tk)tk v(H)2 kt

(
max

2≤`≤k−1
∆`(H)

(
1

q

)k−`) t1/k

k

< 1.

It follows, by applying Theorem 3.3.2, that using a bias of q, Breaker has a strategy to keep

Maker from fully covering any t-cluster. Following this strategy, it is easy to see that Breaker

will also keep Maker from creating a dangerous t(q+1)-flower at any point in the game. To see

this, suppose that this is not the case and that Maker succeeds in creating such a dangerous

flower. By repeatedly claiming the open element of this dangerous flower which has not yet

been claimed and is the open element of the most almost complete solutions in the flower,

Maker would be able to cover a t(q + 1)/(q + 1) = t-cluster, which is a contradiction.

3.3.3 Proof of Theorem 3.3.1 In order to join the previous two strategies together, we will

need the following simple auxiliary statement. We include its simple proof for the convenience

of the reader.

Lemma 3.3.8. For every q ≥ 2 and t ≥ 2 the following holds: If F is a graph on q vertices

with e(F ) < q2/2t2 then F has at least 1/2
(
q
t

)
independent sets of size t.

Proof. The number of subsets of V (F ) of size t that are not independent is upper bounded

by

e(F )

(
q − 2

t− 2

)
≤ e(F )

(
t2

q2

)(
q

t

)
<

1

2

(
q

t

)
since e(F ) < q2/2t2.

We are now ready to prove Theorem 1.2.9. Let k ≥ 2 and t > (2k)k be given and let

q > 4 max

((
(2 v(H))1/t∆1(H) ke

) 1
k−1

, 2k2t3

(
max

2≤`≤k−1

(
∆`(H)((tk)tk kt v(H)2)

k

t1/k

) 1
k−`

+ 2

))
.

Breaker will play according to the following three strategies, splitting his bias as q = q/2 +

q/4 + q/4. Note that in case Breaker does not need all his moves to play according to one of

the strategies, he plays them arbitrarily, which cannot hurt him.
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SB1: Using q/4 moves, he will play according to Lemma 3.3.6 and thus preventing Maker

from occupying 1/2
(
q/4
t

)
simple t-fans.

SB2: Using q = max2≤`≤k−1

(
∆`(H)

(
(tk)tkkt v(H)2

)k/t1/k )1/(k−`)
+ 1 < q/4 moves, he will

play according to Lemma 3.3.7 and hence preventing dangerous t(q + 1)-flowers to

appear.

SB3: Using q/2 moves, Breaker will occupy all open elements of any dangerous almost com-

plete solution.

First of all note that Maker can successfully play according to SB1 and SB2 since

q/4 >
(

(2 v(H))1/t∆1(H) ke
)1/(k−1)

and q > max
2≤`≤k−1

(
2k ∆`(H)

(
v(H)2 (tk)tk

) k

t1/k
)1/(k−`)

.

We can combine these strategies due Remark 3.3.3 and will now prove by induction, that

after each of Breaker’s moves there is no dangerous almost complete solution. Clearly this

implies that Breaker’s strategy is indeed a winning strategy. Initially there is obviously no

dangerous almost complete solution. So suppose the result is true in round r− 1. In round r

Maker occupies an element w say. Then every new dangerous almost complete solution must

contain w. Therefore they all belong to the same dangerous fan (with common element w).

In order to complete the inductive step, we have to show that the size of this dangerous fan is

not more than q/2 as Breaker can then occupy all open elements in this dangerous fan (SB3),

which completes the inductive step. Indeed, using a bias of q/2 Breaker has a strategy that

avoids dangerous q/2-fans at any point in the game.

Suppose Maker succeeds in occupying a dangerous q/2-fan (H◦1 , h1), . . . , (H◦q/2, hq/2). Con-

struct an auxiliary graph F whose vertices are the almost complete solutions of this fan and an

edge between (H◦i , hi) and (H◦j , hj) indicates that |H◦i ∩H◦j | ≥ 2 where 1 ≤ i < j ≤ q/2. Recall

that using q moves according to SB2, Breaker prevents dangerous t(q+1)-flowers from appear-

ing. Therefore the maximum degree in F is bounded by ∆(F ) ≤ (t(q+1)−2)
(
k−1

2

)
≤ t(q+1)k2

and hence e(F ) ≤ 1
2
q
2 t(q + 1)k2 < 1

2
(q/2)2

t2
by choice of q. Therefore, by Lemma 3.3.8, F has

at least 1
2

(
q/4
t

)
independent sets of size t. But that means that Maker occupied 1

2

(
q/4
t

)
simple

t-fans contradicting SB1. This establishes the claim that Breaker has a strategy that avoids

dangerous q/2-fans and finishes the proof. �

3.4 Proof of Theorem 1.2.2 - Maker-Breaker G-game

Recall that the aim of this section is to use our general winning criteria to show that if G is

an r-uniform hypergraph on at least r + 1 non-isolated vertices, then the threshold bias of

the Maker-Breaker G-game on K(r)
n satisfies q(Hn(G)) = Θ

(
n1/mr(G)

)
.
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Proof of Theorem 1.2.2. We recall that Hn(G) is the hypergraph of all copies of G in K(r)
n .

Throughout this proof we will shorten the notation and simply write Hn for Hn(G). We

observe that Hn is e(G)-uniform and clearly

v(Hn) =

(
n

r

)
= Θ(nr) and e(Hn) =

(
n

v(G)

)
v(G)!

aut(G)
= Θ(nv(G)).

In particular, this implies that

d(Hn) = Θ(nv(G)−r). (3.10)

The last estimate we will need is the following. For every 1 ≤ ` ≤ e(G), we have

∆`(Hn) = Θ

 max
F⊂G
e(F)=`

nv(G)−v(F)

 (3.11)

We will prove that the threshold bias satisfies q(Hn) = Θ(n1/mr(G)) by showing the ex-

istence of two constants CM = CM(k, e(G)) > 0 and CB = CB(G) > 0 as well as n0,M =

n0,M(G) ∈ N and n0,B = n0,B(G) ∈ N such that for n ≥ n0,M and q ≤ CM n1/mr(G) Maker

has a winning strategy in G(Hn; q) and for n ≥ n0,B and q ≥ CB n
1/mr(G) the same holds for

Breaker.

We start with Maker’s strategy by checking that Hn satisfies the three conditions of

Theorem 1.2.8 for n large enough. First observe that if G is a collection of e(G) independent

edges, then Maker has a winning strategy if q <
(
n−r(e(G)−1)

r

)
/(e(G)− 1). So we may assume

that this is not the case. It is easy to see that Hn satisfies Condition (i) for c1 = k = e(G).

Just note that ∆1(Hn) = e(G) d(Hn), since Hn is a regular. It remains to be shown that Hn
satisfies Conditions (ii) and (iii) as well. Note that, using (3.10) and (3.11),

f(Hn) = min
2≤`≤e(G)

(
d(Hn)

∆`(Hn)

) 1
`−1

= min
2≤`≤e(G)

 Θ(nv(G)−r)

Θ(max F⊂G
e(F)=`

nv(G)−v(F))


1

`−1

= min
F⊂G
e(F)≥2

Θ

(
n

v(F)−r
e(F)−1

)
= Θ

(
n1/mr(G)

)
.

Clearly we have 1 < f(Hn) and so Hn satisfies Condition (ii).

Let c̃ = c̃(k, e(G)) be as given by Theorem 1.2.8. Since the maximum in mr(G) is attained

for a connected subhypergraph of G, we have mr(G) > 1/r so that f(Hn) → ∞ as n → ∞
and f(Hn) = o(v(Hn)). It follows that there exists n0,M ∈ N so that for n ≥ n0,M we have

v(Hn)

f(Hn)

(
1− 1

f(Hn)

)
≥ c̃,
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so Condition (iii) is satisfied as well. Hence, by Theorem 1.2.8, there exists a constant

c = c(k, e(G)) > 0 such that Maker has a winning strategy in G(Hn; q) if q ≤ c n1/mr(F) − 1

and n ≥ n0,M. The result follows for CM = CM(k, e(G)) = c− 1.

Now we provide Breaker’s strategy. Note that we can restrict our attention to the case

in which G is strictly r-balanced, as otherwise we can replace G with a strictly r-balanced

suphypergraph F ⊂ G. Indeed, if Breaker can keep Maker from occupying F , then he

clearly also succeeds in keeping Maker from occupying a copy of G. So we may assume that

mr(G) = (e(G) − 1)/(v(G) − r) and that mr(F) = (e(F) − 1)/(v(F) − r) < mr(G) for all

subgraphs F ( G on at least r + 1 vertices.

First of all, note that

∆1(Hn)
1

e(G)−1 ≤ c1 n
v(G)−r
e(G)−1 = c1 n

1
mr(G)

for some c1 = c1(r,G) > 0. Note that since G is strictly r-balanced, we have for every

2 ≤ ` ≤ e(G) and every subhypergraph F ⊂ G with e(F) = ` that

v(G)− v(F)

e(G)− `
=

(v(G)− r)− (v(F)− r)
(e(G)− 1)− (e(F)− 1))

=
1

mr(G)

1− v(F)−r
v(G)−r

1− e(F)−1
e(G)−1

<
1

mr(G)

where the last strict inequality follows since v(F) − r > (e(F) − 1)v(G)−r
e(G)−1 . Therefore there

exists a sufficiently small ε = ε(r,G) such that for every 2 ≤ ` ≤ e(G) and every subhypergraph

F ⊂ G with e(F) = ` we have, using (3.11)

∆`(Hn)
1

e(G)−` nε ≤ c` max
F⊂G
e(F)=`

n
v(G)−v(F)

e(G)−`
+ε ≤ c` n

1
mr(G)

for some constant c` = c`(r,G) > 0. Now let C1 = C1(k) and v0 = v0(k, ε) be as given by

Theorem 1.2.9. For CB ≥ C1 max(c1,max2≤`≤e(G) c`) and n0,B ≥ r v1/r
0 it follows by applying

Theorem 1.2.9 that Breaker indeed has a winning strategy in G(Hn; q) for q ≥ CB n
1/mr(G)

and n ≥ n0,B since

q ≥ CB n
1

mr(G) ≥ C1 max

(
∆1(Hn)

1
r−1 , max

2≤`≤r−1

(
∆`(Hn)

1
r−`

)
nε
)

as well as v(Hn) ≥ v0. This finishes the proof.

3.5 Generalising the van der Waerden game

As already mentioned in Section 1.2.3, we will now discuss what happens when we play the

Maker-Breaker game G(A,n; q) for an arbitrary matrix A ∈ Zr×m. This requires a certain

amount of preparation.
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3.5.1 Proper solutions We start by stating our results in the most natural case, i.e. when

Maker’s aim is to occupy a proper solution to A · xT = bT for some b ∈ Zr. We will then see

what effect repeated coordinates of solutions have in the subsequent subsection.

We begin by introducing further notation for the sets of different kinds of solutions and

the game hypergraph. For an integer-valued matrix A ∈ Zr×m and integer-valued vector

b ∈ Zr, we denote by

S(A,b) = {x ∈ Zm : A · xT = bT } (3.12)

the set of all integer solutions and let

S0(A,b) = {x = (x1, . . . , xm) ∈ S(A,b) : xi 6= xj for i 6= j} (3.13)

denote the set of all proper integer solutions. The m-uniform hypergraph of the game that

accepts only proper solutions from [n] is denoted by

S0(A,b, n) =
{
{x1, . . . , xm} : (x1, . . . , xm) ∈ S0(A,b) ∩ [n]m

}
. (3.14)

Next, after introducing some notation, we give the definition of some basic properties of

a matrix A ∈ Zr×m that are needed for the game not to be trivial. For a subset Q ⊆ [m], let

AQ denote the matrix obtained from A by keeping only the columns indexed by Q, where A∅

is the empty matrix.

Definition 3.5.1. Let A ∈ Zr×m. We call A

(i) positive if S(A,0)∩Nm 6= ∅, that is, there are solutions whose entries lie in the positive

integers,

(ii) abundant if rk(A) > 0 and rk(AQ) = rk(A) for all Q ⊆ [m] satisfying |Q| ≥ m− 2, that

is, A has rank strictly greater than 0 and every submatrix obtained from A by deleting

at most two columns must be of the same rank as A.

The importance of the first notion should be clear: if the homogeneous solution space is

disjoint from the positive quadrant in which we are playing, then the (inhomogeneous) game

hypergraph will contain at most finitely many winning sets for all n, so that the bias threshold

will also be bounded by some positive constant.

On the other hand, the second definition might initially be less clear, but we will see

that this is the key definition. First of all, the notion of abundancy is required for our

density parameter below to be well-defined. Secondly, non-abundant systems turn out to be

“degenerate” in some sense and in particular, Breaker wins the game with a bias of at most

2. We would like to highlight the following.
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Observation 3.5.2. Let A ∈ Zr×m be abundant. Then m ≥ rk(A) + 2, that is, the number

of columns is at least the rank of the matrix plus two.

Proof. Suppose for the sake of contradiction that m ≤ rk(A) + 1. Now note that if we delete

any two columns i, j we get rk(A{i,j}) ≤ m − 2 < rk(A). However, this contradicts the fact

that A is abundant.

For readers familiar with the notion of partition and density regular (or invariant) matrices

in the homogeneous setting, note that they are trivially positive. See [74] for an easy proof

that they are also abundant.

The observant reader will have noticed that even though the game hypergraph only accepts

proper solutions, we did not specifically introduce a notion for a matrix having a proper

solution. Indeed, this would be superfluous. In Lemma 3.6.1 we will show that if a matrix

A is positive and abundant then there exists a proper solution in the positive integers to

the associated homogeneous system of equations. Based on this we will in fact show in

Lemma 3.6.3 that for any positive and abundant matrix and vector b there is not just one,

but many proper solutions in the positive integers to the associated inhomogeneous system.

Before we continue, we collect some elementary observations, whose proofs we’ve all seen

in Linear Algebra. If A,B ∈ Zr×m and b,b′ ∈ Zr are such that S(A,b) = S(B,b′), then

the corresponding game hypergraphs are the same, i.e. S0(A,b, n) = S0(B,b′, n), and so the

resulting games are identical. In particular, if the extended coefficient matrix (A|b) can be

transformed into (B|b′) by a sequence of elementary row operations (multiplying a row by

a non-zero constant, adding a row to another row and switching rows), then S0(A,b, n) =

S0(B,b′, n) and the resulting games are identical again. More generally, if P ∈ Qr×r is an

invertible matrix, then S(A,b) = S(PA,Pb), so multiplying from the left with an invertible

matrix does not change the game. Furthermore, these operations do not change the rank of the

matrix. Similarly, switching two columns does not change the solution space (up to relabelling

the variables) nor its rank. Hence we will apply these operations whenever advantageous.

