7 Anhang

7.1 Abkürzungen und Spezialbegriffe

CART	Klassifikations- und Regressions-Baum (Classification and Regression Tree) [19]
Cox-PH-Regression	Proportionale Hazrad-Regression nach Cox [38]
Design	S-Plus-Bibliothek mit speziellen Funktionen zur Entwicklung und Validierung von multivariaten Modellen (Frank Harrell)
Hmisc	S-Plus-Bibliothek mit vielen nützlichen Funktionen (Frank Harrell)
KNN	Abkürzung für K ünstliche N euronale N etze – [175]
ROC	Receiver Operation Characteristic
Rpart	Rekursive Partitionierung. Der Name für die S-Plus-Bibiliothek von T. Therneau wur- de gewählt, weil der Name CART schon benutzt wurde. Bei Rpart handelt es sich aber um erweiterte Funktionen zur Generierung von CART
SurvNN	Diese S-Plus-Bibliothek wurde im Rahmen der Dissertation von Ruth M. Ripley ent- wickelt und an mehreren Beispielen getestet [134, 135]. Sie basiert in wesentlichen Punkten auf der Bibliothek NNet von Brian Ripley.
Impute	Der in der englischsprachigen Literatur häufig zu findende Begriff <i>Imputation</i> wurde in dieser Arbeit mit Zuschreibung übersetzt. Gemeint ist die Ersetzung fehlender Angaben durch Werte, die mit statistischen Verfahren geschätzt wurden. Genauere Angaben dazu finden sich im Methodenteil.

7.2 Abbildungsverzeichnis

Abbildung 1: Vorwärtsgerichtetes zweistufiges neuronales Netz	9
Abbildung 2: Neuron	9
Abbildung 3: Beispiel für ein neuronales Netz zur Präsentation der XOR-Funktion	11
Abbildung 4: Netze ohne Rückkopplung	12
Abbildung 5: Beispiel einer Kaplan-Meier-Überlebenskurve	18
Abbildung 6: Modell der Haut mit den verschiedenen Hautschichten; Darstellung des Invasionslevels nach Clark und der Tumordicke nach Breslow (modifiziert nach Fritsch [67]	28
Abbildung 7: Überlebenskurven für die Variable F1 der simulierten Daten (Trainigsdaten)	39
Abbildung 8: Überlebenskurven für die Variable F1 der simulierten Daten (Testdaten)	39
Abbildung 9: Überlebenskurven für die Variable F2 der simulierten Daten (Trainigsdaten)	40
Abbildung 10: Überlebenskurven für die Variable F2 der simulierten Daten (Testdaten)	40
Abbildung 11: Überlebenskurven für die Variable F3 der simulierten Daten (Trainigsdaten)	41
Abbildung 12: Überlebenskurven für die Variable F3 der simulierten Daten (Testdaten)	41
Abbildung 13: Überlebenskurven für die Variable F4 der simulierten Daten (Trainigsdaten)	42
Abbildung 14: Überlebenskurven für die Variable F4 der simulierten Daten (Testdaten)	42
Abbildung 15: Überlebenskurven für die Variable F5 der simulierten Daten (Trainigsdaten)	43
Abbildung 16: Überlebenskurven für die Variable F5 der simulierten Daten (Testdaten)	43
Abbildung 17: Komplexität des CART-Baumes und relativer Fehler bestimmt durch Kreuzvalidierungen	44
Abbildung 18: CART-Baum für die simulierten Daten unter Berücksichtigung von zensierten Beobachtungen	45
Abbildung 19: Überprüfung der Proportionalitätsannahme für die Variable F2	46
Abbildung 20: Überprüfung der Proportionalitätsannahme für die Variable F3	47
Abbildung 21: Log-Relative Hazards für die Variablen F1-F4, adjustiert für: F1=1.253, F2=2; F3=6.462, F4=1.468	47
Abbildung 22: Struktur des verwendeten Netzwerks für die Analyse der simulierten Daten	48
Abbildung 23: ROC-Kurven für Prognoseschätzung bei den simulierten Daten mit einem Parameter (Variable F3)	51
Abbildung 24: ROC-Kurven für die Prognoseschätzung bei den simulierten Daten mit einem CART-Baum	52
Abbildung 25: ROC-Kurven für die Prognoseschätzung bei den simulierten Daten mit einem Cox-PH- Modell	53
Abbildung 26: ROC-Kurven für die Prognoseschätzung bei den simulierten Daten mit einem künstlichen neuronalen Netz	54
Abbildung 27: Überlebenskurven für die Variable Tumordicke	63
Abbildung 28: Überlebenskurven für die Variable Ulzeration	64
Abbildung 29: Überlebenskurven für die Variable Geschlecht	64
Abbildung 30: Überlebenskurven für die Variable Invasionslevel	65

