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Chapter 1

Introduction

Optimal, robust and fine-tuned regulation in biological systems does not necessarily

go along with deterministic behavior. While from an engineering point of view noise

is usually regarded as an unwanted side effect, living systems exhibit a very versatile

relationship to stochastic fluctuations associated with the transmission of signals.

On the one hand, erroneous transduction and interpretation of noisy environmental

stimuli is known to have a strong potential to disrupt the cellular function and cause

diseases. On the other hand, stochasticity is necessary for generating heterogeneity

of cellular functions and fates, vital for a survival in changing environments. A dis-

section of mechanisms which enable a trade-off between these two roles has become

an essential objective for a holistic dynamical understanding of cellular processes.

Today’s life scientists have access to a vast systematic repository of data describ-

ing biological structure, organization and interaction. Almost seventy years after

Schrödinger’s physical focus on living matter in “What is life?”, sixty years after

the publication of the structure of the DNA and over a decade after the complete

sequence of the human genome became available, it is clear that no new physical

laws have to be formulated to describe the mechanisms governing life. Nevertheless

many concepts related to biological self-regulation and organization or, to go a step

further, the abstract concept of intelligence still retain a touch of magical fascina-

tion. On the most basic level, at the frontier between living and non-living matter,

viruses exhibit a certain, often harmful form of intelligence by being able to rapidly

adapt to various environments and hostile drugs. Physically, this adaptation can be

considered as a stochastic system in a potential landscape. It resides in a genetic

equilibrium state and possibly sometimes exhibits a transition, induced by muta-

tional noise, to another distant equilibrium. A variation in the environment, say by

drug addition, gives rise to a novel potential landscape, and begins the viral search

for the optimum anew.

In the most intensively studied prokaryotic species, Escherichia coli, genomic changes

due to mutation and horizontal gene transfer also play an important role in adapting

to various environments. However the bacteria possess a whole arsenal of mecha-

nisms for generating phenotypic responses to stress conditions which makes their

genomes more robust with respect to selection pressure. The various signaling

cascades incorporating ubiquitous two-component modules and second messenger

systems exhibit a high degree of orderliness. In recent years, however, an increasing

number of studies addressed the role of stochastic fluctuations in bacterial gene
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regulation and signal transduction [73]. It has been shown that the bacterial cell

constantly deals with intrinsic noise originating from small sizes of populations of

crucial molecules, such as the mRNA. Furthermore, fluctuations in global biochem-

ical parameters, such as the reaction rates, give rise to what has been coined as

the extrinsic noise. Most systems set upper tolerance limits to such fluctuations,

for instance by using feedback loops or regulatory checkpoints. In certain cases,

however, stochastic fluctuations are exploited in order to generate heterogeneity

of phenotypic or genotypic responses to external stimuli. These properties are en-

countered throughout the domain of prokaryotes. For instance, it is has been shown

that upon environmental stress, the Gram-positive Bacillus subtilis stochastically

switches from its normal vegetative state to the state of competence, where it has

an increased ability to take up extracellular DNA [18].

From a mathematical perspective of system design there is no contradiction be-

tween tight regulation and optimal adaptation on the one hand and the stochas-

ticity of the dynamics on the other hand. Thus the tight control can be imposed

over the deterministic properties of the underlying probability distributions of the

molecules involved in the regulation. For instance, in the case of the viral evolu-

tion, the potential energy V (x), associated with the probability for each genotype

x, might vary with external conditions. A change in the potential induces a new

genotypic distribution corresponding to an optimal adaption of the population to

the new environment. The potential can also be subject to control e.g. by a bac-

terial signaling system which regulates the probability distribution for expressing a

particular phenotype as a reaction to stress conditions.

In fig. 1.1 the probabilistic adaptation to environment is exemplified using two

different double-well potentials. Initially, the potential energy V (x) has two equal

minima which correspond to two distinct phenotypic or genotypic traits (figure 1.1,

left). First, the system stochastically fluctuates in the right well and after some

time, eventually jumps over the energy barrier to the left well. In this situation the

trait of interest is characterized by a bistable expression. In the second situation,

a change in environmental conditions and possible corresponding stress response

gives rise to a new asymmetric potential function (figure 1.1, right). This time the

stochastic fluctuations are not large enough to let the system jump over the energy

barrier to the left. The resulting system exhibits a monostable probability distri-

bution, tightly concentrated around a single trait.

The focus of this thesis is on stochastic modeling of adaptation processes and stress

responses. Although established mathematical methodology is used, the presented

applications give rise to novel tools and insights within the study field of Systems

Biology. The thesis is based on two main projects. In the first one an analysis of

a signaling system of the bacterium Escherichia Coli is conducted. This system

is part of the general stress response, induced as a reaction to a set of stressful

environmental conditions (chapter 3). In the second project an evolutionary adap-
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Figure 1.1: Potential energy resulting from environmental conditions as a de-

terminant of a genotypic or phenotypic distribution.

Realizations of a stochastic system sketched as a ball in a double-well potential subject to

random fluctuations. A variation of the potential function leads to a change of the probabil-

ities to encounter the system in either of the two equilibria. Left: An exemplary symmetric

potential enables noise-induced transitions from the left well to the right one. Right: In

an asymmetric potential the energy barrier is to large to enable a transition.

tation process of the human immunodeficiency virus (HIV) in the presence of drug

application is studied (chapter 4). The similarity of the two projects arises from

the fact that both systems give rise to state-discrete stochastic dynamics where the

time-evolution of the probability distribution can be studied using the same math-

ematical framework. However the addressed questions significantly differ from each

other, as described in the following.

Dynamics of bacterial signaling induced by the general stress re-
sponse

The protein RpoS is the master regulator of the general stress response controlling

10% of the whole genome of Escherichia coli. A crucial consequence of RpoS-

induction is the reduction of bacterial metabolism and expression of a protein net-

work which ultimately gives rise to the synthesis of biofilm, a protecting substance

promoting aggregation in bacterial colonies. Key to dissecting the underlying reg-

ulatory mechanisms is an understanding of the stochastic dynamics induced by the

second messenger signaling molecule cyclic di-GMP (c-di-GMP) [35]. Based on well-

known qualitative principles of c-di-GMP regulation, a Markov jump process model

is derived in chapter 3. The stationary properties of the underlying probability dis-

tribution, noise-reduction strategies of the system and first passage time statistics

are analyzed. These results enable to study the dynamics of the biofilm expression

system, which incorporates c-di-GMP signaling. Using a bifurcation analysis, it is
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shown that the analyzed system exhibits bistable dynamics within a realistic range

of parameters. Finally, based on expression measurements, evidence is found that

this system is responsible for the phenotypic heterogeneity of biofilm formation in

E. Coli populations. The results of chapter 3 yield, to our knowledge, the first

model of the stochastic dynamics of the stress-induced biofilm formation network.

They deliver optimality arguments for the particular architecture of the qualitative

network and explain the experimental measurements of biofilm expression data.

It is left for following studies to extend these results for a more detailed analysis

of transition dynamics of the bistable biofilm-synthesis system and a more global

dynamical understanding of the RpoS-controlled network.

Studying evolution of the HIV genome using a stochastic model of
viral growth

In the presence of drugs inhibiting the reverse transcription, susceptible HIV-strains

ultimately become resistant by exhibiting genetic mutations which reduce the effect

of drug action. This evolutionary escape mechanism, as a response to environmen-

tal stress, can be considered as a stochastic system on a potential landscape. Due

to a large number of amino acid residues associated with the structure and function

of the reverse transcriptase enzyme (RT), the corresponding potential landscape of

drug escape is complex and high-dimensional. In chapter 4 certain regions of this

landscape are inferred from experimental data of viral growth and the associated

drug-induced mutations. As in the preceding chapter, a Markov jump process is

used as a model for the viral population growth given a certain genetic background

and drug regimen. As a result, the effect of fitness loss and resistance gain as-

sociated with an extensive set of mutations of the RT-enzyme is estimated using

stochastic viral growth dynamics. Furthermore the presented model explains the

observed direction of the genetic evolution of HIV in the presence of drugs and

after their removal. The results of chapter 4 enhance the so far available knowledge

about resistance development mechanisms of HIV and contribute to predicting the

direction of its genetic evolution. The results of this chapter have been published

in [60].
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Chapter 2

Stochastic processes in

biological applications

2.1 Introduction

Stochastic modeling is becoming an increasingly important tool in computational

simulation of biological processes. Applications range from protein folding, system

models of cellular networks and evolutionary dynamics of the genome. In many of

such applications system averages do not rigorously represent the qualitative pic-

ture behind the real-life system and sometimes even distort it. A classical example

is given by multistable systems, describing conformational dynamics of proteins or

bistable phenotypes of cells in a culture. In such systems stochastic modeling often

reveals noise-induced transitions between various stable system states, which might

have important biological implications. However, this switching behavior can not

be observed if the stochastic fluctuations are neglected, leading to a completely dif-

ferent qualitative dynamics.

A further example showing the role of stochastic modeling arises from situations

where extinction has a significant qualitative impact. Consider a population of

pathogenic cells (e.g. bacteria) in the human organism of size X, subject to a

medical treatment by drug application. Usually, the success of a medical treat-

ment is determined by the time that it takes to eradicate the pathogen from the

patients organism. The simplest model for such a system consists of a population

growth e.g. by cell division of the pathogen and the population decay due to cell

death. Obviously these two processes do not take place in a continuous manner but

have rather a random nature. The number of random events of each kind within

a certain time interval might be a function of various parameters such as current

number of pathogens, drug concentration, body temperature etc. In the case that

these are linear functions of the population size with constant parameters a and b,

the expected level of pathogens can be modeled by an ordinary differential equation

(ODE):

dx(t)

dt
= ax(t)− bx(t), (2.1)

where x(t) represents the expected number of cells (which can be considered as con-

centration rather than cell counts) at time t. Denoting by x0 the initial population
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size, the solution at time t is obviously given by an exponential function

x(t) = x0 · exp[(a− b)t].

In a situation where, for instance due to drug application, the ratio (a− b) is neg-

ative, it is of interest to determine the time point at which the population goes

extinct. However, by analyzing the exponential solution of the above ODE, we find

that the expected number of cells approaches zero but never completely vanishes.

In contrast, a stochastic simulation, discussed further below in this chapter, allows

to exactly analyze the statistics of extinction times. In figure 2.1 two stochastic

realizations of the population dynamics model are depicted along with their mean

level, modeled by the ODE (2.1). The two stochastic realizations (blue trajectories)

  

Figure 2.1: Deterministic dynamics does not reflect the extinction times.

Shown are two stochastic simulations (blue) and the corresponding deterministic simulation

of the mean level (red) of a pathogenic population decay e.g. under drug application. The

mean level, given by an exponential function, continuously decreases but never hits 0 (as

shown in the inlay figure, where a logarithmic y-axis is used). In contrast, two individual

stochastic realizations indicate different extinction times (marked by arrows), giving rise to

the probability distribution of extinction.

indicate extinction around 25 and 59 hours after the start of drug application, re-

spectively. These might represent the individual treatment outcomes for two differ-

ent patients. In contrast, the mean level (red) modeled by the ODE (2.1) exhibits a

continuous convergence to zero without indicating the statistics of extinction times.

This chapter is dedicated to stochastic processes and related topics playing impor-

tant roles in computational biology. In particular, the methodological framework

presented here is tightly connected to biological questions addressed. In chapter

3 an analysis of the stress-induced dynamics of curli formation is conducted, an

extracellular polymeric substance leading to aggregated bacterial biofilm colonies.
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We ask how discrete on/off expression of curli on the single cell level is related to

the continuous average expression measured in the cell population. A stochastic

model is derived, describing the molecular biological network which is suggested

here to be the source for the switching behavior between the curli-on and curli-off

states. The theoretical framework of Markov jump processes (MJPs), derived in

this chapter, enables an analysis of dynamical properties induced by the signaling

network and quantify the impact of the discrete nature of biomolecular kinetics and

the resulting stochastic fluctuations. In chapter 4 the probability density of first

passage times is analyzed in order to model the population growth of HIV underly-

ing a simultaneous genetic evolution as a stress response to drug application. The

theory of MJPs allows to mechanistically derive and explain the variability of the

viral growth dynamics. This gives an insight into the principles of the high genetic

flexibility of the virus with respect to the stress conditions imposed by different

medical treatments.

In parallel to Markov jump processes and the Chemical Master Equation, as the

theoretical cornerstones, different affiliated topics will be discussed. In most of the

applications in the following chapters the connection between the analyzed stochas-

tic process and a related deterministic equation plays an important role. In chapter

3 the analysis of an approximating ODE at its fixed points will enable to find the

stationary states of the underlying stochastic system. Here we present the frame-

work which allows to conduct this analysis and we will discuss the limits of the

approximation by considering the moments equations associated with the probabil-

ity density of MJPs. Since stochastic differential equations (SDEs) can be consid-

ered as a link between the world of state-discrete Markov processes and the purely

continuous ODEs, some space will be dedicated to shed light on the relationship

between the three different frameworks. Notably, the Linear Noise approximation

of the Chemical Master Equation will be discussed in this chapter and applied to

interaction dynamics of HIV and host cells in chapter 4. This enables a considerable

acceleration of sampling by using SDEs for parameter estimation and fitting of the

first passage time moments.

Finally, a framework for model inference in biochemical reaction systems will be

presented in the end of this chapter. To our knowledge it is the first time that the

methodology for estimating infinitesimal generator matrices is adopted for inferring

biochemical reaction rate constants. It will be shown that despite prohibitively large

state spaces, the problem of estimating the large set of infinitesimal jump rates can

be reduced to the inference of a few reaction rate constants. The advantages of this

approach and possible solutions to the problem of discrete process observations will

be discussed.
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2.2 Markov Processes

Stochastic processes and the Markov property

A central object in the analysis of dynamical systems with time evolution subject

to random fluctuations is the notion of a stochastic process. Its definition is derived

using the triple (Ω,A,P), the so called probability space, where Ω is a sample space,

A is the corresponding σ-algebra i. e. the set of all possible subsets on the sample

space and P : A 7→ [0, 1] is a probability measure.

Definition 1. A collection of random variables X = {X(t) : Ω 7→ S} is called

a stochastic process with time index t ∈ R+ and a space of all possible simple

outcomes S. For a given ω ∈ Ω the set {X(t, ω)} is called a realization of the

stochastic process X.

A stochastic process {X(t)} thus defines a mapping from the sample space to

the space of all possible simple outcomes S, also referred to as state space. The prob-

ability measure defined on the corresponding σ-algebra ensures that the elements

of {X(t)} are random variables. The dependence on a non-negative real variable

t in definition 1 implies that a stochastic process can be regarded as a sequence

of random variables evolving in time. The probability measure P completely char-

acterizes this evolution, since for a given finite sequence of successive time points

t1, t2, t3, .., tn a realization of a stochastic process obeys the joint probability

P[X(t1) = x1, X(t2) = x2, .., X(tn) = xn]

= P[X(t1) = x1]× P[X(t2) = x2|X(t1) = x1]

× P[X(t3) = x3|X(t1) = x1, X(t2) = x2]× ...
× P[X(tn) = xn|X(t1) = x1, X(t2) = x2, ..., X(tn−1) = xn−1]. (2.2)

For instance if for each realization the joint probability is given by a multivariate

Gaussian distribution

P[X(t)] = P[X(t1) = x1, X(t2) = x2, .., X(tn) = xn]

=
1

(2π)N/2|Σ|1/2
exp

[
−1

2
(X(t)− µ)TΣ−1(X(t)− µ)

]
, (2.3)

then {X(t)} is called a Gaussian process. In this equation µ and Σ are the cor-

responding mean vector and the covariance matrix, respectively. |Σ| denotes the

matrix determinant. For instance if at time t1 = 0 it holds for every realization

that X(t1) = 0 and X(tk) − X(tk−1) ∼ N(0, tk − tk−1) for tk−1 < tk, then it can

be shown [23] that the corresponding process is Gaussian. It is called the Wiener

Process and it models the phenomenon of Brownian motion, that will be referred

to as dBt.

The characterization of realizations of a stochastic process in terms of the joint

probability of the corresponding random variables is usually rather intractable.
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However, for a certain class of stochastic processes this joint probability can be

reformulated in simpler form using the conditional probability.

Definition 2. If for a stochastic process X(t) it holds true that

P[X(tn)|X(t1), X(t2), ..., X(tn−1)] = P[X(tn)|X(tn−1)] (2.4)

for all t ∈ R+ then X(t) is a Markov process. In addition, given that the one-

step conditional probability on the right hand side does not depend on individual time

points but their difference tn−tn−1 then the Markov process is called homogeneous.

A homogeneous Markov process is uniquely characterized by

(a) the function p : R+ × S× S 7→ [0, 1] with

p(t, x, y) := P[X(t) = y|X(0) = x],

called stochastic transition function with the properties p(t, x, y) ≥ 0 for all

x, y ∈ S and
∑

y∈S p(t, x, y) = 1.

(b) and its initial probability distribution is

P0(x) := P[X(0) = x].

Obviously, the Markov property defines a subclass of stochastic processes for

which the joint probability of successive realizations can be simplified to the product

of one-step conditional probabilities

P[X(t1) = x1, X(t2) = x2, .., X(tn) = xn] =

P[X(tn) = xn|X(tn−1) = xn−1]×
P[X(tn−1) = xn−1|X(tn−2) = xn−2]× ...× P[X(t2) = x2|X(t1) = x1],

which is analytically by far better tractable than the general case in eq. (2.2).

Furthermore, for a homogeneous Markov process with a constant time increment

tk − tk−1 = s for all k ∈ N this further simplifies to

P[X(t1) = x1, X(t2) = x2, .., X(tn) = xn] =

P0(x1)

n−1∏
i=1

p(s, xi+1, xi). (2.5)

Notably, the Wiener process fulfills the Markov property and it is homogeneous

since for every given realization X(t), t ∈ {t1, ..., tn}

X(tk) = X(tk−1) +4X

with 4X ∼ N(0, tk − tk−1). This shows that the value at the current time point

only depends on its difference to the preceding one.

Note that the time variable can also be chosen to be discrete. In that case a



16 Chapter 2. Stochastic processes in biological applications

realization of the Markov process is defined only by integer indices X = {Xk}k∈N.

It is then only of interest how many discrete steps it takes to go from state Xi to

state Xj . The transition probability density becomes time-independent, changing

probability of a realization (2.5) to

P[X1 = x1, X2 = x2, .., Xn = xn] =

P0(x1)

n−1∏
i=1

p(xi+1, xi). (2.6)

In contrast to the Wiener process, these processes are discrete in time and in space

and are referred to as Markov chains. As an example, consider the state space

of genetic mutations associated with the amino acid Valine at position 106 in the

reverse transcriptase enzyme of HIV (figure 2.2). As shown in chapter 4, this

mutation confers the virus resistance with respect to the non-nucleoside reverse-

transcriptase inhibitor NVP. The reference wild type viral strain is known to have

the amino acid Valine at this position which can be coded by four different base

triples (codons) within the red box in fig. 2.2. Single-base mutation events can lead

to transitions between different states. Three of the possible base-triples coding for

Valine have the same transition characteristics since they have a distance of one

mutation to codons of Alanine and Isoleucine (the upper three codons in the red

box in fig. 2.2). Thus these three codons are subsumed as a single state 1. Since

transitions between these three codons are possible, the state 1 has a self-transition

arrow. Furthermore, the three codons can mutate to the fourth codon of Valine

(GUG), which constitutes a separate state 2 due to different transition properties.

Similarly the states 3 and 4 refer to the amino acid Alanine, the state 5 refers to

the amino acid Isoleucine and the state 6 belongs to Methionine. By denoting the

  

AUA
AUU
AUC

GUA
GUU
GUC

GCA
GCU
GCC

GUGGCG AUG
Methionine

IsoleucineValineAlanine

3

4 2

1 5

6

Figure 2.2: Transition graph induced by mutations of the amino acid at position

106 of the reverse transcriptase enzyme of HIV.

Transitions between different states are induced by single-base mutation events. The impact

of the associated mutations on the resistance of HIV towards treatment is analyzed in

chapter 4.

probability of transition between state x and y as pxy, a transition matrix P can

be set up that describes how probable it is to jump from one state to another. The
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transition graph in figure 2.2 gives rise to the following transition matrix:

P =



p11 p12 p13 0 p15 0

p21 0 0 p24 0 p26

p31 0 p33 p34 0 0

0 p42 p43 0 0 0

p51 0 0 0 p55 p56

0 p62 0 0 p65 0


.

Since probabilities of realizations of this process are only defined in terms of the

mutational steps involved and do not consider how much time it takes to mutate,

the described process induces a time-discrete Markov chain. For instance, assigning

all initial probability mass to state 1 (Valine) by

P0(1) = 1,

the probability of the realization of the mutational sequence GUA-GUU-AUU-AUG

(Val-Val-Ile-Met) is given by

P[X(t1) = 1, X(t2) = 1, X(t3) = 5, X(t4) = 6] = P0(1) · p11 · p15 · p56.

2.2.1 Markov jump processes

So far, none of the definitions makes any assumption about the continuity of the

state space S. However, in the present work we are mainly interested in Markov

processes with a countable state-space S and continuous time t which can be re-

garded as a mix between the time and space continuous Wiener process and the

fully discrete Markov chain. Also, we have not yet discussed how realizations of

Markov processes can be generated (although rather simple in the case of the RT-

mutational Markov Chain, it requires an additional theory for generating sample

paths of the Wiener process).

The discreteness of S requires an additional assumption about the process. That

is, the stochastic transition function needs to fulfill the following condition

p(0, y, x) = δx,y,

for all x, y ∈ S, where δx,y denotes the Dirac delta function with δx,y = 1 if x = y,

and δx,y = 0, otherwise. This property ensures that no transitions are possible in

zero time. In addition, the continuity of the transition function is assumed

lim
t→0+

p(t, y, x) = δx,y,

which makes sure that Markov jump processes are right-continuous. Furthermore

using the Markov property it can be shown that the stochastic transition function

of a homogeneous Markov process fulfills the Chapman-Kolmogorov equation:

p(s+ t, x, y) =
∑
z∈S

p(s, x, z)p(t, z, y). (2.7)
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Equation (2.7) states that the probability of going from some state x to a state y

results from the sum of all possibilities to go from x to one of the possible inter-

mediate states and then to go from the intermediate state to the end state y. This

equation is a direct consequence of the Markov property. The sum over all possi-

ble intermediate states can be interpreted here as a set-theoretical union over the

alternative paths or it can be regarded as a logical OR. The transition probabilities

can also be expressed in a matrix notation. As a result, the Chapman-Kolmogorov

property reads

P(t+ s) = P(t)P(s).

where

P(t)x,y = p(t, x, y).

is called the transition matrix (or transition semi-group), as in the case of Markov

chains. Importantly, due to the probability normalization condition the transition

probabilities associated with a particular state must sum to 1. Owing to this prop-

erty, the transition matrix qualifies as a stochastic matrix, having a row sum of one

and non-negative entries.

As shown in equation (2.5), the stochastic transition function takes some initial

probability distribution P0 and assigns the probability P (t) to each state of the

state space at time t defined as a vector P (t) := P[X = x, t]. The propagation of

the probability in time is then expressed by

P (t)T = P T0 P(t). (2.8)

Furthermore, if a given probability distribution P0 fulfills the following equality

P T0 = P T0 P(t), (2.9)

then P T0 is referred to as the stationary probability distribution of the Markov

jump process. This distribution is time-invariant i.e. a system started in P0 stays

there forever.

So far we have defined a Markov process on a countable state-space S. By re-

quiring that it is right-continuous we made sure that the transitions between the

discrete states are well defined. In the following we will study the properties of

the jump-like transitions between the states of the process and refer to this class of

processes as Markov jump processes.

The infinitesimal generator and the Master Equation

The right-continuity of Markov jump processes is preliminary for deriving expres-

sions for their time dynamics. So far it is clear that transitions between discrete

states must take place but since these are random jumps, how can their statistics

be quantified? The basic idea behind the following framework is the analysis of
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infinitesimal time intervals which are so small that only one jump at a time can

occur. The following limit sets up a connection between the propensity for a par-

ticular jump to take place, out of all possible jumps, and the respective transition

probabilities.

Proposition 1. Given a Markov jump process with a semigroup P(t) then the limit

A = lim
t→0+

P(t)− Id

t
(2.10)

exists and defines the infinitesimal generator A = (a(x, y))xy∈S with −∞ ≤ a(x, x) ≤
0 ≤ a(x, y) ≤ ∞.

A proof can be found in [9]. Note that the above limit is defined entrywise, from

which follows the existence of two scalar limits:

a(x, x) = lim
t→0+

p(t, x, x)− 1

t
,

and

a(x, y) = lim
t→0+

p(t, x, y)

t
.

Since for the transition matrix it holds
∑

y∈S
y 6=x

P(t)xy + P(t)xx = 1 it immediately

follows from the limit (2.10) that

a(x, x) = −
∑
y∈S
y 6=x

a(x, y). (2.11)

The infinitesimal generator, defined in this way, is a matrix containing transition

rates between the states in S. While the transition probability matrix is character-

ized by a row-sum of 1, the infinitesimal generator has a row-sum of 0. Notably, this

matrix form assumes a finiteness of the state space. Markov jump processes, which

are not constrained to a finite S, can not be described in this way. Alternatively,

appropriate boundary conditions (“exit-states“) must be implemented which reduce

the loss of probability mass and the resulting error (see for instance [53]). The diag-

onal entries have furthermore an implication on the time dynamics by determining

how long the process stays in the respective state.

