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Summary 

Through the study of non-coding RNA (ncRNAs) with known function we have received 
increasingly insights into the fundamental principles of function and regulation of the 
transcriptome in recent years. The broadening of the transcriptome coverage by sequencing 
technologies and the growing multitude of transcriptional data, as well as other types of 
high-throughput biological measurements, require new computational tools and approaches as 
well as new analysis pipelines to extract biological meaning from the quickly growing 
volumes of biological data. In this thesis, I have used current knowledge of ncRNAs features 
to construct a set of computational and statistical methods and pipelines that can analyze 
sequence, expression and regulatory properties of two types of ncRNAs: microRNA (miRNA) 
and long noncoding RNA (lncRNA). To do so, I took advantage of the high-throughput 
sequencing data collected in primate brains at different ages, allowing me to monitor changes 
in ncRNA sequence and expression over the evolutionary and the ontogenetic dimensions. In 
Chapter 3, I described a computational framework I constructed for across-species miRNA 
comparison on the basis of small RNA sequencing data. The framework includes an efficient 
small RNA sequencing data preprocessing pipeline, a revised miRNA quantification 
procedure, a reliable miRNA ortholog prediction method and a pipeline for differentially 
expressed (DE) miRNA identification. In Chapter 4, I described a systematic study of miRNA 
5’-isoforms, including their identification and functionality prediction in the human prefrontal 
cortex, to deepen our understanding of the complexity of the miRNA repertoire. I developed a 
comparative approach to predict the functionality of the identified miRNA 5’-isoforms, which 
resulted in 28 putative functional miRNA 5’-isoforms displaying regulatory features similar 
to known conserved miRNAs. In Chapter 5, I described a genome-wide lncRNA 
identification and feature investigation study using strand-specific RNA-seq data covering 
postnatal ontogenetic stages of human prefrontal cortex. This work integrates de novo 
transcriptome assembly procedure and downstream lncRNA analysis elements, including a 
pipeline for lncRNA identification and a detailed lncRNA sequence and expression feature 
analysis framework. The integrative analysis of lncRNAs expression and genome-wide 
epigenetic data lead to the identification of a novel class of lncRNA-associated bidirectional 
promoters that display unique sequence and epigenetic features and preferentially drive the 
expression of neuronal gene. To conclude, during my thesis work, I developed computational 
tools that allow researchers to process and integrate different types of large-scale biological 
data, such as high-throughput transcriptome sequencing, epigenetic data of chromatin 
modifications and protein abundance data, to identify and characterize two major types of 
non-coding RNAs: miRNAs and lncRNAs. These results indicate adequacy and 
appropriateness of the analytical approaches I developed and the statistical tools I used. I 
hope my work will serve as a useful stepping-stone for both computational and biological 
studies of the noncoding RNA universe.



Zusammenfassung 

Durch die Untersuchung von nicht-kodierender RNA (ncRNAs) mit bekannter Funktion 
haben wir in den letzten Jahren zunehmend Einblicke in die fundamentalen Prinzipien von 
Funktion und Regulation des Transkriptoms erhalten. Neue Sequenzierungstechnologien und 
weitere biologischen Hochdurchsatzanalysen produzieren immense Mengen von  
Transkriptionsdaten in immer höherer Sequenzierungstiefe. Das exponentielle Wachstum 
dieser Datenmengen verlangt nach neuen computergestützten Ansätzen und Methoden sowie 
neuen Analyse-Pipelines. In dieser Dissertation, stelle ich eine Reihe von computergestützten 
statistischen Methoden vor, die, zur Analyse von Sequenzinformationen, derr Expression und 
der Eigenschaften regulatorischer Netzwerke von zwei Arten von ncRNA, nämlich 
microRNA (miRNA) und langer, nicht kodierender RNA (lncRNA), anwendbar sind. Dafür 
analysiere ich zunächst Hochdurchsatz-Sequenzierungsdaten, die vom Gehirn verschiedener 
Primatenarten unterschiedlichen Alters her stammen, um Veränderungen in der genomischen 
Sequenz und Expression während Evolution und Ontogenese zu untersuchen. In Kapitel 3 
erörtere ich die Grundlagen der vergleichenden Analyse von miRNA zwischen verschieden 
Spezies anhand von Sequenzierungsdaten kleiner RNAs. Zu diesen Grundlagen gehört ein 
Ansatz zur effizienten Vorverarbeitung der Sequenzierungsdaten, ein überarbeitetes 
Verfahren zur Quantifizierung von miRNAs, eine zuverlässige Methode zur Vorhersage von 
orthologer miRNA, sowie eine Pipeline zur Identifikation differentiell exprimierter (DE) 
miRNA. Im vierten Kapitel beschreibe ich eine systematische Studie über verschiedene 
5’-miRNA Isoformen, inklusive deren Identifikation und Vorhersage der Funktion im 
humanen präfrontalen Cortex. Die vorliegende Studie liefert damit einen Ausblick darauf, wie 
die „versteckte Ebene“ des miRNA Repertoires untersuchen werden kann, und stellt zudem 
eine nützliche Ressource dar, um die Liste der bekannten, funktionellen miRNA durch neue 
5’-Isoformen zu erweitern. Kapitel 5 beschäftigt sich mit der genomweiten Identifikation von 
lncRNA und der Untersuchung derer Eigenschaften basierend auf strangspezifischen 
RNA-seq Daten vom humanen präfrontalen Cortex, die die komplette postnatale 
Lebensspanne des Menschen abdecken. Die Ergebnisse dieser Analyse zeigen eine Reihe von 
bisher unbekannten lncRNAs, die im menschlichen Gehirn exprimiert werden, und 
demonstrieren eindrücklich, dass weite Teile des menschlichen Transkriptoms noch nicht 
charakterisiert sind. Darüber hinaus führte die integrative Analyse von lncRNA Expression 
und genomweiter epigenetischer Informationen zur Identifikation einer neuen Klasse von 
bidirektionalen Promotoren, die einzigartige Eigenschaften bezüglich Sequenz und 
epigenetischen Faktoren haben. Zusammenfassend habe ich während meiner Promotion 
computergestützte Tools und Pipelines entwickelt um verschiedene Arten von biologischen 
Hochdurchsatzdaten, wie zum Beispiel Hochdurchsatz-Transkriptom-Sequenzierung, 
epigenetische Chromatin-Modifikationen und quantitative Proteinanalysen zu verarbeiten und 
zu integrieren. Die Ergebnisse zeigen, dass die hier gewählten analytischen Ansätze und 
entwickelten Tools angemessen und geeignet für eine solche Analyse sind. Meine Arbeit 
stellt somit ein nützliches Hilfsmittel für zukünftige computergestützte und biologische 
Studien im Bereich der nicht-kodierenden RNA dar. 
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1. Introduction 

The central dogma of molecular biology states that the flow of genetic information moves 
from DNA to RNA to protein [1]. According to this view, RNA is a bridge in the transfer of 
genetic information between DNA and proteins. A few exceptions to this paradigm are 
ribosomal RNA (rRNA), transfer RNA (tRNA), small nucleolar RNA (snoRNA) and small 
nuclear RNA (snRNA). However, these housekeeping or infrastructural RNAs only work 
together to turn the genetic information from DNA into protein, thus adhering to the central 
dogma. Following this paradigm, the DNA sequences except those necessary for synthesizing 
protein are usually considered “junk” DNA, referring as evolutionary relics. However, in the 
last two decades, this dogma has been challenged since the completion of the human genome 
and the genomes of several model species. A big surprise since the completion of the human 
genome is that there are only ~20,000 protein-coding genes, which neither correlates the 
organism’s complexity nor accounts for the selection pressure during the evolution of the 
modern organism [2]. The mRNA transcripts of protein-coding gene represent less than ~3% 
of the human genome. This proportion increases to ~40% if cognate introns are counted 
(Ensembl gene annotation version 64), which still leaves ~60% of the human genome as junk 
DNAs. 

Recent development of high-throughput methodologies and computational algorithms 
designed to analyze resulting data indicate that this junk DNA may not be junk after all. 
Along with the development of high-throughput sequencing techniques and great efforts by 
large-scale consortia focusing on characterizing functional genomic elements, such as The 
Encyclopedia of DNA Elements (ENCODE) and The Functional Annotation of the 
Mammalian Genome (FANTOM) [3-8], our understanding of the architecture, activity and 
regulation of the eukaryotic genomes has been substantially revolutionized, staring from the 
observation about transcriptional pervasiveness across 80% of the human genome [7]. 
Although this initial conclusion based on microarray from ENCODE was criticized due to 
concerns about high background and cross-hybridization problems, the high solution deep 
sequencing data from ENCODE clearly demonstrated that more than 70% of the human 
genome are indeed transcribed into transcripts of various sizes [6, 7]. These findings indicate 
a general paradigm for functional DNA elements embedded in the non-coding part of 
mammalian genomes. The discovery of various noncoding RNA species from pervasive 
transcription further expands our understanding of the extraordinary complexity of the human 
genome [6, 9-13]. 

The broadening of the transcriptome coverage by sequencing technologies and the growing 
multitude of transcriptional data and other types of high-throughput biological measurements 
require new computational tools and approaches to extract biological meaning from the 
quickly growing volumes of biological data. This is particularly true for transcripts that 
encode no proteins (noncoding RNAs) but still may play important roles in the transcriptional, 
post-transcriptional and translational regulatory networks. In the next section, I will 
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summarize known noncoding RNA types existing in human cells and focus on two types of 
noncoding transcripts, long noncoding RNAs and microRNAs, which are particularly relevant 
to my thesis. This biological background is needed for better design of computational tools 
aimed at determining the functional role of these transcripts in the regulatory networks. 

 

1.1 The landscape of noncoding RNAs (ncRNAs) 

Based on the current estimation from GENCODE (version 22), our human genome encodes 
more than 60,000 genes [13]. Among them, ~19800 protein-coding genes represent only 
~33% of the total gene catalog. The rest encompass a large group of ncRNAs, including 
>9,000 small RNAs (smRNAs), >15,000 long non-coding RNAs (lncRNAs) and >14,000 
pseudogenes. However, the number of annotated ncRNAs is conservative and does not nearly 
cover the full spectrum of noncoding transcripts present in human cells. For instance, piRNAs 
are not included in GENCODE annotation. Furthermore, certain classes of ncRNAs, such as 
lncRNAs, are expressed in a highly spatial- and temporal-specific matter and have not yet 
been investigated in all tissues at all ontogenetic stages [14, 15]. Thus, the ncRNA catalog is 
expected to continuously expand based on more transcriptome surveying studies.  
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Figure 1.1: The ncRNA landscape and general classification. The ncRNA classification is 
largely based on the general regulatory potential and transcript length of ncRNAs. The 
transcript length cutoff of 200nt is arbitrarily chosen based on current RNA purification 
protocol limitation that takes little consideration of functional meaning. Nevertheless, the size 
cutoff clearly distinguishes lncRNAs from most smRNAs. The newly discovered circRNAs are 
listed as a separated class of regulatory RNAs due to their unique circular conformation feature 
and transcript length range. With regarding to the transcript length, circRNAs fall on both sides 
of the 200nt cutoff. I studied the ncRNAs in green during my PhD training.   

 

The full ncRNA classification required the knowledge of sequence, structure and functional 
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features of ncRNAs. However, our current understanding of ncRNAs is just at the very 
beginning. While remarkable functions have been described for some noncoding transcripts, 
the importance of most ncRNAs to gene regulation is still unknown. Nevertheless, ncRNAs 
can be largely classified based on their general regulatory potential and transcript length 
(Figure 1.1). Accordingly, the ncRNAs can be first divided into infrastructural RNAs and 
regulatory RNAs. The infrastructural RNAs, which are considered housekeeping, include 
rRNA, tRNA, snoRNA and snRNA, all of which are mainly involved in or related to the 
mRNA and protein biogenesis processes. The regulatory RNAs, comprised of a myriad of 
RNAs of different lengths and with various functions, can be further generally separated into 
two classes based on transcript length (small and long RNAs): smRNAs (<200nt) and 
lncRNAs (>200nt), [16]. 

Since the smRNAs catalog is continuously expanding, smRNAs can be further approximately 
divided into two groups: smRNAs that involve in RNA interference-related (RNAi) 
machinery (RNAi-smRNAs) and those that do not (other-smRNAs). As yet, we know little 
about many newly discovered types of small RNAs in the group of other-smRNAs [17], e.g., 
promoter associated small RNAs (PASRs) [18], termini associated short RNAs (TASRs) [16], 
split-site RNAs (SPSRs) [19] and small nuclear-factor 90 associated RNAs [20]. Still, our 
understanding of the biogenesis and biological functions of RNAi-smRNAs is growing 
rapidly, thanks to their relatively uniformly functioning specificity. The RNAi-smRNAs 
include microRNAs (miRNAs) [9, 21], endogenous small interfering RNAs (endo-siRNAs) 
[22] and PIWI-interacting RNAs (piRNAs), all of which are bound in Argonaute proteins [11]. 
Briefly, miRNAs are most well studied RNAi-smRNAs, which may be involved in regulation 
of almost all biological processes [21]. The miRNAs are ~22nt in length, which are associated 
with Argonaute proteins (AGO1-4) and regulate gene expression post-transcriptionally by 
partially binding to 3' untranslated regions (3' UTR) of target messenger RNAs (mRNAs) and 
lead to mRNA degradation or translational inhibition [23]. The endo-siRNAs are 21-26nt in 
length, which are associated with AGO2 and are involved in post-transcriptional and 
epigenetic silencing of protein-coding genes and transposons through fully complementary 
base-pairing [22]. The piRNAs are a class of 24-30nt RNA mainly expressed in the animal 
germline. piRNAs associated with PIWI subclass of Argonaute proteins and mainly involved 
in maintaining genome integrity against transposable elements [11].  

Being the counterparts of smRNAs, lncRNAs with lengths varying from 200 nt to over 100k 
nt certainly stand for a heterogeneous group. As would be expected from their general name, 
no unified functioning mechanisms have yet been identified for them, and only a few have 
been subjected to extensive experimentation [24-27]. Nevertheless, the verified examples of 
lncRNA have been found to exert their influence on a diverse range of biological processes 
from developmental control to disease progression, establishing operable patterns for the 
functionality of lncRNA [28, 29]. Besides the aforementioned linear ncRNAs, a special class 
of non-linear RNAs, named circular RNAs (circRNAs), further broadens the ncRNAs 
repertoire [30]. The circRNAs, possessing the most distinctive feature of being “circular” by 
forming a covalently closed continuous loop through joining 5’ and 3’ ends, mainly arise 
from coding exons but exhibit no coding potentials [31-33]. Two previous studies showed 
that circRNAs could bind and block cognate miRNA as molecular “sponges” to these 
interfering regulators [31, 32]. However, both validated and predicted candidates with 
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potential miRNA sponge function are very limited for circRNAs [34], and the existence of 
other functional possibilities still remains to be determined. 

During my PhD training, I mainly studied two kinds of smRNA (miRNA and piRNA) as well 
as lncRNA and circRNA (shown in green of Figure 1.1), on the basis of high-throughput 
sequencing data. I got involved in several different analyses, including investigating sequence 
features associated with miRNA maturation process [35], novel miRNA prediction [36], 
miRNA promoter prediction, miRNA 5’-isoform identification and functionality predication, 
identifying and evolutionary studying human specific miRNAs [37], across-species analyzing 
miRNA profiles and regulations among primates [38], meta-analysis of piRNA-like 
sequences in a variety of somatic tissues of several species [39], analyzing piRNA profiles 
during macaque sex maturation, and identification and feature analysis of lncRNA [40] and 
circRNAs. Although not all my investigations led to publication, the training has undoubtedly 
broadened and deepened my understanding about the distinct sequences, expressions and 
evolutionary features of different RNA species. Unfortunately, not all my studies can be 
summed up in this thesis. The theme of this thesis is computational and statistical analysis of 
sequence and expression features of two kinds of ncRNAs, miRNA and lncRNA. In the next 
section, I present the current understanding of miRNA and lncRNA. 
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1.2 MicroRNA (miRNA) 

miRNAs are probably the most well-studied RNAi-smRNAs. In general, miRNAs are ~22 nt 
in length and regulate gene expression post-transcriptionally by binding to 3' untranslated 
regions (3' UTR) of target mRNAs, which leads to the mRNA degradation or translational 
inhibition [21, 41-43]. It is estimated that miRNAs regulate a substantial portion of 
protein-coding genes in animals and around 60% in human [44]. Controlled genes are 
involved in a wide range of physiological processes, including development, growth, 
differentiation and metabolism [21, 41, 45]. Although the extent of the miRNA regulatory 
universe has only been appreciated within the last two decades, their existence and exemplary 
power has completely changed our understanding about the fundamental principle of 
molecular biology. In this section, I summarize current knowledge about miRNA genes, 
including their discovery, biogenesis, nomenclature and feature characteristics, as well as the 
approaches for characterizing miRNAs. In addition, potential problems and challenges of 
miRNA analysis are described. 

The discovery of miRNA 

The founding member of miRNA, lin-4, was discovered in 1993 through studying 
developmental timing in worms [9, 46]. Lin-4 was found to encode a small 
non-protein-coding RNA transcript that contains complementary base pairing to the sequence 
in the 3'UTR of the lin-14 gene, acts as a negative regulator of lin-14 and represses the 
accumulation of LIN-14 protein [9, 46]. Seven years later, let-7 was the second miRNA 
identified, also in worms. It possesses important functions during larval development through 
complementary to two closely spaced sites in lin-41 3'UTR [47]. Unlike lin-4, the let-7 
sequence is deeply conserved across species between worms, flies and humans, a 
groundbreaking fact that provides initial insight into research for miRNA using genomics. 
Later, intensified cloning efforts, although laborious, identified numerous additional miRNAs 
in mammals, fish, worms and flies [48-52]. Nowadays, with ever-more genomes from 
different species being sequenced and revolutionary advances in high-throughput sequencing 
technology, sized-fractionated small RNA library construction followed by high-throughput 
sequencing (small RNA sequencing) coupled with downstream computational prediction and 
experimental validation has proven to be a reasonable and efficient way for miRNA discovery 
[53, 54].  

Characterization of miRNA expression profile  

Common to other functional gene categories, obtaining comprehensive and precise expression 
level measurements is fundamental to miRNA study. Consequently, several techniques have 
been developed for characterizing miRNA profiles, mainly including Q-PCR, miRNA 
microarray and small RNA sequencing [55]. Q-PCR and miRNA microarray are two 
traditional approaches that measure miRNA abundance using pre-defined primers or probes 
[56, 57]. Although both approaches have been widely used for miRNA profiling, the advent 
of small RNA sequencing has revolutionized the manner for characterizing miRNA profiles. 

Small RNA sequencing, functioning as a “molecular microscope”, is superior to the other two 
approaches for both specificity and sensitivity in miRNA quantification [55, 58]. Mainly due 
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to the short length of miRNAs, both Q-PCR and miRNA microarray have problems 
distinguishing highly similar sequences like miRNA family members [58]. In addition, the 
discrimination of mature and unprocessed forms of miRNAs presents another difficulty for 
Q-PCR and miRNA microarray [58]. In contrast, the high resolution of small RNA 
sequencing allows easy distinguishing miRNAs that only differ by one nucleotide [55, 58]. 
Furthermore, small RNA sequencing is more sensitive and displays higher dynamic range 
gained by the high sequencing depth [59, 60]. Even fragments that occur only a few times in 
the library will be visible in the data, and the read counts do not show the saturation effects 
common to microarray derived expression values. Q-PCR and miRNA microarray rely 
heavily on the availability and accuracy of miRNA sequences for designing primers and 
probes; thus, both are restricted to measuring known miRNA expression and are strongly 
affected by erroneously annotated miRNA mature sequences [55, 58, 61]. In contrast, small 
RNA sequencing is independent of predesigned probes, which makes it suitable not only for 
the discovery of new miRNAs but also provides the potential to make miRNA quantification 
more precise by scrutinizing small RNA reads. These unique features open the avenue for 
unbiased comparative miRNA study across species, provided the genomes are available. The 
high-throughput and high resolution features of small RNA sequencing also allows 
uncovering small RNA complexity, which leads to an unexpected finding that miRNAs 
display heterogeneous ends, suggesting that miRNAs can also have different isoforms similar 
to protein coding genes despite their short length [54, 61]. This is particularly surprising since 
it is generally believed that the miRNA processing machinery ensures the generation of a 
mature miRNA with a fixed sequence. Those miRNA isoforms have been detected using 
northern blotting in both animals and plants [62, 63]. Notably, their relative abundance also 
varies among tissues and developmental stages [64]. Whether miRNA isoforms are functional 
is currently unknown. 

There are also limitations for small RNA sequencing. It has been shown that the fragment 
composition of the sample is significantly altered depending on the methods used for RNA 
extraction and library preparation [65]. The sequence-specific biases related to enzymatic 
steps in small RNA cDNA library preparation methods usually favor capturing some miRNAs 
over others, which makes absolute miRNA quantification difficult. The absolute read counts 
are therefore not precise representatives of expression levels. As in microarray analysis, the 
differential expression analysis based on small RNA sequencing is limited to relative 
comparisons of normalized read counts between samples (fold-changes) to detect miRNA 
expression differences.  

Small RNA sequencing data provide the basis of systematic miRNA profiling. However, the 
achievement of comprehensive and precise miRNA measurements mainly depends on 
downstream computational analysis. Huge amounts of data generated through small RNA 
sequencing provides several computational challenges, including efficient small RNA 
sequence reads processing procedures, reliable small RNA mapping strategies and reasonable 
quantification strategies based on mapped reads. The quantification strategy is most important 
because certain miRNAs with erroneously annotated mature sequences may exist in miRBase. 
It should be noted that miRBase is a community resource with a somewhat inclusive policy 
[66]. Although most of the apparently misannotated miRNAs have been excluded from 
miRBase over the years, some may still remain. As it has been shown based on a large-scale 
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miRNA cloning study, ~40% of miRNA sequences deposited in miRBase (version 8.2) do not 
represent the predominantly cloned sequence [67]. Even though the annotation quality is 
expected to keep improving, the fact that the predominant miRNA sequence may vary across 
tissues or development stages, in addition to the recent observation of existence a large 
number of miRNA isoforms, further obscure full reliance upon miRBase annotation for 
miRNA quantification and downstream miRNA target prediction and function analysis [64, 
68]. Consequently, quantification by counting the reads exactly matching annotated miRNAs 
may not be appropriate. Thus, a better miRNA quantification procedure is required to resolve 
all the potential problems. 

The biogenesis of miRNA  

Great efforts in the past two decades enable us to draw a relatively complete miRNA 
biogenesis pathway. Figure 1.2 depicts the canonical miRNA biogenesis pathway [69]. The 
majority of miRNAs are transcribed by DNA-dependent RNA polymerase II (RNAPII) to 
generate a primary miRNA (pri-miRNA) containing a region of imperfect dsRNA, known as 
the stem loop structure, which harbors the future mature miRNA [70, 71]. The pri-miRNA 
can be the transcripts of protein-coding genes or independent long noncoding genes in the 
intergenic region, which have 5’ cap structures and polyA tails and may contain introns [72]. 
The production of canonical miRNAs from these pri-miRNA transcripts proceeds through 
two site-specific cleavage events by two RNase III enzymes, in the nucleus and cytoplasm, 
consecutively. In the nucleus, the processing starts with a dsRBD protein, Pasha/DiGeorge 
syndrome critical region gene 8 (DGCR8), which binds to the pri-miRNA and recruits the 
RNase III enzyme Drosha to form a multiprotein complex called the Microprocessor [73, 74]. 
The Microprocessor recognizes the portion with unique hairpin characteristics from the 
pri-miRNA and cleaves pri-miRNA by Drosha to produce a ~70-nt precursor miRNA 
(pre-miRNA). The pre-miRNAs displaying 2-nt single-stranded 3′ overhang (the 
characteristic of RNase III-mediated cleavage) are recognized by the nuclear export protein 
Exportin 5 and actively transported to the cytoplasm in a Ran-GTP-dependent manner [73, 
74]. In the cytoplasm, the pre-miRNA is further cleaved into a ~22-nt miRNA:miRNA* 
duplex by Dicer with the help of a mammalian Dicer partner, dsRBD protein TAR 
RNA-binding protein (TRBP) [75]. Similarly, in Drosophila melanogaster, Dicer-1 interacts 
with a specific isoform of its dsRBD protein partner Loquacious (Loqs) to perform the same 
function [76]. Small RNA duplexes generated by Dicer and its protein partner also exhibit 
2-nt single-stranded 3′ overhangs at both ends, a signature of RNase III cleavage [75]. For 
small RNAs that are initially produced as ~22-nt duplexes, in most cases, one strand would be 
chosen to load into Argonaute proteins to form RNA-induced silencing complex (RISC), and 
the other usually would be discarded—a process called strand selection [21, 77-79]. Strand 
selection is the final step for miRNA maturation, which is important and must not be random. 
It is not hard to imagine that loading the wrong strand to functional mature miRNA would 
cause silencing of the wrong set of genes, which is detrimental to the organism in most cases. 
Therefore, for most miRNAs, evolutionary pressure has selected one particular strand of the 
small RNA duplex as a crucial regulator, while in some cases, both strands can be found in 
RISC [21]. The major determinant of strand selection process resides in the intrinsic structure 
of the small RNA duplex-thermodynamic property [80, 81]. For miRNAs in both mammals 
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and flies, the strand with the least stable 5′ end is more often retained. Besides, additional 
favorable sequence characteristics further enhance the strand selection process, such as 5’-U 
bias, which I discovered in my previous study [35] and which was further supported and 
confirmed in vitro and in vivo by several follow-up studies [82-85]. Besides the canonical 
miRNA biogenesis pathway, several unconventional pathways have also been discovered, 
including three Drosha-independent and Dicer-dependent pathways for producing 
non-canonical miRNAs from very short intron [86, 87], 5’ capped pre-miRNA [88] and 
promoter-proximal RNAPII transcription [89], and one Dicer-independent & 
Ago2-catalytic-activity-dependent pathway for miR-451 maturation [90]. 

 

 
Figure 1.2: The Canonical miRNA biogenesis pathway. The figure was adopted from Winter et 
al. [69].  

Intensive efforts to decipher the miRNA biogenesis process have also brought about several 
interesting and potentially significant observations. One intriguing observation made during 
miRNA maturation is that Loqs, the Dicer-1 partner, can tune where Dicer-1 cleaves through 
using different Loqs isoforms in flies, which results in miRNA mature sequences with a 
distinct seed sequence and target specificity [91, 92]. The mammalian Dicer-partner TRBP, 
the Loqs homolog, similarly tunes where Dicer cleaves pre-mir-132 in mice [91, 92]. These 
observations are particularly interesting because they indicated that one arm of the miRNA 
precursor may have the potential to produce more than one functional miRNA. In flies, the 
relative abundance of Loqs isoforms varies widely among tissues and developmental stages 
[91], which may underlie the previous observation that the relative abundance of miRNA 
isoforms varies among tissues and developmental stages [61, 64]. Perhaps the relative 
abundance of Loqs isoforms is regulated across development and differentiation to ensure the 
correct relative abundance of different miRNA isoforms from various pre-miRNAs. Since the 
partner proteins of Drosha are also in charge of recognizing the miRNA hairpin structure, it is 
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not surprising that DGCR8 can also tune the cutting of Drosha, which also creates miRNA 
sequence variance [93]. These observations suggest that different miRNA isoforms may not 
merely be miRNA processing noises or sequencing artifacts, but instead potential functional 
molecules since their generation may occur under specific regulation. Thorough and 
systematic analysis is needed to estimate the authenticity and functionality of miRNA 
isoforms. 

The miRNA annotation and nomenclature 

Numerous miRNA discovery studies including ours have led to identification of thousands of 
miRNAs in diverse species [36]. When working with such a vast number of miRNAs, proper 
nomenclature is important to distinguish between gene loci, transcripts and products. 
Correspondingly, a specific database and nomenclature system were developed for miRNA 
annotation. Formerly known as the microRNA Registry, the miRBase database represents a 
widely used primary online repository for miRNA annotation [66, 94]. According to miRBase, 
miRNAs are named in sequential order of discovery. The miRNA names are taken the form 
hsa-mir-19a. The first three letters denote the species (hsa for Homo sapiens). The mature 
miRNA is designated as miR-19a, while mir-19a refers to pre-miRNA or pri-miRNA. 
Distinct precursor sequences and genomic loci that produce identical mature sequences are 
assigned names in the forms hsa-mir-19b-1 and hsa-mir-19b-2. Lettered suffixes signify 
closely related but not identical mature sequences—for example, hsa-miR-19a and 
hsa-miR-19b are expressed from precursors hsa-mir-19a and hsa-mir-19b, respectively. 
miRNA cloning studies sometimes, and small RNA deep sequencing studies more commonly 
identify two ~22nt miRNAs sequences that originate from two arms of the same predicted 
precursor [35, 67]. When the relative abundances clearly indicate which is the predominantly 
expressed miRNA, the mature sequences are assigned names in the forms miR-19a (the 
predominant product) and miR-19a* (from the opposite arm of the precursor). When the data 
are not sufficient to determine which sequence is predominant, names like miR-142-5p (from 
the 5' arm) and miR-142-3p (from the 3' arm) are assigned. It should be noted that although in 
most cases the miRNA* is degraded from incorporating into RISC, it has been suggested that 
the miRNA* can act as functional miRNA as well. For instance, through a comparative 
approach that estimates miRNA functionality based on the conservation status of miRNA 
target sites, 23 functional miRNA* were identified [95]. Furthermore, the arm that makes the 
dominant product may change in different tissues, stages and species [96]. Therefore, using 
-5p/-3p nomenclature to replace miR/miR* nomenclature may be more appropriate for 
miRNA annotation. 

The miRBase contains 8,273 miRNA sequences annotated in primates, rodents, birds, fish, 
worms, flies, plants and viruses (version 12) [97], providing the potential for cross-species 
miRNA comparison. However, several caveats should be considered when using miRBase. 
Although the primary goal of miRBase is to provide miRNA annotation and maintain 
consistent miRNA nomenclature across all species, miRNA names themselves do not always 
indicate orthologous relationships across species. miRBase clearly states that miRNA names 
can convey only limited information and are entirely unsuitable for encoding information 
about complex sequence relationships [97]. Thus, miRNA orthologous relationship 
assignment based on miRNA names is inappropriate. Furthermore, largely due to the 
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difference in the scope of miRNA study in different species, the quantity and quality of 
annotated miRNAs vary a lot even between closely related species. For example, the best 
annotated species, human, had 866 mature miRNAs annotated in miRBase (version 12), 
whereas far fewer miRNAs are annotated in chimpanzee (92) and rhesus macaque (485). 
Therefore, comparative analysis of microRNA across-species cannot fully rely on the miRNA 
annotation from miRBase. Instead, a reliable miRNA ortholog prediction and orthologous 
relationship delineation methods are needed. 

The features of miRNA  

In the next section, I summarize the features of miRNA genes with respect to genomic 
arrangement, sequence and structure, seed region and phylogenetic distribution.  

The genomic arrangement 

With respect to their genome context, miRNAs are ubiquitous in animal genomes [98, 99]. 
miRNAs are often transcribed as independent units in the intergenic region, many of which 
consist of polycistronic clusters containing multiple miRNAs [98, 99]. Duplication events 
contribute to miRNA expansion and cluster formation. Some clusters were formed through 
miRNA duplication of a single miRNA (homogenous cluster), which leads to local 
enrichment and amplification of a specific miRNA expression level. The homogenous 
clusters may help gain large dosage and enlarge the regulatory power. Intriguingly, it is more 
common for animal miRNA clusters to encode unrelated mature miRNAs (heterogeneous 
cluster) [100], which means miRNAs of a given cluster can have distinct target pools. In 
theory, fast diverging speed might be one possible reason for formation of heterogeneous 
cluster through specific miRNA duplication, but this remains to be fully tested. Nevertheless, 
considering the co-expression pattern for miRNAs from the same cluster, it is possible that 
these unrelated mature miRNAs might share certain functional relationships. The most 
prominent support for this hypothesis comes from the mir-17-92 cluster, which acts 
corporately not only in tumor formation but also in development of the lungs and immune 
system [101-103]. miRNAs are also present in the intragenic region and mostly within introns, 
which presumably arise from further processing of the excised introns of protein-coding 
genes [98], whereas some sense-oriented intronic miRNA genes may also have their own 
promoters located in upstream intronic regions [104, 105]. Intriguingly, intronic miRNAs 
with their own promoters were more evolutionarily conserved than other intronic miRNAs 
[104, 105].  