Finally, a crucial point in our arguments in the following sections is the following.

Observation 3.5.3. Let A ∈ Zr×m be an arbitrary matrix. If the matrix B ∈ Zr×m can be

obtained from A by a sequence of elementary row operations and switching columns, then A

is abundant if and only if B is abundant.

Proof. Let i, j ∈ [m] be arbitrary column indices. We may assume that A can be transformed

into B by elementary row operations only. Note that B{i,j} can be obtained from A by either

first applying the elementary row operations needed to transform it into B and then deleting

columns i, j or by first deleting columns i, j from A and then applying the exact same row
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operations to A{i,j}. Since elementary row operations preserve the rank, we get that A is

abundant if and only if B is abundant as claimed.

Next, in order to state our main theorem for van der Waerden type games, we define a

parameter for abundant matrices. Let rQ = rk(A) − rk(AQ) for any set of column indices

Q ⊆ [m] where we set rk(A∅) = 0.

Definition 3.5.4. The maximum 1-density of an abundant matrix A ∈ Zr×m is defined as

m1(A) = max
Q⊆[m]
2≤|Q|

|Q| − 1

|Q| − rQ − 1
. (3.15)

We will show in Lemma 3.6.6 that this parameter is indeed well-defined, that is |Q|−rQ−
1 > 0 for all Q ⊆ [m] satisfying |Q| ≥ 2 if A is abundant.

Note that this parameter has some clear parallels to the 2-density of a graph and was

originally introduced by Rödl and Rucinski for partition regular systems. For more details

on the connections to their result and others in the area of random sets and graphs, we refer

to the remarks given in Subsection 3.7.4.

We refer to the biased Maker-Breaker game played on the hypergraph S0(A,b, n) as the

Maker-Breaker (A, b)-game on [n]. Our main result regarding van der Waerden games states

the asymptotic behaviour of the threshold bias of these games depends only on the density

of A when A is positive and abundant.

Theorem 3.5.5. For every positive and abundant matrix A ∈ Zr×m and vector b ∈ Zr such

that S(A, b) 6= ∅, the threshold bias of the Maker-Breaker (A, b)-game on [n] satisfies

q(S0(A, b, n)) = Θ
(
n1/m1(A)

)
.

Remark 3.5.6. Note that m1(Ak-AP) = k − 1, so Theorem 1.2.3 is really just a special case

of Theorem 3.5.5, as already mentioned in the introduction.

The following result deals with those positive matrices not covered by the previous result.

This will be much easier to prove than the result of Theorem 3.5.5 and nicely highlights that

the simple structure of non-abundant matrices makes it much easier for Breaker.

Proposition 3.5.7. For every m ≥ 2, vector b ∈ Zr and positive but non-abundant matrix

A ∈ Zr×m, the threshold bias of the Maker-Breaker (A, b)-game on [n] satisfies

q(S0(A, b, n)) ≤ 2.
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3.5.2 Solutions with repeated entries From a game theoretic point of view it may seem

somewhat artificial to allow Maker to use certain elements multiple times to form a solution

with repeated entries. However, in this section we shall try to motivate the study of repeated

entries, the effect they have on the game and what kind of component-equalities do not make

it any easier for Maker. To do so, we will consider three different well-known matrices and

the effects repeated entries have in the corresponding games. This way the reader hopefully

finds the notion of non-degenerate solutions somewhat intuitive.

Recall that when we defined the k-AP game in terms of the van der Waerden matrix

Ak-AP we required that Maker needs to occupy a proper solution to Ak-APxT = 0T in order

to win. If we defined the game to be a Maker’s win even if he occupies a non-proper solution,

then the game becomes trivial. Indeed, the vector (z, ..., z) is a solution to the above equation

system and hence Maker wins with his first move. On the other hand, constant vectors are

the only non-proper solutions of Ak-APxT = 0T . Hence, if we allowed that some but not all

entries could be equal, the resulting game is identical to the game in which Maker needs to

occupy a proper solution.

For another fairly simple example, let us consider the so-called Schur triples. A Schur

triple is a solution to BxT = 0T , where B = (1, 1,−1). In the resulting game it turns out

that allowing non-proper solutions does not make it significantly easier for Maker. Indeed,

there are no positive solutions with x1 = x3 or x2 = x3 and to block solutions with x1 = x2

Breaker only needs at most two extra moves in each round, since he might need to occupy

the double and the half of Maker’s previous move.

To see that things can get more complicated, we will consider another classic equation,

the Sidon equation x1 +x2 = x3 +x4. In the resulting game the outcome of it changes greatly

depending on which component-equalities we allow. According to Theorem 3.5.5 the game

with proper solutions has threshold of the order n2/3. If we allowed x1 = x3 and x2 = x4,

then occupying any two different integers would provide Maker with a win, so the threshold

bias would grow to n− 1. If we were to allow for Maker solutions with repeated coordinates

x1 = x2, (but required x3 6= x1, x1 6= x4, x4 6= x3), then it turns out that the game’s

threshold bias is the same order of magnitude as the one of the game with proper solutions.

Indeed, in this case Maker would win the game also by occupying a 3-AP. However, since

m1(A3-AP) = 2 ≥ 3/2 (where 3/2 is the maximums 1-density of the matrix corresponding to

the Sidon equation), Breaker can block all 3-AP’s with a bias of order only n1/2. This is a

key point for the definition of non-degenerate solutions below.

Motivated by the above examples we will be after identifying exactly which component-

equalities make the game easier for Maker and which do not. More precisely which one of

them change the order of the threshold bias compared to the bias q(S0(A,b, n)) and which



3.5. GENERALISING THE VAN DER WAERDEN GAME 61

do not. Identifying this correct notion of “non-degenerate” solution for our setup takes a few

definitions.

Definition 3.5.8. Given a solution x = (x1, . . . , xm) ∈ S(A, b) for an integer-valued matrix

A ∈ Zr×m and vector b ∈ Zr, let

p(x) =
{
{1 ≤ j ≤ m : xi = xj} : 1 ≤ i ≤ m

}
(3.16)

denote the set partition of the column indices [m] indicating the repeated entries in x.

Note that for a proper solution x ∈ S0(A,b) we have p(x) = {{1}, . . . , {m}}. Given some

set partition p of {1, . . . ,m}, let Ap denote the matrix obtained by summing up the columns

of A according to p, that is for p = {T1, . . . , Ts} such that min(T1) < · · · < min(Ts) for some

1 ≤ s ≤ m and ci the i-th column vector of A for every 1 ≤ i ≤ m, we have

Ap =

( ∑
i∈T1

ci

∣∣∣ ∑
i∈T2

ci

∣∣∣ · · · ∣∣∣ ∑
i∈Ts

ci

)
. (3.17)

Note that the assumption min(T1) < · · · < min(Ts) ensures that this notion is well-defined

and that Ap = A for p = {{1}, . . . , {m}}.
Using these definitions we can now define when a solution is considered to be non-

degenerate:

1. If A is positive and abundant, then a solution x ∈ S(A,b) ∩ Nm is defined to be non-

degenarate if |p(x)| ≥ 2 and Ap is either non-abundant or it is abundant and satisfies

m1(Ap) ≥ m1(A).

2. If A is positive and non-abundant, then a solution x ∈ S(A,b) ∩ Nm is defined to be

non-degenarate if |p(x)| ≥ 2.

For example for the (positive and abundant) matrices associated to k-APs and Schur

triples the only non-degenerate solutions are the proper ones. For the matrix associated with

the Sidon equation x1 + x2 = x3 + x4 the discussion above shows that 3-term arithmetic

progressions are non-degenerate solutions with repeated entries.

The main result of this section shows that this is the right definition for those solutions,

which do not make the game any easier for Maker. One way of interpreting this is that if x

is a non-degenerate solution, then the system of equations given by Ap(x) does not loose any

of the “complexity” compared to the original system given by A. Note that our definition

includes solutions x ∈ S(A,b) for which rk(Ap(x)) = rk(A). These were called non-trivial by

Rué et al. [67]. Both definitions extend a previous definition for single-line equations due to

Ruzsa [68]. With this in mind we define

S1(A,b) =
{
x ∈ S(A,b) : x is non-degenerate

}
(3.18)
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and remark that

S(A,b) ⊇ S1(A,b) ⊇ S0(A,b).

Furthermore we denote by S1(A,b, n) the hypergraph containing all non-degenerate solutions

in [n], that is

S1(A,b, n) =
{
{x1, . . . , xm} : (x1, . . . , xm) ∈ S1(A,b) ∩ [n]m

}
. (3.19)

Note that S1(A,b, n) in contrast to S0(A,b, n) is not necessarily uniform.

The following result can be proven as a corollary to Theorem 3.5.5 and shows that allowing

non-degenerate solutions for Maker does not change the order of the threshold bias compared

to the proper game. In other words, with only a constant factor times the original threshold

bias, Breaker is able to block not just all proper solutions but also every non-degenerate

solution.

Corollary 3.5.9. For every positive matrix A ∈ Zr×m and vector b ∈ Zr the threshold bias

of the Maker-Breaker (A, b)-game on [n] allowing non-degenerate solutions satisfies

q(S1(A, b, n)) = Θ (q(S0(A, b, n))) .

Let us motivate why this is the “right” notion of non-degenerate solutions. Observe

that given some partition p of [m] the set {x ∈ S(A,b) : p(x) = p} is either empty or

it trivialy consists only of non-degenerate or only of degenerate solutions. We therefore

respectively also refer to p as either vacant, non-degenerate or degenerate. We will see later

in Subsection 3.7.3 that allowing Maker to also win by occupying any solution belonging to

a fixed degenerate partition p does change the order of the threshold bias. In other words,

non-degenerate solutions indeed provide an exact characterisation for classes of solutions with

repeated components that do not change the complexity of the original linear homogenous

system.

3.6 Proof of Theorem 3.5.5 – Generalised van der Waerden games

The goal of this section is to show that the threshold bias of the Maker-Breaker (A,b)-

game on [n] satisfies q(S0(A,b, n)) = Θ
(
n1/m1(A)

)
for a given positive and abundant matrix

A ∈ Zr×m and vector b ∈ Zr. We will prove this by showing the existence of constants

CM = CM(A,b) > 0 and CB = CB(A,b) > 0 as well as n0,M = n0,M(A,b) ∈ N and

n0,B = n0,B(A,b) ∈ N such that for n ≥ n0,M and q ≤ CM n1/m1(A) Maker has a winning

strategy in the (1 : q) Maker-Breaker (A,b)-game on [n] and for n ≥ n0,B and q ≥ CB n
1/m1(A)

the same holds for Breaker.
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We start by establishing some preliminary results regarding linear systems of equations.

This will include a proof of Proposition 3.5.7 as well as a proof of how to derive Corollary 3.5.9

from Theorem 3.5.5 and Proposition 3.5.7. We then obtain Maker’s strategy through an

application of Theorem 1.2.8. This will be followed by Breaker’s strategy, which is obtained

through an application of Theorem 1.2.9.

3.6.1 Preliminaries for Linear Systems In this subsection we mostly leave the world

of positional games and establish some elementary, though slightly technical, results using

Linear Algebra. In particular, we have to come up with a notion of a “dense substructure”

of a matrix which will be needed for the proof of Breaker’s part in case the matrix contains

a part which is “much denser” then the overall matrix.

We will first state the following lemma that shows that if a matrix is positive and abundant,

then the corresponding homogenous system of linear equations has a proper solution. This

will also be needed for the subsequent lemma.

Lemma 3.6.1. For every positive and abundant matrix A ∈ Zr×m there exists a proper

solution in the positive integers to the associated homogeneous system of equations, that is

S0(A,0) ∩ Nm 6= ∅.

Proof. Since A is positive, there exists x ∈ S(A,0) ∩ Nm and so S(A,0) ∩ Nm 6= ∅. For the

sake of contradiction, let us assume that no such solution is proper. Under this assumption,

we will prove the following.

Claim 3.6.2. There exist column indices 1 ≤ i 6= j ≤ m such that xi = xj for all x =

(x1, . . . , xm) ∈ S(A,0) ∩ Nm.

Proof of Claim 3.6.2. Suppose the claim is false, i.e. for all 1 ≤ i 6= j ≤ m there exists

x = (x1, . . . , xm) ∈ S(A,0) ∩ Nm with xi 6= xj , and let x∗ ∈ S(A,0) ∩ Nm be a solution

that has the fewest number of pairs of equal entries. Since there are no proper solutions,

there exists 1 ≤ i < j ≤ m such that x∗i = x∗j . By assumption, there exists a solution

y ∈ S(A,0) ∩ Nm with yi 6= yj . Now let

w = x∗ + αy,

where α is to be determined. Clearly we have wi 6= wj .

Suppose there exists 1 ≤ r < s ≤ m such that x∗r 6= x∗s but wr = ws. Note that this forces

yr 6= ys. From the definition of w, we get

α =
x∗r − x∗s
ys − yr

.
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Hence we can avoid all of these values in our choice of α, by choosing α ∈ N \ {x
∗
r−x∗s
ys−yr : 1 ≤

r, s ≤ m, ys 6= yr} arbitrarily and so w has fewer equal pairs of entries than x∗, contradicting

our choice of x∗. Thus, if x∗r 6= x∗s then wr 6= ws.

Continuing in this way finitely many times, we end up with a proper solution to AxT = 0T ,

a contradiction.

Due to Claim 3.6.2 we can transform A into a matrix B ∈ Zr×m with rk(B) = rk(A) and

S(B, 0) = S(A, 0) through a sequence of elementary row operations and by permuting the

columns appropriately, such that B is again abundant (see Observation 3.5.3) and contains

a row of the form (0, ..., 0, 1,−1). However, deleting the last two columns of B decreases its

rank, which yields a contradiction.

We continue by giving two basic bounds for the number of proper solutions. Given any

matrix A ∈ Zr×m and vector b ∈ Zr, we remark that we have the basic upper bound∣∣S0(A,b) ∩ [n]m
∣∣ ≤ ∣∣S(A,b) ∩ [n]m

∣∣ ≤ nm−rk(A). (3.20)

Indeed, taking a subset Q ⊆ [m] of the column indices with rk(A) = |Q| = rk(AQ) and

setting the m − rk(A) entries in Q̄ of a solution x ∈ S(A, 0) arbitrarily, the entries in Q are

determined uniquely.

The next lemma, whose proof is based on a construction by Janson and Ruciński [47],

establishes a lower bound that matches the upper bound up to a constant for positive and

abundant matrices and vectors b with S(A,b) 6= ∅. This will allow us to to estimate the

number of proper solutions.