Theorem 1. Given a Markov jump process X(t) on a state space S then the time

τ(t) = inf{s ≥ 0 : X(t+ s) 6= X(t)}

is called the residual life time. The tail distribution of τ(t) is given by

P[τ(t) > s|X(t) = x] = exp(a(x, x)s) (2.12)

and the probability of going from state x to state y upon jumping from x, with

x, y ∈ S is

P[X(t+ τ(t)) = y|X(t) = x] =
a(x, y)

|a(x, x)|
. (2.13)



20 Chapter 2. Stochastic processes in biological applications

The above result for the residual life time can be shown by considering some

infinitesimal time interval ds, cf. [25]. Due to the definition of the infinitesimal

generator, the probability not to jump away from a state x in this time interval is

P[X(t+ s+ ds) = x|X(t) = x] =

1−
∑
y∈S

a(x, y) · ds.

 ·P[X(t+ s) = x|X(t) = x].

The above equation can also be written as

1

ds
·
(
P[X(t+ s+ ds) = x|X(t) = x]− P[X(t+ s) = x|X(t) = x]

)
= a(x, x) · P[X(t+ s) = x|X(t) = x], (2.14)

where the sum over the jump rates was replaced by the diagonal entry of the in-

finitesimal generator (eq. 2.11). This yields a linear differential equation for the

probability of not jumping away from the state x in the interval [t, t+ s]:

dP[X(t+ s) = x|X(t) = x]

ds
= a(x, x) · P[X(t+ s) = x|X(t) = x].

The solution of this ODE is an exponential function given by

P[X(t+ s) = x|X(t) = x] = P0(x) · exp(a(x, x)s) = exp(a(x, x)s),

where the deterministic initial condition results in P0(x) = 1. The residual life time

is thus an exponentially decreasing function since −∞ ≤ a(x, x) ≤ 0. The time

when the process jumps away from a state x determines the time interval that the

process has stayed in this state, which is equivalent to the definition of the residual

life time. This proves the first statement of the theorem. The second statement

follows from the entrywise limit in equation (2.10).

Note that since a(x, x) ≤ 0, the residual life time is a monotonically decreasing

function of s, implying that the probability of a jump increases with an increasing

time that the process has spent in a particular state. Importantly, the two random

variables representing the residual life time and the transition probability to the

next state are independent of each other. A proof can be found in [9]. This leads to

a representation of a MJP as a process integrating a random time sequence {Tk}k∈N
with Tk+1 = Tk+τ(Tk) with a Markov chain which is characterized by the transition

probabilities p(Tk, x, y). The latter is referred to as an embedded Markov chain

and its properties are discussed in more detail in [9].

Theorem 1 implies that diagonal entries of the infinitesimal generator determine

the expected residence time in each state as the mean of the exponential distri-

bution E(τ(t)) = 1/|a(x, x)| and assign an individual probability of going to each

state of the state space upon jumping. These results immediately yield an algorithm

for generating realizations of a Markov jump process. It is based on an alternate



2.2. Markov Processes 21

sampling of the residual life time τ(t) in the current state x from the exponential

distribution τ(t) ∼ exp(a(x, x)t) and drawing the next state y by sampling from

the probability (2.13). This sampling approach is referred to as the Stochastic Sim-

ulation Algorithm (SSA) or Gillespie method [24].

It was shown in a previous section by equation (2.8) that the time-dependent tran-

sition matrix propagates probability distributions of the Markov jump process in

time. In many situations one does not have the transition matrix for each time

point of interest. The SSA-algorithm for generating realizations of the MJP yields

an alternative approach through sampling a sufficiently large amount of trajectories.

Although this method is vital in the analysis of Markov jump processes, it can be

computationally very demanding. The run time increases firstly with an increasing

number of different possible transition steps and with increasing transition rates

leading to a high amount of transitions which need to be sampled. This problem

gets worse when very different time scales are involved leading to prohibitively large

simulation times for sampling rare transition events.

The third possible approach for propagating probability distributions is based on

a system of differential equations for the probability density for each state and the

infinitesimal generator as its rate matrix. To this end the following results must be

first stated:

Theorem 2. Given a Markov process with a transition semigroup P(t), t ≥ 0 and

an infinitesimal generator A. Then the limit

d

dt
p(t, x, y) = lim

h→0

p(t, x+ h)− p(t, x, y)

h

for all x, y ∈ S exists and is given by the Kolmogorov backward equation

d

dt
P(t) = AP(t).

If in addition it holds true that∑
y∈S
−p(t, x, y)a(y, y) <∞

for all t ≥ 0 and x ∈ S then the above limit is equivalently given by the Kolmogorov

forward equation

d

dt
P(t) = P(t)A.

A proof for both equations follows immediately from the time-limit (2.10) of the

infinitesimal generator matrix.
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The Kolmogorov backward equation can be combined with equation (2.8) for prob-

ability transport using the transition matrix to yield

P T0
d

dt
P(t) = P T0 P(t)A↔

d

dt

(
P T0 P(t)

)
= P T0 P(t)A,

which yields the Master Equation, propagating the probability densities function

(PDF) in time:

d

dt
P (t)T = P (t)TA↔

d

dt
P (t) = ATP (t),

with the general solution based on the matrix exponential

P (t)T = P T0 exp(AT t).

This representation of the probability transport is only constrained to MJPs with

a finite state space since the matrix form of the infinitesimal limit in theorem 2 is

not defined in the case of an infinite state space. However the Master Equation can

also be expressed elementwise for each state x ∈ S

d

dt
P (x, t) =

∑
y∈S
y 6=x

P (y, t)a(y, x)− P (x, t)a(x, y), (2.15)

where P (x, t) := P(X = x, t) is a column vector assigning probabilities to each

state in S. It is a significant virtue of the Master Equation to enable expressing the

probability transport also for processes with an infinite state space. However it is

still not guaranteed that this equation can be solved.

2.2.2 Stochastic reaction kinetics

A rigorous approach to modeling (bio-)chemical reaction systems is based on a dis-

crete formulation of molecular species numbers reacting with each other through

a set of reaction channels. If the reactions are viewed as jumps of the system on

a discrete state space, given by possible permutations of molecular numbers, then

such a system can be described by a Markov jump process. To this end, following

assumptions must be fulfilled: the system must be well-stirred i.e. the probability

of finding any molecule within a subvolume δV is uniformly distributed according

to δV/V , where V denotes the total volume. Furthermore the system must be at

thermal equilibrium, i.e. the velocity of each molecule is a random variable deter-

mined by the Maxwell-Boltzmann distribution [26].
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Let a system fulfilling above assumptions and consisting of n distinct chemical

species x = {X1, X2, ..., Xn} be given which can react with each other, amount-

ing to m possible biochemical reactions. According to chemical reaction kinet-

ics, each reaction can be considered as a conversion of certain amount of educts

to a certain amount of products. Assuming that reaction j ∈ 1..m consumes

Nj = {N1j , N2j , ..., Nnj}T molecules and produces Mj = {M1j ,M2j , ...,Mnj}T
molecules of species x1, x2, ..., xn, the chemical reaction j can be described by

N1j +N2j , ..., Nnj
cj−→M1j +M2j , ...,Mnj , (2.16)

where cj denotes the corresponding reaction rate constant with units events per

time unit (e.g. s−1).

According to the law of mass action [32], the probability that a reaction occurs

is proportional to the length of the time interval and the number of the possible

ways that the substrate molecules can interact with each other. In line with this law

a rigorous derivation in the context of stochastic dynamics was given by Gillespie

[26]. It states that the probability that a reaction j occurs in the time interval

[t, t + dt] is given by wj(x)dt + o(dt) and that the probability that more than one

reaction occurs is proportional to o(dt). Thus in an infinitesimally small time inter-

val at most one reaction can take place. The function wj(X) is referred to as the

propensity for the occurrence of j-th reaction and is given by

wj(X) =

 cj

n∏
i=1

Xi!

Nij !(Xi −Nij)!
, if Xi ≥ Nij for all i = 1, .., n,

0, otherwise.

(2.17)

This equation results as a product of the reaction rate cj and the number of all

possible ways that the educt molecules can react with each other.

A comparison of above equation with eq. (2.10) suggests an interpretation of the

propensity function as an infinitesimal jump rate. Assume that the reaction j makes

the Markov process jump from state q to state r, which correspond to the species

vectors x = {X1 = x1, X2 = x2, ..., Xn = xn} and y = {X1 = y1, X2 = y2, ..., Xn =

yn}, respectively. If the state space S is finite, then the propensity function wj(X)

gives rise to the entries (q, r) of the corresponding infinitesimal generator matrix by

a(q, r) = wj(x), (2.18)

and accordingly the diagonal entries are given by

a(q, q) = −
∑

r,q∈S,r 6=q,
a(q, r).

Let vj = Mj − Nj be the net change of molecular species caused by reaction j.

Then the Master Equation (2.15) can be reformulated as

d

dt
P (x, t) =

m∑
j=1

P (x− vj , t)wj(x− vj)− P (x, t)wj(x). (2.19)
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Equation (2.19) is referred to as the the Chemical Master Equation (CME)

[26] and it describes the evolution of the PDF of a Markov jump process whose

infinitesimal jump rates result from the reaction propensities wj(X).

2.3 Moment dynamics and macroscopic limit equations

2.3.1 Time evolution of moments in one dimension

Often the exact solution of the Master Equation is not available and sampling us-

ing the SSA algorithm [24] might be computationally too expensive. If one is not

interested in the entire probability density but rather in certain properties, such

as its mean and variance, the differential equations for the statistical moments are

particularly helpful. They yield significant information about the time evolution of

the properties of the probability density with lower computational costs. Thus, the

solution of the CME, which is an ODE system containing an evolution equation of

the probability distribution in each state, is reduced to the solution of an ODE for

the PDF moments for each species of the system.

The derivation of an equation for the k-th moment of the sought probability den-

sity is based on its corresponding Master Equation. For brevity, we derive it in the

following for a one-dimensional Markov jump process, cf. [25]. The k-th moment

〈Xk〉 of the probability density1 P (x, t) with x ∈ S is given by
∑

x∈S x
kP (x, t),

where P (x, t) := P(X = x, t). Accordingly, by taking the time derivative and subse-

quently using the corresponding Master Equation (2.19) for a single chemical species

X, one obtains

d

dt
〈Xk〉 =

d

dt

∑
x∈S

xkP (x, t) =
∑
x∈S

xk
∂

∂t
P (x, t)

=
∑
x∈S

m∑
j=1

xkP (x− vj , t)wj(x− vj)−
∑
x∈S

m∑
j=1

xkP (x, t)wj(x).

In the last equation the summation index in the first infinite sum can be changed

from x to x− vj :

d

dt
〈Xk〉 =

∑
x∈S

m∑
j=1

(x+ vj)
kP (x, t)wj(x)−

∑
x∈S

m∑
j=1

xkP (x, t)wj(x)

=
∑
x∈S

m∑
j=1

[
(x+ vj)

k − xk
]
P (x, t)wj(x)

1The notation 〈X〉 will from now on refer to the expected value of the random variable X.
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Now the term (x+ vj)
k can be expanded using the binomial coefficient

d

dt
〈Xk〉 =

∑
x∈S

m∑
j=1

[
k∑
i=1

(
k

i

)
vijx

k−i

]
P (x, t)wj(x)

=
k∑
i=1

(
k

i

)∑
x∈S

xk−i
m∑
j=1

vijwj(x)P (x, t)

Using the definition of expectation, the above equation finally yields

d

dt
〈Xk〉 =

k∑
i=1

(
k

i

)〈
Xk−i

m∑
j=1

vijwj(X)

〉
. (2.20)

Eq. (2.20) is an ODE for the k-th moment of the Chemical Master Equation (2.19)

in a one-species system. It depends on the first k − 1 moments multiplied by the

polynomial, which results from the product of propensities and stoichiometric state

changes. If the propensity wj(X) is at most a linear function of x then the highest

order of x in the equation is k. Thus a k-dimensional system of ODEs has to be

solved simultaneously in order to obtain the closed solution for the first k moments.

However, if wj(X) has an order higher than one (e.g. quadratic in x) then the

moment k + 1 appears and an additional equation for its time evolution has to be

solved. This equation, in turn, includes the moment k + 2 and so forth. Thus a

closed solution of the system is not possible if the propensity wj(X) of any reaction

j is not constant or linear.

Example: mono- and bimolecular reactions

As an example, a comparison of two reaction systems with a single species can be

drawn. The first system is given by a synthesis reaction

X
c1−→ 2X,

which is referred to as a monomolecular reaction, since it consumes one molecule of

the species X. The second system is described by a degradation reaction

2X
c2−→ X,

which is a bimolecular reaction. According to equation (2.17), the propensity func-

tions of the two systems result in w1(X) = c1X and w2(X) = 1
2c2X(X − 1). If one

is interested in the time-evolution of the mean of the probability distribution of the

two systems, eq. (2.20) for k = 1 can be derived, resulting in

d

dt
〈X〉 =

〈
m∑
j=1

vjwj(X)

〉
. (2.21)

For the first reaction system one obtains

d〈X〉
dt

= c1〈X〉,
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where the linearity of the propensity function yields an ODE with a closed solution

given by 〈X(t)〉 = 〈X0〉 exp(c1 · t).

The time evolution of the mean in the second reaction system results in

d〈X〉
dt

=
1

2
c2〈X(X − 1)〉,

=
1

2
c2

(
〈X2〉 − 〈X〉

)
.

Since in general 〈Y 2〉 6= 〈Y 〉·〈Y 〉, the equation for the second moment must be solved

simultaneously in order to solve the equation for the mean. As outlined above, the

second moment equation will however include the third moment, giving rise to

an infinite series of higher order moments. Thus in contrast to the monomolecular

reaction system, a closed-form solution is not available for a bimolecular system and

the evolution of the mean can not be computed exactly. In this case, for instance,

an approximation can be found by truncating higher order moments, as described

in [21].

2.3.2 Time evolution of moments in multiple dimensions

The above equations for the PDF moments of a single-species reaction system can

also be generalized to systems with arbitrary number of species. As for instance

stated in [21], the multidimensional first moment, describing the evolution of the

mean of the PDF is given as the solution of the ODE

d〈X〉
dt

= S · 〈w(X)〉, (2.22)

where

Sij = Mij −Nij ,

is the stoichiometric matrix containing the jump sizes induced by individual re-

actions and the propensity vector is given by w(X) = [w1(X), w2(X), ..., wm(X)].

Equation (2.22) is a generalization of eq. (2.21) for an arbitrary number of chemical

species.

Accordingly, the time evolution of the multidimensional second moment, Σ =

X ·XT , is given by

dΣ

dt
= 〈S ·w(X) ·XT 〉+ 〈X · [S ·w(X)]T 〉+ 〈D(X)〉, (2.23)

where the positive-definite matrix D ∈ Rn×n is referred to as the diffusion matrix,

and it is defined as

D(X) = S · diag(w(X)) · ST .

The matrix of second moments Σ corresponds to a non-centralized covariance. Thus

its diagonal entries yield Σii−(〈Xi〉)2 the variance in the i-th component (i.e. chemi-

cal species) of the probability distribution of the Markov jump process. Accordingly,
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Σij − 〈Xi〉〈Xj〉 is the covariance between the i-th and the j-th component, where

i, j ∈ [1, ..., n]. Analogously to a single-species system, the ODEs (2.22) and (2.23)

can be solved if all reaction propensities are of zero-th or first order in X, cf. [21, 75].

2.3.3 Macroscopic reaction rate equations and the relation to the
stochastic chemical kinetics

A classical approach to modeling reaction systems is based on a deterministic de-

scription with continuous variables rather than integral ones. This is achieved by

introducing a scaling parameter Ω which is proportional to the system size e.g. the

volume. The macroscopic variable X̄ = {X̄1, X̄2, ..., X̄n} and the stochastic variable

X are then related to each other through

X̄ =
X

Ω
. (2.24)

If the scaling parameter is assumed to be the volume of the system then the units

of the macroscopic variable are in molecules or mole per unit volume, i.e. concen-

tration (e.g. mol · L−1).

In macroscopic models of chemical kinetics the reaction rate function aj(X̄) is de-

rived from the law of mass action [32] by assuming proportionality of the size of the

reaction rates to the concentration of educt species X̄i and the reaction stoichiome-

tries. The rate of j-th reaction is thus given by

aj(X̄) = kj

n∏
i=1

X̄
Nij

i , (2.25)

where kj denotes the basic reaction rate constant with its units given in events

per unit of time and volume (e.g. s−1L−1). Note that in contrast to the stochas-

tic propensity function (2.17), the macroscopic reaction rate does not consider the

detailed configurations of reacting molecular species. Thus e.g. for a bimolecular

reaction (Nij = 2) the stochastic propensity is given by w(X) = c1
2X(X − 1) while

the macroscopic rate is a(X̄) = kX̄2, where c and k denote the stochastic and

macroscopic reaction constants, respectively.

As a second consequence of the law of mass action, the rate of change of the con-

centration of the species X̄i by reaction j is proportional to the molecular difference

caused by this reaction, i.e. Sij = Mij−Nij . Combining this with the reaction rate

(2.25) yields an ODE for the time evolution of the species vector X̄

dX̄

dt
= S · a(X̄) = f(X̄), (2.26)

where a(X̄) = [a1(X̄), a2(X̄), ..., an(X̄)]T is the vector-valued reaction rate. The

function f(X̄) can be considered as a vector field describing the gradient of X̄ at

time t and its integral yields the evolution of its concentration in time, X̄(t) =
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∫ t
t0
f(X̄(t̂))dt̂, given an initial value X̄(t0) = X̄0.

Although the analytical solution of the macroscopic equation (2.26) can only be

found in a limited number of situations (e.g. f(X̄) linear), in general a numerical

solution can be obtained by standard methods [19]. Notably, it is by far less costly

than the solution of the CME since the dimensionality of the macroscopic equation

is determined by the number of chemical species, while the CME is an ODE system

having the size of the whole state space S, which, if finite, can be prohibitively large

and numerically intractable.

The difference between the stochastic propensity function and the deterministic

reaction rate gives a first intuitive insight into the accuracy of the two approaches

in dependence of the system size. While in a “small” system with a few molecules

the exact configurations of possible molecular collisions may have a significant im-

pact on the dynamics, in a “large” system these specifics become negligible and can

be approximated by a proportionality factor. Also, if the number of molecules of

species i is large, the relative jumps Sij in molecular numbers caused by reaction j

become negligible. However if this condition does not hold, the discretely occurring

stochastic reaction firings dominate the dynamics.

In order to formalize the above statements and rigorously assess the role of the

system size, the stochastic propensity (2.17) can be formulated in terms of the con-

centration vector X̄ scaled by Ω. For clarity, the original propensity function can

be first restated as

wj(X) = cj

n∏
i=1

Xi!

Nij !(Xi −Nij)!

= cj
1∏N

i=1Nij !

n∏
i=1

Nij−1∏
h=0

(Xi − h),

if Xi ≥ Nij for all i ∈ [1, 2, .., n]. The corresponding Ω-scaled propensity function

now reads (cf. [48]):

wj(X̄) =
wj(X̄Ω)

Ω
=

cjΩ
|Nj |−1∏N

i=1(Nij !)

n∏
i=1

Nij−1∏
h=0

(X̄i −
h

Ω
), (2.27)

if X̄i ≥
Nij

Ω
for all i = 1, ..., n and |Nj | =

∑n
i Nij . It describes the reaction

propensity in terms of molecular concentrations rather than discrete numbers. The

correspondence of the Ω-scaled propensity function and the macroscopic reaction

rate becomes obvious if the following relation between the basic reaction constants

is invoked:

kj =
cj Ω|Nj |−1∏N
i=1(Nij !)

. (2.28)
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Using this relation, eq. (2.27) can be restated in terms of the basic macroscopic

reaction constant instead of the stochastic one:

wj(X̄) =
wj(X̄Ω)

Ω
= kj

n∏
i=1

Nij−1∏
h=0

(X̄i −
h

Ω
). (2.29)

The last two equations show that if each reaction is of order one i.e. (|Nj | = 1) for

all j = [1, ...,m], then the stochastic and the deterministic rates are equivalent and

the solution X̄ of the macroscopic equation (2.26) corresponds to the mean 〈X〉 of

the Markov jump process PDF, given by eq. (2.22) since

d〈X〉
dt

= S〈w(X)〉 = S〈NTkX〉 = SNTk〈X〉

= S · a(〈X〉), (2.30)

where Nij denotes the number of molecules of species i consumed by reaction j,

cf. eq. (2.25). If some reactions are of order zero, i.e. |Nj | = 0, j ∈ [1, ..,m], then

this equivalence also holds, however the reaction rates have to be converted using

the factor Ω, cf. eq. (2.28). In these two special cases, due to the order ≤ 1 of all

reactions, N is a sparse matrix where each column contains at most a 1. Moreover,

the vector k = [k1, k2, ..., km]T contains the basic macroscopic reaction constants.

Equation (2.30) implies that if under described conditions the initial values of the

two equations (2.22) and (2.26) are chosen to be equal, then their solutions are

equivalent. At equilibrium states this also holds for reactions of order higher than

1, which can be shown by linearizing the propensity function at the macroscopic

fixed points. Furthermore, from eq. (2.28) the conversion between macroscopic and

stochastic reaction constants can be deduced:

1. cj = Ωkj if |Nj | = 0 (0-th order),

2. cj = kj if |Nj | = 1 (1-st order),

3. cj =
2kj
Ω if |Nj | = 2 (2-nd order).

2.3.4 The large volume limit of the CME and the Linear Noise
Approximation

With the exceptions discussed above, in general, the solution of the macroscopic

equation is not equivalent to the mean of the stochastic system. However, as shown

in eq. (2.29), an increasing Ω lets the scaled jumps Nij/Ω vanish, leading to a de-

viation of O(Ω−1) between the macroscopic rate and the stochastic propensity, cf.

[48]. In the thermodynamic limit, i.e. Ω→∞ and X →∞, one expects the concen-

tration X/Ω to remain constant while the relative jumps Nij/Ω become negligible.

In fact, it was shown by T. Kurtz that within this limit the mean solution of the

Chemical Master Equation approaches the solution of the macroscopic equation [43].



30 Chapter 2. Stochastic processes in biological applications

Various methods for approximating the solution of the CME resulted from con-

sidering its limit behaviour. These include a decomposition of the reaction system

into stochastic and macroscopic components [49] or an approximation of the state-

discrete process described by the CME using a state-continuous process, given by

the Chemical Langevin equation (CLE) [27]. The latter is a powerful method re-

ducing the dimensionality of the CME while keeping its stochastic nature. However

the CLE does not describe how its approximation accuracy depends on system size.

Van Kampen introduced a rigorous method for approximating the CME by adding

perturbation terms to the corresponding macroscopic solution [77]. To its lowest

order this expansion yields a linear Fokker Planck equation (FPE) with a Gaussian

solution. Its sample paths are given by a stochastic differential equation, similar

to the CLE. This method is referred to as the Linear Noise Approximation. In the

following an outline of this method is given and an application to HIV dynamics is

discussed.

The Linear Noise Approximation is based on the idea of replacing the space-discrete

stochastic variable X by the corresponding macroscopic variable X̄, (see eq. 2.24)

and a new space-continuous stochastic variable ξ, describing the fluctuations around

X̄. This change of variables is conducted by a linear ansatz where the fluctuations

are scaled as a square root of system size

X = ΩX̄ + Ω1/2ξ, (2.31)

where ξ = [ξ1, ξ2, ..., ξn] is a vector of stochastic fluctuations in the dimension of

each chemical species. Its probability law is described by a new probability distri-

bution Π(ξ, t) instead of P (X, t). The scaling Ω1/2 of the stochastic variable can be

justified in this ansatz by observing that in the thermodynamic limit the difference

between the macroscopic equation and Chemical Langevin equation (describing a

state-continuous stochastic process) is proportional to Ω1/2 [28].

Due to the change of the probability function P (X, t)→ Π(ξ, t), the time derivative

of the original probability distribution in terms of the new one is given as

∂P (X, t)

∂t
=
∂Π(ξ, t)

∂t
−

n∑
i=1

Ω1/2∂Π(ξ, t)

∂ξi

∂X̄i

∂t
, (2.32)

where the chain rule is used to obtain the partial derivatives of Π(ξ, t). Furthermore,

it is used that the discrete stochastic variable X is fixed w.r.t. time, leading to the

following relation (see eq. (2.31)):

0 =
∂Xi

∂t
= Ω

∂X̄i

∂t
+ Ω1/2∂ξi

∂t

=⇒ ∂ξi
∂t

= −Ω1/2 X̄i

∂t
.
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Equation (2.32) yields the left hand side of the evolution equation for the probability

distribution Π(ξ, t). In order to derive its right-hand side, the Chemical Master

Equation (2.19) can be restated as

∂

∂t
P (X, t) = Ω

m∑
j=1

[(
n∏
i=1

E
−Sij

i

)
− 1

]
wj

(
X

Ω

)
P (X, t),

where the step operator notation is used in order to express the molecular jumps

Eh
i f(X) = f(..., Xi + h, ...),

and the scaled propensity function is incorporated, which leads to the pre-factor Ω,

cf. eq. (2.29). In order to assess the dependence of the step operator on the system

size Ω, it can be expanded in the limit Ω → ∞, around the point h/
√

Ω = 0. By

using eq. (2.31), this yields

Eh
i f(X) = f(..., Xi + h, ...) = f(...,ΩX̄i +

√
Ω(ξi +

h√
Ω

), ...)

≈ f(X) +
h√
Ω

∂

∂ξi
+
h2

2Ω

∂2

∂ξ2
i

+ ... .

Similarly, the Ω-scaled propensity function can be expanded at the limit Ω → ∞
and X → ∞, i.e. X/Ω constant. As shown by eq. (2.29), to the lowest order the

propensity function is equivalent to the macroscopic reaction rate a(X̄) as

wj(X̄) = aj(X̄) +
1√
Ω

n∑
i=1

∂aj(X̄)

∂X̄i
ξi +

1√
2Ω

n∑
i=1

∂2aj(X̄)

∂X̄2
i

ξi + ... .