The miRNA precursor sequence 

Partially due to the miRNA's short mature sequence length, the most notable features of 
miRNAs are embedded in the secondary structure of their precursor sequences instead of the 
sequence motif in mature sequences. Metazoan miRNAs are defined by stem-loop secondary 
structures of their precursor sequences. Inspection of the RNA stem-loops that were predicted 
to flank miRNAs revealed no sequence similarity. However, these stem-loops were of 
comparable size and were all predicted to form simple but imperfect hairpins [106]. The 
canonical miRNA precursors are usually ~70 nt long and have ~16 bp of complementarity 
between the two arms [107]. Once transcribed, the stem-loop hairpin structure distinguishes 
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miRNA from other hairpin containing noncoding RNAs for miRNA processing machinery 
and therefore dominates the miRNA maturation processes. Unique sequence and structure 
motifs have been revealed through experimental analysis of represented human miRNA 
precursors, including 48 structure motifs such as internal loops, bulges and mismatches other 
than G-U wobble pairs [108]. Computational analysis further identified six common features 
for human precursors, including folding free energy of the longest nonexact stem, the 
maximum number of consecutive C's in the hairpin, the maximum number of consecutive G's 
in the hairpin, folding free energy adjusted by the hairpin size, the average folding free energy 
of the exact stems and the size of bulges [109]. Taken together, the structure analysis and 
thermodynamic profiling suggest that miRNA precursor hairpin may be considered a mosaic 
of more and less stable regions that occur at certain sequence intervals and have both a 
structural and a functional meaning.   

The miRNA mature sequence  

Although no specific sequence motif has been associated with miRNAs mature sequences 
[110], several sequence features or propensities do exist. First, the length of mature miRNAs 
usually ranges from 20 to 24 nt, and a length of 22 nt is most common for miRNA mature 
sequences [111]. The length preference had been proven to be associated with the general 
miRNA maturation processing machinery. Structure study indicated that Dicer could act as a 
“molecular ruler” to cleave double-stranded RNA (dsRNA) substrates at a set distance from 
one end (~22 nt away from the base of the dsRNA stem) to generate miRNA mature sequence 
ends [112]. Electron microscopy single-particle reconstruction determined the domain 
arrangement of human Dicer, which designated the major unannotated region as a “ruler 
domain” between the “platform”/PAZ tandem and catalytic core (dsRBD and RNasIIIa/b 
tandem), thus providing an internal 22 nt gauge [113]. Besides the length preference, the 
mature miRNA sequences are prone to beginning with a uracil (U), which seems to be the 
only sequence feature of mature miRNAs [114]. 5’-U bias is not only important for miRNA 
strand selection process during miRNA biogenesis [35, 82], but also is associated with higher 
efficiency of miRNA-mediated target gene silencing, which might be related to the formation 
of the ternary miRNA-Argonaute2-mRNA complex and partly associated with the strand 
selection process [114-116]. 

The miRNA seed region 

With regarding to function and evolution, the most prominent feature of miRNA comes with 
the seed region. For a given miRNA, the seed region or seed sequence is a heptamer sequence 
situated at positions 2-8 from miRNA mature sequence 5’-end [117-119]. The first clue of the 
importance of the miRNA seed region is based on the observation that the lin-14 UTR has 
core elements of complementary to the 5’ region of the lin-14 miRNA [46]. Later on, 
accumulating observations providing experimental, evolutionary and computational evidence 
further strongly confirmed that the seed region is the most important. 

1) Lai et al. showed that the seed region of miRNAs in Drosophila melanogaster is 
perfectly complementary to the elements in 3’UTR that were previously shown to 
mediate mRNA decay and translational repression [120]. 

2) miRNA orthologous sequences comparison demonstrated that the miRNA seed 



 
12 

regions were the most conserved portion among metazoan miRNA homologs [121]. 
3) Within the miRNA complementary sites of the validated targets of conserved 

miRNAs in Drosophila melanogaster, mRNA residues that paired to the miRNA 
seed region (seed matches) were perfectly conserved in orthologous regions of other 
Drosophila species [118].  

4) For both invertebrate and mammalian miRNA target prediction, requiring the 
perfect base pairing to the heptamer spanning the miRNA seed region was much 
more productive and reported significantly fewer false positives than was requiring 
pairing to any other heptamer of the miRNAs. Conserved pairing to the seed region 
can be sufficient on its own for predicting conserved targets above the noise of 
false-positive predictions [117, 118, 122] 

5) Small RNA overexpression experiments by overexpression miRNA-like sequences 
were almost solely affected by the nucleotide substitutions that disrupt seed pairing 
[123-125].  

6) The most significantly enriched heptamer motif from down-regulated genes was the 
one that was complementary to the miRNA seed region in miRNA mimics 
transfection experiments [126]. 

7) miR-141 and miR-200c differ by one nucleotide in their seed region. Deletion 
miR-141 or miR-200c led to barely overlapped disregulated genes [127].  

The importance of miRNA seed region brings about three conclusions. 

1) miRNAs sharing the same seed region can be classified into one miRNA family that 
may regulate the same pool of target genes [122]. miRNAs differ in their seed 
regions even though one nucleotide may target substantially different targets. 
Consequently, the complex miRNA isoforms pattern should be treated carefully for 
miRNA quantification using small RNA sequencing data.  

2) The conservation of miRNA seed regions is coincident with the conservation of 
target sites (seed matches), indicting the existence of co-evolution between miRNAs 
and regulated target genes [128]. It also suggests that functionality of conserved 
miRNAs can be inferred from the conservation status of their seed matches on 
3’UTR.  

3) To predict more confident miRNA target genes, conserved Watson-Crick pairing to 
the seed region must be considered. In line with this, when evaluated on the basis of 
proteomic changes after miRNA overexpression or deletion, prediction algorithms 
that required stringent seed pairing, such as TargetScan, performed better than those 
that did not [129, 130]. Tools that allowed mismatches or wobbles to miRNA seed 
region performed much worse [129, 130]. 
 

The miRNA phylogenetic distribution 

Several features of miRNA phylogenetic distribution have been revealed by a number of 
studies on the distribution of miRNAs across animals. First, miRNAs are a class of ancient 
regulators that are present early on in the animal evolution. For instance, miR-100 is 
conserved between eumetazoans [131]. Second, miRNAs are continuously added to 
metazoan genomes leading to miRNA expansion. For example, 34 miRNAs that are 
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conserved between protostomes and deuterostomes indicate a burst of innovation at the 
base of bilaterian lineage [132]. Additional miRNA expansions have been observed in the 
lineage leading to placental mammals [133]. Third, miRNAs display low levels of secondary 
gene loss after their emergences in a particular lineage. Unlike retroposons, miRNAs are not 
lost at an increasing rate with time, but are instead largely retained in most, and sometimes in 
all, descendant lineages [134]. The continuous gain of novel miRNAs coupled with rare 
secondary gene loss lead to the ever-expanding repertoires of miRNAs, which have been 
shown to be directly correlated with morphological complexity, suggesting that the 
innovation of miRNA may be important to the emergence of increasingly complex cell types, 
tissues and organisms [128, 132, 133, 135]. 
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1.3 Long Noncoding RNA (lncRNA) 

LncRNAs is a large class of noncoding transcripts representing a heterogeneous group. 
Functionally, lncRNAs may not be less important than miRNAs. Although understanding of 
lncRNAs’ functional roles is just beginning, the limited verified examples of lncRNA have 
demonstrated their influences on a diverse range of biological processes from developmental 
control to disease progression [28]. The best-known example of lncRNA functionality is 
X-inactive specific transcript (Xist), which is required for transcriptional silencing of one X 
chromosome during development in females across mammalian species [26].  

Determining the function of individual lncRNAs remains a challenge. Nevertheless, rapid 
progress has been made with regard to approaches for lncRNA identification. Several features 
associated with lncRNAs were further revealed by globally analyzing the identified lncRNAs. 
In this section, I summarize the current knowledge about lncRNA genes, especially for the 
approaches of lncRNA identification and several general sequence and expression features of 
lncRNAs. The definition of lncRNA is also discussed. 

The definition of lncRNA  

LncRNAs include all transcripts with lengths varying from 200 nt to over 100,000 nt and 
represent a heterogeneous group. As would be expected from their general name, no unified 
definition has been reached for them at the moment. The definition proposed by HUGO Gene 
Nomenclature Committee (HGNC) describes lncRNAs as spliced, capped and polyadenylated 
noncoding RNAs [136]. However, because the existence of functional unspliced lncRNAs has 
been demonstrated [28], this definition is not complete. At present, lncRNAs are 
operationally defined as a class of RNAs longer than 200 nt and lacking clear protein-coding 
potential [28]. This definition is also not perfect because the 200nt requirement is arbitrarily 
chosen by the current RNA purification protocol limitation, which takes little consideration of 
functional meaning [16]. Nevertheless, the size cutoff clearly distinguishes lncRNAs from 
small regulatory RNAs such as miRNAs or piRNAs. In a sense, the requirement of a 
transcript length cutoff may be rather important for distinguishing putative lncRNAs from 
so-called transcriptional noise generated by the pervasive transcription.  

Since the length may not be essential, the core of the lncRNA definition is lack of coding 
potential. Experimentally, ribosome profiling is useful for determining the translation status 
of a given transcript [137]. However, it is not realistic to carry out such complex experiments 
for every lncRNA study due to the requirement of high quality of biological samples, which 
may leave the application of ribosome profiling to cell lines. Thus, currently, transcript 
coding potential is mostly accessed through computational analysis. Computationally, one 
measurement for estimating transcript coding potential is based on the length of open reading 
frame (ORF). According to the traditional cutoff for protein-coding transcripts, transcripts 
with a maximal ORF <100 amino acids (aa) were defined as noncoding transcripts [138]. 
However, functional polypeptides shorter than 100aa have been identified [139]. Furthermore, 
transcripts containing ORF >100aa are unnecessarily to be translated into proteins. Thus, 
ORF size alone is not a good indicator for accessing coding potential. Many studies assessed 
coding potential by translating each lncRNA in all three frames and performing homology 
queries across large protein family and domain databases (i.e., PFAM) [15]. This analysis is a 
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good initial indication of protein-coding capacity but may miss a not insignificant portion of 
protein sequences without clear domains or newly evolved protein sequences. Along with the 
growing expansion of the lncRNA catalog, more sophisticated methods for estimating 
transcript coding potential by integrating multiple features were developed. These tools can 
be largely separated into three categories. The first distinguishes coding from noncoding 
transcripts based on multiple alignments to calculate the phylogenetic conservation score 
using codon substitution bias such as that used in the Phylogenetic Codon Substitution 
Frequencies (PhyloCSF), RNAcode methods [140, 141]. The second category predicts coding 
potential based on the combination of ORF quality and homologous similarities for protein 
evidence through pairwise alignments using BLAST such as that used in the Coding-Potential 
Calculator (CPC) method [142]. The third category estimates coding potential using intrinsic 
sequence features of coding sequences in an alignment-free way such as that used in the 
Coding Potential Assessment Tool (CPAT) [143]. Accumulating numbers of lncRNAs have 
been discovered, resulting in the conclusion that most lncRNAs are less conserved and tend to 
be lineage-specific [14]. This observation greatly limits the discrimination power of multiple 
alignments-based methods in the first category, and to a less extent, affect the methods in the 
second category due to certain species-specific protein-coding genes. By contrast, CPAT can 
access coding potential independent of transcripts’ conservation status [143]. Nevertheless, by 
taking advantage of the continuous completeness of protein-coding gene collections in 
diverse species, CPC can be considered one good complementary method for CPAT due to 
the different features the two methods use.  

The identification of lncRNA  

Based on their general definition, lncRNAs can be identified by selecting RNA sequences 
with low coding potential computationally. The advances of coding potential estimation 
algorithms allow estimating transcript coding potential more precisely; thus, the main 
challenge of lncRNA identification is detecting novel transcripts or novel transcribed regions. 
This is a rather straightforward task that can be achieved by the direct detection of the 
transcribed RNAs. However, conventional gene expression microarrays are almost only 
designed to detect the expression of protein-coding mRNAs, so unbiased high-throughput 
RNA detection methods are therefore required that mainly include tiling arrays and 
high-throughput RNA sequencing (RNA-seq). 

Tilling array 

Tilling array allows analysis of transcription from specific genomic regions and was initially 
used for both identification and expression analysis of lncRNAs [16]. In this technique, 
cDNA is hybridized to microarray slides containing overlapping oligonucleotides that 
encompass either specific chromosomal regions or a complete genome (whole genome tilling 
array). Resolution of the hybridized genomic DNA sequence can be adjusted by changing the 
length of the overlapping sequences between two neighboring probes. For instance, Rinn et al. 
investigated lncRNAs expressed in the region of the human HOX genes by designing 400,000 
probes of 50 bases in length, with each probe overlapping the next one by 45 bases to cover 
all four human HOX gene clusters. This configuration allowed for the identification of 
hybridized DNA sequences at 5-base resolution, resulting in the discovery of the lncRNA 
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HOTAIR that was transcribed from an intergenic region within the HOXC cluster [25]. 
Although tilling array is useful for detecting transcribed regions at high resolution, several 
limitations are also obvious. First, being a kind of microarray, tilling array has some 
limitations inherited from traditional microarrays, such as high background noise owing to 
cross-hybridization and a limited dynamic range for detecting both very lowly and highly 
expressed lncRNAs because of both background and saturation of signals. In addition, unless 
the target region is reasonably designated, a drawback of the tiling array approach is its high 
cost, especially for using whole genome tilling array to detect transcribed regions 
genome-wide. Furthermore, because transposable elements (TEs), a major class of repeat, 
make up a substantial fraction of mature lncRNA transcripts (>30% in human) [144], a 
notable portion of the genome is difficult to interrogate owing to lack of appropriate probes. 
Tiling array also generally needs to be custom-made to meet diverse needs, so appropriate 
probe design raises another potential problem. 

RNA-seq 

Currently, sequencing of transcriptome using RNA-seq is the most powerful approach for de 
novo discovery and expression analyses of lncRNAs. In this method, a population of RNA 
(total or fractionated, such as poly(A)+) is converted to a library of cDNA fragments, with 
proper amplification. Corresponding molecules are then sequenced in a high-throughput 
manner to obtain short sequence reads from one end (single-end sequencing) or both ends 
(paired-end sequencing). There are several types of sequencing technologies, but Illumina 
platforms are currently the most commonly used for RNA-seq experiments. For instance, as a 
foundation study, by utilizing RNA-seq reads across 24 tissues or cell types based on Illumina 
platforms, Cabili et al. identified over 8,000 human lincRNAs, opening the avenue to utilizing 
RNA-seq for characterizing lncRNA repertoire [15]. RNA-seq possesses several key 
advantages over tilling arrays. First, the prominent advantage is that RNA-seq can detect 
transcripts independent of existing genomic sequence and annotation at a genome-wide level, 
which is most important for lncRNA identification. Compared with tilling array, which 
struggles to balance throughput and cost, RNA-seq allows sequencing further and deeper due 
to the ever-deceasing sequencing cost. What $1 used to sequence—1 base—has increased to 
10,000 bases. Thus, high sequencing depth enables unbiased and genome-wide lncRNA 
identification. RNA-seq is further leveraged by strand-specific sequencing protocols, which 
enable measuring each read with transcription direction. Currently, the strategies that have 
been developed to generate strand-specific information generally rely on one of three 
approaches. The first involves the ligation of adaptors in a predetermined orientation to the 
ends of RNAs or to first-strand cDNA molecules. The known orientations of these adaptors 
are used as reference points to obtain RNA strand information [145]. The second approach is 
direct sequencing of the first-strand cDNA products that are generated [146]. The third 
approach involves selective chemical marking of the second-strand cDNA synthesis products 
or RNA [147, 148]. Significantly, strand-specific RNA-seq is not only important for 
assembling and quantifying overlapping transcripts from opposite strands of the genome 
[148], but also allows for determining the transcription direction for many single exon 
lncRNAs, such as Neat1, which is necessary for the formation of nuclear paraspeckles [149]. 
Besides these merits, RNA-Seq can also detect expressed transcripts at a much larger 
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dynamic range with low background noise. Except for special cases, only sequencing reads 
that can be mapped back to the genome unambiguously are considered useable; thus, there 
exists no upper limit for quantification compared to tilling array, which only correlates with 
the sequencing depth. Therefore, RNA-seq can detect transcripts including lncRNAs that are 
expressed either at very low or high levels. RNA-Seq also produces better quantification for 
transcripts expression, and the results of RNA-Seq exhibit high levels of reproducibility for 
both technical and biological replicates [60]. 

Although the high resolution and high sequencing depth of RNA-seq data makes it possible to 
capture all transcriptome elements, including numerous unidentified lncRNAs, billions of 
short reads pose a significant computational challenge. Thanks to the recent developments in 
transcriptome assembly approaches, reconstruction of the entire transcriptome by RNA-seq is 
feasible, even without a reference genome, thus providing the solution to identifying all 
transcribed RNAs. In general, current transcriptome assembly tools can be separated into two 
classes, reference-based assembly and de novo assembly [150]. When a reference genome is 
available, reference-based methods can be used for transcritptome assembly. Generally, 
reference-based approaches first aligned the RNA-seq reads onto the genome and then 
clustered the overlapping reads to build a graph representing all possible isoforms. The 
individual isoforms were finally resolved by traversing through the graph. Cufflinks, one of 
the most widely used reference-based assembly methods, was developed for efficiently 
reconstructing transcripts from mammalian-sized data sets [151]. The main advantage of 
reference-based approaches is high sensitivity, which can assemble transcripts with low 
expression abundance and generate more full-length transcripts [151]. Reference-based 
assembly can also be conducted with less memory and more efficiently using parallel 
computing in that mapped reads are clustered and can be processed independently. However, 
due to the reference-based algorithm itself, there are also several potential disadvantages. The 
success of assembly is greatly affected by the reference genome quality [152]. Some 
transcripts are lost due to incompleteness of the genome assembly. Some transcripts are 
separated into several parts due to the assembly's gaps of reference genome. The potential 
erroneously mapped reads are carried over into the assembly, resulting in false positives. The 
quality of spliced-aligned reads is another problem since the reads alignment tools often only 
search introns that are smaller than a length cutoff to reduce the required computational 
resources. Furthermore, multiplied mapped reads were usually discarded from the assembly, 
which may leave potential gaps in the assembly transcripts where the reads were not uniquely 
mapped. All these potential drawbacks are partially solved by assembling transcriptome using 
de novo approaches, which leverage the redundancy of short-reads sequencing to find read 
overlaps and assemble them into transcripts without any genome reference. Trinity is the most 
efficient De Bruijn graph-based de novo assembly tool [153]. Trinity implements a unique 
stepwise strategy by first greedily assembling a set of unique sequences that overlap, creating 
an independent De Bruijn graph for each group of sequences and assembling isoforms within 
the group, thus enabling processing in parallel to speed up the assembly process. Since de 
novo assembly approaches are independent of a reference genome, all problems caused by 
reference genome quality will not affect assembly quality. De novo assembly approaches are 
also immune to the potential problems of reads mapping such as erroneously continuous and 
spliced-aligned reads. Furthermore, multiple mapped reads are also resolved by the de novo 
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assembly approach, which may potentially make the assembly transcripts more complete. 
This is important because around half of the human genome is comprised of repeat sequences 
and repeats make up a substantial fraction of mature lncRNA transcripts (>30% in human). 
The main drawback of de novo assembly approaches is the requirement of a much higher 
sequencing depth than reference-based assembly approaches for full-length sequence 
assembly. The sequencing depth requirement further results in high computational resources 
needs. In addition, trans-spliced transcripts are not easily discriminated from chimeric reads 
or assembly artifacts. Nevertheless, with the continuing improvements and advances of de 
novo assembly algorithms and RNA-seq technologies, along with support from increasing 
powerful computational resources, de novo assembly approaches will no doubt contribute 
significantly to the transcriptome studies in the future. The lncRNA identification will 
therefore benefit from this approach.  

The features of lncRNA 

Although the lncRNA catalog is far from complete, several sequence and expression features 
are emerging based on previous lncRNA studies. Being a class of heterogeneous RNA, 
lncRNAs have been shown to overlap with several functional elements such as enhancer 
regions (eRNAs) [154], telomeric repeat regions (telomeric repeat-containing RNAs) [155], 
protein-coding promoter regions (promoter-associated RNAs) [18], 3’UTR regions (3’UTR 
associated RNAs) [156] and gene antisense regions (antitsense RNAs) [5]. The lncRNAs 
reside in the intergenic region and are usually called lincRNAs [10]. Previous studies have 
shown that more than 78% of “dark matter” of transcriptome was in the vicinity of known 
protein-coding genes [157], suggesting a possible link of the regulation between lncRNA and 
nearby protein-coding genes. Because many lncRNAs exert regulatory effects on the genomic 
loci they are derived from or on neighboring loci, it is possible to study the function of 
lncRNAs based on their genomic context. With regard to transcription processing, many, but 
not all, lncRNAs are processed as typical mRNAs, including 5’ cap structure, splicing and 
polyadenylation. lncRNAs show a bias for having just one intron and a trend for less efficient 
cotranscriptional splicing than that of protein-coding genes [158]. Splicing may not occur at 
all in some cases for many lncRNAs, resulting in a group of single-exon lncRNAs such as 
Neat1 and Malat1 [149, 159]. The high expression abundance and sequence conservation are 
believed to be two hallmarks of functional gene categories. However, lncRNAs usually lack 
both features. The pioneering studies analyzing lncRNAs in mouse and human revealed their 
low expression nature [10], which may in part account for their invisibility in previous 
researches. With respect to sequence conservation, lncRNAs are weakly constrained. The 
average nucleotide substitution ratio was 90%-95% for lncRNAs compared to ~10% for 
protein-coding genes [160]. Nevertheless, the sequence analysis also showed that lncRNAs 
are under higher selective pressures than ancestral repeats and random intergenic regions that 
are considered to be under neutral selection, which suggests lncRNAs are not totally 
transactional noises [10, 161]. The seminal example of non-conserved but essential lncRNAs 
comes from the most intensively studied Xist, which displays little sequence conservation 
throughout the eutherian lineage [162]. The low sequence conservation may also be explained 
by the high rate of sequence evolution for the lncRNAs that have more plastic 
structure-function constraints, similar to certain fast-evolving promoters, enhancers or other 
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regulatory elements [163]. Accumulated results have further suggested that lncRNAs are 
expressed in a highly tissue-specific or cell type-specific manner compared to protein-coding 
genes [15], which may underlie the observation of the generally low expression level of 
lncRNAs in complex tissues encompassing numerous cell types. Some lncRNAs are exported 
from the nucleus and may perform important functions in the cytoplasm, but the majority are 
found in the nucleus [14] and are particularly associated with chromatin [164], indicating that 
lncRNAs may play important roles in transcriptional regulation. Although this summary of 
lncRNA features might be only partial, it certainly deepens our understanding about lncRNAs 
and provides clues and guidance to further study of lncRNAs' functions. Besides, all these 
sequence and expression features are helpful for generally evaluating the quality of the 
identified lncRNA. 
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1.4 miRNA and lncRNA expression in the human brain 

The human brain, comprised of an extraordinary number of subtypes of glial and neural cells, 
is the most sophisticated biological organ. It is now clear that these complicated features of 
the brain are mediated not only by protein-coding genes but also by cell type-, developmental 
stage- and stimulus-specific profiles of ncRNAs. In fact, because the proportion of 
non-coding DNAs correlates with the organism's complexity as well as the observation that 
the number of ncRNAs has increased with the neuronal complexity of metazoans while the 
number of protein-coding genes has remained relatively stable [165, 166], it is intriguing to 
speculate that ncRNAs may underlie the unique function repertoires of the brain in higher 
organisms and mediate the acceleration of human brain evolution. The expression enrichment 
of ncRNAs, including miRNA and lncRNA, in brains of higher organisms further enhances 
the link between ncRNAs and evolutionary innovations in brains [167]. Accumulating 
evidence indicates that both miRNA and lncRNA are essential to various neurobiological 
functions in the brain. 

Multiple studies have shown that miRNAs are key regulators in brains, playing pivotal roles 
in diverse neurobiological processes ranging from synapse formation to neuronal cell identity 
establishment. One key experimental strategy for studying the function of miRNAs in the 
brain globally is to disrupt the miRNA biogenesis pathway. The Dicer knockout animals 
display several neural developmental defects, including brain size abnormalities and altered 
dendritic spine morphology in forebrain neurons [168, 169]. In flies, Drosha and Dicer 
mutations lead to defects in synaptic transmission in photoreceptor neurons [170]. Other 
complementary experiments that focus on individual miRNAs have further elucidated their 
propounding roles in modulating diverse neuronal functions [167]. For instance, miR-124 and 
miR-134 can modulate dendritic growth and arborization. Let-7 and miR-132 play roles in 
synapse formation. miR-1, miR-132, miR-134 and miR-181a are involved in synaptic 
function and plasticity. Strikingly, introduction of miR-124 leads to the expression profile of 
Hela cell line shift toward that of the brain by decreasing expression of dozens of 
non-neuronal genes [126], revealing the possibility that brain-specific/associated miRNAs can 
function as master regulators in establishing cell identity. The fact that the expression of a 
small number of miRNAs can promote reprograming from somatic cells into neuronal cells 
further highlights the extent to which miRNAs function as pivotal nodes in the regulatory 
networks that are responsible for establishing cell identity. miR-124, miR-9 and miR-9* are 
three well-known brain-specific/associated miRNAs. Previous studies have demonstrated that 
the introduction of miR-124 together with miR-9/miR-9* in human fibroblasts can reprogram 
them into neuronal cells [171]. The underlying mechanism of the action of these miRNAs 
may involve regulating the specific composition of subunits of ATP-dependent Brm 
associated factor (BAF) chromatin remodeling complexes that are essential for neuronal 
lineage maturation at particular stages. Due to the powerful regulatory potential of miRNAs 
in brain, it will be intriguing to speculate that miRNAs may also contribute to the unique 
intelligence and cognitive ability of the human brain, especially in the prefrontal cortex (PFC), 
which is critical to many cognitive abilities that are considered particularly human [172]. The 
PFC has remarkably expanded in size throughout human evolution, culminating in modern 
Homo sapiens. While the brain itself has only increased in size about threefold in the past five 
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million years (the estimated divarication time of human and chimpanzee), the size of the PFC 
has increased sixfold. The comparative study between human and other closely related 
primate relatives such as the chimpanzee using miRNA profiles in combination with gene 
and/or protein expressions may able to elucidate the potential contribution of miRNA to 
human PFC uniqueness.  

Whereas most studies have focused on defining neurobiological roles for miRNAs, recent 
studies have also begun to characterize the expression and function of lncRNA in brains. The 
first clue indicating the specific function of lncRNAs in brains is from large scale RNA in situ 
hybridization analysis in mouse brain based on the resources from Allen Brain Atlas [173]. In 
situ hybridization showed that many lncRNAs are expressed in specific anatomical regions, 
cell types or subcellular compartments in the mouse brain, suggesting that many of these 
lncRNAs may be functional. Examining individual lncRNAs further reveals their diverse 
roles in the brain. For instance, knocking out lncRNA MEG3 in mice followed by microarray 
analysis revealed that MEG3 is involved in many processes in brain development, including 
calcium, Notch and Wnt signaling and long-term potentiation [174]. Malat1 is a ~7kb single 
exon lncRNA residing in the intergenic region of human genome that interacts with splicing 
factors and is implicated in nervous system development as it is expressed during later stages 
of neuronal and oligodendrocyte development [175]. Knockdown of Malat1 in cultured 
hippocampal neurons results in decreased synaptic density, while overexpression has opposite 
effects [176]. lncRNAs may also contribute to superior cognitive ability in humans. For 
example, the lncRNA HAR1F is derived from HAR1A, one genomic region exhibiting 
prominent signature of positive selection in human lineage [177]. HAR1F is especially 
expressed in a specific class of neuron cells in human developing neocortex between the 7th 
and 18th gestational weeks, a crucial period for cortical neuron specification and migration. 
The correlated expression between HAR1F with cortical patterning protein reelin indicates 
that HAR1F may participate in coordinating the establishment of regional forebrain 
organization. Similar to the speculation about miRNAs, the fast-evolving lncRNAs may also 
play important roles in the formation of human PFC uniqueness. Determining the function of 
individual lncRNAs remains a pretty tough task. Perhaps what is fundamental and required 
for the current lncRNA study is the genome-wide identification of lncRNAs in diverse tissues, 
cell types and developmental stages for fully cataloging lncRNA sequence and expression 
profiles. The lncRNA study in human PFC is also no exception.  
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1.5 Thesis outline 

The goal of my work was to develop appropriate computational and statistical methods and 
pipelines for analyzing sequence and expression of miRNA and lncRNA on the basis of 
high-throughput data generated by small RNA sequencing and RNA-seq in primate brains. 
The work outlined in this thesis contains three main research tasks: (i) building a framework 
for across-species miRNA comparison study, (ii) identification of prevalent 5’-isoforms of 
annotated miRNAs expressed in the primate brain and prediction of their regulatory effects, 
and (ii) identification of novel lncRNAs expressed in the human brain and investigation of 
sequence, expression and function features of both novel and annotated lncRNAs throughout 
human brain development. 

More specifically, in Chapter 3 of this thesis, I present a framework for across-species 
miRNA comparison by analyzing small RNA sequencing data generated from brains of 
humans and our two close relatives: chimpanzees and macaques. The complexity of the 
miRNA repertoire is highlighted. Subsequently, a new miRNA quantification method is 
proposed. A miRNA ortholog prediction procedure, which is fundamental for across-species 
miRNA comparison study, is developed. By integrating all the developed methods and 
pipelines described in this chapter, differentially expressed miRNAs between human and 
other two primate species and their contribution to target gene expression divergence at both 
mRNA and protein levels in the prefrontal cortex are investigated.   

In Chapter 4 of this thesis, I describe a study of miRNA 5’-isoforms including their 
identification and functionality predictions in the human prefrontal cortex. A comparative 
approach for predicting functional conserved miRNAs is developed, which allows for 
identifying the majority of highly expressed functional miRNAs as well as predicting putative 
functional miRNA 5’-isoforms. The regulatory effects on exclusive target genes of two 
predicted functional 5’-isoforms were verified by analyzing public microarray data.  

In Chapter 5 of this thesis, I describe a genome-wide lncRNA identification and feature 
investigation study by integrating de novo transcriptome assembly and downstream lncRNA 
analysis procedures on the basis of age-series RNA-seq data from human prefrontal cortex. 
Systematic characterization of the identified lncRNAs leads to the identification of a novel 
class of bidirectional promoters, displaying unique sequence and epigenetic features, which 
are associated with the expression of neuronal genes. 
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2. Computational Methods 

2.1 Analysis of miRNA sequence and expression quantification 

Small RNA sequencing data processing procedure 

A pipeline was developed to process small RNA sequencing data from the Illumina 
sequencing platform. The processing pipeline took raw sequencing reads as input and 
reported mapped reads after processing using the following three steps. 

1) Reads filtering step 

First, reads of low quality, reads of low composition complexity and reads derived from 
adaptor contamination were filtered out. Specifically, reads containing nucleotide bases other 
than [ATGC] were treated as low quality reads and were removed. Then reads derived from 
adaptor contamination were identified and filtered out by perfectly matching their 5’ first 10nt 
sequence to the 5’ first 10nt sequence of 3’ adaptor sequence [5' 
TCGTATGCCGTCTTCTGCTTGT 3']. Finally, low complexity reads were filtered using 
mdust algorithm [178]. mdust is a program for identifying and masking out low complexity 
regions from nucleic acid sequences by searching for regions with poor tri-nucleotide content.  

2) 3’ adaptor trimming step 

The reads passed through the reads filtering step were further processed to remove 3’ adaptor 
sequence. Due to the intrinsic character of Illumina sequencing technology, errors will 
accumulate at a much higher rate at the reads 3’ end [179]. Therefore, two to three 
mismatches were allowed for 3’ adaptor trimming empirically. Specifically, the remaining 
sequences were trimmed by matching the 3’ adapter sequence to the 3'-end, allowing 3 
mismatches if the length of the match was greater than 10 nucleotides and allowing 2 
mismatches if the length of the match was between 5 and 10 nucleotides. Reads without 
detectable 3’ adaptor sequence or with length no more than 17nt after trimming were 
discarded. 