Abbildung 31:	Überlebenskurven für die Variable Alter	65
Abbildung 32:	Überlebenskurven für die Variable Lokalisation	66
Abbildung 33:	Überlebenskurven für die Variable histologischer Typ	66
Abbildung 34:	Darstellung der optimalen Baumgröße basierend auf einem Parameter für die Komplexität	67
Abbildung 35:	CART-Baum mit sieben Knoten für die Melanomdaten (TD steht für die Tumordicke nach Breslow)	68
Abbildung 36:	Schoenfeld-Residuen für die Tumordicke	70
Abbildung 37:	Log Relative Hazards für die untersuchten Faktoren	71
Abbildung 38:	Kalibrierung des Cox-PH-Modells mit jeweils 1000 Patientendaten für jede Gruppe	73
Abbildung 39:	ROC-Kurven für Prognoseschätzung bei Registerdaten mit einem Parameter (Tumordicke)	76
Abbildung 40:	ROC-Kurven für Prognoseschätzung bei Registerdaten mit einem CART-Baum	77
Abbildung 41:	ROC-Kurven für Prognoseschätzung bei Registerdaten mit einem Cox-PH-Modell	78
Abbildung 42:	ROC-Kurven für die Prognoseschätzung bei Registerdaten mit einem künstlichen neuronalen Netz	79
Abbildung 43:	ROC-Kurven für die Prognoseschätzung bei Registerdaten mit einem komplexeren künstlichen neuronalen Netz	80
Abbildung 44:	Darstellung von Fehlerrate und Komplexität des CART-Baums für die vervollständigten Registerdaten	86
Abbildung 45:	CART-Baum für die Registerdaten mit vervollständigten Angaben	87
Abbildung 46:	ROC-Kurven für Prognoseschätzung bei vervollständigten Registerdaten mit der Tumordicke	90
Abbildung 47:	ROC-Kurven für Prognoseschätzung bei vervollständigten Registerdaten mit einem CART- Baum	91
Abbildung 48:	ROC-Kurven für Prognoseschätzung bei vervollständigten Registerdaten mit einem Cox- Modell	92
Abbildung 49:	ROC-Kurven für Prognoseschätzung bei vervollständigten Registerdaten mit einem künstlichen neuronalen Netz	93
Abbildung 50:	ROC-Kurven für Prognoseschätzung bei vervollständigten Registerdaten mit einem komplexen künstlichen neuronalen Netz	94