Using eq. (2.32) as the left-hand side and the Master Equation with expanded step

operator and propensities as the right-hand side, yields an evolution equation for

the probability of the new stochastic variable ξ

∂Π(ξ, t)

∂t
−

n∑
i=1

Ω1/2∂Π(ξ, t)

∂ξi

∂X̄i

∂t
=

Ω
m∑
j=1

[(
1 +

h√
Ω

∂

∂ξi
+
h2

2Ω

∂2

∂ξ2
i

...

)
− 1

]
wj(X̄)Π(ξ, t), (2.33)

where the expanded form of wj(X̄) is omitted for brevity of notation. Note also

that in the Chemical Master Equation the probability distribution of the original

stochastic variable P (X, t) is replaced by Π(ξ, t)

Equation (2.33) describes the behaviour of the state-continuous stochastic vari-

able ξ whose probability distribution approximates the probability of the original

Markov jump process with increasing number of Ω-terms included before truncation.

Truncating this equation at order Ω1/2, yields

dX̄i

dt

∂Π

∂ξi
= [S ·w(X̄)]i

∂Π

∂ξi
,
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which is satisfied if the original macroscopic equation (2.26) holds

dX̄i

dt
= [S ·w(X̄)]i ≡ fi(x̄).

To the next order Ω0 the expansion yields

∂Π

∂t
= −

∑
i,j

Γij∂i(ξjΠ) +
1

2

∑
i,j

Dij∂ijΠ, (2.34)

where Γij(t) = ∂fi
∂X̄j

is the Jacobi matrix of the macroscopic function f(X̄) and

D = S ·diag[w(X̄)] ·ST corresponds to the diffusion matrix in equation (2.23). This

is a linear (in ξ) partial differential equation (PDE) describing the evolution of the

probability distribution of fluctuations around the macroscopic trajectory and it is

referred to as Fokker-Planck equation (FPE). This order of truncation thus yields

an n-dimensional PDE, where n is the number of chemical species, approximating

the CME, given by a large system of ODEs having the size of the state space S.

Computation of the first two moments of the FPE can be conducted by multi-

plying eq. (2.34) by ξ and ξ · ξT . This yields for the mean 〈ξ〉 and non-centralized

covariance Σ of stochastic fluctuations, cf. [75]:

d〈ξ〉
dt

= Γ〈ξ〉,

dΣ

dt
= Γ ·Σ + Σ · ΓT +D.

The first equation suggests that if the initial condition of ξ is zero, then the mean

〈ξ〉 will remain zero forever. This implies that the solution of the stochastic process

is concentrated around the macroscopic trajectory, due to ansatz (2.31). The sec-

ond equation is equivalent to the eq. (2.23) for the second moment of the original

Markov jump process if all propensities are linear in X. In a general non-linear case

Σ can be computed at fixed points by linearization of f(X̄), cf. [75].

Notably, the Fokker-Planck equation (2.34) is equivalent to a stochastic differential

equation describing the time-evolution of sample paths of the underlying continuous-

time process [54]

dX = f(X)dt+ D
1
2dBt, (2.35)

where dBt denotes multidimensional Brownian motion and D
1
2 is a matrix satisfying

D
1
2 ·
[
D

1
2

]T
= D.

A numerical solution of this equation can be used in order to obtain sample paths

from the probability distribution Π(ξ, t), which is usually significantly more efficient

than sampling from the Master Equation of the original process [42].
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Example: Linear Noise Approximation of the CME for HIV-host dy-

namics

Consider a system of HIV-particles V∗ which infect immune cells, thus generating

infected cells T∗. In turn, infected cells give rise to new viruses. Assuming constant

linear death propensities for both species the described scenario gives rise to the

following reaction system:

V∗
c1−→ ∅,

V∗
c2−→ T∗,

T∗
c3−→ ∅,

T∗
c4−→ T∗ + V∗. (2.36)

This set of reactions corresponds to the following propensity vector

w(X) = {c1 ·V∗, c2 ·V∗, c3 · T∗, c4 · T∗}T ,

where X = {X1, X2}T := {T∗,V∗}. The corresponding CME results in, cf subsec-

tion 2.2.2:

∂P (x1, x2, t)

∂t
= c1(x2 + 1) P (x1, x2 + 1, t)

+ c2(x2 + 1) P (x1 − 1, x2 + 1, t)

+ c3(x1 + 1) P (x1 + 1, x2, t)

+ c4x1 P (x1, x2 − 1, t)

− ([c1 + c2]x2 + [c3 + c4]x1) P (x1, x2, t), (2.37)

where it is defined P (x1, x2, t) := P(X1 = x1, X2 = x2, time = t). The macroscopic

dynamics of the corresponding continuous variable X̄ is described by the ODE

dX̄

dt
= S · a(X̄) = f(X̄). (2.38)

where the macroscopic function is given by

f(X̄) =

 c2 ·
X2

Ω
− c3

X1

Ω

−(c1 + c2)
X2

Ω
− c4

X1

Ω

 ,

and the stoichiometric matrix S is

S =

(
0 1 −1 0

−1 −1 0 1

)
.

Accordingly, the Jacobi and the diffusion matrix in the Fokker-Planck equation (2.34),

are given as

Γ =

(
−c3 c2

c4 −(c1 + c2)

)
,
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D =


c2

(
X2

Ω

)
+ c3

(
X1

Ω

)
−c2

(
X2

Ω

)

−c2

(
X2

Ω

)
(c1 + c2)

X2

Ω
+ c4

X1

Ω

 .

In the following we compared the dynamics of the Markov jump process induced

by the HIV-host interaction model with the approximating continuous stochastic

process. To this end we have sampled the corresponding probability distributions

at three discrete time points t ∈ {0.5, 1, 1.5} (days). The parameter values were

chosen to be c1 = 0.01, c2 = 0.1, c3 = 0.01, c4 = 10, in units (days)−1. The result is

shown in figure 2.3. In order to obtain sample paths of the Markov jump process,

we have generated 104 trajectories using Gillespie’s SSA-algorithm. It is shown in

fig. 2.3 a, where the three probability clouds are from left to right the solutions of

the CME at the three discrete time points 0.5, 1 and 1.5, respectively.
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Figure 2.3: Time evolution of the probability distribution of the HIV-host-

system sampled at three discrete time points.

The probability distribution was sampled at discrete time points t = 0.5, t = 1 and t = 1.5

(days) corresponding to the three distribution clouds, from left to right. (a) Gillespie’s

SSA-algorithm was used to sample the evolution of the probability described by the Master

Equation (2.37). 104 sample paths were generated for each of the three time points. (b)

The SDE (2.35) was solved numerically using the Euler-Maruyama integration method to

yield 104 sample trajectories. In addition, two ellipses are plotted, indicating the 1- and 2-

standard deviation area of the multivariate Gaussian distribution, as the analytical solution

of the Fokker-Planck equation (2.34).

For sampling the probability distribution of the continuous-state stochastic pro-

cess, we generated 104 sample paths of SDE (2.35) by using the Euler-Maruyama

integration method [42], as shown in fig. 2.3 b. In addition, at each of the three

time points two ellipses are plotted which indicate the areas of 1- and 2-standard

deviation of the exact Gaussian solution of the Fokker-Planck equation (2.34). This

experiment visualizes the equivalence of the first two moments of the discrete and

continuous stochastic process. As discussed above the good approximation can be

accounted to the linearity of the reaction propensities of the system (2.36).
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In this section a theoretical framework was discussed which approximates the Chem-

ical Master Equation, as a K-dimensional integro-differential equation by a Fokker-

Planck equation, which is an n-dimensional linear partial differential equation. K

is the size of the discrete state space S and n is the number of system variables

(e.g. chemical species) which is in most biochemical applications smaller than K

by several orders of magnitude. In comparison to the SSA algorithm, simulation

of reaction kinetics can be significantly accelerated by diffusion approximation, de-

scribed by the Fokker-Planck equation and sampling using Stochastic Differential

equations of type (2.35). The accuracy of the LNA is limited by the ansatz (2.31)

where the size of fluctuations must be small relative to the macroscopic solution

and it increases as the thermodynamic limit is approached. More results on the

limits of the approximation accuracy in various applications can be found in in [22].

2.4 Statistics of first passage times

Often one is not only interested in the probability distribution of a stochastic process

on the state space but also in the dynamical properties at its boundaries. Naturally,

the property of interest might be itself a random variable induced by individual re-

alizations of the process. This might be the first time at which the process leaves

a certain boundary or with regard to figure (2.3), the time that the system reaches

a certain state, e.g. 400 viruses, for the first time. In this section we discuss how

the statistics of time-related random variables can be computed by focusing on first

passage times statistics of a Markov jump process.

Consider a Markov jump process {X(t)}t∈R+ with an initial probability distribu-

tion P0(X, t). We are interested in the time at which the process reaches a certain

boundary X = xmax for the first time. This boundary can be defined with respect

to each of the n dimensions of the process or only their subset. For instance for the

model (2.36) of a two-dimensional system of viruses V∗ and host cells T∗ one might

be interested in the time that it takes the viruses to reach a certain population size

V∗max, independent of the dynamics of the host cells to which the virus dynamics is

coupled. This problem is explained in figure 2.4 in terms of two sets of states n0 and

n1. The first passage time is thus defined as the time that the system, started in a

state X0 = {T∗0,V∗0} ∈ n0, spends in the set n0 before it reaches the set of states n1.

An analysis of the first passage time statistics can be conducted using results from

[25]. The starting point of this analysis is the probability for the system to be in the

set of states n0 and not having reached n1 yet, that we denote by G(n0, n1, t). Ob-

viously, this quantity depends on the probability density P (T∗,V∗, t) of the Markov

jump process and the idea is to sum this probability in the region n0. However,

since the state space S is theoretically unlimited, an artificial boundary V∗max must

be imposed. In order to detect the unique first time point of crossing this level of

virions, a boundary condition must be defined on V∗max, which prevents the process

from jumping back to n0, once it is in n1. This can be implemented by setting the
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Figure 2.4: Interpretation of the passage time problem as a state space, sepa-

rated into two sets.

The probability distribution of the system, sketched as the standard deviation area (grey

oval) around the mean (black point). The statistics of the first time when this probability

distribution crosses the dashed boundary gives rise to the first passage time distribution.

propensity of degradation of virions w−(V∗) in reaction system (2.36) to zero if the

process is n1:

w−(V∗) =

{
c1V∗, if V∗ < V∗max,

0, else.

The boundary condition implies that n1 is absorbing i.e. once the system reaches

the set of states n1, it stays there forever. By changing this propensity, we do

not affect the statistics of the first passage time, since we are not interested in the

dynamics of the system after it reaches n1. Now the probability of the system to

be in set n0 at time t is the cumulative probability density of the stochastic process

over n0:

G(n0, n1, t) =
∞∑

T∗=T0

V∗
max∑

V∗=V0

P (T∗,V∗, t),

In combination with the above boundary condition G(n0, n1, t) becomes the proba-

bility for the system not to have reached the set n1 by time t yet and 1−G(n0, n1, t)

is the probability to reach n1 for the first time. Let us denote by T (n0 → n1) the

random variable for the first passage time. Then its cumulative density function

reads

1−G(n0, n1, t) = P [T (n0 → n1) ≤ t]

≡
∫ t

0
P
[
T (n0 → n1) = t̂

]
dt̂,

Differentiating this relation finally yields the PDF of the first passage time, cf. [25]

P [T (n0 → n1) = t] = − ∂

∂t
G(n0, n1, t). (2.39)

This result can also be used to compute the k-th moment of the probability density

as

Tk(n0 → n1) =

∫ ∞
0

tk
[
− ∂

∂t
G(n0, n1, t)

]
dt.
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An integration of this equation by parts yields a recursive equation the k-th moment

of the first passage time based on (k − 1)-th moment:

Tk(n0 → n1) = k ·
∫ ∞

0
tk−1G(n0, n1, t)dt (k ≥ 1). (2.40)

By noting that the zero-th moment is always 1, the successive moments can be

computed if the time evolution of the cumulative probability G(n0, n1, t) is known.

In some special cases the solution of (2.40) can be found exactly. Consider the

following two chemical reactions giving rise to a one-dimensional birth-death pro-

cess
b(X)−−−→ X

d(X)−−−→ ∅.

In this one-dimensional case the boundary between some set of states n0 and n1

becomes a single state. Thus one can ask how long it takes the process to start in

state x0 and reach the state x1 for the first time, where x0 < x1. It can be shown

[25] that the k-th moment of the first passage time distribution is given by

Tk(x0 → x1) =


Dk(x1 − 1, x1), if x0 = x1 − 1,

Dk(x0, x1) + Tk(x0 + 1→ x1), if 0 ≤ x0 ≤ x1 − 2.

(2.41)

where the quantity Dk is defined in terms of the next lower order moment

Dk(x0, x1) =


k · Tk−1(0→ x1)

b(0)
, if x0 = 0,

k · Tk−1(x0 → x1)
b(x0)

+
d(x0)
b(x0)

·Dk(x0 − 1, x1), if 1 ≤ x0 ≤ x1 − 1.

In a general case with multiple chemical species the evaluation of the integral (2.40)

is not possible and approximations need to be found. In the outlook of chapter 4

it is suggested to derive a Linear Noise Approximation of a reaction system with

two species and to sample the first passage times by numerically solving the corre-

sponding stochastic differential equations.

2.5 Estimation of reaction rate constants

In many applications model parameters are not known and need to be estimated

from experimental measurements. The general approach to this problem is based

on finding a set of parameters Θ such that a normed distance of the observed data

to the model is minimized,

arg min
Θ

||X(Θ)− Y ||2, (2.42)

where X(Θ) and Y denote the model and observation, respectively and ||. ||2 is a

2-norm. This problem can also be considered in a probabilistic sense by searching
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for a set of parameters such that the probability of observations Y w.r.t. to the

model X is maximized. This approach is referred to as the maximum likelihood

method. If Y is an observation of a sample path of a Markov jump process then the

goal is a maximization of the joint probability of the observed jumps with respect to

model parameters. Obviously, in situations where the stochastic process is not fully

observed, inference becomes aggravated. Firstly, this is due to a naturally given re-

duced information content of the data leading to a larger estimation bias. Secondly,

for Markov jump processes an additional challenge of estimating the unobserved

path arises. In this section we discuss the problems associated with this task in the

context of biochemical kinetics and along with possible methods for solving them.

2.5.1 ML-estimation for fully observed processes

Given a Markov jump process {X(t)}t∈R+ on a state space S, describing the dynam-

ics of a system of m coupled biochemical reactions, where reaction j is of general

type

N1j +N2j , ..., Nnj
cj−→M1j +M2j , ...,Mnj ,

for all j ∈ {1, ..,m}. Accordingly, denote by νj = {ν1j , ν2j , ..., νnj} the state change

vector defined as νij = Mij − Nij and let each state k ∈ S be uniquely character-

ized by the vector of chemical species numbers xk := {X1 = x1, X2 = x2, X3 =

x3, ..., Xn = xn}. If S consists of a finite set of d states, then the probability density

at time t is given by

P (X, t) = P T0 exp(tAT ),

where P T0 is the initial probability. Each non-diagonal entry Akl of the infinitesimal

generator matrix A ∈ Rd×d is zero, unless a reaction j exists with xl = xk + νj
yielding, cf. eq. (2.17)

Akl = cj

n∏
i=1

(
xi
Nij

)
. (2.43)

Furthermore, the diagonal entries are

Akk(x) = −
∑
k,q∈S
k 6=q

Akq.

Let an observed sample path X(t) of the Markov jump process be given by X :=

{X(t1) = x1, X(t2) = x2, X(t3) = x3...}. Then the joint probability of the sample

path is obtained from the product

P(X) = P (x1, t1) · P (x2, t2) · P (x3, t3) · ..., (2.44)

where we defined P (xi, ti) := P(X(ti) = xi). Note that in most applications the in-

dividual state probabilities in equation (2.44) are not available, since in a situation
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where the state space becomes prohibitively large, the computation of the sample

path probability using the matrix exponential of the infinitesimal generator becomes

infeasible. However, since all jumps along the sample path are observed, this prob-

ability can be expressed as a product of conditional probabilities which in turn can

be reformulated using the infinitesimal jump rates i.e. reaction propensities. This

fact makes infeasible matrix computations unnecessary, yielding

P(X) = P (x1, t1) · P (x2, t2) · P (x3, t3) · ...
= P (x2, t2|x1, t1) · P (x3, t3|x2, t2) · ...
= P (x1, t1) ·A12 · exp(A11[t2 − t1]) ·A23 · exp(A22[t3 − t2]) · ... ,

where in the second equation the Markov property is used. The last equation gives

rise to the likelihood function of the parameters of the model, i.e. the infinitesimal

generator, given a sample path observation:

L(A) := P(Y |A) =
d∏
i=1

∏
j 6=i

A
Hij

ij exp(AiiRi), (2.45)

where the entries Hij of the matrix H are given by the observed number of transi-

tions from state i to state j. Ri is the total amount of time that the process spends

in a state i

Ri =

∫ T

0
χ{i}(X(s)) ds,

where the characteristic function is χ(X(s)) = 1 if X(s) = i and zero otherwise.

Obviously, the likelihood function is a conditional probability of the sample path

given a fixed set of model parameters. This yields a framework which enables

to conduct an optimization over the unknown parameter space merely based on

path probabilities. In contrast to Bayesian estimation, likelihood-based inference

does not yield the whole (posterior) distribution of the parameters but a single

parameter value, also known as the maximum likelihood (ML) estimate. Despite

of its lower information content, the ML-approach can be computationally more

efficient, compared to the usually sampling-based Bayesian approach. In particular,

this is the case if the optimization can be conducted analytically. In order to obtain

an analytical optimizer for the likelihood function (2.45) its log must be taken first,

for a better numerical stability:

logL(A) =
d∑
i=1

∑
j 6=i

log(aij)Hij − aijRi.

Note that both sums in the above equation are over the entire state space S, which

can be prohibitively large. Due to a relatively low number of reactions (compared

to the size of the state space) in biochemical kinetic systems, the connectivity of

states is usually lower than in other applications. As a result, the infinitesimal

generator matrix has a very sparse structure. This property can be exploited in the
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log-likelihood function by rewriting the second sum in the above equation in terms

of the set of m chemical reactions instead of the set of d states:

logL(A) =

d∑
i=1

m∑
q=1

xj=xi+νq

log (aij)Hij − aijRi

=

d∑
i=1

m∑
q=1

xj=xi+νq

log

[
cq ·

n∏
k=1

(
xik
Nkq

)]
Hij − cq ·

n∏
k=1

(
xik
Nkq

)
Ri,

where in the second equality the definition of reaction propensities (2.43) is used.

Note that xik denotes the number of molecules of the k-th species in the state

i ∈ S of the corresponding Markov jump process. Notably the optimization of the

reformulated likelihood function is not any more conducted w.r.t the infinitesimal

generator. The new likelihood merely depends on a set of reaction rate parameters

Θ = {c1, c2, ..., cm}. The two functions are equivalent since the parameter set Θ

gives rise to the infinitesimal generator as described in equation (2.43). However,

the latter approach is by far more efficient, since, as noted above, it usually holds

that m << d. Differentiation of the new log-likelihood equation w.r.t. parameter

cq yields

∂ logL(Θ)

∂cq
=

d∑
i=1

xj=xi+νq

[
Hij

cq
−

n∏
k=1

(
xik
Nkq

)
Ri

]
.

Finally, the zero of the likelihood derivative leads to the maximum-likelihood esti-

mator ĉq for the rate constant of the q-th chemical reaction:

ĉq =
d∑
i=1

xj=xi+νq

Hij ·

(
d∑
i=1

n∏
k=1

(
xik
Nkq

)
Ri

)−1

. (2.46)

Example: prey-predator dynamics

As an example consider a Markov jump process induced by a reaction system of

preys (X1) and predators (X2). The prey population grows using natural resources,

described by a constant parameter a. The predator population consumes prey

species in order to grow, and dies with a linear propensity. By neglecting the

natural extinction of preys, the described system is modeled by three reactions

R1 : a + X1
c1−→ 2 X1,

R2 : X1 + X2
c2−→ 2 X2,

R3 : X2
c3−→ ∅.
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By denoting the corresponding probability of species numbers by P (x1, x2, t) :=

P(X1 = x1, X2 = x2, time = t), the Chemical Master Equation of this system reads

∂P (x1, x2, t)

∂t
= ac1(x1 − 1)P (x1 − 1, x2, t)

+ c2(x1 + 1)(x2 − 1)P (x1 + 1, x2 − 1, t)

+ c3(x2 + 1)(x2 − 1)P (x1, x2 + 1, t)

− (ac1x1 + c2x1x2 + c3x2)P (x1, x2, t).

Figure 2.5 depicts a sample trajectory of the system obtained using Gillespie’s simu-

lation algorithm with the following parametrization: c1 = 2, c2 = 0.1, c3 = 1, a = 1.

All initial probability mass was concentrated on one state P (100, 100, t) = 1, which

starts the trajectory in a region of the phase-space where the system exhibits oscil-

latory dynamics. Using equation (2.46) the maximum likelihood estimators can be
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Figure 2.5: Trajectory of the Markov jump process induced by the stochastic

prey-predator system.

The sample paths were generated using the Stochastic Simulation algorithm [24] and the

initial state X0 = {100, 100}. In this part of the phase space the system exhibits stochastic

oscillations.

derived for all three reaction rate parameters:

ĉ1 =
d∑
i=1

xj=xi+νq

Hij ·

(
d∑
i=1

n∏
k=1

axi1Ri

)−1

, (2.47)

ĉ2 =

d∑
i=1

xj=xi+νq

Hij ·

(
d∑
i=1

n∏
k=1

xi1x
i
2Ri

)−1

, (2.48)

ĉ3 =

d∑
i=1

xj=xi+νq

Hij ·

(
d∑
i=1

n∏
k=1

xi2Ri

)−1

, (2.49)

where by xij we denote the population size of species Xj in state i ∈ S. For

parameter estimation 100 trajectories were sampled with each having a fixed length

of 500 jumps. The estimation results are depicted in figure 2.6.
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Figure 2.6: Statistics of ML-estimates for the reaction rates of the stochastic

prey-predator model.

Estimation was conducted for 100 trajectories, each having a length of N = 500 jumps.

The red vertical lines mark the original model parameters: c1 = 2, c2 = 0.1, c3 = 1.

2.5.2 Discussion of ML-estimation for discretely observed processes

For deriving the maximum likelihood estimators in the previous section full observa-

tion of sample paths were assumed. This enabled to compute the path probability

(2.44) without an explicit computation of the probability density of the Markov

jump process on the state space. To this end successive state probabilities were

expressed in terms of conditional probabilities of jumps between states. The latter

only requires the knowledge of infinitesimal jump rates, given by the propensities

of the chemical reaction system. In practice experimental observations are often

available only at selected discrete time points. In this case the path probability

(2.44) can not be expressed merely using chemical reaction rates since the jumps of

the system are not completely observed. If the state space S is sufficiently small,

then the probability density P (X, t) can be computed using the matrix exponential

yielding the discrete likelihood function

L(A) =
J∏
i=1

P (X = xi, ti),

where J is the total number of observations. In contrast to the continuous likeli-

hood function (2.45), the discrete likelihood can not be optimized analytically and

numerical optimization methods need to be applied. In order to avoid a direct solu-

tion of the CME, the probability density can be sampled using the SSA-algorithm

method, cf. [76]. However, this method suffers from a large computational overhead

which further increases if rare state transitions need to be sampled.

As an alternative to the discrete likelihood function, the dynamics of the unob-

served path segments can be estimated along with the model parameters. The

main idea of this method is based on computing the expectation of path statistics

given the discretely observed process E[Ri|X] and E[Hij |X]. These expectations are

computed by summing over the expected time spent in each state and the expected

number of transitions during each unobserved time period τs. The assumption of
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time-homogeneity yields [8, 51]:

E[Ri(T )|X] =

r∑
s=1

d∑
k,l=1

ckl(τs) E[Ri(τs)|X(τs) = l,X(0) = k],

E[Hij(T )|X] =

r∑
s=1

d∑
k,l=1

ckl(τs) E[Hij(τs)|X(τs) = l,X(0) = k],

where Ri(T ) and Hij(T ) denote the path statistics in the time interval [0, T ], where

T is the total observation time. By ckl we denote the observed number of transi-

tions between states k, l ∈ S. The quantities E[Ri(τs)|X(τs) = l,X(0) = k] and

E[Hij(τs)|X(τs) = l,X(0) = k] can be computed using an eigenvalue decomposi-

tion of the infinitesimal generator [51]. If this decomposition is numerically feasible

(due to a small state space), the expected path statistics and the parameters can be

simultaneously estimated using the expectation maximization algorithm (EM) [51] .

The size of the state-space puts a restriction on the above estimation method for

discretely observed processes. For instance, if a biochemical system consists of three

species with a maximum number of 100 molecules, then the infinitesimal generator

is of size A ∈ R106×106 . This makes a repeated eigenvalue decomposition of the ma-

trix A numerically infeasible. A possible method for obtaining the path statistics

during unobserved time intervals τs is given by end-point conditioned sampling [38].

This method is based on rejection sampling of SSA-sample paths. Thus, in order

to compute E[Ri(τs)|X(τs) = l,X(0) = k] a path is sampled starting in state k at

time t = 0 and only accepted if it hits state l at time t = τs. However, besides intro-

ducing an estimation error proportional to the length of unobserved path segments,

this method becomes inefficient if the number of species in the system is large cf.

[14]. As an alternative, estimation of stochastic model parameters for incompletely

observed processes can be conducted by fitting first passage time moments. This

approach will be introduced in chapter 4.