3) Reads mapping step 

The trimmed reads were further mapped to the corresponding genome using Short 
Oligonucleotide alignment program (SOAP) with the following parameters (-v 0, -g 0, -r 2). 
SOAP is a program for efficient ungapped and gapped alignment of short oligonucleotides 
onto the reference sequence. It is specifically designed to map huge amounts of short reads 
produced by Illumina high-throughput sequencing [180]. Briefly, SOAP first loaded the 
reference sequence (e.g., the human genome) into memory using 2-bits-per-based encoding 
(required L/4 bytes for the reference with length size L) and built the seed index with hash 
tables. Then for each read, SOAP created seeds and searched the corresponding index table 
for candidate hits based on the number of mismatches between read and reference. In this 
study, I set parameter -v 0 and -g 0 to obtain reads that perfectly and ungapped matched to the 
genome and set parameter -r 2 to report all loci of both unique and multiple mapped reads. 
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The mapped reads were further required to range from 18 to 28 nt in length. Of the mapped 
reads, less than 1% was expected to be mapped incorrectly, as determined by a mapping of 
scrambled reads with the same length and mononucleotide composition distribution 100 times. 
The ungapped match (-g 0) was required for two reasons: 1) Biologically, known small RNAs 
are not under splicing process during their maturation; and 2) Technically, reads have very 
few insertions and deletions from Illumina sequencing platform. Hence, gapped aligned reads 
should not be considered for small RNA analysis. The requirement of perfect match (-v 0) is 
to limit the possible read cross mapping between miRNA members from the same miRNA 
family. Since many annotated human miRNAs deriving from the same miRNA family only 
differ by one or two nucleotides (e.g., let-7b and let-7c), allowing mismatches may lead to 
reads cross mapping between closely related miRNA members. Unlike mRNA RNA-Seq 
analysis, which is usually based on uniquely mapped reads, multiple mapped reads were 
allowed (-r 2). This is because the majority of highly expressed miRNAs have more than one 
loci on the corresponding genome, such as the mature sequence of brain-specific miR-124 
that has three loci on the human genome.  

miRNA expression quantification procedure 

A new quantification procedure was developed to estimate miRNA expression level based on 
mapped reads from Illumina sequencing data and mature miRNA annotation that was 
downloaded from miRBase (version 12) [97]. First, all sequences mapping within three 
nucleotides upstream or downstream of the annotated 5'-position of the mature miRNAs were 
retained, and then reads from all genomic loci producing the same mature miRNA were 
united. The union step is indispensable for correct quantification of duplicated miRNAs that 
have multiple loci on the genome because it avoids double counting the multiple mapped 
reads deriving from the same miRNA. Next, for each mature miRNA, the sequence with a 
maximal copy number was designated as the reference sequence that was used to represent 
the mature sequence for cognate miRNA. Although deemed to be the central global repository 
for all published miRNAs, miRBase is a community resource with somewhat inclusive policy 
[97]. Therefore, defining the reference sequence was necessary and useful to further correct 
false annotated mature miRNA sequences or to define the most frequently used miRNA 
major isoform sequence in specific tissue or cell type. Finally, the expression level of miRNA 
i denoted as ei was calculated as a sum of the copy number of the reference sequence ri and 
the sequences mapping at the same 5'-end position as the reference sequence sij. The last step 
enabled utilizing substantially more reads with 3’end variants to the reference sequence for 
miRNA quantification. 

 

ei = ri + sij
j
∑

 

 

To evaluate the quantification performance, this new miRNA quantification procedure was 
compared with another miRNA quantification procedure that measures miRNA expression by 
counting the number of reads that exactly match the annotated mature miRNA sequences. The 
performance was estimated according to the following aspects: 1) the total read counts used 
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for miRNA quantification; 2) the number of quantified miRNA; 3) miRNA expression 
correlation between human replicate samples; and 4) the number of corrected mature 
miRNAs that were erroneously annotated in miRBase. 

Analysis of miRNA ends heterogeneity 

To estimate the 5’ and 3’ end heterogeneity of miRNA i, first, all sequences mapping within 
six nucleotides upstream or downstream of the annotated 5'-position of the mature miRNA 
were retained and united. Then the sequence with a maximal copy number was designated as 
the reference sequence, and the rest of the sequences were designated as shifted sequences. 
Finally, the heterogeneity of its termini hi was calculated as a ratio by dividing the sum of the 
absolute offset distance between the observed 5'- or 3'- ends and the ends of the reference 
sequence by the copy number of reference sequence ri. For shifted sequence j of miRNA i, the 
absolute offset distance was calculated as the product of the absolute value of the shifted 
number of nucleotide dij and its copy number sij . 

 

hi =
1
ri

dij
j
∑ sij

 

 

2.2 Across-species miRNA sequence and expression comparison analysis 

miRNA orthologous gene prediction 

Since the miRNA annotations in chimpanzee and macaque were quite poor in miRBase, I 
developed a miRNA orthologous gene prediction procedure (MOP) to identify both miRNA 
precursor and mature sequences in chimpanzee and macaque based on human miRNA 
annotation. The ortholog finding procedure consists of two consecutive steps: precursor 
ortholog finding and mature ortholog finding. 

To identify human precursor orthologs, human miRNA annotations were downloaded from 
miRBase (version 12), including both sequence and genomic loci of precursor sequences. 
Then the best precursor orthologs were extracted by using a combination of reciprocal BLAT, 
BLAST and liftOver in chimpanzee and rhesus macaque genomes.  

BLAST (Basic Local Alignment Search Tool) [181] and BLAT (BLAST-Like Alignment 
Tool) [182] are the most widely used traditional local alignment tools for sequence searching. 
One common and important application of BLAST and BLAT is cross-species sequence 
homolog finding. BLAST searches for high scoring sequence alignments between the query 
sequence and target sequences in the database using a heuristic approach that approximates 
the Smith-Waterman algorithm. BLAST can be used for across-species homolog finding for 
both closely and remotely related species. BLAT is a very fast sequence alignment tool 
similar to BLAST. For DNA queries, BLAT is designed to quickly find sequences with 95% 
or greater similarity of lengths of 25 bases or more. In practice, DNA BLAT works quite well 
in finding human orthologs in other primate species [183]. liftOver is a tool primarily 
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designed for converting genome coordinates and genome annotation files between genome 
assemblies [184]. In practice, it can also effectively be used for detecting orthologous 
coordinates between closely related species such as primates. LiftOver had also been used for 
finding orthologous coordinates between moderately divergent species such as humans and 
mice [185]. Sequence coordinates file and chain file are indispensable to executing liftOver. 
A sequence coordinates file is required in BED format. Creating a chain file is very similar to 
a whole-genome alignment, in which for each region in the genome, the alignments of the 
best/longest syntenic regions are used to translate features from one version of a genome to 
another. The chain files can be downloaded from the UCSC genome browser [184]. 

Specifically, the ortholog finding procedure mapped all annotated human miRNA precursors 
to the chimpanzee and rhesus macaque genomes using reciprocal BLAT, BLAST and liftOver 
and required one precursor ortholog to be supported by at least 2 out of 3 methods. Ortholog 
finding using reciprocal strategy is important for identifying the authentic orthologous pairs in 
case lineage specific miRNA duplication and missing happened. It has been efficiently and 
widely used for protein-coding orthologous gene detection.   

For reciprocal BLAT, the ortholog prediction procedure chose the following parameter 
configuration: [-stepSize = 5 -repMatch = 2253 -minScore = 0 -minIdentity = 0]. This 
parameter configuration was adopted from the UCSC genome browser; it is an optimal setting 
for a wide variety of uses and reports all valid matches [184]. The length of each precursor 
ortholog was further required to be more than 70% and less than 130% of the query sequence. 
Similarly, for reciprocal BLAST, the ortholog prediction procedure chose the parameter 
configuration [-F F -b 1 –e 10-5] to search for precursor orthologs and again required the 
length of the hit sequence to be more than 70% and less than 130% of the query sequence. 
Parameter –F was set to F to inactivate masking precursor sequence. Parameter –e was set to 
10-5 to only report hits with E-value of less than 10-5. Parameter –b was set to 1 to report all 
the best hits for each precursor. For reciprocal liftOver, based on human precursor genomic 
loci, the ortholog finding procedure chose the website parameter configuration with Perl LWP 
module [hglft_minMatch = 0.6 hglft_minSizeT = 0 hglft_minSizeQ = 0 
boolshad.hglft_multiple = 0] and similarly required the length of the hit sequence to be more 
than 70% and less than 130% of the query sequence. The Parameter hglft_minMatch was set 
to 0.6 to find precursor orthologs with lengths longer than 60% of the query precursor 
sequence length. hglft_minSizeT and  hglft_minSizeQ were set to 0 to increase searching 
sensitivity. boolshad.hglft_multipl was set to 0 to report all best hits for each precursor.  

Based on the obtained precursor sequences, the next step is to identify the miRNA mature 
orthologous sequence in chimpanzee and macaque. For a given human miRNA precursor, the 
precursor sequences of humans and other two primates (if available) were first aligned using 
ClustalW2 [186] with default parameters. Then the mature orthologs were extracted based on 
aligned precursor sequences.  

To evaluate performance sensitivity, the predicted miRNA orthologs were compared to the 
annotated chimpanzee and macaque miRNAs registered in miRBase (version 12). The 
sensitivity was evaluated as the proportion of known mature miRNAs that can be detected 
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using the orthologous prediction method. The criteria of the reciprocal ortholog finding 
strategy and additional hit sequence length filtering as well as the requirement of combining 
both local and global alignment methods result in the high specificity of the ortholog finding 
procedure. For the predicted miRNA precursor orthologs, the proportion of miRNA 
precursors identified by all 3 tools and the orthologous precursor sequence length differences 
compared to the corresponding human miRNA precursors were analyzed to further estimate 
the quality of predicted miRNA orthologs. For predicted miRNA mature orthologs, I checked 
the miRNA expression correlation within species and between species after quantifying 
miRNA expression in human, chimpanzee and macaque with the new miRNA quantification 
procedure. The clustering pattern of the species with predicted miRNA mature sequence 
expression were further plotted and visualized using UPGMA and NJ trees.   

miRNA differential expression detection 

Characterizing miRNAs that are differentially expressed between conditions or between 
species is a common but important goal for most miRNA studies. miRNA expression 
measured by using deep sequencing technology was summarized as a read count matrix in 
which each column corresponds to a sample and each row is a miRNA. In this study, two 
approaches were employed to identify differential expression based on miRNA read count 
data between species. 
 
The first approach is Fisher’s Exact Test (FET) based method [54]. Before applying the 
statistical test, miRNA count data between two species was normalized using the quantile 
normalization method [187]. Quantile normalization is one of the most robust and effective 
normalization methods not only for gene microarray data, but also for miRNA count data 
[188]. miRNA expression matrix was sorted in a descending order in each column 
(corresponding to each sample), and then the highest expressed value of each column was 
averaged and used to replace the original highest expressed value in all columns. This process 
is repeated with what was originally the second highest value in each column, and the third 
highest, and so on. Finally, quantile normalization makes the entire distribution of data from a 
different sample the same.  

After normalization, for each technical replicate, FET was applied to identify differential 
expression by using the combination of statistical significance, fold-change and detection 
level as criteria (FET p<0.01, FDR<10%, fold-change>2, at least 10 read counts in at least 
one of the two species). As a further requirement, the candidate differential expressed miRNA 
should fulfill these criteria in both technical replicates. The 2 x 2 contingency table below 
shows the miRNA expression used for testing differential expression of miRNA i between 
human and chimpanzee. 
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 Human Chimpanzee Total 

miRNA i n11 n12 n1+ 

Remaining 

miRNAs 

n21 n22 n2+ 

Total n+1 n+2 n 

 
 
To calculate p-value, a 2 x 2 contingency table of FET is equivalent to the hypergeometric 
test: 

 

p(n11) =
n11
n1+( ) n21

n2+( )
n+1
n( )   

 

The null hypothesis is rejected at significance level α if p(x > n11) = p(x) <α
x>n11
∑ . 

 
An alternative approach to obtaining differentially expressed miRNA that is more 
sophisticated and taking reads overdispersion into consideration is using a model-based 
method. In this study, the edgeR (empirical analysis of digital gene expression data in R) [189] 
procedure for single factor differential gene expression analysis was used to identify 
differential expressed miRNA candidates between species. Similar to the aforementioned 
approach using FET, the first step of edgeR procedure is expression normalization. edgeR 
considered two technical factors to normalize sample-specific effects on read counts. The first 
factor is sequencing depth of each sample, which was normalized by varying sequencing 
depth as represented by library sizes (lib.size). The other factor is miRNA composition 
between samples. This factor should be considered when a small number of miRNAs took a 
substantial portion of total library size in sample a, but not in another, which will cause the 
rest of the miRNAs to be undersampled in sample a. edgeR normalized miRNA composition 
effect by using the Trimmed Mean of M-values (TMM) method [190] to find a set of scaling 
factors (norm.factors) that can minimize the log-fold changes (M-values) for most miRNAs 
between samples. To calculate these scaling factors, defining rig and rjg as the number of reads 
from gene g in sample i and sample j and Ni and Nj as the total number of reads from sample i 
and sample j, respectively. Then for the pairs of sample (i, j), the gene-wise log-fold-changes 
were calculated as: 
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Mg = log
rig
Ni

− log
rjg
N j

 

  

Gene expression levels were represented as the mean of log2 normalized counts: 

 

Ag =
1
2
log

rig
Ni

+ log
rjg
N j

⎛

⎝⎜
⎞

⎠⎟  

 

Both the M values and the A values were trimmed before taking the weighted average to 
robustly summarize the observed M values. The product of lib.size and norm.factors 
representing effective library size was finally used to normalize miRNA read count data.  

Next, to address the so-called overdispersion problem, edgeR modeled count data with 
negative binomial (NB) distribution. The NB model has been shown to be a good fit to 
RNA-Seq data and is flexible enough to account for biological variability [191, 192]. Denote 
ygj as the number of reads of gene g of sample j. edgeR assumes that ygj has a mean µgj and a 
variance σ2 as: 

 

σ 2 = µgj +π gµgj
2  

 

where the dispersion πg >0 represents the overdispersion relative to the Possion distribution. 
The parameter µgj is determined by the expression concentration of gene g and sequencing 
depth of sample j. The dispersion πg represents the squared coefficient of variation of the true 
expression levels between biologically independent samples. edgeR used the 
quantile-adjusted conditional maximum likelihood (qCML) method to estimate the dispersion 
parameters, including both tagwise dispersion and common dispersion. Tagwise dipersion is a 
measure of the degree of interlibrary variation for a specific tag. Estimating the common 
dispersion gives an idea of overall variability across the genome. edgeR first estimates a 
common dispersion for all the tags and then applies an empirical Bayes strategy for squeezing 
the tagwise dispersions toward the common dispersion.  

Finally, once the NB model was fitted and dispersion estimations were obtained, edgeR 
conducted an exact negative binomial test to identify differential expressed miRNA [191]. 
The exact p-value was calculated by summing overall sums of counts that have a probability 
less than the probability under the null hypothesis of the observed sum of counts. In this study, 
based on the edgeR result, differential expressed miRNA should fulfill the following criteria: 
negative binomial test p<0.001, FDR <1%, at least 10 read counts in at least one of the two 
species.  



 
30 

2.3 Across-species miRNA regulatory effect analysis 

mRNA expression quantification  

The mRNA expression was measured based on Affymetrix Human Exon 1.0 ST Arrays in 
five human and five chimpanzee prefrontal cortex samples. The Affymetrix Human Exon 1.0 
ST Arrays data were processed via several steps. The first step was probe masking. The the 
human and chimpanzee datasets were processed separately. For the human dataset, the human 
Exon 1.0 ST probes were mapped to the human genome (hg18) and the probes that matched 
the genome perfectly and uniquely were retained. For chimpanzee datasets, the same 
procedure was applied by mapping probes to the chimpanzee genome (panTro2.1). Finally, 
the probes that match both human and chimpanzee genomes were chosen for human and 
chimpanzee gene expression quantification. The second step was probe detection. To 
determine whether the signal intensity of a given probe was above the expected level of 
background noise, the signal intensity for each probe was compared to a distribution of signal 
intensities of the anti-genomic probes with the same GC content. Anti-genomic probes are 
specifically designed by Affymetrix to provide an estimate of the non-specific background 
hybridization. A probe was classified as detected if its intensity was larger than the 95% 
percentile of the anti-genomic probes with the same GC content. To further remove any 
possible systematic experimental bias among arrays, the PM-GCBG correction1 and quantile 
normalization were performed [187]. PM-GCBG corrects the probe signal by subtracting the 
median of the probes’ intensity values that have the same GC content as the given probe. 
Prior to normalization, all intensities were log2 transformed. The last step is gene expression 
summarization. A transcript was classified as detected if more than 80% of probes and at least 
ten probes per transcript were classified as detected. The intensities of transcripts were 
summarized by the median polish method. For the median polish method, given a transcript 
with j probes, its expression in array i was estimated using the average value of 
error-corrected j probe signals in array i. The errors were obtained by iteratively repeating the 
following steps: first subtracting the row median from each point in that particular row and 
then subtracting the column median from each point in that particular column until medians 
converge (converge to 0 or a small number, usually the iteration repeats in less than five 
times). Transcript Cluster Annotations file was used to map the transcript clusters annotated 
by Affymetrix to Ensembl genes. In cases in which multiple transcript clusters mapped to the 
same gene, the gene expression was calculated as the median of all corresponding transcript 
clusters. 

 

Protein expression quantification analysis 

The protein identification and quantification were performed in a so-called “bottom-up” 
manner: Proteins were first converted into peptides, and then the peptide sequences were 
determined by tandem mass spectrometry (MS/MS), combined with the use of search engines 

                                                        

1The original method is described in “White paper: Exon Array Background Correction” on the Affymetrix 
website.    
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and protein databases. Specifically, the protein expression abundance was measured using the 
Label-Free 2D-MS/MS Thermo-LTQ proteomics system with eight humans and eight 
chimpanzee prefrontal cortex samples. Based on the raw compound mass spectra data, 
peptide sequence identification was achieved by searching against the combined dataset 
containing a commonly used human peptide database [193] (IPI human v3.22) and its 
reversed version representing the mock dataset by using the SEQUEST program [194] in 
Bioworks 3.2 software suite. The hits from the mock dataset were considered false positives 
and further used to estimate the false discovery rate (FDR) of the identified peptides. A mass 
tolerance of 3.0 Da and one missed cleavage site of trypsin were allowed. Cysteine 
carboxyamidomethlation was set as static modification, and no other modification was 
checked. At FDR cutoff less than 0.5%, all matches passing a certain Xcorr and delta CN 
were considered valid. Furthermore, all peptides that assigned unambiguously to one protein 
were retained, and those assigned to multiple proteins were discarded. The protein expression 
level of each gene was calculated using the median copy number of all peptides that assigned 
uniquely to any of the isoforms the corresponding gene. Finally, the genes with more than 5 
peptides in human and chimpanzee prefrontal cortex were considered as expressed.  

 

Analysis of miRNA regulatory effect 

The regulatory effect of miRNA was estimated on both mRNA and protein levels. The 
miRNA regulatory effect is determined by whether differently expressed miRNAs can cause 
significant expression changes on their target genes. For the miRNA differently expressed 
between humans and chimpanzees, the targets of miRNA highly expressed in humans were 
expected to be down-regulated in humans. The miRNA target genes were predicted using the 
TargetScan5 algorithm [195], which has good sensitivity and specificity [129]. In general, the 
TargetScan5 algorithm predicted the miRNA target gene based on the presence of conserved 
miRNA binding sites in mRNA 3’ UTR regions.  

miRNA regulatory effect detection on the mRNA level 

Based on predicted targets, to test miRNA regulatory effects on the mRNA level, the gene 
expression between species was first normalized using quantile normalization and the mean 
expression difference (dm) of human and chimpanzee gene expression were further used to 
represent the mRNA expression difference between species.  

 

dm = mh −mc   

 

where mh and mc represent the mean expression of human and chimpanzee, respectively. The 
mean expression for human was calculated as: 
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mh =
1
n

Xh,i
i=1

n

∑
  

 

In this study, only the genes with moderate expression differences between species was used 
to analyze miRNA regulatory effects. The genes with absolute differences between species 
that were smaller than 0.5 were excluded from the analysis. Then, the Wilcoxon rank sum test 
was used to compare the expression difference between the targets of miRNA that were 
highly expressed in humans with targets of miRNA that were highly expressed in 
chimpanzees. Before applying the Wilcoxon rank sum test, the genes that were targeted by 
both miRNA highly expressed in humans and miRNA highly expressed in chimpanzees (i.e., 
targets with inconsistent miRNA effects) were excluded. The Wilcoxon rank sum test, also 
known as the Mann-Whitney U test, is a nonparametric test of the null hypothesis that two 
populations are the same against an alternative hypothesis, especially when a particular 
population tends to have larger values than the other. 

miRNA regulatory effect detection on the protein level 

Due to greater intraspecies variation in the protein data and small sample size for both human 
and chimpanzee data (two samples for each species), when testing the miRNA regulatory 
effects on protein expression, the method was revised to use the effect size, calculated as dp, 
to represent the protein expression difference between species. The t-statistics is not suitable 
to estimate protein expression difference in this study because of the small sample size for 
human and chimpanzee data.   

In general, the simple definition of effect size is the magnitude, or size, of the difference. In 
this study, dp was adopted from Cohen’s d [196], which was defined as the difference 
between two means (mh and mc ) divided by a pooled standard deviation s for the data, which 
expressed the mean difference of protein expression between human and chimpanzee in 
standard deviation units: 

dp =
mh −mc

s
  

 

where mh and mc represent the mean value of protein expression in human and chimpanzee, 
respectively. The pooled standard deviation s was defined as,  

 

s = (nh −1)sh
2 + (nc −1)sc

2

nh + nc − 2
  

where the variance for human was defined as 
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sh
2 =

(Xh,i
i=1

nh

∑ − Xh )
2

nh −1
  

 

The proteins that with absolute effect size smaller than 0.5 were excluded from the analysis. 
The Wilcoxon rank sum test was used to compare the expression difference between the 
targets of miRNA that were highly expressed in humans with targets of miRNA that were 
highly expressed in chimpanzees.  

miRNA regulatory effect detection robustness analysis 

To check the robustness of the detected target effect at both mRNA and protein levels, I 
investiaged whether the significance level of the miRNA regulatory effect was influenced by 
the expression level of differential expressed miRNA. Specifically, various miRNA 
expression level cutoffs were used to identify differentially expressed miRNA and the whole 
miRNA regulatory effect detection procedure was repeated. 

To further test the robustness of the detected target effect, I checked whether the significance 
level of the target effect depended on the choice of the target gene expression divergence 
cutoff. To test this, the median of the gene expression difference of targets was analyzed at 
various gene expression divergence cutoffs.   

2.4 miRNA 5’-isoform identification, quantification and notation 

For a given miRNA i, to identify and quantify its 5’-isoforms, first, all sequences mapping 
within six nucleotides upstream or downstream of the annotated 5'-position of the mature 
miRNAs were retained. Then sequences from all genomic loci producing the same mature 
miRNA were united. After applied the new miRNA quantification procedure described in 2.2, 
all sequences that were not used for canonical miRNA quantification were grouped based on 
their 5’-position loci identity into m sets S=(S1, S2,…,Sm). Within set Sj, the highest expressed 
sequence was designated as the reference sequence to represent 5’-isoform j. The expression 
level of 5’-isoform j from miRNA i was calculated as a sum of the copy number of all 
sequences in set Sj. 

 

ej
(i ) = xk

k∈s j
∑   

 

where ej
(i )  denotes the expression level of 5’-isoform j from miRNA i and xk denotes the 

expression of sequence k from set Sj . 
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To label the identified miRNA 5’-isoforms, the combination of the canonical miRNA name 
annotated in miRBase as well as the 5’ end shift direction and offset number were used a 
notation to represent each miRNA 5’-isoform. Specifically, the negative sign (-) was used to 
indicate that the 5’end of 5’-isoform was shifted to the left (or upstream) compared to the 
annotated miRNA, On the other hand, the positive sign (+) was used to represent that the 
5’end of 5’-isoform was shifted to the right (or downstream) compared to the annotated 
miRNA. A number followed by a positive sign or a negative sign indicated the number of 
nucleotides had shifted away from the annotated 5’end of canonical miRNA. For example, 
the notation “miR-124|-1” denoted a 5’-isoform with one nucleotide shifted to the left of 
annotated miR-124 5’end. 

2.5 Analysis of miRNA 5’-isoform functionality prediciton 

miRNA 5’-isoform functionality prediction methods 

Since the miRNA 5’-isoforms identified in human PFC were conserved between human and 
mouse, I developed a comparative approach to estimate their functionality based on the 
observation of co-evolution between conserved miRNAs and their target sites (see 
Introduction: The miRNA seed region). In this study, the term functionality is defined in the 
context of evolution by measuring whether conserved 5’-isoforms can cause sequence 
constraint on their target sites, which means the functionality of a conserved miRNA 
5’-isoform is estimated based on the its target site conservation status. If the target sites of a 
conserved miRNA 5’-isoform display significantly excessive conservation between species 
than expertation, this conserved miRNA 5’-isoform is considered as functional. The terms 
“seed match”, “miRNA target site” and “heptamer” are equivalent in this study. 

In general, the procedure of functional heptamer prediction is comprised of three steps. The 
first is estimating the observed heptamer conservation based on human-mouse 3’UTR 
alignment by enumerating both conserved and total heptamer occurrence. The second step, 
which is the most crucial, is to obtain the expected conservation or background conservation 
for each heptamer based on the control sets that obtained using sequence-shuffling based 
methods. In the third step, by combining the result of the first two steps, the cutoff 0.05 
representing Benjamini-Hochberg (BH) corrected p-value of the binomial test was used to 
determine whether one heptamer had excessive conservation. In the following section, these 
three steps are depicted in detail. 

Step 1: Estimation of the observed heptamer conservation 

The observed heptamer conservation in human 3’UTR region is measured based on the 
3’UTR alignment between human and mouse. The calculation is comprised of the following 
three steps. 

1) Obtaining representative 3’UTR sequence dataset in human 

The genomic coordinates of human 3’UTR sequences were based on refseq 
protein-coding gene annotation and downloaded from the UCSC Genome Brower (hg18) 
[184]. For the gene with more than one 3’ UTR annotation, the longest 3’UTR was 
retained to represent 3’UTR region of the corresponding gene. The 3’UTR sequences 
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with lengths shorter than 20nt were removed. 

2) Building 3’UTR alignment of human and mouse 

The 3’UTR alignment of human and mouse was extracted from human-mouse whole 
genome alignment based on the representative 3’UTR sequence annotation obtained in 
step 1. Human-mouse whole genome alignment (hg18&mm9) constructed using blastz 
was downloaded from the UCSC Genome Brower [184]. 

3) Enumerating conserved and total occurrence for heptamers.  

Based on the extracted 3’UTR alignment, a sliding window of 7nt (heptamer) was 
scanned along with the alignments with 1nt stepwise. A conserved occurrence for a 
heptamer was defined as a window that has an identical sequence in both human and 
mouse. The total occurrence for a heptamer was counted in human 3’UTR. For a given 
heptamer j, the conserved occurrence cj and total occurrence tj were enumerated. 

 

Step 2: Estimation of the expected heptamer conservation 

A statistically and biologically meaningful result of any sequence motif analysis largely 
depends on choosing an appropriate control set. In this study, the control set for estimating 
the expected conservation for a given heptamer was constructed using sequence-shuffling 
methods. In total, five shuffling procedures were used, including one procedure based on seed 
match sequence shuffling and four shuffling procedures based on 3’UTR alignment shuffling. 
Descriptions of the detailed shuffling procedures were described as follows. 

Seed Match Shuffling Procedure (SSP) 

The procedure for seed match (heptamer) shuffling was adopted from [95]. In general, for a 
given heptamer, its expected conservation was estimated through the average conservation of 
a set of heptamer controls sharing the same mononucleotide frequency and similar occurrence 
in the human 3’UTR. 

First, the occurrence of all possible heptamers (16,384) in human 3’ UTR was enumerated. 
Then, for a given heptamer j, its heptamer controls with the same mononucleotide frequency 
were selected. Next, based on their occurrences in the 3’UTR, the heptamer controls were 
further required to be within ± x% of the occurrence of heptamer j where x belongs to one 
integer from 1 to 15. Whenever possible, the lowest x was chosen with a corresponding set 
that contained at least ten heptamer controls. If no x met this criterion, the lowest x was 
chosen that included at least three heptamer controls. Finally, the expected conservation of a 
given heptamer j was calculated as the average conservation level of its heptamer controls. 

 

pj =
1
n

cji
t jii=1

n

∑
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where pj denotes the expected conservation of a given heptamer j, cji and tji denotes the 
conserved and total occurrences of control i of heptamer j.  

Another method for establishing control sets is shuffling 3’UTR alignment. This strategy has 
not been systemically investigated for estimating miRNA seed match conservation. In general, 
for a given heptamer, its expected conservation was estimated through the average heptamer 
conservation calculated based on 1,000 control sets of shuffled 3’UTR alignment. In this 
study, the alignment is a two-way alignment between human and mouse 3’UTR sequences. 
For a given position in the 3’UTR alignment, there are four possible alignment patterns 
between Seqhuman and Seqmouse (match, mismatch, gap in Seqhuman and gap in Seqmouse). 
Considering these four alignment patterns as well as the sequence nucleotide position, five 
alignment features were derived: global conservation, local conservation, gap pattern, 
mononucleotide frequency and dinucleotide frequency. According to the combination of these 
five alignment features, four shuffling procedures were developed to establish the 3’UTR 
alignment controls used for estimating the expected heptamer conservation.  

3’UTR Alignment Shuffling Procedure 1 (USP1) 

USP1 shuffled 3’UTR alignment by randomly exchanging the columns from the original 
3’UTR alignments. Compared to the original 3’UTR alignment, this shuffling method will 
produce control 3’UTR alignment with the same global conservation and the same 
mononucleotide frequency (Figure 2.1B). However, the gap pattern, local conservation 
pattern and dinucleotide frequency were disrupted.  

3’UTR Alignment Shuffling Procedure 2 (USP2) 

USP2 is similar to USP1 but with an additional criteria. The control 3’UTR alignment was 
required to maintain a gap pattern while keeping the same mononucleotide frequency and the 
same global conservation. Maintaining the gap pattern feature is achieved by separating and 
memorizing the position of gaps in Seqhuman and gap in Seqmouse into two groups and further 
shuffling the columns within each group (Figure 2.1C).   
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Figure 2.1: Example of shuffled 3’UTR alignment of IMMP1L gene using four 3’UTR 
shuffling procedures. (A) The original 3’UTR alignment for IMMP1L gene. (B), (C), (D), (E) 
The shuffled 3’UTR alignment of IMMPlL with USP1, USP2, USP3 and USP4, respectively.  

3’UTR Alignment Shuffling Procedure 3 (USP3) 

By further incorporating the feature of local conservation, USP3 was established on the basis 
of USP2. Similar to keeping the gap pattern, the local conservation pattern is maintained by 
separating and memorizing the positions of matches and mismatches into two groups and 
further shuffling the columns within each group. Following this procedure, the control 3’UTR 
alignment retrained the same mononucleotide frequency, the same global conservation, the 
same gap pattern and local conservation (Figure 2.1D).  

3’UTR alignment Shuffling Procedure 4 (USP4) 

While the control 3’UTR alignment produced by USP1, 2 and 3 maintained mononucleotide 
frequency; USP4 was devised to incorporate another feature that can maintain dinucleotide 
frequency. This is achieved by randomly exchanging the triplets satisfying the following 
criteria: a) triplets with identical bases at position one and position three; and b) position two 
of triplets also have identical sequence match pattern (match and mismatch). Figure 2.1E 
shows an example of shuffled 3’UTR alignment using USP4. 

Following USP1, 2, 3 and 4, separately, 1,000 3’UTR alignment control sets were generated. 
For a given heptamer j, its expected conservation rate pj was then calculated by averaging the 
conservation of the corresponding heptamer calculated based on 1,000 3’UTR alignments 
control sets. 

 

pj =
1

1000
cji
t jii=1

1000

∑
 

  

where cji and tji denote the conserved and total occurrences of heptamer j based on shuffled 
3’UTR alignment set i. 