Lemma 3.6.3. For every positive and abundant matrix A ∈ Zr×m and vector b ∈ Zr such

that S(A, b) 6= ∅ there exist constants c0 = c0(A, b) > 0 and n0 = n0(A, b) ∈ N such that for

every n ≥ n0

|S0(A, b) ∩ [n]m| ≥ c0 n
m−rk(A). (3.21)

Proof. By Lemma 3.6.1 we can pick some x̂0 = (x̂01, . . . , x̂0m) ∈ S0(A,0) ∩ Nm. Choose

furthermore some x̂ = (x̂1, . . . , x̂m) ∈ S(A,b) as well as some m− rk(A) linearly independent

solutions x1, . . .xm−rk(A) ∈ S(A,0). Let ŝ0 and ŝ the maximum absolute entries of x̂0 and x̂

respectively and s the maximum absolute entry in any of the vectors x1, . . . ,xm−rk(A). Define

a(n) = bn/(ŝ0 + 1)c and set

S(n) =

{
x̂ + a(n) · x̂0 +

m−rk(A)∑
i=1

wi · xi : wi ∈ Z, |wi| <
a(n)− 2ŝ

2s(m− rk(A))

}
⊆ Zm.

Trivially we have S(n) ⊆ S(A,b). We will show that all solutions in S(n) are proper and

that S(n) ⊆ S0(A,b) ∩ [n]m for sufficiently large n.
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Let x = (x1, . . . , xm) ∈ S(n) and observe that for n large enough

xi > x̂i + a(n) x̂0i − (m− rk(A)) s
a(n)− 2ŝ

2s(m− rk(A))
≥ −ŝ+ a(n)− a(n)

2
+ ŝ ≥ 1

as well as

xi < x̂i + a(n) x̂0i + (m− rk(A)) s
a(n)− 2ŝ

2s(m− rk(A))
≤ ŝ+ n

ŝ0
ŝ0 + 1

+ n
1

2(ŝ0 + 1)
− ŝ ≤ n

for every i ∈ [m], so that S(n) ⊆ [n]m for n large enough. Now assume without loss of

generality that x̂01 < · · · < x̂0m. It follows that

xi < x̂i + a(n) x̂0i + (m− rk(A)) s
a(n)− 2ŝ

2s(m− rk(A))

= (x̂i − ŝ) + a(n)

(
x̂0i +

1

2

)
≤ (x̂i+1 + ŝ) + a(n)

(
x̂0(i+1) −

1

2

)
= x̂i+1 + a(n) x̂0(i+1) − (m− rk(A)) s

a(n)− 2ŝ

2s(m− rk(A))
< xi+1

for every i ∈ [m−1] so that x is proper and therefore S(n) ⊆ S0(A,b)∩ [n]m, which of course

implies that | S0(A,b)∩ [n]m| ≥ |S(n)|. Lastly observe that since x1, . . .xm−rk(A) are linearly

independent, S(n) contains

(
2

⌊
a(n)− 2ŝ

2s(m− rk(A))

⌋
+ 1

)m−rk(A)

≥

(
1/(4ŝ0 + 4)

s
(
m− rk(A)

) n)m−rk(A)

elements (by choice of the wi), where the lower bound holds for n ≥ 4 ŝ (ŝ0 + 1). It follows

that for

c0 = c0(A,b) =

(
1/(4ŝ0 + 4)

s
(
m− rk(A)

))m−rk(A)

< 1

and n0 = d4 ŝ (ŝ0 + 1)e we have |S0(A,b) ∩ [n]m| ≥ c0 n
m−rk(A) for all n ≥ n0.

Let us now develop the notion of an induced submatrix originally introduced (though not

explicitly referred to as such) by Rödl and Ruciński [64] (see also Definition 7.1 in [67]).

Recall the definitions from Section 3.5, especially rQ = rk(A) − rk(AQ). We also introduce

the additional notation that for any matrix A ∈ Zr×m and selection of row indices R ⊆ [r],

we let AR denote the matrix obtained by only keeping the rows indexed by R. Furthermore,

a matrix A is called strictly balanced if for every non-empty proper subset Q ( [m] we have

that
|Q| − 1

|Q| − rQ − 1
< m1(A). (3.22)
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The following lemma now develops the notion of an induced submatrix originally intro-

duced (though not explicitly referred to as such) by Rödl and Ruciński [64] for partition

regular matrices. Their proofs, adapted for the full generality of abundant matrices and the

inhomogeneous case, are included here for completeness. Before stating the lemma, we quickly

describe the idea of the construction.

Idea of the construction. For a fixed set of column indices Q ⊆ [m] we want to maximise

the number of rows whose entries in columns indexed by Q can be set to zero by a sequence

of elementary row operations. In other words, for any selection of rows we want to set as

many columns of them to zero as possible, again through elementary row operations.

Lemma 3.6.4. For every matrix A ∈ Zr×m and set of column indices Q ⊆ [m] satisfying

rQ > 0 there exists an invertible matrix P ∈ Zr×r such that the submatrix

(P ·A)Q[rQ] = B(P,A,Q) = B ∈ ZrQ×|Q| (3.23)

is of rank rQ while the submatrix (P ·A)Q[rQ] is of rank 0. For every such P the following hold:

(i) We have rk((P ·A)Q[r]\[rQ]) = rk(A)− rQ.

(ii) If A is abundant then B is abundant.

(iii) For any vector vector b ∈ Zr and any solution x ∈ S(A, b) we have that xQ ∈ S(B, c),

where c = c(P,A,Q, b) = (P · b)[rQ] ∈ ZrQ. In particular, if A is positive then so is B.

(iv) For any Q′ ⊆ {1, ..., |Q|} there exists Q′′ ⊆ Q such that |Q′′| = |Q′| and rQ′′(A) =

rQ′(B).

Note that there can of course exist multiple P for each A and Q satisfying these proper-

ties, but for our further endeavours we will fix one particular such P = P (A,Q) and denote

B(P,A,Q) by B(A,Q) as well as c(P,A,Q,b) by c(A,Q,b). The following block decompo-

sition demonstrates the situation for Q = {1, . . . , |Q|}.

P ·A =

(
B 0

X Y

) ]
rQ
∣∣]

r − rQ
∣∣ (3.24)

Proof. We will construct P by using a sequence of elementary row operations. We denote

the rows of A by a1,a2, . . . ,ar. Among the rows aQ1 ,a
Q
2 , . . . ,a

Q
r of AQ we choose rk(AQ)

linearly independent rows and express each of the remaining r − rk(AQ) rows as a rational

linear combination of them. To get an integer linear combination we simply multiply with

the least common multiple of the denominators. In fact, we will apply these elementary row

operations to every full row of A, not just the parts indexed by Q. By construction, this

turns each entry in the Q-columns of these r − rk(AQ) rows into a 0. Hence the dimension
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of these rows must be rk(A)− rk(AQ) = rQ. We now choose a set of rQ linearly independent

rows and permute them to the top of the matrix, hence obtaining the block decomposition as

depicted in (3.24). Note that the rank of B is rQ by construction.

To prove (i) note that rk((P ·A)Q)[r]\[rQ]) = rk((P ·A)Q) = rk(AQ) = rk(A) − rQ by the

definition of rQ.

To prove (ii) note that we now have rk(A) = rk(P ·A) = rk(B) + rk(AQ), by (i), so if

deleting some two columns of B decreases its rank then deleting the same columns of P ·A
decreases its rank. Hence if B is not abundant then P ·A is not abundant and consequently

A is not abundant either. Thus (ii) follows.

For (iii) note that from (3.24) it follows that for any solution x ∈ S(A,b) = S(P ·A,P ·b)

we have that (P · b)[rQ] = (P ·(A · x))[rQ] = (P ·A)[rQ] · x = B · xQ, since (P ·A)Q[rQ] = B and

(P ·A)Q[rQ] is the 0-matrix. Therefore xQ ∈ S(B, c). The second statement follows by noting

that c(P,A,Q,b) = 0 provided that b = 0.

Lastly, to show (iv) let us without loss of generality assume that the columns are permuted

in such a way that Q = {1, . . . , |Q|}, so that we may simply choose Q′′ = Q′. Note that by (i)

we can extend the rQ linearly independent rows of (P·A)[rQ] with rk(AQ) linearly independent

rows from (P ·A)[r]\[rQ] to a basis of the row space of A. Let r1, . . . , rrQ , rrQ+1, . . . , rrk(A) be

this basis. By construction the rows rQrQ+1, . . . , r
Q
rk(A) are linearly independent from each

other, and so, in particular, the rows rQ
′′

rQ+1, . . . , r
Q′′

rk(A) are linearly independent as well, since

Q′′ ⊆ Q. Hence rk((P ·A)Q
′′

[r]\[rQ]) = rk((P ·A)Q).

Note that any linear combination of the vectors rQ
′′

1 , . . . , rQ
′′

rQ has the last |Q| entries

equal to zero, by construction. Therefore they cannot be expressed as a linear combination

of rQ
′′

rQ+1, . . . , r
Q′′

rk(A), because the rows rQrQ+1, . . . , r
Q
rk(A) were linearly independent. It follows

that we can add rk((P ·A)Q
′′

[rQ]) = rk(BQ′) linearly independent vectors from rQ
′′

1 , . . . , rQ
′′

rQ to

the rk((P ·A)Q) = rk(AQ) linearly independent vectors rQ
′′

rQ+1, . . . , r
Q′′

rk(A) to form a basis of

the row space of rk(AQ
′′
). This implies that rk(AQ

′′
) = rk(AQ) + rk(BQ′) from which we can

conclude that

rQ′′(A) = rk(A)− rk(AQ
′′
) = rQ + rk(AQ)− rk(AQ

′′
) = rk(B)− rk(BQ′) = rQ′(B)

as desired.

Recall that in the proof of Breaker’s part in the Maker-Breaker G games, we had to assume,

without loss of generality, that G was strictly balanced. For this to be valid, it was crucial

that if Breaker can keep Maker from occupying a (proper) subhypergraph, then he could also

keep him from occupying G. The following corollary to the above lemma will allow us to do

the same in Breaker’s strategy in the generalised van der Waerden games.
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Corollary 3.6.5. If A ∈ Zr×m is positive and abundant then there exists some non-empty

set of column indices Q ⊆ [m] such that B = B(A,Q) is abundant, positive, strictly balanced

and satisfies m1(B) = m1(A). Furthermore, for c = c(A,Q, b) any subset T ⊆ N such that

S0(B, c) ∩ Tm = ∅ also satisfies S0(A, b) ∩ Tm = ∅.

Proof. Choose Q ⊆ [m] such that (|Q| − 1)/(|Q| − rQ − 1) = m1(A) and |Q| is minimal with

this property. By (ii) and (iii) we know that B is abundant and positive. Assume for the

sake of contradiction that there exists Q′ ( {1, . . . , |Q|} such that

|Q′| − 1

|Q′| − rQ′(B)− 1
≥ |Q| − 1

|Q| − rQ − 1
.

By (iv) there must exists Q′′ ⊆ [m] with |Q′′| = |Q′| < |Q| such that rQ′′(A) = rQ′(B). It

follows that (|Q′′| − 1)/(|Q′′| − rQ′′(A)− 1) ≥ m1(A), giving us a contradiction to our choice

of Q. Finally, the last statement readily follows from (iii).

Finally, the following lemma now establishes some results regarding the rank of induced

submatrices of abundant matrices. It in particular verifies that the maximum 1-density pa-

rameter given in the introduction is indeed well-defined for abundant matrices. Rödl and

Ruciński [64] verified this for partition regular matrices. Here we provide a proof for abun-

dant matrices.

Lemma 3.6.6. For any abundant matrix A ∈ Zr×m and subset of column indices Q ⊆ [m]

the following holds. If |Q| ≥ 2 then |Q| − rQ − 1 > 0. If |Q| ≤ 2 then rQ = 0.

Proof. By the previous lemma B(A,Q) is abundant, has rank rQ and the number of its

columns is |Q|. Hence, by Observation 3.5.2 we have |Q| ≥ rQ+2 and therefore |Q|−rQ−1 > 0.

If |Q| ≤ 2 then, since A is abundant, deleting the columns in Q does not reduce the rank

of A. Hence rk(AQ) = rk(A) and therefore rQ = 0.

We now return to the world of games. Before proving Theorem 3.5.5 we provide the proof

of Proposition 3.5.7, which follows from the previous definitions and observations, as well as

a proof of Corollary 3.5.9 assuming Theorem 3.5.5.

Proof of Proposition 3.5.7. Let us start by noting that if S(A,b) = ∅, then trivially the game

hypergraph S0(A,b, n) is empty and the game trivially is an immediate win for Breaker.

Let us therefore consider the case where S(A,b) 6= ∅ and A is positive and non-abundant.

It follows that (A,b), after some elementary row operations, must yield the equation v1xi +

v2xj = v3 for some constants v1, v2, v3 ∈ Z and column indices 1 ≤ i 6= j ≤ m. Note that as A

is positive we must have v1, v2 6= 0. If {v1, v2} = {−1, 1} and v3 = 0, then S0(A,b)∩ [n]m = ∅
and the game hypergraph again is empty. If this is not the case, then whenever Maker occupies
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an element y ∈ [n], Breaker can simply pick (v3 − v1 y)/v2 and (v3 − v2 y)/v1 (if these are

indeed integer values in [n]) and thus block Maker’s ability to cover any solution. It follows

that Breaker has a winning strategy with a bias of at most 2.

Proof of Corollary 3.5.9. The central observation necessary to prove this corollary is that for

all non-degenerate partitions p (and in fact for all non-vacant partitions) we have{
{x1, . . . , xm} : (x1, . . . , xm) ∈ S(A,b) ∩ [n]m and p(x) = p

}
= S0(Ap,b, n). (3.25)

Now if A is positive and abundant then for non-degenerate p the bias threshold of the game

played on S0(Ap,b, n) either satisfies q(S0(Ap,b, n)) ≤ 2 by Proposition 3.5.7 if Ap is non-

abundant or it satisfes q(S0(Ap,b, n)) = Θ(n1/m1(Ap)) = O(n1/m1(A)) by Theorem 3.5.5 if Ap

is abundant since we required that m1(Ap) ≥ m1(A). Noting that the number of possible

non-degenerate partitions of [m] is clearly bounded from above by m! gives the desired result

through Breaker’s possibility to use strategy splitting, see Remark 3.3.3.

If A is non-abundant, then for any non-degenerate p the matrix Ap is also non-abundant

and hence q(S0(Ap,b, n)) = q(S0(A,b, n)) = Θ(1).

3.6.2 Proof of Theorem 3.5.5 Using the notions and results from the previous section we

will now show how to apply our general winning criteria to prove Theorem 3.5.5.