Chapter 3

Dynamics of stress-mediated

c-di-GMP regulation in

Escherichia coli

3.1 Introduction

Bacteria populate almost all environments due to their ability to adopt to extreme

conditions. Most of them are a vital part of the various ecosystems. For example,

it is estimated that the amount of bacteria in the human organism exceeds the

number of native cells by a factor of ten [7]. While most bacteria coexist with the

human organism, some pathogenic species cause severe infections. Antibiotics used

to protect against these infections are often counteracted by the inherent robustness

of bacteria towards changes in external conditions.

The formation of biofilm colonies and the associated curli fibers is a primary mech-

anism protecting bacterial species against stress-inducing conditions such as antibi-

otics [33, 72]. In Escherichia coli, a Gram-negative species which is a major part

of the human intestinal ecosystem, the synthesis of biofilm and curli fibers is under

the control of the master regulator protein of the general stress response RpoS (also

referred to as sigmaS) [4, 5, 17]. In recent years large progress has been made in

understanding the details of signaling within the curli expression network, yield-

ing a highly resolved picture of the interactions of individual genes and proteins

[57, 71, 80]. The elaborate signal transduction controlled by RpoS reveals proper-

ties of a finely tuned system conferring bacterial populations the ability to precisely

regulate the time point and the amount of cells which produce curli fibers and of

those which do not. Thus, a discrete decision making process has been observed

using fluorescence microscopy in E.coli [67] and using single cell measurements in a

close genetic relative Salmonella [31]. Furthermore, the major signaling molecule of

this system, cyclic di-GMP (c-di-GMP), is characterized by relatively low molecular

numbers in the cell, suggesting that stochastic fluctuations play a crucial role in reg-

ulating the system. The resulting dynamical complexity indicates that a complete

understanding of the regulatory mechanisms behind the formation of curli fibers

requires an interaction between experimental efforts and theoretical modeling. The

latter has the ability to resolve the time dynamics behind the static interactions

deciphered by the experimental approaches. Furthermore, certain biologically rel-

evant highly non-linear signal transduction characteristics may only be deciphered
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by mathematical analysis [55].

In this work we build a realistic stochastic model describing the signaling prop-

erties of c-di-GMP and incorporate these findings into a larger mechanistic picture

which explains how bistable decision making between curli-on and curli-off states

might be realized in E. Coli. This analysis compensates for the currently limited

availability of precise in-vivo measurements of c-di-GMP dynamics and explains

how signal transduction characteristics of c-di-GMP influence the complexity of the

curli phenotypes. Prior to presenting the modeling results, in the following some

preliminary biological aspects of the system are introduced, comprising the RpoS-

controlled signal transduction and the role of c-di-GMP in the expression of curli

fimbriae.

General stress response and formation of curli fimbriae

The cornerstone of bacterial gene regulation is the control of different genetic pro-

grams by master regulators (also called sigma-factors). This importance arises from

the requirement for the key transcriptional enzyme RNA-polymerase (RNAP) to

bind one of the various master regulators proteins before it can start the transcrip-

tion process. The resulting complex is referred to as RNAP-holoenzyme and its

sigma-subunit is responsible for a specific recognition of binding sites on the DNA.

Since distinct functional groups of genes possess different sigma factor binding sites,

the type of the sigma factor in the RNAP-holoenzyme determines the genetic pro-

gram in the cell [34, 68].

In contrast to the vegetative regulator sigma70, which controls the expression of

genes needed during normal metabolic life style, the master regulator RpoS con-

trols the genetic program during entry into the stationary growth phase or upon

exposure to various stress conditions such as nutritional shortage or extreme tem-

peratures [36, 37, 40]. There are approximately 480 genes controlled by RpoS,

which accounts for 10% of the E. Coli genome [80]. A subset of these genes and

their protein products are responsible for a transition from a unicellular planktonic

life style to a multicellular biofilm aggregation and the resulting production of the

main building brick of biofilm, the curli fibers (fimbriae). This is achieved by the

expression of the protein CsgD, the transcription factor for the csgBAC operon

which codes for the key biochemical components of curli fibers [45, 58, 65, 80]. The

production of curli enables the cells to adhere to surfaces and to each other and

to create bacterial communities in which single cells are better protected against

external stress conditions such an antibiotic treatment. Furthermore, during the

shift to this sessile adhesive life style the metabolism and virulence of bacteria is

strongly reduced which enables an adaptation to the possibly limited amount of

resources [37].
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Figure 3.1: Molecular interactions and antagonism of the RpoS-induced signal-

ing cascade.

The expression of a set of elaborately interacting DGC- and PDE-enzymes is controlled by

the master regulator of the general stress response RpoS. The respective synthesis product

and degradation substrate of these enzymes, the second messenger c-di-GMP, is the central

signaling molecule within this network. Ultimately, the induction of RpoS leads to the

expression of curli fimbriae, a building brick of bacterial biofilm.

The role of c-di-GMP in stress-mediated signal transduction

The expression of the biofilm regulator CsgD is controlled by an interplay in a

complex signaling network, as shown in fig. 3.1. In this diagram production and

transcriptional activation is subsumed by “positive regulation“ and indicated by

arrows with reference numbers in fig. 3.1. Degradation and deactivation is sub-

sumed by ”negative regulation“ and indicated by a perpendicular line fig. 3.1. The

key component in the curli expression system is the second messenger molecule

bis-(3’-5’)-cyclic-di-guanosine monophosphate, also referred to as cyclic-di-GMP

(c-di-GMP) which maintains signal transduction by interacting with different effec-

tor molecules in the network [35]. The production and degradation of c-di-GMP

is catalyzed by two distinct sets of enzymes: diguanylate cyclases (DGCs) and

phosphodiesterases (PDEs), respectively [11, 13, 16, 56]. As shown in fig. 3.1, the

c-di-GMP-producing DGC-enzymes in the curli expression network are the proteins

YegE, YedQ and YdaM and the c-di-GMP-degrading enzymes are YhjH and YciR.

The stress-dependent expression of DGCs and PDEs suggests that high or low c-

di-GMP levels can code for different signals through different binding affinities of

the effector molecules [35].

It is currently assumed that besides a global, freely diffusible pool of c-di-GMP,

there are other local, physically separated pools with a functional and temporal re-

striction of appearance in the network [35, 46]. The different pools possess common
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properties concerning the regulation of the c-di-GMP levels. The global c-di-GMP

pool is produced by YegE and YedQ (reactions 2 and 3 in fig. 3.1, resp.) and

degraded by YhjH and presumably YciR (reactions 1 and 5, resp.). The local c-

di-GMP pool is produced by YdaM (reaction 8) and it is presumably also subject

to degradation by YciR (reaction 6), as shown in fig. 3.1 [80]. Furthermore, the

catalytic synthesis of c-di-GMP is down-regulated by binding of c-di-GMP to a sec-

ondary allosteric site (I-site) of the DGC enzyme (YegE and YedQ). This feedback

control by product inhibition has been suggested to prevent an excessive produc-

tion and to filter large stochastic fluctuations [15]. In the curli expression network

this property is exhibited by YegE and YedQ.

The described regulatory properties of c-di-GMP production and degradation have

been observed in various bacterial species [35]. This suggests a recurring and mod-

ular character of this system which can be considered as a network motif consisting

of simple activation, simple degradation and a negative auto-regulation, shown in

fig. 3.2. (see [2] for a review on network motifs). Obviously, the relation between
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Figure 3.2: A general c-di-GMP regulation module with product inhibition.

the rate function of catalytic synthesis V1 and the rate function of catalytic degra-

dation V2 determines the cellular levels of c-di-GMP (fig. 3.2). However it is not

clear how the expression levels of the enzymes, their catalytic properties and the

product inhibition interact with each other in this system to set up a certain cellular

level of c-di-GMP.

The role of c-di-GMP signaling in the expression of curli fimbriae becomes evi-

dent in fig. 3.1. There is an indirect and elaborate signaling path from RpoS

induction to the expression of the csgBAC operon. During the entry into the sta-

tionary growth phase (i.e. reduced growth rate due to a high cell density) of an

E.Coli colony all important DGC and PDE enzymes are expressed [80]. Before

MlrA, the key activator protein of the transcription factor CsgD, can bind to the

DNA and enable the expression of the csgD gene (reaction 9 in fig. 3.1) it needs

to be activated by binding c-di-GMP (reaction 8). Recent findings suggest that

MlrA can only bind c-di-GMP by a complex formation with a YdaM dimer [46].

This c-di-GMP is produced by YdaM (reaction 7) and transmitted to MlrA within

the complex and thus it represents an example for a local pool of c-di-GMP gen-

erated by molecular sequestration. Paradoxically, RpoS does not only induce the
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expression of YdaM and MlrA but also the phosphodiesterase YciR which has been

recently shown to prevent the complex formation of YdaM and MlrA [46] (reac-

tion 7). Furthermore, in the same study it has been shown that the inactivating

function of YciR is inhibited by binding of the global (freely diffusible) c-di-GMP

to YciR (reaction 4). Thus, RpoS not only induces the expression of YciR, the

inhibitor of the transcription factor MlrA, but it also induces the inhibitor of the

inhibitor, the global c-di-GMP pool produced by the DGC enzymes YegE and YedQ.

The complex signaling system described above, does not obey the principle of par-

simony since in an alternative, more efficient architecture MlrA could be directly

activated by global c-di-GMP and thus contribute to a saving of resources. With re-

gard to the high genomic variability of bacteria due to horizontal gene transfer and

mutation and the resulting selection pressure [64], this suggests that the indirect

signaling path is not a result of a random assembly but it must have a functional role

which confers a certain evolutionary benefit. A possible role of this signaling system

could be the generation of mutual inhibition between global c-di-GMP and the key

inhibitor of curli formation YciR, giving rise to a double negative feedback loop (fig.

3.1) and possibly result in a bistable system. This is in line with experimental data,

indicating that the expression level of curli in single cells is not simply proportional

to the induction level of RpoS but it obeys an all-or-nothing principle suggesting

a bistable signaling mechanism [31, 67]. The potential of double negative feedback

loops to generate bistable bahaviour [70] and the intrinsic stochasticity of c-di-GMP

dynamics suggests that a deeper dynamical understanding of this system is needed

in order analyze the potential role of c-di-GMP in bistable curli expression.

3.1.1 Aims, scope and modeling strategy

In the present study we derive a mathematical model of c-di-GMP regulation in the

curli expressing network by considering the dynamical properties of the DGC- and

PDE-enzymes as parameters of the catalytic rate functions V1 and V2 (fig. 3.2). This

model enables a basic initial analysis of the dependance of the steady-state levels of

c-di-GMP on these parameters. Firstly, this explains how c-di-GMP levels increase

during induction of the stress response and RpoS-activation and stabilize at a new,

higher steady state. Furthermore the model is used to compare the steady-state of

a c-di-GMP module with and without product inhibition and to deduce the role of

this feedback regulation in the control of c-di-GMP levels. Secondly, by explicitly

considering the inherent stochastic character of c-di-GMP regulation, the station-

ary probability distribution of the resulting Markov jump process allows to analyze

the variability of the dynamics in dependance on the rate functions. This gives an

insight into the regulation of signaling noise in the curli synthesis network and the

decisive role of product inhibition in noise reduction. Thirdly, due to its central role

as the main signal transduction molecule in the curli expression network (fig. 3.1),

the velocity of c-di-GMP regulation is a key indicator of the responsiveness of the

curli production system. The first passage times of the stochastic model enable an
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analysis of the response times of c-di-GMP modules, depending on the expression

levels of the DGCs and PDEs.

In the second part of this study the impact of c-di-GMP regulation on the dy-

namics of curli expression is analysed. The main focus is on the effect of the in-

teraction between the global c-di-GMP and YciR. A system of ordinary differential

equations is derived which approximates the stationary states of the stochastic

dynamics of this interaction and a bifurcation analysis yields realistic parameter

regimes which enable bistable behaviour. Finally, the model is used to explain ex-

perimental expression measurements of the curli gene csgB and yield new evidence

for the bistable signaling mechanism leading to population heterogeneity of curli

production in E.Coli colonies.

3.2 Results

Cyclic di-GMP is a ubiquitous signaling molecule in the bacterial world and, as de-

scribed above, it plays a decisive role in the regulation of curli production in E.Coli.

The number of c-di-GMP molecules are estimated in a range from a few molecules to

a few thousands [35], implying that low molecular numbers may be involved in sig-

naling and generate significant stochasticity. In order to account for noise effects in

signal transduction, explicit stochastic modeling of c-di-GMP dynamics is required.

In the first section of this chapter kinetic properties of c-di-GMP regulation are de-

duced which result from involved biochemical reactions. Afterwards, the according

simple birth-and-death Chemical Master Equation is solved and the corresponding

signal transduction properties of this system are analysed. In the last section the

simple regulatory model of c-di-GMP dynamics is expanded for an interaction with

the potential key inhibitory molecule YciR and the impact of c-di-GMP regulation

on curli production is studied.

3.2.1 Enzyme kinetics of DGCs and PDEs

The properties of signal transduction in the curli production network are tightly

connected to the dynamics of c-di-GMP regulation. In order to derive the equations

for the regulatory dynamics of c-di-GMP levels in the cell, the underlying catalytic

principles, as depicted in fig. 3.3, have to be reviewed. Accordingly, the synthesis of

a c-di-GMP molecule is catalysed by a diguanylate cyclase (DGC), denoted by E1

below. This reaction consumes two molecules of guanosine triphosphate (GTP) [12,

66] and involves the formation and dissociation of an enzyme-substrate complex as

intermediate reactions. An additional aspect of c-di-GMP synthesis is the product

inhibition property which can be described by further intermediate reactions where

the inhibitor c-di-GMP either binds to the free enzyme or to the enzyme-substrate

complex. This results in the reaction system depicted in fig. 3.4, in which X denotes

a molecule of c-di-GMP and S denotes the substrate GTP. Since DGC molecules

have a high affinity for dimerization, E1 denotes a DGC dimer. C-di-GMP (X) has
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2 GTP Diguanylate
Cyclases (DGC)

pGpG

2 GMP

Phospho-
diesterases (PDE)

c-di-GMP

Figure 3.3: Basic biochemical reactions involved in c-di-GMP production and

degradation in bacteria.

C-di-GMP synthesis is catalyzed by a diguanylate cyclase (DGC) from two molecules of

guanosine triphosphate (GTP). The degradation of c-di-GMP is catalyzed by a phospho-

diesterase (PDE) by breaking it down to 5’-phosphoguanylyl-(3’-5’)-guanosine (pGpG).

Finally, pGpG is degraded to two guanosine monophosphate (GMP) molecules.

Figure 3.4: Catalytic reaction system of c-di-GMP synthesis.

In the scheme, X denotes a molecule of c-di-GMP, S denotes the substrate GTP and E1

is a DGC enzyme dimer. A complex containing an enzyme molecule and two substrates

(E1SS) is able to react to one c-di-GMP molecule X with a reaction rate k3. Due to excess

availability of GTP (S), the Michaelis-Menten equilibrium can be assumed to be shifted to

the last three reactions of the system (blue box).

obviously two roles in the system: firstly it acts as an inhibitor at different stages

of the catalysis reaction with association and dissociation rates kon and koff and

secondly c-di-GMP is the final product. According to Michaelis-Menten kinetics

[10, 39], on the time scale of product synthesis, the association and dissociation

of enzyme-substrate complex can be assumed to be at equilibrium. Due to an

excess availability of the substrate GTP (S in fig. 3.4) in the cell [35], within this

equilibrium, the enzymes E1 are likely to have bound at least one substrate molecule.

Thus, denoting the maximal velocity of product synthesis by Vmax 1 = E1SS · k3, a

good approximation to the production rate function of c-di-GMP is

V1 =
Vmax 1S

(Km + S) · c
, (3.1)

where c = 1 + X/Ki [41] and Km is the corresponding Michaelis-Menten constant

with Km = (k−2 + k3)/k2. The binding affinity of c-di-GMP to the allosteric site of

the DGC enzyme is given by Ki = koff/kon. The excess availability of the substrate
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GTP allows to assume that S >> Km and S + Km ≈ S. Consequently, eq. (3.1)

results in a saturated kinetic rate

V1 =
Vmax 1

1 +X/Ki
, (3.2)

which will be assumed in the following as the (approximated) production rate of

c-di-GMP. The second key reaction system involved in c-di-GMP regulation is its

degradation by PDE enzymes.

E2 + X
k4

k−4

E2X
k5

P

where E2 denotes a PDE molecule, X denotes a c-di-GMP molecule and P is the

product of this reaction, pGpG. Using the equilibrium assumption of the Michaelis-

Menten model the reaction rate function of this system results in

V2 =
Vmax 2X

X +Km
, (3.3)

where X denotes the number of c-di-GMP molecules, Vmax 2 = (E2 +E2X) · k5 and

the Michaelis-Menten constant Km = (k−4 + k5)/k4.

3.2.2 Signaling properties of c-di-GMP modules

The results of the previous section can be used to study the influence of the molec-

ular properties and expression levels of the DGC and PDE enzymes on the signal

transduction by c-di-GMP. To this end the dynamics of a c-di-GMP module can be

considered as a one-dimensional stochastic birth-and-death process. The time evo-

lution of its probability distribution is described by the following Chemical Master

Equation (CME):

∂P(x, t)

∂t
=

Vmax 1

1 + (x− 1)/Ki
· P(x− 1, t) +

Vmax 2 (x+ 1)/Km

1 + (x+ 1)/Km
· P(x+ 1, t)

−
[

Vmax 1

1 + x/Ki
+
Vmax 2 x/Km

1 + x/Km

]
· P(x, t), (3.4)

where P (x, t) := P(X = x, time = t) is the probability of x c-di-GMP molecules

at time t. The birth and death rates correspond to the synthesis rate V1 (eq. 3.2)

and degradation rate V2 (eq. 3.3), respectively. By setting ∂Ps(x, t)/∂t = 0 the

time-independent stationary solution Ps(x) of this equation can be derived [24]

yielding

Ps(x) =

1 +
x∑

n=1

n∏
j=1

KiKm +Ki · j
Ki + j − 1

· Vmax 1

Vmax 2

−1

·
x∏
j=1

KiKm +Ki · j
Ki + j − 1

· Vmax 1

Vmax 2
. (3.5)
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This distribution has an important implication for the biological system. At least

during the stress-induced induction of the master regulator RpoS, c-di-GMP levels

have to be maintained at a steady state to ensure signal transduction. Otherwise,

assuming that the system is non-oscillatory, c-di-GMP either would go extinct or it

would flood the cell.

Equation (3.5) shows that the ratio Vmax 1/Vmax 2 of the maximal catalytic rates of

the DGCs and PDEs determines the stationary probability distribution. According

to the corresponding Michaelis-Menten kinetics (previous section) the parameters

Vmax 1 and Vmax 2 are computed as the products of the velocity of product synthesis

(k3 and k5) and the total amount of enzyme (eqs. (3.2) and (3.3)). Assuming k3

and k5 as constant (thus assuming a constant activation level of the DGCs and

PDEs), the relative expression level of these enzymes w.r.t. each other is the

key determinant of the c-di-GMP levels.

As discussed in section 2.3 (chapter 2), the first moment of the stationary distri-

bution of a Markov jump process can be approximated by finding the fixed points

of the equation for the corresponding deterministic trajectory x̄, resulting from

the lowest order Ω-expansion of the Chemical Master Equation. For the simple

c-di-GMP module these are given as the roots of the following polynomial

f(x̄) =
Vmax 1

1 + x̄/K̄i
− Vmax 2

1 + K̄m/x̄
, (3.6)

where K̄i = Ki/Ω and K̄m = Km/Ω. The positive root of this equation is

x̄s = −K̄i(Vmax 2 − Vmax 1)

2Vmax 2
+

[(
K̄i(Vmax 2 − Vmax 1)

2Vmax 2

)2

+
Vmax 1K̄iK̄m

Vmax 2

]1/2

, (3.7)

and as discussed in chapter 2.3 it is a good approximation to the stationary mean

of the probability distribution (3.5).

The Chemical Master Equation (3.4) can also be generalized to c-di-GMP mod-

ules where different DGCs and/or PDEs contribute to the same c-di-GMP pool

(e.g. reactions 1, 2 and 3 in fig. 3.1). We consider here the case where n different

DGCs with the same Ki-constant and the m different PDEs with the same Km-

constant are active in the system, however the results can also be generalized to

multiple DGCs and PDEs with differing Ki and Km. In this case the production

and degradation reactions can be summed into two reactions with the following
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rates:

Vsynthesis = VDGC 1 + VDGC 2 + ...+ VDGC n,

=
Vmax 11 + Vmax 12 + ...+ Vmax 1n

1 + x/Ki
,

=
Vmax 1 all

1 + x/Ki
,

Vdegradation = VPDE 1 + VPDE 2 + ...+ VPDE m,

=
Vmax 21 + Vmax 22 + ...+ Vmax 2m

1 +Km/x
,

=
Vmax 2 all

1 +Km/x
,

where i ∈ {1, .., n} and j ∈ {1, ..,m}. VDGC i and VPDE j are the synthesis and

degradation rate functions of the i-th DGC and j-th PDE, respectively. Further-

more, Vmax 1i and Vmax 2j are the corresponding maximal catalytic velocities and

Vmax k all = Vmax k1 +Vmax k2 + ...+Vmax kn with k ∈ {1, 2}. The stationary solution

of this system is obtained from equation (3.5) by substituting Vmax 1 and Vmax 2 by

Vmax 1 all and Vmax 2 all, respectively. In this case the ratio of expression levels of

all the different DGCs versus the expression levels of all PDEs determines the level

of c-di-GMP at steady state. If the Ki and Km of the enzymes do not have the

same values, then the proportionality of c-di-GMP levels and the relative expres-

sion levels of DGCs and PDEs also still holds (algebraic derivation omitted here

for brevity). This implies that signaling properties deduced for a simple c-di-GMP

module with one DGC-type and one PDE-type can be generalized for systems with

different active DGC- and PDE-enzymes.

The role of product inhibition in signal transduction

Product inhibition (PI) of DGC enzymes is a feedback control mechanism based on

allosteric binding of c-di-GMP to a secondary binding site of the enzyme [15]. In

order to analyze the role of this mechanism in the c-di-GMP regulation network, the

dynamical properties of c-di-GMP modules with and without product inhibition can

be compared. According to the results in section 3.2.1, the production rate function

V1(x) of a DGC without PI is given by the constant Vmax 1. Thus the mean of the

corresponding Chemical Master Equation can be approximated by the fixed point

of the following steady state equation

f(x̄) = Vmax 1 −
Vmax 2 · x̄
x̄+ K̄m

, (3.8)

which is given by

x̄s =
Vmax 1 · K̄m

Vmax 2 − Vmax 1
.

This root is positive if Vmax 1 < Vmax 2. In contrast, the steady state equation (3.6)

has a positive root for all (non-negative) parameter configurations. This suggests
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that c-di-GMP modules with product inhibition always possess a stationary state

while c-di-GMP modules without product inhibition only possess a stationary state

if the maximal production rate Vmax 1 is lower than the maximal degradation rate

Vmax 2. This robustness property induced by the product inhibition is explained in

fig. 3.5. This figure visualizes the fixed points of the approximating determinis-

tic reaction rate equation as intersections of the production and degradation rate

curves. While in a system with PI these two curves intersect for all combinations of

Vmax 1 and Vmax 2 (fig. 3.5 a), in a system without PI an intersection is only possible

if Vmax 1 < Vmax 2.

  

Vmax1 < Vmax2

Vmax1 > Vmax2

(a)

  

Vmax1 < Vmax2

Vmax1 > Vmax2

(b)

Figure 3.5: Feedback inhibition ensures stationarity of c-di-GMP dynamics.

The stationary states of a stochastic c-di-GMP regulation module approximately correspond

to the steady states of the deterministic reaction rate equation. The values of rate functions

of c-di-GMP production and degradation (y-axis) are plotted for different numbers of c-di-

GMP molecules (x-axis). The intersections between the production rate curve (blue) and

the degradation rate curves represent the fixed points of the corresponding system. (a) In

a c-di-GMP module with PI the production rate is a monotonically decreasing function of

c-di-GMP numbers. As a result, the production rate curve intersects the degradation rate

curve, independent of the maximal degradation value Vmax 2 (red and black curves.) (b)

In a c-di-GMP regulation module without PI the production rate is a constant (Vmax 1)

and there is only an intersection between the production and degradation rate curves if

Vmax 1 < Vmax 2. The system has no fixed point if Vmax 1 > Vmax 2. This corresponds to a

theoretical situation where c-di-GMP grows in an unbounded manner.

A second aspect related to product inhibition is the variance of the stationary c-di-

GMP distribution which determines the amount of noise in signaling. A fine-tuned

signal transduction requires that c-di-GMP levels are in a certain range correspond-

ing to the binding affinities of the various effector component molecules. A possibly

large noise-to-signal ratio of c-di-GMP levels indicates an unspecific signal trans-

duction which is opposed by the significant amount of various c-di-GMP effectors

with different binding affinities. As a negative feedback control mechanism, prod-

uct inhibition has a potential role in reducing the signaling noise. In order to study

the effect of product inhibition on the variability of the c-di-GMP levels, we aim

at computing the variance of c-di-GMP levels with and without product inhibition.
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The variance can be computed using the stationary distribution (3.5) by computing

the difference

σ2 =
∑
x

x2Ps(x)−

(∑
x

xPs(x)

)2

,

which leads to an equation for the noise-to-signal ratio, also referred to as the Fano

factor :

σ2

µ
=

∑
x

x2Ps(x)−

(∑
x

xPs(x)

)2

∑
x

xPs(x)
. (3.9)

Figure 3.6 shows the dependance of the Fano factor on the parameters Ki, Km

and the ratio Vmax 1/Vmax 2. Obviously the amount of noise relative to the signal

becomes particularly large when Vmax 1 ≈ Vmax 2 (fig. 3.6 (b)) and the catalysis

of degradation works near Vmax 2 (small Km). A small Ki (high affinity of c-di-

GMP for the secondary binding site) reduces this signaling noise, while a large Ki

has the effect that both enzymes work at saturation, leading to a hypersensitive

system, as described previously [29, 20]. The results in figure 3.6 thus indicate the

noise reduction effect of product inhibition. In fig. 3.6 (a) the same computations

are carried out for a smaller ratio Vmax 1/Vmax 2 = 0.96 leading to a significantly

lower amount of stochastic fluctuations. In order to explain the observed parameter

  

Vmax1 / Vmax2 = 0.95

(a) (b)
str

ong

weak

Vmax1 / Vmax2 = 0.99 Pro
duct 

inhibitio
n

Figure 3.6: Parameter dependence of the noise-to-signal ratio of c-di-GMP lev-

els.