 

Step 3: Identification of heptamer with excessive conservation using binomial test 

The final step is to determine whether one heptamer has excessive conservation by comparing 
the observed heptamer conservation obtained in Step 1 with the expected heptamer 
conservation obtained in Step 2. For a given heptamer j, its conserved occurrence was denoted 
as cj, its total occurrence was denoted as tj and its expected conservation was denoted as pj. 
Based on binomial distribution, the probability of observing conserved occurrence occurring 
more than cj times can be calculated as the following: 
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p =
t j !

cj (t j − cj )k=cj

t j

∑ pj (1− pj )
t j−cj   

 

Accessing the functionality of a group of seed matches involved the repeated performance of 
the binomial test, which led to multiple hypothesis testing. The latter caused accumulation of 
Type I errors of individual tests, which led to an overall higher chance of falsely rejecting at 
least one tested null hypothesis and therefore increased the chance of false positive 
discoveries. To reduce the false positives caused by multiple hypotheses testing, the false 
discovery rate (FDR) was calculated with the Benjamini-Hochberg (BH) procedure [197] to 
correct for multiple comparisons. FDR controls the expected proportion of incorrectly 
rejected null hypotheses in a list of rejected hypotheses. It is a less conservative multiple 
testing correction procedure with greater power than the Bonferroni correction procedure 
[198], which controls the familywise error rate (FWER). Suppose there are H1…Hm null 
hypotheses and P1....Pm corresponding p-values. To control FDRs under the level of q, BH 
procedure first orders these p-values in increasing order as P (1)…P(m) and further finds the 
largest index k ∈ m such that: 

 

p(k ) ≤
k
m
q  

  

Subsequently, all hypotheses with p-values smaller or equal to P(k) are rejected. 

In this study, heptamer with BH corrected p-value (FDR) less than 0.05 were predicted as 
functional. 

miRNA 5’-isoform functionality prediction performance evaluation 

To evaluate prediction performance and find the best prediction procedure, conserved miRNA 
families and nonconserved miRNA families of human were used as a positive set and a 
negative set to estimate the sensitivity and specificity of the five prediction procedures, 
respectively.  

The reasons for choosing conserved miRNA families and nonconserved miRNA families as 
training sets are as follows. For functional conserved miRNA families such as those 
conserved between human and mouse, their target sites (heptamers) were expected to show 
excessive conservation on the 3’UTR between human and mouse based on the observation of 
co-evolution (See Introduction: The miRNA seed region). On the contrary, for nonconserved 
miRNAs families with seed regions that were not shared beyond primates or that only exist in 
human lineage, one would not expect them to play any role in maintaining the target sites in 
mouse since no such miRNAs were expressed in mouse. Therefore, the seed matches of 
nonconserved miRNA families were not expected to show any excessive conservation on the 
3’UTR. It should be noted that this framework of performance estimation only focused on 
predicting the functionality of conservation miRNA families. Using nonconserved miRNA 
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families as a negative set to estimate specificity does not mean nonconserved miRNA 
families are not functional.  

To obtain conserved and nonconserved miRNA families of human, all annotated miRNAs 
from five vertebrate species (human, mouse, rat, dog and chicken) were extracted from 
miRBase (version 12) [97]. miRNAs were further grouped into miRNA families based on the 
seed sequence identity. The conserved miRNA families were required to be shared between 
human and mouse and also shared in at least one of the rest of the 3 vertebrate species. The 
nonconserved miRNA families were defined as human miRNA families that do not exist in 
the other four vertebrate species. Based on this definition, 162 human conserved and 284 
nonconserved miRNA families were obtained, which corresponds to 262 and 326 human 
miRNAs, respectively. The conserved miRNA and nonconserved miRNA families were 
represented as positive (P) and negative sets (N) to evaluate the prediction performance. The 
true positives (TP) are the conserved miRNA families that predicted as functional. The false 
positives (FN) are the conserved miRNA families that were not predicted as functional. The 
true negatives (TN) are the nonconserved miRNA families that predicted as nonfunctional. 
The false negatives (FP) are the nonconserved miRNA families that predicted as functional. 
Performance was evaluated based on sensitivity (SN), specificity (SP), accuracy (ACC), 
positive prediction value (PPV) and Matthews correlation coefficient (MCC) [199]. MCC is 
generally regarded as one balanced measure for evaluating the quality of binary 
classifications since it takes TP, FN, TN and FP into account. It can be used even if the 
classes are of very different sizes. MCC is in essence a correlation coefficient between the 
observed and predicted binary classifications; it returns a value between −1 and +1. A 
coefficient of +1 represents a perfect prediction, 0 no better than random prediction and −1 
indicates total disagreement between prediction and observation. In this study, MCC value 
was used to determine the prediction performance since the positive and negative sets are 
unbalanced.  

  

SN = TP
TP + FN

 

 

SP = TN
TN + FP

 

 

ACC = TP +TN
TP + FN +TN + FP

 

 

PPV = TP
TP + FP
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MCC = TP ×TN − FP × FN
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

 

 

The method with the best performance was applied to all 16,384 (47) heptamers to obtain the 
proportion of predicted functional heptamer out of 16,384 heptamers.  

Since the majority of sequenced reads from known ncRNAs were from degradation fragments 
that were believed to be nonfunctional, I further compared reads from ncRNA fragments as 
another set of negative control with known conserved miRNAs and 5’-isoforms with respect 
to 1) the relationship of expression level and functionality; and 2) heptamer conservation 
strand bias on 3’UTR. Mapped reads were classified as ncRNA-derived if at least one 
nucleotide of the sequence fell into a known ncRNA genome annotation region. The genomic 
annotation of human ncRNA (excluding miRNA and piRNA) was downloaded from UCSC, 
Ensembl and Refseq. The ncRNA annotations from different sources were further merged if 
at least one nucleotide was overlapped and further combined into a uniform ncRNA 
annotation based on the hierarchical order of UCSC, Refseq and Ensembl. The resulting 
ncRNA annotation mainly included rRNA, tRNA, snoRNA, snRNA, scRNA and misc-RNA 
classes.  

2.6 Analysis of miRNA 5’-isoform functionality verification 

The public mouse gene microarray data from miR-124 pri-miRNA overexpression and 
miR-223 knockout experiments were analzyzed to verify the predicted functional 5’-isoform 
candidates. The preprocessed miR-124 pri-miRNA overexpression gene microarray data were 
downloaded from [200]. The preprocessed miR-223 knockout gene microarray data were 
downloaded from [201]. These two datasets were analyzed separately. For the miR-124 
pri-miRNA overexpression dataset, to obtain exclusively conserved targets (ECTs) of 
miR-124 and its two 5’-isoforms, I first used TargetScan5 to predict conserved target genes 
(conserved between human and mouse) and further selected those that are exclusively 
targeted by miR-124 and its two 5’-isoforms (miR-124|+1 and miR-124|-1, respectively). To 
further remove the potential influence of miR-124 stringently, we excluded the target genes of 
two 5’-isoforms that were targeted by a weaker 6mer seed match of miR-124 (2-7nt) without 
considering conservation, although such 6mer seed matches have very weak regulatory 
effects on targets as was shown before [44]. The nontargets were defined as the genes without 
conserved target sites of miR-124 as well as two 5’-isoforms, predicted by using TargetScan5. 
To estimate whether miR-124|+1 and miR-124|-1 are functional, I compared their expression 
down-regulation magnitude of ECTS to the background nontargets' down-regulation status, 
before and after miR-124 precursor overexpression using the Kolmogorov-Smirnov test (KS 
test) and Wilcoxon rank sum test. Significant down-regulation (KS test p < 0.05 and 
Wilcoxon rank sum test p<0.05) suggests that 5’-isoforms have a regulatory effect on their 
target genes. To estimate the specificity of the regulatory effect of miR-124|+1 and 
miR-124|-1, I applied the same method to further analyze the miR-124 duplex overexpression 
experiments from human Hela cell line downloaded from [129]. The difference between the 
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miR-124 precursor overexpression experiment and miR-124 duplex overexpression 
experiment is that the former experiment can generate both miR-124 and its two 5’-isoforms, 
whereas the latter only produces the miR-124. The same method was used to analyze the 
miR-223 knockout dataset. Significant up-regulation (KS test p < 0.05 and Wilcoxon rank 
sum test p<0.05) suggests that miR-223|+1 was functional since the miR-223 knockout 
should in principle eliminate the regulation of miR-223 and its 5’-isoform from their 
corresponding targets. 

2.7 Analysis of transcriptome reconstruction 

De novo transcriptome assembly  

The quality of raw sequencing reads was first assessed using the FASTX tool kit 
(http://hannonlab.cshl.edu/fastx_toolkit/index.html). After removing low quality reads (phred 
score < 20), raw reads from 14 human prefrontal cortex samples were combined, resulting in 
a total of 284 million 100 nt strand-specific reads. These reads were used as the input data for 
de novo assembly using Trinity [153].  

Trinity is a highly efficient tool for de novo transcriptome assembly that conducts assembly in 
three successive steps with three modules: Inchworm, Chrysalis and Butterfly. In the first step, 
Inchworm assembles reads into contigs using a greedy k-mer based approach. First, a k-mer 
dictionary is built from all sequence reads and error-containing k-mers are eliminated. Then 
Inchworm ranks k-mers in decreasing order of abundance and selects k-mer based on 
abundance ranking to seed a contig assembly. Inchworm further assembles contig using a 
greedy extension based on (k-1)-mer in each direction and concatenating its terminal base to 
the growing contig sequence. Inchworm usually produces one full-length dominant isoform 
per locus, generating just the unique portions of other alternatively spliced isoforms. In the 
second step, Chrysalis clusters related contigs produced by Inchworm into sets of connected 
components based on shared reads support and further builds de Bruijn graphs for each 
component and partitions reads among the components, which allows of processing the 
downstream computations in a massively parallel manner. In the last step, Butterfly reports 
alternative spliced isoforms and paralogous genes. Using the original RNA-seq reads, 
Butterfly reconciles individual de Bruijn graphs produced by Chrysalis in parallel and 
constructs distinct transcripts for splicing isoforms and teasing apart transcripts that 
correspond to paralogous genes.  

Trinity (version r2011-11-26) was downloaded from the Trinity homepage. The assembly 
parameters were as follows: (--seqType fq --single --CPU 80 --min_contig_length 150 
--SS_lib_type F –bflyHeapSpace 260G). The parameters --seqType fq and --single specified 
that the sequencing data was single end in a fastq format. The parameter --min_contig_length 
was set to 150 to specify that the minimum length of reported assembled contigs was no 
shorter than 150nt. The parameter --SS_lib_type was set to F to specify that the sequencing 
library type was strand-specific and reads were from sense orientation. The final assembly 
transcripts were further required to have a length no shorter than 300nt. 
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Assembly transcript contigs mapping 

The transcript contigs produced by Trinity were mapped to the human genome (hg19) using 
GMAP (Genomic Mapping and Alignment Program, version 2011-10-07) [202] with further 
alignment identity and coverage filtering. The transcript contigs were mapped using GMAP 
with default parameters except parameter (-A --microexon-spliceprob 0.95 -f 1). The 
parameter --microexon-spliceprob 0.95 allowed reporting of microexons only if one of the 
splice site probabilities was greater than 0.95.  

GMAP is a standalone program for mapping and aligning cDNA/EST sequences to a genome. 
Several advantages made it the most suitable for handling the many transcript contigs 
generated by de novo assembly: 1) It provides fast high-throughput batch processing for large 
sequence sets using memory mapping and multithreading strategy [202]; 2) it generates 
accurate gene structures, even in the presence of substantial sequence errors and 
polymorphisms [202]; and 3) it locates splice sites accurately without the use of probabilistic 
splice site models, allowing generalized use of cross-species alignment [202].  

Unambiguously and uniquely aligned transcript contigs were further required to meet the 
minimal identity cutoff >0.95 and the coverage cutoff >0.95. Contig clusters were obtained 
by merging overlapping mapped contigs by at least one overlapping nucleotide. The “known” 
and “novel” contig clusters classification was based on Ensembl gene annotation (version 64) 
[203]: Assembled contig clusters that overlapped with at least one annotated transcript by at 
least one nucleotide were classified as “known,” while the remaining contig clusters were 
classified as “novel” 

To identify novel contig clusters that were missing because of the incompleteness of the 
current human genome (hg19), I first collected contig clusters that could not be mapped to the 
human genome after mapping with a relaxed mapping cutoff (mapping minimal identity >0.8, 
coverage >0.5) and further mapped them to four nonhuman genomes (chimpanzee, orangutan, 
rhesus macaque, mouse and rat) using GMAP with an additional parameter (--cross-species). 
The parameter (--cross-species) allows mapping contig clusters across species with high 
sensitivity [202]. Candidate contigs that could be aligned to at least one nonhuman genome 
were further required to meet the minimal identity cutoff >0.8 and the coverage cutoff >0.8. 
Putative protein-coding genes and exons were obtained by overlapping the aligned transcript 
contigs with known annotations from the four nonhuman genomes. 

2.8 Identificaiton of novel elements from transcriptome assembly 

Identification of novel elements from annotated transcripts 

Novel transcribed elements of annotated genes, including novel internal exons, novel splicing 
donor and acceptor splicing sites and novel 5’UTR and 3’UTR extensions, were identified 
based on the assembled contig clusters overlapping with at least one transcript, as annotated 
by the Ensembl database (version 64) [203]. Novel internal exons were defined based on the 
assembled contig clusters sharing at least one exon of annotated transcripts and were further 
required to fully reside within the intron region of this annotated transcript. Novel donor and 
acceptor splice sites were required to share one boundary with an internal exon of an 
annotated transcript and to contain the canonical donor/acceptor splicing sequence (GT-AG) 
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at the novel splice boundary. Novel 5’UTR and 3’UTR extensions were required to share at 
least one exon with annotated transcripts, and each extended region was at least 100nt long. 

Identificaiton of novel lncRNAs 

Novel lncRNAs were identified as the transcripts without overlapps with known annotations 
and display low protein-coding potencials. The coding potential of novel transcript contigs 
was estimated using the two sequence coding potential estimation algorithms, CPC (Coding 
Potential Calculator) [142] and CPAT (Coding Potential Assessment Tool) [143]. For CPC, 
novel transcripts with a CPC score of less than 0 were classified as noncoding transcripts. The 
CPC score cutoff was adopted from the CPC website. For CPAT, the score cutoff 0.364 was 
used to distinguish coding and noncoding transcripts as recommended by the CPAT website 
(CPAT score < 0.364 indicates noncoding sequence).  

CPC is a protein-homology-based coding potential estimation algorithm that accesses 
transcript coding potential based on six biologically meaningful features using support vector 
machine (SVM). The first three features are related to the quality of the open reading frame 
(ORF) in a transcript, including ORF coverage, ORF log-odds score and the integrity of ORF. 
The rest three features are derived from the similarity to known protein-coding genes through 
BLAST search against a common protein dataset, e.g. e.g., UniProtKB/Swiss-Prot [204]. The 
features include the number of hits to the known protein-coding gene (E-value cutoff 10-10) 
and the average and variance of E-values of HSPs of three frames. 

CPAT is an alignment-free coding potential estimation algorithm that achieves high 
sensitivity and specificity by using a logistic regression model built with four sequence 
features: open reading frame (ORF) size, ORF coverage, Fickett TESTCODE statistic and 
hexamer usage bias. ORF size is the maximum length of all predicted ORFs of a given 
transcript. ORF coverage is defined as the ratio of ORF size to transcript length. Fickett 
TESTCODE statistic [205] is a sequence feature combining effects of nucleotide composition 
and codon usage bias, which is calculated based on four position values and four composition 
values (nucleotide content) from the DNA sequence. Hexamer score is a log-likelihood ratio 
score that determines the relative degree of hexamer usage bias in a given transcript. A 
positive log-likelihood ratio score indicates a coding sequence, whereas a negative score 
indicates a noncoding sequence.  

Since CPC and CPAT utilized different features and strategies to access transcript coding 
potential, the intersection of the predicted noncoding transcripts of these two methods was 
used to distinguish novel long noncoding RNAs (lncRNAs) from total novel transcripts from 
human prefrontal cortex.  

Several advantages made CPC and CPAT suitable for predicting the coding potential of 
assembled novel transcripts. First, both CPC and CPAT have discriminatory power for both 
conserved and nonconserved transcripts. This feature is crucial since the majority of 
annotated human lncRNAs and novel transcripts identified in this study are poorly conserved. 
The multiple-alignment-based coding potential estimation algorithm, such as PhyloCSF [143], 
is not suitable for analyzing nonconserved transcripts. Second, both algorithms produce 
highly accurate results. The prediction accuracy of CPC is 95.77% through 10-fold 
cross-validation in training sets [142]. CPAT achieves sensitivity 0.96 and specificity 0.97 for 



 
44 

a human testing dataset [143]. 

2.9 Analyis of sequence, expression and genomic context of novel lncRNAs 

Sequence and expression property analysis of novel lncRNAs  

The sequence and expression properties of novel lncRNAs were analyzed in terms of 
expression abundance, sequence conservation, transcript splicing site signal, tissue expression 
specificity, nuclear and cytoplasmic localization preference and temporal expression pattern 
during human PFC development. 

Expression abundance estimation 

The expression abundances of lncRNAs were calculated based on uniquely mapped reads and 
summarized in RPKM (Reads Per Kilobase of exon model per Million mapped reads) [206]. 
The uniquely mapped reads were obtained through the reads mapping results from TopHat 
[207] with default parameter and further screened using SAMtools [208]. For each gene, the 
mean RPKM value of 14 human PFC samples was used to represent its expression abundance. 
RPKM is the most commonly used gene expression abundance estimation method that 
normalizes gene expression with gene length and sample sequencing depth, thus facilitating 
comparison of transcript levels both within and between samples. The expression abundance 
of gene i in sample j was estimated in RPKM as: 

 

  RPKM (i) = 10
9 ⋅Ci

N j ⋅Li
 

 

where Ci is the number of uniquely mapped reads that fell into the exons of gene i; Nj is the 
total number of uniquely mapped reads in sample j; and Li is the sum of exons in base pairs of 
gene i. 

Exon sequence conservation 

Exon conservation was estimated using phastCons score based on 17 vertebrate species’ 
genomes data (phastCons17way) downloaded from UCSC [184].  

The PhastCons score is a posterior probability that each nucleotide belongs to a conserved 
element, which is calculated by the PhastCons program [209]. PhastCons program is a 
phylogenetic hidden Markov model (phylo-HMM) based method that estimates the 
probability that each nucleotide belongs to a conserved element, based on the multiple 
alignment and phylogenetic models for conserved and nonconserved regions. PhastCons 
scores range from 0 to 1. A high PhastCons score means the site has a higher probability of 
being conserved.  

For each exon, the average of all nucleotides’ phastCons scores were used to represent its 
conservation (require more than 80% of exon’s nucleotides to have a valid phastCons score). 
The same sequence conservation calculation procedure was used for the other five genomic 
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sequence categories: randomly selected intergenic region, annotated lncRNAs, pseudogenes, 
and CDS and UTR regions of protein-coding genes. 

Transcript splicing site signal 

The presence of canonical donor and acceptor site splice signals within novel lncRNAs was 
identified using the most canonical splicing signal GT-AG motifs. The nucleotide 
composition at splice sites (positions 11-12) and surrounding region (10nt upstream and 
downstream) was measured using bits of entropy and illustrated using sequence logo. The 
same calculation procedure was used for protein-coding genes. 

Tissue expression specificity 

Tissue specificity was estimated using RNA-seq data from the Human Body map [15]. To 
increase tissue coverage, two deep sequencing datasets with comparable sequencing coverage 
(fetal brain and fetal liver) [210] were combined with Human Body map data, resulting in 
sequencing data from a total of 19 human tissues. The tissue expression specificity of all 
novel lncRNAs, with a mean expression >0.1 RPKM across tested tissues, was measured 
using Shannon entropy [211]. For a given novel transcript contig i, its expression in tissue j 
was denoted as eij. The Shannon entropy hi across 19 tissues was calculated as  

 

hi = − pij
j
∑ log2(pij )  

 

where pij is measured by  

 pij =
eij
eij

j
∑   

 

 The same tissue expression specificity calculation procedure was used for two other genome 
sequence categories: annotated protein-coding genes and lncRNAs. 

The nuclear and cytoplasmic localization preference 

The nuclear and cytoplasmic localization preference of novel lncRNAs was estimated using 
RNA-Seq data from SK-N-SH cells (GSE30567) from ENCODE/Cold Spring Harbor Labs. 
SK-N-SH is a human neuroblastoma cell line commonly used as in vitro models of neuronal 
function and differentiation. The RNA-seq data from nuclear and cytoplasmic fractions of 
SK-N-SH were mapped to the human genome (hg19) using TopHat [207], with default 
parameter. The uniquely mapped reads were further screened using Samtools. The expression 
levels of novel transcript and annotated protein-coding genes as well as annotated lncRNAs 
were measured in RPKM with uniquely mapped reads. For a given novel transcript, its 
localization preference was estimated as a ratio between cytoplasmic expression abundance 
and nuclear expression abundance. The same localization preference calculation procedure 
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was used for another two genome sequence categories: annotated protein-coding genes and 
lncRNAs.   

Temporal expression patterns 

To analyze temporal expression patterns of novel lncRNAs in human PFC development and 
aging periods, novel lncRNAs were quantified and estimated into RPKM separately in each 
of 14 human PFC samples with different ages. A polynomial regression-based age test 
developed in [212] was used to identify novel lncRNAs with age-related expression patterns. 
For each gene, an age test determined the effect of age on the expression by selecting the best 
polynomial regression using age (in log2 days scale) as predictor and expression level as 
response. The best regression model was chosen from all possible linear-to-cubic models by 
using F-test and the adjusted r2 criterion [213]. Specifically, age test first fits a third-degree 
polynomial regression model and all six subregression models with age for gene i as: 

 

yij = β0i + β1ia j + β2ia j
2 + β3ia j

3 + ε ij
yij = β0i + β1ia j + ε ij
yij = β0i + β2ia j

2 + ε ij
yij = β0i + β3ia j

3 + ε ij
yij = β0i + β1ia j + β2ia j

2 + ε ij
yij = β0i + β1ia j + β3ia j

3 + ε ij
yij = β0i + β2ia j

2 + β3ia j
3 + ε ij

 

 

where yij represents the expression level of gene i in sample j, aj denotes the age of sample j 
and εij denotes the error term.  

Next, to find the best regression model, the age test compared all the above seven models to 
the null model:  

 

yij = β0i + ε ij  

 

by using F-test and further selecting the best model that has the highest adjusted r2. The 
adjusted r2 value represents the amount of variance that can be explained by the specific 
model [213]. Since the number of parameters of the corresponding model penalizes adjusted 
r2, an overfitting problem can be largely avoided. One gene is considered age-related if the 
model with the highest r2 is significant in F-test at the predetermined FDR cutoff.  

In this study, age-related novel lncRNAs were identified using age test at p<0.01 under FDR 
2%. The p-value cutoff and corresponding FDR were calculated based on 1000 permutations. 
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Specifically, I randomly made the age assignments across 14 samples 1000 times and 
repeated the age test for all genes to obtain F-test p-values. At each p-value cutoff, I 
calculated the number of novel lncRNAs with p-value below the cutoff in 1000 permutations 
and used the median value as the false positives. The FDR at each p-value was calculated as 
the ratio between estimated false positives and the original number of age-related genes. The 
same age test and FDR estimation procedures were applied to the protein-coding gene with 
mean expression >0.1 RPKM to obtain age-related protein coding genes. 

To classify the expression pattern of age-related novel lncRNAs and protein-coding genes, 
K-means clustering algorithm [214] was used to group age-related novel lncRNAs and known 
protein coding genes into 12 clusters. K-means is one widely used unsupervised clustering 
method. For a given set of observations (x1, x2,...,xn) and cluster number K, k-means aims to 
group n observations into k (k<=n) sets S=(S1, S2,…,Sk). The main idea of K-means is to find 
the squared error function J that minimizes the total intra-cluster variance: 

 

 
J =  xi − cj 

2

i∈Sj
∑

j∈[k ]
∑

 

 

where cj is the mean of points in Sj and   xi − cj 
2 measures Euclidean distance of data point 

xi to the cluster center cj.   

Before conducting K-means clustering, the gene expression values were normalized into 
z-scores for each novel lncRNAs and protein-coding genes. Transforming the expression 
value into z-scores allows K-means clustering of transcripts based on expression patterns 
instead of expression abundance. The z-score (z) value of the expression value x of gene i in 
sample j was calculated by: 

 

z = x − µi

σ i  

 

where µi and σi denote the mean and standard deviation of the expression of gene i. 

Within each cluster, Fisher’s exact test was used to calculate the enrichment of novel 
lncRNAs and protein-coding genes by using all age-related novel lncRNAs and protein 
coding genes as background. Fisher’s exact test p<0.05 after Bonferroni correction was 
considered significant. 

Novel lncRNAs classification based on genomic context 

Novel lncRNAs located outside of annotated gene regions but within the 4kb region were 
classified into four categories based on their location with respect to the nearest annotated 
gene: upstream-sense (UA-lncRNA), downstream-sense (DS-lncRNA), upstream-antisense 
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(UA-lncRNA) and downstream-antisense (DA-lncRNA). The 4kb distance cutoff used to 
identify novel lncRNAs-annotated gene pairs was defined using random transcript pairs 
distance distribution, calculated by 1,000 permutations of novel lncRNAs loci along each 
chromosome (for each permutation, keeping the same number of novel lncRNAs on each 
strand of each chromosome). To check whether novel lncRNAs were significantly correlated 
with nearby protein-coding genes at the expression level, I used a Wilcoxon rank sum test to 
compare the observed distributions and each of the 200 simulated distributions of the 
correlation coefficients to determine how many passed the statistical significance cutoff. 
Specifically, for each permutation, I randomized the relationship between novel lncRNAs and 
nearby protein-coding genes and estimated the statistical significance of the correlation 
distribution difference using the Wilcoxon rank sum test.  

2.10 Analysis of divergent transcription and function features of NBiPs 

Analysis of promoter divergent transcription feature 

The divergent transcription from promoters was estimated by deepCAGE (Cap analysis of 
gene expression) data from brain tissues downloaded from FANTOM4 [215]. deepCAGE 
measured short (approximately 27 nucleotide) sequence tags originating from the 5' end of 
full-length mRNAs based on deep sequencing technology and therefore can be used to obtain 
transcription start sites (TSSs) genome-wide [215]. To define the divergent transcription 
features specific to the promoters associated with UA-lncRNAs, unidirectional and known 
bidirectional expressed annotated genes were used as background for comparison. The criteria 
to select unidirectional, known bidirectional promoters and novel bidirectional promoters 
were as follows: For known bidirectional promoters (KBiPs) and novel bidirectional 
promoters (NBiPs), genes were required to form head-to-head gene pairs within the region of 
2kb from TSS. For unidirectional promoters (UniPs), genes were required to have no 
annotated transcripts, or novel transcript contigs identified in this study, within the 5kb region 
upstream of their TSS. The promoters defined as showing divergent transcription were 
required to have at least one CAGE tag on each strand. Unidirectional promoters were 
required to have at least two CAGE tags at the annotated gene’s strand and zero tag at the 
opposite strand. The promoters containing no CAGE tags were excluded. Divergent 
transcription feature (Di-trans feature) was calculated as the ratio between the number of 
promoters with bi- and uni-directional expression detected using deepCAGE data. Fisher’s 
exact test was used to calculate the divergent transcription feature enrichment for the 
promoters associated with UA-lncRNAs, compared to the unidirectional promoters. 

Analysis of function feature of genes associated with NBiPs 

The protein-coding genes that showed significant positive correlation with the expression of 
UA-lncRNAs transcribed from NBiPs were selected for function feature analysis (Pearson 
correlation p<0.05 after Benjamini-Hochberg correction). Functional feature analysis includes 
GO enrichment analysis, gene enrichment analysis with the genes showing mouse brain 
cell-type specific expression patterns and promoter H3K4me3 modification enrichment 
analysis between human PFC neurons and non-neuronal cells. 

GO functional enrichment was conducted using a hypergeometric test implemented in the 
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Genetrail package [216]. Functional term with p<0.05 after Benjamini-Hochberg correction 
was considered significant. Protein-coding genes with mean expression >0.1RPKM in human 
PFC data were used as background. Enriched GO terms were visualized after term 
redundancy reduction using REVIGO (Reduce Visualize Gene Ontology) [217]. REVIGO 
processed and summarized a long list of GO terms into a short list of nonredundant ones 
based on the GO terms' semantic similarity [ref]. The resulting GO terms can be visualized in 
semantic similarity-based scatterplots. The same functional enrichment analysis procedure 
was applied to protein-coding genes associated with US-lncRNAs, DS-lncRNAs and 
DA-lncRNAs. 

The list of mouse genes with known cell-type-specific expression patterns was downloaded 
from [218]. These genes were derived from three brain cell types: neurons, astrocytes and 
oligodendrocytes. Human orthologs were determined based on 1:1 orthologs between mouse 
and human using Biomart from Ensembl [203]. Fisher’s exact test (FET) was used to test the 
enrichment significance for overlapping with three cell-type specific genes, and p<0.05 after 
Bonferroni correction was considered significant.  

H3K4me3 modification enrichment analysis between neurons and non-neuronal cells from 
human PFC was conducted using ChIPDiff [219] based on H3K4me3 data from GSE21172 
[220]. ChIPDiff is a Hidden Markov model (HMM) based approach for genome-wide 
identification of differential histone modification sites (DHMSs) from ChIP-Seq data. To 
identify DHMSs, the most straightforward solution is to partition the genome into bins and 
calculate the fold-change of the mapped ChIP-Seq fragments in each bin. However, such a 
fold-change method is sensitive to technical noise caused by randomly sampling ChIP-Seq 
fragments. ChIPDiff improved the fold-change method by considering the correlation 
between consecutive bins modeled in a Hidden Markov model (HMM). The HMM 
transmission probabilities were trained in a unsupervised manner and followed by the 
inference of the states of histone modification changes using the trained HMM parameters. 
The uniquely mapped reads were obtained using Bowtie [221], allowing three mismatches. 
The reads mapped to the same genomic location were counted only once to avoid 
PCR-amplification artifact. The DHMSs were predicted using ChIPDiff with default 
parameter. The regions with more than two-fold higher H3K4me3 modification signals in 
neurons than in non-neuronal cells were considered regions preferentially expressed in 
neurons (assigned with a “N” flag). The regions with opposite modification signal patterns 
were considered regions preferentially expressed in non-neural cells (assigned with a “non-N” 
flag). Significance was assessed by 1,000 permutations of N and non-N flag labels. 

Enriched transcription factor binding site identification in NBiP 

Transcription factor binding sites (TFBSs) located within NBiP and KBiP regions were 
predicted using the MATCH algorithm [222] based on TRANSFAC Release 11. MATCH is a 
TFBS prediction tool based on predefined Position Weight Matrices (PWMs) representing 
motifs of transcription factors (TFs). For a given TF, MATCH calculated the similarity scores 
for the whole PWM and five most informative sites of the PWM and used predefined score 
cutoffs to predict TFBSs. In this study, to minimize false positive matches, the matrix file 
vertebrate_non_redundant_minFP.prf was used for TFBS prediction. Enriched TFBS in NBiP 
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regions were identified by Fisher’s exact test, using KBiP regions as background. 
Significantly enriched TFBS were required to fulfill the following criteria: 1) 
Benjamini-Hochberg adjusted p-value < 0.05; and 2) Fisher’s exact test odds ratio >1.3.  

To check for potential association between TFs enriched in NBiP and KBiP and neuronal 
functions, CoCiter [223] was used to estimate the significance of association between 
enriched TFs with the terms “neuron” and “neural,” respectively. CoCiter used a text-mining 
based approach to infer the association between a gene set and a term set. To determine 
whether the enriched TFs are significantly co-cited with the term “neuron,” CoCiter first 
obtained the PubMed abstracts with the co-citation for enriched TFs and the term “neuron” 
and furthermore used the full text search for each term with the PubMed abstracts. Co-citation 
impact (CI), defined as the log-transformed paper count CI=log2 (N+1), was used to represent 
the co-citation level, where N is equal to the number of papers that have co-citation for 
enriched TFs and the terms “neuron.” Assessment of the significance of the co-citation, 
CIrandom, is calculated by 1000 permutations that select the same gene size as enriched TFs 
with the terms “neuron.” The permutation p-value is defined by the number of times (CIrandom 

>= CI) divided by 1000.   

2.11 Analysis of the DNA sequence and epigenetic features of NBiP 

NBiPs, KBiPs and UniPs were defined in Section 2.10. The putative promoter regions were 
defined as upstream and downstream 2kb regions surrounding the annotated transcription 
start site (TSS). Three DNA sequence features (GC content, sequence conservation and 
regulatory potential) and two epigenetic features (H3K4me3 modification profile and DNA 
methylation status) were explored.  