Proof of Theorem 3.5.5. We start by establishing some estimates of the required parameters

of the sequence of m-uniform hypergraphs S0(A,b, n).

Recall that v(S0(A,b, n)) = n and observe that each edge in S0(A,b, n) can stem from at

most m! solutions in S0(A,b) ∩ [n]m, so that we have

|S0(A,b) ∩ [n]m|/m! ≤ e(S0(A,b, n)) ≤ |S0(A,b) ∩ [n]m|. (3.26)

Using Equation (3.20) and Lemma 3.6.3 (i.e. the lower and upper bound on |S0(A,b)∩ [n]m|)
there therefore exists a constant c0 = c0(A,b) > 0 so that

c0/m! nm−rk(A)−1 ≤ d(S0(A,b, n)) ≤ nm−rk(A)−1. (3.27)

We also need upper bounds for the maximum `-degrees in S0(A,b, n). For ` ∈ [m] we have

∆`(S0(A,b, n)) ≤ max
(x1,...,x`)∈[n]`

∣∣{x ∈ S0(A,b) ∩ [n]m : ∃Q ⊆ [m] s.t. xQ = (x1, . . . , x`)}
∣∣

≤
(
m

`

)
max

(x1,...,x`)∈[n]`

Q⊆[m],|Q|=`

∣∣{x ∈ [n]m−` : AQ · xT = b−AQ · (x1, . . . , x`)
T }
∣∣

≤ m` max
Q⊆[m]
|Q|=`

max
b′∈Zr

∣∣S(AQ,b′) ∩ [n]m
∣∣
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Using Equation (3.20) as well as the fact that |Q| = m − |Q| and rQ = rk(A) − rk(AQ), it

follows that

∆`(S0(A,b, n)) ≤ m` max
Q⊆[m], |Q|= `

n|Q|−rk(AQ) ≤ m` max
Q⊆[m], |Q|= `

n(m−rk(A))−(|Q|−rQ). (3.28)

We now begin with Maker’s part. We will show that the sequence of m-uniform hyper-

graphs S0(A,b, n) satisfies Conditions (i), (ii) and (iii) for k = m and c1 = c1(A,b) as defined

in Equation (3.29) below. The constants CM = CM(A,b) and n0,M = n0,M(A,b) will also be

given later in Equation (3.30).

Let us now combine the previous observations. Since A is abundant we have rQ = 0 for

any Q ⊆ [m] satisfying |Q| = 1 due to Lemma 3.6.6, so that Condition (i) easily follows for

c1 = c1(c0,m) = m
m!

c0
(3.29)

using Equation (3.28) as well as the lower bound in Equation (3.27) since

∆1(S0(A,b, n)) ≤ m nm−rk(A)−1 = c1
c0

m!
nm−rk(A)−1 ≤ c1 d(S0(A,b, n)) .

To see that that Condition (ii) holds, let c̃ = c̃(m, c1) be as given by Theorem 1.2.8. We use

Equation (3.28) as well as the lower bound in Equation (3.27) to obtain

f(S0(A,b, n)) = min
2≤`≤m

(
d(S0(A,b, n))

∆`(S0(A,b, n))

) 1
`−1

≥ min
Q⊆[m]
|Q|≥2

(
c0/(m!m|Q|) n|Q|−rQ−1

) 1
|Q|−1 →∞

where the last step follows as (|Q| − rQ − 1)/(|Q| − 1) > 0 for any Q ⊆ [m] satisfying |Q| ≥ 2

due to Lemma 3.6.6. Choose n′0 ∈ N large enough such that f(S0(A,b, n)) > 1 holds for all

n ≥ n′0. As ∆m(S0(A,b, n)) = 1 and (m− rk(A)− 1)/(m− 1) < 1 we have

f(S0(A,b, n)) ≤
(
nm−rk(A)−1

) 1
m−1

= o(v(S0(A,b, n))).

We can therefore pick some n′′0 ∈ N large enough such that

v(S0(A,b, n))

f(S0(A,b, n))

(
1− 1

f(S0(A,b, n))

)
≥ c̃

so that Condition (iii) is satisfied for n ≥ max(n′0, n
′′
0). Now let c = c(m, c1) be as given by

Theorem 1.2.8. For

CM =
c

mm

c0

m!
− 1 and n0,M = max(n′0, n

′′
0) (3.30)

the bias bound given by Theorem 1.2.8 can now be rewritten as

c f(S0(A,b, n))− 1 = c min
2≤`≤m

(
d(S0(A,b, n))

∆`(S0(A,b, n))

) 1
`−1

− 1
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≥ c min
Q⊆[m]
|Q|≥2

(
c0/m! nm−rk(A)−1

m|Q| n(m−rk(A))−(|Q|−rQ)

) 1
|Q|−1

− 1

≥
( c

mm

c0

m!
− 1
)

min
Q⊆[m]
|Q|≥2

n
|Q|−rQ−1

|Q|−1 = CM n1/m1(A).

where we have used the lower bound given by Equation (3.27) as well as Equation (3.28).

This proves Maker’s part of Theorem 3.5.5.

We will now turn to Breaker’s part. Let Q and the corresponding B and c be as given

by Corollary 3.6.5. Considering the vertices occupied by Maker as the set T in this corollary,

it is clear that if Breaker can keep Maker from occupying any solution in S0(B, c) then he

can also keep Maker from occupying any solution in S0(A,b). For this part, we can therefore

without loss of generality assume that A is not just positive and abundant, but also strictly

balanced, that is (m−1)/(m−rk(A)−1) = m1(A) as well as (|Q|−1)/(|Q|−rQ−1) < m1(A)

for any Q ( [m] satisfying |Q| ≥ 2.

We will apply Theorem 1.2.9 to show that there exists n0 ∈ N and C ′1 = C ′1(m) > 0 such

that Breaker has a winning strategy in S0(A,n) for q ≥ C ′1 n
1/m1(A) and n ≥ n0. It follows

from Equation (3.28) that

∆1(S0(A,b, n))
1

m−1 ≤
(
m max

Q⊆[m], |Q|= 1
n(m−rk(A))−(1−rQ)

) 1
m−1

= m
1

m−1 n
m−rk(A)−1

m−1 = m
1

m−1 n1/m1(A)

since rQ = 0 for any Q ⊆ [m] such that |Q| = 1 due to Lemma 3.6.6 and since we have

assumed at the beginning that m1(A) = (m−1)/(m−rk(A)−1). That same assumption also

states that for all Q ⊆ [m] satisfying 2 ≤ |Q| < m we have (|Q| − 1)/(|Q| − rQ − 1) < m1(A)

so that

(m− rk(A))− (|Q| − rQ)

m− |Q|
=

(m− rk(A)− 1)− (|Q| − rQ − 1)

(m− 1)− (|Q| − 1)

<
(m− rk(A)− 1)− (|Q| − 1)/m1(A)

(m− 1)− (|Q| − 1)

=
1

m1(A)

1− (|Q| − 1)/(m− 1)

1− (|Q| − 1)(m− 1)
=

1

m1(A)
.

Using this, it follows that there exists some ε = ε(A) > 0 so that Equation (3.28) gives us

∆`(S0(A,b, n))
1

m−` ≤
(
m` max

Q⊆[m], |Q|= `
n(m−rk(A))−(|Q|−rQ)

) 1
m−`

≤ mm−1 n1/m1(A)−2ε

for 2 ≤ ` ≤ m − 1. We know that there exists c0 = c0(A,b) > 0 such that d(S0(A,b, n)) ≥
c0/m! nm−rk(A)−1 due to Equation (3.27) and therefore n1/m1(A) ≤ m!/c0 d(S0(A,b, n))1/(m−1).

We trivially also have ∆1(S0(A,b, n)) ≥ md(S0(A,b, n)). Taken together it follows that
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∆`(S0(A,b, n))
1

m−` ≤ mm−1

(
m!

c0

) 1
m−1

d(S0(A,b, n))
1

m−1 n−2ε

≤ mm−1

(
m!

c0m

) 1
m−1

∆1(S0(A,b, n))
1

m−1 n−2ε.

Observe that for 2 ≤ ` ≤ m− 1 there exists n0,` ∈ N such that due to the previous inequality

we have ∆`(S0(A,b, n))1/(m−`) nε ≤ ∆1(S0(A,b, n))1/(m−1) for all n ≥ n0,`. Let C1 =

C1(m) and v0 = v0(m, ε) be as given by Theorem 1.2.9. It follows now that for n ≥ n0,B =

max(v0,max2≤`≤m−1 n0,`) and C ′1 = C ′1(m) = C1m
1

m−1 Breaker has a winning strategy in

S0(A,b, n) since

q ≥ C ′1 n1/m1(A) ≥ C1 ∆1(S0(A,b, n))
1

m−1

= C1 max

(
∆1(S0(A,b, n))

1
m−1 , max

2≤`≤m−1

(
∆`(S0(A,b, n))

1
m−`

)
nε
)
.

3.7 Concluding remarks and open problems

In this chapter, we have established general criteria for hypergraphs H, which guarantee that

Maker’s random strategy is essentially optimal in the biased Maker-Breaker game on H. We

have proved that several natural games fall into this category. These included the Maker-

Breaker G games, for any fixed uniform hypergraph G, as well as generalized van der Waerden

games for solutions of linear systems of inhomogeneous equations.

3.7.1 Obtaining constants In our main theorems we determine the right order of magni-

tude of the threshold biases for the games considered. Hence one might rightfully be interested

in obtaining more precise statements, involving the constant factors. For the triangle-building

game Chvátal and Erdős [20] established upper and lower bounds that are tight up to a con-

stant factor
√

2. Their upper bound was slightly improved by Balogh and Samotij [6], however

the value of the right constant factor is still unknown.

We state here an upper and a lower bound for the 3-AP game, where we already established

that the threshold bias is of the order
√
n.

Proposition 3.7.1. For the threshold bias q(n) of the 3-AP game played on [n] we have√
n

12
− 1

6
≤ q(n) ≤

√
3n.
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Proof. Let us first prove the upper bound by providing a winning strategy for Breaker if he

is given a bias of q ≥
√

3n. The strategy will simply consist of blocking all possible 3-APs

containing Maker’s last choice and one of its previous choices. As for each fixed pair of integers

there are at most three 3-APs containing them and Maker occupies at most M = dn/(q+ 1)e
integers during the course of the whole game, the number of 3-APs to be blocked is never

more than 3 (M − 1). Since

3 (M − 1) ≤ q

for q ≥
√

3n, Breaker has enough moves in each round to occupy the (at most) one unoccupied

element in each of the dangerous 3-APs.

For the lower bound we use Becks biased Maker win criterion Theorem 1.2.7, with X =

v(H). For the hypergraph Hn of 3-APs in [n] we observe that v(Hn) = n, e(Hn) ≥ n2/4−n/2,

and ∆2(Hn) ≤ 3. Consequently with a bias of q <
√

n
12 −

1
6 the condition (1.4) holds for Hn

and Theorem 1.2.7 provides the winning strategy for Maker.

Observe that the constants
√

1/12 and
√

3 are only a factor 6 apart and it would be

interesting to close this gap.

Question 3.7.2. Determine/prove the existence of a constant C > 0, such that the threshold

bias of the 3-AP game is (C + o(1))
√
n.

It should be noted that we already applied Theorem 1.2.7 in Section 3.1.1 to the k-AP

game and obtained a lower bound of the right order of magnitude on the the threshold bias for

every k ≥ 3. The ad-hoc argument for Breaker’s win does not seem to generalize immediately.

Conjecture 3.7.3. For every positive and abundant matrix A ∈ Zr×m and vector b ∈ Zr,
there exists a constant C = C(A, b) > 0 such that q(S0(A, b, n)) = (C + o(1))n1/m1(A).

The analogous question for graph-building games has been posed by Bednarska and

 Luczak [13]. For hypergraph-building games the same question can of course also be asked.

3.7.2 A corollary for strictly balanced structures From our general winning criteria,

Theorem 1.2.8 and Theorem 1.2.9, we can deduce the following corollary.

Corollary 3.7.4. For every integer k ≥ 2 the following holds. If H = (Hn)n∈N is a sequence

of k-uniform hypergraphs satisfying

(i) ∆1(Hn) = O(d(Hn)) and (ii) ω(1) = f(Hn) = o(v(Hn))

and (iii) ∆`(Hn)
1

k−` v(Hn)o(1) ≤ ∆1(Hn)
1

k−1 for all 2 ≤ ` ≤ k − 1

then the threshold bias of the game on Hn satisfies q(Hn) = Θ(d(Hn)1/(k−1)) = Θ(f(Hn)).
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Note that this can only be applied directly in case that the target hypergraph or linear sys-

tem is strictly balanced, as should be clear from the proofs of Breaker’s part of Theorem 1.2.2

and Theorem 3.5.5.

3.7.3 A remark about repeated entries In general one may wonder whether it is neces-

sary to compare games with repeated solutions to the proper game hypergraph S0(A,b, n).

In the following we will argue that this is not the case. For each family P of non-vacant

partitions of [n], one can define the game hypergraph S(A,b, n,P) containing all subsets that

consist of the distinct components of such a solution to A · xT = bT for which p(x) ∈ P, that

is

S(A,b, n,P) = {{x1, . . . , xm} : (x1, . . . , xm) = x ∈ S(A,b) ∩ [n]m and p(x) ∈ P}. (3.31)

In Theorem 3.5.5 we considered the game where only proper solutions were allowed. This

of course deals with the case where P consists just of the partition {{1}, . . . , {m}}. In

Corollary 3.5.9 we studied the game where non-degenerate partitions were allowed, which

corresponds to the case where P = {p(x) : x ∈ S1(A,b)} consists of all non-degenerate

partitions.

Considering the proof of Corollary 3.5.9 it should be clear that playing on the hypergraph

of all solutions to A with repetitions indicated by some given partition p is the same as playing

on the hypergraph S0(Ap,b). The following statement follows immediately and can therefore

be seen both as a generalisation of but also an easy corollary to Theorem 3.5.5.

Theorem 3.7.5. For every matrix A ∈ Zr×m, vector b ∈ Zr and family P of set partitions

of [m] the corresponding threshold bias satisfies q(S(A, b, n,P)) = Θ
(

maxp∈P q(Ap, b, n)
)
.

This of course implies that if there exists p ∈ P such that Ap is positive and abundant

and p′ ∈ P is the one of those partitions that minimises the parameter m1(Ap′), then we

have q(S(A,b, n,P)) = Θ
(
n1/m1(Ap′ )

)
. This result also establishes that the notion of non-

degeneracy as defined in the introduction is the broadest possible notion that does not change

the character of the game.