The ratio of variance and the mean level (Fano factor) of the stationary c-di-GMP distri-

bution increases as the catalytic rates of production and degradation approach saturation

(i.e. as V1(x) → Vmax 2 and V2(x) → Vmax 2, respectively). This effect is caused by an

increasing Km and a decreasing product inhibition i.e. an increasing Ki. Furthermore the

Fano factor is inversely proportional to the ratio Vmax 1 to Vmax 2, as shown by the two

experiments. (a) If Vmax 1/Vmax 2 = 0.95 the Fano factor is ≈ 20 at its maximum. (b) In

the case Vmax 1/Vmax 2 = 0.99 the maximal value of the Fano factor reaches 150. Note the

different axes scaling in the figures.

dependance of the noise-to-signal ratio, an analytical expression for the variance is
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needed. Since an exact analytical expression based on the probability distribution

(3.5) is not available, a Linear Noise Approximation (LNA) [77] can be used (cf.

section 2.3.4), as discussed in section 2.3.4 of chapter 2. In particular, a relation

between the reaction rates f(x̄) of the macroscopic equations (3.6) and (3.8) and

the stationary covariance matrix Σs of the approximating Fokker-Planck equation

is given by the Lyapunov equation

0 = Γs ·Σs + Σs + ΓTs +Ds, (3.10)

where Γij(t) = ∂fi
∂x̄j
|x̄=x̄s is the corresponding Jacobian at the fixed point x̄s, D =

S ·diag[w(x̄s)] ·ST is the diffusion matrix, S is the stoichiometric matrix and w(x̄s)

is the propensity vector.

Stochastic fluctuations in a system with product inhibition

According to equation (3.6), the Jacobian of the macroscopic equation of a c-di-

GMP module with PI is given by the scalar derivative

Γs =
∂

∂x̄

(
Vmax 1

1 + x̄/K̄i
− Vmax 2x̄

x̄+ K̄m

) ∣∣∣∣
x̄=x̄s

= − Vmax 1/K̄i

(1 + x̄s/K̄i)2
− Vmax 2K̄m

(x̄s + K̄m)2
. (3.11)

Furthermore, since the stoichiometric matrix of this two-reaction system is

S =
(
1 −1

)
,

the scalar diffusion coefficient is given by

Ds =
Vmax 1

1 + x̄s/K̄i
+
Vmax 2x̄s
x̄s + K̄m

.

Due to equation 3.10 the approximated variance of the stationary probability dis-

tribution results in

Σs = −Ds

2Γs
=

1

2

Vmax 1

1 + x̄s/K̄i
+
Vmax 2x̄s
x̄s + K̄m

Vmax 1/K̄i

(1 + x̄s/K̄i)2
+

Vmax 2K̄m

(x̄s + K̄m)2

.

The signal-to-noise ratio can thus be computed as the ratio of the variance and the

mean level (3.6) of c-di-GMP in the cell, resulting in:

σ2

µ
≈ Σs

x̄s
=

1

2x̄s

Vmax 1

1 + x̄s/K̄i
+
Vmax 2x̄s
x̄s + K̄m

Vmax 1/K̄i

(1 + x̄s/K̄i)2
+

Vmax 2K̄m

(x̄s + K̄m)2

, (3.12)

where x̄s is the positive root of the equation (3.6).

The results in figure 3.6 showed that signaling noise increases with
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1. decreasing product inhibition (K̄i >> x̄s),

2. an action of PDE enzymes approaching saturation (K̄m << x̄s,) and

3. with a vanishing difference of maximal catalytic velocities (Vmax 1 ≈ Vmax 2).

This has the implication for mean level equation (3.7) and the Fano factor that

K̄i+ x̄ ≈ K̄i and K̄m + x̄ ≈ x̄. Substituting these parameter relations into the mean

level equation (3.7) result in x̄s ≈
√
K̄iK̄m which is proportional to the increasing

K̄i. Furthermore, inserting this into the equation for the Fano factor (3.12), results

in

Σs

x̄s
≈

√
K̄i

2
√
K̄m

, (3.13)

which indicates that the Fano factor increases as the inverse square root of product

inhibition (see Appendix A for derivation). A physical interpretation can be found in

[20]. This effect is accounted to the independence of the derivative of the reaction

rates Γs of the number of substrates (c-di-GMP) since this term determines the

rate of return to the equilibrium. The described parameter regime results in Γs ≈
−(Vmax 1 + Vmax 2)/Ki (see Appendix A), indicating that the absolute value of the

restoring power Γs decreases due to a decreasing product inhibition of the DGC

enzymes. Thus small perturbations lead to large deviations from the mean level

and increase the signaling noise.

Stochastic fluctuations in a system without product inhibtion

For a comparison, the Fano factor in a c-di-GMP module without PI can be com-

puted. From the macroscopic reaction rates (3.8) their derivative and the diffusion

coefficient can be obtained

Γs =
∂

∂x̄

(
Vmax 1 −

Vmax 2x̄

x̄+ K̄m

) ∣∣∣∣
x̄=x̄s

= − Vmax 2K̄m

(x̄s + K̄m)2
,

Ds = Vmax 1 +
Vmax 2x̄s
x̄s + K̄m

.

The resulting Fano factor is

σ2

µ
≈ Σs

x̄s
=

1

2x̄s

Vmax 1 +
Vmax 2x̄s
K̄m + x̄s

Vmax 2K̄m

(x̄s + K̄m)2

(3.14)

where from equation (3.8) the macroscopic mean x̄s is given by

x̄s =
Vmax 1 · K̄m

Vmax 2 − Vmax 1
.
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As a limit Ki →∞ leading to a system without PI, equation (3.14) gives an insight

into the source of the large stochastic fluctuations observed in figure 3.6. Assuming

an action of the PDE enzymes at saturation, Km << x and thus (Km + x) ≈ x,

results in the following noise-to-signal ratio:

σ2

µ
≈ Vmax 1 + Vmax 2

Vmax 1 − Vmax 2
, (3.15)

which is inversely proportional to the difference of the maximal catalytic rates of the

DGC and PDE enzymes. This results in a significantly larger amount of signaling

noise in fig. 3.6 b than in a.

Response times of c-di-GMP regulation

So far only the stationary properties of c-di-GMP regulation have been analysed.

As shown in figure 3.1, the expression levels of the enzymes regulating c-di-GMP

levels are under the control of the master regulator RpoS. Stress-induced changes

of RpoS expression levels lead to variations in the levels of DGCs and PDEs. As

a result, the stationary distribution (3.5) of c-di-GMP also changes. It is thus of

interest to know how fast the new stationary distribution is reached since the cor-

responding first passage times determine the responsiveness of signal transduction

upon changes of stress levels. This can be stated as a first passage time problem

e.g. from a system state corresponding to low amount of c-di-GMP x0 to a state

with a high amount of c-di-GMP x1, x1 > x0, as shown in figure 3.7.

Figure 3.7: Responsiveness of signal transduction stated as a first passage time

problem.

Low and high level states of the signaling molecule c-di-GMP are denoted by x0 and x1,

respectively. The first passage time is a stochastic variable denoting the time that the

system, started in a state x0, requires to reach a state x1. The probability distribution of

the first passage times from x0 to x1 is denoted by T (x0, x1). Accordingly. the opposite

direction is described by T (x1, x0).

Using the reaction rates (3.2) and (3.3) of the c-di-GMP regulation module, the

results of section 2.4 from chapter 2 can be used to derive a recursion for the mean
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first passage time

µ(Tx0,x1)


1

V1(x0)
+
V2(x0)
V1(x0)

, if x0 = x1 − 1,

1
V1(x0)

+
V2(x0)
V1(x0)

+ µ(Tx0+1,x1), if x0 ∈ {0, x1 − 2},

(3.16)

where Tx0,x1 denotes the probability distribution of first passage times from a state

x0 to a state x1 with x0 < x1 and V1(x0), V2(x0) are the production and degradation

rates, respectively.

The values of the parameters Ki and Km are usually constant in the cell, since

they are based on intrinsic catalytic properties of the corresponding enzymes. The

parameters which are subject to regulation in the signaling system (and are thus

of interest in this analysis) are Vmax 1 and Vmax 2 due to their dependance on the

expression levels of DGC and PDE enzymes, respectively. The first ratio 1/[V1(x0)]

in the iteration scheme (3.16) is given by 1/[V1(x0)] = (x0 +Ki)/(Vmax 1Ki). This

indicates that the mean first passage time is inversely proportional to Vmax 1 and

since Vmax 1 = ESS · k3 (section 3.2.1), it is also inversely proportional to the ex-

pression level of DGC enzymes. Since in the second ratio V2(x0)/V1(x0) it holds

that V2(x0) = (Vmax 2 · x0)/(Km + x0), the first passage time is proportional to

Vmax 2 = (E2 +E2X) · k5 (eq. (3.3)). However, similarly to the stationary distribu-

tion (3.5), the degradation rate is scaled by the production rate. Thus an increase

in the expression levels of DGCs can result in shorter response times of the system,

but if a simultaneous increase of expression levels of PDEs takes place, the station-

ary distribution of c-di-GMP levels does not change.

In an opposite situation, where the time of decrease of c-di-GMP levels from x1

to x0 is computed (see fig. 3.7), the recursion scheme for the mean first passage

time results in

µ(Tx1,x0)


1

V2(x1)
+
V1(x1)
V2(x1)

, if x1 = x0 + 1,

1
V2(x1)

+
V1(x1)
V2(x1)

+ µ(Tx1−1,x0), if x1 > x0 + 2.

(3.17)

In this case the first passage time depends on the degradation rate V2(x) and the

ratio of V1(x) and V2(x), indicating that the response time varies with Vmax 2, al-

though the stationary probability distribution does not change if a proportional

change in Vmax 1 takes place.

Figure 3.8 shows the first passage time distribution in the situation x0 < x1, corre-

sponding to eq. (3.16). Two different configurations of Vmax 1 and Vmax 2 with 1000

SSA simulations each where conducted. The two distinct parameter settings result

in different first passage time distributions (fig. 3.8 a). However, since the ratio
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Figure 3.8: First passage time distribution of c-di-GMP synthesis depends on

maximal catalytic velocity Vmax 1 which is in turn determined by the expression

levels of DGC enzymes.

(a) First passage times were computed with a start state x0 = 30 and end state x1 = 314

(mean of the stationary probability) for two different parameter configurations: Vmax 1 =

3s−1, Vmax 2 = 6−1 (cyan) and Vmax 1 = 6s−1, Vmax 2 = 12s−1 (red) using 1000 Gillespie

trajectories for each configuration. The latter configuration reduces the response times and

shifts the FPT-distribution to the left. The other parameters are chosen to be Km = 480,

Ki = 1200 (both have units # molecules). (b) Since the ratio of Vmax 1/Vmax 2 = 0.5 is

constant for both parameter configurations, the stationary probability of c-di-GMP numbers

does not change (see also eq. (3.5)).

Vmax 1/Vmax 2 remains constant, the stationary distribution does not change.

The biological implication of this insight becomes evident if the interaction network

of DGCs and PDEs is considered (fig. 3.1). Since the production and degrada-

tion enzymes of c-di-GMP are induced by the same master regulator RpoS, their

expression levels might vary simultaneously, depending on different stress levels or

growth phases of the bacterial population. It is thus a realistic scenario, that an

increase of RpoS levels does not significantly change the levels of c-di-GMP but it

increases the responsivity of the system. Thus adjustments to c-di-GMP levels can

take place much faster as if a stress-induced alarm mode is activated.

3.2.3 Impact of c-di-GMP dynamics on the expression of curli fim-
briae

A major role of signal transduction networks is a processing of external stimuli

and initiation of adequate responses. In many situations these responses are based

on discrete decision making processes where single cells choose between different

fates and the cell population becomes heterogeneous. Signaling systems enabling

such behaviour consist of multiple stationary states and due to the intrinsic noise

of signal transduction each stationary state contains different amounts of the total

probability mass. Bistability is a special case of this behaviour and it has been

shown to be involved in decision making processes of various signaling systems [70].
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Initially, bistability was described in the lactose-regulation system of E. Coli by the

lac-operon [52]. Later on, it has been found in other gene regulatory systems such as

the lytic pathway regulating the response of E. Coli cells to an infection by the virus

bacteriophage λ [3, 74] or the ability of uptake of external DNA, regulated by the

competence mechanism [69]. All of these signaling systems contain network motifs

with direct positive autoregulation or indirect one, based on double negative feed-

back, such as the interaction between YciR and the global pool of c-di-GMP in fig.

3.1 [2]. In a recent theoretical study it was suggested that bistable decision making

confers a selection advantage to bacteria in environments with changing conditions

and may appear naturally during evolution if the dynamics are sufficiently noisy [44].

There is strong evidence that the expression of the CsgB protein (fig. 3.1), which

gives rise to curli fibers and the resulting bacterial biofilm, exhibits bistable dy-

namics. Discrete all-or-nothing expression of curli was qualitatively observed in E.

Coli [67] and quantitatively measured in its genetically close relative Salmonella

[31]. Indication for the population heterogeneity has been found in E. Coli using

fluorescence microscopy imaging as shown in fig. 3.9 (a). It shows images of a 7-day

old bacterial colony, where the protein CsgB was stained by a green fluorescent dye.

The middle image in fig. 3.9 (a) shows the intensity of fluorescence at the top of the
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Figure 3.9: Quantification of bistable expression of CsgB using fluorescence

microscopy.

(a) Electron microscopic images of a 7-day old colony of the W3110-strain of E.Coli K-12

with a fluorescent staining of the CsgB protein. The upper left figure shows the top of the

colony characterized by high fluorescence intensity due to a majority of cells producing the

curli-protein CsgB. To its right a dark image of a control CsgB-knockout mutant colony is

shown, which does not produce curli. The middle image shows a zoom into the upper part

of the wild type colony confirming that most of the cells express CsgB. The image at the

bottom is a zoom into the central region of the same population where the relative frequency

of curli-expressing cells is obviously lower than on the top of the culture. Copyright: Diego

Serra and Regine Hengge. (b) Histogram of the green channel intensity of image pixels

from figure (a) ranging between 0 and 255. The zooms into the upper and the central

regions of the colony give rise to a bimodal distribution of fluorescence indicating a bistable

expression of CsgB.
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colony, which is highly illuminated, indicating a large number of CsgB expressing

cells. The image at the bottom shows a zoom into the central part of the colony

where CsgB expression is turned on in a relatively small amount of cells.

The histogram in fig. 3.9 (b) depicts the bimodal distribution of the green chan-

nel intensity (0 to 255) of the pixels in the two zoom images. The first mode of

the distribution is concentrated around a mean value ≈ 80 and represents the high

number of CsgB expressing cells at the top of the colony, while the second mode

is characterized by a mean ≈ 0 and a significantly smaller spread, representing the

low amount of CsgB expressing cells in the central region. This significant differ-

ence between the two fluorescence images is a qualitative indicator of the bistable

distribution. For a quantitative assessment of population heterogeneity, single cell

expression measurements, as conducted for Salmonella [31], are needed.

Although the mechanism behind the bistable behaviour is not fully dissected yet, it

has been suggested that c-di-GMP might play a decisive role [31]. A recent study

on interactions in the curli signaling network suggests that the PDE enzyme YciR

is a key antagonist of curli expression [46] which, on the one hand, reduces the

global level of c-di-GMP and is being subject to negative control by an inactivation

through c-di-GMP, on the other. The resulting reactions 4 and 5 in fig. 3.1 give rise

to a double negative feedback and are thus a potential source for bistability. The

dynamical system induced by these interactions is the main focus of this section.

Based on the analysis of c-di-GMP dynamics from the previous section, the reac-

tion rates of the system will be derived and using a bifurcation analysis, parameter

regimes will be assessed which induce bistability. The corresponding Master Equa-

tion enables to compute the probability distribution in the two stationary states.

Finally, promoter activity measurements of the csgB gene are used in order to com-

pare experimental measurements with a theoretical bistable model for the activity

of the csgB promoter.

Chemical Master Equation and the reaction rate equations

The model of interaction between YciR and global c-di-GMP is based on the obser-

vation that the YciR molecule may be present in distinct states: active (unbound)

state and an inactive state, which is bound by c-di-GMP. Thus the interaction

system consists of three major molecular species: c-di-GMP, x1, active YciR, x2,

and inactive YciR (YciRtotal - x2), where YciRtotal denotes the total number of

YciR molecules. For simplicity it is assumed that the total number of YciR protein

molecules does not change and, at least on the time scale of c-di-GMP dynamics, it

is at a steady state. The resulting reaction system consists of production and degra-

dation of c-di-GMP, inactivation of YciR by c-di-GMP, and reactivation of YciR

due to dissociation of c-di-GMP. This gives rise to the following rate functions:

1. Production of c-di-GMP by YegE and YedQ, combined into a single reaction

rate and a lumped dissociation constant, KYegE
i , for c-di-GMP binding at the
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allosteric product inhibitory site (reactions 2 and 3 in figure 3.1):

V1(x1) =
Vmax 1

1 + x1/K
YegE
i

.

This reaction corresponds to the production rate of c-di-GMP (3.2) derived

in section 3.2.1.

2. Degradation of c-di-GMP by YhjH (reaction 1 in figure 3.1):

V2(x1) =
Vmax 2 · x1

x1 +KYhjH
m

,

corresponding to the degradation rate (3.3) derived in section 3.2.1.

3. Degradation of c-di-GMP by YciR (reaction 5 in figure 3.1):

V3(x1, x2) = kYciR act · x2 ·
x1

x1 +KYciR
m

,

also corresponding to eq. (3.3), according to which kYciR act · x2 = Vmax(YciR)

denotes the maximal catalytic velocity of YciR.

4. Deactivation of YciR due to binding of c-di-GMP, where Kd is the dissociation

constant of c-di-GMP (reaction 4 in figure 3.1):

V4(x1, x2) = kYciR de · x2 ·
x1

x1 +Kd
.

5. Dissociation of c-di-GMP and reactivation of YciR:

V5(x2) = c5 · (YciRtotal − x2).

By defining {X(t)}t≥0 as a Markov jump process on a state space S, described

by the species vector x = {x1, x2}, the corresponding probability distribution

P (x1, x2, t) := P(X1 = x1, X2 = x2, time = t), is obtained from the solution of

the following Chemical Master Equation

∂P (x1, x2, t)

∂t
= V1(x1 − 1) · P (x1 − 1, x2)

+ [V2(x1 + 1) + V3(x1 + 1, x2)] · P (x2 + 1, x2)

+ V4(x1, x2 + 1) · P (x1, x2 + 1) + V5(x2 − 1) · P (x1, x2 − 1)

− (V1(x1) + V2(x1) + V3(x1, x2)

+ V4(x1, x2) + V5(x2)) · P (x1, x2). (3.18)

In order to analyze parameter regimes inducing bistability, the approximating re-

action rate equation can be used

dx̄

dt
= f(x̄), (3.19)
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where x̄ = x/Ω and Ω is the system volume and f(x̄) = {f1(x̄), f2(x̄)} is a vector-

valued function given by

f1(x̄) =
dx̄1

dt
=

1

Ω

[
Vmax 1

1 + x̄1/K̄
YegE
i

− Vmax 2x̄1

x̄1 + K̄YhjH
m

]
− kYciR act · x̄2

x̄1

x̄1 + K̄yciR
m

,

f2(x̄) =
dx̄2

dt
= c5 ·

[
YciRtotal − x̄2

]
− kYciR de · x̄2 ·

x̄1

x̄1 + K̄d
,

where K̄YegE
i = KYegE

i /Ω, K̄YhjH
m = KYhjH

m /Ω, K̄YciR
m = KYciR

m /Ω, K̄d = Kd/Ω and

YciRtotal = YciRtotal/Ω.

The two nullclines of this system result from setting f1(x̄) = 0 and f2(x̄) = 0 and

the fixed points follow from their intersections, given by the roots of the following

equation (for the x1-component):

0 =
1

Ω

[
Vmax 1

1 + x̄1/K̄
YegE
i

− Vmax 2x̄1

x̄1 + K̄YhjH
m

]
·
[
x̄1 + K̄YciR

m

x̄1

]
− c5 ·YciRtotal · kYciR act

/[
c5 + kYciR de ·

x̄1

x̄1 + K̄d

]
. (3.20)

For constraining the parameter space, we focus on the situation where the affinity

of c-di-GMP binding for YciR is relatively high, which is in line with the known low

levels of c-di-GMP in the cell, ranging from a few molecules to a few thousand at its

maximum [35]. As a result, it holds that K̄d << x̄ and c5 << kYciR de implying that

c-di-GMP binding to YciR works almost at saturation and the rate of c-di-GMP

dissociation from YciR is very low. It follows that eq. (3.20) can be approximated

by

0 ≈ 1

Ω

[
Vmax 1

1 + x̄1/K̄
YegE
i

− Vmax 2x̄1

x̄1 + K̄YhjH
m

]
·
[
x̄1 + K̄YciR

m

x̄1

]
− c5 ·YciRtotal ·

kYciR act

kYciR de
.

This equation shows that in this parameter regime the ratio between the rate of

activation of YciR, kYciR act, and its deactivation, kYciR de, determines the intersec-

tion of the nullclines and thus the location of the fixed points. For analysing the

influence of the ratio kYciR act/kYciR de on the fixed points of the system, the param-

eter kYciR de was set 1 and in order to conduct a bifurcation analysis, the parameter

kYciR act was varied from 0.1 to 5. The other system parameters were chosen either

from known in-vitro and in-vivo measurements or if corresponding data was lack-

ing, they were estimated to be in a realistic range: KYegE
i = 1200, KYhjH

m = 480

KYciR
m = 2, Kd = 24, and YciRtotal = 40 (molecules), c5 = 0.015 molecules−1 s−1

Vmax 2 = 5s−1, Vmax 1 = 3s−1. Prior to the analysis, the stochastic parameters were
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scaled by the system volume as described for eq. 3.19.

The resulting bifurcation diagram is depicted in figure 3.10 a. It shows that in

a certain range of the ratio between kYciR act and kYciR de (0.5− 3) the system ex-

hibits three fixed points, of which two are stable due to real negative eigenvalues of

the Jacobi matrix. Below and above this range there is only one fixed point with

either vanishing or high c-di-GMP levels. The corresponding solution of the Chem-

ical Master Equation 3.18 for the bistable parameter regime is depicted in figure

3.10 b, showing that the Markov process consists of two communication classes.
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Figure 3.10: Analysis of parameter regions inducing bistability.

(a) Fixed points of the c-di-GMP/YciR interaction system, depend on the ratio between

the activity of YciR kyciR act and its deactivation rate by c-di-GMP kyciR de. In the

range of kyciR act/kyciR de from 0 to 0.5 the system is monostable with a high number of

c-di-GMP molecules (black dashed part of the curve). Between the values 0.5 and ∼ 3

the system exhibits bistable behavior (shaded region). The continuous parts of the curve

(red and blue) indicate the stable fixed points and the dashed green part indicates an

unstable fixed point. Within parameter regions where the ratio is higher than 3, the system

becomes monostable again with a vanishing c-di-GMP population (and high YciR levels,

not shown). (b) Numerical solution of the Chemical Master Equation using the parameter

ratio kyciR act/kyciR de = 2. (vertical black dashed line in figure a). The first stationary

state corresponds to a high amount of c-di-GMP molecules and low level of active YciR

molecules. The second one corresponds to a zero population level of c-di-GMP and a high

amount of active YciR. The corresponding probabilities are 0.8 and 0.2, respectively.

Analysis of experimental data

The results of the previous section indicate that the interaction between c-di-GMP

and YciR has the potential of generating heterogeneity in bacterial cells. Accord-
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ing to this model, molecular noise stochastically drives the system into one of the

two stationary states where, qualitatively, c-di-GMP levels are either significantly

increased or are close to zero. Furthermore, as shown by the interaction network in

fig. 3.1, the level of c-di-GMP in the cell regulates the expression of the curli protein

CsgB. Thus the first stationary state of the bistable YciR/cdiGMP-model, corre-

sponding to low c-di-GMP levels, could be responsible for generating the curli-off

phenotype where the expression of the CsgB protein is turned down (dark regions

in fig. 3.9 a). Also, the stationary state with high c-di-GMP levels might give rise

to an induction of the CsgB expression machinery (green fluorescent regions in fig.

3.9 a)

In order to find experimental support for this hypothesis, promoter activities of

the csgB -gene from [71] were used, which were measured during induction of the

stationary phase. The corresponding measurements reflect the mean promoter ac-

tivity of csgB in a bacterial population, resulting from the expression level of the

reporter gene β-galactosidase. This mean level can be computed as the sum of

probability-weighted means in each of the two stationary states

µ =
∑
x∈xs1

xPcsgB(x) +
∑
y∈xs2

yPcsgB(y), (3.21)

where PcsgB(· ) denotes the bistable probability distribution of the csgB -promoter

activity and xs1 and xs2 denote the two corresponding communication classes. As

discussed above, the level of c-di-GMP determines the expression of the csgB -gene.