Specifically, GC content was measured as the G+C percentage of the promoter region. 
Promoter region conservation was estimated using phastCon scores based on 17 vertebrate 
species' genome data and using the same approach as for estimating novel contig conservation. 
Regulatory potential was estimated using the Regulatory Potential (RP) Scores [224] 
downloaded from UCSC [184]. In brief, RP scores are derived from a log-ratio comparison 
between transition probabilities of two Markov models that are estimated using training data 
from alignments of experimentally confirmed regulatory elements and aligned ancestral 
interspersed repeats. RP scores can efficiently distinguish regulatory regions from neutral 
sites and therefore can be used to identify putative regulatory sites of the human genome. A 
higher RP score suggests a higher possibility that the corresponding site is functional. For 
each promoter, the average RP score was used to represent its regulatory potential (require 
more than 80% of promoter nucleotides to have a valid RP score). The differences with 
respect to each of the three DNA features among these three promoter types were tested using 
the Kolmogorov-Smirnov test.  

H3K4me3 modification ChIP-Seq data from one adult human PFC was downloaded from 
[225]. H3K4me3 modification and input control ChIP-Seq data from rhesus macaque PFC 
was downloaded from [226]. The ChIP-Seq raw reads were mapped to the corresponding 
genomes (hg19 for human and rheMac2 for macaque) using Bowtie [221] with default 
parameter except requiring uniquely mapping by using parameter (-m 0). Before mapping, 
raw reads were collapsed to avoid PCR amplification artifacts. H3K4me3 modification 
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density differences between different promoter types were tested using the Wilcoxon rank 
sum test. For DNA methylation data, the DNA methylation status of the human PFC, 
measured by MeDIP sequencing (Methylated DNA Immunoprecipitation Sequencing), was 
downloaded from [225]. The same reads mapping procedure for human H3K4me3 
modification ChIP-Seq data was applied to MeDIP sequencing data. The DNA methylation 
level differences between different promoter types were tested using the Wilcoxon rank sum 
test. Lower MeDIP reads signals indicate a lower DNA methylation magnitude of the 
corresponding promoter.   

2.12 Analysis of general regulator of NBiP 

The RNA-Seq data of PABPN1 knockdown and control experiments were downloaded from 
SRP015926. TopHat [207] was used to map the RNA-Seq reads onto human genome (hg19), 
allowing at most three edit distances. Only uniquely mapped reads were retained for cufflinks 
to quantify the expression of known protein-coding genes, known lncRNAs and novel 
lncRNAs. The regulatory effect of PABPN1 on gene expression was estimated by gene 
expression difference between PABPN1 knockdown and control conditions (corresponding to 
the gene expression fold-changes in log2 scale). The positive values indicate a negative 
regulation relationship between PABPN1 and corresponding genes, and negative values 
indicate the reverse regulatory relationship.  
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3. MicroRNA Expression and Regulation in Human, 

Chimpanzee and Macaque Brains 

The across-species miRNA comparison study is an effective way to elucidate the potential 
function of miRNAs in the evolutionary context. As described in the Introduction (Section 
1.4), the human brain, especially the human prefrontal cortex, which is distinguished with 
regard to both function and evolution, is a target for investigation of the molecular 
mechanism underlying the human's unique cognitive function. To build the framework for 
general across-species miRNA comparison and investigate the roles of miRNA in 
determining gene expression divergence between species in the prefrontal cortex (PFC), I 
based my analysis on small RNA sequencing (Illumina) data generated from the prefrontal 
cortex of humans (age: 14-58 years), chimpanzees (age: 12-40 years) and rhesus macaques 
(age: 6-15 years) using samples containing RNA pooled from multiple individuals. To assess 
technical variation of the sequencing measurements, small RNA libraries were prepared and 
sequenced twice. Furthermore, I analyzed small RNA sequenceing data of cerebellum that 
was obtained from two human samples, one chimpanzee sample and one rhesus macaque 
sample, all composed from RNA pooled from multiple individuals (Table 3.1). 

3.1 Small RNA sequencing data processing and mapping 

To compare miRNA expression abundance based on small RNA sequencing data in human, 
chimpanzee and macaque brains, the first step was to obtain mapped reads on the cognate 
genomes. Since known miRNAs are shorter than the raw sequencing reads (usually longer 
than 36nt for the Illumina platform), the 3’ sequencing adaptor must be trimmed before reads 
mapping. Furthermore, low quality reads should be filtered out to increase mapping accuracy 
and decrease the amount of memory required for mapping. Therefore, a small RNA 
sequencing data processing pipeline was developed (Section 2.1) that included reads filtering, 
3’ adaptor trimming and reads mapping (Figure 3.1). By applying this pipeline to raw 
sequencing data, on average, ~49% of reads can be mapped to the corresponding genome 
perfectly (Table 3.1).  

Based on the mapped reads, the reads length distributions along with the 5’ position 
nucleotide preference were further analyzed. As expected, miRNAs represented the major 
portion of small RNA transcriptome in brain tissues of 3 species. As shown in Figure 3.2, the 
majority of mapped reads (>91%) were within the length range between 20 nt to 24 nt with a 
clear read length peak at 22 nt, which was consistent with the length distribution feature of 
known miRNAs [111]. In line with another miRNA sequence feature [114], mapped reads 
with lengths between 20 nt and 24 nt displayed a remarkable 5’ position uridine (U) bias. The 
reads length distribution and 5’ position nucleotide bias were highly consistent across all 
samples of 3 species, which strongly supported the validity of the developed small RNA reads 
processing pipeline.   
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Figure 3.1: Small RNA sequencing data processing pipeline. The workflow illustrates the three 
consecutive steps of small RNA processing pipeline (reads filtering, adaptor trimming and read 
mapping) using small RNA data from Hu1 PFC sample as an example. The numbers in black 
and grey represent the number of reads that were retained and filtered out in each processing 
step. 
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Figure 3.2: The length and 5’ position nucleotide distribution of mapped reads in PFC samples. 
The x-axis represents the length of mapped reads; the y-axis represents the proportion of 
mapped reads corresponding to each read length (18-28nt). The colors represent reads with 5’ 
position nucleotide: A (blue), C (orange), G (green) and U (red). The labels represent species: 
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Hu1—Human; Hu2—Human technical replicate; Ch1—Chimpanzee; Ch2—Chimpanzee 
technical replicate; Ma—Macaque; and Ma2—Macaque technical replicate. 

 

Table 3.1: Sample information and mapping statistics of small RNA sequencing data from 
human, chimpanzee and macaque brains 

Tissue Sample name 
Samples 

description 
Total sequence 

reads 
Total perfectly 
mapped reads 

Mapped 
percentage 

Prefrontal 
cortex 

Hu1 Human 6,486,498  3,889,203  61% 

Prefrontal 
cortex 

Ch1 Chimpanzee 7,240,683  3,810,304  53% 

Prefrontal 
cortex 

Ma1 Rhesus Macaque 7,241,538  3,868,622  53% 

Prefrontal 
cortex 

Hu2 
Human technical 

replicate 
7,286,720  2,021,639  28% 

Prefrontal 
cortex 

Ch2 
Chimpanzee 

technical replicate 
7,828,607  3,124,110  40% 

Prefrontal 
cortex 

Ma2 
Rhesus Macaque 

technical replicate 
6,517,061  3,560,515  55% 

Cerebellum Hu1 Human 8,241,330  4,112,341  50% 

Cerebellum Hu2 
Human biological 

replicate 
9,448,226  4,314,605  46% 

Cerebellum Ch1 Chimpanzee 7,776,308  3,948,506  51% 

Cerebellum Ma1 Rhesus Macaque 8,377,265  4,413,761  53% 

 

 

3.2 Comparison between mapped reads and annotated miRNAs 

To make better miRNA quantification based on mapped reads, as an initial step, the loci of 
mapped reads were compared with the genomic coordinates of annotated miRNAs in human 
PFC samples. miRBase is considered the gold-standard miRNA database in which each 
mature miRNA is annotated as a unique sequence [97]. However, based on the mapped reads 
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distribution along annotated miRNA precursors, a substantial number of end shifts between 
mapped reads and annotated miRNA mature sequences were observed. These sequences with 
end shifts were named “miRNA isoforms.” The sequences with end shifts at the 5’end, 3’end 
and both ends were called "5’-isoforms”, "3’-isoforms" and "5’&3’-isoforms", respectively. 
Furthermore, a set of reads from the opposite arm of annotated miRNAs were observed, that 
in most cases represented reads from novel miRNA* sequences. Take miR-100 as an 
illustration (Figure 3.3). There are in total 4,086 reads mapped to three nucleotides upstream 
or downstream of the annotated miR-100 mature sequence. Of these, only 2,178 (53%) reads 
were exactly matched to the annotated miR-100 mature sequence. The rest of the sequences 
were mainly derived from 3’ isoforms of miR-100 (1900 reads, 46.5%). 

On average, only ~70% of reads from the miRNA precursor region were exactly matched to 
the annotated mature miRNA sequences in human PFC. Less than 29% of reads were from 
3’-isoforms, 5’-isoforms and 5’&3’-isoforms. The remaining ~1% of reads came from novel 
miRNA* sequences (Figure 3.4A). Most of the reads shifts (~97%) were within 3nt upstream 
and downstream of annotated mature sequences, and 3’-isoforms showed a broader end shift 
pattern than 5’- isoforms (Figure 3.4B).  

 

 

Figure 3.3: The pattern of mapped reads on human miR-100 precursor sequence. The plot 
shows the pattern of mapped reads on miRNA precursors by taking miR-100 as an example. 
miR-100 precursor sequence is shown on the top of the plot, with the annotated miR-100 
mature sequence labeled in red and the predicted base-pairing secondary structure in 
dot-bracket notation underneath. The mapped reads can be classified into five types: reads in 
red represent reads exactly matching the annotated miR-100 mature sequence (annotated); 
reads in blue, orange and green represent reads that have 3’end shifts (3’isoform), 5’ end shifts 
(5’isoform) and 5’&3’ ends shifts (5’&3’isoform), respectively; and reads in purple represent 
reads from novel miRNA* identified in this study (novel miR*). The read count number of 
mapped reads is shown on the right. 

 

 



 
56 

Anno miR
70.5%

Novel miR*
0.8%

pure3shift
22.7%

pure5shift
1.6%

5&3shift 4.4%

(A)� (B) � (C)�

(D)�

ï� ï� ï� ï� ï� ï� �� �� �� �� �� ��
Number of offset

pr
op

or
tio

n
0.

0
��
�

��
�

��
�

��
�

��
�

5'shift
3'shift

5'shift 3'shift

0.
0

0.
5

1.
0

1.
5

2.
0

he
te
ro
ge
ni
ty

 

Figure 3.4: The expression abundance and end shift pattern of microRNA isoforms. (A) 
Proportion of reads from annotated miRNA, miRNA isoforms and novel miRNA* sequences 
in human PFC. (B) Proportion of reads corresponding to each end offset for reads showing 5’ 
shifts and 3’ shifts. (C) miRNA 5’end and 3’ end heterogeneity values calculated in Section  
2.1. (D) One example of miRNA with potential misannotated mature sequence from miRBase. 
The annotated miR-935 miRNA mature sequence and corresponding exactly matched reads 
was labeled in red.  

 

To further quantify the extent of mapped reads end shift magnitude compared with annotated 
miRNAs, miRNA ends heterogeneity was calculated (Section 2.1). As shown in Figure 3.4C, 
miRNA 5’ end heterogeneity was significantly lower than 3’ end heterogeneity (Wilcoxon 
rank sum test, p<2.2e-16), which was in line with the importance of miRNA seed regions that 
mostly determined miRNA function [122]. I also found that 160 miRNA mature sequences, 
representing 28% of expressed miRNAs in human PFC, were probably misannotated since 
the expression of annotated mature sequences was less abundant than at least one isoform of 
corresponding miRNAs. One example of potential misannotated miRNA sequence is shown 
in Figure 3.4D. These results indicated that the quantification method by counting reads 
exactly matching the annotated miRNA mature sequence should be revised to resolve the 
substantial reads with end offsets and to solve the miRNA sequence misannotation problem.  

3.3 miRNA expression quantification in human brains 

Based on these observations, to quantify miRNA expression more precisely, a new miRNA 
quantification procedure was developed, that can conduct miRNA quantification and mature 
sequence identification simultaneously (Section 2.1). Take miR-139-3p, for example, to 
illustrate the quantification process (Figure 3.5A). There were 16 sequences corresponding to 
2793 reads mapped within three nucleotides upstream or downstream of the annotated 
5'-position of miR-139-3p mature sequence. Of these, the annotated miR-139-3p mature 
sequence only took 24 reads (0.86%), suggesting the mature sequence of miR-139-3p from 
miRBase was misannotated. To identify the correct miR-139-3p mature sequence, the new 
quantification procedure ranked these 16 sequences based on their expression level and 
furthermore designated the sequence with a maximal copy number as the reference sequence 
to represent miR-139-3p mature sequence. The newly identified miR-139-3p mature sequence 
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took 1701 reads, which was 70 times more abundant compared with the previously annotated 
miR-139-3p mature sequence. To quantify the miR-139-3p expression level, the new 
quantification procedure used the sum of the copy number of the newly identified 
miR-139-3p mature sequence and all its 3’ isoforms to measure miR-139-3p expression 
abundance, which covered 98.6% of reads of all 16 sequences. 

Based on this new miRNA quantification procedure, the expression of 413 miRNA covered 
by at least 10 sequence reads were detected in human prefrontal cortex and cerebellum. The 
new miRNA quantification procedure is superior to that using the annotated mature miRNA 
sequence as a reference. Take miRNA quantification in human PFC samples as an example. 
The advantages were as follows. First, the new quantification procedure utilized substantially 
more reads for miRNA quantification: 1.2 million more reads. The number of reads derived 
from mature miRNAs increased from 72% to 94% of the total reads mapped to the miRNA 
precursor region. Second, the new quantification procedure can quantify many more miRNAs. 
In human PFC, the new quantification procedure measured 86 (29%) more miRNAs with 
expression of more than five read counts. On average, ~30% more miRNAs were quantified 
at various miRNA expression level cutoffs (Figure 3.5B). Third, the expression abundance of 
miRNA measured using this new quantification procedure displayed a comparable and even a 
slightly better correlation between technical replicates. Fourth, and most importantly, the new 
miRNA quantification procedure corrected the 5’ end annotations for 27 miRNAs and 3’end 
annotations for 115 miRNAs with expression of more than 10 read counts. Since the 
functions of miRNAs are predominately determined by the seed region at their 5’ ends, 
identifying the correct 5’end position of mature sequence for these 27 miRNAs was crucial 
for their target identification and functional studies. Identifying the correct 3’end was also 
important to designing probe sequences for other miRNA quantification measures such as 
using Q-PCR and miRNA microarray. 

 

Table 3.2: miRNA quantification performance comparison 

Methods 
Total 
Reads 

Number of miRNA Expression correlation 
miRNA annotation 

correction 

New 
quantification 

procedure 

4,742,023 
>=1 read >=10 reads 

Pearson 
correlation 

Spearman 
correlation 

5' end 3' end 

532 334 0.994 0.967 27 115 

Based on 
annotation 

3,527,780 
>=1 read >=10 reads 

Pearson 
correlation 

Spearman 
correlation 

  

432 249 0.989 0.956 
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Figure 3.5: The new miRNA quantification procedure. (A) illustrates the new quantification 
procedure by using miR-139-3p as an example. In total, 16 sequences were retained, 
corresponding to 2793 reads mapped within three nucleotides upstream or downstream of the 
annotated 5'-position of miR-139-3p mature sequence. The sequence in red represents the 
annotated miR-139-3p from miRBase. The most highly expressed sequence was designated as 
newly identified miR-139-3p mature sequence, indicated in purple. The sequences in blue 
represent the 3’isoforms of newly identified miR-139-3p. miR-139-3p expression abundance 
was measured by the sum of the copy number of the newly identified miR-139-3p mature 
sequence and all its 3’ isoforms. (B) The number of miRNAs identified and quantified with the 
new quantification procedure (in blue) compared with the quantification result based on the 
miRBase annotation (in grey) at different miRNA expression level cutoffs. The number on the 
right of each bar represents the proportion of miRNAs quantified exclusively by the new 
quantification method. 

3.4 miRNA expression quantification in chimpanzee and macaque brains 

The comparison of miRNA expression across species required miRNA gene annotations 
in each species as well as miRNA gene orthologous relationships across species. Based on 
miRNA annotations of miRBase (version 12), humans were well annotated with 692 
miRNA precursors corresponding to 866 mature sequences. However, only 92 and 485 
mature miRNAs were deposited in miRBase for chimpanzees and macaques (Table 3.3). 
Therefore, I developed a miRNA ortholog prediction procedure (MOP) to identify both 
miRNA precursors and mature sequences in chimpanzee and macaque based on human 
miRNA annotation (Section 2.2). The miRNA ortholog prediction procedure includes two 
consecutive steps: precursor ortholog identification and mature ortholog identification 
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(Figure 3.6).  
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Figure 3.6: The miRNA orthologous gene prediction procedure. The workflow illustrates the 
two consecutive steps of miRNA orthologous gene prediction procedure: precursor ortholog 
identification and mature ortholog identification. Briefly, based on human miRNA annotation, 
the best precursor orthologs were predicted by using a combination of reciprocal BLAT, 
BLAST and liftOver along with precursor length cutoff in chimpanzee and rhesus macaque 
genomes. The mature orthologous sequences were further extracted based on ClustalW2 
precursor sequence alignments, based on human mature miRNA annotation. 

 

Using the miRNA ortholog prediction procedure, I detected 796 and 752 mature miRNAs in 
chimpanzee and macaque genomes, which corresponded to 92% and 87% of human 
annotated mature miRNAs, respectively. The identified miRNA orthologs covered more than 
97% of annotated miRNAs of chimpanzee and macaque in miRBase (version 12) and thus 
greatly expanded the miRNA annotation in these two primate species (Table 3.3). Both 
precursor and mature orthologs predictions are of high quality. Specifically, 612 out of 639 
(95.7%) predicted precursor orthologs were supported by all three methods (reciprocal BLAT, 
BLAST and liftOver) in chimpanzee (Figure 3.7A). Similarly, 522 out of 604 (86.4%) 
predicted precursor orthologs were supported by all three methods in macaque (Figure 3.7C). 
Compared to human miRNA precursors, predicted precursor orthologs have very similar 
length distribution. The precursor length differences were within 10% for all precursor 
orthologs in chimpanzee and 97% of precursor orthologs in macaque (Figure 3.7C and Figure 
3.7D). For 578 miRNA expressed in human PFCs with at least one read, 543 and 526 mature 
orthologs could be unambiguously identified in chimpanzee and macaque genomes, 
respectively. The vast majority of these miRNAs were also expressed in chimpanzee (530) 
and macaque (504), measured using our new miRNA quantification procedure. In all three 
species, our miRNA orthologs prediction and miRNA quantification procedures generated 
highly reproducible miRNA expression measurements, with extremely good positive 
correlation between technical replicates in all three species (Pearson correlation, r>0.99, 
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p<10e-15), as shown in Figure 3.8A). Furthermore, miRNA expression divergence among 
species was evidently greater than the variance within species. The extent of miRNA 
expression divergence followed the phylogenetic relationship among three species, i.e., 
human and chimpanzee samples as sister species, with macaque samples forming an outgroup 
(Figure 3.8B and Figure 3.8C). All these results supported the validity of the developed 
miRNA ortholog prediction and miRNA quantification procedures.  

 

 

Table 3.3: Number of miRNA orthologs predicted in chimpanzee and macaque 

Species 

Annotated a Predicted Mature 

overlaps b Precursor Mature Precursor Mature 

Human 692 866 
 

Chimpanzee 100 92 

639 c 

796 91 
Blast 649 

Blat 637 

LiftOver 631 

Macaque 464 485 

604 d 

752 460 
Blast 626 

Blat 571 

LiftOver 577 

amiRNA annotation from miRBase (version 12) 

bNumber of overlaps between predicted and annotated mature miRNAs 

c and dNumber of predicted miRNA precursors in chimpanzee and macaque, respectively. 
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Figure 3.7: Predicted miRNA precursor orthologs in chimpanzee and macaque. Panels A and B 
describe precursor orthologs in chimpanzee. Panels C and D describe precursor orthologs in 
macaque. Panels A and C show the overlaps of precursor orthologs using reciprocal BLAT, 
BLAST and liftOver in chimpanzee and macaque, respectively. Panels B and D depict 
precursor length differences between human precursors and precursor orthologs in chimpanzee 
and macaque, respectively. Blue—no length difference; red—length difference between 0 to 
5%; green—length difference between 5 to 10%; purple—length difference between 10 to 
15%. 
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Figure 3.8: Predicted miRNA mature orthologs in chimpanzee and macaque. (A) Pairwise 
miRNA expression correlation between samples in human, chimpanzee and macaque PFCs. 
The x-axis and y-axis show quantiled normalized reads counts (QNC) in log2 scale (log2 
QNC). The lower panels below the diagonal draw the scatter plot of miRNA expression 
between samples. The red line in each panel was fitted using loess (local polynomial regression 
fitting) for miRNA expression comparison. The panels on the diagonal draw the histograms of 
miRNA expression in each sample. The upper panels above the diagonal report the Pearson 
correlation coefficient. (B) and (C) show UPGMA (Unweighted Pair Group Method with 
Arithmetic Mean) and NJ (Neighbor Joining) trees based on miRNA expression of 3 species, 
respectively. The labels represent species Hu1—Human; Hu2—Human technical replicate; 
Ch1—Chimpanzee; Ch2—Chimpanzee technical replicate; Ma1—Macaque; Ma2—Macaque 
technical replicate. 

 

3.5 Differentially expressed miRNA identification  

Based on the quantified miRNA expression, I next investigated how many miRNAs were 
differentially expressed between human and other two primates in the prefrontal cortex. Two 
approaches, Fisher’s exact test (FET) based method and edgeR method, were employed to 
identify differentially expressed (DE) miRNAs (Section 2.2). Since these two approaches 
utilized different normalization methods and statistical tests to predict DE miRNAs, the 
quality of identified DE miRNAs could be evaluated by accessing their prediction agreement. 
In the human or chimpanzee prefrontal cortex, 325 miRNAs were represented by at least 10 
sequence reads in at least one technical replicate of one species. All 325 miRNAs had 
predicted orthologs in the chimpanzee genome. Based on quantile normalized miRNA 
expression data, the FET-based method predicted 37 DE miRNAs between human and 
chimpanzee (FET p<0.01, FDR<0.07, fold-change>2, in both technical replicates) (Figure 
3.9A), representing ~11% of expressed miRNAs in PFC. Although the combination of 
statistical significance, fold-change and expression level criteria has been incorporated into 
the FET-based method, the deep sequencing reads overdispersion feature was not considered. 
The procedure for single factor differential gene expression analysis in edgeR package was 
further used to investigate the reads overdispersion effect on DE miRNA identification. Based 
on normalized miRNA expression data with TMM method, the edgeR method identified 35 
DE miRNAs between human and chimpanzee (negative binomial test p<0.001, FDR<0.01) 
(Figure 3.9C). Notably, the vast majority (31, 84% of 37) of DE miRNAs were identified by 
both methods (binomial test, p<10e-5), which strongly supported the authenticity of identified 
DE miRNAs. Using the same criteria, 106 out of 338 miRNAs detected in human and 
macaque prefrontal cortex were differentially expressed between the two species, according 
to the FET-based method (Figure 3.9B). Similarly, 88 out of these 106 (83%) miRNAs were 
also classified by edgeR as differentially expressed (Figure 3.9).  
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Figure 3.9: Differentially expressed miRNAs between species in PFC. Panels A and B depict 
DE miRNAs using the FET-based method. (A) for human and chimpanzee comparison; (B) for 
human and macaque comparison. The x-axis and y-axis represent the mean value of 
log2-transformed quantile normalized read counts (log2 QNC) of two replicates. DE miRNAs 
are marked with red outer circles. Panels C and D depict DE miRNAs using the edgeR method. 
(C) for human and chimpanzee comparison; (D) for human and macaque comparison. The 
x-axis and y-axis represent mean value of log2-transformed read counts per million (log2 CPM) 
of two replicates. DE miRNAs are marked with blue outer circles. Venn diagrams showing in 
Panels E and F depict the overlaps of DE miRNAs between the FET-based method and the 
edgeR method. (E) for human and chimpanzee DE miRNAs; (F) for human and macaque DE 
miRNAs. The Venn colors are red for DE miRNA by the FET-based method; blue for DE 
miRNA by the edgeR method; and purple for the overlaps of DE miRNA by two methods.    

 

Besides the great agreement of DE miRNAs predictions between different methods, the vast 
majority of DE miRNAs that were found between species in the PFC could be reproduced in 
the cerebellum. Specifically, out of 37 DE miRNAs between human and chimpanzee in PFC, 
according to the FET-based method, 31 (84%) displayed consistent expression differences 
between species in both brain regions (Figure 3.10A and Figure 3.10B). Similarly, out of 106 
DE miRNAs between human and macaque in PFC, 82 (77%) showed consistent expression 
differences between the two species in both brain regions (Figure 3.10C and Figure 3.10D). 
In both cases, the agreement between the two brain regions was far greater than could be 
expected by chance (binomial test, p<10e-5). Although the PFC and cerebellum are 
histologically different, previous studies have shown that mRNA expression differences 
between human and chimpanzee are largely shared between these two brain regions [227]. 
These results suggest that miRNA divergence is similarly shared between PFC and 
cerebellum. Furthermore, the good agreement of miRNA divergence estimates between the 
two brain regions supported the robustness of the miRNA differential expression 
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identification measurements. 

 

 

Figure 3.10: miRNA expression divergence between species measured in PFC and cerebellum. 
miRNA expression divergence was measured by expression log2-transformed fold-changes 
(LFC) between species. Panels A and B show miRNA divergence between human and 
chimpanzee measured in PFC and cerebellum. Panels C and D show miRNA divergence 
between human and macaque measured in PFC and cerebellum. The black dots indicate 
miRNA showing consistent direction of expression divergence in the two brain regions; grey 
dots for miRNA show inconsistent directions of expression changes. The labels represent 
species: Hu—Human; Ch—Chimpanzee; Ma—Macaque; Hu1 and Hu2 are two biological 
replicates of human cerebellum samples. 

 

3.6 Effect of differentially expressed miRNA on target gene expression 

What is the relationship between the expressions of DE miRNA and their targets? Do miRNA 
expression differences between human and chimpanzee brains contribute to gene expression 
divergence between these species? Or do miRNA expression differences make the gene 
expression more similar between human and chimpanzee by balancing transcription 
fluctuations? To investigate these questions, mRNA and protein expression were measured in 
human and chimpanzee prefrontal cortex: mRNA expression in five individuals of each 
species using Affymetrix Exon arrays and protein expression in four individuals of each 
species with two technical replicates using a label-free 2D-MS/MS Termo-LTQ proteomics 
methodology (Section 2.3). In total, 13,495 mRNA and 981 proteins were quantified with 
high confidence in human and chimpanzee prefrontal cortex. After expression normalization 
using the quantile normalization method, samples from human and chimpanzee could be 
separated well based on expression divergence for both mRNA and protein data (Figure 3.11), 
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which supported the validity of the developed cross-species mRNA and protein data 
quantification procedures.  
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Figure 3.11: The mRNA and protein expression divergence between human and chimpanzee. 
Panels A and B show UPGMA trees based on the mRNA expression and protein expression, 
respectively. The mRNA expression was measured in five individuals of each species using 
Affymetrix Exon arrays. The protein expression was measured in four individuals of each 
species with two technical replicates using a label-free 2D-MS/MS Termo-LTQ proteomics 
methodology. The mRNA and protein data processing procedures are described in Section 2.3. 
Both mRNA and protein data were normalized using the quantile normalization method before 
clustering analysis. 

 

To analyze the relationship between the expressions of DE miRNA and their targets, I 
compared the expression divergence between the targets of DE miRNA that were highly 
expressed in human with targets of DE miRNAs that were highly expressed in chimpanzee 
(Section 2.3). The target genes were predicted using TargetScan 5 algorithm [195] that 
predicted targets based on the presence of conserved miRNA binding sites on mRNA 3’UTR 
regions and are reported to have good sensitivity and specificity [129]. The Wilcoxon rank 
sum tests demonstrated that DE miRNA expression has a significant negative effect on both 
mRNA and protein expression in the human and chimpanzee prefrontal cortex, i.e., the targets 
of highly expressed miRNA were down-regulated in the corresponding species (p<0.05) 
(Figure 3.12), which was in line with the well-established function of miRNAs playing a role 
as negative regulators [21]. Notably, the negative regulatory effect did not depend on the 
choice of miRNA prediction algorithm since similar results were obtained using PITA 
predictions [228] that predicted targets based on the free energy gained from the formation of 
the miRNA-target duplex (p<0.05) (Figure 3.13). Furthermore, the negative effect of DE 
miRNA expression on mRNA and protein expression could be observed at various miRNA 
expression level cutoffs (Table 3.4). Finally, the negative regulatory effect on mRNA and 
protein expression divergence could also be observed at various mRNA expression 
divergence cutoffs (Figure 3.14) and protein expression divergence cutoffs (Figure 3.15). 
Taken together, the consistent and significant negative relationship between DE miRNA 
expression and the expression of their target genes, on both mRNA and protein levels, 
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demonstrated that miRNA expression divergence did contribute to gene expression 
divergence between human and chimpanzee.  

 

 
Figure 3.12: Effect of differential expressed miRNA on mRNA and protein expression 
(TargetScan targets). The left and right panels depict the distribution of mRNA and protein 
expression divergence for genes targeted by differentially expressed miRNAs between human 
and chimpanzee prefrontal cortex, respectively. The targets were predicted using TargetScan5 
algorithm. The colors indicate genes targeted by miRNA: blue—miRNA highly expressed in 
human; and red—miRNA highly expressed in chimpanzee. The purple areas show overlap 
between red and blue distributions. mRNA divergence is represented as log2-transformed 
fold-change of gene expression between human and chimpanzee prefrontal cortex. Protein 
divergence is represented as the effect size difference of gene expression between human and 
chimpanzee prefrontal cortex. For both mRNA and protein divergence, positive values indicate 
higher expression in human prefrontal cortex. 

 

 

 
Figure 3.13: Effect of differential expressed miRNA on mRNA and protein expression (PITA 
targets). The left and right panels depict the distribution of mRNA and protein expression 
divergence for genes targeted by differentially expressed miRNAs between human and 
chimpanzee prefrontal cortex, respectively. The targets were predicted using PITA algorithm. 
The legend descriptions are the same as in Figure 3.11. 
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Figure 3.14: Effect of differential expressed miRNA on mRNA expression at different mRNA 
divergence cutoff. Differences in mean expression divergence (A) and median expression 
divergence (B) between mRNA targeted by miRNA with high expression in human PFC (blue 
curves) and mRNA targeted by miRNA with high expression in chimpanzee PFC (red curves) 
at different mRNA divergence cutoffs. The mRNA divergence cutoff was calculated based on 
absolute mean difference between human and chimpanzee expression levels. 
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Figure 3.15: Effect of differential expressed miRNA on protein expression at different protein 
divergence cutoff. Differences in mean expression divergence (A) and median expression 
divergence (B) between protein targeted by miRNA with high expression in human PFC (blue 
curves) and protein targeted by miRNA with high expression in chimpanzee PFC (red curves) 
at different protein divergence cutoffs. The protein divergence cutoff was calculated based on 
absolute effect size difference between human and chimpanzee expression levels. 
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Table 3.4: Effect of differential expressed miRNA on mRNA and protein expression at 
different miRNA expression cutoffs   

miRNA regulatory effect on mRNA expression 
 

miRNA expression 

cutoff (TPM) 
Number of miRNA 

Wilcoxon rank sum test 

P-value 

50 26 0.0055 

100 19 0.0003 

200 11 0.0063 

500 7 0.0128 

   
miRNA regulatory on protein expression 

 
miRNA expression 

cutoff (TPM) 
Number of miRNA 

Wilcoxon rank sum test 

P-value 

50 26 0.0716 

100 19 0.0355 

200 11 0.0279 

500 7 0.0124 
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4. Identification and Functionality Estimation of miRNA 

5’-isoforms in the Human Prefrontal Cortex 

It is generally believed that the miRNA processing machinery ensures the generation of a 
single mature miRNA with a fixed sequence. However, as shown in Chapter 3, small RNA 
sequencing data allows us to scrutinize miRNA repertoire, resulting in an unexpected 
observation that miRNAs display heterogeneous ends. Although most of miRNA variants are 
generated due to heterogeneity of the 3’ end sequence termination point (3’-isoforms), a 
notable proportion is also observed at the 5’end (5’-isoforms). The 5’-isoforms are 
particularly interesting since their seed regions are shifted compared with the annotated 
sequence, thus directing them to a distinct set of target genes. Currently, little is known about 
miRNA 5’-isoforms, except for their existence based on the measurements from small RNA 
sequencing, cloning and northern blotting. To deepen our understanding of miRNA 
5’-isoforms abundance and functionality, I studied their authenticity and functionality on the 
basis of small RNA sequencing data collected in the human prefrontal cortex. 
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Figure 4.1: miRNA 5’-isoforms from miR-124. The plot depicts sequence and expression 
abundance of two 5’-isoforms from brain-specific miR-124. The sequences of two 5’-isoforms, 
miR-124|-1 and miR|124|+1, are marked in blue and green, respectively. The sequence of 
annotated miR-124 is marked in red. The expression of two 5’-isoforms and annotated 
miR-124 are measured by the sum of the copy number of the sequences inside blue, green and 
red boxes, respectively. At the expression level, 5’-isoform of miR-124 was required to take at 
least 1% of the read count of annotated miR-124. The rest of sequences showing 5’ end shifts, 
with expression less than 1% of the read count of annotated miR-124, were filtered out. 