3.7.4 The probabilistic intuition Recall from the introduction that it was Chvatál and

Erdős who first pointed out some surprising similarities between certain positional games and

results in random graphs. Given some hypergraph H let the appearance threshold p(H) be

the threshold probability for the property that the random set V (H)p contains an edge. The

probabilistic intuition states that the appearance threshold p(H) hints at the bias threshold

q(H) of the game G(H; q), namely that q(H) ∼ p(H)−1. This intuition holds true for several
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‘global’ properties such as hamiltonicity or connectivity. We have previously remarked that

the biased Erdős-Selfridge strategy states that Breaker can do at least as well as when both

players act randomly. Despite strong interest, a matching counterpart for Maker has never

been found.

As already discussed in the introduction, for the games studied by Bednarska and  Luczak [13]

as well as the two types of Maker-Breaker games studied in this thesis, ‘this’ probabilistic

intuition fails. The appearance threshold for a given fixed r-uniform hypergraph G in the

r-uniform random graph G
(r)
n,p occurs around n−1/m(G) where m(G) 6= mr(G) is the density of

G maximized over all subgraphs. Likewise, the appearance threshold of solutions to a given

positive and abundant matrix A ∈ Zr×m occurs around n−1/m(A) where m(A) 6= m1(A) is a

parameter of A maximized over all subsystems, see Rué et al. [67]. As an example, k-term

arithmetic progressions start to appear around n−2/k whereas we have shown the threshold

bias to satisfy n1/(k−1).

However, the random approach to the proof of Maker’s criterion indicates that a different

type of random intuition still plays an important role. Indeed, our results show a strong

connection to sparse Turán- and Szemerédi-type statements. Given an r-uniform hypergraph

G, let ex(n,G) be the largest number of edges in a G-free subgraph of K
(r)
n and define the

Turán density

πr(G) = lim
n→∞

ex(n,G)/

(
n

r

)
.

For ε > 0 an r-uniform hypergraph F is called (G, ε)-Turán if every subgraph of F with at

least (πr(G)+ε) e(F) edges contains a copy of G. Conlon and Gowers (in the strictly balanced

case) [22] and independently Schacht [70] showed that the threshold probability of the event

that G
(r)
n,p is (G, ε)-Turán is Θ(n−1/mr(F)). Compare this to our result that the threshold

bias of the Maker-Breaker G-game is Θ(n1/mr(G)). Similarly, Schacht [70] showed that for

a given density regular matrix A ∈ Zr×m the threshold probability for the event that [n]p

is (δ, A)-stable is Θ(n−1/m1(A)). Spiegel [74] as well as independently Hancock, Staden and

Treglown [41] extended this result to abundant matrices. Our result shows that the threshold

bias of the Maker-Breaker A-game lies around Θ(n1/m1(A)) for the much broader class of

positive and abundant matrices. We call the intuition one might infer from this probabilistic

Turán intuition for biased Maker-Breaker games. We have proven two criteria for Breaker

as well as Maker that provide some criteria to verify if this intuition indeed holds true for a

given game.
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3.8 Appendix to Chapter 3

Recall that the median µ1/2 of a discrete random variable X satisfies P
(
X ≤ µ1/2

)
≥ 1/2 and

P
(
X ≥ µ1/2

)
≥ 1/2. Furthermore recall that any median of the binomial distribution B(n, p)

lies between bnpc and dnpe, that is bnpc ≤ µ1/2 (B(n, p)) ≤ dnpe. A family of subsets P ⊆ 2[n]

is called monotone decreasing if A ⊆ B and B ∈ P implies A ∈ P. It is called monotone

increasing if its complement in 2[n] is monotone decreasing. As usual one identifies properties

of subsets of [n] with the corresponding family of subsets having the property. The purpose

of this appendix is to prove the following lemma:

Lemma 3.8.1. Let X ∼ B(n, p) and let P be a monotone decreasing family of subsets of [n].

Then there exists a constant C > 0 such that if
√
np(1− p) > C, then

P
(
[n]bnpc ∈ P

)
≤ 3P ([n]p ∈ P) .

Proof. Note that as a consequence of the (local) LYM inequality (see below), we have that

P ([n]K ∈ P) ≥ P ([n]L ∈ P) , (3.32)

whenever K ≤ L, since P is monotone decreasing. Thus

P ([n]p ∈ P) =

n∑
M=0

P ([n]p ∈ P | |[n]p| = M) P (|[n]p| = M) =

n∑
M=0

P ([n]M ∈ P) P (|[n]p| = M)

≥
bnpc∑
M=0

P ([n]M ∈ P) P (|[n]p| = M) ≥ P
(
[n]bnpc ∈ P

) bnpc∑
M=0

P (|[n]p| = M) .

Note that
∑bnpc

M=0 P (|[n]p| = M) = P (X ≤ bnpc). Let µ1/2 be the median of X and assume

first that bnpc ≤ µ1/2 < dnpe. Then P (X ≤ bnpc) = P
(
X ≤ µ1/2

)
≥ 1

2 and hence

P([n]bnpc ∈ P) ≤ 2P ([n]p ∈ P) .

It remains to be shown that the assertion follows as well if µ1/2 = dnpe. Note that

P (X ≤ bnpc) = P (X ≤ dnpe)− P (X = dnpe) ≥ 1

2
− P (X = dnpe) .

We will show that P (X = dnpe) ≤ 1/6 which then implies P
(
[n]bnpc ∈ P

)
≤ 3P ([n]p ∈ P).

To do so, we will upper bound the probability that X = dnpe and use the inequalities
√

2πn
(
n
e

)n ≤ n! ≤
√

2πn
(
n
e

)n
e as follows:

P (X = dnpe) =

(
n

dnpe

)
pdnpe (1− p)n−dnpe =

n! pdnpe (1− p)n−dnpe

dnpe!(n− dnpe)!
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≤
√
n nn e pdnpe (1− p)n−dnpe√

2πdnpe (dnpe)dnpe
√
n− dnpe (n− dnpe)n−dnpe

=

√
n√

n− dnpe
(np)dnpe

dnpednpe
(n− np)n−dnpe

(n− dnpe)n−dnpe
e√

2πdnpe
,

Clearly we have (np)dnpe/dnpednpe ≤ 1 as well as (n−np)n−dnpe/(n−dnpe)n−dnpe ≤ e. Hence

we get

P (X ≤ dnpe) ≤ e2

√
2π

√
n

n− np− 1

1

np
≤ 3√

(1− p)np− p
<

3√
C2 − 1

.

Choosing C > 0 large enough such that P (X ≤ dnpe) ≤ 1/6 gives the desired property.

To show that Equation 3.32 is valid, we will need the well-known (local) LYM inequality,

which was proven independently by Lubell [56], Yamamoto [76] and Meshalkin [57]. Given a

set system A ⊆
(
X
r

)
, where X is some set of size n, define its shadow as

∂A =

{
B ∈

(
X

r − 1

)
: B ⊆ A for some A ∈ A

}
.

The local LYM inequality states that the proportion of elements of the shadow ∂A of a family

A ⊆
(
X
r

)
within

(
X
r−1

)
is at least as big as the proportion of elements of A within

(
X
r

)
.

Theorem 3.8.2 (Local LYM). Let 0 < r ≤ n, A ⊆
(
X
r

)
. Then

|∂A|(
n
r−1

) ≥ |A|(n
r

) .
Equation 3.32 now readily follows from the local LYM inequality and the fact that P is

monotone decreasing.
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Chapter 4

Hypergraphs with Property O

This chapter is organised as follows. Firstly, we show that 7 ≤ f(3) ≤ 10. The proof of the

upper bound will then be generalised to prove that f(k) ≤
(
bk2c+ 1

)
k! − bk2c(k − 1)!, i.e.

Theorem 1.3.3. This will be followed by constructing two oriented 3-graphs on 6 vertices that

have property O. Finally, we discuss some open problems.

4.1 Proof of the upper bound

To motivate the construction, we will first consider the case k = 3. It nicely highlights the

idea of the general construction while notationally being much more oversee-able.

Claim 4.1.1. There exists an oriented 3-graph with 10 edges having Property O, i.e. f(3) ≤
10. Furthermore f(3) ≥ 7.

The lower bound f(3) ≥ 7 was already mentioned in [24]. We will include its simple proof

for the convenience of the reader. It is worth noting that this is the only non-trivial case in

which a lower bound of the form k! + 1 is known.

Before proving this claim, let us describe the idea of the proof of the upper bound. We

start by defining two edges (x, y, a) and (y, x, b). Any ordering is consistent with the relative

order of exactly one of these edges with respect to the positions of x and y. If it happens to be

x < y, but the edge (x, y, a) is not consistent with the ordering, then there are two possibilities

for the position of a with respect to both x and y. For each possibility we introduce one new

vertex and two edges, such that at least one of them is consistent with the ordering. Below

are the details.

Proof of Claim 4.1.1. We will first show that f(3) ≤ 10. To do so, let H be an oriented

3-graph with vertex set V = {x, y, a, b, c, d, e, f}, and edge set

79
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E = {(x, y, a), (a, x, c), (c, x, y), (x, a, d), (d, a, y), (y, x, b), (b, y, e), (e, y, x), (y, b, f), (f, b, x)}

We have to show that H has Property O. Let < be an arbitrary ordering of V . Since

either x < y or y < x at most one of the edges (x, y, a) and (y, x, b) can be consistent with <.

Let us first assume x < y. If (x, y, a) is not consistent with <, then we either have a < x < y

or x < a < y . If a < x < y, then at least one of (a, x, c) or (c, x, y) is <-consistent. On the

other hand, if x < a < y then at least one of (x, a, d) or (d, a, y) is <-consistent.

Now, if y < x but (y, x, b) is not <-consistent, then either b < y < x or y < b < x. In the

first case at least one of (b, y, e) or (e, y, x) is <-consistent and, in the latter at least one of

(y, b, f) or (f, b, x) is <-consistent. Hence H has Property O, proving f(3) ≤ 10.

We will now prove the lower bound. Suppose for a contradiction that H = (V, E) is

a 3-graph with 6 edges on n vertices that has Property O. As already mentioned in the

introduction, every edge is consistent with n!
3! linear orders and so |E| · n!

3! = n!. This means

that no collection of two edges is consistent with the same linear order. This forces every

pair of edges of H to intersect in exactly two vertices: if there were a pair of edges e1, e2 with

|e1 ∩ e2| ≤ 1, then clearly these two edges are both consistent with at least 2 linear orders.

As we have at least 6 vertices, this means that H is a sunflower with core x, y, say, and at

least 3 pedals. Therefore there is a pair of edges for which the relative order of x, y is equal.

It is not hard to see that these two edges are consistent with at least 2 linear orders giving

the desired contradiction. Hence f(3) ≥ 7 = 3! + 1.

Remark 4.1.2. To simplify the notation of the generalisation, we used more vertices than

actually needed. Indeed the number of vertices in the above construction can be reduced (see

Section 4.2).

Before proving Theorem 1.3.3 we will introduce some notation. Given a finite set V , set

x := {x1, ..., xk−1} ∈ V k−1. Enumerate all permutations of [k − 1] by π1 = id, ..., π(k−1)!

arbitrarily. Furthermore, for j ∈ [(k − 1)!] and i ∈ [k − 1], write πj(x, i(y)) to denote the

k-tuple arising from the (k − 1)-tuple πj(x) by putting y between πj(xi−1) and πj(xi) (when

we write “between πj(x0) and πj(x1)”, we mean “before πj(x1)”).

The construction is a fairly straightforward generalization of the k = 3 construction.

We start with (k − 1)! edges (π1(x), a1) , ...,
(
π(k−1)!(x), a(k−1)!

)
. Any permutation will be

consistent with the relative order of the xi for exactly one of the above k-tuples. Say it is

with π1 = id (in any other case we proceed in the same way), but the k-tuple (π1(x), a1) is

not π1-consistent. Then there are (k − 1) places for a1 and for each possibility we introduce

one new vertex and bk2c+ 1 edges such that at least one of them will be π1-consistent.
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Proof of Theorem 1.3.3. We begin with the construction of the desired hypergraph H =

(V, E). Let the set of vertices be

V =
{
x1, x2..., xk−1, a1, ..., a(k−1)!, a

(1)
1 , a

(2)
1 , ..., a

(k−1)
1 , ..., a

(1)
(k−1)!, a

(2)
(k−1)!, ..., a

(k−1)
(k−1)!

}
.

and let E be the set of ordered hyperedges (k-tuples) constructed as follows (compare with

the example given below):

(1) Start with the (k− 1)! k-tuples of the form (πj(x), aj), for j = 1, 2, ..., (k− 1)!, and put

them into E .

(2) For each fixed j ∈ [(k−1)!] put the following (k−1)
(
bk2c+ 1

)
k-tuples into E : For every

i ∈ [k − 1], consider the k-tuple πj(x, i(aj)).

Now, for every odd position l ∈ [k − 1], replace the l-th element of πj(x, i(aj))

by a
(j)
i and put it into E . Also, replace the k-th element with a

(j)
i and put the

resulting k-tuple into E .

To prove that H has Property O, one proceeds precisely as in the proof of Claim 4.1.1. To

finish the proof of Theorem 1.3.3, note that, using the description just above the proof, we

have

|E| =
(
(k − 1)

(
bk2c+ 1

)
+ 1
)

(k − 1)! =
(
bk2c+ 1

)
k!− bk2c(k − 1)!,

completing the proof.

Example: Let us illustrate the construction in the proof of Theorem 1.3.3 for k = 4. We

start with the edges (πj(x), aj) for j = 1, 2, ..., 6. Now suppose j = 1, i.e. πj = id and define

the following edges:

i = 1 we have (a1, x1, x2, x3) and so we put

(a
(1)
1 , x1, x2, x3) and (a1, x1, a

(1)
1 , x3) and (a1, x1, x2, a

(1)
1 ) into E ;

i = 2 we have (x1, a1, x2, x3) and so we put

(a
(1)
2 , a1, x2, x3) and (x1, a1, a

(1)
2 , x3) and (x1, a1, x2, a

(1)
2 ) into E ;

i = 3 we have (x1, x2, a1, x3) and so we put

(a
(1)
3 , x2, a1, x3) and (x1, x2, a

(1)
3 , x3) and (x1, x2, a1, a

(1)
3 ) into E .

For j = 2, ..., 6 one proceeds similarly.

Remark 4.1.3. Note that the number of vertices in the construction above is k! + k − 1.
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a1 a3 b1 b3

a2 b2

Figure 4.1: The 3-graph H with the edge (a1, a2, b2) depicted.