Thus we assumed that the probability distribution of c-di-GMP, resulting from the

solution of eq. (3.18), can be used to find an approximation to the probability

distribution of the csgB -promoter activity, that we denote by PcsgB. To this end,

as the most simple model, c-di-GMP levels with non-zero probability were scaled

by a constant proportionality factor, to yield

PcsgB = P (a · x), (3.22)

where P (.) is the solution of the Master equation (3.18), x denotes the number of

c-di-GMP molecules with non-zero probability, and a is a constant factor.

In order to fit mean level promoter activity data, the mean of the probability distri-

bution PcsgB from eq. (3.21) was computed for two different genetic backgrounds:

wild type and yciR-gene knockout mutant. In order to compute the probability

PcdiGMP(x) in the wild type, the parameters of the Master equation (3.18) were

chosen as described in the bifurcation analysis (fig. 3.10). For computing the

probability PcdiGMP(x) in the yciR-mutant the total number of YciR molecules,

YciRtotal, was set to zero. In order to estimate the proportionality factor, the

following objective function was minimized

a = arg min
a

∑
i

(
µi − µiexp

µexp

)2

,
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where i denotes the respective genetic background (here: wild type and yciR-

knockout). µi is computed according to eq. (3.21) and (3.22), µiexp is the ex-

perimentally measured promoter activity of the csgB gene. Based on promoter

activity data from [46], the minimization of the objective function yielded an op-

timal scaling parameter a = 0.021. The experimental mean promoter activities

and the fitted theoretical means are shown along with the corresponding theoret-

ical probability distributions in fig. 3.11. The results indicate that the bistable
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Figure 3.11: A bistable model of CsgB induction explains the experimentally

measured mean expression level of the CsgB protein.

The probability distribution PcsgB from equation (3.22), the corresponding mean value and

an experimentally measured mean promoter activity are shown for (a) the wild type genetic

background, where the CME (3.18) was parametrized, as described in the bifurcation anal-

ysis above; (b) yciR-knockout mutant genetic background, where the parameter YciRtotal

was set to zero. The experimental mean promoter activities were measured in K-12 W3110

E.Coli strains 24 hours after the start of colony growth.[46].

model of csgB -induction explains experimentally measured expression levels suffi-

ciently well. This supports the hypothesis that a bimodal distribution of c-di-GMP

is a potential source for generating bistability of curli expression. Furthermore, the

model enables a new qualitative interpretation of the population level promoter

activities as a mean of a bimodal distribution resulting from the amount of proba-

bility mass in each of the two stationary states. This interpretation suggests that

the promoter activity measured in a wild type population (fig. 3.11 a) results as

the mean expression in curli-on cells with high c-di-GMP levels and curli-off cells

with low c-di-GMP levels. This model implies that in a yciR-knockout, all cells are

characterized by high c-di-GMP levels, and thus have curli expression turned on.

For a better quantitative validation and a more exact parameter estimation, further

experimental measurements on a single cell level are required.

3.3 Discussion and outlook

For modeling the dynamics of c-di-GMP regulation, the expression and activation

levels of the catalysing enzymes were assumed to be constant (i.e. constant Vmax 1
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and Vmax 2). Since gene expression, protein translation and different possible activa-

tion levels of the enzymes (e.g. due to varying stress conditions) might change these

parameters, further analysis is required in order to study the resulting consequences

for the dynamics. Furthermore, sufficiently accurate estimates of model parameters

of the signaling system may enable a model of a better resolved transition dynamics

between the two stationary states of the bistable curli expression system.

Two sets of experimental data were used for model validation: fluorescence mi-

croscopy and promoter activity measurements. The advantage of the fluorescence

microscopy images is an indication of the qualitative properties of CsgB expres-

sion in the E. Coli population. However, their drawback is an imaging of protein

expression only on the surface of the colonies and a lacking distinctness of expres-

sion levels in single cells. The measurements of promoter activities yield a basis

for quantitative validation of the modeling results. Due to the inherently multi-

stable character of the curli expression, the measurements have to be interpreted as

means of a bimodal distribution. This study introduces a probability-based method

for analysing such data and is suggested for verification using further experimental

measurements.

3.4 Summary and conclusion

The focus of the present study was a combination of two approaches for studying

the signal transduction in the curli expression network. Firstly, the dynamics of

the cellular levels of the signaling molecule c-di-GMP was modeled, based on the

known qualitative properties of DGC and PDE enzymes. Secondly, qualitative and

quantitative measurements of curli expression were analysed and a dynamic rela-

tionship between c-di-GMP regulation and the expression of the curli gene csgB

was established.

Modeling of c-di-GMP dynamics enabled an insight into regulatory properties of

the signal transduction. Thus, the steady state of c-di-GMP in the cell was shown

to be determined by the ratio of expression levels of DGC and PDE enzymes. The

model also revealed that the product inhibition property of DGC enzymes con-

tributes to an increased robustness of the steady state with respect to changes in

expression levels of the enzymes and reduced signaling noise. Furthermore, the

computation of the mean first passage times has shown that response times of the

system are reduced when expression levels of the DGCs and PDEs are increased

although the stationary distribution of molecular numbers does not necessarily ex-

hibit a significant change. This may be an indicator for a transition to an alarm

mode where the cell is ready for a fast response upon the onset of stress conditions.

The results of the c-di-GMP regulation model were used to explain the qualita-

tively observed bistable expression of the curli protein CsgB. To this end, it was
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suggested that the recently found double negative interaction between c-di-GMP

and YciR may be the source for generating bistable behaviour of this system. Cor-

responding parameter regimes of this dynamical interaction model were finally used

to compute the probability distribution of c-di-GMP and approximate the resulting

bistable probability distribution of csgB gene expression. The resulting theoretical

mean value showed a good agreement with experimentally measured mean expres-

sion levels, yielding further support for the hypothesized source of bistable curli ex-

pression. The presented method may be considered as a general probability-based

approach for evaluating population average expression data of bimodally expressed

genes.



Chapter 4

Drug selection pressure and

evolution of HIV

4.1 Modeling viral evolution in the presence of drug

application

4.1.1 Introduction

Treatment of HIV is one of the major challenges of the modern medicine. Al-

though it can not be completely cured, life-long treatment can significantly prolong

life expectancy. Currently recommended therapies are based on a combination

of nucleoside reverse transcriptase inhibitors (NRTI) and non-nucleoside reverse

transcriptase inhibitors (NNRTI) or protease inhibitors (PI). A main obstacle ag-

gravating HIV therapy and preventing its elimination is the high complexity of its

evolutionary dynamics. Its genomic variability confers HIV the necessary degree of

flexibility and robustness for surviving in different environmental conditions. Al-

though in the presence of drugs the population growth can be strongly reduced,

the resulting selection pressure and the high intrinsic mutability can produce ge-

netically altered viruses which are either less vulnerable or completely resistant to

the action of the drugs. An understanding of evolutionary pathways which lead to

drug resistance and let HIV escape drug application is key to an implementation of

improved therapeutic regimens.

We develop a mathematical approach to modeling HIV dynamics in the presence

of drug treatment by integrating the key determinants of viral evolution. Further-

more, we show that intrinsic stochasticity of viral growth under drug action at low

doses adds an additional complexity layer to the system and must be considered

for its understanding. Prior to deriving a full stochastic model, in the following, we

introduce the main theoretical concepts which give rise to viral population models.

Since we are interested in the principles of resistance development of HIV under

drug treatment, we will firstly clarify the notions of mutation, which enables the

genetic flexibility of HIV and selection, inducing the genetic evolution and making

resistance development possible.

Mutation of the viral DNA appears as a result of randomly occurring errors during

the process of reverse transcription. Most of the mutant viral species are less viable

than the wild type species, which prevents the new mutations from constituting
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within the viral population. However, depending on the specifics of the environ-

ment, such as an application of antiviral drugs, mutations can be advantageous and

cause the mutant species to outgrow the wild type.

Selection is a nonlinear function of various evolutionary factors regulating the level

of (dis-)advantage of new mutations and their likelihood to establish within the pop-

ulation. While mutation is the random mechanism behind the evolution of HIV,

selection can be considered as the driving force of evolutionary trajectories. There

are two main factors contributing to the regulation of the dynamics of selection.

The first one is the relative fitness of a viral species, which is determined by its ge-

nomic background. It is assumed that a wild type genome confers a maximal fitness

of 1 and that mutations giving rise to genetically different species, induce a fitness

loss. Mathematically, this can be described by a function f(k) : N 7→ R ∈ [0, 1],

where k is an index referring to the specific genome composition out of a set of all

possible genomes. Thus f(k) = 1 means that a virus carrying the genome k has a

maximal possible fitness, and f(k) = 0 means that its viability is completely lost

and the virus strain k dies out.

If a viral population is exposed to a drug treatment then the second main factor

contributing to the selection pressure is the level of resistance of a species with

respect to a particular drug. It can be formalized in the simplest way by means

of a function η(j, k) : N × N 7→ R ∈ [0, 1], describing the effect of a treatment,

where the integer j denotes the specific condition induced by the medical treatment

out of a set of all possible treatments. As before, the index k denotes the genetic

background. The impact of a treatment on the viability of the virus is determined

by the application of the drug, whose effect η(j, k) is computed using the Emax

equation (or equivalently, median-effect equation):

η(j, k) =
[Dj ]

FR(k) · IC50 + [Dj ]
, (4.1)

where [Dj ] denotes the concentration of the respective drug within the condition j

and IC50 denotes the half-maximal inhibitory drug concentration, w.r.t. to a refer-

ence (wild type) strain. In other words, it is the concentration of the drug required

to reduce the rate of viral growth by 50 %. Finally, FR(k) is the fold-resistance

w.r.t. to the applied drug relative to the wild type strain. This parameter indicates

the factor by which the IC50-value, and thus the resistance, of the mutant strain k

is higher than the wild type. Obviously, it follows that FR(k) = 1 if the index k

refers to the wild type. Note that in the case of HIV, the HBX2-strain from the

HIV Drug Resistance Database of the Stanford University is usually considered as

the standard reference viral strain [63].

The interpretation of the IC50-value is explained by two hypothetical dose-response

curves of a wild type and a corresponding mutant population in figure 4.1. The

dose-response curve of the wild type population (reference strain) indicates that
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Figure 4.1: Theoretical dose-response curves of a wild type and a mutant pop-

ulation with different IC50-values.

The effect η(j, k) of the drug is depicted depending on drug concentration (x-axis, rela-

tive units) and the genomic backgrounds: wild type (blue curve) and mutant (red dashed

curve). The IC50-value of the wild type is 0.01 and the fold resistance conferred by the

mutation is FR(k) = 100. The increased resistance of the mutant strain leads to a shift of

the dose-response curve, implying that a higher drug concentration is needed to achieve the

same effect for the mutant strain compared to the wild type.

the drug of interest reaches 50 % of its effect at a concentration of 0.01 (relative

units), as shown in fig. 4.1, blue curve. This indicates that IC50 = 0.01. However,

a mutation at the site of action of the drug, for instance an amino acid exchange in

the binding pocket of the reverse transcriptase enzyme, might make the drug less

effective. If the mutation constitutes within the population, this leads to a shift

of the dose-response curve of the drug w.r.t. the mutant population, meaning that

a higher drug concentration is needed to achieve the same effect for the mutant

strain compared to the wild type. The dose-response curve of the mutant indicates

that FR(k) · IC50 = 1, increasing the 50 % inhibitory concentration by a factor of

FR(k) = 100 relative to the wild type population.

What are the determinants for the likelihood of a randomly occurred mutation

to become constituted in the population? As already mentioned, the process of

selection is considered to be the result of an interplay between external conditions,

such as drug treatment, the fold resistance conferred by the mutation of interest and

the fitness loss that this mutation induces, relative to the wild type background. As

an extreme example consider a virus species carrying an amino acid substitution at

a drug binding site of a target enzyme due to a mutation event. As a result, the

virus might be completely resistant to the action of the drug. However, this mu-

tation still might not become constituted in the population during drug treatment,

if it simultaneously makes the viral enzyme dysfunctional and contributes to an

extreme reduction of the viral fitness. The combined independent effect of fitness

and resistance on the growth rate of the viral population can be quantified by the
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following product:

r(j, k) = r∅ · (1− η(j, k)) · f(k), (4.2)

where r(j, k) denotes the (time-independent) growth rate of the viral population

with genomic background k under treatment j and r∅ is the growth rate of the ref-

erence (wild type) strain in the absence of drug treatment. Furthermore, η(j, k) ∈
[0, 1] and f(k) ∈ [0, 1] denote the drug effect and the fitness of the population,

respectively.
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Figure 4.2: Combined effect of fitness and resistance regulates selection of new

mutations.

Growth rates of a wild type and a mutant population are depicted, with a varying drug

concentration. The IC50-values of the wild type and the mutant are 0.01 and 1, respectively.

The fitness of the mutant virus is f(k) = 0.7, relative to a fitness of 1 of the wild type.

The crossing of the two curves marks a selection boundary. Drug concentrations above

the selection boundary confer the mutant strain a selection advantage and lead to the

constitution of the mutation in the population. Above the selection boundary the wild type

virus outgrows the mutant strain and prevents a selection of the mutation.

The combined effect of resistance and fitness on the growth rate r(j, k) of the virus

and the resulting regulation of mutational selection is depicted in figure 4.2. The

figure depicts the growth rate of the wild type and the mutant population in relative

units as a function of the drug concentration. As in figure 4.1, the IC50-value of the

wild type and the mutant are 0.01 and 1, respectively. In addition to an increase of

IC50, the changed genetic background of the mutant virus introduces a fitness loss

w.r.t the wild type, as described in equation (4.2). While the reference wild type

strain has a fitness of 1 (blue continuous curve), the relative fitness of the mutant

strain is assumed to be 0.7 (red dashed curve). The cross point of the two curves

marks a selection boundary. Below the drug concentration of ≈ 0.0043(= 10−2.37)

the wild type has a higher growth rate r(j, k) than the mutant due to the fitness loss

induced by the mutation. With increasing drug concentration the highly suscepti-

ble wild type population becomes diminished by the action of the drug. However,
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due to the (partial) resistance, induced by the mutation, the dose-response curve

of the mutant population is shifted to the right, as it was discussed in figure 4.1.

As a consequence, the mutant population continues growing at drug doses, which

are deadly for the wild type, leading to a higher relative growth than the wild type

at these high drug doses. Thus the new mutation is likely to become constituted

within the population if the drug concentration exceeds the selection threshold of

0.0043 (area right to the dashed line in fig. 4.2). Below this threshold, the wild

type species will outgrow the mutants and prevent the new genotype to be selected

in successive virus generations (area left to the dashed line in fig. 4.2).

4.1.2 Aims, scope and the modeling strategy

In the present study we derive a stochastic model of viral growth, subject to ap-

plication of NRTI and NNRTI drugs in order to dissect the phenotypic impact of

different mutational events in terms of drug resistance and fitness. Incorporation

of in-vitro measured viral passage data will enable an estimation of the resistance

level and the fitness loss conferred by mutations occurring in the course of the ge-

netic evolution. The central question of the study can thus be summarized

as follows: given an observed time-resolved genotype of the virus as a sequence of

mutational events occurred during drug treatment, what are the mechanistic prin-

ciples of selection which gave rise to the particular evolutionary trajectories? We

derive a mathematical framework for modeling genetic evolution of HIV under drug

treatment. Stochastic modeling of viral population growth enables us to estimate

biologically relevant parameters and find plausible models explaining the observed

in-vitro genetic evolution. This yields new insights into mechanistic principles of

viral infection dynamics and drug treatment.

Classical non-parametric statistics enables a deduction of basic modeling hypothe-

ses, such as conditions that alter selection. In contrast, the stochastic dynamical

model, derived here, enables a deeper insight into less evident properties of the

evolutionary dynamics of the virus. These properties include the resistance level

and the fitness costs conferred by individual mutations with respect to the applied

drugs, the baseline (wild type) viral growth rate and the IC50 value. Furthermore,

the stochastic viral growth model will enable to compare these properties between

different genetic backgrounds and drug application patterns. Finally, the predictive

power of the presented modeling method is enhanced by a model selection procedure

which uses a large scale estimation strategy for selecting models and system

parameters with the biggest explanatory power.

As explained in fig. 4.2 the velocity of the growth of a viral population can be

taken as an indicator for its fitness and the degree of adaptation to the environ-

ment. As a consequence, the growth rate of the viral population is a central

variable in this study. The second important variable is the genetic composition

of the viral strain in question, mapping relevant genetic sequences and their muta-
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tions on quantitative phenotypic traits such as the degree of resistance w.r.t.

a particular drug and the level of viral viability and reproductive power influenced

by mutational fitness costs. The relevant time scales of these two variables are in

the order of several days, that a few viruses need to grow to a substantial pop-

ulation size and a time scale ranging from a few days to several months that

new advantageous mutations need in order to constitute within the genome of the

viral population.

The basis of the present modeling study is a one-dimensional Markov jump pro-

cess describing the viral population growth subject to drug application. Also, as

an outlook, we will discuss an extension of this model towards a higher-dimensional

MJP, incorporating the dynamics of host-cells. A discrete stochastic population

growth model is used here instead of a continuous deterministic approach since

in-vitro viral passage experiments, underlying this model, revealed a substantial

variability of population growth times [60]. Key to the present study is the notion

of a viral passage experiment which is defined as the time that a virus popula-

tion needs to grow from a predefined small size to certain maximal level. A detailed

description of the corresponding in-vitro experiment is given in the next section. In

summary, virus isolates diluted with an initial concentration V0 are incubated with

target cells and a certain amount of NRTI and/or NNRTI drugs is added. After the

viral population has reached the maximal concentration Vmax = 100 · V0, the virus

is extracted and subjected to consensus sequencing. This way the mutations are

detected, which have occurred with respect to the baseline isolate and which have

been selected during the in-vitro experiments. Subsequently, the extracted virus is

diluted again in a medium with the concentration V0, incubated with new target

cells under drug addition and the passage experiment is repeated. For each given

viral isolate and drug-treatment the described passage experiment is repeated 12

times.

The viral passage times are modeled here by the probability density of the first

passage times of a Markov jump process describing viral growth. By assuming a

sufficient structural similarity between the first passage time density induced by the

model and the in-vitro measured viral passage times, we apply a moment-matching

approach for fitting model parameters. We find that the first two moments represent

the sought probability density sufficiently well and due to the low computational

costs this method enables a fast and efficient large scale parameter estimation. The

described moment-matching approach furthermore enables a computationally fea-

sible parameter identifiability analysis based on a Monte Carlo sampling of the

parameter space. Finally, the methodology is used to conduct a model-selection

analysis, by scanning the space of all possible parameter permutations, in partic-

ular the set of relevant mutations of the reverse transcriptase enzyme, for finding

model parameters with the largest impact on viral fitness and population dynamics.
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4.1.3 Detailed description of experiments

Viral growth experiments conducted in-vitro can significantly contribute to dissect-

ing the principles of genetic evolution and resistance development in the presence

of drugs. The main advantages of this experimental methodology are the reduced

system complexity due to the absence of the host immune system and a better

controllability of experimental conditions. Previously, five clinical HIV isolates,

cocultivated with extracts of peripheral blood mononuclear cells (PBMC), were de-

rived from individuals who had been pre-treated with the NRTI drug Lamivudine

(3TC), but have never been exposed to NNRTIs [59]. Using consensus sequencing

of the primary samples up to the amino acid position 300 of the reverse transcrip-

tase (RT) protein, a complete list of initial RT mutations was compiled, as shown

in table 4.1. The amount of the viral population, reproducing by infection of the

reverse transcriptase amino acid position

20 35 41 67 69 70 83 90 118 122 123 135 169 177

Hxb2 K V M D T K R V V E D I E D

Iso 1 T L I K E E

Iso 2 R S N R I S T

Iso 3 R S N R I S T

Iso 4 I L N K K D

Iso 5 L K E T

reverse transcriptase amino acid position

184 196 201 202 208 210 211 214 215 219 272 275 277 291 293 294 297

Hxb2 M G K I H L R P T K S K R E I P E

Iso 1 V E V Y Q R V Q

Iso 2 V V L F Q P D T

Iso 3 V V L F Q P D T

Iso 4 V Y W K Y V

Iso 5 V W K Y P T

Table 4.1: Baseline amino acid substitutions in relation to reference (wild type)

sequence (Hxb2) from the Stanford HIVDB.

The numbers in the second row of the two tables indicate the position in the reverse tran-

scriptase amino acid sequence. The letters correspond to amino acids detected at the re-

spective position in the baseline isolates (rows 4-8), relative to the reference Hxb2-sequence

(row 3). Empty table entries indicate equivalence to the reference Hxb2 strain. The latter

is considered as the wild type sequence in this study.

cocultivated blood cells, was measured once a week using an antigen assay. At

ELISA values < 3× 104pg/ml of the antigen, cultures were split: 2.5 Mio PBMCs

were replaced by new donor PBMC. At an ELISA value ≥ 3×104pg/ml, indicating

a predefined maximal size of the viral population, the cultures were passaged after

a 2-hour incubation time. After each passage the genome of the viral population

was sequenced again in order to detect newly appeared mutations with respect to

the primary population. In each conducted experiment the described single viral

passage was repeated 12 times.

The five viral isolates 1 to 5 were exposed to five different passage experiments

A to F. Each of these experiments contained 12 single passages, as described above
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Figure 4.3: Experimental set-up of a single passage experiment.

Virus isolates diluted with an initial concentration V0 are incubated with target cells and

a certain amount of NRTI and/or NNRTI drugs is added. After the viral population has

reached the maximal concentration Vmax = 100 ·V0, the virus is extracted and subjected to

consensus sequencing, enabling to detect mutations selected during the in-vitro experiments.

Subsequently, the extracted virus is diluted again in a medium with the concentration V0
and incubated with new target cells under drug addition.

and was determined by a different NRTI and/or NNRTI drug combination in the

growth medium. The NRTI drugs consisted of Adefovir (ADV) and Lamivudine

(3TC). Furthermore, the NNRTI drug Nevirapine (NVP) was used. The drug com-

binations in the respective experiments were as follows:

• A: No drugs were added to the medium.

• B: 1 µM 3TC and 2 µM ADV were added and maintained.

• C: NVP was added and concentrations were doubled for each passage (0.01 µM

NVP during the first passage up to 20.48 µM during the last passage).

• D: 1 µM ADV and increasing concentrations of NVP were added to the

medium.

• E: 2 µM 3TC and increasing concentrations of NVP were added to the

medium.

• F: 1 µM 3TC and 2 µM ADV and increasing concentrations of NVP were

added to the medium.

Isolates 2 and 3 were aliquots from the same baseline sample, but were run indepen-

dently in experimental set-ups (C, D and E). For each experimental set-up (A-F), 12

single-passage experiments were run, in total 5 ·3 ·12+4 ·3 ·12 = 324 single-passage

experiments with a median duration of 21 days, respectively. In the experiments C,

D, E and F the concentration of NVP was doubled with each passage. The starting

dose of NVP was 0.01 µM, around the previously reported IC50 of the NNRTI-näıve

isolates and the final concentration was 2048-fold, below previously reported cyto-

toxic levels [50]. On average, the cumulative time to the last passage (passage 12)
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was 293 days within a range of 157-509 days. The described experimental set-up,

for each of the five viral strains and the respective mutations detected during the

single passages are depicted in figure 4.4.

4.2 Initial statistical analysis and conclusions for model

building

4.2.1 Selection dynamics

The phenotypic background of the baseline strain is depicted in table 4.1, where

relevant amino acid positions of the reverse-transcriptase enzyme are shown. None

of the 55 baseline mutations are known to be in the NNRTI-binding pocket, in line

with the fact that the isolates have never been treated with NNRTI drugs before.

The baseline mutations of the strains 1 to 5, exhibit mutation patterns influencing

the function of the reverse transcriptase enzyme and contain thymidine-analogue-

associated mutations (M41L, D67N,K70R, L210W, T215F/Y, K219Q) and 3TC-

related mutation M184V. Presence of 3TC prevented this mutation from reversal,

while in the course of 86 % of experimental settings, where 3TC was absent, Me-

thionine was reversed to the wild type amino acid Valine (see figure 4.4).

The viral growth experiments exhibit a characteristic pattern of mutations selected

in the course of the passage experiments. Once a novel mutation with respect to

the baseline strain was selected, it persisted until the last passage 12. The fre-

quency of selected novel mutations varied between the different experiments. The

number of selected mutations in experiments with NVP (set-ups C, D, E, and F)

was significantly higher in passages 5-7 and 12 than in those experiments lacking

NVP, as shown in figure 4.5 A. On average, 1-3 mutations occurred per passage

experiment when NVP escalation was applied. Of the 43 novel mutations during

NVP-escalation experiments, 38 were known to be in the NNRTI binding pocket.

4.2.2 Viral growth dynamics

In figure 4.6 the growth curves of viral populations during the individual passages

are shown. The viral growth exhibits a significant variation between different exper-

imental settings and passages. The interplay between drug concentration, mutation

selection and viral growth dynamics becomes evident during NVP-escalation ex-

periments (C-F). A doubling of the NVP concentration results in several cases in

a reduced growth rate, compared to the previous passage. This is the case for in-

stance for the strain 1 (green curve in fig. 4.6) in experiment C, passages 5 and

9. Accordingly, in several cases an accelerated population growth can be observed

after a mutation occurs, as for strain 5 (yellow curve), experiment D, passages 5

and 10.
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Figure 4.4: Summary of passage experiments with sequencing data.