4.1 miRNA 5’-isoform identification in the human prefrontal cortex 

By reanalyzing small RNA sequencing data from human prefrontal cortex, in total, 203 
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5’-isoforms were identified based on the miRNA 5’-isoform identification and quantification 
procedure (Section 2.4). Figure 4.1 illustrates the sequence and expression abundance of two 
5’-isoforms, miR-124|-1 and miR-124|+1, from the brain-associated miR-124. To facilitate 
the labeling of the identified 5’-isoforms, a notation system was developed (Section 2.4). For 
instance, miR-124|-1 represented a 5’-isoform with a 5´ terminus that begins one nucleotide 
to the left (5’ direction) of the annotated miR-124 5’end, while miR-124|+1 represented one 
5’-isoform with a 5´ terminus that begins one nucleotide to the right (3’ direction) of the 
annotated miR-124 5’end (Figure 4.1).  

Overall, in the human prefrontal cortex, the expression abundance of the identified 
5’-isoforms was much lower than the annotated miRNAs (Wilcoxon rank sum test, p<10e-4) 
(Figure 4.2A). On the other hand, 5’-isoforms were expressed more abundantly than novel 
miRNA* sequences (Wilcoxon rank sum test, p<0.05) (Figure 4.2A). By using 10TPM as an 
expression cutoff that was comparable and higher than the median expression value of 
annotated miRNAs, 66 out of 203 (32.5%) 5’-isoforms were classified as moderately 
expressed (Table B.1). Correspondingly, 227 (44.9%) annotated miRNAs and 8 (14.8%) 
novel miRNA* showed moderate expression level, respectively (Figure 4.2A). Notably, with 
respect to the number of expressed miRNAs, these 66 5’-isoforms represented more than 20% 
of total moderately expressed miRNAs (Figure 4.2B).  

These 66 5’-isoforms were derived from 50 annotated mature miRNAs. Among these 50 
annotated mature miRNAs, 36 produced one 5’-isoform per miRNA and the remaining 14 
miRNAs produced 30 5’-isoforms in total (Table B.1). Based on the seed sequence identity, 
66 5’-isoforms were grouped into 64 seed families. Importantly, all these 64 seed families are 
novel compared with known miRNA families in humans, suggesting the identified 
5’-isoforms may able to regulate a set of distinct target genes compared to annotated 
miRNAs.  
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Figure 4.2: The expression abundance of 5’-isoforms in human prefrontal cortex. (A) The 
expression abundance of identified 5’-isoforms, compared with the expression levels of the 
other two categories: annotated miRNAs (annotated) and novel miRNA* (novel-miR*). The 
numbers in parenthesis list the total number of expressed miRNAs in each category. The 
numbers before parenthesis show the number of moderately expressed miRNAs (>=10TPM) in 
each category. (B) Proportion of moderately expressed 5’-isoforms out of total moderately 
expressed miRNAs, in terms of miRNA number. 
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Are these 66 5’-isoforms bona fide miRNAs? To answer this question, I investigated the 
expression association between 5’-isoforms and Argonaute 2 (AGO2) protein, which is the 
key component of RISC complex. Since most functional annotated miRNAs were bound in 
AGO2 protein, the association between AGO2 and miRNAs is commonly considered the 
most important criteria for genuine miRNA classification [21]. I tested whether 5’-isoforms 
were associated with AGO2 protein by quantifying their expression level in human brain 
based on small RNA sequencing data from AGO2 immunoprecipitation experiment (human 
brain AGO2-IP data). As shown in Figure 4.3, the vast majority of identified 5’-isoforms (59 
out of 66) were readily detected in human brain AGO2-IP data, including five 5’-isoforms 
that have been studied previously (e.g., miR-101|-1, miR-142-3p|+2 and brain associated 
miR-9|+1). Besides miR-9|+1, two more brain-associated 5’-isoforms miR-124|-1 and 
miR9*|+1 were also detected with high expression level in human brain AGO2-IP data 
(Figure 4.3). Furthermore, a significantly positive expression correlation was observed for 
5’-isoform expressions between human PFC and human brain AGO2-IP data (Pearson 
correlation r= 0.48, p<4e-5), suggesting the majority of identified 5’-isoforms may functional 
in vivo. 

 

Figure 4.3: 5’-isoform expression in human brain from AGO2-IP experiment. The x-axis 
displays 5’-isoform expression level in human prefrontal cortex. The y-axis displays 
5’-isoform expression level in human brain, based on small RNA sequencing data from 
AGO2-IP experiment. The miRNA expression was normalized by total mapped reads from 
corresponding samples into transcripts per million reads (TPM) and showed in a 
log10-tranformed scale. Examples of known 5’isofroms are marked with blue outer circles. 
Examples of novel 5’-isoforms from brain-associated miRNAs are marked with red outer 
circles 

 

At sequence level, all 66 5’-isoform have conserved seed sequences between human 
chimpanzee, macaque and mouse. In addition to sequence conservation, the expression of 
5’-isoforms was significantly positively correlated between human and chimpanzee (Pearson 
correlation, r=0.93, p<10e-5), and between human and macaque (Pearson correlation, r=0.89, 
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p<10e-5). In addition, 61 out of 66 5’-isoforms were also expressed in the mouse brain 
(Figure 4.4). Notably, 5’-isoforms from brain-associated miRNAs (such as miR-9, miR-9* 
and miR-124) were expressed more abundantly in mouse brain (Figure 4.4). Similarly to the 
scenario in human brain, a significantly positive expression correlation was observed for 
5’-isoform expressions between human PFC and mouse brain (Pearson correlation r=0.33, 
p<2e-3). Taken together, the expression association with AGO2 protein in human brain and 
both sequence and expression conservation in the mouse brain strongly indicated the 
identified 5’-isoforms are bona fide miRNAs. In the following study, I focused on these 66 
moderately expressed 5’-isoforms to further investigate their functionality. 

 

 

Figure 4.4: 5’-isoform expression in mouse brain. The x-axis displays 5’-isoform expression 
level in human prefrontal cortex. The y-axis displays 5’-isoform expression level in mouse 
brain. The miRNA expression was normalized by total mapped reads from the corresponding 
sample into transcripts per million reads (TPM) and showed in a log10-tranformed scale. 
Examples of known 5’isofroms are marked with blue outer circles. Examples of novel 
5’-isoforms from brain-associated miRNAs are marked with red outer circles 

 

4.2 The procedures for miRNA 5’-isoform functionality prediction 

This abovementioned analysis results strongly suggest that the identified 66 5’-isoforms 
moderately expressed in the human prefrontal cortex were bona fide miRNAs. However, we 
still lack estimate of their functionality. Since the majority of 5’-isoforms identified in the 
human PFC were conserved between human and mouse at both sequence and expression 
levels, I addressed this question using a comparative approach, based on the observation of 
co-evolution between conserved miRNAs and their target sites (Section 1.2 and Section 2.5). 
Whether a given 5’-isoform was functional was inferred based on the conservation status of 
its seed matches in the 3’UTR (heptamer sequence that is complementary to the 
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corresponding miRNA’s seed region; the terms “seed match” “miRNA target site” and 
“heptamer” are equivalent in this study). The 5’-isoform with seed matches showing 
excessive conservation was considered to be functional.  

In brief, the approach was comprised of three steps. The first step is to estimate the observed 
heptamer conservation based on human-mouse 3’UTR alignment by enumerating both 
conserved and total heptamer occurrences. The second step, which is the most crucial, is to 
obtain the expected conservation or background conservation of heptamer based on the 
control sets that were generated using sequence-shuffling based methods. In the last step, by 
combining the result of the first two steps, the cutoff 0.05 representing the 
Benjamini-Hochberg (BH) corrected p-value of the binomial test was used to determine 
whether one seed match has excessive conservation. Since a statistically and biologically 
meaningful result of any sequence motif analysis largely depends on choosing an appropriate 
control set, I used five sequence-shuffling procedures to construct control sequence sets in the 
second step. Correspondingly, five prediction procedures were developed to predict 
functional 5’-isoforms (Figure 4.5), including one based on seed match sequence shuffling 
(SSP) and four more shuffling procedures based on 3’UTR alignment shuffling (USP1, 2, 3 
and 4). Section 2.5 described the five prediction procedures in detail.  
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Figure 4.5: Five procedures for functional 5’-isoform prediction. Functional 5’-isoform was 
inferred based on the conservation status of its seed matches in the human 3’UTR. The 
significance of excessive conservation of seed matches was determined by comparing observed 
and expected heptamer conservations with binomial test after Benjamini-Hochberg correction. 
The criteria for generating shuffled sequences are listed in the red dashed rectangle. Based on 
five sequence shuffling methods, one seed match shuffling procedure (SSP) and four 3’UTR 
alignment-shuffling procedures (USP1, 2, 3 and 4) were developed to predict functional 
5’-isoforms (Section 2.5). The name of sequence shuffling methods was used to represent the 
name of the functional 5’-isoform prediction method.  
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4.3 Performance comparison of 5’-isoform prediction procedures 

To identify the best procedure to predict functional 5’-isoforms, the performances of five 
prediction procedures were evaluated (Section 2.5). The prediction performances were 
evaluated at two levels, miRNA family level and miRNA level. The conserved and 
nonconserved miRNA families of human were used as positive and negative sets to estimate 
prediction performance at the miRNA family level, and the corresponding miRNAs were 
used to estimate prediction performance at the miRNA level (Section 2.5). Based on miRNA 
annotations of mouse, rat, dog and chicken in miRBase (version 12), 162 human conserved 
and 284 nonconserved miRNA families were obtained, which corresponds to 262 conserved 
and 326 nonconserved miRNAs, respectively. The prediction performance was evaluated 
based on sensitivity (SN), specificity (SP), accuracy (ACC) and Matthews correlation 
coefficient (MCC). Table 4.1 and Table 4.2 summarize prediction performances of five 
prediction procedures on the miRNA family level and miRNA level, respectively.  

The performance comparison showed that USP1 and USP2 were much more sensitive than all 
other methods on both miRNA family and miRNA levels. However, USP1 and USP2 also 
showed the lowest prediction specificity. On the other hand, SSP, USP3 and USP4 exhibited 
relatively balanced prediction sensitivity and specificity. USP4 performed better in terms of 
both prediction sensitivity and specificity compared to SSP and USP3 on both the miRNA 
family and miRNA levels. On the miRNA family level, SSP performed better than USP3 for 
both prediction sensitivity and specificity. However, USP3 had higher prediction sensitivity 
than SSP on the miRNA level. With respect to ACC, USP4 performed best, and SSP was the 
second best method. In this study, since the positive set and negative set were unbalanced in 
terms of both miRNA family number and miRNA number, MCC values were finally used to 
rank prediction performance. A higher MCC value indicates better performance. With respect 
to MCC, USP4 is superior to all other methods on both the miRNA and miRNA family levels; 
SSP and USP3 were ranked as the second best method and have similar performance. SSP is 
better than USP3 on the miRNA family level while the opposite is true on the miRNA level. 
USP1 and USP2 performed the worst.  

In the following section, I further evaluated the prediction performance of the best classifier, 
USP4, in a more comprehensive way. First, to further evaluate the prediction accuracy of 
USP4, I compared the predicted functional miRNAs and miRNA families between USP4 and 
SSP, the second-best classifier. Since USP4 and SSP utilized different approaches to estimate 
the expected conservation of seed matches, the comparison of their predictions could be 
considered a good indicator for prediction accuracy. For the 85 functional conserved miRNA 
families predicted by USP4, 76 (89%) were among the predicted functional conserved 
miRNA families by SSP (Figure 4.6A). Similarly, at the miRNA level, 151 out of 173 (87%) 
predicted functional conserved miRNAs were overlapped between USP4 and SSP. The high 
concordance of predictions between USP4 and SSP indicated the good prediction accuracy of 
USP4. 
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Table 4.1: Prediction performance comparison on miRNA family level. 

Method TP FN FP TN SN SP ACC MCC 

SSP 82 80 47 237 0.51 0.83 0.72 0.36 

USP1 153 9 245 39 0.94 0.14 0.43 0.13 

USP2 137 25 208 76 0.85 0.27 0.48 0.13 

USP3 79 83 56 228 0.49 0.8 0.69 0.30 

USP4 85 77 40 244 0.52 0.86 0.74 0.41 

 

 

Table 4.2: Prediction performance comparison on miRNA level. 

Method TP FN FP TN SN SP ACC MCC 

SSP 159 103 58 268 0.61 0.82 0.73 0.44 

USP1 251 11 287 39 0.96 0.12 0.49 0.14 

USP2 234 28 248 78 0.89 0.24 0.53 0.17 

USP3 169 93 61 265 0.65 0.81 0.73 0.47 

USP4 173 89 52 274 0.66 0.84 0.76 0.51 
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Figure 4.6: The comparison of predicted functional conserved miRNAs and miRNA families 
between USP4 and SSP. (A) for the overlaps of predicted functional conserved miRNA 
families between USP4 and SSP. (B) for the overlaps of predicted functional conserved 
miRNA between USP4 and SSP.    
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High expression abundance is generally believed to be a hallmark for potential functional 
regulatory transcripts, including miRNAs. To further evaluate the prediction performance of 
USP4, I separated conserved miRNA families into functional and nonfunctional categories on 
the basis of USP4 prediction and further compared the expression abundance of miRNAs 
from these two categories in the human prefrontal cortex. As shown in Figure 4.7A, the 
predicted functional conserved miRNA families were expressed significantly higher than 
nonfunctional conserved miRNA families (Wilcoxon rank sum test, p<1e-12). Strikingly, 
although predicted functional conserved miRNA families only represented 54% of the total 
expressed miRNA families in terms of family number, they represented 94% of total reads of 
conserved miRNA family (Figure 4.7B and Figure 4.7C). It should be noted that this result 
could not be attributed to certain super highly expressed miRNAs, such as miRNAs from 
let-7 family that represented ~67% of total miRNA read counts in human PFC, because 
miRNAs from let-7 family were excluded from this analysis. In addition, higher expressed 
miRNA families tended to have a higher possibility of being predicted as functional (Figure 
4.8A). By contrast, no relationship was detected between the expression abundance and 
functional family predictions from ncRNA fragments that were used as a negative control 
(Figure 4.7 and Figure 4.8). To further investigate whether the relationship between the status 
functional miRNA family predictions and expression abundance is only specific in the human 
prefrontal cortex, the same analysis was conducted using small RNA sequencing data from 
human placenta and Hela cell line. In both cases, similar results were observed even though 
expressed miRNAs were poorly correlated between human PFC and other two samples 
(Figure 4.9 and Figure A. 1). Taken together, the results suggested that USP4 was able to 
capture the majority of functional conserved miRNA families.  
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Figure 4.7: The expression abundance comparison between functional and nonfunctional 
conserved miRNA families based on USP4 prediction in the human prefrontal cortex. Panels A, 
B and C show the expression of conserved miRNA family. Panels C, D and F show the 
expression of ncRNA fragment family as a negative control. (A) Expression abundance 
distributions of predicted functional and nonfunctional conserved miRNA families with 
boxplot. Panels B and C show the proportion of predicted functional conserved miRNA 
families in terms of expressed miRNA family number and total read counts. (D) Expression 
abundance distributions of predicted functional and nonfunctional ncRNA fragment families 
with boxplot. Panels E and F show the proportion of predicted functional ncRNA fragment 
families in terms of expressed ncRNA fragment family number and total read counts. The 
functional conserved miRNA family and ncRNA fragment family were predicted using USP4.     
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Figure 4.8: Proportion of predicted functional conserved miRNA family on different miRNA 
families' expression levels. The left panel shows conserved miRNA family. The right panel 
shows ncRNA fragment family as a negative control. The red dashed line represents the 
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prediction false positive rate of USP4. The number above the bar represents the number of 
predicted functional miRNA families at each miRNA family expression cutoff. The miRNA 
families were binned based on their expression level normalized in TPM. The cutoff of “all” 
represented all predicted functional miRNA families. The cutoff of 10 TPM represented the 
predicted functional miRNA families with expression levels larger than 10 TPM. 
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Figure 4.9: The expression abundance comparison between functional and nonfunctional 
conserved miRNA families based on USP4 prediction in the human placenta tissue. (A) 
Expression abundance distributions of predicted functional and nonfunctional conserved 
miRNA families with boxplot. Panels B and C show the proportion of predicted functional 
conserved miRNA families in terms of expressed miRNA family number and total read counts. 
The functional conserved miRNA family and ncRNA fragment family were predicted using 
USP4. (D) Proportion of predicted functional conserved miRNA family on different miRNA 
families' expression levels. The number above the bar represents the number of predicted 
functional miRNA families at each miRNA family expression cutoff. (E) Expression 
comparison of conserved miRNAs between human prefrontal cortex (PFC) and placenta 
(Pearson correlation r=0.42, p<10e-5). The miRNA expressions were normalized by total 
mapped reads of corresponding sample into Transcript Per Million reads (TPM). 

 

Finally, I evaluated USP4 prediction performance based on the seed match conservation 
strand bias of predicted functional conserved miRNA families. The seed match conservation 
strand bias was measured using the differences of seed match conservation between sense and 
antisense strand of 3’UTR. Since miRNAs are only bound to the sense strand of 3’UTR, seed 
match conservation bias on the sense strand was expected if the corresponding conserved 
miRNA was functional. As shown in Figure 4.10A, a strong seed match conservation strand 
bias on the sense strand was observed for predicted functional conserved miRNA families. By 
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contrast, no obvious seed match conservation strand bias was observed for predicted 
nonfunctional conserved miRNA families (Figure 4.10B). This result again indicated that the 
majority of functional conserved miRNA families have been identified by USP4.   
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Figure 4.10: Strand bias of seed match conservation of predicted functional conserved miRNA 
families. Seed match conservation differences between sense and antisense strand of 3’UTR 
for functional conserved miRNA family (A) and nonfunctional conserved miRNA family (B). 
CR (seed match conservation rate) was measured as the proportion of conserved seed match 
occurrences out of the total seed match occurrences. The heptamers with similar seed match 
occurrences distribution as conserved miRNA families were used as background and are 
shown in light blue dots.  

 

4.4 Functional miRNA 5’-isoform prediction 

Having established the good prediction performance of USP4, I then applied USP4 to obtain 
functional miRNA 5’-isoform families. Out of 64 5’-isoform families identified from human 
prefrontal cortex, USP4 predicted 26 (41%) functional 5’-isoform families corresponding to 
28 5’-isoforms (Table 4.3). Notably, 23 out of 26 (88%) functional 5’-isoform families were 
also supported by SSP (Table 4.3). Similarly to functional conserved miRNA families, 
functional 5’-isoform families were expressed significantly higher than nonfunctional 
5’-isoform families, which represented 94% of total reads of 5’-isoforms (Figure 4.11). 
Furthermore, higher expressed 5’-isoform families tended to have a higher possibility of 
being predicted as functional (Figure 4.11D). Functional 5’-isoform families also displayed a 
strong seed match conservation strand bias that was similar to functional conserved miRNA 
families. The results demonstrated that the identified 26 functional 5’-isoform families might 
be as functional as functional conserved miRNAs. 
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Table 4.3: Predicted functional 5’-isoforms based on USP4 method 

5'-isoform ID Seed sequence 
Predicted by 

USP4    

Predicted by 

SSP 

hsa-mir-124|-1 TAAGGCA + + 

hsa-mir-29a|-1 TAGCACC + + 

hsa-mir-101|-1 TACAGTA + + 

hsa-mir-27b|-1 TTCACAG + + 

hsa-mir-9|+1 TTTGGTT + + 

hsa-mir-30e|+1 TAAACAT + + 

hsa-mir-330-3p|+1 AAAGCAC + + 

hsa-mir-181b|-1 AACATTC + + 

hsa-mir-199a-3p|-1 ACAGTAG + + 

hsa-mir-199b-3p|-1 ACAGTAG + + 

hsa-mir-181b|+1 CATTCAT + + 

hsa-mir-330-3p|2 AAGCACA + + 

hsa-mir-126|+1 GTACCGT + + 

hsa-mir-124|+1 AGGCACG + + 

hsa-mir-199a-3p|+1 AGTAGTC + + 

hsa-mir-199b-3p|+1 AGTAGTC + + 

hsa-mir-9|+2 TTGGTTA + + 

hsa-mir-9*|+1 AAAGCTA + + 

hsa-mir-137|+1 ATTGCTT + + 

hsa-mir-487b|+1 TCGTACA + - 
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hsa-mir-323-3p|-1 CACATTA + + 

hsa-mir-539*|+3 TACAAGG + + 

hsa-mir-99a|-1 AACCCGT + + 

hsa-mir-363|+1 TTGCACG + + 

hsa-mir-142-5p|-2 CCATAAA + - 

hsa-mir-191|+1 ACGGAAT + + 

hsa-mir-409-3p|-1 GAATGTT + + 

hsa-mir-24|+1 GCTCAGT + - 
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Figure 4.11: Predicted functional 5’-isoform families in the human prefrontal cortex. (A) 
Expression abundance distributions of predicted functional and nonfunctional 5’-isoform 
families with boxplot. Panels B and C show the proportion of predicted functional 5’-isoform 
families in terms of 5’-isoform family number and total read counts, respectively. (C) 
Proportion of predicted functional 5’-isoform families on different 5’-isoform families' 
expression levels. (D) Seed match conservation differences between sense and antisense strand 
of 3’UTR. Colors represent: dark blue—functional 5’-isoform families; orange—functional 
conserved miRNA families; and light blue—heptamers with similar seed match occurrences 
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distribution as conserved miRNA families and 5’-isoform families. 

4.5 Analysis of regulation of 5’-isoform on the target expression   

Finally, to verify the prediction of functional 5’-isoforms of the USP4 method experimentally, 
I investigated the regulatory effect of 5’-isoforms on the target gene expression based on 
published miRNA precursor overexpression and miRNA knockout experiments.  

I first analyzed mRNA expression profiles before and after miR-124 primary transcript 
(pri-miRNA) overexpression using RIPmiR-124 plasmids in mouse neuroblastoma CAD cells 
[200] (Section 2.6). miR-124 produced two conserved 5’-isoforms, miR-124|+1 and 
miR-124|-1, from both human prefrontal cortex and mouse brain (Table 4.4). At the 
expression level, miR-124|-1 was more abundant than miR-124|+1 in both human prefrontal 
cortex and mouse brain, suggesting a potential conserved 5’-isoform biogenesis mechanism 
across tissues and across species. In this study, I assumed miR-124 pri-miRNA 
overexpression experiment would produce both miR-124 and two 5’-isoforms in mouse 
neuroblastoma CAD cells. The northern blotting result from the original paper [200] provided 
indirect evidence to support this.2 

 

Table 4.4: The expression abundance and target gene number for miR124 5’-isoforms  

miRNA 

Expression (TPM) 
USP4 

(adjusted 
p-value) 

Exclusive 
Conserved 

Targets (ECTs) 

Regulatory Effect 

Human 
PFC 

Mouse 
brain 

Wilcox rank sum 
test (pvalue) 

KS-test 
(pvalue) 

miR-124 6081 78678 2.2e-16 719 2.2e-16 2.2e-16 

miR-124|+1 
157 

(2.6%) 
2403 

(3.1%) 
9.2e-09 86 0.056 0.039 

miR-124|-1 
586 

(9.6%) 
22930 
(30%) 

2.2e-16 112 9.1e-06 2.80e-05 

 

Based on USP4 prediction, both miR-124 and its two 5’-isoforms were predicted to be 
functional. As observed for functional conserved miRNA family and 5’-isoforms, the 
expression abundance of miR-124 and its two 5’-isoforms was also positively correlated with 
the probability to be functional predicted by USP4 (Table 4.4). To estimate the regulatory 
effect of miR-124|+1 and miR-124|-1 on target gene expression, I first obtained exclusive 
conserved targets (ECTs) of two 5’-isoforms and further compared mRNA expression 

                                                        
2The northern blotting result after miR-124 primary transcript overexpression in mouse CAD cell lines can 

be found in Figure 1A and Figure S1C of the original paper [200]. 
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differences of the ECTs of two 5’-isoforms and nontarget genes, before and after miR-124 
precursor overexpression (Section 2.6). It should be noted that ECTs of miR-124|+1 and 
miR-124|-1 precluded any targets of miR-124 with both canonical and weaker 6mer seed 
matches without considering target site conservation. Therefore, the influence of miR-124 on 
the ECTs of two 5’-isoforms was mostly avoided. As shown in Figure 4.12, compared to 
nontargets, ECTs of miR-124|-1 were significantly down-regulated after overexpressing 
miR-124 precursor (KS test, p<2.8e-05, Wilcoxon rank sum test, p<9.1e-06). miR-124|+1 
also showed the tendency to repress its ECTs, although the repression magnitude is only 
marginally significant (KS test p<0.039, Wilcoxon rank sum test p<0.056). As expected, 
ECTs of miR-124 showed the largest magnitude of down-regulation (KS test p<2.2e-16, 
Wilcoxon rank sum test p<2.2e-16). Notably, the repression effect of miR-124 and its two 
5’-isoforms were positively correlated with their expression abundance, e.g., miR-124|-1 was 
more abundant than miR-124|+1 and also caused a stronger target repression magnitude than 
miR-124|+1 (Figure 4.12, Table 4.4), indicating that 5’-isoforms with relatively high 
expression abundance were sufficient to regulate a distinct set of target genes. The result also 
suggested that the regulatory effect of 5’-isoforms could not be attributed to miR-124 
precursor overexpression artifacts. 

To further confirm the regulatory effect of 5’-isoforms, I examined the specificity of detected 
regulation of miR-124|+1 and miR-124|-1 on their targets more explicitly by conducting the 
same analysis with published microarray data from miR-124 duplex transfection experiments 
in human Hela cell line [129]. Theoretically, the miR-124 duplex transfection experiment 
only delivered the intact miR-124 mature sequence into cells. Therefore, it can be used as a 
negative control to measure the regulation specificity of miR-124|+1 and miR-124|-1 on their 
targets. At least for miR-124|-1, miR-124 duplex transfection experiment was an appropriate 
control since the miR-124|-1 sequence was not nested in the sequences from the miR-124 
duplex. As expected, ECTs of miR-124 were significantly repressed after miR-124 duplex 
overexpression (Wilcoxon rank sum test, p<2.2e-16) (Figure 4.13). By contrast, no significant 
down-regulation was detected from ECTs of miR-124|+1 and miR-124|-1 (KS-test, p>0.15; 
Wilcoxon rank sum test, p>0.1) (Figure 4.13). This result demonstrated that the expression 
repression of ECTs in miR-124 precursor overexpression experiment was mostly attributed to 
the specific regulation of miR-124|+1 and miR-124|-1. 
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Figure 4.12: Effect of miR-124 and its two 5’-isoforms on target expression based on miR-124 
precursor overexpression experiments. Log2 fold-change for exclusive conserved targets of 
miR-124, miR-124|-1 and miR-124|+ as well as nontargets, after and before miR-124 precursor 
overexpression in mouse neuroblastoma CAD cells, depicted with cumulative distribution plots 
in panel A and with boxplot in panel B. The y-axis of panel A shows cumulative distribution 
function (CDF) of Log2 fold-change distribution. 
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Figure 4.13: Effect of miR-124 and its two 5’-isoforms on target expression based on miR-124 
duplex overexpression experiments. Log2 fold-change for exclusive conserved targets of 
miR-124, miR-124|-1 and miR-124|+ as well as nontargets, after and before miR-124 duplex 
overexpression in Hela cell line, depicted with cumulative distribution plots in panel A and 
with boxplot in panel B. The y-axis of panel A shows cumulative distribution function (CDF) 
of Log2 fold-change distribution. 

Finally, I examined the regulatory effect of 5’-isoforms on mRNA expression based on the 
published miR-223 knockout experiment in mouse neutrophils [201] (Section 2.6). By 
analyzing small RNA sequencing data from mouse neutrophils, one miR-223 5’-isoform, 
named "miR-223|+1" was identified, which made up 14.6% of annotated miR-223 expression. 
Comparison of mRNA expression differences of ECTs of miR-223|+1 and nontarget genes 
before and after miR-223 knockout showed that loss of miR-223|+1 de-repressed ECTs of 
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miR-223|+1 significantly (Table 4.5, Figure 4.14). Since miRNA knockout experiments were 
believed to be the gold-standard approach to unraveling in vivo functions of miRNAs, this 
result suggested that 5’-isoforms were active regulators in vivo. 

 

Table 4.5: The expression abundance and target gene number for miR223 5’-isoform 

miRNA 
Mouse 

neutrophils 
(TPM) 

USP4 
(Adjusted 
p-value) 

Exclusive Conserved 
Targets (ECTs) 

Regulatory effect 

Wilcox rank sum 
test (p-value) 

KS-test (p-value) 

miR-223 25061 3.03e-07 274 2.2e-16 2.2e-16 

miR-223|+1 3663 (14.6%) 1.96e-03 380 1.5e-06 1.3e-06 
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Figure 4.14: Effect of miR-223 and miR-223|+1 on target expression based on miR-223 
knockout experiments. Log2 fold-change for exclusive conserved targets of miR-223 and 
miR-223|+1 as well as nontargets before and after miR-223 knockout in mouse neutrophils, 
depicted with cumulative distribution plots in panel A and with boxplot in panel B. The y-axis 
of panel A shows cumulative distribution function (CDF) of Log2 fold-change distribution.  
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5. Transcriptome Assembly Reveals a Novel Class 

Bidirectional Promoters Associated with Novel LncRNA 

and Neuronal Genes 

LncRNA remain one of the least characterized types of ncRNA, partially due to its potential 
heterogeneity. In the study described in this chapter, I attempted to develop and use 
computational tools to obtain a comprehensive picture of lncRNA types expressed in human 
prefrontal cortex. As a result, my analysis revealed a specific population of lncRNA 
expressed from a novel class of bidirectional promoters, displaying unique sequence and 
epigenetic features that are associated with the expression of neuronal genes. 

5.1 Transcriptome assembly in human prefrontal cortex 

To comprehensively identify and explore the expression dynamics of novel lncRNAs and 
novel elements in the known transcripts in the human prefrontal cortex, transcriptome 
assembly was conducted using strand-specific high-throughput sequencing data collected in 
the prefrontal cortex of 14 human individuals with an age range from 2 days to 98 years. 
These data contained an average of 21 million 100nt long reads per sample, with a total of 
296 million reads (Table B.2). To avoid the limitations imposed by transcritptome read 
mapping to the human genome, de novo transcritptome assembly was conducted using the 
Trinity algorithm [153] (Section 2.7). Of the raw sequence reads, 96% were retained after 
quality control and subsequently used in the transcript assembly. The assembly resulted in 
332,993 transcript contigs with an average length of 1,005 nt and minimum length set to 300 
nt. Of these, 307,543 (92.4%) could be unambiguously and uniquely aligned to the human 
reference genome by using a transcript mapping procedure. Merging transcript contigs that 
overlapped with each other on the human genome resulted in 92,705 contig clusters. These 
assembly transcripts covered in total 98,589,683 nt of the human genome. Of them, 
61,650,777 nt (64.9%) overlapped with human annotated transcripts based on Ensembl gene 
annotation [203] (version 64), covering 61% of all annotated exons, while the remaining 
36,938,906 nt represented as yet unannotated portions of the human prefrontal cortex 
transcriptome. Among the unannotated transcripts, 4,123,024 (4.2%) originated from novel 
elements of annotated genes such as novel exons and novel exon extensions; 3,877,147nt 
(3.6%) from antisense strand of annotated genes; and 28,937,736 nt (29.7%) from novel 
intergenic transcripts (Figure 5.1A). Accordingly, of the 92,705 assembly contig clusters, 
51,948 (56%) overlapped with at least one annotated transcript, while the remaining 40,758 
(44%) originated from gene antisense and intergenic regions (Figure 5.1B). With respect to 
transcript expression abundance, annotated transcripts accounted for 81% of total 
transcriptome expression, novel elements of annotated genes and intergenic transcripts for 9% 
each, and antisense transcripts for the remaining 1% (Figure 5.1C). 
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Figure 5.1: Annotated and novel portions of the human prefrontal cortex transcriptome. Panels 
A, B and C depict the proportion of four transcript types—annotated known transcripts (blue), 
novel elements of annotated transcripts (red), antisense transcripts (green), and novel 
intergenic transcripts (purple)—with respect to the total transcript length, transcript count and 
expression level, respectively.   