4.2 3-uniform hypergraphs on 6 vertices having property O

In this short section we will construct two oriented 3-uniform hypergraphs on 6 vertices having

Property O. Combined with the lower bound given in [24], this shows n(3) = 6.

The first one is obtained from a graph having Property O. Firstly, recall that a cyclicly ordered

triangle is a graph having Property O.

Now take two disjoint copies of an oriented triangle, say (a0, a1), (a1, a2)(a2, a0) and (b0, b1),

(b1, b2), (b2, b0) and define the following oriented edge set (where we take the indices mod 3):

E0 = {(ai, ai+1, bj), (bi, bi+1, aj) : 0 ≤ i, j ≤ 2}.

Claim 4.2.1. The oriented 3-graph H with vertex set V = {a0, a1, a2, b0, b1, b2} and edge set

E0 has Property O. Thus n(3) ≤ 6.

Proof. Let π be an arbitrary ordering of V . We have to show that there is an edge e ∈ E0

that is π-consistent.

Now, if there is some bi such that bi is greater than every aj (with respect to π), then, since the

2-graph induced by the vertices a0, a1, a2 has Property O, some edge of the form (aj , aj+1, bi)

is π-consistent.

If not, then there exists an ai that is greater than every bj . So by symmetry, the same

argument as above shows that there exists an edge of the form (bj , bj+1, ai) that is π-consistent.

Hence n(3) ≤ 6.

The second example is a simple modification of the construction given in Section 4.1.

Indeed, instead of using the vertices e and f , we could have used c and d again: Simply

replace e by d and f by c. So we get V = {x, y, a, b, c, d} and

E = {(x, y, a), (a, x, c), (c, x, y), (x, a, d), (d, a, y), (y, x, b), (b, y, d), (d, y, x), (y, b, c), (c, b, x)}.
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One can use the same proof to show that this oriented 3-graph has Property O. Similar

modifications can be made in the construction in Theorem 1.3.3 to lower the number of

vertices. However this is slightly more tedious and not the aim of the construction.

4.3 Concluding Remarks and open problems

In this chapter we showed f(k) ≤
(
bk2c+ 1

)
k!−bk2c(k−1)! for every k ≥ 3, thus improving the

bound of [24] by a k ln k factor. The main problem regarding hypergraphs having Property

O is the following:

Problem 4.3.1. Is it true that f(k)
k! →∞ as k →∞?

In Section 2 we saw that f(3) ≥ 3! + 1. Improving the lower bound seems to be the main

task. A first step would be to answer the following question.

Problem 4.3.2. Is it true that f(k) ≥ k! + 1 for every k ≥ 3?

We believe that the answer should be yes. Of course, an improvement of the upper bound

would be interesting as well.

Another natural question is whether there always exists an oriented k-graph H that has

both the minimum possible number of edges and vertices.

Problem 4.3.3. Let k ≥ 3. Is there a k-uniform hypergraph with n(k) vertices and f(k)

edges having Property O?

The second construction in Section 4.2 has fairly few edges, namely 10, and n(3) = 6

vertices.

Note that a trivial lower bound on n(k) is
(
k
e

)2
(for every k ≥ 2), since the number of

edges is larger than k! and smaller than
(
n
k

)
. On the other hand, Duffus et al. [24, pp. 3–4]

showed that a k-tournament Tn,k on n =
(
k
e

)2
(π · exp(e2/2) · k3 ln k)1/k vertices with all the(

n
k

)
edges ordered randomly has Property O with positive probability. Hence

n(k) ≤
(
k

e

)2

(π · exp(e2/2) · k3 ln k)1/k = (1 + o(1))

(
k

e

)2

,

and so n(k) = (1 + o(1))
(
k
e

)2
.
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Chapter 5

Shattering extremal families

This chapter is organised as follows. We start by proving Proposition 1.4.8. We then motivate

our new approach to the elimination conjecture and prove Theorem 1.4.9. This will be

followed by introducing an equivalent version of the elimination conjecture which we use to

prove the conjecture for small Sperner families. The last section is dedicated to the study of

the connection between s-extremal families and Gröbner bases.

In order to simplify notation, set

H(S) = 2[n] \Up(S) = 2[n] \
⋃
S∈S
PS ,

and recall that

F(S, h) = 2[n] \
⋃
S∈S
QS,h(S)

Instead of F(S, h), we sometimes simply write F when there is no danger of confusion. With

this notation, Proposition 1.4.8 states the following:

Proposition 5.0.1. Let S ⊆ 2[n] be a Sperner family and let h : S → 2[n] be a function such

that h(S) ⊆ S for every S ∈ S. Then F = F(S, h) is s-extremal with Sh(F) = H(S) if and

only if

|H(S)| = |F(S, h)|. (5.1)

Proof. Suppose F = F(S, h) is s-extremal with Sh(F) = H(S). Then, since Sh(F) = H(S),

we have |F| = |Sh(F)| = |H(S)| as claimed.

To see the other direction, suppose that |H(S)| = |F(S, h)|. Note that by definition of

F(S, h), for every S ∈ S there does not exist F ∈ F such that F ∩S = h(S) and so S /∈ Sh(F).

In particular, no superset of S is shattered by F . Therefore, Sh(F) ⊆ 2[n] \ Up(S) = H(S).

Hence |Sh(F)| ≤ |H(S)| = |F|. However, the reverse inequality always holds by the Sauer-

Shelah lemma and so F is s-extremal and Sh(F) = H(S) as claimed.

85
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Although this result is rather easy to state and prove, it does offer a new perspective

to s-extremal set systems because it allows one to construct an s-extremal set system from

a Sperner family with an appropriately defined function h. Given a Sperner family and a

function h, one checks whether Equation (5.1) is satisfied and if it is, the resulting set system

is s-extremal.

5.1 An approach to the elimination conjecture

In order to further justify our approach given by Proposition 5.0.1, we remark that it has a

connection to the following generalisation of the Sauer inequality which was implicitly proved

in the proof of Proposition 5.0.1. To emphasise it we shortly repeat the argument.

Proposition 5.1.1 (Generalised Sauer Inequality). Let S ⊆ 2[n] be a Sperner family and

F ⊆ 2[n] a set system that shatters no element of S. Then

|F| ≤ |H(S)|.

Proof. For the proof just note that if F shatters no element of S, then it shatters no set from

Up(S) either, and so Sh(F) ⊆ 2[n] \Up(S). Accordingly, using the Sauer-Shelah Lemma, we

get

|F| ≤ |Sh(F)| ≤ |2[n] \Up(S)| = |H(S)|

as wanted.

For a Sperner family S ⊆ 2[n] let us define a family F ⊆ 2[n] shattering no element of S
and satisfying |F| = |H(S)| to be S-extremal. Note that the original Sauer inequality can be

recovered by setting S =
([n]
k

)
, and

([n]
k

)
-extremal families are just the maximum classes. An

interesting property here is that if we let S to vary, then we end up with s-extremality.

Proposition 5.1.2. F ⊆ 2[n] is s-extremal if and only if there exists a Sperner family S such

that F is S-extremal.

Proof. First suppose that F ⊆ 2[n] is s-extremal, i.e |F| = |Sh(F)|. As already discussed in

the introduction, we know that if we let S to be the collection of all minimal sets not shattered

by F , then S is Sperner and Sh(F) = 2[n] \Up(S) = H(S). This implies |F| = |H(S)| which

together with the fact that the elements of S are not shattered gives that F is S-extremal.

Now suppose that F is S-extremal for some Sperner family S, i.e. F shatters no element of

S and |F| = |H(S)|. From the proof of Proposition 5.1.1 it follows that this is possible only if

Sh(F) = H(S). However this means that |Sh(F)| = |H(S)| = |F| and so F is s-extremal.
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5.1.1 Analysing the equation |H(S)| = |F(S, h)| Let us now get back to families of the

form F(S, h). For a Sperner family S = {S1, . . . , SN}, we set h(Si) = Hi to simplify notation.

To analyse (5.1) in Proposition 5.0.1 first note that it holds if and only if Up(S) =
⋃N
i=1 PSi

and 2[n] \ F(S, h) =
⋃N
i=1QSi,Hi have the same size. To study this we will use the inclusion-

exclusion formula. For this note that for every 1 ≤ i < j ≤ N

(i) PSi ∩ PSj = PSi∪Sj , and

(ii) QSi,Hi ∩QSj ,Hj =

QSi∪Sj ,Hi∪Hj , if Si ∩Hj = Sj ∩Hi

∅ , otherwise

In particular this means that for I ⊆ [N ] we have that∣∣∣∣∣⋂
i∈I
PSi

∣∣∣∣∣ =
∣∣∣P⋃

i∈I Si

∣∣∣ =
∣∣∣Q⋃

i∈I Si,
⋃

i∈I Hi

∣∣∣ =

∣∣∣∣∣⋂
i∈I
QSi,Hi

∣∣∣∣∣
whenever

⋂
i∈I QSi,Hi is non-empty, which happens exactly if for every i 6= j ∈ I we have

Si ∩Hj = Sj ∩Hi. Let Ii,j be the indicator of Si ∩Hj = Sj ∩Hi, i.e. it is 1 if the equality

is satisfied and 0 otherwise. As Up(S) =
⋃N
i=1 PSi and 2[n] \ F(S, h) =

⋃N
i=1QSi,Hi , the

inclusion-exclusion formula gives that we have |H(S)| = |F(S, h)| if and only if

∑
I⊆[N ]

(−1)|I|+1

∣∣∣∣∣⋂
i∈I
PSi

∣∣∣∣∣ =
∑
I⊆[N ]

(−1)|I|+1

∣∣∣∣∣⋂
i∈I
QSi,Hi

∣∣∣∣∣ =
∑
I⊆[N ]

(−1)|I|+1

 ∏
i 6=j∈I

Ii,j

∣∣∣∣∣⋂
i∈I
PSi

∣∣∣∣∣
This latter equation can also be rewritten as

∑
I⊆[N ]

(−1)|I|+1

1−
∏
i 6=j∈I

Ii,j

∣∣∣∣∣⋂
i∈I
PSi

∣∣∣∣∣ = 0.

5.1.2 Outline of the new approach Before we prove Theorem 1.4.9 we would like to

begin with a high overview of our approach to the elimination conjecture.

(i) Start with a Sperner family S ⊆ 2[n] and a function h : S → 2[n] such that for the

resulting set system F = F(S, h) we have |H(S)| = |F(S, h)|.

(ii) Choose a set S0 ∈ S and replace it with sets from {S0 ∪ {v} : v ∈ [n] \ S0} to obtain a

Sperner family S ′ with H(S ′) = H(S) ∪ {S0}. Note that S ′ = S \ {S0} is possible.

(iii) Extend the function h from S to S ′ and consider the resulting set system F ′ = F(S ′, h).

Note that |F ′| ≤ |F|+ 1, by the generalised Sauer Inequality.

(iv) Prove that F ⊆ F ′ and |F ′| = |F|+ 1.
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As we will see after the proof of Theorem 1.4.9, one cannot simply take any S0 ∈ S. Another

issue is that it is not clear how to extend the function h. Natural choices would be to set

h(S0 ∪ {v}) equal to either h(S0) or to h(S0) ∪ {v}.

5.1.3 Proof of Theorem 1.4.9 The following proposition establishes that given any Sperner

family S, if we define the corresponding function h via a fixed set A ⊆ [n], then the resulting

set system is s-extremal.

Proposition 5.1.3. Let S = {S1, ..., SN} ⊆ 2[n] be a Sperner family and A ⊆ [n] be a fixed

set. Furthermore let hA : S → 2[n] be defined as hA(S) = S ∩ A, i.e. Hi = hA(Si) = Si ∩ A
for i ∈ [N ]. Then F(S, hA) is s-extremal and Sh(F(S, hA)) = H(S).

Proof. For the proof only note that in this case, for every 1 ≤ i < j ≤ N we have

Sj ∩Hi = Sj ∩ Si ∩A = Si ∩ Sj ∩A = Si ∩Hj ,

i.e. Ii,j = 1. In this case 1−
∏
i 6=j∈I Ii,j = 0 for every I ⊆ [N ], and so

∑
I⊆[N ]

(−1)|I|+1

1−
∏
i 6=j∈I

Ii,j

∣∣∣∣∣⋂
i∈I
PSi

∣∣∣∣∣ = 0.

Equivalently this means that |H(S)| = |F(S, h)|, and so by Proposition 5.0.1 F(S, hA) is

s-extremal and Sh(F(S, hA)) = H(S).

A natural first question is that perhaps the converse is also true. Unfortunately, this is not

the case, i.e. if F(S, h) is extremal and Sh(F(S, h)) = H(S) then there does not necessarily

exist a set A ⊆ [n] such that h = hA, as shown by the following example.

Example 5.1.4. Let n = 3 and S = {S1, S2, S3}, where S1 = {1, 2}, S2 = {1, 3} and

S3 = {2, 3}. Furthermore take h such that H1 = {1}, H2 = ∅ and H3 = ∅. Then

P1 = PS1 = {{1, 2}, {1, 2, 3}}, P2 = PS2 = {{1, 3}, {1, 2, 3}}, P3 = PS3 = {{2, 3}, {1, 2, 3}}

Q1 = QS1,H1 = {{1}, {1, 3}}, Q2 = QS2,H2 = {∅, {2}}, Q3 = QS3,H3 = {∅, {1}},

and so

F(S, h) = 2[3] \ (Q1 ∪Q2 ∪Q3) = {{3}, {1, 2}, {2, 3}, {1, 2, 3}}.

On the other hand

H(S) = 2[3] \ (P1 ∪ P2 ∪ P3) = {∅, {1}, {2}, {3}}

and so as both have size 4, by Proposition 5.0.1 F(S, h) is s-extremal and Sh(F(S, h)) = H(S).

However it is easily seen that there is no A ⊆ [3] such that h = hA would hold.
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We are now in a position to show that families of the form F(S, hA) satisfy Conjec-

ture 1.4.6, i.e. to prove Theorem 1.4.9.

Proof of Theorem 1.4.9. To shorten notation put F = F(S, hA). Recall that by Propo-

sition 5.1.3 F is s-extremal, i.e. |F| = |Sh(F)| and Sh(F) = H(S). Pick an arbitrary

S0 ∈ S with H0 = S0 ∩A. Then there exists a unique (possibly empty) family {S′1, ..., S′k} ⊆
{S0 ∪{v} : v ∈ [n] \S0} such that S ′ = S \ {S0}∪ {S′1, ..., S′k} is again a Sperner familiy and

H(S ′) = 2[n] \Up(S ′) =
(

2[n] \Up(S)
)
∪ {S0} = H(S) ∪ {S0}.

For i ∈ [k] let H ′i = hA(S′i) = S′i ∩ A and let F ′ be the shorthand notation for F(S ′, hA).

