7. Abbildungs- und Tabellenverzeichnis

Abbildung 1.1.:	Klassifizierung bzw. Kriterien des metabolischen Syndroms
	nach der WHO und dem NCEP [3]2
Abbildung 1.2.:	Häufigkeit von Herztod und nichttödlichem Herzinfarkt (A) und
	neu aufgetretenem Diabetes Typ 2 (B) bei unterschiedlicher
	Anzahl von Risikofaktoren des metabolischen Syndroms [10]4
Abbildung 1.3.:	Prozentualer Anteil der adipösen Bevölkerung (BMI > 30) der
	USA im Jahre 1985, 1994 und 20037
Abbildung 1.4.:	Strukturformeln der zugelassenen AT1-Antagonisten
Abbildung 1.5.:	Wirkungskaskade des RAS14
Abbildung 1.6.:	Das durch Ang II geförderte kardiovaskuläre Kontinuum [65,
	66]15
Abbildung 1.7.:	Organisation der Adiponektin-Moleküle zu Homotrimeren und
	Oligomeren <i>in vivo</i> [88]24
Abbildung 1.8.:	Mechanismen der Insulinsensitivierung durch Adiponektin
	[106]
Abbildung 2.1.:	3T3-L1 Differenzierungsschema
Abbildung 2.2.:	RNA-Isolationsmethode
Abbildung 2.3.:	mRNA-Qualitätskontrolle mittels eines TBE-Agarosegels47
Abbildung 2.4.:	Zyklusverlauf zur Ermittlung des linearen Bereiches der
	semiquantitativen RT-PCR50
Abbildung 2.5.:	Zyklusprogramm der Standard Realtime-PCR51
Abbildung 2.6.:	Realtime-PCR Standardkurvenamplifikation und berechnete
	Kurve
Abbildung 2.7.:	A: Coomassie-Färbung. B: Ponceau-Färbung55
Abbildung 2.8.:	Prinzip des Adiponektin-ELISAs (nach dem Protokoll des
	Herstellers B-Bridge)60

Abbildung 2.9.:	Prinzip der Glucosebestimmung mit dem Kit von Cypress	
	Diagnostics	60
Abbildung 2.10.:	Prinzip der Triglyzeridbestimmung mit dem Kit von Cypress	
	Diagnostics	31
Abbildung 3.1.:	Differenzierung von 3T3-L1 Zellen.	66
Abbildung 3.2.:	Adiponektinexpression in 3T3-L1 Zellen	68
Abbildung 3.3.:	AT-Rezeptorexpression in 3T3-L1 Zellen	69
Abbildung 3.4.:	Adiponektin-Proteinexpression nach einem Ang II-	
	Dosisverlauf	71
Abbildung 3.5.:	Adiponektin-Proteinexpression nach einem Ang II-Zeitverlauf	•
		72
Abbildung 3.6.:	Adiponektin-mRNA-Expression nach einem Ang II-Zeitverlaut	f.
		74
Abbildung 3.7.:	Adiponektin-Proteinexpression nach AT1R-Blockade und Ang	g
	II-Stimulation	76
Abbildung 3.8.:	Adiponektin-Proteinexpression nach AT2R-Blockade und Ang	g
	II-Stimulation	77
Abbildung 3.9.:	Adiponektin-Proteinexpression nach AT2R-Stimulation	79
Abbildung 3.10.:	Adiponektin-Proteinexpression nach AT1R-Blockade mit oder	٢
	ohne Ang II-Stimulation	31
Abbildung 3.11.:	Adiponektin-Proteinexpression nach Irbesartan- und Ang II-	
	Behandlung mit oder ohne vorherige AT2R-Inhibierung8	83
Abbildung 3.12.:	Adiponektin-Proteinexpression nach Irbesartan- und	
	Pioglitazonstimulation mit oder ohne PPARγγ-Blockade8	85
Abbildung 3.13.:	Adiponektin-Proteinexpression nach Stimulation mit	
	verschiedenen Sartanen	37
Abbildung 3.14.:	Adiponektin-mRNA-Expression nach Stimulation mit 10 μ M	
	Irbesartan	39
Abbildung 3.15.:	Adiponektin-mRNA-Expression von 3T3-L1 Adipozyten nach	
	Behandlung mit verschiedenen PPARγ-Aktivatoren	90