 

5.2 Novel elements identification from annotated human transcripts 

Among the 51,948 assembly contig clusters that were located within annotated transcripts, 
3,699 clusters composing 12,822 transcript contigs contained transcript elements not covered 
by the existing annotation (Section 2.8). These novel elements included 972 novel internal 
exons located in 754 protein-coding genes; 926 and 1,211 novel donor and acceptor splice 
sites containing the most canonical splicing signals (GT-AG) located in 1,687 protein-coding 
genes; and 1,224 and 4,100 novel 5’UTR and 3’UTR extensions with a length of at least 
100nt and located in 1,952 protein-coding genes. Besides protein-coding genes, 267 novel 
exons, 354 splice boundaries and 1,106 5’/3’ terminal exon extensions were found in 
annotated pseudogenes, lncRNAs and processed transcripts annotated from 1,531 contig 
clusters (Figure 5.2). 

 

Scheme� Category� Total� Coding 
gene�

Pseudo-
gene� lncRNA� Processed 

transcript�

New exon� 1239� 972� 34� 69� 164�

New donor  
site� 1100� 926� 13� 87� 74�

New acceptor  
site� 1301� 1121� 18� 95� 67�

5’ extension� 1726� 1224� 25� 287� 190�

3’ extension 4704� 4100� 50� 290� 264�

 

Figure 5.2: Categories of novel elements from annotated transcripts in the human prefrontal 
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cortex transcriptome. Black boxes indicate annotated exons of annotated transcripts; grey 
boxes indicate UTR of protein-coding genes and terminal exons of pseudogene, lncRNA and 
processed transcript; and white boxes represent novel transcript elements corresponding to the 
“Category” column. 

 

5.3 Identification and property analysis of novel lncRNAs  

Among the 92,705 contig clusters identified in the data, 40,758 represented novel contig 
clusters that had no overlap with genome annotation (Ensembl, version 64). To predict novel 
long noncoding RNAs (lncRNAs) from novel contig clusters, transcript coding potential was 
estimated based on two coding potential estimation algorithms, CPC [142] and CPAT [143], 
which employed distinct approaches to estimate transcript coding potential (Section 2.8). The 
result showed that more than 99% of novel contig clusters had negative coding potential 
scores calculated by CPC (Figure 5.3A). Consistent with the prediction of CPC, more than 
99% of novel contig clusters were predicted to be noncoding transcripts by CPAT (Figure 
5.3B and Figure 5.3C). 

 

 

Figure 5.3: Coding potential estimation of novel contig clusters. (A) Distribution of coding 
potential sores for novel contig clusters using CPC. Negative scores indicate low coding 
potential. (B) Cumulative distribution function (CDF) of coding probability calculated using 
CPAT for novel contig clusters (red), annotated lncRNAs (purple) and annotated 
protein-coding genes (blue). (C) Distributions of Fickett score, Hexamer score and ORF size in 
log10 scale for novel contig clusters (red points) and annotated coding genes (blue points) in 
three-dimensional plot.    
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Notably, novel contig clusters displayed even lower coding probability than annotated 
lncRNAs (Figure 5.3B), suggesting that novel contig clusters may, in most cases, represent 
novel lncRNAs or novel lncRNA fragments. Stringently, the intersection of predicted 
noncoding transcripts from CPC and CPAT were used to define novel lncRNAs, resulting in 
38,981 putative novel lncRNAs. The predicted novel lncRNAs displayed all features 
characteristic of annotated lncRNAs (Section 1.3 and Section 2.9).  
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Figure 5.4: Properties of novel lncRNAs. (A) Probability density function of expression 
abundance across novel lncRNA (novel), annotated lncRNA (lncRNA) and annotated 
protein-coding genes (PCG). The x-axis displays expression abundance using the mean 
expression RPKM across 14 human samples in log10 scale. (B) Cumulative distribution of 
exon sequence conservation estimated using PhastCons scores based on 17 vertebrate species’ 
genome. The colors indicate the random intergenic region (black), annotated lncRNA (purple), 
novel lncRNA (red), pseudogene (pink), UTR exons (grey) and protein-coding exons (green). 
(C) Tissue specificity of expression for novel lncRNA (novel), annotated lncRNA (lncRNA) 
and annotated protein-coding genes (PCG) measured using Shannon entropy based on Human 
Body Map data. Lower Shannon entropy indicates higher expression tissue specificity. (D) 
Cellular localization preference (cytosol to nucleus expression level (RPKM) ratio) of novel 
lncRNA (novel) , annotated lncRNA (lncRNA) and annotated protein-coding genes (PCG).    

 

Specifically, novel lncRNAs were expressed in low expression abundance similar to that of 
the annotated lncRNAs [15], and both were significantly lower than the expression of 
annotated protein-coding genes (Wilcoxon rank sum test, p<2.2e-16) (Figure 5.4A). In line 
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with the low sequence conservation feature of known lncRNAs [15], novel lncRNAs were 
poorly conserved compared with protein-coding genes at the DNA sequence level among 17 
vertebrate species (KS test, p<2.2e-16) (Figure 5.4B). On the other hand, they are 
significantly more conserved compared to randomly selected intergenic regions (KS test, 
p<1e-5). In agreement with previous studies reporting the high tissue specificity for lncRNA 
expression [15], novel lncRNAs and annotated lncRNAs displayed significantly higher 
expression tissue specificity than annotated protein-coding genes based on Human Body Map 
data (Wilcoxon rank sum test, p<1e-5) (Figure 5.4C). Furthermore, similarly to known 
lncRNAs, novel lncRNAs were preferentially localized in the nucleus [15]. Notably, novel 
lncRNAs showed even higher nucleus localization preference than annotated lncRNAs 
(Wilcoxon rank sum test, p<2.2e-16) (Figure 5.4D). Novel lncRNAs containing multiple 
exons also displayed canonical donor and acceptor splice site signals (Figure A.2). Taken 
together, these features indicate that the predicted novel lncRNAs in this study were mostly 
authentic lncRNAs or lncRNA fragments. 
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Figure 5.5: The major expression pattern of age-related novel lncRNAs across human postnatal 
PFC development. The K-means algorithm was used to group expressed age-related novel 
lncRNAs and protein-coding genes (mean RPKM>=0.1) into 12 clusters. Each panel shows the 
expression pattern in one of the gene clusters. The x-axis shows the age of individuals on a 
log2 day scale. The y-axis shows standardized (Z-transformed) expression levels in which each 
unit indicates one standard deviation difference from the mean. Numbers above each panel 
show numbers of novel lncRNAs and protein-coding genes in each cluster. Clusters 
significantly enriched in novel lncRNAs are shown in red, and clusters enriched in 
protein-coding genes are shown in blue. Clusters showing no significant enrichment are shown 
in gray. 

 

Since the RNA-Seq data used for transcriptome assembly represents a human prefrontal 
cortex developmental time series, the temporal expression patterns of novel lncRNAs were 
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further investigated. Using age-test [212] (Section 2.9), 6,293 novel lncRNAs and 6671 
known protein-coding genes displaying significant expression level changes with age were 
identified (age-test p<0.01, q<0.02). To explore the temporal expression patterns of these 
age-related transcripts, we classified their expression profiles into 12 clusters using a k-means 
algorithm (Figure 5.5) [214]. Interestingly, novel lncRNAs and known protein-coding genes 
tended to show opposite expression patterns. Specifically, known protein-coding genes were 
enriched in clusters 1, 3 and 12 (Fisher’s exact test, p<0.0001 after bonferroni correction, 
Figure 5.5). All of them showed an expression level increase in development. By contrast, 
novel lncRNAs were enriched in clusters 4, 6, 8 and 11 and predominantly showed an 
expression level decrease with advanced age (Fisher’s exact test, p<0.0001 after bonferroni 
correction, Figure 5.5). Thus, novel lncRNAs are more highly expressed in young than in 
aging brains.  

5.4 Discovery of a class of novel bidirectional promoter (NBiP) 

Previous studies have shown that the majority of the novel transcripts located outside of 
annotated gene regions, both sense and antisense, were enriched within 10kb from annotated 
genes, which may represent as yet unannotated extensions of known genes [157]. In this study, 
there are 26,961 novel lncRNAs located outside annotated gene regions with expression 
greater than 0.1 RPKM. By analyzing the genomic context of these novel lncRNAs, 14,235 
(53%) lncRNAs were located within 4kb from annotated gene boundaries (Simulation test, 
p<0.04, Section 2.9). Based on the DNA strand and relative position with respect to the 
nearest annotated gene region, these 14,235 novel lncRNAs could be further classified into 
four categories: upstream-sense (US-lncRNA, 1,323, or 9.3%), downstream-sense 
(DS-lncRNA, 6,965, or 48.9%), upstream-antisense (UA-lncRNA, 2,964, or 20.7%) and 
downstream-antisense (DA-lncRNA, 2,983, or 21.1%).  

 

(A)� (B)�

(C)� (D)�

 

Figure 5.6: Distribution of Pearson correlation coefficients between the expression of 
protein-coding genes and nearest novel lncRNAs. The red curve shows the Pearson correlation 
coefficients between the expressions of protein-coding genes and the nearest novel lncRNA: 
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US-lncRNAs (A), DS-lncRNAs (B), UA-lncRNAs (C) and DA-lncRNAs (D). The grey curves 
show the average correlation coefficients distribution based on 200 permutations of 
neighboring novel lncRNAs and protein-coding gene relationships. The grey shaded areas 
show standard error of the curve estimations.   

 

Significant excess of positive correlations between the expression of novel lncRNAs and the 
expression of nearby protein-coding genes were detected for the upstream-sense, 
downstream-sense and upstream-antisense categories (Figure 5.6). No significant correlation 
signal was found for the downstream-antisense category (Figure 5.6D). 

While novel lncRNAs located on the sense strand may still represent potential unidentified 5’ 
and 3’ extensions of known genes, transcripts originating from the antisense strand must have 
an independent origin. Indeed, there is no correlation between the expression of annotated 
genes and nearby novel DA-lncRNAs. By contrast, a significant excess of positive 
correlations between annotated genes and novel UA-lncRNAs may indicate shared regulation, 
presumably at as yet unannotated bidirectional promoters. To investigate this possibility, 
bidirectional transcription features were analyzed with public human brain tissue deepCAGE 
data from FAMTOM4 [215] by taking known bidirectional promoters (KBiPs) and 
unidirectional promoters (UniPs) as positive and negative sets, respectively (Section 2.10). 
Indeed, a signature of divergent transcription characteristic of bidirectional promoters can be 
observed for the novel UA-lncRNAs and the corresponding annotated genes (Figure 5.7). The 
result showed more than five-fold enrichment of the divergent transcription feature from the 
promoters of novel UA-lncRNA and gene pairs compared to that from UniPs (Fisher’s exact 
test, p<2.2e-16). The divergent transcription characteristic was particularly pronounced for 
the 273 novel UA-lncRNA and gene pairs that showed a significant positive correlation in the 
PFC time-series data (Pearson correlation, p<0.05 after Benjamini-Hochberg correction), 
compared to UniPs (Fisher’s exact test, p<0.0001), and was comparable to KBiPs (Figure 5.7). 
The prominent divergent transcription feature demonstrated novel UA-lncRNA and gene 
pairs was transcribed from novel class of bidirectional promoters (NBiPs).  
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Figure 5.7: Bidirectional transcription feature at different promoter types. The y-axis shows the 
divergent transcription feature (Di-trans feature) of each promoter type. Di-trans feature was 
calculated as the ratio between the number of promoters with bi- and uni-directional expression 
detected using deepCAGE data from brain tissues. Each promoter type is indicated in: 
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white—novel bidirectional promoters (NBiPs) with significantly positive expression 
correlation between novel lncRNA and gene expression (273-pairs); red—all NBiPs; 
blue—known bidirectional promoters (KBiPs); and green—unidirectional promoters (UniPs). 

 

What is the potential function of UA-lncRNA and/or NBiPs? To address this question, Gene 
Ontology (GO) enrichment analysis was first conducted based on protein-coding genes from 
273 novel UA-lncRNA and gene pairs. GO functional analysis revealed a strong and 
significant enrichment in 21 GO functional terms after redundancy reduction (Section 2.10), 
including neuronal functions such as “memory,” “generation of neurons” and “regulation of 
synaptic transmission” (hypergeometric test, p<0.05 after Benjamini-Hochberg correction, 
Figure 5.8A). Consistently, the 273 genes are preferentially expressed in neurons, as gauged 
from H3K4me3 modification data collected in neurons and non-neuronal cells in the human 
prefrontal cortex (Simulation test, p<0.00001, Figure 5.8B, Section 2.10) and neuron-specific 
gene expression data collected in the mouse brain (Fisher’s exact test, p<0.0001 after 
bonferroni correction, Figure 5.8C, Section 2.10). By contrast, protein-coding genes 
associated with novel lncRNAs from the other three categories did not show any significant 
functional enrichment. More surprisingly, the protein-coding genes KBiPs, either consisting 
of two protein-coding genes or a protein-coding gene and known lncRNA pairs, that were 
expressed in the human prefrontal cortex showed no significant enrichment in neural 
functions. Instead, these genes were significantly underrepresented in neuronal functions but 
overrepresented in biological processes related to RNA processing, DNA repair, DNA 
metabolic process and ribonucleoprotein complex biogenesis (hypergeometric test, p<0.05 
after Benjamini-Hochberg correction). Similarly, protein-coding genes transcribed from 
UniPs were not enriched in neuronal functions, but instead in biological processes related to 
signal transducer activity and receptor activity (hypergeometric test, p<0.05 after 
Benjamini-Hochberg correction). Taken together, these results suggested that NBiPs might 
represent a separate promoter category that differed from both KBiPs and UniPs and is 
particular to genes expressed in neurons and/or associated with neuronal functions.  

 



 
94 

developmental process

response to ethanol

regulation of synaptic transmission

protein palmitoylation

calcium ion transport

cell projection organization

-4

0

4

8

-5 0 5
semantic space y

se
m

an
tic

 s
pa

ce
 x

-2.5
-2.0
-1.5
-1.0
-0.5
0.0

log10_p_value

plot_size

1

2

3

log10(p.value)�

(A)� (B)�

(C)�

 

Figure 5.8: Putative function of UA-lncRNA and NBiPs. The potential function of 
UA-lncRNA and NBiPs were inferred from protein-coding genes from 273 novel UA-lncRNA 
and gene pairs. (A) GO terms enriched in protein-coding genes from 273 novel UA-lncRNA 
and gene pairs after redundancy reduction. The node color indicates the GO term’s enrichment 
p-value. The node size is proportional to the GO term’s annotated gene number. Dashed 
rectangle indicates GO terms associated with neuronal functions. (B) Expression specificity of 
protein-coding genes from 273 novel UA-lncRNA and gene pairs, calculated based on 
H3K4me3 modification from neurons and non-neural cells of human prefrontal cortex. The red 
bar represents neuron/non-neuron expression ratio of the 273 genes, and the grey bars 
represent the ratio distribution by 1,000 permutations of 273 randomly selected expressed 
genes. (C) Expression specificity of protein-coding genes from 273 novel UA-lncRNA and 
gene pairs, calculated based on cell type specific expression data from mouse neocortex. The 
bars show Fisher’s exact test odds ratio with 95% confidence interval for enrichment of the 
273 genes among mouse orthologs preferentially expressed in oligodendrocytes (blue), 
astrocytes (green) and neurons (red). The number on the left shows Fisher’s exact test 
p-values. 

 

5.5 Identification of enriched transcription factors in NBiP 

The unique functional features of NBiPs prompted me to explore transcription factors that 
may regulate this promoter type. Comparing transcription factor binding site (TFBSs) density 
within 2 kb of NBiPs and KBiPs revealed 10 TFBSs that correspond to 11 transcription 
factors (TFs) enriched in NBiPs and 6 TFBSs corresponding to 8 TFs enriched in KBiPs 
(Section 2.10, Table 5.1). Notably, with respect to function, TFs enriched in NBiPs were 
significantly co-cited with the terms “neural” or “neuron” (CoCiter [223], p<0.01, Table 5.1). 
By contrast, TFs enriched in KBiPs showed no such association (CoCiter, p>0.2, Table 5.1). 
Thus, NBiPs may represent an integral part of a regulatory mechanism specific to a set of 
neuronal genes and involving specific neuron-related TFs. Intriguingly, TFs enriched in 
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NBiPs included all three methylation-resistant TFs (AP-2 family, EGR family and ZF5) 
representing three of the top four discriminatory features used to predict the methylation 
status of CpG islands in the human brain [229], suggesting that NBiPs may display a unique 
DNA methylation signature. 

 

Table 5.1: Enriched transcription factors in novel and known bidirectional promoters 

TFBS ID TF  p-value 
BH 

adjusted 
p-value 

Odds ratio  
Co-cited 

with term 
“neural” 

Co-cited 
with term 
“neuron” 

Novel bidirectional promoter (NBiP) enrichment  

V$ETF_Q6 TEAD2 2.39E-18 5.02E-16 1.88 

p = 0.002 p = 0.015 

V$AP2_Q6_01/V$
AP2ALPHA_01/V
$AP2_Q6 

TFAP2A/AP2 3.13E-09 2.38E-07 1.48 

V$HIC1_02 HIC1 3.76E-08 1.57E-06 1.48 

V$KROX_Q6 
EGR family 
(EGR1/2/3/4) 

4.48E-08 1.57E-06 1.43 

V$ZF5_B ZFP161/ZF5 8.24E-08 2.47E-06 1.79 

V$LRF_Q2 ZBTB7A 2.98E-07 7.81E-06 1.39 

V$WT1_Q6 WT1 1.62E-06 3.79E-05 1.37 

V$AHRHIF_Q6 AHR 4.26E-05 0.00089506 1.51 

Known bidirectional promoter (KBiP) enrichment 

V$COUP_DR1_Q6 COUP/DR1 0.002709 0.0362 1.37 

p = 0.502 p = 0.296 

V$PPAR_DR1_Q2 PPAR/DR1 0.002754 0.0362 1.40 

V$NFY_Q6_01 NFIC 0.001396 0.0362 1.61 

V$SREBP1_01 SREBF1 0.000268 0.0188 1.35 

V$TEL2_Q6 ETV7 0.000191 0.0188 1.30 

V$DR4_Q2 TNFRSF10A 0.000158 0.0188 1.57 
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5.6 Analysis of DNA sequence and epigenetic features of NBiP 

The unique functional and regulatory features of NBiPs might suggest a specific sequence 
and epigenetic signature for this promoter type. To investigate this, NBiPs were compared 
with UniPs and KBiPs with respect to common sequence (GC content, regulatory potential 
and sequence conservation) and epigenetic features (H3K4me3 modification profile and DNA 
methylation status) (Section 2.11). The result showed that compared with UniPs and KBiPs, 
NBiPs show significant differences with respect to all common sequence and epigenetic 
features. Specifically, NBiPs have a higher GC content and higher regulatory potential, 
measured as a Regulatory Potential (RP) score, than both UniPs and KBiPs (KS test, 
p<0.0001; Figure 5.9A and Figure 5.9B). Furthermore, NBiPs are more conserved at the 
DNA sequence level than KBiPs (KS test, p<0.001), while both types of bidirectional 
promoters are more conserved than UniPs (KS test, p<0.0001, Figure 5.9C). H3K4me3 
modification density, measured in human PFC neurons, is higher at NBiPs and KBiPs than at 
UniPs, indicating promoter activity (Wilcoxon test, p<0.00001, Figure 5.9D). Notably, 
besides the overall H3K4me3 modification density differences, the shape of H3K4me3 
modification profiles differs among the three promoter types (Figure 5.9E). Specifically, 
UniPs show starkly asymmetric H3K4me3 modification profiles with much of the 
modification density located downstream of the protein-coding gene transcriptional start site 
(TSS). By contrast, the shape of H3K4me3 modification profile is more symmetric relative to 
the TSS for both NBiPs and KBiPs, with the most symmetric signatures observed at KBiPs. 
This difference in the H3K4me3 modification signature could be reproduced using another 
H3K4me3 modification dataset obtained from rhesus macaque PFC samples (Figure A.3). By 
contrast, the input control showed no significant differences in shape and density for 
H3K4me3 modification profiles among the three promoter types (Figure A.3). Lastly, DNA 
methylation levels measured in the human PFC also differed among the three promoter types: 
DNA methylation levels are high at UniPs, intermediate at KBiPs and lowest at NBiPs 
(Wilcoxon test, p<0.0001; Figure 5.9F). The low DNA methylation status was in line with the 
previous finding that the three methylation-resistant TFs [229] were enriched in NBiPs. 
Taken together, in the brain, NBiPs formed by UA-lncRNA represent a distinct type of 
bidirectional promoter with characteristic structural and regulatory properties compared to 
both KBiPs and UniPs. 
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Figure 5.9: Sequence and epigenetic features of different promoter types. (A), (B) and (C) The 
cumulative distributions of GC content, regulatory potential and sequence conservation for the 
three promoter types: UniPs (green), KBiPs (blue) and NBiPs (red). All measurements are 
based on a 2 kb region surrounding the TSS. Promoter sequence conservation was calculated 
using PhastCons scores based on 17 vertebrate species’ genomes. Promoter regulatory 
potential was calculated using Regulatory Potential (RP) scores (see Methods). (D), (E) The 
density (panel d) and the shape (panel e) of H3K4me3 modification profiles at each of the 
three promoter types. (F) DNA methylation profile at each of the three promoter types. 

 

Transcripts expressed in the PFC, and more generally in the brain, are characterized by 
extended 3’UTR regions [230]. This phenomenon may in part be explained by the low 
expression of PABPN1, a gene recently shown to play a role in transcript processing in brain 
tissue [231, 232] (Figure 5.10A). Intriguingly, by reanalyzing data from [233], I found that 
the expression of novel lncRNAs originating from NBiPs was starkly increased in a PABPN1 
knockdown experiment (Section 2.12). Furthermore, this expression increase was 
significantly greater than for other lncRNA types (Figure 5.10B and Figure 5.10C). This 
indicates that the strong expression of lncRNAs originating from NBiPs in the human PFC 
could be related to this general transcript processing mechanism.  
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Figure 5.10: PABPN1 knockdown influence on different transcript categories. (A) PABPN1 
expression across human tissues calculated using Body Map data. (B), (C) The expression 
change distribution for different transcript types in a PABPN1 knockdown experiment. The 
positive values indicate expression upregulation following PABPN1 knockdown.  
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6. Discussion 

6.1 miRNA quantification using deep sequencing data 

Appropriate and correct miRNA quantification is fundamental and essential to any miRNA 
studies. The advent and rapid advancement of high-throughput sequencing technologies has 
provided the potential to quantify miRNA expression more comprehensively and more 
accurately, which has also resulted in a growing appreciation of the fact that individual 
miRNA can be heterogeneous in length [61]. As shown in this study, in the human prefrontal 
cortex, ~30% of total mapped reads displayed end offsets compared with annotated mature 
miRNAs annotated in miRBase (version 12). The majority of end offsets occurred at the 
3’end, and the end heterogeneity was significantly smaller for the 5’end than the 3’end. 
Detailed comparison between mapped reads and annotated miRNA mature sequences further 
indicated that ~28% of expressed miRNAs in human prefrontal cortex were probably 
misannotated in miRBase (version 12). The complicated nature of the miRNA transcriptome 
and some erroneously annotated miRNAs in miRBase posed challenges for obtaining 
accurate estimates of miRNA expression abundance and determining the genuine miRNA 
mature sequence.  

In Chapter 3, I presented an efficient miRNA quantification procedure that can conduct 
miRNA quantification and mature sequence identification simultaneously (Section 2.1). 
Compared with a quantification method that quantifies miRNAs using reads with 100% 
length and sequence match to annotated mature miRNAs [234], the new quantification 
method exhibited much higher miRNA detection sensitivity, being able to measure ~30% 
more miRNAs under various miRNA expression detection cutoffs. Furthermore, the 
expression abundance of miRNAs measured using the new quantification procedure displayed 
a comparable and even a slightly better correlation between technical replicates. Most 
importantly, the new miRNA quantification procedure could correct the 5’end annotations for 
27 miRNAs and 3’end annotations for 115 miRNAs with expression of more than 10 read 
counts in the human prefrontal cortex. Obtaining the correct 5’end annotation is crucial since 
the seed region at the 5’end mostly determines miRNAs' functions. Determining the 3’end is 
also important since some miRNA quantification assays, such as Q-PCR and miRNA 
microarray, depend heavily on the integrity of the miRNA sequence, especially at the 3′ end 
of the sequence, to generate cDNA template or produce labeled probes for miRNA detection. 
Thus, the new quantification method not only provided better miRNA expression abundance 
estimation, the correct miRNA mature sequence identified using the new quantification 
method could also provide important guidance for downstream target prediction analysis and 
probe design for miRNA microarray and Q-PCR assays. 

Some miRNA quantification methods have taken the miRNA ends heterogeneity into 
consideration for miRNA quantification, including the method that used the sum copy of 
mapped reads that have minimal 50% overlap [235] or just overlap with annotated miRNAs 
[236, 237] and the method that used the sum copy of mapped reads falling into a certain 
interval upstream and downstream of the annotated miRNAs [238, 239]. The potential 
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drawback of these methods is that the expression abundance of a given miRNA might be 
estimated using the reads with different seed regions, which would complicate the 
downstream miRNA target identification that is mainly based on seed sequence identity. By 
contrast, the new quantification method, taking the knowledge of miRNA targeting 
mechanism into consideration, first determined the major sequence as the most probable 
miRNA mature sequence and only used reads that have the same 5’end position as the 
identified mature sequence for miRNA quantification. Therefore, miRNA target prediction 
can be conducted using unambiguous and correct miRNA mature sequences. It is also worth 
noting that the vast majority (>90%) of reads overlapped with annotated mature miRNA have 
been used for miRNA quantification based on the new miRNA quantification method. Taken 
together, the new miRNA quantification procedure developed in chapter 3 allows for more 
comprehensive and accurate miRNA expression abundance estimation. 

To resolve substantial reads with 3’end offsets for miRNA quantification, the new miRNA 
quantification procedure grouped the reads with the same 5’ position identity and ignored the 
3’end heterogeneity. This quantification strategy is based on the postulation that miRNAs 
regulate their target genes mainly through miRNA seed region at the 5’end, which has been 
supported by previous experiments and evolutionary conservation signatures of the miRNA 
seed region itself and seed matches in the 3’UTRs across species (Section 1.2). Nevertheless, 
one class of target sites termed 3'-compensatory sites have been reported. The 
3'-compensatory sites have a mismatch or wobble in the seed region of the miRNA, but have 
long stretches of base pairing to the 3' end of the miRNA to make up for the weak binding at 
the 5' seed. Although 3'-compensatory sites were estimated to represent less than 2% of all 
preferentially conserved sites detected, it should be noted that the new miRNA quantification 
procedure is not appropriate for estimating the expression level of miRNAs that exert target 
base pairing mainly through 3'-compensatory sites. Further advancement of our understanding 
of miRNA target regulation mode might provide more rules to resolve miRNA end 
heterogeneity for miRNA quantification.  

To quantify miRNA expression precisely, the strategies of 3’ adaptor trimming and reads 
mapping should also be considered carefully. Due to the intrinsic character of Illumina 
sequencing technology, sequencing errors will accumulate at a much higher rate at the reads 
3’ end. Thus, a certain number of mismatches should be allowed for 3’adaptor removal to 
trim the 3’adaptor more completely. Indeed, ~29% of trimmed reads were lost when requiring 
a perfect match for 3’adaptor removal in the human prefrontal cortex samples. In this study, 
the number of allowed mismatches was determined empirically by checking distribution of 
the number of mismatches from the trimmed adaptor sequences. More sophisticated methods 
might contribute to better 3’adaptor removal. The reads mapping strategy is another 
consideration for better miRNA quantification. Due to the high sequence similarity of mature 
sequences within a miRNA family, only perfectly mapped reads were retained in this study to 
reduce the potential of reads across mapping between miRNA members. Considering that a 
set of highly expressed miRNAs (e.g., miR-124) has multiple loci on the genome, both unique 
and multiple mapped were allowed for miRNA quantification. Allowing multiple mapped 
reads is crucial for correct quantification of duplicated miRNAs. A previous study measured 
miRNA expression in fly only based on uniquely mapped reads [235], which erroneously 
quantified miRNA with multiple loci on the genome. Allowing multiple mapped reads also 
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posed challenges for correct quantification. The new quantification procedure resolved 
multiple mapped reads by merging reads from all genomic loci producing the same mature 
miRNA, which could avoid double counting reads for quantification of duplicated miRNAs. 
Requiring only perfectly mapped reads led to a loss of reads containing sequencing errors for 
miRNA quantitation. However, this problem can be relieved with the rapid advancement and 
improvement of sequencing technology.   

6.2 Hidden layer of miRNA transcriptome: miRNA 5’-isoforms 

Deep sequencing generated millions of small RNA sequencing reads from a given sample 
profiling and provided the framework for exploring the miRNA transcriptome complexity. It 
is surprising that miRNAs display heterogeneous ends despite their short length. Little is 
known about their authenticity and functionality, except for their existence based on the 
measurements from deep sequencing, cloning and northern blotting. In Chapter 4, a 
systematic analysis of miRNA 5’isoform was conducted in the human prefrontal cortex. By 
systematically analyzing small RNA sequencing data from human prefrontal cortex, 66 
moderately expressed miRNA 5’-isoforms were identified, representing ~20% of total 
moderately expressed miRNAs. Importantly, all 66 5’-isoforms were conserved between 
human and mouse at their mature sequence seed regions, and ~90% of them were associated 
with AGO2 proteins in human brains and could be readily detected in the mouse brain, 
indicating that the majority of identified 5’-isoforms are bona fide miRNAs. The results also 
reflected a well-conserved 5’-isoforms biogenesis mechanism during evolution. In addition, 
the seed regions of these 66 5’-isoforms were novel compared with known human miRNAs, 
suggesting that 5’isoforms might be able to regulate a distinct set of target genes. However, 
authentic miRNAs are not equivalent to functional miRNAs. The essential question of current 
5’-isoform study is how many of them are functional. In Chapter 4, I presented one 
comparative approach to estimating the functionality of individual conserved 5’-isoforms that 
was based on the co-evolution of conserved miRNAs and corresponding target sites (Section 
1.2 and Section 2.5). Detailed performance evaluation showed that the USP4 method 
outperformed the other proposed methods, highlighting the importance of choosing 
appropriate control sets for predicting functional conserved miRNAs. The USP4 method 
performed better than the SSP method that had been used for predicting functional miRNA* 
sequence in fly. The performance improvement of the USP4 method might be largely 
contributed by incorporating a dinucleotide-shuffling feature into 3’UTR alignment control 
set construction because the USP3 method differing from USP4 only on 
dinucleotide-shuffling feature has similar prediction performance as the SSP method. A 
dinucleotide-shuffling feature cannot be incorporated into the SSP method because the 
miRNA seed region is too short to generate enough heptamer controls with the same 
dinucleotide composition for estimating background seed match conservation. Nevertheless, 
the great agreement for predicted functional conserved miRNAs between USP4 and SSP 
demonstrated the high prediction accuracy of USP4. The comparison of the expression levels 
between functional and nonfunctional conserved miRNAs predicted using USP4 further 
suggested that the USP4 method could capture the majority of highly expressed miRNAs in 
different human tissues and cell lines.  