7.3 Tabellenverzeichnis

Tabelle 1 : Ausgaben der XOR-Funktion	10
Tabelle 2: Fiktive Verlaufsdaten von 10 Personen	17
Tabelle 3: Kategorien für die TNM-Klassifikation	29
Tabelle 4: Stadieneinteilung des malignen Melanoms und 5-Jahres-Überlebenswahrscheinlichkeit	30
Tabelle 5: Arbeitsschritte bei der Analyse der Daten	31
Tabelle 6: Gewichte des neuronalen Netzes	49
Tabelle 7: Rang-Korrelationen für die Trainingsdaten und die verschiedenen Modelle bei den simulierten Daten (4000 Fälle, davon 474 nicht zensiert und 2251972 relevante Paare)	55
Tabelle 8: Rang-Korrelationen für die Trainingsdaten und die verschiedenen Modelle bei den simuliertenDaten (2000 Fälle, davon 240 nicht zensiert und 562994 relevante Paare)	55
Tabelle 9: Verteilung der Patienten aus den ausgewählten acht Kliniken auf die drei Analysegruppen	57
Tabelle 10: Verteilung der untersuchten Faktoren bei 8908 Patienten	58
Tabelle 11: Verteilung der untersuchten Faktoren bei 7780 Patienten (Patienten mit fehlenden Angaben ausgeschlossen)	60
Tabelle 12: Untersuchte Variablen, Fallzahlen und Ereignisse	62
Tabelle 13: Wald-Statistik für das Cox-PH-Modell	69
Tabelle 14: Ergebnisse der Validierung des COX-PH-Modells	72
Tabelle 15: Ergebnisse der Kalibrierung des COX-PH-Modells	73
Tabelle 16: Netzgewichte des einfachen künstlichen neuronalen Netzes	74
Tabelle 17: Netzgewichte des komplexen künstlichen neuronalen Netzes	74
Tabelle 18: Rang-Korrelationen f	81
Tabelle 19: Rang-Korrelationen für die Testdaten und die verschiedenen Modelle bei 2022 Patienten, davon 161 nicht zensiert und 361364 relevante Paare	81
Tabelle 20: Fehlende Angaben bei den Faktoren	83
Tabelle 21: Verteilungen der Variablen in den Trainingsdaten. Bei den vervollständigten Werten fehlen die Fälle ohne Angabe zur Tumordicke	84
Tabelle 22: Wald-Statistik für das Cox-PH-Modell bei der Analyse von Registerdaten mit vervollständigten Angaben	88
Tabelle 23: Rang-Korrelationen für die Trainingsdaten und die verschiedenen Modelle bei den vervollständigten Registerdaten (5460 Fälle, davon 506 nicht zensiert, 3416962 relevante Paare)	95
Tabelle 24: Rang-Korrelationen für die Trainingsdaten und die verschiedenen Modelle bei den vervollständigten Registerdaten (2743 Fälle, davon 259 nicht zensiert, 828370 relevante Paare)	95

7.4 Programm zur Datensimulation

```
* Generierung von Zufallszahlen.
```

```
compute status=0.
compute id=$casenum.
compute v1=rv.normal(1,0.5).
compute v2=rv.uniform(1,5).
compute v3=rv.uniform(1,10).
compute Zeit = rv.weibull(1,1)*12.
compute zz1 = rv.uniform(0,1).
compute zz2 = rv.uniform(0,1).
compute zz3 = rv.uniform(0,1).
```

```
* Erzeugung der Variablen Status und Nachbeobachtungszeit.
```

```
if (v1+v2 > 5) and (zz1 <= 0.3) Status=1.
if (v1+v2 > 5) and (zz1 <= 0.5) Zeit=Zeit*(2/3).
if (v1+v3 > 10) and (zz2 <= 0.4) Status=1.
if (v1+v3 > 10) and (zz2 <= 0.4) Zeit=Zeit*(2/3).
if (v2*v3 > 40) and (zz3 <= 0.5) Status=1.
if (v2*v3 > 40) and (zz3 <= 0.5) Zeit=Zeit*(2/3).</pre>
```

```
* Erzeugung von Variablen/Hinzufügen von Rauschen.
compute f1=v1+v4/2.
compute f2=trunc(v2).
compute f3=v3+v5.
compute f4=v6.
compute f5=trunc(v1).
execute.
```