Again, by Proposition 5.1.3, F ′ is s-extremal and Sh(F ′) = H(S ′). In particular, since

|Sh(F ′)| = |H(S ′)| = |H(S) ∪ {S0}| = |H(S)| + 1 = |Sh(F)| + 1, we have |F ′| = |F| + 1.

Accordingly all that remains to be shown to prove the theorem is that F ⊆ F ′, since in that

case the unique set F in F ′ \ F is a good choice, i.e. it is such that F ∪ {F} is s-extremal.

To see this, first note that QS′i,H′i ⊆ QS0,H0 since S0 ⊆ S′i for every i ∈ [k], and hence

k⋃
i=1

QS′i,H′i ⊆ QS0,H0 .

However in this case

F =

2[n] \
⋃
S∈S
S 6=S0

QS,S∩A

 \ QS0,H0

⊆

2[n] \
⋃
S∈S
S 6=S0

QS,S∩A

 \ k⋃
i=1

QS′i,H′i = 2[n] \
⋃
S∈S′
QS,S∩A = F ′,

as desired.

Theorem 1.4.9 solves only a further special case of Conjecture 1.4.6, so the conjecture

remains open in general. However the approach presented offers a possible way to tackle it.

As already mentioned after the outline of the approach, one cannot take any S0 ∈ S.

Indeed consider Example 5.1.4. If we take any S0 ∈ S, then one does not need to add any

set to S \ {S0}, as we already have H(S ′) = H(S \ {S0}) = H(S) ∪ {S0}. However if we

were to choose S0 = S3 = {2, 3}, then the resulting F ′ is the the same as F . In the special

case, when h = hA for some A ⊆ [n], this was not possible by the extremality of F ′, which

was guaranteed by Proposition 5.1.3. Here we remark, that F = F ′ does not contradict with

the uniqueness of S and h, as for S ′ we have that Sh(F) ( H(S ′). In the above example for
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instance Sh(F) = H(S) = {∅, {1}, {2}, {3}} ( {∅, {1}, {2}, {3}, {2, 3}} = H(S ′). Accordingly

the main issue here is to rule out the possibility F = F ′ by choosing S0 and the new values

for h carefully. Let us mention that in the above example S1 and S2 are good choices for S0.

Note that to prove the conjecture we need only one good instance. A possible step in this

direction would be to characterise for a given Sperner family S the possible functions h such

that F(S, h) is s-extremal.

5.2 Small Sperner systems

In this section we will prove that Conjecture 1.4.6 holds for set systems F whose corre-

sponding Sperner family has size at most 4. To do so, we will state an equivalent version

of Conjecture 1.4.6. Before doing so, let us consider an example of a set system F which

is s-extremal of the form F(S, h) where |S| = 4. Start with the following Sperner family

S = {{1, 2}, {1, 3}, {1, 4}, {1, 5}} and let h : S → 2[n] be defined as h(S) = ∅ for every S ∈ S.

The resulting family F(S, h) is s-extremal using Proposition 5.1.3, with A = ∅. Note that,

for example, Q{1,2},∅ = {F ∈ 2[n] : F ∩ {1, 2} = ∅}. Hence

F(S, h) = 2[n] \
⋃
S∈S

QS,h(S) = {F ∈ 2[n] : F ∩ {1, 2, 3, 4, 5} 6= ∅}.

Similarly one can define lots of examples of s-extremal families where the corresponding

Sperner family has size (at most) four. Also note that for families like this, we already knew

that they satisfies Conjecture 1.4.6 due to Theorem 1.4.9, by choice of the function h. In

general, given a Sperner family S, it is not easy to construct a suitable function h for which

the resulting set system F(S, h) is s-extremal, see Section 5.4. Another example of an s-

extremal family whose Sperner family has size three (with n = 3) was given in Example 5.1.4.

5.2.1 An equivalent conjecture Let F ( 2[n] be s-extremal. We have already mentioned

that it must be of the form F(S, h) for a unique Sperner family S and function h. Let

S = {S1, ..., SN} and let us write Hi = h(Si) as well as Qi = QSi,Hi for ease of notation.

Conjecture 5.2.1. Let F ( 2[n] be s-extremal of the form F(S, h), where S = {S1, ..., SN}.
Then there exists i ∈ [N ] such that

Qi 6⊆
⋃

j∈[N ]\{i}

Qj .

We will now show that Conjecture 1.4.6 and Conjecture 5.2.1 are indeed equivalent.

Lemma 5.2.2. Let F ( 2[n] be s-extremal of the form F(S, h), where S = {S1, ..., SN}. Then

there exists F ∈ 2[n]\F such that F ′ = F∪{F} is s-extremal if and only if there exists i ∈ [N ]

such that Qi 6⊆
⋃
j∈[N ]\{i}Qj.
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Proof. Assume first that there exists F ∈ 2[n] \ F such that F ′ = F ∪ {F} is s-extremal. In

particular, we have |F| + 1 = |F ′| = |Sh(F ′)| = |Sh(F)| + 1. Therefore F ′ shatters one of

the sets of S: indeed, it cannot shatter a superset of one of the Si’s because then it would

shatter Si as well and so we would get |Sh(F ′)| ≥ |Sh(F)| + 2. So we may assume that F ′

shatters S1. As shown in Lemma 5.3.5, H1 = h(S1) was the unique subset of S1 that could

not be obtained as an intersection of elements of F with S1, so now we have F ∩ S1 = H1.

This implies Q1 6⊆
⋃
j∈[N ]\{1}Qj : if there was an index j ∈ [N ] \ {1} with F ∈ Qj , then F ′

would shatter Sj too, contradicting |Sh(F ′)| = |Sh(F)|+ 1.

Conversely, suppose there exists an index i ∈ [N ] such that Qi 6⊆
⋃
j∈[N ]\{i}Qj . Then there

exists an F ∈ Qi that is not contained in any other Qj , j ∈ [N ] \ {i}.
Following the approach described in Subsection 5.1.2, we now replace Si by an appropriate

family {S′1, ..., S′k}, where each S′` is of the form {S` ∪ {v`} : v` ∈ [n] \ S`}, so that

S ′ = (S \ {Si}) ∪ {S′1, ..., S′k}

is a Sperner family and H(S ′) = H(S) ∪ {Si}. For every ` = 1, .., k we now choose h(S′`) to

be h(Si) or h(Si) ∪ {v`} such that

F /∈ QS′`,h(S′`)
.

This can be done since the dimension of the cube QS′`,h(S′`)
is one smaller than the dimension

of the cube Qi. By construction, we have that F ∈ F ′ = F(S ′, h) but F /∈ F . Hence

|F ′| ≥ |F| + 1 and |Sh(F ′)| ≥ |Sh(F)| + 1. On the other hand, by the generalised Sauer

inequality (Proposition 5.1.1), we also know that

|Sh(F ′)| ≤ |H(S ′)| = |H(S)|+ 1 = |F|+ 1 = |Sh(F)|+ 1,

where the last equality follows since F is s-extremal. Hence we have |Sh(F ′)| = |Sh(F)|+ 1.

Therefore, using the Sauer-Shelah Lemma, we get that |F ′| = |F|+ 1, finishing the proof.

The following lemma is useful when one works with the above version of the conjecture. It

states that the family of cubes Qi form a Sperner family.

Lemma 5.2.3. Let F ( 2[n] be of the form F(S, h). Then, for every i 6= j, we have Qi 6⊆ Qj.

Proof. Suppose the claim is false. We may assume that Q1 ⊆ Q2. By definition, this means

H1 + 2[n]\S1 ⊆ H2 + 2[n]\S2 . As H1 ∈ Q1, we have H1 ∈ H2 + 2[n]\S2 and this implies that

H1 ∩ S2 = H2. From this we get that H1 ⊇ H2, since H2 = H1 ∩ S2 = H1 ∩ S1 ∩ S2 ⊆
H1 ∩ S1 = H1. But this implies that H1 ∪ [n] \ S1 = H2 ∪ (H1 \H2) ∪ [n] \ S1 ∈ H2 + 2[n]\S2 ,

since Q1 ⊆ Q2, and so [n] \ S1 ⊆ [n] \ S2. Hence S1 ⊇ S2 contradicting the fact that S is a

Sperner family.
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5.2.2 Proof of Theorem 1.4.10 Given an s-extremal family F ( 2[n] of the form F(S, h),

let us define the following auxiliary graph GF = GF(S,h): Its vertex set is given by V (GF ) =

{(Si, Hi) : i ∈ [N ]} and we join two vertices (Si, Hi) and (Sj , Hj) if Si ∩Hj = Sj ∩Hi. In

this case, we refer to the pair of adjacent vertices as a good pair. We will now state and prove

some basic facts about GF with respect to Conjecture 1.4.6.

Firstly, Bollobás and Radcliffe proved that if a set system F is s-extremal then its so

called cover graph graph is connected (see Theorem 3 in [17]). From this we immediately get

the following lemma.

Lemma 5.2.4. If F is s-extremal of the form F(S, h), then GF is connected.

Next, we show that if the auxiliary graph of an s-extremal family has a vertex of degree

one, then F satisfies the elimination conjecture.

Claim 5.2.5. Suppose F is s-extremal of the form F(S, h). If there is a vertex of degree

1 in GF , then F satisfies Conjecture 1.4.6, i.e. there is F /∈ F such that F ∪ F is again

s-extremal.

Proof. After possible relabelling, we may assume (S1, H1) has degree 1, and that (S2, H2) is

its unique neighbour. By definition of GF we know that Q1 ∩ Qj = ∅ for every 3 ≤ j ≤ N .

We claim that

Q1 6⊆
⋃
j≥2

Qj .

For the sake of contradiction, assume Q1 ⊆
⋃
j≥2Qj . Since Q1 is disjoint from all Qj , j ≥ 3,

this forces Q1 ⊆ Q2. However, this contradicts Claim 5.2.3. Thus F satisfies Conjecture 5.2.1

and hence, by Lemma 5.2.2, it satisfies Conjecture 1.4.6 as well.

Claim 5.2.6. Suppose F is s-extremal of the form F(S, h). If GF is the complete graph on

N vertices, then F satisfies Conjecture 1.4.6.

Proof. Since GF is the complete graph on N vertices, we have Si ∩ Hj = Sj ∩ Hi for all

1 ≤ i < j ≤ N . We will show that h = hA, where A = H1 ∪ ... ∪HN ⊆ [n]. The claim then

follows from Theorem 1.4.9. Recall that hA(Si) = Si ∩A. To prove the claim, just note that

Si ∩A = Si ∩ (H1 ∪ ... ∪HN ) = (Si ∩H1) ∪ ... ∪ (Si ∩HN ) = Hi, since Si ∩Hi = Hi and for

every j 6= i we have Si ∩Hj = Sj ∩Hi ⊆ Hi.

Corollary 5.2.7. Let F ( 2[n] be s-extremal of the form F(S, h), where |S| ≤ 2, then F
satisfies Conjecture 1.4.6.
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Proof. Since F = F(S, h) is s-extremal, we get thatGF is a clique of size one (if |S| = 1) or two

(if |S| = 2, since GF is connected), and hence F satisfies Conjecture 1.4.6 by Claim 5.2.6.

Lemma 5.2.8. Let F ( 2[n] be s-extremal of the form F(S, h), where |S| = 3, then F satisfies

Conjecture 1.4.6.

Proof. Here GF is either a K3, in which case F satisfies Conjecture 1.4.6 by Claim 5.2.6,

or contains a vertex of degree 1, because GF is connected, in which case F satisfies Conjec-

ture 1.4.6 by Claim 5.2.5.

Lemma 5.2.9. Let F ( 2[n] be s-extremal of the form F(S, h), where |S| = 4, then F satisfies

Conjecture 1.4.6.

Proof. The only cases not handled by Claim 5.2.5 and Claim 5.2.6 are when GF is a C4, i.e.

a cycle of length four, or a K−4 , i.e. a K4 minus an edge.

Suppose first that GF = C4 and that Q1 ∩ Q3 = ∅ = Q2 ∩ Q4. If F does not satisfy

Conjecture 5.2.1, then this means that Q1,Q3 ⊆ Q2 ∪ Q4 and Q2,Q4 ⊆ Q1 ∪ Q3. But this

means that

Q1 ∪Q3 = Q2 ∪Q4.

Since the cubes on both sides are disjoints, this implies {Q1,Q3} = {Q2,Q4} yielding

{S1, S3} = {S2, S4} - a contradiction.

Now assume that GF = K−4 and that Q1∩Q3 = ∅. If F does not satisfy Conjecture 5.2.1, then

this in particular means that Q1,Q3 ⊆ Q2∪Q4. We will show that this yields a contradiction.

To do so, let Q′2 = Q1 ∩ Q2 and let Q′4 = Q1 ∩ Q4. Then both Q′2 and Q′4 are subcubes of

Q1 and Q′2 ∪Q′4 = Q1. There are two cases to consider.

Either we have Q′2 = Q1 or Q′4 = Q1, in which case we have Q1 ⊆ Q2 or Q1 ⊆ Q4,

contradicting Claim 5.2.3.

Otherwise Q′2 and Q′4 are two half-cubes of Q1, in which case Q′2 ∩Q′4 = ∅. In particular,

there exists a direction i ∈ [n] that distinguishes the two half-cubes. But the same direction

is then distinguishing Q2 and Q4 implying Q2 ∩Q4 = ∅ - a contradiction.

5.3 Gröbner Bases

In this section we shall give a rather fast paced introduction to Gröbner bases that will

enable us to state and prove our main result regarding Gröbner bases as well as to highlight

some connections between them and shattering extremal families. For more information on

the connections between Gröbner bases and shattering extremal families, the reader may

consult [65].
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5.3.1 A short introduction to Gröbner bases Let F be an arbitrary field and let

F[x1, ..., xn] = F[x] be the polynomial ring over F with variables x1, ..., xn. Given some

set F ⊆ [n], let vF ∈ {0, 1}n be its characteristic vector, i.e. the i-th coordinate of vF is 1

if i ∈ F and 0 otherwise. Therefore we can identify a set system F ⊆ 2[n] with the vector

system

V(F) = {vF : F ∈ F} ⊆ {0, 1}n ⊆ Fn.

One can then associate to F a polynomial ideal I(V(F))E F[x], where

I(F) = I(V(F)) = {f ∈ F[x] : f(vF ) = 0 ∀ F ∈ F}.

In words, I(F) is the vanishing ideal of the set of characteristic vectors of the elements of

F . Note that we always have {x2
i − xi : i ∈ [n]} ⊆ I(F). For more details about vanishing

ideals of finite point sets see e.g. [65].