The good prediction performance of UPS4 allows for identification of reliable functional 
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conserved 5’-isoforms. Twenty-six functional 5’-isoforms were predicted in the human 
prefrontal cortex, including miR-101|-1, miR-142-3p|+1 and mir-9|+1, which have been 
shown to be functional miRNAs before. Notably, several 5’-isoforms from brain-associated 
miRNAs were also among the predicted functional 5’-isoforms, including miR-124|+1, 
miR-124|-1, miR-9*|+1 and miR-9|+2. Importantly, the function of miR-124|-1 can be 
confirmed based on miR-124 pri-miRNA transfection experiment, suggesting that 5’-isoforms 
with relatively high expression abundance were sufficient to confer additional mRNA 
targeting compared with annotated canonical miRNAs. The significant regulatory effect of 
miR-223|+1 on mRNA expression based on published miR-223 knockout experiment in 
mouse neutrophils further indicated that 5’-isoforms might be active regulators in vivo. Taken 
together, multiple lines of evidence indicated that these 26 functional 5’-isoforms predicted 
by the USP4 method might be as important as known miRNAs in regulating their target genes. 
Previous studies have shown that miR-9/9* and miR-124 can control multiple genes 
regulating neuronal differentiation and function. Strikingly, the induction of miR-9/9* and 
miR-124 in human fibroblasts can induce their conversion into neurons. Intriguingly, multiple 
predicted functional 5’-isoforms have been identified from miR-9/9* and miR-124 in this 
study. It would be interesting to analyze the potential contribution of 5’-isoforms in neural 
fate determination. 

One potential caveat of USP4 is the quality of 3’UTR alignments. In the current study, the 
3’UTR alignments were extracted from human and mouse whole-genome alignments based 
on human 3’UTR annotation from Refseq. However, no systematic analysis had been 
conducted to evaluate the quality of human 3’UTR annotation. Furthermore, whether the 
aligned sequences of mouse were from mouse 3’UTR regions was not determined. It is 
possible that in some cases, the homologous regions of human 3’UTRs in the alignment were 
not authentic 3’UTR in mouse, which leads to a wrong estimation of heptamer conservation. 
In addition, the incompleteness of genome sequence and potential errors in whole-genome 
alignment would also complicate the miRNA seed match conservation estimation. 
Nevertheless, with the accumulation of polyA+ RNA-Seq data and new experimental 
protocols specifying for mRNA 3’end identification, as well as the improvements of genome 
assembly and alignment algorithm, the 3’UTR alignments are expected to become more 
complete and accurate in the future. The performance of USP4 might be improved 
accordingly.  

Future improvements of the USP4 method include employing multiple-genome alignment to 
estimate seed match conservation. In the current study, the USP4 method used human-mouse 
3’UTR alignment to measure human miRNA seed match conservation. Target sites have been 
considered conserved if they were retained at mouse orthologous locations and considered 
nonconserved if they were missing or have changed in mouse. Such site conservation 
classification is prone to be affected by the imperfections of mouse genome sequencing and 
assembly quality, 3’UTR alignment quality and mouse-specific target site gain and loss. 
Replacing two-way alignment with multiple alignment incorporating 3’UTRs from rat, dog 
and/or chicken would make the estimation of seed match conservation more accurate. To 
estimate seed match conservation based on 3’UTR multiple-alignment, one solution is use ad 
hoc criteria. e.g., conserved target sites were required to be conserved in at least three out of 
four species in the multiple alignment. Such a solution has proved to be productive for 
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predicting conserved miRNA target genes [117]. Another possible solution is using Branch 
Length Score (BLS) [240] to measure target site conservation. The seed match conservation 
estimation would benefit from BLS measurement since BLS has proven to be more robust 
against to local alignment inaccuracies, gaps and target site gain and loss. BLS also accounts 
for different divergence times between species [240]. One difficulty of BLS solution is that 
BLS calculation using DNAML (DNA Maximum Likelihood program) [241] requires 
substantial computational resources. Determining BLS cutoff for classifying conserved target 
site is also much more complicated than using ad hoc criteria.   

What is the potential biological significance of 5’-isoforms? Considering the high 
overlapping nature of the seed region between most 5’-isoforms and their cognate miRNAs, a 
5’-isoform might function to reduce the off-target effect for a group of common targets of its 
cognate canonical miRNA. Supporting this, it has been cogently argued that miR-10|-1 and 
miR-10 can co-target a large group of common target genes and thus greatly reduced the 
possible off-target effect of miR-10 [242]. The 5’-isoform can confer additional mRNA 
targeting to expand previous target repertoire [242], which has been confirmed in this study 
(such as miR-124|-1) and also in previous studies. Importantly, the existence of 5’-isoforms 
and corresponding expanded targeting may provide the framework for diversifying the 
previously established miRNAs. Such function diversification may underlie the previously 
observed “seed shift” for paralogous miRNAs within a miRNA family, e.g., seed shifting for 
miRNAs in miR-2 and miR-281 families in D. melanogaster [243, 244]. In this case, 
evolutionary pressure may specifically fix different miRNA isoforms of paralogous miRNAs 
as major miRNAs to regulate specific target genes. Following the same speculation, “seed 
shift” may also occur for the orthologous miRNA between species. Indeed, orthologous 
sequence comparison result suggested that ~13% of conserved miRNAs between D. 
melanogaster and the red flour beetle Tribolium castaneum have undergone seed shifting 
[245]. Perhaps the most prominent seed shift example is the most ancient metazoan miRNA, 
miR-100, which has a one-base shift to the 5′ end of its mature miRNA in the sea anemone 
Nematostella vectensis compared to all bilaterians [131]. Analyzing the evolution of 
5’-isoforms may provide additional insights into their origins and biological functions.  

Currently, the molecular mechanism underlying 5’-isoforms biogenesis is still elusive. 
Although the variation in 5’end processing by Drosha and/or Dicer cutting may produce most 
5’-isoforms, a recent study showed that different mRNA isoforms of the Dicer partner protein, 
loquacious (loqs), was able to determine the mature sequence 5’end identity and length on 
miR-307a precursor, which finally led to generation of distinct 5’-isoforms from different 
tissues of Drosophila[91]. With the accumulation of public small RNA deep sequencing data, 
it would be interesting to compare miRNA 5’-isoforms between different tissues and different 
species comprehensively, which would not only generate more comprehensive 5’-isoforms 
repertories but also help to shed light on the functions and biogenesis mechanisms of 
5’-isoforms. Considering the observations of seed shifting across tissues and species as well 
as the regulatory potential of 5’-isoforms, current miRNA annotation rules should be revised 
by incorporating 5’-isoforms with relatively high expression abundance, instead of only 
selecting one major isoform for annotation as genuine miRNAs.  
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6.3  miRNA interspecies comparisons 

One of the indispensable steps in interspecies miRNA comparison is to find the orthologous 
relationship of miRNA genes across species. The performance of downstream miRNA 
expression comparison analysis between species largely depends on the quality of the 
identified orthologous miRNA pairs, which is a challenging problem due to the short length 
of miRNA mature sequences. In addition, miRNAs usually have high duplication rates, and 
many miRNA sequnces only differ one or two nucleotide in their mature sequences within 
one miRNA family. This further complicates the ortholog finding and orthologous 
relationship delineation. In Chapter 3, I presented one miRNA orthologous gene prediction 
procedure (MOP) to identify human miRNA orthologs in chimpanzee and macaque genomes 
and to construct miRNA orthologous relationship across these three species (Section 2.2). 
MOP used a two-step strategy to identify reliable miRNA mature orthologous genes in 
chimpanzee and macaque. In total, MOP successfully predicted 796 and 752 mature miRNAs 
in chimpanzee and macaque genomes, corresponding to 92% and 87% of human annotated 
mature miRNAs, respectively. The identified miRNA orthologs covered more than 97% of 
annotated miRNA of chimpanzee and macaque in miRBase (version 12). Moreover, the 
extremely high expression correlation between replicates for chimpanzee and macaque 
samples and gradually increased miRNA expression divergence followed the phylogenetic 
relationship among three species, further supporting the validity of MOP. The identified 
miRNAs in chimpanzee and rhesus macaque greatly expanded the miRNA annotation in these 
two primate species. Rhesus macaque is an important model species for studying human 
physiology and pathology, so the predicted miRNAs provide valuable resources for further 
studying the function of individual miRNAs in rhesus macaque. 

The identified miRNA orthologs in chimpanzee and rhesus macaque allowed us to estimate 
miRNA expression divergence between human and other two primates based on small RNA 
deep sequencing data in prefrontal cortex. Despite high sequence conservation, up to ~11% of 
the 325 expressed miRNAs diverged significantly between human and chimpanzee, as did up 
to ~31% between human and macaque. The vast majority of these differences were also found 
in cerebellum. Notably, the differentially expressed miRNAs with human-specific high 
expression signature included several brain-specific or brain-associated miRNAs that have 
been shown to take part in neuronal-related functions and processes. They include miR-184, 
which is involved in regulation of neural stem cell proliferation and differentiation [246], 
miR-7, which protects neurons from cell death through downregulation of mTOR signaling 
[247], and miR-34c-5p, one member of miR-34 family that influences brain aging and 
neurodegenerative processes [248]. It should be noted that on the DNA sequence level, these 
miRNAs tend to be conserved: miR-184 mature miRNA sequence is evolutionarily conserved 
from insects to humans, with only one nucleotide different at 3’end of mature sequence, while 
miR-7 and miR-34c-5p are classified as broadly conserved. High sequence conservation 
indicates the functional importance of these miRNAs and shows that expression divergence 
on the human evolutionary lineage is unlikely to be caused by lack of a selection constraint. 
Importantly, a significant inverse relationship between human-chimpanzee miRNA 
expression divergence and expression divergence of the predicted target genes was observed 
at both mRNA and protein levels. This indicates that miRNA expression divergence plays an 
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important role in shaping gene expression divergence among species. Further studies are 
needed to evaluate the functional significance of the miRNA-driven transcriptome changes. 

To identify human orthologs in chimpanzee and other primate species, Brameier et al. and 
Baev et al. used one-way BLAST or one-way BLAT to locate putative miRNA precursor 
orthologs and aligned human mature miRNAs against predicted precursor sequences with 
BLAST to obtain mature orthologs [249, 250]. One of the disadvantages of these 
computational methods is that only local alignment algorithms were considered for precursor 
ortholog prediction. Although BLAST or BLAT methods were able to find the best local 
alignment regions and have high sensitivity, ortholog searching based on local alignment 
algorithms may produce a high number of false positives, especially for miRNA evolved from 
or overlapped with repeat regions. In addition, the one-way strategy also complicates the 
orthologous relationship delineation. Compared with previous homolog-based miRNA 
identification methods, MOP used revised strategies for both miRNA precursor and mature 
sequence identification. MOP determined the best precursor orthologs by utilizing the 
combination of reciprocal BLAT, BLAST and liftOver. The latter, which is based on whole 
genome alignment, can utilize the syntenic homologous blocks to predict miRNA precursors. 
Since an orthologous finding using liftOver is based on global alignment, some problems due 
to local alignment algorithm could be resolved, which makes the identification of miRNA 
precursors more reliable. The requirement of supporting by local alignment (BLAST and 
BLAT) and global alignment algorithms (liftOver) as well as precursor ortholog length 
criteria renders the high prediction accuracy of MOP. Incorporation of reciprocal strategy in 
MOP could not only enhance the ortholog prediction accuracy but also determine the 
orthologous relationship, which is crucial for downstream miRNA expression comparison 
across species. To obtain mature orthologs, MOP constructed precursor alignment with 
human precursors and predicted precursor orthologs of other primates using ClustalW2, and 
furthermore extracted mature orthologs based on human mature miRNA annotation. Due to 
the short length of miRNA mature sequence, the BLAST method is less sensitive for locating 
human mature sequence from the predicted precursor orthologs when substitutions exist 
between miRNA ortholog pairs. Consequently, Brameier et al. conducted additional manual 
checks when human mature sequences failed to produce a BLAST hit or the alignment was 
incomplete [249]. Due to the local alignment algorithm of BLAST, the mature sequence 
boundaries were also hard to locate precisely when substitutions happened at or near the 
miRNA sequence ends. By contrast, extracting miRNA mature orthologs based on precursor 
alignments with a global alignment algorithm such as ClustalW2 allowed for obtaining more 
accurate miRNA mature orthologs, especially for defining the mature sequence boundaries. It 
should be noted that although MOP used more stringent criteria for miRNA prediction, 
prediction sensitivity was not sacrificed. The vast majority (>95%) of annotated known 
miRNAs in chimpanzee and rhesus macaque could be identified by MOP. 

As a general method for miRNA orthologous gene prediction, MOP can be easily applied to 
other species to obtain putative miRNA orthologs, provided the corresponding genome 
sequences were available. The homolog-based miRNA finding provided an important strategy 
for miRNA identification, especially for the miRNAs that were expressed at specific tissue, 
cell-type or developmental stages or expressed in a low level. The homolog-based miRNA 
finding coupled with high-throughput sequencing can be considered a good complement to de 
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novo miRNA prediction methods. Indeed, this strategy has been used to predict miRNAs in 
the species of both animals and plants [251, 252]. The orthologs predicted by MOP are also 
useful for species-specific miRNA identification. Recently, by applying MOP with human 
miRNA annotation in the genomes of 11 species (chimpanzee, gorilla, orangutan, rhesus 
macaque, marmoset, mouse, rat, dog, cow, opossum and chicken), I successfully identified 22 
human-specific miRNAs, including 10 mature human miRNAs with no detectable orthologs 
in any of the 11 species and 12 mature miRNAs with sequence changes in the seed region that 
took place in the human lineage after the split with chimpanzee [37]. Further expression 
pattern and function analysis led to discovery a bona fide human-specific miRNA miR-941 
that effected target genes involved in neurotransmitter signaling, hedgehog- and 
insulin-signaling pathways. miRNA are known for their rapid evolutionary dynamics, with 
dozens of novel miRNAs emerging in the genomes of individual species of nematode and 
flies [253, 254]. Novel miRNA emergence could affect expression of hundreds of genes, thus 
accelerating species-specific gene expression evolution. On the basis of MOP, it would be 
interesting to obtain species-specific miRNAs in more species, comparing their origins and 
exploring their putative functions.  

6.4  Novel lncRNAs and NBips in the human prefrontal cortex 

Detailed classification of lncRNA based on genetic, epigenetic and expression data might be 
useful in elucidating functional properties of particular lncRNA populations. By taking 
advantage of strand-specific RNA-seq data collected at different stages of postnatal human 
brain development, as well as publicly available genetic and epigenetic data, I carried out 
detailed characterization of annotated lncRNA, as well as novel ones I identified using these 
data. Several interesting observations have emerged.  

First, despite the substantial efforts made toward human brain transcriptome characterization 
in previous decades, more than 40% of PFC transcripts reconstructed in the current study 
represent novel transcriptome elements. These elements include novel exons and exon 
extensions of annotated protein-coding, pseugogene and lncRNA genes as well as plenty of 
novel lncRNAs. The novel lncRNA identified in this study displayed all the canonical 
features of known lncRNAs, such as low coding potential, low expression abundance, high 
tissue expression specificity and high nucleus localization preference. One potentially 
interesting feature of novel lncRNAs is their temporal expression pattern. Compared with 
annotated protein-coding genes, age-related novel lncRNAs were preferentially expressed in 
the young rather than in the aging brain. Previous study has showed that newly evolved 
protein-coding genes (mostly primate-specific or human-specific) were expressed higher in 
the human fetal and postnatal young brains compared to other organs or to later life stages 
[255]. It is appealing to speculate that young genes, independent of their coding potential, 
may be important in early brain development.  

Second, while most of the lncRNAs expressed in the prefrontal cortex (>50%) localize in 
close proximity (<4 kb) to known protein-coding genes, one fraction of these transcripts, the 
lncRNAs located upstream of the protein-coding genes on the antisense strand (UA-lncRNA), 
particularly stands out. Specifically, these transcripts 1) show a significantly positive 
correlation with the expression of the upstream protein-coding genes; 2) originate from a 
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specific class of bidirectional promoters showing unique sequence and epigenetic features; 3) 
are highly enriched upstream of genes that are expressed in neurons and involved in neuronal 
functions; and 4) are enriched in TFs shown to be linked to neurons. 

Bidirectional promoters are a common feature of the human genome and have also been 
described in the mouse and other species [256, 257]. In humans, 10% of protein-coding genes 
were annotated to originate from bidirectional promoters [256]. Remarkably, genes 
preferentially expressed in the brain and involved in neural functions were depleted at these 
known bidirectional promoters [258]. This result was further confirmed in the current study. 
By contrast, novel bidirectional promoters showing divergent transcription of novel and 
potentially brain-specific lncRNAs are highly enriched in neuronal genes. The novel 
bidirectional promoters identified in the current study are also distinct from both known 
bidirectional promoters and unidirectional promoters with respect to many aspects of 
sequence composition and epigenetic features, including H3K4me3 chromatin modifications 
and DNA methylation. Thus, they may represent a novel promoter type specifically 
associated with the expression of neuronal genes and regulated by a specific set of TFs. 
Intriguingly, TFs showing significant association with this promoter type include all three 
methylation-resistant TFs (AP-2 family, EGR family and ZF5), representing three of the top 
four discriminatory features used to predict methylation status of CpG islands in the human 
brain [229]. This fact may explain the unique DNA methylation signature of the NBiPs 
observed in the current study. 

Expression of lncRNAs from bidirectional promoters has been previously shown in many 
human cell types, including human embryonic stem cells (hESCs) where >60% promoters 
might be bidirectional and associated with divergent lncRNAs [259]. Notably, even though 
we find no significant overlap between bidirectional promoters described in hESCs and 
NBiPs identified in this study, in both cases, expression of protein-coding genes correlated 
positively with expression of divergent lncRNAs. It is, however, unclear whether this positive 
correlation represents a regulatory effect of lncRNAs or a passive consequence of the 
transcriptional activation of the divergent protein-coding genes. Most human promoters bind 
polymerase complexes in a bidirectional manner and are therefore capable of initiating 
transcription in both directions [257]. More recently, this knowledge has been challenged. 
Duttke et al. show that the majority of human promoters are unidirectional and the ones 
capable of divergent transcription contain their own cognate reverse-directed core promoters 
[260]. In the current study, I cannot exclude that the presence of lncRNAs at the novel type of 
bidirectional promoters identified in this study may represent a passive byproduct of neuronal 
gene transcription from this specific promoter type. Further studies are needed to evaluate the 
functional significance of UA-lncRNAs. 
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Appendix A: Supplementary Figures 
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Figure A.1: The expression abundance comparison between functional and nonfunctional 
conserved miRNA families based on USP4 prediction in human Hela cell line. (A) Expression 
abundance distributions of predicted functional and nonfunctional conserved miRNA families 
with boxplot. Panels B and C shows the proportion of predicted functional conserved miRNA 
families in terms of expressed miRNA family number and total read counts. The functional 
conserved miRNA family and ncRNA fragment family were predicted using USP4. (D) 
Proportion of predicted functional conserved miRNA family on different miRNA families' 
expression levels. The number above the bar represents the number of predicted functional 
miRNA families at each miRNA family expression cutoff. (E) Expression comparison of 
conserved miRNAs between human prefrontal cortex (PFC) and Hela cell line (Pearson 
correlation r=0.39, p<10e-5). The miRNA expressions were normalized by total mapped reads 
of corresponding sample into transcript per million reads (TPM). 
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Figure A.2: Splicing site signals at donor and acceptor sites for novel lncRNAs and known 
protein-coding genes. Nucleotide composition at and around the splice sites (positions 11-12) 
of annotated protein-coding genes (PCG, upper panel) and novel transcripts (bottom panel). 
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Figure A.3: H3K4me3 modification and input control profiles at three promoter types in rhesus 
macaque prefrontal cortex. (A) and (B) are based on H3K4me3 modifications; and (C) and (D) 
are based on H3K4me3 input controls. The left panels show the H3K4me3 modification 
profiles and the right panels show the H3K4me3 modification density at promoter regions. 
Green—UniPs, blue—KBiPs and red—NBiPs. 
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Appendix B: Supplementary Tables 

Table B.1: The 5’-isoforms identified from human prefrontal cortex  

5’-isoform ID 
Seed 
sequence 

Human 
PFC 

Chimp 

PFC 

Macaque 
PFC 

Human 
brain  

Mouse 
brain 

hsa-mir-101|-1 TACAGTA 4454.64 a 5129.25 5129.25 1584.79 4145.75 

hsa-mir-124|-1 TAAGGCA 586.75 541.43 541.43 940.11 22930.30 

hsa-mir-124|+1 AGGCACG 157.10 170.85 170.85 7.76 2403.12 

hsa-mir-125b|+2 CTGAGAC 40.37 43.04 43.04 129.35 202.30 

hsa-mir-126|+1 GTACCGT 34.45 34.12 34.12 219.89 1702.46 

hsa-mir-127-3p|+2 GATCCGT 11.83 14.17 14.17 0.52 34.04 

hsa-mir-127-5p|-1 CTGAAGC 11.31 13.91 13.91 0.00 18.66 

hsa-mir-127-5p|+2 AAGCTCA 42.17 41.47 41.47 8.28 440.73 

hsa-mir-128|+2 CAGTGAA 285.15 291.05 291.05 8.80 106.45 

hsa-mir-132*|-1 ACCGTGG 16.97 0.00 0.00 70.88 160.50 

hsa-mir-135a*|-1 TGTAGGG 11.83 20.73 20.73 0.00 5.37 

hsa-mir-137|+1 ATTGCTT 13.63 24.15 24.15 34.67 944.77 

hsa-mir-137|+2 TTGCTTA 10.28 12.60 12.60 6.21 168.41 

hsa-mir-140-3p|+1 CCACAGG 6674.63 5958.84 5958.84 315.09 457.60 

hsa-mir-140-3p|+2 CACAGGG 252.49 201.82 201.82 0.52 13.59 

hsa-mir-142-5p|-2 CCATAAA 333.23 368.47 368.47 440.82 354.44 

hsa-mir-151-3p|-1 CTAGACT 13.11 14.17 14.17 23.28 6.87 

hsa-mir-151-3p|-2 ACTAGAC 60.68 59.31 59.31 172.29 1.49 

hsa-mir-181a*|-1 ACCATCG 12.86 13.38 13.38 6.21 1.05 
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hsa-mir-181b|-1 AACATTC 73.28 95.01 95.01 406.16 1.19 

hsa-mir-181b|+1 CATTCAT 22.63 16.01 16.01 48.64 19.11 

hsa-mir-191|+1 ACGGAAT 55.54 97.89 97.89 1059.11 192.75 

hsa-mir-192|+1 GACCTAT 204.15 238.56 238.56 670.03 33.14 

hsa-mir-199a-3p|-1 ACAGTAG 166.87 151.69 151.69 52.26 23.89 

hsa-mir-199a-3p|+1 AGTAGTC 49.37 37.00 37.00 9.83 11.50 

hsa-mir-199b-3p|-1 ACAGTAG 166.87 151.69 151.69 52.26 23.89 

hsa-mir-199b-3p|+1 AGTAGTC 49.37 37.00 37.00 9.83 11.50 

hsa-mir-221*|-1 ACCTGGC 47.31 59.84 59.84 1.55 2.24 

hsa-mir-23b*|-1 TGGGTTC 17.23 13.91 13.91 0.00 0.00 

hsa-mir-23b*|+1 GGTTCCT 22.88 27.56 27.56 0.00 0.45 

hsa-mir-24|+1 GCTCAGT 12.86 5.25 5.25 0.52 361.90 

hsa-mir-26b|+3 AGTAATT 35.23 25.46 25.46 0.00 28.52 

hsa-mir-27b|-1 TTCACAG 17.23 14.17 14.17 45.01 60.62 

hsa-mir-29a|-1 TAGCACC 1763.60 93.43 93.43 30.01 4380.89 

hsa-mir-30a*|+1 TTCAGTC 13.37 18.90 18.90 22.25 46.73 

hsa-mir-30e|+1 TAAACAT 11.31 12.07 12.07 99.34 376.98 

hsa-mir-320a|-1 AAAAGCT 39.08 48.03 48.03 4.66 10.15 

hsa-mir-320a|+1 AAGCTGG 98.48 160.62 160.62 12.42 50.02 

hsa-mir-320a|+2 AGCTGGG 22.63 39.63 39.63 0.52 13.88 

hsa-mir-323-3p|-1 CACATTA 84.59 108.39 108.39 107.62 127.95 

hsa-mir-330-3p|+1 AAAGCAC 1263.76 1502.77 1502.77 15.00 451.18 

hsa-mir-330-3p|+2 AAGCACA 540.21 598.12 598.12 19.66 11.94 

hsa-mir-342-3p|+2 CACACAG 42.68 32.54 32.54 187.82 71.51 

hsa-mir-363|+1 TTGCACG 16.20 0.00 0.00 54.33 1.19 
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hsa-mir-378|+1 TGGACTT 28.80 48.55 48.55 2.59 44.79 

hsa-mir-382|+1 AGTTGTT 47.82 71.12 71.12 2.07 48.97 

hsa-mir-383|-1 AGATCAG 32.91 56.43 56.43 3.62 328.31 

hsa-mir-409-3p|-1 GAATGTT 44.48 39.63 39.63 71.92 11.94 

hsa-mir-411|-1 TAGTAGA 202.87 205.23 205.23 2113.57 506.42 

hsa-mir-423-3p|-1 AGCTCGG 36.77 27.56 27.56 62.61 8.81 

hsa-mir-433|+1 CATGATG 17.48 19.42 19.42 0.00 14.78 

hsa-mir-485-3p|-1 GTCATAC 18.77 22.57 22.57 6.73 20.16 

hsa-mir-485-3p|+3 TACACGG 10.28 7.87 7.87 0.00 2.54 

hsa-mir-487b|+1 TCGTACA 15.43 10.76 10.76 5.69 49.12 

hsa-mir-495|+1 ACAAACA 12.08 15.75 15.75 7.76 29.26 

hsa-mir-504|+1 ACCCTGG 27.51 24.15 24.15 38.29 5.67 

hsa-mir-539*|-1 ATCATAC 11.31 3.15 3.15 10.87 0.00 

hsa-mir-539*|+2 ATACAAG 89.74 27.56 27.56 20.70 0.00 

hsa-mir-539*|+3 TACAAGG 174.07 54.59 54.59 17.59 0.00 

hsa-mir-664*|+1 TGGCTAG 16.46 29.92 29.92 3.62 7.76 

hsa-mir-886-5p|+1 GGTCGGA 28.54 29.66 29.66 0.00 0.00 

hsa-mir-9*|+1 AAAGCTA 687.03 837.47 837.47 670.55 5015.42 

hsa-mir-99a|-1 AACCCGT 33.43 28.61 28.61 73.47 17.32 

hsa-mir-99b|+1 CCCGTAG 14.91 13.12 13.12 92.61 20.01 

hsa-mir-9|+1 TTTGGTT 120.08 156.42 156.42 674.17 3596.62 

hsa-mir-9|+2 TTGGTTA 30.85 47.50 47.50 102.96 686.33 

a expression normalized by total mapped reads in Transcript Per Million (TPM) 
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Table B.2: Sample information of 14 strand-specific RNA-seq data 

Sample 
index 

Age 
(days)  

Tissue Accession number Total reads 

S1 2 Prefrontal cortex SRR107727 21,277,649 

S2 4 Prefrontal cortex SRR111895 21,284,713 

S3 19 Prefrontal cortex SRR111896 20,754,409 

S4 34 Prefrontal cortex SRR111897 23,722,421 

S5 94 Prefrontal cortex SRR111898 23,416,250 

S6 204 Prefrontal cortex SRR111899 22,698,303 

S7 443 Prefrontal cortex SRR111900 23,934,412 

S8 787 Prefrontal cortex SRR111901 17,759,057 

S9 5,105 Prefrontal cortex SRR111902 19,901,399 

S10 9,277 Prefrontal cortex SRR111903 23,201,284 

S11 19,457 Prefrontal cortex SRR111904 16,019,209 

S12 24,090 Prefrontal cortex SRR111905 20,948,595 

S13 32,120 Prefrontal cortex SRR111906 21,032,459 

S14 35,770 Prefrontal cortex SRR111907 20,255,260 

Total -- -- -- 296,205,420 
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Appendix C: Curriculum Vitae  

For reasons of data protection, the curriculum vitae is not included in the online version. 

Der Lebenslauf ist in der Online-Version aus Gründen des Datenschutzes nicht enthalten. 



 
135 

 

Appendix D: Publications (during PhD training) 

1. Wei, Y.N., Hu, H.Y., Xie, G.C., Fu, N., Ning, Z.B., Zeng, R. and Khaitovich, P. 
(2015) Transcript and protein expression decoupling reveals RNA binding proteins 
and miRNAs as potential modulators of human aging. Genome biology, 16, 41. 

2. Hu, H.Y.**, He, L. and Khaitovich, P.** (2014) Deep sequencing reveals a novel 
class of bidirectional promoters associated with neuronal genes. BMC genomics, 15, 
457. 

3. Meunier, J., Lemoine, F., Soumillon, M., Liechti, A., Weier, M., Guschanski, K., Hu, 
H.Y., Khaitovich, P. and Kaessmann, H. (2013) Birth and expression evolution of 
mammalian microRNA genes. Genome research, 23, 34-45. 

4. Marsico, A., Huska, M.R., Lasserre, J., Hu, H.Y., Vucicevic, D., Musahl, A., Orom, 
U. and Vingron, M. (2013) PROmiRNA: a new miRNA promoter recognition method 
uncovers the complex regulation of intronic miRNAs. Genome biology, 14, R84. 

5. Weng, K., Hu, H.Y., Xu, A.G., Khaitovich, P. and Somel, M. (2012) Mechanisms of 
dietary response in mice and primates: a role for EGR1 in regulating the reaction to 
human-specific nutritional content. PloS one, 7, e43915. 

6. Hu, H.Y.*, He, L.*, Fominykh, K., Yan, Z., Guo, S., Zhang, X., Taylor, M.S., Tang, 
L., Li, J., Liu, J., Wang, W., Yu, H. and Khaitovich, P. (2012) Evolution of the 
human-specific microRNA miR-941. Nature communications, 3, 1145. 

7. Yan, Z.*, Hu, H.Y.*, Jiang, X., Maierhofer, V., Neb, E., He, L., Hu, Y., Hu, H., Li, 
N., Chen, W. and Khaitovich, P. (2011) Widespread expression of piRNA-like 
molecules in somatic tissues. Nucleic acids research, 39, 6596-6607. 

8. Somel, M., Liu, X., Tang, L., Yan, Z., Hu, H.Y., Guo, S., Jiang, X., Zhang, X., Xu, 
G., Xie, G., Li, N., Hu, Y., Chen, W., Paabo, S. and Khaitovich, P. (2011) 
MicroRNA-driven developmental remodeling in the brain distinguishes humans from 
other primates. PLoS biology, 9, e1001214. 

9. Liu, Y., Han, D., Han, Y., Yan, Z., Xie, B., Li, J., Qiao, N., Hu, H.Y., Khaitovich, P., 
Gao, Y. and Han, J.D. (2011) Ab initio identification of transcription start sites in the 
Rhesus macaque genome by histone modification and RNA-Seq. Nucleic acids 
research, 39, 1408-1418. 

10. Hu, H.Y.*, Guo, S.*, Xi, J., Yan, Z., Fu, N., Zhang, X., Menzel, C., Liang, H., Yang, 
H., Zhao, M., Zeng, R., Chen, W., Paabo, S. and Khaitovich, P. (2011) MicroRNA 
expression and regulation in human, chimpanzee, and macaque brains. PLoS genetics, 
7, e1002327. 

11. Somel, M., Guo, S., Fu, N., Yan, Z., Hu, H.Y., Xu, Y., Yuan, Y., Ning, Z., Hu, Y., 
Menzel, C., Hu, H., Lachmann, M., Zeng, R., Chen, W. and Khaitovich, P. (2010) 



 
136 

MicroRNA, mRNA, and protein expression link development and aging in human 
and macaque brain. Genome research, 20, 1207-1218. 

12. Shao, N.Y.*, Hu, H.Y.*, Yan, Z., Xu, Y., Hu, H., Menzel, C., Li, N., Chen, W. and 
Khaitovich, P. (2010) Comprehensive survey of human brain microRNA by deep 
sequencing. BMC genomics, 11, 409. 

13. Hu, H.Y.*, Yan, Z., Xu, Y., Hu, H., Menzel, C., Zhou, Y.H., Chen, W. and 
Khaitovich, P. (2009) Sequence features associated with microRNA strand selection 
in humans and flies. BMC genomics, 10, 413. 

 

*  First/Co-first author 
**  Correponding author 
 