Abbildung 3.16.:	Adiponektin-Proteinexpression in 3T3-L1 Adipozyten nach
	einem Zeitverlauf mit Cykloheximid +- Irbesartan93
Abbildung 3.17.:	Adiponektin-Proteinexpression in 3T3-L1 Adipozyten nach
	Behandlung mit Cykloheximid und Präinkubierung mit
	Irbesartan und Proteasominhibitoren95
Abbildung 3.18.:	Adiponektin-Proteinexpression in 3T3-L1 Adipozyten nach
	Behandlung mit Cykloheximid und Präinkubierung mit
	Irbesartan und <i>clasto</i> -Lactacystin $\beta\beta$ -Lakton97
Abbildung 3.19.:	Proteasomaktivität in 3T3-L1 Adipozyten nach Behandlung mit
	Cykloheximid und Präinkubierung mit Irbesartan und MG 132.
Abbildung 3.20.:	Zucker-Fatty (ZF)-Ratten am Versuchsende (12 Wochen alt).
Tabelle 3.1. A:	Durchschnittswerte $^{\pm}$ SEMs der Tiere vor der Behandlung
	(Tag 0)101
Tabelle 3.1. B:	Durchschnittswerte [±] SEMs der Tiere nach der Behandlung
	(Tag 21)102
Abbildung 3.21.:	Körpergewichte von <i>fa/ fa</i> ZF-Ratten während der
	Irbesartanbehandlung102
Abbildung 3.22.:	Nüchterninsulinspiegel von fa/ fa ZF-Ratten während einer
	Irbesartanbehandlung104
Abbildung 3.23.:	HOMA-IR Indizes von <i>fa/ fa</i> ZF-Ratten während einer
	Irbesartanbehandlung105
Abbildung 3.24.:	Adiponektindepletion von fa/ fa ZF-Ratten während der
	Irbesartanbehandlung106
Abbildung 3.25.:	Adiponektin-Proteinexpression in epididymalem Fettgewebe
	aus fa/ fa ZF-Ratten nach ex- vivo Epro- bzw. Irbesartan-
	Behandlung108
Abbildung 3.26.:	aP2-mRNA-Expression in epididymalem Fettgewebe aus fa/ fa
	ZF-Ratten nach <i>ex-vivo</i> Epro- bzw. Irbesartan-Behandlung.110

Abbildung 3.27.:	Massive Akkumulation von epididymalem (links) und
	perikardialem (rechts) Fettgewebe aus adipösen fa/ fa ZF-
	Ratten112
Abbildung 3.28.:	Adiponektin-mRNA-Expression in perikardialem, epididymalem
	und subkutanem Fettgewebe von adipösen fa/ fa ZF-Ratten.
Abbildung 3.29.:	Adiponektin-Proteinexpression in perikardialem, epididymalem
	und subkutanem Fettgewebe von adipösen fa/ fa ZF-Ratten.
Abbildung 3.30.:	Durch immunohistochemische Färbung dargestellte
	Adiponektinexpression in perikardialem Fettgewebe und im
	Myokard von adipösen fa/ fa ZF-Ratten116
Abbildung 3.31.:	Adiponektin-Proteinexpression im perikardialen Fettgewebe
	und im Myokard adipöser fa/ fa ZF-Ratten
Abbildung 4.1.:	Arbeitsmodell 1125
Abbildung 4.2.:	Arbeitsmodell 2130
Abbildung 4.3.:	Arbeitsmodell 3132
Abbildung 4.4.:	Arbeitsmodell 4