If one works with polynomial ideals, it is useful to have a nice ideal basis. Such nice bases

are given by the so-called Gröbner bases, which we will now briefly define. For more details

the interested reader may consult e.g. [1]. A total order ≺ on the monomials in F[x] is a

term order, if 1 is the minimal element of ≺, and ≺ is compatible with multiplication with

monomials. One well-known and important term order is the lexicographic (lex) order. Here

one has xw1
1 ...xwn

n ≺lex x
u1
1 ...xunn if and only if for the smallest index k with wk 6= uk one has

wk < uk. For example, for two variables we would get

1 ≺ x2 ≺ x2
2 ≺ x3

2 ≺ . . . ≺ x1 ≺ x1x2 ≺ x1x
2
2 ≺ . . . ≺ x2

1 ≺ . . .

One can build a lex order based on other orderings of the variables as well, so altogether we

have n! different lex orders. Given some term order ≺ and f ∈ F[x], the leading monomial

Lm(f) of f , is the largest monomial (with respect to ≺) appearing with non-zero coefficient

in the canonical form of f . We are now in a position to define Gröbner bases.

Definition 5.3.1. Let I E F[x] be an ideal and ≺ a term order. A finite subset G ⊆ I is

called a Gröbner basis of I with respect to ≺ if for every f ∈ I there exists a g ∈ G such that

Lm(g) divides Lm(f).

Note that a Gröbner basis is not unique, since one can always add polynomials to it.

Gröbner bases were originally introduced to solve the ideal membership problem: Given an

ideal I E F[x] and a polynomial f ∈ F[x], then how can we decide whether f ∈ I? However,

we will not deal with this problem here.

The following result guarantees the existence of Gröbner bases.

Theorem 5.3.2. Every non-zero ideal 0 6= IEF[x] has a Gröbner basis for every term order.
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For a proof of this theorem, we refer the reader to [1].

Note that if G is a Gröbner basis of I for some term order, then G generates I as an ideal as

well, i.e. I = 〈G〉.

5.3.2 Gröbner bases and s-extremal families We now make the jump to shattering

extremal families. First of all, there is a natural counterpart to the concept of leading mono-

mials. Given an ideal I E F[x], a monomial is called a standard monomial, if it is not the

leading monomial of any polynomial f ∈ I. We get the following correspondence:

Sm(I(F))←→ {G ⊆ [n] : xG ∈ Sm(I(F))} ⊆ 2[n] (5.2)

A particularly nice thing about standard monomials is, that with a little more work one can

show that for a set system F we have |F| = |Sm(I(F))|.
We can now state a result relating Sh(F) with standard monomials.

Theorem 5.3.3 (Rónyai-Mészáros [65]). Let F ⊆ 2[n] be a set system. Then

Sh(F) =
⋃

lex term orders

Sm(I(F)).

As an immediate consequence, we get the following.

Theorem 5.3.4. Let F ⊆ 2[n] be a set system. Then F is s-extremal if and only if Sm(I(F))

are the same for all lex term orders.

For a subset H ⊆ [n], set xH =
∏
i∈H xi. Given a pair of sets H ⊆ S ⊆ [n] we then define

the polynomial

fS,H(x) = xH ·
∏

i∈S\H

(xi − 1).

Note that Lm(fS,H) = xS for every term order. A nice property of these polynomials is that

for a set F ⊆ [n] we have

fS,H(vF ) 6= 0 if and only if F ∩ S = H. (5.3)

We can now show that if S is a minimal set not shattered by an s-extremal set system then

there is a unique whitness for that. We will include its short proof for the convenience of the

reader.

Lemma 5.3.5 ([65]). Let F ⊆ 2[n] be a s-extremal set system. If S is a minimal set not

shattered by F , then there exists a unique H ⊆ S for which there does not exist an F ∈ F
with F ∩ S = H.
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Proof. Assume for a contradiction that there are two distinct sets H1, H2 ⊆ S such that there

does not exist F ∈ F with F ∩ S = H. By 5.3 this means that fS,Hi ∈ I(F), i = 1, 2. Then

g = fS,H1 − fS,H2 ∈ I(F). Now fix a term order.

For this term order we have that Lm(g) = xS′ for some S′ ( S. Since F is s-extremal, we

must have Sm(I(F)) = Sh(F) (by Theorem 5.3.4). But xS′ /∈ Sm(I(F)) and hence S′ is

not shattered by F , contradicting the minimality of S.

Now we are in a position to state the connection between s-extremal families and the

theory of Gröbner bases.

Theorem 5.3.6 ([65]). F ⊆ 2[n] is s-extremal if and only if there are polynomials of the form

fS,H , which together with {x2
i − xi : i ∈ [n]} form a Gröbner basis of I(F) for all term

orders.

Remark 5.3.7. From the proof of the theorem one can deduce that if there is a suitable

Gröbner basis for one particular term order, then F is already extremal (see [65]).

Given a Sperner family S ⊆ 2[n] and a function h : S → 2[n], set

G(S, h) = {fS,h(S) : S ∈ S} ∪ {x2
i − xi : i ∈ [n]}.

Using the approach given by Proposition 5.0.1, we can now state and prove our main result of

this section. The proof requires some basic knowledge of commutative algebra, in particular

ideal theory (see the appendix to this chapter).

Theorem 5.3.8. G = G(S, h) is a Gröbner basis (of 〈G〉) for some term order ≺ if and only

if

|H(S)| = |F(S, h)|.

Proof. Suppose first that G is a Gröbner basis for some term order ≺. We start by showing

that the ideal generated by G, denoted 〈G〉, is a radical ideal, i.e. 〈G〉 =
√
〈G〉. To see

this, first note that clearly J = 〈x2
i − xi : i ∈ [n]〉 ⊆ 〈G〉. Now a basic fact from Algebra

states that 〈G〉 is a radical ideal in F[x] if and only if 〈G〉/J is a radical ideal in F[x]/J (see

Lemma 5.5.5). However, F[x]/J is isomorphic to F2n , because both are isomorphic to the

ring of all functions from {0, 1}n to F. Using the fact that the only ideals of a field are the

zero ideal and the field itself, and that the only ideals in a finite cartesian product of rings

are products of ideals (see Lemma 5.5.6), one easily verifies that every ideal in F2n is the

intersection of maximal ideals. This in turn implies that in F[x]/J every ideal is a radical

ideal and so in particular 〈G〉/J is. Hence 〈G〉 is a radical ideal and is thus a vanishing ideal

of some finite set in {0, 1}n, since J ⊆ 〈G〉. This means 〈G〉 = I(F) where F (more precisely
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V(F)) is the set of common roots of the polynomials in G. We will now show that by the

earlier mentioned properties of the fS,h(S) polynomials (see (5.3)) we have that F is precisely

F(S, h)

F =
⋂
S∈S
{F : vF is a root of fSh(S)} =

⋂
S∈S
{vF : F ∩ S 6= h(S)}

= {vF : F ∩ S 6= h(S) ∀S ∈ S} = 2[n] \
⋃
S∈S
QS,h(S) = F(S, h).

Thus 〈G〉 = I(F(S, h)) and so, by Theorem 5.3.6, F(S, h) is s-extremal, i.e. |F(S, h)| =

|Sh(F(S, h))|. However, as noted above, in this case we have that Sh(F(S, h)) = H(S), and

so |F(S, h)| = |H(S)|.

Now suppose |H(S)| = |F(S, h)|. In terms of Theorem 5.3.6 it is enough to show that

F(S, h) is s-extremal. Note that by definition, for every S ∈ S there does not exist F ∈
F(S, h) such that F ∩ S = h(S) and so S /∈ Sh(F(S, h)). In particular no superset of S is

shattered by F(S, h). Therefore Sh(F(S, h)) ⊆ 2[n]\Up(S) = H(S) and hence |Sh(F(S, h))| ≤
|H(S)| = |F(S, h)|. However the opposite inequality holds by the Sauer-Shelah Lemma for

every set system and thus F(S, h) is necessary s-extremal.

5.4 Concluding remarks and open problems

In this chapter we proved the elimination conjecture for some special cases and presented a

new approach that we hope should work to prove the conjecture in full generality.

The main task is of course to prove Conjecture 1.4.6. A first step would be to solve the

following problem.

Problem 5.4.1. For a given Sperner family S ⊆ 2[n] determine all possible functions h such

that the resulting set system F(S, h) is s-extremal.

If one wants to avoid this, a natural first step would be to prove the conjecture using our

approach in case S ′ can be taken to be S \ {S0}. In this case, the advantage would be that

one does not need to extend the function h.

Furthermore we would like to point out that while proving the conjecture for small Sperner

families, we mostly did not use that the family we started with was s-extremal, except for the

graph GF being connected, which we used for simplicity. However, the same statements can

be proven without the connectedness assumption. This leads to the following question.

Question 5.4.2. Given a Sperner family S = {S1, ..., SN} ⊆ 2[n] and a function h. Is it true

that there exists i ∈ [N ] such that Qi 6⊆
⋃
j∈[N ]\{i}Qj ?
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Note that if the answer to this question is yes, then this implies the elimination conjecture.

We end with the following beautiful conjecture of Frankl from 1989, that we already

mentioned in the introduction.

Conjecture 5.4.3 (Frankl [32]). Suppose n ≥ 2k and let F ⊆ 2[n] be a Sperner family with

dimV C(F) < k. Then

|F| ≤
(

n

k − 1

)
.

Note that the case n < 2k is excluded, because in this case one can take F =
( [n]
bn
2
c
)

which

is as large as a Sperner family can possible be, by Sperner’s Theorem.
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5.5 Appendix to Chapter 5

We collect some basic facts from ideal theory that were implicitly used in this chapter. For

more information and proofs we refer the reader to classic book of Atiyah and MacDonald [5]

or to the more recent book of Sharp [71].

Ideals constitute the most important substructure of a commutative ring. Throughout R

denotes a commutative ring with a 1.

Definition 5.5.1. A subset I of R is called an ideal, if it is an additive subgroup of R and

if whenever a ∈ I and r ∈ R, then ra ∈ I also.

As is usual we write I ER, if I is an ideal of R. An ideal pER is called a prime ideal if

1 /∈ R and if xy ∈ p implies x ∈ p or y ∈ p. An ideal mER is called a maximal ideal if there

is no ideal J with I ( I ( R. It is an elementary fact that every maximal ideal is prime.

Using the Lemma of Zorn, one can show that every ideal is contained in a maximal ideal.

Definition 5.5.2. Let I ER be an ideal. The radical of I is

√
I = {r ∈ R : there exists n ∈ N with rn ∈ I}.

Using the binomial theorem it is not hard to show that
√
I is an ideal. Note that I ⊆

√
I

trivially holds for every ideal I. An ideal I ER is called a radical ideal if I =
√
I.

With these definitions, we can state the results we have used in this chapter.

Lemma 5.5.3. Let I ER be an ideal. Then

√
I =

⋂
prime ideals p⊇I

p.

We get the following as an immediate consequence.

Corollary 5.5.4. If R is such that every ideal is the intersection of maximal ideals, then

every ideal is radical.

We have also used special cases of the following results.

Lemma 5.5.5. Let I ⊆ J be ideals in R. Then J is radical/prime/maximal if and only if

J/I is radical/prime/maximal in R/I.

Lemma 5.5.6. Let R1, ..., Rn be commutative rings. If Ii E Ri is an ideal for every i ∈ [n],

then I1 × ...× In is an ideal in R1 × ...× Rn. Furthermore, each ideal of R1 × ...× Rn is of

this form.
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Zusammenfassung

Diese Dissertation besteht aus 5 Kapiteln. Das erste Kapitel dient als Einleitung und stellt die in der

Dissertation behandelten Themen und Ergebnisse vor.

Das zweite Kapitel befasst sich mit sogenannten ”strong Ramsey games”, bei denen zwei Spieler ab-

wechselnd Kanten des vollständigen (Hyper-)Graphen beanspruchen. Gewinner des Spiels ist der erste

Spieler, welcher einen zuvor fest gewählten (Hyper-)Graphen vollständig für sich beanspruchen kann.

Hat der vollständige Graph hinreichend viele Knoten, so kann gezeigt werden, dass für den beginnen-

den Spieler stets eine Strategie existiert, die es ihm ermöglicht, das Spiel zu gewinnen. Entgegen der

allgemeinen Vermutung, dass dies auch auf unendliche vollständige Graphen zutrifft, konstruieren wir

einen 5-uniformen Hypergraphen, für den der zweite Spieler ein Unentschieden erzwingen kann.

Das dritte Kapitel befasst sich mit sogenannten ‘biased (1 : q) Maker-Breaker’ Spielen. Zwei Spieler,

genannt Maker und Breaker, beanspruchen abwechselnd Knoten eines gegebenen Hypergraphen. Maker

beansprucht einen Knoten pro Runde und Breaker q Knoten. Maker gewinnt, falls er eine Hyperkante

vollständig für sich beanspruchen kann, andernfalls gewinnt Breaker. Eine der zentralen Fragen auf

diesem Gebiet ist, die sogenannte threshold bias zu finden. Wir beweisen allgemeine Gewinnkriterien,

eins für Maker und eins für Breaker, und wenden diese auf zwei Klassen von Spielen an. Zum Einen

verallgemeinern wir ein bekanntes Resultat von Bednarska und  Luczak auf Hypergraphen. Zum An-

deren bestimmen wir, bis auf eine Konstante, die threshold bias, wenn das Ziel des Spiels eine Lösung

zu einem beliebigen, aber festen linearen System von inhomogenen Gleichungen ist.

Das vierte Kapitel beschäftigt sich mit der sogenannten Ordnungseigenschaft von geordneten Hyper-

graphen, welche kürzlich von Duffus, Kay und Rödl eingeführt worden ist. Wir verbessern die von

jenen bewiesene obere Schranke um einen Faktor k ln k.

Das letzte Kapitel befasst sich mit dem Begriff des Zerschmetterns (,shatter’). Ein Mengensystem heißt

s-extremal, wenn es die Ungleichung von Sauer und Shelah mit Gleichheit erfüllt. Eine Vermutung

von Mészáros und Rónyai besagt, dass man zu einem s-extremalen Mengensystem stets eine Menge

hinzufügen kann, sodass das resultierende Mengensystem wiederum s-extremal ist. Wir beweisen diese

Vermutung für bestimmte Mengensysteme, welche durch sogenannte Sperner Familien definiert werden

und für den Fall, dass die Sperner Familie aus höchstens vier Mengen besteht. Zusätzlich beweisen

wir ein neues Resultat, welches den Zusammenhang mit Gröbnerbasen weiter beleuchtet.

101



102 ZUSAMMENFASSUNG



Eidesstattliche Erklärung
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