The illustration provides a complete review of RT sequence changes under the following

experimental set-ups: A: no drugs were added to the medium, B: 1 µM 3TC and 2 µM

ADV were added and maintained, C: NVP was added and concentrations were doubled

for each passage (0.01 µM NVP during the first passage up to 20.48 µM during the last

passage), D: 2µM ADV and increasing concentrations of NVP were added, E: 1µM 3TC

and increasing concentrations of NVP were added and F: 1µM 3TC and 2µM ADV and

increasing concentrations of of NVP were added to the medium. Individual isolates 1 to 5

are indicated above the columns. Sequence changes listed are indicated in the rows that

correspond to the passage number where they were first observed. NVP concentrations used

in the respective passage experiment are listed on the right in units µM. Any mutation away

from wild-type (Hxb2 strain) is indicated by a rightward-pointing arrow, whereas reversal

to wild-type is indicated by a left-ward pointing arrow.
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Figure 4.5: Selection dynamics of mutations.

A: Average number of mutations per passage in experiments with NVP (experimental

set-ups C, D, E & F). Asterisks indicate whether there were significantly more mutations

(wilcoxon rank-sum test) than in the NVP-free experiments (experimental set-ups A & B).

* p < 0.1, ** p < 0.05, *** p < 0.01. B: Cumulative probability of detecting no mutation.

The blue and red lines show the cumulative probability of not detecting a mutation after

the indicated numbers of passages (x-axis) in experiments where NVP was added with

increasing concentrations (blue line; experimental set-ups C, D, E & F) vs. experiments

where no NVP was added (red line; experimental set-ups A & B).

Figure 4.7 shows the statistics of passage times over all passages of the viral growth

experiments. It can be deduced that the median passage times of most experiments

with NVP application are significantly higher than the medians in experiments

without NVP application (experiments A, B). Possibly, the strains did not become

sufficiently resistant to NVP during the passage experiments. Furthermore the me-

dian passage times of experiment B with application of ADV and 3TC, do not

significantly differ from passage times of experiments with NVP-application.

In order to further elucidate the mode of action of ADV and 3TC, we compared

in figure 4.8 the passage times of experiment A, where no drugs were added and

experiment B, where 1µM 3TC and 2 µM ADV were added. Interestingly, for most

isolates the addition of ADV and 3TC did not significantly slow the viral growth,

suggesting that the concentrations of ADV and 3TC were sub-inhibitory. Only for

isolate 5 the median passage times are significantly larger, when these drugs are

added (p = 0.01). In contrast, the variance of the passage times is significantly

higher in experiment B, where ADV and 3TC are added, than experiment A, with-

out drug addition (p < 0.05 or p < 0.01). These results may indicate that addition

of 1 µM 3TC and 2 µM ADV does not uniformly inhibit viral growth. In other

words, viral growth is inhibited during some passage-experiments, whereas it is not

inhibited in the majority of passage-experiments. The result of this mode of in-
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Figure 4.6: Growth curves of the viral isolates during all passage experiments.

Each isolate is indicated by an individual color. Below the growth curves the baseline

mutations for each isolate are indicated. These are the mutations detected before the start

of the passage experiments.

hibition is an increase in the variance of passage times, while the central measure

(median/mean passage times) may not be significantly affected.
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Figure 4.7: Box plot of single passage times for all virus isolates during experi-

mental set-ups A-F as indicated on the x-axis.

Box plot of single passage times for virus isolate # 1, # 2/3, # 4 & # 5 during experimental

set-ups A-F as indicated on the x-axis. The solid red horizontal lines indicate the respective

median passage times, whereas the blue dashed boxes surrounding them indicate the range

encompassed by the 25-th and 75-th percentiles. The whiskers denote the most extreme

data points, which are not considered outliers and the black squares indicate outliers. A:

Viral passage times for isolate # 1. B: Viral passage times for isolate # 2 & 3 (combined).

C: Viral passage times for isolate # 4. D: Viral passage times for isolate # 5

From this observation we deduced a stochastic effect of action of NRTI-drugs, hav-

ing a low probability of effect, due to low dosage but a strong effect if the drug

succeeds in becoming integrated into the reverse-transcriptase enzyme. In order

to model this effect, in the following, we will introduce a parameter describing the

probability of drug integration pNRTI and the intensity of the effect ηNRTI.
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Figure 4.8: Box plot of passage times for all virus isolates during experimental

set-ups A & B (no drugs added vs. 1µM 3TC plus 2 µM ADV added) as

indicated on the x-axis

The solid red horizontal lines indicate the respective median passage times, whereas the

blue dashed boxes surrounding them indicate the range encompassed by the 25th and 75th

percentiles. The whiskers denote the most extreme data points, which are not considered

outliers and the black squares indicate outliers. A: Viral passage times for isolate 1. B:

Viral passage times for isolate 2. C: Viral passage times for isolate 4. D: Viral passage

times for isolate 5.

4.3 Stochastic model of viral population growth

4.3.1 Viral growth subject to drug application

During infection, HIV enters a T-cell and reprograms it to produce viral particles. In

vitro, the dynamics of the HIV reproduction process thus depends on the propensity

of the viral integration process, the number of viral particles and the number of

host cells. In in-vitro passage experiments, described above, the amount of host

cells was kept constant. For modeling the viral reproduction in this context we thus

subsumed the dynamics of host cells into the constant replication propensity of the

viruses, yielding the following simple-birth reaction:

V
r(j,p)−−−→ V + V,
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where r(j, p) denotes the growth rate constant of the viral population in passage p

under treatment, as introduced in eq. (4.2). Note that the index j refers to one of

the experimental settings within the set {A,B,C,D,E, F}, described in fig. 4.4.

Drug effects and fitness

Each viral strain consists of baseline mutations and additional mutations that were

derived or –lost during the course of an experiment. As previously described in

eq. (4.2), the growth propensity r(j, p) is affected by fitness f(j, p) of viral strain i

and NVP drug pressure (1− ηNV P (j, p)) as follows:

r(j, p) = r∅ · (1− ηNVP(j, p))︸ ︷︷ ︸
inhibition by NVP

· f(j, p)︸ ︷︷ ︸
fitness

· [1− ηNRTI(j, ρNRTI)]︸ ︷︷ ︸
stoch. effect of low-dose NRTIs

, (4.3)

where r∅ denotes the growth rate of the baseline viral strain in the absence of any

drugs. As an extension of eq. (4.2), the parameters ηNRTI and ρNRTI denote here

the intensity of low-dose NRTI effect on viral growth and the probability of effect

in experimental set-up j ∈ [A..F ], which was estimated to be 0 ≤ ηNRTI ≤ 1 with

probability 0 ≤ ρNRTI ≤ 1 when NRTIs were added (experimental set-up: B, D,

E, & F). In experiments without NRTI-addition (experimental set-ups A & C) the

probability of effect was set to ρNRTI = 0.

In equation (4.1) the relation between drug concentration, genetic composition and

drug effect was described. In particular, it was argued that the level of resistance

of genetic background k w. r. t. a drug is given by the IC50-value of the wild

type multiplied by the fold-resistance factor FR(k). In order to integrate the se-

quence of mutations which have been selected until the current passage into the

drug effect equation, we assumed that the fold resistance conferred by each muta-

tion contributed in an independent manner (no epistatic effects). This assumption

results in a multiplicative model:

FR(j, p) =
∏

q∈Q(j,p)

FR(q), (4.4)

where the fold resistance FR(j, p) of the genetic background in passage p and ex-

periment j ∈ [A...F] is composed as a product of fold resistances of mutations in

the set Q(j, p), denoting the cumulative mutations which occurred relative to the

baseline genome until passage p. See also fig. 4.4, where j corresponds to the sub-

figures A...F and p denotes the row number indicating the corresponding passage.

The multiplicative model (4.4) of fold resistance modifies the drug-effect equation

(4.1) to

ηNVP(j, p) =
[NVP(j)]

IC50 ·
∏
q∈Q(j,p) FR(q) + [NVP(j)]

(4.5)

where ηNVP(j, p) denotes the effect of NVP application on the viral strain. The ge-

netic background of this strain is composed of a cumulative set of mutations Q(j, p)
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which have been selected under treatment j until passage p.

Accordingly, the fitness of a viral strain in passage p under treatment j is given

by

f(j, p) =
∏
q

f(q), (4.6)

where f(q) denotes the relative fitness of the virus given a single mutation q w.r.t.

to the wild type.

4.3.2 First passage time moment computation

The described HIV growth model implies that the viral growth dynamics in passage

p under treatment j induces a simple-birth Chemical Master Equation model with

a different propensity function r(j, p):

∂Pjp(k, t)

∂t
= (k − 1) · r(j, p)Pjp(k − 1, t)− k · r(j, p)Pjp(k, t) (4.7)

where the probability of k viruses at time t in passage p and condition j is given by

Pjp(k, t) := P(V = k, time = t), cf. section 2.2.2.

For deriving a model of passage experiments we note that in the in-vitro exper-

iments described above, the virus was diluted 100-fold (100 µL supernatant was

grown in 10 mL media) and the time was recorded until the initial p24 ELISA sig-

nal (≥ 3 × 104 pg/ml) was achieved. We therefore infer that the maximal number

of virus particles V1 at which the experiment was stopped is V1 = 100 ·V0, where V0

is the initial number of virus particles. Given the pure-birth process described by

the Chemical Master Equation (4.7), the m-th moment T jpm of the PDF of the time

needed to reach the state V1 after starting in state V0 in passage p is given by [25]:

T jpm


mT jp

m−1

r(j,p) , if V0 = V1 − 1,

mT jp
m−1

r(j,p) + T jpm , if V0 ∈ n− 2, n− 3, ..., 0.

(4.8)

Equation (4.8) yields the moments of the first passage times by recursion if one

notes that the zero-th moment T jp0 = 1 ∀ i ∈ {1, .., 5}, j ∈ {1, .., 12}, cf. section

2.4. For the first moment, the above recursions can be expressed in a closed form

as follows

T jp1 =

100·V0∑
k=V0

1

k · r(j, p)
.

Using equation (4.2) the drug effects and the population fitness can be factored out

to yield:

T jp1 =

[
1

(1− ηNVP(j, p)) · f(j, p) · [1− ηNRTI(j, ρNRTI)]

]
·

100·V0∑
k=V0

1

k · r∅
.
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Similarly, the second moment of the first passage time can be expressed in a closed

form as follows:

T jp2 =

[
2

r(j, p)2

]
·

100·V0∑
k=V0

1

k

k∑
h=V0

1

h
. (4.9)

Having computed T jp1 and T jp2 one obtains the mean and the standard deviation of

the first passage time distribution of the viral strain in the passage j:

µ(j, p) = T jp1 ,

σ(j, p) =

√
T jp2 −

(
T jp1

)2
. (4.10)

After the computation of n = 12 pairs of means and standard deviations µ(j, p), σ(j, p),

p = 1, .., 12, the pooled mean µ̃(j) and pooled standard deviation σ̃(j) of the strain

i for all passages is obtained as follows:

µ̃(j) =
1

n

n∑
p=1

µ(j, p), (4.11)

σ̃(j) =

√√√√ n∑
p=1

[
σ(j, p)

n
+

p−1∑
h=1

σ(j, p)2

n
+

(µ(j, p)− µ(h, p))2

n2

]
, (4.12)

where in the second line the variance is corrected for the different means within the

passages in order to obtain the variance/standard deviation for all passages.

4.3.3 Parameter estimation and model selection

First passage time moment fitting

The pure-birth Markov process described above gives rise to a parameter vector Θ

consisting of the baseline growth propensity r∅, the half-maximal inhibitory drug

concentration IC50, fitness cost parameters f(q) and fold resistances FR(q), q ∈ Q.

Using the moments of the pure-birth process, computed above, the parameter vector

Θ is estimated by minimizing the weighted least squares error ε(Θ):

ε(Θ) = min
Θ

∑
j

[(
µ̃(j)− µ̃exp(j)

µ̃(j)

)2

+

(
σ̃(j)− σ̃exp(j)

σ̃(j)

)2
]

(4.13)

where µ̃(j) and σ̃(j) denote the pooled mean and standard deviation, respectively

computed using eqs. (4.11) and (4.12). Furthermore, µ̃exp(j) and σ̃exp(j) denote

the experimentally measured central moments, pooled over all passages, cf. fig. 4.7.

Note that several unbounded parameters, e.g. FR(q) and IC50 could not be reliably

estimated due to a flat residual error function resulting from eq. (4.5). In order to

improve the estimation, we penalized unrealistically large parameter values in the

objective function by using a constrained residual error

ε̃(Θ) = ε(Θ) + IC50 + w ·
∑
q∈Q

log(FR(q)),
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where w = 1/|Q| is a parameter proportional to the number of observed mutations,

denoted by |Q|.

Model selection

In order to reduce the parameter search space, mutations q ∈ Q which do not

contribute to the drug resistance or fitness were a priori fixed at f(q) = 1 and

FR(q) = 1. The other parameters from the set of observed mutations Q were used

to generate all possible non-empty subsets of Q, which gave rise to different sub-

models. This procedure enabled to determine which observed mutations had the

largest contribution to fitness costs and drug resistance. Thus, in accordance with

eq. (4.3), the most basic model of viral growth without fitness and resistance effects

is given by the following growth rate equation

r(j, p) = r∅ · (1− ηNRTI(j, ρNRTI)).

The basal growth rate r∅ is consistently included in all sub-models. In contrast, the

parameter ηNRTI(j, ρNRTI) describing the stochastic NRTI-effect is only included in

sub-models subject to experimental conditions with NRTI-application, i.e. B, D,

E, F in fig. 4.4. For the model selection procedure we compiled for each isolate

a set of all mutations selected during all experiments. First, we a priori assigned

these mutations into two (overlapping) sets: fitness-cost-inducing mutations and

resistance-conferring mutations. The first group was compiled on the basis of mu-

tations deselected with respect to the wild type. For instance, M184V is a baseline

mutation with respect to the wild type Hxb2-strain1, while V184M denotes a re-

version to wild type. This procedure gave rise to M resistance- and N fitness

mutations. By successively excluding different mutations from the resistance- and

the fitness model, we generated a set of sub-models based on respective parameter

permutations. As a result M +N fitness and resistance parameters gave rise to

#sub-models =
M+N∑
k=0

(
M +N

k

)
(4.14)

different parameter subsets. As an illustrative example consider a set of follow-

ing resistance mutations {V106A, V106I} and a set of fitness mutations {M184V,

N67S}. According to eq. (4.14), this gives rise to 16 sub-models with the parame-

ter subsets depicted in table (4.2). Each of the sub-models in this table gives rise

to a different viral population growth rate of the Markov jump process, computed

according to equation (4.3).

The described permutation procedure results in a different number of sub-models

for each isolate, due to a different number of selected mutations. For instance, for

isolate 4 there is a set of M = 6 resistance-conferring mutations towards NVP,

selected in the course of the passage experiments: {V106M, V108I, L228Q, K101E,

1see table 4.1
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Model Nr. Parameters included

1 r∅, ηNRTI, pNRTI, IC5050

2 r∅, ηNRTI, pNRTI, IC5050, FR(V106A)

3 r∅, ηNRTI, pNRTI, IC5050, FR(V106I)

4 r∅, ηNRTI, pNRTI,IC5050, FR(V106A), FR(V106I)

5 r∅, ηNRTI, pNRTI,IC5050, FR(V106A), f(M184V)

6 r∅, ηNRTI, pNRTI, IC5050, FR(V106I), f(M184V)

7 r∅, ηNRTI, pNRTI, IC5050, FR(V106A), FR(V106I), f(M184V)

8 r∅, ηNRTI, pNRTI, IC5050, FR(V106A) , f(N67S)

9 r∅, ηNRTI, pNRTI, IC5050, FR(V106I) , f(N67S)

10 r∅, ηNRTI, pNRTI, IC5050, FR(V106A), FR(V106I) , f(N67S)

11 r∅, ηNRTI, pNRTI, IC5050, FR(V106A) , f(M184V), f(N67S)

12 r∅, ηNRTI, pNRTI, IC5050, FR(V106I) , f(M184V), f(N67S)

13 r∅, ηNRTI, pNRTI, IC5050, FR(V106A)· FR(V106I) , f(M184V), f(N67S)

14 r∅, ηNRTI, pNRTI, IC5050, f(M184V)

15 r∅, ηNRTI, pNRTI, IC5050, f(N67S)

16 r∅, ηNRTI, pNRTI, IC5050, f((M184V), f(N67S)

Table 4.2: Exemplary submodels resulting from two resistance inducing muta-

tions {V106A, V106I} and two fitness-cost mutations {M184V, N67S}.

F227L, Y181C G190A}, where the last one corresponds to two simultaneous mu-

tations. Furthermore N = 4 following potential fitness-reducing mutations were

detected {M184V, H208Y, Y215C D, I35V}. According to eq. (4.14) this gives rise

to 1024 possible sub-models, which were fitted to the experimental data, using first

passage time moment-matching. In order to rank the models according to their

explanatory power, the Akaike information criterion (AIC) was computed

AIC = log(ε) + 2 · L,

where ε is the residual error of a model, cf. eq. (4.13). The variable L is the number

of parameters of the model where L = M +N +R i.e. the sum over the number of

resistance-conferring mutations, fitness-loss conferring mutations and the number

of basal parameters R included in each model, such as the basal growth rate. Fig.

4.9 shows the AIC-values for all sub-models of each isolate HIV strain. Each point

of the curve was computed as a mean of 50 replicate numerical estimations started

with random initial values. The corresponding parameter estimates for isolate strain

4 are depicted in fig. 4.10. Each sub-figure shows a box plot containing the median

(red horizontal line) and a span of 25th and 75th percentiles (blue vertical line)

of the k-best models, computed according to the AIC-based relative likelihood cri-

terion [1]. Parameters, such as the fitness-cost inducing mutation I35V in isolate

strain 4, did not appear in these high-ranked models. Thus they were considered

as ”not identifiable” due to a lack of a sufficient amount of experimental data.

In order to verify the estimation results for all isolates, the statistics of the cor-

responding passage times based on the models with the best parameter estimates

were compared to the experimentally measured passage times. In figure 4.11 the

central moments of the model predictions are plotted versus the central moments

of experimental measurements. The results confirm a sufficient explanatory power
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Figure 4.9: AIC-scores resulting from parameter inference for all sub-models

and viral strain isolates, as indicated.

Different sub-models giving rise to the HIV growth rate were generated by a permutation

over all parameters resulting from mutations observed during the passage experiments. The

mean Akaike information criterion (AIC) of 50 estimation runs was computed for each sub-

model, started with random initial parameter values. The randomly restarted replication

of estimates gives an insight into the identifiability of each parameter. The first three sub-

figures in the first row of fig. 4.10 show estimation results for fitness cost inducing mutation

parameters. They have to be interpreted as follows: the mutations M184V and Y215C/D,

H208Y and I35V have small standard deviations.

0.644

0.645

0.646

0.647

0.648

f(M184V)

fit
ne

ss

0.6

0.8

1

1.2

1.4

f(H208Y)

0.676

0.677

0.678

0.679

0.68

0.681

f(Y215C/D)

0

20

40

60

FR(V108I)

fo
ld

 r
es

is
ta

nc
e

2

3

4

5

6

7

FR(K101E)

10

15

20

FR(F227L)

50

100

150

200

FR(Y181C/G190A)

1

1

1

1

FR(V106M)

0

100

200

300

400

FR(L228Q)

0.994

0.995

0.996

epsilon1

es
tim

at
e

4

6

8

10

12

x 10
−6 prob1

0.08

0.1

0.12

0.14

0.16

IC50

Figure 4.10: Large scale estimation results for viral isolate 4.

Using the AIC-score curve of isolate 4 (fig. 4.9) a ranking of the k-best sub-models (out

of 1024) was compiled. Shown are error bars of the distributions of estimated values of

various parameters appearing in these sub-models. The red vertical lines indicate median

values and the blue vertical lines span between the 25th and 75th percentiles with outliers

indicated as blue points.
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of the data by the stochastic viral growth model. As an exception, the passage

time distribution for isolate strain 5 subject to experimental setting C (NVP only)

could not be fitted by the model (see fig. 4.11). A comparison to fig. 4.4 C yields

a possible explanation for the poor fitting capability in this setting. Only one mu-

tation (Y181C) is selected (three mutations deselected) in this strain in passage 8

although the viral growth dynamics indicates extreme variability cf. fig. 4.6 C (yel-

low line). This mismatch may also be a consequence of neglecting of the target-cell

PBMC dynamics by the model, which was approximated here as constant, due to

the described experimental setting. In the Discussion section we give an outlook

to a possible improvement of the viral growth model in order to account for the

dynamics of host cells.
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Figure 4.11: Means and standard deviations of measured vs. predicted passage

times.

Visual predictive checks of predicted (y-axis) versus observed (x-axis) data points. A:

Means of first passage times µi(Θi) and B: their standard deviations σi(Θi). The dis-

tinct markers indicate the different patient isolates: leftward-, upward-, rightward- and

downward-pointing triangles and diamonds indicate data/predictions from/for isolates #

1, # 2, # 3, # 4 and # 5. Colors indicate the different experimental set-ups, e.g. red,

cyan, blue, yellow, magenta and green denote experimental set-ups A-F respectively. Ver-

tical bars indicate the range of predictions spanned by the 5-th and 95-th percentile of all

model evaluations.

4.3.4 Biological implications of the modeling results

Efficient inhibition of viral growth and an improved medical treatment requires a

dissection of the principles of viral evolution. In the previous sections we described

the derivation of a stochastic model of viral growth under selection pressure of

NRTI and NNRTI drugs. A central aspect for the model was a coupling of the

viral growth rate to mutational dynamics. Experimental in-vitro data from viral

passage experiments revealed specific mutational patterns of HIV under different

drug combinations and doses. Using the stochastic viral growth model we were able

to estimate numerical values of the fitness loss and the fold resistance induced by

many of the observed mutations. Furthermore the model selection procedure, de-

scribed above, enabled to determine mutational parameters which were identifiable



92 Chapter 4. Drug selection pressure and evolution of HIV

given the in-vitro viral growth data. In the following we discuss the most impor-

tant mutations whose impact could be estimated. Many of the parameter values are

in line with previously published results and biologically highly relevant. In some

cases our estimation results suggest a high impact for mutations which have not

been described before. This section is based on results published in [60].

Drug susceptibility and fitness of baseline isolates

The first passage time moment inference method enabled the estimation of key

model parameters, cf. results published in [60]. The first two data columns in

table 4.3 show basal growth rates r∅ and the IC50 values for the respective viral

isolate strains at baseline, prior to resistance development. The growth rates of

all baseline isolate strains were within the range of 0.33 − 0.42 day−1, where the

growth rates of isolate 1 and isolate 4 indicated the largest and the smallest fitness,

respectively. The median IC50 of the baseline isolates was estimated in a range

from 0.07 to 0.39 µM NVP, which is consistent with published IC50-values of the

drug-susceptible virus (wild type: 0.1 µM) [50].

The parameter estimates of NRTI effect, i.e. intensity ηNRTI and probability of

effect ρNRTI, are shown in table 4.3 (last two columns). In all strains except isolate

1 the estimated intensity of effect was pronounced ηNRTI = 0.99 while the proba-

bility of NRTI inhibition at the applied low doses (drug concentration in the range

1−2 µM) was close to zero. These results are in line with the the drug effect model

that at low doses NRTI inhibitors do not bind in the majority of instances, but if

they do, their effect is strong due to the chain-terminating inhibition mechanism

[79]. In contrast, for isolate 1 the estimates for the efficacy and the probability of

effect were ηNRTI = 0.65 and ρNRTI = 0.43, respectively.

r∅[(1/day)] IC50 [µM] ηNRTI ρNRTI

ISO 1 0.42 (0.42, 0.42) 0.39 (0.37, 0.48) 0.65 (0.63, 0.67) 0.43 (0.28, 0.44)

ISO 2/3 0.39 (0.39, 0.39) 0.07 (0.07, 0.1) 0.99 (0.97, 0.99) 5.4e−7 (4.7e−7, 1.8e−4)

ISO 4 0.33 (0.33, 0.33) 0.13 (0.07, 0.14) 0.99 (0.99, 0.99) 1.1e−5 (3.8e−6, 1.2e−5)

ISO 5 0.36 (0.36, 0.36) 0.39 (0.37, 0.49) 0.99 (0.99, 0.99) 1e−6 (9.9e−7, 1.1e−6)

Table 4.3: Estimates of baseline parameters of viral isolate strains.

Estimates for the viral growth rate r∅ in absence of drugs, lower-bound estimates for

the susceptibility of baseline isolates IC50, intensity ηNRTI and probability of NRTI effect

ρNRTI. Indicated numbers are median estimates from best models according to AIC and

their respective 5th and 95th percentiles.

NVP drug resistance

The fold resistance to NVP, conferred by the selected mutations, is shown in table

4.4. By computing the AIC-scores of all possible models, the mutations with the

most explanatory power could be identified. Based on this selection procedure, the
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parameters FR(69I), FR(101E), FR(103N), FR(108I/188C), FR(122K), FR(128Q)

FR(179I), FR(208Y), FR(218G/E), FR(227L) could be excluded as “not identifi-

able”, given the in-vitro data.

The estimates for the identifiable resistance parameters significantly varied between

the four different baseline isolates, possibly indicating an influence of pre-existing

NRTI mutations on subsequent mutations affecting NVP-susceptibility [6].

All isolates developed novel mutations at codon 106 in the presence of NVP. While

mutation V106→A was estimated to induce a strong fold resistance, the mutations

V106→I and V106→M conferred only an intermediate to weak resistance in isolate

strains, in which they were selected (see table 4.4 and [60]).