7.5 Beispiele für S-Plus-Auswertungsprogramme

Berechnung eines CART

library(RPart)

fit <- rpart(Surv(NACHZT,STATUS)</pre>

~TD+LEVEL+TANS+HISTONEU+GESCHL+ALTER+HULZ,

data=training.om,control=rpart.control(cp=0.0001))

plotcp(fit)

fit1->prune(fit,cp=0.004)

plot(fit1)

text(fit1)

```
post(fit1,file="")
```

training.om\$pred.rpart<-predict(fit1)
test.om\$pred.rpart<-predict(fit1,newdata=test.om)</pre>

```
# COX-PH-Analyse
library(hmisc,T)
library(Design,T)
attach(training.om)
GESCHLN<-factor(GESCHL)
HISTON<-factor (HISTONEU)
HULZN<-factor(HULZ)
TANSN<-factor(TANS)
LEVELN<-ordered(LEVEL)
TDN<-log(TD)
dd<-datadist (GESCHLN, TDN, ALTER, HULZN, HISTON, TANSN, LEVELN)
options(datadist='dd')
S<-Surv (NACHZT, STATUS)
f<-cph(S~GESCHLN+rcs(TDN,4)+HULZN+HISTON+LEVELN+TANSN+ALTER,
       eps=0.000001,x=T,y=T,surv=T,time.inc=60)
anova(f)
fastbw(f)
z<-predict(f,type='terms')</pre>
fs < -cph(S \sim z, x=T, y=T)
phtest<-cox.zph(fs,transform='identity')</pre>
plot(phtest,var='TDN')
par(mfrow=c(2,2))
plot(f,GESCHLN=NA)
plot(f,TDN=NA)
plot(f,HULZN=NA)
plot(f,HISTON=NA)
par(mfrow=c(2,2))
plot(f,LEVELN=NA)
plot(f,TANSN=NA)
plot(f,ALTER=NA)
validate(f,B=200,dxy=T)
cali1<-calibrate(f,B=500,u=60,m=1000)</pre>
training.om$pred.cox<-predict(f,)</pre>
detach()
```

```
# KNN
library(hmisc,T)
library(Design,T)
library(survnnet,T)
attach(training.om)
GESCHLN<-factor(GESCHL)
HISTON<-factor(HISTONEU)
HULZN<-factor(HULZ)
TANSN<-factor(TANS)
LEVELN<-ordered(LEVEL)
TDN<-log(TD)
dd<-datadist (GESCHLN, TDN, ALTER, HULZN, HISTON, TANSN, LEVELN)
options(datadist='dd')
S<-Surv (NACHZT, STATUS)
nn<-phnnet(S~GESCHLN+TDN+HULZN+HISTON+LEVELN+TANSN+ALTER,
            decay = 0.01, size=3, skip=T, trace=T, maxit=1000, bias.decay=25)
training.om$pred.nn2 <-predict(nn)</pre>
detach()
attach(test.om)
GESCHLN<-factor(GESCHL)
HISTON<-factor (HISTONEU)
HULZN<-factor(HULZ)
TANSN<-factor(TANS)
LEVELN<-ordered(LEVEL)
TDN<-log(TD)
dd<-datadist (GESCHLN, TDN, ALTER, HULZN, HISTON, TANSN, LEVELN)
options(datadist='dd')
S<-Surv (NACHZT, STATUS)
test.om$pred.nn2 <-predict(nn,newdata=test.om)</pre>
```

Rangkorrelationen für zensierte Daten

attach(training.mm) S<-Surv(NACHZT,STATUS) rcorr.cens(-pred.td,S) rcorr.cens(-pred.rpart,S) rcorr.cens(-pred.cox,S) rcorr.cens(-pred.nn,S) rcorr.cens(-pred.nn2,S) detach()

attach(test.mm) S<-Surv(NACHZT,STATUS) rcorr.cens(-pred.td,S) rcorr.cens(-pred.rpart,S) rcorr.cens(-pred.cox,S) rcorr.cens(-pred.nn,S) rcorr.cens(-pred.nn2,S) detach()