The NVP resistance mutation V108→I arose at least once in all strains. It led

to moderate resistance in isolates 4 and 5 whereas a moderate to strong fold resis-

tance was estimated in isolate 1. Another mutation which was selected in all strains

is Y181→C. Its effect, however, could only be estimated in isolates 1, 2/3 and 5

resulting in a 5- to 13-fold resistance. In isolate 4, the mutation Y181→C appeared

simultaneously with G190→A, where a strong resistance to NVP (FR≥ 67) was

estimated.

As shown in table 4.4 and described in [60], the estimated fold resistance of mutation

L228→Q was pronounced. In all instances the selection of this mutation occurred

before the selection of the mutation F227→L, with an estimated moderate effect,

indicating a co-evolutionary association between the two amino acid substitutions,

as described previously for NRTI-resistance mutations [62].

ISO 1 ISO 2/3 ISO 4 ISO 5

FR(K101E) n.s. n.s. 5 (2, 5) n.s.

FR(V106A) 80 (52, 135) 176 (22, 195) n.s 21 (9, 47)

FR(V106I) n.s 5 (3, 9) n.s n.s

FR(V106M) n.s n.s 1 (1,4) n.s

FR(V108I) 25 (7,26) 1 (1, 1) 30 (7, 65) 7 (3, 7)

FR(V179I) n.s. 1 (1, 3) n.s. n.s.

FR(Y181C) 5 (4, 6) 7 (6, 41) n.i 13 (10, 13)

FR(G190A) n.s 8 (7, 11) n.i n.s.

FR(Y181C/G190A) n.s n.s 67 (59, 300) n.s

FR(Y188C) 23 (4, 43) n.s n.s 7 (2, 11)

FR(E218E) n.s 1 (1, 1) n.s n.s

FR(E224K) n.s 1 (1, 4) n.s n.s

FR(F227L) n.s n.s 12 (7, 29) n.s

FR(L228Q) n.s n.s 128 (8, 423) n.s

Table 4.4: Estimated fold resistance against NVP exerted by single amino acid

substitutions in the distinct genetic background of the baseline isolates.

Values indicated are medians of all parameter estimates and the 5th and 95th percentile

of the estimates are indicated in brackets. “n.s“ means “not selected“ and ”n.i.” means

parameter ”not identifiable“.
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Effects of baseline mutations on viral fitness

The number of distinct mutations undergoing reversal was inversely correlated with

our estimates of the population growth rate of viral strains r∅. Thus the ”fittest iso-

lates“ with the largest viral growth rate r∅ exhibited the fewest number of distinct

mutations reversing back to wild type i.e. 1, 2, 4 and 2 distinct deselected muta-

tions observed in isolates 1, 2/3, 4 and 5, respectively, cf. fig. 4.4 (mutations with

left-ward pointing arrows) and table 4.3. Of all back mutations observed during the

passage experiments only the deselection of M←184V was estimated to significantly

improve viral fitness in all isolates, (table 4.5).

ISO 1 ISO 2/3 ISO 4 ISO 5

f(184V) 0.79 (0.79, 0.79) 0.59 (0.59, 0.62) 0.65 (0.64, 0.65) 0.65 (0.64, 0.66)

f(215Y) n. ds. n. ds. 0.68 (0.68, 0.68) n. ds.

Table 4.5: Estimated relative fitness loss elicited on the genetic background of

the baseline isolates.

Indicated values are medians of all parameter estimates and the 5th and 95th percentile of

the estimates are indicated in brackets. ”n.ds” means ”not deselected“.

Parameter estimates depicted in table 4.5 indicate that the pre-existing mutation

184V conferred a large fitness loss due to the removal of the selective pressure by

the NRTI-drug 3TC. The estimated fitness for the individual isolates ranged from

59% to 79% of the wild type fitness, which is consistent with previous in vivo esti-

mates [47] and mechanistic modeling results of HIV-1 DNA polymerization process

[79]. Although all baseline isolates carried resistance mutations at position 215,

the reversion to wild type (C←215Y and D←215Y) was only observed in isolate

4. The estimated relative fitness in this isolate was 68%, attributable to these two

pre-existing mutations (table 4.5). According to the corresponding AIC-scores, the

fitness loss mutations f(67S), f(208H), f(35I) and f(210W/211K) were not included

in the most informative models, and thus could not be estimated from the data.

4.4 Discussion and outlook

4.4.1 Computing first passage time moments for the 2D-model of
viral growth

The model of viral growth subject to drug application enabled an estimation of

major determinants of selection dynamics. These included the impact of selective

disadvantage and resistance level conferred by various mutations of the reverse tran-

scriptase enzyme. However, an aspect that could only partially be explained by the

1-D simple-birth model was the variability of passage times. We attributed this

to the exclusion of target cell dynamics whose incorporation into the viral growth

model leads to a two-dimensional birth-and-death system [78]. There are two ma-

jor drawbacks associated with the more detailed 2D-model. Firstly, computation of
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the first passage time density from the corresponding CME requires a significantly

larger computational run time. In contrast to the 1D case, analytical closed-form

expressions are not available. The two remaining exact strategies are based either on

a direct numerical integration of the CME or an indirect sampling using Gillespie’s

stochastic simulation method, both of which are prohibitively slow. In particular,

in the context of parameter estimation, optimization of objective functions requires

a repeated computation of the first passage time density. The second drawback

associated with a 2D-model is a larger number of parameters which need to be

estimated, aggravating parameter identifiability. Due to these reasons we used a

1D model of viral growth, as described in the previous sections. To this end we

exploited the property of the in-vitro experiments that the number of target cells

was kept almost constant throughout the measurements.

In order to give an outlook and propose a feasible strategy for a rigorous model

of host-virus interaction, in the following we derive a 2D viral growth model based

on an explicit interaction of virus and target cells. We propose an alternative inex-

act strategy for passage time computation which approximates the Chemical Master

Equation by a Fokker Planck equation with a linear diffusion term. We show that

the continuous stochastic model approximates the discrete one arbitrarily well. Im-

portantly, this method leads to a reduction of the computational run time at least

by two orders of magnitude which enables its applicability for parameter estimation.

Viral growth and interaction with target cells

Infection of target cells by virus particles and the integration of viral DNA into

the host genome is the basis of the viral reproduction. The most basic model of

host-pathogen interaction can be described in terms of a two-dimensional birth-

and-death system. The dynamics of target cells T is determined by their infection

through virus particles V and their death. Viruses are in turn assembled within

the target cells and are able to infect new target cells upon their release. The virus

population is diminished due to inefficient host cell integration and the correspond-

ing failure of target cell infection. Note that organism-related clearance of viral

particles is not relevant in the in-vitro setting. The described system gives rise to

the following reactions:

1. Failed infection of target cells:

T + V∗
CL−−→ T

2. Successful infection:

T + V∗
β−→ T∗

3. Death of infected target cells:

T∗
d−→ ∅



96 Chapter 4. Drug selection pressure and evolution of HIV

4. Release of newly assembled viruses:

T∗
N−→ T∗ + V∗

Obviously, this reaction system is of second order since the first two reactions de-

pend on target cells and virus particles. In the in-vitro experiments of this study

(see section 4.1.3) the total number of target cells was kept nearly constant, since

between and after each passage a new pool of target cells was added.

By assuming the number of uninfected target cells T as constant the second order

infection model can be reduced to a first order reaction system in two dimensions.

To this end, the first reaction which describes the viral death, can be reformulated

as

V∗
k1−→ ∅,

where k1 is a lumped viral clearance rate adopted from [78] and given by

k1 = CLL · T.

Note that T is assumed to be a constant number of target cells and CLL is computed

using the probability of a successful reverse transcription ρrev,φ and a constant

infection rate β [78]:

CLL =

(
1

ρrev,φ
− 1

)
· β.

The order of the second reaction can as well be reduced by a first-order approxima-

tion:

V∗
k2−→ T∗

where k2 is a lumped reaction rate with k2 = β ·T. Similarly to the 1D model, the

application of drugs can be included here by modifying the reaction rate parameters.

As described in [78], the effect of drugs on the viral growth modifies the infection

rate and the viral clearance. By denoting the infection rate and clearance of viral

strain i under experimental setting j by β(i, j) and CLL(i, j), respectively, the action

of drugs can be expressed by

β(i, j) = (1− η(i, j)) · f(i) · βref,∅(i),

CLL(i, j) =

(
1

ρrev,φ
− (1− η(i, j)) · f(i)

)
· βref,∅(i), (4.15)

where βref,∅(i) denotes here the infection rate of strain i in the absence of drug

application. As a result, the host-pathogen dynamics can be reformulated by the

following 1st-order reaction system

V∗
k1−→ ∅

V∗
k2−→ T∗

T∗
d−→ ∅

T∗
N−→ T∗ + V∗ (4.16)
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In order to study the stochastic dynamics induced by this system, the time evolution

of the probability distribution of the two-dimensional system variable X = [X1, X2]

can be studied, by denoting it P (T∗,V∗, t) := P(X1 = T∗, X2 = V∗, time = t). The

corresponding Master equation then reads

∂P (T∗,V∗, t)

∂t
= k1(V∗ + 1) P (T∗,V∗ + 1, t)

+ k2(V∗ + 1) P (T∗ − 1,V∗ + 1, t)

+ d(T∗ + 1) P (T∗ + 1,V∗, t)

+ NT∗ P (T∗,V∗ − 1, t)

− ([k1 + k2]V ∗ + dT∗ +NT∗) P (T∗,V∗, t). (4.17)

As described in a previous section, we aim at fitting the moments of the first pas-

sage times FPT(n0 → n1) resulting from the Master equation (4.17). Previously,

we have used this derivation for the one-dimensional model of viral growth in or-

der to obtain closed expressions for first passage time moments (e.g. see equation

(4.8)). For a two-dimensional process the computation of closed-form expressions

for the moments is less straight-forward since it requires the solution of the Mas-

ter equation (4.17). Alternatively, one can sample the first passage time density

using the stochastic simulation algorithm [24] or the accelerated τ -leaping version

[61]. The drawback of these methods is that estimation of parameters becomes pro-

hibitively slow, since residual error optimization requires a repeated simulation of a

sufficiently large number of sample paths in order to approximate the first passage

time density.

4.4.2 First-passage time density computation via a Fokker-Planck-
approximation

In the following we propose an alternative strategy for computing the first passage

time moments. It is based on a diffusion approximation of the Master equation

originating from van Kampen’s Linear Noise Approximation [77]. This method was

also used in the context of parameter estimation, e.g. see [30]. The main idea is

a derivation of a Fokker-Planck equation which dissects the discrete stochastic dy-

namics induced by the Master equation into a deterministic and a stochastic part.

This enables an efficient computation of the first passage time density by numerical

simulation, which is significantly faster than direct or indirect CME-solution and

better suited for a large scale parameter estimation.

As discussed in section 2.3.4 the propensities and the jumps of the Master equation

can be expanded under the assumption that the latter are sufficiently small. This

enables to express the probability distribution Π(ξ, t) of fluctuations around the

macroscopic trajectory by the following Fokker-Planck-Equation:

∂Π

∂t
= −

∑
i,j

Γij∂i(ξjΠ) +
1

2

∑
i,j

Dij∂ijΠ. (4.18)
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Let us denote by w(X) the vector of propensities of the Master equation:

w(X) = [k1 ·X2, k2 ·X2, d ·X1, N ·X1]T ,

and let S be the stoichiometric matrix corresponding to the reaction system (4.16)

S =

(
0 1 −1 0

−1 −1 0 1

)
.

Then the deterministic function Γ and the diffusion matrix D are respectively com-

puted by

Γ = S ·w(X),

and

D = S · diag[w(X)] · ST ,

where diag[w(x)] is a matrix with the propensities of the Master equation on its

diagonal and zero everywhere else.

The new approximating state-continuous stochastic variable x with fluctuations

governed by the equation (4.18) is described by the following Stochastic Differential

Equation

dx(t) = f(x)dt+ D
1
2dBt, (4.19)

where D
1
2 denotes a matrix root with D

1
2

[
D

1
2

]T
= D and dBt is a two-dimensional

Brownian motion. In order to compute the first-passage time of a system trajec-

tory, this SDE can be solved for instance by numerical discretization using the

Euler-Maruyama method or the higher order Milstein Scheme [42]. The simulation

is stopped when the number of viruses reaches the maximal level Vmax.

In figure 4.12 we compared the first passage time distributions induced by the

Master equation (4.17) and the corresponding Fokker-Planck-Approximation. To

this end we simulated 104 SSA-trajectories of the CME and SDE-trajectories from

the Fokker-Planck-Equation for two different parameter settings with low and high

infection rate k2 (left column vs. right column, respectively.). The simulations were

started at X0 = {T0 = 10, V0 = 100} and stopped when the number of viruses

reached Vmax = 104 for the first time. The corresponding simulation times were

recorded and used to sample the first passage time distribution. As it is shown in

figure 4.12, SDE-sampling approximates the first passage time density very well for

the 2D-viral growth model. We tested the goodness of the Fokker-Planck approx-

imation for different parameters. For instance for two different viral burst rates

N = 50 and N = 200 the goodness of approximation remains excellent (fig. 4.12).

It is left for further investigation how good the Fokker-Planck-approximation per-

forms for other CME-models, in particular with nonlinear propensities. Further

results of this method in the context of CME-approximation can be found in [30].
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Since parameter estimation is our main objective for the computation of the first

passage time density, we measured the computational run times of the described

simulation experiments. In table (4.6) the run times of 104 SSA-samples based on

the original Markov jump process are compared to 104 SDE-samples of the corre-

sponding Fokker-Planck approximation.

SSA-sampling (MATLAB) SDE-sampling (MATLAB) SDE-sampling (C++)

N = 50 9.12 hours 219 s 0.71 s

N = 200 8.72 hours 94 s 0.34 s

Table 4.6: Comparison of run times for the computation of the first passage

time density using SSA- and SDE-sampling.

Shown are measurements of run times for 104 sampled trajectories using the SSA-algorithm

by Gillespie using MATLAB 7 and SDE-discretization of the Fokker-Planck-equation using

MATLAB 7 and C++. The experiments were conducted for two different viral burst rates

N on a Intel dual-core processor with 2 GHz and 6 MB cache on each core.
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Figure 4.12: Comparison of passage time statistics computed by simulation-

based solution of the CME and its SDE-approximation.

First passage times were computed for the 2D viral growth model (4.16) via SSA-simulation

based on the Chemical Master Equation (4.17) and by SDE-simulation resulting from a

Fokker-Planck-Approximation of the CME. Each histogram was generated using 104 tra-

jectories. Model parameters were chosen as follows: k1 = 0.01, k2 = 0.1, d = 0.01. The

viral burst parameter was set to (a) N = 50 and (b) N = 200.

4.5 Summary and conclusion

In this chapter we have posed a biologically motivated problem of deriving a growth

model of HIV under application of NRTI and NNRTI drugs and estimating its pa-

rameters given in-vitro passage data. Our goal was a quantification of various

factors influencing viral evolution dynamics such as the resistance gain and fitness

loss, conferred by mutations of the reverse transcriptase enzyme. Initial statisti-

cal analysis of the data revealed a significant amount of stochasticity in the viral
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growth dynamics and in the action of drugs. We have developed and implemented

a method based on fitting the first two moments of the first passage time density

of stochastic viral growth without explicit target cell interaction. The estimated

parameters were biologically plausible and yielded valuable insights into the princi-

ples of viral evolution in the presence of drugs. This work was published in [60].

From a mechanistic point of view a two-dimensional model of the interaction be-

tween the viruses and the target cells would yield a more rigorous description

of the stochastic viral growth dynamics. However, model inference using a two-

dimensional Master equation would increase the computational run time and ag-

gravate parameter identifiability due to an introduction of additional parameters.

Using a Fokker-Planck approximation of the CME, we have shown that the run time

problem can be circumvented by sampling from the approximating space-continuous

density using stochastic differential equations (SDE) with a linear diffusion term.

Due to a lack of a larger set of viral growth data the second problem of parameter

identifiability remained unsolved. Consequently, we left the model inference of a

two-dimensional viral growth dynamics as a subject for future work.



Chapter 5

Concluding remarks

The theory of Markov processes delivers an extensive framework for an analysis

of the dynamics induced by complex biological systems. In the present thesis this

framework was adopted for studying mechanisms involved in adaptation to environ-

mental conditions in microorganisms. In chapter 3 qualitative properties, resulting

from the interaction network of stress-induced bacterial signaling, were translated

into a stochastic model. This enabled to study the signal transduction properties of

the network, based on the dynamics of the key signaling molecule c-di-GMP. The

solution of the Chemical Master Equation of c-di-GMP regulation demonstrated

how product inhibition of DGC enzymes contributes to a reduction of stochastic

fluctuations and a containment of signaling noise. Furthermore, the stochastic in-

teraction model of c-di-GMP and YciR revealed that noise-induced bistability is

potentially involved in phenotypic heterogeneity of biofilm synthesis.

A central concept of this thesis was the notion of the first passage times. In chapter

3 the mean first passage times of a regulatory c-di-GMP module were analyzed and

thus the dependence of response times of c-di-GMP signaling on the parameters

of the system were deduced. This enabled to understand how the expression level

of the enzymes producing and degrading c-di-GMP influences the velocity of sig-

nal transduction. The results suggested that E.Coli cells in the stationary growth

phase can be considered to be in an alarm mode since the high expression level

of regulatory enzymes in this phase enables a significantly faster regulation of the

c-di-GMP level and the resulting signal transduction than in other growth modes.

Throughout this work parameter estimation of Markov jump processes played an

important role. As shown in chapter 2, reaction rate estimation of biochemical

kinetic systems may suffer from prohibitively large state spaces. This limits the ap-

plicability of estimation methods of infinitesimal generators. Although the problem

of estimating large but structured and sparse generator matrices can be reduced to

estimation of a few reaction rate constants, the curse of dimensionality and pro-

hibitive computational run times still aggravate inference for processes observed

discretely in time. In chapter 4 a novel method for estimating the resistance and

fitness effects of mutations from in-vitro passage experiments was developed. Closed

analytical expressions for the moments of the first passage time distribution of the

HIV growth model were used to circumvent estimation problems described above.

This enabled to conduct a large-scale parameter inference and model selection using

discretely observed viral growth data.
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The Linear Noise Approximation of the Chemical Master Equation is a central

analytical framework which complements the analysis of discrete-state Markov pro-

cesses since it allows to obtain continuous-state stochastic approximations. If the

jump propensities of the Master equation are linear, then the first two moments

are equivalent to the moments of the approximating continuous-state system. In

the nonlinear case, this equivalence is lost but the macroscopic equations are still

a good approximation of the system near equilibrium states of the original pro-

cess. This feature was exploited in chapter 3 in order to analyze parameter regions

where the system induced bistable dynamics. Furthermore, in the outlook section

of chapter 4, a Fokker-Planck approximation of the Chemical Master Equation for

a two-dimensional viral growth model was suggested. A comparison of the solution

of the Fokker-Planck equation via a fast numerical integration of the correspond-

ing SDE and the SSA-sampling of the Chemical Master Equation showed a high

agreement. This indicated that the approximation method is suitable for large scale

parameter estimation in possible future studies.

The results of this thesis suggest that phenotypic and genotypic heterogeneity is

a key mechanism behind an adaptation to perturbations of external conditions. An

optimal regulation of adaptation processes is based on noise-induced dynamics with

multiple equilibria. Thus, the biofilm synthesis system of E.Coli exhibits two phe-

notypic equilibria and the regulation of the corresponding stationary probabilities

determines the number of biofilm expressing cells, possibly enabling a saving of

resources in the isogenic curli-off cells. In HIV the genetic potential landscape is

characterized by an elaborate interplay between fitness loss and resistance gain of

mutations changing the amino acid sequence and eventually the 3D structure of

enzymes involved in the viral life cycle. Mutational noise, induced by the erroneous

process of reverse transcription, enables the viruses to efficiently search for the min-

ima of the potential landscape where they become resistant to drug application.

Here we introduced a framework for a simultaneous analysis of the impact of a

large set of experimentally observed genetic mutations on viral growth dynamics

under drug application. The results yield novel insights into the evolutionary dy-

namics of HIV and introduce a new methodology for further studies of its resistance

acquisition strategies.



Summary

A key feature and a central driving force behind biological evolution is the capability

of adaption to changing environmental conditions. Noise-induced transitions play

a central role in these decision making processes allowing for a natural stochastic

sampling between various evolutionary strategies. Mathematical analysis of such

mechanisms requires experimental data, which represent the multimodal stochastic

probabilities assigned to these strategies, being sampled at a sufficiently high res-

olution. However, in most applications the available experimental measurements

are temporally and spatially too sparse for this objective. In this thesis different

mathematical methods are derived for dissecting the mechanisms underlying such

decision making processes despite the sparsity of data. The key idea is based on

a compensation of lacking direct experimental observations using indirect inference

from other, coupled system variables measured with a higher accuracy. One of the

multistable systems studied here is the mutational dynamics conferring drug resis-

tance to HIV. Since the likelihood of constitutive mutations is strongly associated

with their phenotypic impact, time-discrete measurements of intrinsically stochastic

viral population growth are used for inferring the principles underlying the muta-

tional dynamical system. Furthermore, a similar idea is applied for analysing the

phenotypic bistability of a stress-induced signaling network in E. Coli, giving rise

to biofilm synthesis. Although direct single-cell measurements of E. Coli within the

two modes of the probability distribution are not yet available, qualitative measure-

ments of gene and protein interactions of the underlying signaling system are used

for analysing dynamical properties of the bistable biofilm regulation. As a unifying

framework, the theory of biochemical reactions based on Markov jump processes

is adapted to the described problems and the resulting practical implications are

discussed.





Zusammenfassung

Ein entscheidener Aspekt und eine zentrale Antriebskraft hinter der biologischen

Evolution ist die Fähigkeit der Adaptation an sich verändernde äussere Bedin-

gungen. Zufallsbedingte Zustandsübergänge spielen eine Schlüsselrolle in diesen

Entscheidungsprozessen und ermöglichen eine natürliche stochastische Suche unter

verschiedenen evolutionären Strategien. Die mathematische Analyse von solchen

Mechanismen benötigt experimentelle Daten, die multimodale stochastische Wahr-

scheinlichkeitsverteilungen repräsentieren, gemessen mit einer hinreichend hohen

Auflösung. In den meisten Anwendungen ist jedoch die zeitliche und räumliche

Auflösung von experimentellen Messungen hierfür zu gering. In dieser Arbeit wer-

den unterschiedliche mathematische Methoden hergeleitet, um Mechanismen hinter

solchen Entscheidungsprozessen zu analysieren, trotz der unzureichenden Menge an

Daten. Die zentrale Idee basiert auf einer Kompensation von fehlenden direkten

experimentellen Messungen durch eine indirekte Schätzung, mit Hilfe von anderen

gekoppelten Systemvariablen mit höherer Messhäufigkeit. Eins der multistabilen

Systeme, die hier betrachtet werden, ist die Mutationsdynamik von HIV, welche

Wirkstoffresistenzen verursachen kann. Da die Wahrscheinlichkeit von sich festset-

zenden Mutationsereignissen eng an deren phenotypische Auswirkungen gekoppelt

ist, werden zeit-diskrete Messungen von intrinsisch stochastischem viralen Pop-

ulationswachstum verwendet, um Rückschlüsse auf Prinzipien der Dynamik von

Mutationsereignissen zu ziehen. Weiterhin wird eine ähnliche Idee angewandt,

um die phenotypische Bistabilität der durch Stress aktivierten Signalkaskade zu

analysieren, die in E. Coli zur Biofilmbildung führt. Trotz des Fehlens von Einzelzellmes-

sungen von E.Coli innherhalb der beiden Modi der Wahrscheinlichkeitverteilung,

werden qualitative Messungen von Gen- und Proteininteraktionen der zugrundeliegen-

den Signalkaskade verwendet, um die Eigenschaften der bistabilen Biofilmregulation

zu untersuchen. Als ein vereinigendes methodisches Gerüst, wird die auf Markov

Sprungprozessen basierende Theorie von biochemischen Reaktionssystemen auf die

beschriebenen Problemstellungen angewandt und resultierende praktische Aspekte

werden diskutiert.
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Promotionsverfahren eingereicht und auch nicht veröffentlicht.
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Appendix A

Fano factor in the

hypersensitive limit

In order to show that the Fano factor of a c-di-GMP module results in eq. (3.13),

two main steps are applied. In the first step, the original equation for the Fano

factor

σ2

µ
≈ Σs

x̄s
=

1

2x̄s

Vmax 1

1 + x̄s/K̄i
+
Vmax 2x̄s
x̄s + K̄m

Vmax 1/K̄i

(1 + x̄s/K̄i)2
+

Vmax 2K̄m

(x̄s + K̄m)2

, (A.1)

is simplified using the follwing assumptions:

1. Vanishing product inhibition (K̄i >> x̄s),

2. an action of PDE enzymes approaching saturation (K̄m << x̄s,) and

3. vanishing difference of maximal catalytic velocities (Vmax 1 ≈ Vmax 2).

Inserting the three assumptions into equation (A.1) results in

Σs

x̄s
=

1

2x̄s

Vmax 1 + Vmax 2

Vmax 1/K̄i +
Vmax 2K̄m

x̄2
s

. (A.2)

In the second step the above assumption 3 (Vmax 1 − Vmax 2 ≈ 0) is applied to the

mean level equation

x̄s = −K̄i(Vmax 2 − Vmax 1)

2Vmax 2
+

[(
K̄i(Vmax 2 − Vmax 1)

2Vmax 2

)2

+
Vmax 1K̄iK̄m

Vmax 2

]1/2

,

which results in

x̄s ≈
√
K̄iK̄m. (A.3)

A substitution of eq. (A.3) into eq. (A.2) yields the final result

Σs

x̄s
=

√
K̄i

2
√
K̄m

. (A.4)
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